

# Virginia Commonwealth University VCU Scholars Compass

Theses and Dissertations

Graduate School

2012

# On the genetic and environmental associations between body composition, depression symptoms and smoking behavior.

Roseann Peterson Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd Part of the <u>Medical Genetics Commons</u>

© The Author

Downloaded from http://scholarscompass.vcu.edu/etd/2889

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

On the genetic and environmental associations between body composition, depression symptoms and smoking behavior.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University.

By

Roseann E. Peterson Bachelor of Arts, Biology, Minor Chemistry, University of Minnesota, 2004 Bachelor of Arts, Psychology, University of Minnesota, 2005

> Advisor: Hermine H. Maes, Ph.D. Associate Professor Human and Molecular Genetics Psychiatry Massey Cancer Center Virginia Institute for Psychiatric and Behavioral Genetics

> > Doctoral Committee: Lindon J. Eaves, Ph.D., D.Sc. Kenneth S. Kendler, M.D. Brion S. Maher, Ph.D. Suzanne E. Mazzeo, Ph.D. Michael C. Neale, Ph.D. Bradley T. Webb, Ph.D.

Virginia Commonwealth University Richmond, Virginia October 5<sup>th</sup>, 2012

# Dedication

For my mother, whose passion for education and human rights will continue to inspire.



Carol Jean (Field) Peterson February 2, 1948 - October 31, 2007

# Acknowledgements

First and foremost, I wish to thank my advisor, Hermine H. Maes, Ph.D., for her patience, support and generosity with time and knowledge. It has truly been a pleasure to grow as a researcher under her guidance. I extend my sincere gratitude to my dissertation committee, Lindon J. Eaves, Ph.D., D.Sc., Kenneth S. Kendler, M.D., Brion S. Maher, Ph.D., Suzanne E. Mazzeo, Ph.D., Michael C. Neale, Ph.D., and Bradley T. Webb, Ph.D., for their mentorship and guidance throughout the dissertation process. In particular, I would like to thank Dr. Webb for his generosity with time and for graciously teaching me genetic association methods. I would also like to thank Dr. Neale for his generosity with grant funds, which allowed me to receive specialized training in statistical genetics, as well as the opportunity to present my research at numerous national and international conferences. I truly appreciate the exceptional education, training, and friendship I have gained from the faculty and students of the Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, and Departments of Mathematics and Biostatistics, including Drs. Tim Bigdeli, Jackie Meyers, Jia Yan, Rita Shiang, Brien Riley, Sam Chen, Shawn Latendresse, Tim York, Elizabeth Prom-Wormley, Nihar Sheth, David Bauer, RK Elswick and Leroy Thacker. I would also like to thank my first academic mentor, Nancy C. Raymond, M.D. of the University of Minnesota, an exceptional teacher, mentor, and friend, and a great inspiration. I would especially like to thank my family and friends. Without their love and support, I could not have pursued an advanced degree. To my parents, Tony and Carol Peterson, a very special thanks—for their unconditional love, encouragement and giving me every opportunity they could. They have given me the strength and foundation to strive to achieve my goals. I'd also like to thank my oldest friend and sister, Heidi Elmquist, for always being there for me and being a source of trusted, honest advice. Special thanks to Drs. Cynthia Barsness and Mary Ellen Bland for inspiring me from a young age to pursue the sciences and supporting my family through some of our most difficult times. Finally, a particular thanks to Dr. Tim Bigdeli, my best friend, for helping to keep me (partially) "sane" over the past five years and for the many hours of discussion and proof-reading that made this dissertation possible. It takes a village indeed-Vielen Dank!

# **Table of Contents**

| DEDICATION                                                                                                                                                      | II  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ACKNOWLEDGEMENTS                                                                                                                                                | III |
| TABLE OF CONTENTS                                                                                                                                               | IV  |
| LIST OF TABLES                                                                                                                                                  | VII |
| LIST OF FIGURES                                                                                                                                                 | X   |
| GLOBAL ABSTRACT                                                                                                                                                 | XII |
| CHAPTER 1: GENERAL INTRODUCTION                                                                                                                                 | 1   |
| THE OBESITY EPIDEMIC                                                                                                                                            | 1   |
| THE GENETICS OF OBESITY                                                                                                                                         | 2   |
| OBESITY AND PSYCHIATRIC COMORBIDITY                                                                                                                             | 6   |
| SPECIFIC AIMS                                                                                                                                                   | 8   |
| COHORTS                                                                                                                                                         | 11  |
| CHAPTER 2: GENETIC RISK SUM SCORE COMPRISED OF COMMON<br>POLYGENIC VARIATION IS ASSOCIATED WITH BODY MASS INDEX                                                 | 14  |
| ABSTRACT                                                                                                                                                        | 14  |
| INTRODUCTION                                                                                                                                                    | 15  |
| MATERIALS AND METHODS                                                                                                                                           | 16  |
| RESULTS                                                                                                                                                         | 18  |
| DISCUSSION                                                                                                                                                      | 19  |
| TABLES AND FIGURES                                                                                                                                              | 22  |
| SUPPLEMENTARY MATERIAL                                                                                                                                          | 27  |
| CHAPTER 3: ASSOCIATION OF COMMON AND RARE VARIATION INFLUENCE<br>BODY MASS INDEX: A COMBINED SINGLE NUCLEOTIDE POLYMORPHISM A<br>COPY NUMBER VARIATION ANALYSIS | AND |
| ABSTRACT                                                                                                                                                        | 31  |
| INTRODUCTION                                                                                                                                                    | 32  |
| PARTICIPANTS AND METHODS                                                                                                                                        | 33  |
| RESULTS                                                                                                                                                         | 36  |
| DISCUSSION                                                                                                                                                      | 38  |
| TABLES AND FIGURES                                                                                                                                              | 42  |
| SUPPLEMENTAL DATA                                                                                                                                               | 47  |
| CHAPTER 4: ASSOCIATION OF COMMON POLYGENIC VARIATION WITH BC<br>MASS INDEX ACROSS ADOLESCENT DEVELOPMENT: A LONGITUDINAL TW<br>STUDY                            | /IN |

| ABSTRACT              |    |
|-----------------------|----|
| INTRODUCTION          | 52 |
| METHODS               | 53 |
| RESULTS               | 56 |
| DISCUSSION            | 58 |
| TABLES AND FIGURES    | 61 |
| SUPPLEMENTAL MATERIAL |    |

#### 

|                        | 13 |
|------------------------|----|
| ABSTRACT               | -  |
| INTRODUCTION           | 74 |
| METHODS AND PROCEDURES | 75 |
| RESULTS                | 80 |
| DISCUSSION             | 83 |
| TABLES                 | 89 |

#### CHAPTER 6: BINGE EATING DISORDER MEDIATES LINKS BETWEEN SYMPTOMS OF DEPRESSION, ANXIETY, AND CALORIC INTAKE IN OVERWEIGHT AND OBESE WOMEN

| ERWEIGHT AND OBESE WOMEN |  |
|--------------------------|--|
| ABSTRACT                 |  |
| INTRODUCTION             |  |
| METHODS                  |  |
| RESULTS                  |  |
| DISCUSSION               |  |
| TABLES AND FIGURES       |  |

#### 

|                    | 107 |
|--------------------|-----|
| ABSTRACT           |     |
| INTRODUCTION       |     |
| METHODS            |     |
| RESULTS            |     |
| DISCUSSION         |     |
| TABLES AND FIGURES |     |
|                    |     |

#### CHAPTER 8: EVIDENCE OF SHARED GENETIC RISK BETWEEN BODY COMPOSITION AND SMOKING REHAVIORS

| MPOSITION AND SMOKING BEHAVIORS | 143 |
|---------------------------------|-----|
| ABSTRACT                        |     |
| INTRODUCTION                    |     |
| METHODS                         |     |

| RESULTS                      |  |
|------------------------------|--|
| DISCUSSION                   |  |
| TABLES AND FIGURES           |  |
| SUPPLEMENTARY MATERIAL       |  |
|                              |  |
| CHAPTER 9: GLOBAL DISCUSSION |  |
|                              |  |

# List of Tables

| Table 1: Summary of dissertation studies                                                                                                   | 13 |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Descriptive statistics of MGS-C sample by race and sex                                                                            | 24 |
| Table 3: Linear models predicting BMI in MGS-C sample                                                                                      | 25 |
| Table 4: Discriminative accuracy of genetic risk sum score and covariates predicting BMI category in the MGS-C sample                      | 26 |
| Table 5: 78 SNPs catalogued, alleles, frequencies, proxy and association information                                                       | 29 |
| Table 6: Linear model predicting BMI including GRSS interactions with covariates                                                           | 30 |
| Table 7: Descriptive statistics by sex in the SAGE sample                                                                                  | 43 |
| Table 8: Comparison of GRSSs constructed by count and weighted methods                                                                     | 44 |
| Table 9: Linear models predicting BMI in the SAGE sample                                                                                   | 45 |
| Table 10: Discriminative accuracy of covariates, SNP-GRSS and CNV predicting BMI catego<br>in the SAGE sample                              |    |
| Table 11: 32 BMI SNPs                                                                                                                      | 48 |
| Table 12: CNVs catalogued from the literature and frequency in the SAGE sub-sample                                                         | 49 |
| Table 13: Common and rare CNV-GRSS                                                                                                         | 50 |
| Table 14: Descriptive statistics for BMI by zygosity and age group                                                                         | 61 |
| Table 15: IP-1f Females and Males ABD                                                                                                      | 63 |
| Table 16: IP-2f Females and Males in the ABD sample                                                                                        | 64 |
| Table 17: Total heritability and proportion of heritability due to common and specific genetic factors for BMI across adolescence          | 69 |
| Table 18: Effect of GRSS on common genetic factors and mean BMI by sex in an un-related subsample of genotyped ABD participants (Method 1) | 70 |
| Table 19: Effect of GRSS on common genetic factors and mean BMI by sex in a subsample of genotyped ABD twin pairs (Method 2)               |    |
| Table 20: ABD sample sizes by age and zygosity                                                                                             | 72 |

| Table 21: Descriptive statistics and group differences in demographics, energy expenditue energy intake measures                                     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 22: Comparison of caloric intake on BED binge days and non-binge days with con                                                                 |     |
| Table 23: Comparison of caloric intake on BED binge days with BED non-binge days                                                                     | 91  |
| Table 24: Descriptive statistics and group differences in energy expenditure versus reportintake                                                     |     |
| Table 25: Mean total energy and macronutrient intake during a laboratory over eating energy      Laboratory measurement vs. dietary recall interview | -   |
| Table 26: Mean differences of total energy and macronutrient intake between laboratory dietary recall methodologies                                  |     |
| Table 27: Patterns of energy consumption throughout the day: Pre-binge, binge, and pos         food intake                                           | U U |
| Table 28: Group means and inter-correlations for study variables                                                                                     |     |
| Table 29: Lifetime clinical depression and anxiety diagnoses by group                                                                                |     |
| Table 30: Standardized effects coefficients, standard errors and corresponding <i>p</i> -values mediation models                                     |     |
| Table 31: Means and variances by twin group for BMI in VA30k                                                                                         |     |
| Table 32: Testing model assumptions for BMI VA30k                                                                                                    |     |
| Table 33: Univariate ACE Sex Limitation BMI VA30k                                                                                                    |     |
| Table 34: Univariate ADE Sex Limitation BMI                                                                                                          | 127 |
| Table 35: Means and variances of depression symptoms by twin group                                                                                   |     |
| Table 36: Testing model assumptions (SCL-90)                                                                                                         |     |
| Table 37: Univariate ACE Sex Limitation Depression Symptoms (SCL-90) VA30k                                                                           | 129 |
| Table 38: Univariate ADE Sex Limitation Depression Symptoms (SCL-90) VA30k                                                                           |     |
| Table 39: Means and variances of impulsivity (EPQ) by twin group VA30k                                                                               | 131 |
| Table 40: Testing model assumptions for impulsivity (EPQ)                                                                                            |     |
| Table 41: ADE models impulsivity (EPQ) VA30k                                                                                                         |     |

| Table 42: Bivariate models of BMI, depression & impulsivity    136                               |
|--------------------------------------------------------------------------------------------------|
| Table 43: Trivariate independent pathway models of impulsivity, BMI & depression Sx              |
| Table 44: Trivariate Cholesky parameterization of impulsivity, BMI & depression Sx138            |
| Table 45: Descriptive statistics for HABC study variables by gender                              |
| Table 46: Association results for SNPs previously implicated in BMI suggestive for multiple      |
| traits                                                                                           |
| Table 47: Association results for SNPs previously implicated in smoking behaviors suggestive for |
| multiple traits                                                                                  |
| Table 48: Association results for SNPs previously implicated in BMI                              |
| Table 49: Association results for SNPs previously implicated in smoking behaviors                |

# **List of Figures**

| Figure 1: Frequencies of genetic risk sum score                                                                                 | .22  |
|---------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2: Number of SNPs in genetic risk sum score by –log significance of score                                                | .23  |
| Figure 3: MGS-C distribution of age in years                                                                                    | .27  |
| Figure 4: Mean age in years by BMI category                                                                                     | .28  |
| Figure 5: Frequency of BMI risk alleles per person (SAGE)                                                                       | .42  |
| Figure 6: Mean BMI by sex and age group in the ABD sample                                                                       | . 62 |
| Figure 7: Variance BMI by sex and age group in the ABD sample                                                                   | .62  |
| Figure 8: Independent pathway diagram for two common ACE factors and specific ACE components for five observed variables        | .65  |
| Figure 9: Partial IP path diagram with path estimates for females in the ABD sample                                             | .66  |
| Figure 10: Partial IP path diagram with path estimates for males in the ABD sample                                              | .66  |
| Figure 11: Proportion of phenotypic variance accounted for by common and specific genetic an<br>environmental components by sex |      |
| Figure 12: Partial path diagram including effects of GRSS on BMI in females across adolescen                                    |      |
| Figure 13: Theoretical models of the associations between internalizing symptoms, binge eating and caloric intake               | -    |
| Figure 14: Percent of sample by age and sex1                                                                                    | 20   |
| Figure 15: Percent of sample by weight category and sex1                                                                        | 20   |
| Figure 16: BMI by age and sex1                                                                                                  | 21   |
| Figure 17: Depression score by age and sex1                                                                                     | 21   |
| Figure 18: Impulsivity score by age and sex1                                                                                    | 21   |
| Figure 19: Depression symptoms by weight category and sex1                                                                      | 22   |
| Figure 20: Impulsivity score by weight category and sex 1                                                                       | 22   |
| Figure 21: Depression symptoms and impulsivity score by weight category                                                         | 23   |

| Figure 22: Depression symptom profile by weight category                                                   | . 124 |
|------------------------------------------------------------------------------------------------------------|-------|
| Figure 23: Proportion of variance in BMI and depression symptoms due to ACE components (Bivariate)         | . 133 |
| Figure 24: Proportion of variance in BMI and impulsivity symptoms due to ADE components (Bivariate)        |       |
| Figure 25: Proportion of variance in depression symptoms and impulsivity due to ADE components (Bivariate) | . 135 |
| Figure 26: Trivariate independent pathway sex limitation model                                             | . 139 |
| Figure 27: Best fitting model                                                                              | . 140 |
| Figure 28: Proportion of variance in BMI accounted for by ADE components (Trivariate)                      | . 141 |
| Figure 29: Proportion of variance in depression symptoms accounted for by ADE components (Trivariate)      |       |
| Figure 30: Proportion of variance in impulsivity symptoms accounted for by ADE component (Trivariate)      |       |
| Figure 31: BMI by smoking status in males and females from the HABC study                                  | . 151 |
| Figure 32: Mean abdominal visceral fat density by smoking status in males and females                      | .152  |
| Figure 33: Mean pack years by BMI category in males and females                                            | . 153 |
| Figure 34: Daily cigarette consumption by BMI and sex in the VA30k sample                                  | . 159 |
| Figure 35: Smoking history by BMI and sex in the VA30k sample                                              | . 160 |
| Figure 36: Partial modified CCC model path diagram for BMI, smoking initiation and nicoting dependence     |       |
| Figure 37: CCC path estimates for females (VA30k)                                                          | . 161 |
| Figure 38: CCC path estimates for males (VA30k)                                                            | . 161 |
| Figure 39: Summary of dissertation studies                                                                 | . 167 |

# **Global Abstract**

Obesity is a serious public health crisis and recent estimates of its incidence are the highest in United States history, with 35% and 17% of American adults and children affected, respectively. The clinical definition of adult obesity is operationalized as a body mass index (BMI) greater than 30 kg/m<sup>2</sup>. Although the prevalence of common obesity has increased dramatically over the past 30 years-largely thought to be due to changes in the environment, such as high calorie diets and sedentary lifestyles-twin and family studies have shown consistently that relative body weight is under considerable genetic influence in both children and adults, with heritability estimates ranging from 40% to 90%. Elucidating the genetic and environmental liability to relative body weight is an important public health endeavor. To further our understanding of the genetics of BMI and common complex obesity, several studies are described that integrate clinical, twin, and genome-wide association (GWAS) methodology in the context of genetic risk scores, clinical risk prediction, development across adolescence into adulthood, and comorbidity with depression symptoms and smoking behavior. First, in two cross-sectional genetic association studies, the utility of genetic risk sum scores (GRSS) were assessed, which summarize the total number of risk alleles, as an alternative form of replication and for potential clinical utility for obesity risk prediction. Next, since there has been only limited research on when during development BMI-associated variants begin influencing BMI, a longitudinal twin study was utilized to assess the effects of adult-validated BMI-SNPs across adolescence into adulthood. In addition, obesity is comorbid with numerous medical conditions including cardiovascular disease, insulin-resistance and some forms of cancer, as well as, various psychiatric disorders including eating disorders, mood disorders, and substance use. The next series of studies aimed to understand phenotypic and genetic associations between BMI/obesity and binge eating disorder (BED), depression symptoms and smoking behavior. Using a clinical sample of overweight and obese women with and without BED, the relationship of BED, food intake and internalizing symptoms of depression and anxiety was examined. Next, twin study methodology was used to investigate if shared genetic and/or environmental liability was responsible for phenotypic associations found between BMI, depression symptoms, and impulsivity. Finally, a genetic association study aimed at investigating whether genetic variants were associated with multiple behaviors, body composition and smoking behavior, or were trait-specific is presented. By utilizing several samples and methodologies and by pursuing methods development, a comprehensive approach is presented that is hoped to represent a more powerful evidence-based strategy to understanding the genetic and environmental determinants of BMI and common complex obesity, along with associated depression symptoms and smoking behavior.

# **Chapter 1: General Introduction**

## THE OBESITY EPIDEMIC

#### Prevalence

Obesity is a growing public health crisis that is increasingly global in scope (1). Its prevalence among adult Americans has increased dramatically over the last fifty years. As reported by the Centers for Disease Control and Prevention, obesity rates increased from 5% in 1959 to 15% in 1980, and recent estimates of 35% in 2010 are the highest in United States history (2). These estimates reflect a five-fold increase in obesity since 1959. Similarly, rates of obesity in childhood have increased significantly over the past 30 years, from 5% in 1980 to 17% in 2010 (2). Furthermore, the US is not alone in this epidemic, as the World Health Organization reports similar child and adult obesity trends for many other nations (1).

#### Defining obesity

Obesity is defined as an excess of body adiposity. Historically, body weight has been used as a proxy measure of adiposity. Until the 1970s, obesity was defined on the basis of reference tables of "ideal body weight" determined by the life insurance industry from associations with mortality (1). However, this was replaced in the 1980s by body mass index (BMI), a height-adjusted measure of weight calculated as the ratio of weight in kilograms by height in meters squared  $(kg/m^2)$ . The current clinical definition of adult obesity is a BMI greater than 30 kg/m<sup>2</sup>. BMI may be further partitioned into clinical categories corresponding to BMI ranges of underweight <18, normal 18-25, overweight 25-30 and obese class I 30-35, class II 35-40, and class III 40+ kg/m<sup>2</sup> (US Dietary Guidelines). In children, the criteria for classification as overweight and obese are based on the 85<sup>th</sup> and 95<sup>th</sup> percentiles of BMI for sex and age in relation to a reference population (3). Additionally, research has demonstrated that BMI is correlated with other, more direct measures of body fat including underwater weighing and dual energy X-ray absorptiometry (DEXA) (4-6). However, the limitations of BMI have been realized and factors such as age, sex, ethnicity, and muscle mass can affect the association between BMI and body fat (7-10). BMI nonetheless remains a widely used, simple, inexpensive, and noninvasive proxy measure of body fat that can be calculated with reasonable accuracy.

#### Mortality and morbidity

With increasing BMI there is a curvilinear rise in mortality (11, 12). In obese groups, this rise in mortality is thought to be due to the numerous adverse medical conditions associated with high levels of body fat. In adults, obesity is associated with increased risk of cardiovascular disease (13), type II diabetes (14, 15), some forms of cancer (16) and is

comorbid with multiple psychiatric disorders (17-21). Similarly, childhood obesity is associated with both immediate and long-term health consequences including increases in blood pressure, cholesterol and insulin resistance, as well as social and psychological problems (22-25). Furthermore, research has demonstrated that obese children are more likely to become obese adults (26-30), adding to the necessity of effective prevention and treatment efforts.

## Determinants of obesity

Obesity is the result of positive energy balance, that is, excess caloric intake relative to energy expenditure. Although energy balance may appear straightforward, its relationship with obesity is complex and involves both genetic and environmental determinants. With respect to the doubling of obesity rates in the past 30 years, it is arguable that while our genomes have remained stable, environmental changes are attributable to this rise. Examples of such environmental factors include increases in restaurant and fast-food dining, and consumption of sweetened beverages (12, 31). For example, the reported number of fast food restaurants has increased from an estimated 600 in 1958 to over 222,000 in 2010 (1). Additionally, data on energy expenditure suggest that physical activity has declined but that the magnitude of this change is small and could not alone account for the dramatic increase in rates of obesity (32). Tracking of energy intake and expenditure is difficult and complicated by inaccuracies in reporting (33). Further research and developments in methodology are needed to clarify the relative contribution of dietary intake and energy expenditure to obesity over the life course. Although nutritional intake and physical activity affect relative body weight, twin and family studies have consistently shown a significant genetic contribution to body composition with heritability estimates of 40 to 70% (34-36). These results suggest that a considerable fraction of the variance in BMI is due to genetic effects. Therefore, the obesity epidemic likely reflects multiple interactions between lifestyle and genetic factors. More research is needed to unravel the interactions between these factors, and especially, identify critical time points of susceptibility.

# THE GENETICS OF OBESITY

Three broad categories of obesity etiology have been described: monogenic, syndromic and common complex obesity. Dysfunction or loss of a single or few genes is both necessary and sufficient to cause monogenic or syndromic obesity and the typical onset is early in childhood. Common complex obesity is thought to be the result of the interplay between many genes, each of relatively small effect, along with influences of the environment. Research suggests that less than 5% of obesity cases are caused by monogenic or syndromic inheritance (37). Given that our focus herein is on common complex obesity, only a brief review of monogenic and syndromic obesity are provided. More detailed descriptions of rarer forms of obesity may be found in Mutch & Clement, Hinney *et al.*, and Beales (38-40), as well as in the Online Mendelian Inheritance in Man database (http://www.ncbi.nlm.nih.gov/omim).

## Monogenic obesity

Monogenic obesity, also known as non-syndromic obesity, is defined as obesity caused from a rare mutation of a single gene. There have been over 200 reported cases of monogenic obesity, implicating a total of 11 genes (38, 40). The most common mutations causing monogenic obesity are in the *melanocortin-4-receptor* gene (MC4R) on chromosome 18q22 and account for 6% of monogenic obesity (41, 42). Association with MC4R in humans was first reported in 1998 after screening of extremely obese individuals and their families identified frameshift mutations co-segregating in an autosomal dominant fashion (43, 44). The leptin receptor gene (LEPR) on chromosome 1p31 has been found to account for 3% of monogenic obesity cases (45) and yielded its first reported association in humans in 1998 following the presentation of severely obese siblings with extremely high levels of serum leptin (46). In fact, many of the transcripts of genes associated with monogenic obesity have been shown to have a role in the hypothalamic leptin-melanocortin system, which include the following genes: leptin (LEP), pro-opiomelanocortin (POMC), prohormone convertase 1 (PC1), brain-derived neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase receptor type 2 (NTRK2) and single-minded homolog 1 (SIM1) (37, 38, 40, 47-50).

## Syndromic obesity

There are approximately 30 Mendelian disorders that include obesity as a clinical feature but are distinguished by additional presenting attributes including intellectual disabilities, dysmorphic features and developmental abnormalities (38, 40, 49, 50). These disorders are termed syndromic obesity and are the consequence of specific genetic defects or chromosomal abnormalities that disrupt contiguous gene(s). Because multiple genes may be disrupted, the particular causes of obesity often remain elusive. The most common forms of syndromic obesity disorders identified to date are Prader-Willi syndrome (PWS), Bardet-Biedl syndrome, and Alström syndrome. Of these, PWS has the greatest incidence, occurring in 1 in 25,000 births and, in addition to obesity, is characterized by hyperphagia, intellectual disabilities, and hypogonadism. Most cases of PWS are caused by deletion of the paternal copy of the imprinted *small nuclear ribonucleoprotein polypeptide N* gene (*SNRPN*) and potentially other genes within the 15q11-q13 region. The full catalogue of syndromes may be found in the Online Mendelian Inheritance in Man database (http://www.ncbi.nlm.nih.gov/omim).

#### Polygenic inheritance

Although the prevalence of common obesity has increased dramatically over the past 30 years–largely thought to be due to changes in the environment, such as high calorie diets and sedentary lifestyles—twin and family studies have shown consistently that relative body weight is under considerable genetic influence in both children and adults, with heritability estimates ranging from 40% to 90% (35, 51-54). Additionally, twin study meta-analyses which examined BMI from birth to adulthood have revealed that the contribution of genetic effects are low at birth but increase over time, with upwards of 50% of the phenotypic variance due to genetic effects after the first year of life (54, 55).

Furthermore, twin studies have demonstrated significant sex effects on BMI, with greater phenotypic variance in females and significant sex-specific genetic factors also reported (51, 54, 56-60). Given the large heritability estimates reported for BMI, molecular genetic approaches represent a useful tool with which to examine underlying mechanisms and genetic susceptibility to obesity. To date, a number of approaches have been utilized to identify BMI/obesity-associated genes including candidate gene, linkage and association studies.

Studies of candidate genes known to cause severe obesity in experimental animals have implicated several genes in human obesity (40). In the mid-1990s, Zhang *et al.*, discovered that a mutation in the gene encoding the leptin protein was responsible for the severe obesity phenotype in the *ob/ob* mouse (61). Shortly thereafter, the first human mutations were reported in a pair of severely obese cousins, who were found to carry a frameshift mutation in the *LEP* gene on chromosome 7q32 (62). Mutations in the *LEP* gene are largely associated with monogenic obesity and ~1% of extreme early onset obesity cases carry *LEP* mutations (40). However, variants in *LEP* have not demonstrated association with BMI in the general population (63). Although hundreds of genes have been proposed as obesity candidate genes, few have yielded convincing association findings for BMI liability or obesity susceptibility and include common variants in *MC4R* and *BDNF* (63-67).

Genome-wide linkage studies provided an alternative method for identifying BMI/obesity-susceptibility genes. By examining rates of recombination between polymorphic markers among affected siblings, linkage analysis has the potential to localize a co-segregating genetic effect to a particular genetic locus. Unlike candidate gene studies, linkage studies do not rely on an *a priori* hypothesis, but rather aim to identify previously unknown genetic loci to potentially lead to new insights regarding the biology. Numerous linkage scans have been performed, identifying more than 300 chromosomal loci demonstrating linkage with BMI/obesity (48, 68). However, like candidate gene approaches, linkage studies have been plagued by non-replication of positive findings (68, 69). For instance, a meta-analysis of 37 studies boasting a combined sample size of 10,000 families failed to identify any locus robustly linked to BMI or obesity (68). As such, linkage analysis has not proved to be a powerful method for identifying genetic loci with small effects, as would be expected for BMI and common complex obesity.

By the mid-2000s, the fruits of the Human Genome Project and International HapMap Project (70), coupled with the rapid development of high-density highthroughput genotyping arrays, set the stage for a new era of complex disease mapping by genome-wide association studies (GWAS). GWAS is premised on the expectation that, by capturing the majority of common human variation across the genome, individual associations might be identified without *a priori* expectation of a given locus's involvement in disease etiology. Common variation, in the context of GWAS, is taken commonly to mean point mutations, or single nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) >1-5%. An advantage of GWAS over linkage studies is its extendibility to population-based designs, allowing for potentially larger sample sizes and increased power to detect variants with smaller effect-sizes (71). The GWAS approach has successfully identified polymorphisms that contribute to disease risk for numerous complex traits and diseases (72). Though, in some ways the field of obesity

stumbled into the GWAS era. In 2007, a GWAS of type II diabetes by the Welcome Trust Case Control Consortium identified the first association with BMI. A SNP in the *fat mass* and obesity-associated (FTO) gene was found to be significantly associated with type II diabetes. However, when the analyses were adjusted for BMI, the strength of this association was diminished, indicating that the effect of FTO on type II diabetes was through its association with BMI. Since 2007, several subsequent GWAS of successively larger size have been performed for BMI and obesity-related traits (67). In 2009, two large-scale BMI meta-analyses by Thorleifsson et al. and Willer et al. yielded 13 genetic loci reaching genome-wide significance, including the previously implicated variants in or near FTO and MC4R (see Chapter 2 for a complete list). A subsequent mega-analysis by Speliotes et al. (2010) incorporated a two-stage approach in which a GWAS was performed on 249,796 individuals from 46 studies in the first stage, followed by a second stage in which association was performed in an additional 125,931 individuals from 42 studies. This study confirmed 32 SNPs unequivocally associated with BMI (see Chapter 3 for a complete list). These variants, although highly associated with BMI, have small individual effects ranging 0.06 to 0.39 kg/m<sup>2</sup> change in BMI per risk allele and in aggregate account for a limited proportion of the phenotypic variance ( $\sim 1.45\%$ ) (63).

Current GWAS designs are limited to detecting trait or disease associations with common variation in accordance with the common disease-common variant (CDCV) hypothesis (73). For BMI, the aforementioned 32 common SNPs account for ~1.45% of the phenotypic variance, leaving a substantial fraction of the heritability in BMI unaccounted for. As for other complex traits and diseases, this "missing heritability" has lead to efforts to identify rare variants contributing to common disease. Given the heritability of BMI and the observation that common SNPs only account for a portion of the expected phenotypic variance, it is conceivable that additional classes of genetic variants such as rarer and/or structural variation or epigenetic mechanisms influence body composition. A growing number of rare copy number variants (CNV) have demonstrated association with BMI and obesity (a catalogue of CNVs appears in Chapter 3) (74-82). In addition, for many of the BMI/obesity-associated loci, it has yet to be determined if they represent the causative locus or if they are merely correlated with the causative variant. Fine mapping efforts by large-scale exome and genome sequencing efforts are needed to identify the true causal variants. Indeed, such studies are underway and include the UK10K project, a whole-genome sequencing study of 4,000 individuals and exome sequencing of an additional 6,000 individuals, including 2,000 with extreme obesity phenotypes (83).

In summary, despite an arguably changing environment, twin and family studies support the significant role of genes in contributing to relative body weight and obesity across the lifespan. However, as described in the preceding sections, most genes that contribute to relative body weight and obesity are of largely unknown function and have limited utility for risk prediction. This is further complicated by the fact that most studies to date have been on samples of primarily European descent and cross-sectional in nature. Additional research is needed in diverse human populations and it remains unknown when in development the identified genetic effects become important for predicting BMI.

#### **OBESITY AND PSYCHIATRIC COMORBIDITY**

Obesity is comorbid with numerous medical conditions including a variety of psychiatric disorders and traits. Obesity has been associated with eating disorders, mood disorders, substance use as well as personality disorders (84-86). For example, the National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a study of over 40,000 American adults, reports significant increased odds for many psychiatric disorders among them include: lifetime prevalence of any anxiety disorder (OR = 1.4-2.3), lifetime prevalence of alcohol dependence (OR = 1.1-1.6), and prevalence of antisocial personality disorder (OR = 1.1-3.3) (86). Below appears a synopsis of three psychiatric disorders disorders and their association with obesity that are of particular relevance to this thesis.

#### Binge eating disorder

Binge eating disorder (BED) is under consideration for inclusion in the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V). BED is currently defined by the DSM-IV as a provisional eating disorder diagnosis characterized by recurrent episodes of binge eating without weight control compensatory behavior and includes: (1) "eating, in a discrete period of time (e.g., within any 2-hour period), an amount of food that is definitely larger than what most people would eat during a similar period of time and under similar circumstances," and (2) "a sense of lack of control over eating during the episode". Additionally, individuals with BED must experience distress about their binge eating and endorse three of the following symptoms: (1) eating more rapidly than normal, (2) eating until uncomfortably full, (3) eating large amounts when not hungry, (4) eating alone because of embarrassment, and (5) feeling disgusted, depressed or guilty about overeating (87). Although obesity is not a requirement for a BED diagnosis, research indicates that approximately 70% of those meeting criteria for BED are obese (21). While the prevalence of BED in community samples ranges from 2-5%, approximately 30% of obese individuals seeking weight control treatment meet criteria for BED (88, 89). The recurrent overeating that characterizes BED, along with the absence of compensatory behaviors exhibited by those with bulimia nervosa (BN), is most likely responsible for the high frequency of obesity in this group.

#### Major depressive disorder and depression symptoms

According to the DSM-IV, major depressive disorder (MDD) is characterized by a depressed mood most of the day nearly everyday for at least a two-week period and/or diminished interest or pleasure in all or almost all activities. Additional criteria include endorsement of at least three of the following symptoms: (1) significant weight loss or weight gain, (2) insomnia or hypersomnia, (3) psychomotor agitation or retardation, (4) loss of energy, (5) feelings of worthlessness or excessive guilt, (6) diminished ability to concentrate and (7) recurrent thoughts of death or suicide (87). As reported by the 2006 National Comorbidity Survey Replication, the lifetime history estimates of MDD are 12.7% in men and 21.3% in women (90). However, within obese populations, reported lifetime prevalence rates of depression have been shown to be elevated upwards of 32% (20). In addition, Strine *et al.* found that adults with a current or lifetime diagnosis of

depression were significantly more likely to engage in unhealthy behaviors such as physical inactivity and to be obese (20). Furthermore, longitudinal phenotypic studies have found a reciprocal association between obesity and depression, suggesting that elevated BMI may increase depression and vice versa (91, 92). Cross-sectional studies of BMI and depression symptoms have reported positive (93-97), negative (primarily in males) (98, 99) and no association (100-102) between these traits. However, a population based study from the Netherlands found a quadratic (U-shaped) association of BMI and depression indicating those with the lowest and the highest relative body weight were more likely to present with depression. In light of current DSM-IV MDD criteria, which include items related to increase and decrease in appetite, weight and energy expenditure, it is feasible that BMI may be associated with greater levels of depression in both underweight and obese individuals (103). Further research is needed to clarify the nature of the association between body weight and depression.

#### Nicotine dependence and smoking behavior

Nicotine dependence (ND) is characterized by tolerance and withdrawal symptoms in relation to tobacco use. ND can occur with cigarette smoking, smokeless tobacco use, cigar or pipe use. According to the DSM-IV, ND is diagnosed by clinically significant impairment or distress from the presence of any three of the following seven criteria occurring at any time in the same 12-month period: (1) tolerance, (2) withdrawal, (3) taking the substance in larger amounts than intended, (4) persistent desire or unsuccessful efforts to cut down on the substance, (5) spending a great deal of time obtaining or recovering from the effects of the substance, (6) giving up important recreational, social, or occupational activities as a result of the substance, and (7) continued use of the substance despite physical or psychological problems caused by the substance. There are a number of questionnaires that are used to assess ND and the most widely used are the eight-item Fagerström Tolerance Questionnaire (FTQ), the six-item Fagerstöm Test for Nicotine Dependence (FTND), which is a shortened version of the FTQ, excluding items on nicotine yield of cigarettes and inhalation, and the two-item Heaviness of Smoking Index (HSI), a shorter version of the same test only including items on time to first cigarette after waking and number of cigarettes per day (104, 105). In 2010, according to the Centers for Disease Control and Prevention, the estimate of American adults reported as current smokers was 19.3% (106-108). Cross-sectional studies of smoking behavior typically support a negative relationship between current smoking and BMI (109-111), which may be due, in part, to effects of nicotine on energy homeostasis (112-116). Furthermore, smoking cessation is often followed by weight-gain (113, 117, 118). In contrast, however, a positive association is supported by the observation that within smoking cohorts, heavy smokers tend to be of increased body weight compared to light smokers (119-121). Additionally, smoking has been associated with accumulation of visceral fat and increased waist circumference (122-124). Phenotypic associations between smoking and body composition suggest a complex relationship and the causes of these associations remain incompletely understood.

#### SPECIFIC AIMS

## Survey of limitations

GWAS has proven a fruitful approach for identifying polymorphisms that contribute to disease risk for numerous complex traits and diseases (72). However, this method has been met with important limitations, especially as applied to psychiatric disorders. A number of potential factors have been proposed that may reduce the power of this methodology in general, as well as for the field of common complex obesity specifically.

To date, large-scale GWAS meta-analyses have confirmed 32 SNPs associated with BMI which, although highly associated, have small individual effects ranging 0.06 to 0.39 kg/m<sup>2</sup> change in BMI per risk allele. Therefore, replication attempts have limited power to achieve genome-wide significance, even with thousands of subjects (125). Moreover, in aggregate these BMI-associated SNPs account for a fraction of the phenotypic variance (~1.45%) (63), and thus have limited utility for risk prediction (67), suggesting that other classes of genetic variants may be important.

Also, given that the large-scale meta-analyses of BMI were performed on samples of primarily European descent, these findings may not be easily generalizable to other ancestry groups. From a public health perspective, this is particularly problematic since research indicates that there exist health disparities between racial groups, including increased obesity prevalence in African- and Hispanic-Americans (126). The aforementioned BMI-associated SNPs were identified from cross-sectional adults samples, which does not address at what point during development these variants influence BMI. The identification of specific "windows" of risk is essential for understanding development as well as informing prevention and intervention efforts.

Furthermore, relative body weight has been associated with numerous other medical conditions and traits. This may impact the power of gene identification efforts, especially if control groups are not adequately screened for correlated traits or such correlations are not accounted for in statistical methodology. There is a paucity of literature reporting on the potential common genetic liability between obesity and comorbid traits. Without consideration of genetically correlated traits, genome-wide studies of complex disease may be limited in their power to detect etiologically relevant variation.

In summary, the present survey of limitations of gene-identification efforts for common complex obesity has identified the following issues: replication of variants with small effects, utility of risk prediction, generalizability to multiple racial groups and across the lifespan and affects of comorbidity. This thesis delves into many of these limitations and attempts to address these issues through five specific aims.

## Specific aims

The purpose of this research was to develop methods to better delineate the genetics of common complex obesity and the corresponding associations with depression symptoms and smoking behavior through the following five aims:

- 1. Examine phenotypic associations between BMI, depression and smoking behavior in clinical and epidemiological samples. Identify putative mediators and moderators of the BMI-depression link and explore sample structures via symptom profiles.
- 2. Apply multivariate twin methodology to BMI, depression and nicotine-use phenotypes in order to test for shared genetic and environmental liability of multiple traits and stability over time.
- 3. Catalogue common polygenic variation associated with body composition.
- 4. Test genetic variants catalogued for association in multiple cohorts and traits to provide evidence of replication, assess clinical utility and potentially discover variants influencing multiple traits.
- 5. Methods development in each of the preceding areas, presented throughout.

#### Thesis outline

In the following chapters, several studies will be described that integrate both GWAS and twin study methodology to further our understanding of the genetics of BMI and common complex obesity in the context of genetic risk scores, clinical risk prediction, development across adolescence into adulthood, and comorbidity with depression symptoms and smoking behavior. In the first chapter, the obesity epidemic and the associated mortality and morbidity, and a highlight of the genetics of obesity and BMI are reported in order to provide the necessary background.

In the subsequent two chapters, genetic risk sum scores (GRSS), which summarize the total number of risk alleles and test the aggregate risk, as an alternative form of replication and assess clinical utility for obesity risk prediction are performed. Specifically, in Chapter 2, genetic variants were catalogued from two-large scale metaanalyses of BMI in order to test a GRSS constructed by the count method in a sample of European-Americans and African-Americans from the Molecular Genetics of Schizophrenia Controls (MGS-C). In Chapter 3, to extend GRSS methodology, scores were constructed from proxy versus imputed SNPs and count versus weighted methods were compared. In addition to BMI-validated SNPs, previously implicated common and rare CNVs were identified from the literature and were tested for association with BMI and obesity. An integrated model of common and rare variation was tested for association with BMI and subsequently assessed for clinical utility in a sample of European-Americans and African-Americans from the Study of Addiction: Genes and Environment (SAGE). Since there has been limited research on when during development BMIassociated variants begin to influence BMI, Chapter 4, utilizes a longitudinal twin study to assess the effects of adult-validated BMI-SNPs across adolescence into adulthood. To our knowledge, this is the first study of BMI to incorporate GRSS methodology in the context of variance decomposition. Furthermore, only limited models have been applied to examine the genetic and environmental architecture of BMI across adolescence into adulthood. Therefore, this study tested models to quantify the relative proportion of genetic and environmental factors that persist across time versus those that are time specific in the Virginia Twin Study of Adolescent Behavioral Development (ABD).

Obesity is comorbid with numerous medical conditions as well as a various psychiatric disorders including eating disorders, mood disorders, and substance use (84-86). In Chapters 5 through 8, phenotypic and genetic associations between BMI/obesity and binge eating disorder (BED), depression symptoms and smoking behavior are examined in several different types of samples. In Chapters 5 and 6, the University of Minnesota Study of Binge Eating Disorder (UofMN), which is a clinical sample of overweight and obese women with and without BED, is used to examine the relationship of BED, food intake and internalizing symptoms of depression and anxiety. Additionally, tracking of energy intake and expenditure is difficult and complicated by inaccuracies in reporting (33). An improved understanding of the accuracy of self-reported food intake is central to diagnosis of eating disorders, monitoring response to treatment and obesity management. Therefore, in Chapter 5, energy intake and energy expenditure were assessed by multiple methods to potential identify differences in food intake, metabolism and accuracy of self-reported food intake in obese women with and without BED. In Chapter 6, the UofMN sample was used to examine models by which BED, internalizing behaviors of depression and anxiety influence food intake in overweight/obese women. Greater understanding of the mechanisms underlying the associations between mood, binge eating and food intake will facilitate the development of more effective prevention and treatment strategies for both BED and obesity.

Despite numerous phenotypic associations between BMI, depression symptoms, and smoking behavior, there is a paucity of reports investigating genetic and environmental associations between them. To better understand the underlying common genetic architecture, it is essential that the complex nature of the observed associations between these traits be assessed. Accordingly, Chapters 7 and 8 investigate associations between BMI, depression symptoms and smoking behavior by two different types of genetically informed samples: twin studies and GWAS. In Chapter 7, twin study methodology is used to investigate if shared genetic and/or environmental liability is responsible for phenotypic associations found between relative body weight, depression symptoms, and impulsivity in the Virginia 30,000 Twin Study (VA30k). Furthermore, most studies do not examine common versus specific genetic effects. In Chapter 8, genetic variants individually associated with BMI or smoking behavior were catalogued and tested for association in The Health Aging and Body Composition Study (HABC) in order to investigate whether genetic variants were associated with multiple behaviors or were trait-specific. Without consideration of genetically correlated traits, genome-wide studies of complex disease may be limited in their power to detect etiologically relevant variation.

Finally, Chapter 9 provides a global discussion of this thesis by summarizing key findings from each study, discussing limitations of the research presented, and providing extensions for future research. By utilizing several samples and methodologies and by pursuing methods development, a comprehensive approach is presented that is hoped to represent a more powerful evidence-based strategy to understanding the genetic and environmental determinants of BMI and common complex obesity, along with the associated depression symptoms and smoking behavior.

## COHORTS

In order to implement the aims of this dissertation, several data types were utilized including clinical studies, population-based twin samples and samples genotyped for the study of common diseases. Table 1 lists each study along with the corresponding sample and the chapter in which it appears.

#### I. Molecular Genetics of Schizophrenia Controls (MGS-C)

The MGS-C is a cross-sectional sample of 2,653 European-Americans and 973 African-Americans. Participants were considered for "control" status if they denied all of the following psychosis screening questions: treatment for or diagnosis of schizophrenia or schizoaffective disorder; treatment for or diagnosis of bipolar disorder or manic-depression; treatment for or diagnosis of psychotic symptoms such as auditory hallucinations or persecutory delusions. Participants completed an online questionnaire, which included items on height and current weight. Venipuncture for DNA extraction and establishment of lymphoblastoid cell lines was completed at Rutgers University Cell and DNA Repository. DNA samples were genotyped using the Affymetrix 6.0 array at the Broad Institute.

*II.* Study of Addiction: Genes and Environment (SAGE)

Complete data on height, weight, alcohol dependence, nicotine dependence, genotypes and copy number variants were available for 1850 European-American and 498 African-American SAGE participants. The SAGE sample was drawn from three contributing projects: the Collaborative Study on the Genetics of Alcoholism (COGA), the Collaborative Study on the Genetics of Nicotine Dependence (COGEND) and the Family Study of Cocaine Dependence (FSCD). Body composition variables were not available for the FSCD sample, thus not included in the analyses described herein. Study variables were assessed by interview using versions of the Semi-Structured Assessment for the Genetics of Alcoholism. Body mass index (BMI) was calculated from self-reported height and weight. Samples were genotyped on the Illumina Human 1M beadchip at the Center for Inherited Diseases Research at Johns Hopkins University.

## III. Virginia Twin Study of Adolescent Behavioral Development (ABD)

ABD is a longitudinal population-based twin study of adolescent psychopathology. ABD twin participants twins aged 8 to 17 were recruited through Virginia schools and were followed-up every 18 months for up to four waves of data collection (n = 2,794). In total, there were 913 participants from 639 families (291 twin pairs, 348 singletons) that were also genotyped on the Illumina Human 660 array. BMI was calculated from measured weight and height.

#### *IV.* University of Minnesota Study of Binge Eating Disorder (UofMN)

Thirty-four women participated in this study examining metabolic measures, including 17 meeting clinical criteria for binge eating disorder and 17 overweight/obese controls with no history of any binge eating or eating disorder behaviors. Food intake was assessed from a laboratory eating episode, 24-hour dietary recall interviews and food diaries. Energy expenditure was assessed by the doubly labeled water technique, basal metabolic rate and the thermic effect of food. Furthermore, participants completed a variety of questionnaires including the Beck depression and anxiety inventories.

## V. The Virginia 30,000 Twin Study (VA30k)

The VA30k sample is a large population-based twin study. Ascertainment for the VA30k sample was through two sources, a volunteer twin sample solicited through the American Association of Retired Persons and the Virginia Twin Registry. BMI data was available for n=14,457 adult twins. Participants completed the Health and Lifestyle Questionnaire, which included abbreviated versions of the Symptoms Checklist and the Eysenck Personality Questionnaire and smoking history.

#### VI. The Health Aging and Body Composition Study (HABC)

The HABC study is a prospective community based sample of body composition changes over time in elderly adults and included 1663 European-American and 1139 African-American participants. Participants were recruited in 1997-1998 from Pittsburgh, PA, and Memphis, TN metropolitan area residents who were Medicare eligible and between the ages of 69 and 80 years. BMI was calculated from laboratory measured height and weight during initial evaluation. Physical activity was estimated from a structured interview of 27 questions. Computerized tomography was used to determine abdominal visceral adiposity density. Smoking habits and race were selfreported via telephone interview. Genotyping was performed by the Center for Inherited Disease Research using the Illumina Human 1M-Duo BeadChip system.

# Table 1: Summary of dissertation studies

| Chapter | Study                                                                                                                                                    | Sample  | Design                        | Phenotype                                   | Aim     |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|---------------------------------------------|---------|
| 2       | Genetic risk sum score comprised of common<br>polygenic variation is associated with body mass index                                                     | MGS-C   | Cross-sectional,<br>GWAS      | BMI, obesity                                | 3, 4, 5 |
| 3       | Association of common and rare variation influencing<br>body mass index: A combined single nucleotide<br>polymorphism and copy number variation analysis | SAGE    | Cross-sectional,<br>GWAS, CNV | BMI, obesity                                | 3, 4, 5 |
| 4       | Association of common polygenic variation with body<br>mass index across adolescent development: A<br>longitudinal twin study                            | ABD     | Longitudinal,<br>twin, GWAS   | BMI                                         | 2, 4, 5 |
| 5       | Comparisons of energy intake and energy expenditure<br>in overweight and obese women with and without<br>binge eating disorder                           | U of MN | Clinical                      | BED, obesity                                | 1, 5    |
| 6       | Binge eating disorder mediates links between<br>symptoms of depression, anxiety, and energy intake in<br>overweight and obese women                      | U of MN | Clinical                      | BED, obesity,<br>depression<br>symptoms     | 1, 5    |
| 7       | Genetic and environmental associations between body<br>mass index, depression symptoms and impulsivity in a<br>population-based sample of twins: VA30k   | VA30k   | Cross-sectional,<br>twin      | BMI, depression<br>symptoms,<br>impulsivity | 1, 2    |
| 8       | On the genetic and environmental relationship of body<br>mass index, smoking initiation and nicotine<br>dependence in a population-based sample of twins | VA30k   | Cross-sectional,<br>twin      | BMI, smoking behavior                       | 1, 2    |
| 8       | Evidence of shared polygenic risk among smoking behaviors and body composition                                                                           | HABC    | Cross-sectional,<br>GWAS      | BMI, obesity, smoking behavior              | 1, 3, 4 |

# Chapter 2: Genetic risk sum score comprised of common polygenic variation is associated with body mass index

Adapted from: Peterson RE, Maes HH, Holmans P, Sanders AR, Levinson DF, Shi J, Kendler KS, Gejman PV, Webb BT. Genetic risk sum score comprised of common polygenic variation is associated with body mass index. *Human Genetics*. 2011 Feb;129(2):221-30.

# ABSTRACT

Genome-wide association studies (GWAS) of body mass index (BMI) using large samples have yielded approximately a dozen robustly associated variants and implicated additional loci. Individually these variants have small effects and in aggregate explain a small proportion of the variance. As a result, replication attempts have limited power to achieve genome-wide significance, even with several thousand subjects. Since there is strong prior evidence for genetic influence on BMI for specific variants, alternative approaches to replication can be applied. Instead of testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the total number of risk alleles can be tested. In the current study, GRSS comprised of 56 top variants catalogued from two large metaanalyses was tested for association with BMI in the Molecular Genetics of Schizophrenia controls (2,653 European-Americans, 973 African-Americans). After accounting for covariates known to influence BMI (ancestry, sex, age), GRSS was highly associated with BMI (p-value =  $3.19 \times 10^{-6}$ ) although explained a limited amount of the variance (0.66%). However, area under receiver operator criteria curve (AUC) estimates indicated that the GRSS and covariates significantly predicted overweight and obesity classification with maximum discriminative ability for predicting class III obesity (AUC=0.697). The relative contributions of the individual loci to GRSS were examined *post hoc* and the results were not due to a few highly significant variants, but rather the result of numerous variants of small effect. This study provides evidence of the utility of a GRSS as an alternative approach to replication of common polygenic variation in complex traits.

#### INTRODUCTION

Obesity is a general medical condition, defined clinically by a body mass index (BMI) greater than  $30 \text{ kg/m}^2$  and is associated with increased risk of cardiovascular disease, type II diabetes, cancer and poor quality of life (12, 127, 128). The National Center for Health Statistics reports over 33% of American adults are obese with another 33% meeting criteria for being overweight (127, 129). Although increase in energy intake with reduced physical activity contributes to the increase in obesity, genetic factors have consistently been demonstrated to influence individual differences in BMI, with twin and family studies estimating heritabilities of ~0.70 (35, 36).

Genome-wide association studies (GWAS) have successfully identified polymorphisms that contribute to disease risk for numerous complex traits and diseases (72). GWAS for BMI and obesity using sample sizes in the tens of thousands have vielded many putative risk variants of individually small effect. The first common single nucleotide polymorphisms (SNPs) associated with BMI and common obesity were in the fat mass and obesity-associated (FTO) gene and near melanocortin 4 receptor (MC4R) and have been widely replicated (66, 130-135). Additionally, two large-scale BMI metaanalyses, Thorleifsson et al. (2009) and Willer et al. (2009), yielded 13 genetic loci reaching genome-wide significance, including the previously implicated variants in or near FTO and MC4R. These variants were highly significant but had modest effects with 0.06-0.4 kg/m<sup>2</sup> per allele change in BMI and modest obesity (BMI>30 kg/m<sup>2</sup>) odds ratios ranging 1.03-1.3. Although many loci are expected to contribute to a complex trait like BMI, the large number implied by the current result was unexpected to many (136, 137). Despite the large sample size (n>30,000), Willer *et al.* (2009) estimated 5-10% power to detect genome-wide significant variants with effect sizes of 0.06-0.1 BMI units per allele. Therefore, it is likely that many variants influencing BMI did not reach genome-wide significance in these meta-analyses.

Replication attempts using studies unselected for BMI have limited power to achieve genome-wide significance, even with thousands of subjects (125). Since there is strong *a priori* evidence for genome-wide significant and suggestive variants from the large meta-analyses, alternative approaches to replication can be applied. Instead of testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the total number of risk alleles can be constructed and tested. The aggregate risk should be significant if a sufficient proportion of the variants have real effects. GRSS have been used to test the total impact of associated variants on complex traits and disease. For example, Aulchenko et al. (2009) used 54 variants in a GRSS which accounted for ~4% of the phenotypic variance in height. Risk scores incorporating 18-20 genome-wide significant variants have been shown to be associated and predictive of type II diabetes, though algorithms including family history and additional risk factors perform better (138, 139). GRSS have also been applied to BMI and obesity in populations of European and Chinese descent which incorporated 8-15 variants and accounted for 0.5-1.12% of the phenotypic variance (64, 65, 140-143). Presently, BMI GRSS have only incorporated genome-wide significant variants. However, research by Evans et al.(2009), suggests that in some cases, including bipolar disorder, coronary heart disease, hypertension and type

II diabetes, using liberal thresholds ( $\alpha = 0.5$ ) for SNP selection in GRSS may improve predictive ability.

The purpose of this study was to test a GRSS comprised of replicated genomewide significant variants as well as additional variants with suggestive evidence catalogued from large scale meta-analyses for association with BMI in 2,653 European-Americans and 973 African-Americans from the Molecular Genetics of Schizophrenia control sample (MGS-C). Based on the expected BMI effect sizes of 0.05-0.3 kg/m<sup>2</sup> per allele change in BMI, the MGS-C sample would have limited power to detect genomewide significant variants for individual loci. However, the aggregate risk should be adequate if a sufficient proportion of the reported variants are real. Therefore, these analyses serve as a replication attempt of top variants catalogued from large-scale metaanalyses via a sum score approach.

## **MATERIALS AND METHODS**

#### Participants and phenotypes

The MGS-C sample has been previously described in detail (144-146). In summary, Knowledge Networks, Inc., a survey research company, recruited self-identified non-Hispanic European-American and African-Americans from a nationwide panel of survey participants, which was assembled by random digit dialing except 772 of the African-Americans were recruited through a subcontract to Survey Sampling International by internet banner ad recruitment. The institutional review board approval was obtained at NorthShore University HealthSystem and participants completed an online consent with an identical hard-copy consent signed at venipuncture. Participants completed an online questionnaire, available at nimhgenetics.org, which included items on height and current weight. BMI was calculated from respondents' self reported height and current weight. Participants were removed from data analysis if there was missing data on either height or weight or if calculated BMI was less than 15 or greater than 60 as values not in this range were likely data entry errors. There were 2,653 European-Americans and 973 African-Americans included in the present study. Phenotypic details are displayed in Table 2 with full sample characteristics found in Sanders *et al.* (146).

#### Genotyping

Venipuncture for DNA extraction and establishment of lymphoblastoid cell lines was completed at Rutgers University Cell and DNA Repository. DNA samples were genotyped using the Affymetrix 6.0 array at the Broad Institute. There were 3,827 participants genotyped (n=2,817 European-American, n=1,010 African-American) of which 3,626 (95%) passed stringent quality control criteria. Principal component (PC) scores reflecting continental and within-Europe ancestries of each subject were computed and outliers were excluded. Genomic control  $\lambda$  values for autosomes after quality control procedures were 1.005 for African-American and 0.998 for the European-Americans.

#### Selection of 56 SNPs

Preliminary SNP selection identified 78 variants meeting criteria for genome-wide or suggestive significance in either of two large meta-analyses of BMI, 43 from Thorleifsson et al. (2009) and 35 from Willer et al. (64, 65). Thorleifsson and colleagues report genome-wide significant ( $p < 1.6 \times 10^{-7}$ ) associations with 29 SNPs in 11 chromosomal regions, using a discovery sample of n=34,416 and replication sample of n=5,586. The Willer *et al.* meta-analysis detected 8 genome-wide significant ( $p < 5.0 \times 10^{-8}$ ) SNPs in first- and second-stage samples of n=32,387 and n=54,316, respectively. Only variants in or near FTO and MC4R were found to be genome-wide significant in both meta-analyses. The remaining genetic loci were suggestive in the opposing meta-analyses (p<0.05) except rs7138803 on 12q13 (p=0.14). Significance level for one SNP, rs10938397 on 4p12, could not be compared between meta-analyses because there was no corresponding proxy SNP. Of the 78 variants catalogued, 29 had matching SNPs on the Affymetrix 6.0 array. For the 49 SNPs not present, proxies (45 r2>0.8; 4  $r^{2>0.7}$ ) were identified using SNP Annotation and Proxy Search V2.1 (147). Following removal of 7 duplicate proxies and 6 variants from Willer *et al.* for which no proxies were available (r2>0.7), 65 SNPs remained. Haploview version 4.10 was used to determine phase and corresponding proxy alleles (148, 149). In order to avoid bias due to correlated effects, SNP pruning ( $r^2 > 0.8$ ) was performed using PLINK v. 1.07p (150). Of the 56 remaining SNPs, 19 met genome-wide significance criteria in the two meta-analyses. The additional 37 were included as they were the next top SNPs reported (p<0.05). Although our SNP selection threshold was more liberal than the traditional genome-wide significance threshold, it was more conservative than other models of complex disease risk prediction (151, 152). Table 5 details information on the 78 catalogued SNPs.

#### Genetic risk sum score

Under an additive model, 56 variants were used to construct the GRSS. The use of an additive model was chosen as specific non-additive effects have yet to be associated and confirmed in the literature. The GRSS was calculated by summation of the number of risk alleles across the 56 variants divided by the number of SNPs in the score to obtain an average number of risk alleles per locus. GRSS were calculated using the profile option in PLINK. If SNP information was missing in an individual then the scoring routine imputed expected values based on sample allele frequency. R version 2.20.0 was used to fit linear regression models using standard covariates and GRSS as predictors with BMI as the outcome variable. To facilitate interpretation of effects in linear models independent variables were centered.

#### Prediction of obesity

One method to assess diagnostic efficiency is to graph a receiver operator criteria (ROC) curve, which is a plot of the true positive rate (sensitivity) against the false positive rate (1 - specificity) and calculate the corresponding area under the curve (AUC). An AUC may range from 0.5, non-informative, to a maximum of 1.0, perfect discrimination between cases and controls. An AUC is the probability that the predictor is greater for

cases than controls (153, 154). Generally, an AUC of 0.80 is suitable for screening while 0.99 is acceptable for diagnosis (155). To test various BMI thresholds, current BMI was dichotomized to create categories of overweight and obesity class I, II and III which had corresponding ranges of BMI> 25, 30, 35 and 40 kg/m<sup>2</sup> respectively. Binary logistic regression was used to calculate predicted probabilities of the models and was used as the predictor to generate ROC curves. Discriminative accuracy of the GRSS and covariates (molecularly derived ancestry, sex, age, ancestry by sex interactions) to predict BMI category was estimated by calculating the AUC from ROC curves using PASW Statistics version 17.0.

#### RESULTS

#### Phenotypic detail

Descriptive statistics for age and BMI are presented by race and sex in Table 2. The mean age of participants was 48.8 and ranged from 18 to 90 and as depicted in Figure 3 produced a relatively normal distribution. BMI was not significantly associated with age (p=0.135, Figure 4). Males were significantly older than females and European-American females and males were significantly older than African-American females and males (p<0.0001). When partitioning the sample by clinically established BMI  $(kg/m^2)$ categories, 29.0% was either under or normal weight (BMI<25), 33.4% was overweight (25≤BMI <30), 20.4% was obese class 1 (30≤BMI<35), 9.5% was obese class II (35 ≤ BMI < 40) and 7.7% was obese class III (40 ≤ BMI). There was a significant ancestry by sex interaction with BMI. As expected, females had significantly greater BMI than males with African-American females having greater BMI than European-American females and African-American males having greater BMI than European-American males (p<0.0001). Phenotypic findings in the MGS-C sample are consistent with crosssectional data from the National Center for Health Statistics and National Health and Nutrition Examination Study (156), finding obesity more prevalent in women and African-Americans. Additional sample characteristics have been previously reported (146).

#### Genetic risk sum score

Fifty-six variants catalogued from two large-scale BMI meta-analyses were used to construct the GRSS (64, 65). These variants were summarized in the GRSS, which was calculated by the summation of the number of risk alleles across the SNPs for each individual divided by the number of SNPs in the score to achieve an average allele count. The frequencies of GRSSs are shown in Figure 1 and produced a relatively normal distribution. The mean GRSS, or average number of risk alleles present per locus, was 0.494 (SD=0.052) with a range from 0.318 to 0.691, which corresponds to an average of 55 risk alleles per person with a range from 35 to 77.

Results from linear regression analyses are presented in Table 3. Standard covariates known to influence BMI (ancestry, sex and age) were included in the models. Described previously (144, 145), 224 ancestry informative markers were used to construct 10 PC scores designed to discriminate between European, African, Ameri-

Indian and Asian ancestry, PC1 (distinguishes European from African ancestry) and PC4 (distinguishes Eastern and Western European ancestry) were significantly associated with BMI and therefore included as covariates. Interactions between the covariates were tested and significant interactions were found between PC1 and sex and PC4 and sex. No other interactions between the covariates were significant. Model 1, the base model, included the standard covariates and the significant interactions between ancestry PCs and sex and accounted for 3.5% of the variance in BMI. Model 2, which added the GRSS to the base model, fit significantly better (F (1,3027) = 21.8, p= $3.2 \times 10^{-6}$ ) and accounted for an additional 0.66% of phenotypic variance in BMI for a total of 4.1%. We note that the GRSS accounted for more of the variance in BMI than either sex or age. Interactions between the covariates and the GRSS were tested but no significant interactions were found (presented in Table 6). Therefore, our results suggest that GRSS was equally associated with BMI in men and women, in European- and African-Americans and across all ages. The relative contributions of the individual loci to the GRSS were examined post hoc by dropping the most significantly associated SNP from the score iteratively until the score was no longer statistically associated with BMI. As depicted in Figure 2, the GRSS reached non-significance after dropping the top 23 variants.

## Prediction of obesity

To test the discriminative accuracy of the GRSS and covariates (molecularly derived ancestry, sex, age, ancestry by sex interactions) to predict obesity, ROC curves were plotted and the corresponding AUC were calculated. To test various BMI thresholds, current BMI was dichotomized to create categories of overweight and obesity class I, II and III. Figure 2 displays statistics from ROC curve analysis by BMI category. AUC estimates indicated that the model significantly predicted overweight and obesity classification with maximum discriminating ability when predicting class III obesity (AUC=0.697, 95% CI= [0.663, 0.731]). We note that the clinical setting may prefer to use self-identified ancestry as opposed to molecularly derived ancestry in risk prediction because of genotyping cost. In the MGS-C data, the use of self-identified ancestry did not greatly change AUC estimates. For example, when predicting BMI >30 kg/m<sup>2</sup>, an AUC=0.588 was reported when using molecularly derived ancestry versus an AUC=0.586 when using self-identified ancestry in the model (full data not shown).

# DISCUSSION

In this paper, we have constructed a GRSS comprised of 56 common polygenic variants and shown its association with BMI in 2,653 European-Americans and 973 African-Americans from the MGS-C sample. The GRSS was highly associated with BMI (pvalue =  $3.19 \times 10^{-6}$ ) and accounted for 0.66% of phenotypic variance in BMI. The association of the GRSS with BMI was comparable to sex, a known factor to influence body composition. The average effect of carrying 10 risk variants was an increase in BMI of 1.1 kg/m<sup>2</sup>. This corresponds to a weight increase in an average male (5 feet 9 inches, 180 pounds) of 8 pounds and an average female (5 feet 4 inches, 155 pounds) of 7 pounds. Further, we have shown the association of the GRSS with BMI was not the result of the few most significant SNPs but rather the aggregate of many SNPs of small effect. These results are consistent with the common disease common variants hypothesis indicating genetic variants common in the population with small effects contributes to the heritability of common traits and diseases.

ROC curves and the corresponding AUC estimates indicated statistical discriminative ability to predict obesity (BMI >30 kg/m<sup>2</sup>, AUC=0.588, 95% CI= [0.567, 0.610]). AUC estimates were similar to those found in previous studies. For example, Renstrom *et al.* (140) used a genetic score of 9 SNPs and reported an AUC estimate of 0.575 in a sample of 353 obese and 1,370 normal weight diabetic and non-diabetic northern Swedes. Additionally, a study by Cheung *et al.* (2010) estimated an AUC of 0.582 with a genetic score including 13 SNPs in a Chinese sample of 470 obese cases and 700 normal weight controls. Although these AUC estimates were statistically significant, they were below 0.8, the threshold used in clinical practice for screening. In the MGS-C sample, however, the ability to predict morbid obesity (class III) was notably better and approached clinical criteria for a screening test (AUC=0.697, 95% CI= [0.663, 0.731]).

In the MGS-C sample, 4.1% of the phenotypic variance in BMI was accounted for using a model including sex, ancestry based on molecular derived principal components, age, and a GRSS comprised of 56 SNPs. Despite high heritability of BMI, much variance in BMI remains unaccounted for. Based on the progress in identifying loci influencing height, it is likely that a considerable portion of the 'missing heritability' resides in unidentified variants yet to be discovered by larger sample sizes (157). Large-scale international collaborative groups will be required to identify these additional variants with similar and smaller effect sizes.

Additionally, predictive models have yet to include other sources of variation known or hypothesized to influence BMI such as rare variants, gene-gene (GxG) or geneenvironment (GxE) interactions, copy number variation, and epigenetic effects. For instance, rare variants which were not included in the current genetic risk profiles are likely to contribute to BMI heritability. For example, in a study by Blakemore et al.(2009), a rare variant in the visfatin gene was associated (p-value= $8.0 \times 10^{-5}$ , minor allele frequency 1.6% in control and 0.4% in obese subjects) with reduced risk for obesity. There is also evidence to support the influence of copy number variation (CNV) on BMI. In the Willer et al.(2009) meta-analysis, when examining CNV by SNP-CNV linkage disequilibrium, they found 10-kb and 45-kb deletion polymorphisms upstream of NEGR1 with the 45-kb deletion flanked by their two most associated BMI SNPs. The recent advent of SNP arrays designed for CNV detection may reveal additional genetic associations with BMI. Epigenetic variation, although more widely researched in syndromic obesity such as Prader-Willi, may also be linked to common obesity. Finally, GxG interactions have vet to be included in risk prediction of body composition. Twin studies support the role of non-additive genetic effects although most study designs have limited ability to detect them (35, 158).

Since obesity has increased dramatically while the genome has arguably remained stable, future research needs to address moderation effects of the environment. Known obesogenic factors such as physical activity and food intake have been shown to account for a significant portion of the variance in BMI with estimates ranging 5-10% (159-162). Additionally, research is beginning to elucidate GxE affecting BMI (163-167). At least two genes included in the current GRSS show evidence for GxE effects. For example,

Rampersaud *et al.*(2008), in a study of 704 Old Order Amish, found the effects of FTO variants associated with elevated body weight were attenuated in subjects with higher physical activity levels. Additionally, interactions between MCR4 and dietary intake and selection have been shown in model organisms (168-171). For example, mice when given a 3-choice diet and administered a melanocortin agonist preferentially decreased fat consumption (172). Further, variation in human MCR4 has been associated with binge eating (173-175) and with higher total energy intake and selection of foods high in dietary fat (165). BMI prediction models will benefit from incorporating known obesogenic environmental variables such as physical activity and food selection and intake.

The purpose of this study was to test a GRSS as an alternative approach to replication of association of common polygenic variation with BMI. As hypothesized the MGS-C sample had limited power to replicate individual loci when employing genomewide significant thresholds even though there was strong *a priori* evidence of these variants to influence BMI. However, by constructing a GRSS summarizing the total number of risk alleles, the aggregate risk was found to be highly significantly associated with BMI. This study provides evidence of the utility of GRSS as an alternative approach to replication of common polygenic variation in complex traits. Furthermore, the results from the AUC analysis demonstrate meaningful progress towards a screening test that perhaps if used in conjunction with known obesogenic predictors such as physical activity and food selection and intake could identify persons for early environmental or medical intervention to prevent morbid obesity and the associated negative health consequences.

# TABLES AND FIGURES

Figure 1: Frequencies of genetic risk sum score

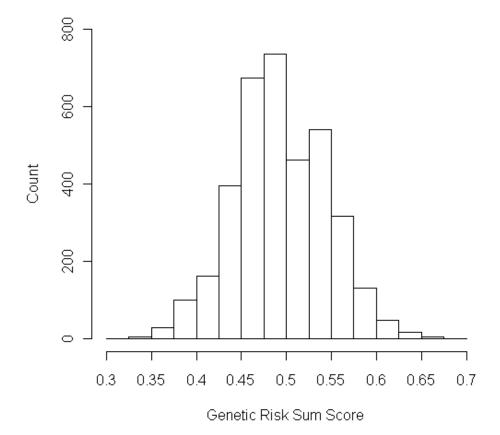
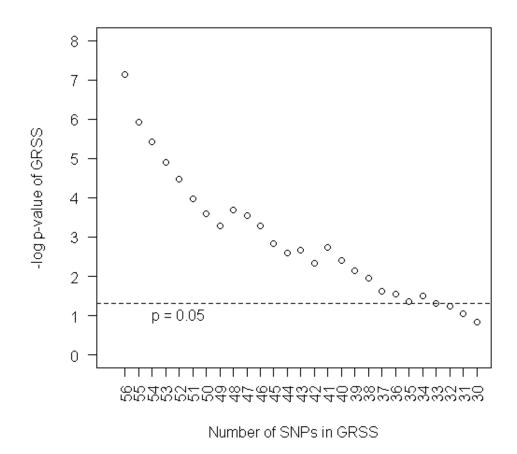




Figure 2: Number of SNPs in genetic risk sum score by -log significance of score



Note: GRSS = genetic risk sum score, -log = negative logarithm base 10, SNPs = single nucleotide polymorphisms.

| Group      | п    | Mean  | SD    |
|------------|------|-------|-------|
| AA Males   | 381  |       |       |
| Age        |      | 46.59 | 13.39 |
| BMI        |      | 29.62 | 5.95  |
| AA Females | 592  |       |       |
| Age        |      | 44.89 | 12.93 |
| BMI        |      | 31.90 | 8.12  |
| EA Males   | 1269 |       |       |
| Age        |      | 52.72 | 16.04 |
| BMI        |      | 28.39 | 5.41  |
| EA Females | 1384 |       |       |
| Age        |      | 48.59 | 16.42 |
| BMI        |      | 28.87 | 7.48  |

Table 2: Descriptive statistics of MGS-C sample by race and sex

Note: AA = African-American, EA = European-American, Age = age in years,  $BMI = body mass index kg/m^2$ .

| Model                   | Estimate               | SE                 | Т           | <i>p</i> -value |
|-------------------------|------------------------|--------------------|-------------|-----------------|
| Model 1: Covari         | iatas                  |                    |             |                 |
|                         |                        |                    | 0.00        |                 |
| $F_{(6,3028)}=19.18, p$ | <i>-value</i> < 2.2E-1 | 16, <i>Adj.</i> R- | squ = 0.034 | 47              |
|                         |                        |                    |             |                 |
| Intercept               | 29.18                  | 0.12               | 238.36      | < 2E-16         |
| PC1                     | 94.78                  | 11.99              | 7.90        | 3.8E-15         |
| PC4                     | -49.19                 | 19.05              | -2.58       | 0.009           |
| Sex                     | 1.03                   | 0.24               | 4.16        | 3.2E-05         |
| Age                     | 0.01                   | 0.01               | 1.49        | 0.135           |
| PC1*Sex                 | 84.31                  | 24.00              | 3.51        | 4.5E-04         |
| PC4*Sex                 | -76.07                 | 38.00              | -2.00       | 0.045           |
|                         |                        |                    |             |                 |

Table 3: Linear models predicting BMI in MGS-C sample

## Model 2: Covariates including GRSS

 $F_{(7,3027)}$ =19.66, *p-value* < 2.2E-16, *Adj. R*-squ = 0.0413

| Intercept | 29.18  | 0.12  | 239.17 | < 2E-16 |
|-----------|--------|-------|--------|---------|
| PC1       | 110.69 | 12.43 | 8.90   | < 2E-16 |
| PC4       | -51.66 | 18.99 | -2.72  | 0.006   |
| Sex       | 1.03   | 0.24  | 4.20   | 2.7E-05 |
| Age       | 0.01   | 0.01  | 1.50   | 0.132   |
| PC1*Sex   | 85.57  | 23.91 | 3.57   | 3.5E-04 |
| PC4*Sex   | -74.42 | 37.87 | -1.96  | 0.049   |
| GRSS      | 11.41  | 2.44  | 4.66   | 3.2E-06 |
|           |        |       |        |         |

Note:  $BMI = body mass index kg/m^2$ , GRSS = genetic risk sum score, PC1 = principal components score distinguishes European from African ancestry, <math>PC2 = principal components score distinguishes Eastern from Western European ancestry, Adj. R-squ = adjusted R-squared.

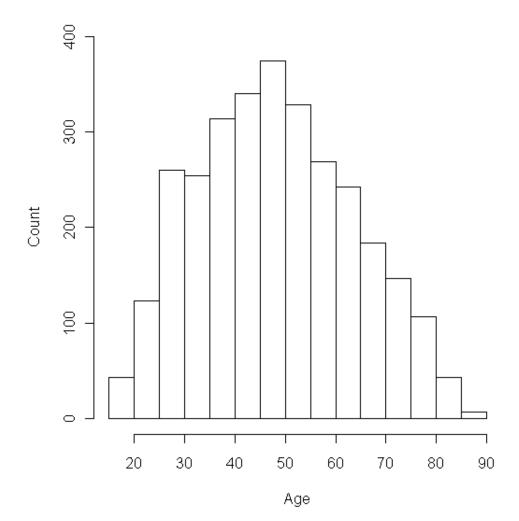
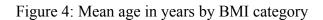

| Group      | n      | AUC           | Asy.     |
|------------|--------|---------------|----------|
| Group      | (%)    | [CI]          | Sig.     |
| Overweight | 2157   | 0.613         | 1.21E-22 |
|            | (71.1) | [0.591,0.635] |          |
| Ohese 1    | 1139   | 0.588         | 3.11E-16 |
| 000000     | (37.5) | [0.567,0.610] | 5.112 10 |
|            |        |               |          |
| Obese 2    | 519    | 0.647         | 5.32E-26 |
|            | (17.1) | [0.621,0.673] |          |
| 01 2       | 222    | 0.07          | 1 755 00 |
| Obese 3    | 232    | 0.697         | 1.75E-23 |
|            | (7.6)  | [0.663,0.731] |          |

Table 4: Discriminative accuracy of genetic risk sum score and covariates predicting BMI category in the MGS-C sample


Note: BMI = body mass index kg/m<sup>2</sup>, AUC = area under the receiver operator criteria curve, Asy. Sig. = asymptotic significance, Overweight = BMI >25 kg/m<sup>2</sup>, Obese I = BMI >30 kg/m<sup>2</sup>, Obese II = BMI >35 kg/m<sup>2</sup>, Obese III = BMI >40 kg/m<sup>2</sup>, predictors included in models: molecularly derived ancestry (principal components PC1 and PC4), sex, age, PC1 by sex and PC4 by sex interactions and genetic risk sum score.

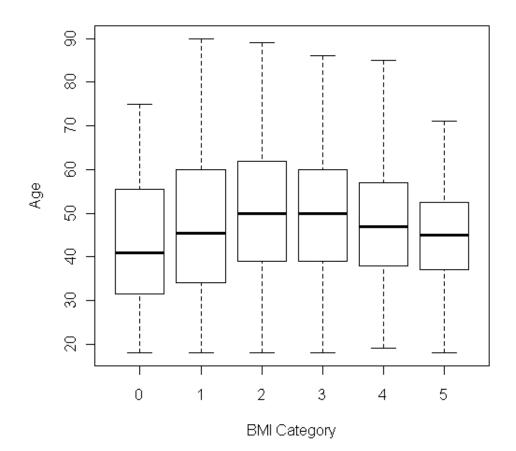

# SUPPLEMENTARY MATERIAL

Figure 3: MGS-C distribution of age in years



27





Note: BMI = body mass index kg/m<sup>2</sup>, BMI category: 0 = underweight (BMI<18.5), 1 = normal-weight (18.5 $\leq$ BMI <25), 2 = overweight (25 $\leq$ BMI <30), 3 = obese class 1 (30 $\leq$ BMI<35), 4 = obese class II (35 $\leq$ BMI<40) and 5 = obese class III (40 $\leq$ BMI), age = age in years, box plot is 95%.

| 54503239 LOC66495,44) MRPL 37(46) SBIP3(0)<br>72480331 WEGR1(0)<br>7249732 WEGR1(0)<br>72537704 MEGR1(46)<br>72537704 MEGR1(46) | 7.2885028 ms.er.(+u)<br>7.2885028 ms.er.(+u)<br>897716558<br>99720004<br>9771558 (10) LETTROLO     | 17.234.27.01<br>6.12551 телемицит<br>8.12550 телемицит<br>16.22694 телемицит<br>3.3254.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46019476 PRACE(0)<br>1873.12585 ETV4+0 DOKO(27)<br>4433.0777 ZNESS(4) ZWET18(43) | 183378088<br>25464044<br>98086824<br>12271 crinctaam |                            | 317/0506<br>31730585<br>401830585<br>46416595 bscRtL1414                                         | 54895006 FAMILSB(.74)<br>71354484 KIAA1411(-28) CiloritS7(8) SMAP1(79)<br>25342456 | 130110115 TS0A19; 97) KLF14;-48) hise-mir 294(93) hise-mir 290-1(94)<br>4032708 CSMD1(8)<br>8487433 | 97440005<br>1100558 6 Coon440 EPB41L48(83)<br>126505146 Liwriel-e) | 7691915 ITH 8(0) ITH 8(0) ITH 2(93)<br>8440665 STK32(0) | 27539705 LGR4(-s9) LWTC(-54) BD NF(96) BDNF (96)<br>27595510 BDN F(40) BDNF (40) | 27613486 BDNF(22) BDNF(22)<br>2762664 BDNF(9) BDNF(9)   | 27633617 BDNF(2) BDNF(2)<br>276336420 BDNF(2)                     | 47:00-01 // Bustrief Dourts) // Bustrief // Bustrief // Bustrief // Bustrief // Bustrief // Bustrief // Agrammer // 45:33735 TEGT-991.00283331(44), LOC144234;49 // Brank2416 // Agrammer // 45:33735 TEGT-991.00283331(44), LOC144234;49 // Brank2416 // Agrammer // 45:33735 TEGT-991.00283331(44), LOC144234;49 // Brank2416 // Agrammer // 45:347 | DC283331(-78) LOC144233                              | 121197161 MLXIP-21/L31258 B36MT4/87) BIA BLO(61) DIABLO(61)<br>27004637 MILLEN-4231 ULXIFED POLICIENDER POLICIENDER<br>4165/21610 TPS3BP1-4-80 MAR-1A-101 HISPPD2A010 CK MITBLESTSTROGS7 | 80139255 RKHDN-14 EFTUD1(70)<br>91375823 CHD2/-11 RGMA(11) | 96988019 koFrazz)<br>28745016 Ersseven Arxizuoja Arxizuoja Arxizuoja Arxizuoj<br>28745017 Erressa va veven korven ko | 28790742 LEBORGE ATXR2L(35) ATXR2L(3) ATXR2L(35) ATXR2L | 52326794 KIAA1008(34) FTO(0)<br>52357888 KIAA1008(34) FTO(0) | 52370115 KuAA1008(37) FTO(0)<br>52373776 KuAA1008(31) FTO(0) | 52378028 KUAATURNASS FTU(0) | 004-02.00 FINGRON-89) NI NI (21)<br>55982448<br>55080244 | 56002077<br>56035730                                            | OR4F17(61)               | 3901397/ CHSTR,48) KCTD18(19)<br>65569685<br>13235505 TASP1(83)                                  | 47209058              |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|-----------------------|
| 1 5450<br>1 7249<br>0 7249<br>0 7253                                                                                            | 00                                                                                                 | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                | 0 0                                                  | o c                        |                                                                                                  |                                                                                    |                                                                                                     |                                                                    |                                                         | - 0                                                                              | 00                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                                                                                                                                                          | - 0                                                        | -0-                                                                                                                                                                                               | - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 0 - 0                                                        | ·                           |                                                          |                                                                 | 0                        |                                                                                                  | -                     |
| 0.7109<br>0.3056<br>0.1422                                                                                                      | 0.05546<br>0.743<br>0.7982<br>0.2645                                                               | 0.06037<br>0.07001<br>0.0349<br>0.994<br>0.6403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03527<br>0.7898<br>0.02632                                                     | 0.9485<br>0.1631                                     | 0.4134<br>0.2818           | 0.7579<br>0.8614<br>0.8038                                                                       | 0.8351<br>0.3656                                                                   | 0.9631<br>0.5657<br>0.7354                                                                          | 0.3421<br>0.6045                                                   | 0.5631<br>0.709                                         | 0.3397<br>0.8994                                                                 | 0.6185                                                  | 0.3329                                                            | 0.466                                                                                                                                                                                                                                                                                                                                                 | 0.4637<br>0.1646                                     | 0.663<br>0.0651<br>0.3611                                                                                                                                                                | 0.1951                                                     | 0.08178<br>0.6072                                                                                                                                                                                 | 0 1797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1372                                                       | 0.2928<br>0.8338                                             | 0.7165                      | 0.7075                                                   | 0.912<br>0.246                                                  | 0.1991                   | 0.05497<br>0.05497<br>0.7794                                                                     | 0.8066                |
| 0.3707<br>1.025<br>1.469                                                                                                        | 1.918<br>-0.328<br>0.2557<br>1.116                                                                 | -1.88<br>-1.814<br>-2.113<br>0.007524<br>0.4675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.108<br>-0.2667<br>2.225                                                       | -0.06455<br>1.396                                    | -0.8183<br>-1.077          | -0.3084<br>-0.1747<br>-0.2485                                                                    | 0.2082<br>0.9052                                                                   | -0.04628<br>-0.5747<br>0.3381                                                                       | 0.9506                                                             | 0.5785<br>0.3733                                        | 0.9553                                                                           | -0.4982                                                 | 0.9687<br>-1.517<br>* 707                                         | 0.7294                                                                                                                                                                                                                                                                                                                                                | -0.733<br>1.391                                      | 0.4359<br>1.847<br>0.9137                                                                                                                                                                | -1.296                                                     | -1.742<br>-0.5142<br>0.8236                                                                                                                                                                       | 1 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.487                                                       | -1.053<br>-0.2098                                            | -0.3632                     | 0.3753<br>0.445.4                                        | -0.1105                                                         | -1.285                   | -0.2949<br>-1.922<br>-0.2801                                                                     | -0.2449               |
| 0.000148<br>0.00113<br>0.002328                                                                                                 | 0.003943<br>0.000116<br>7.08E-05<br>0.00134                                                        | 0.003792<br>0.003529<br>0.004781<br>6.11E-08<br>0.000235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  | 4.49E-06<br>0.002107                                 | 0.00072<br>0.001247        | 0.000102<br>3.29E-05<br>6.65E-05                                                                 | 67E-05<br>000885                                                                   | 2.33E-06<br>0.000355<br>0.000124                                                                    | 0.00098                                                            | 0.000361                                                | .000981<br>.72E-05                                                               | .000267                                                 | 0.00247                                                           | 0.000572                                                                                                                                                                                                                                                                                                                                              | 0.000578                                             | 0.000205<br>0.003658<br>0.000898                                                                                                                                                         | .001806                                                    | 0.003271<br>0.000285<br>0.000738                                                                                                                                                                  | 001941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 002376                                                       | 0.001198<br>4.74E-05                                         | .000142                     | 0.000152                                                 | .32E-05                                                         | .001791                  | 9.36E-05<br>0.003967<br>8.60E-05                                                                 | 5.48E-05              |
| 0.3448 (0.3436 0.3496 (                                                                                                         | 0.3493 0.4007 0.6354                                                                               | 0.6014 0.5721 0.05576 0.04157 0.0431 0.04157 0.04431 0.04431 0.04157 0.04431 0.04157 0.04157 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.04151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.0015151 0.00150000000000 | 0.3429 0.3516 0.3516 0.4117 0.0117                                               | 0.9631                                               | 0.3481<br>0.6403 (         | 0.7531 0.4653 0.4145                                                                             |                                                                                    | 0.3958 0.438 0.38                                                                                   |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.3522 0.3528 0.3546 0                                                                                                                                                                   |                                                            | 0.3438 0.3392 0.3392 0.3392                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 0.379 0.3463                                                 |                             | 0.399                                                    |                                                                 |                          | 0.3535 0.3535 0.4207                                                                             |                       |
| 0.1278 0.369 0.5135 0                                                                                                           | 0.6699 ()<br>-0.1315 ()<br>0.1625 ()<br>0.4456 ()                                                  | -1.131<br>-1.038<br>-1.178<br>0.003127<br>0.2071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | 0.5619                                               | -0.2849 (                  | -0.2322 0.08127 0.103                                                                            |                                                                                    | -0.01832 (<br>-0.2517 0.1285                                                                        |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.1535 0.2083 0.324 0                                                                                                                                                                    |                                                            | -0.599<br>-0.1744                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | -0.399                                                       |                             | 0.1498                                                   |                                                                 |                          | -0.105/                                                                                          |                       |
| 931<br>931<br>927<br>0                                                                                                          | 931 0<br>931 -0<br>925 0<br>931 0                                                                  | 931 - 931 - 931 - 931 - 931 - 931 - 931 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 931<br>930<br>931 0                                                              | 930 -0.<br>925 0                                     | 931<br>931 - 0             | 931<br>930<br>931<br>931                                                                         |                                                                                    | 923<br>931<br>921<br>0<br>0<br>0                                                                    |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 930<br>931<br>931                                                                                                                                                                        |                                                            | 927<br>931<br>931                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 926<br>931 -0                                                |                             | 931 0 -<br>931 0 -                                       |                                                                 |                          | 929<br>915<br>915<br>915                                                                         |                       |
| 0.2545 0.1867 0.2179 0.2179                                                                                                     | 0.05904<br>0.586<br>0.7648<br>0.08211                                                              | 0.1014<br>0.08638<br>0.04513<br>0.04009<br>0.2878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | 0.9185                                               | 0.7438 9.6489              | 0.4862 0.02911 9                                                                                 |                                                                                    | 0.869 0.5928 0.2731 0.2731                                                                          |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.3475<br>0.933<br>0.9429                                                                                                                                                                |                                                            | 0.3757 0.03547 9                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 0.09546                                                      |                             | 0.4619                                                   |                                                                 |                          | 0.3784<br>0.4769<br>0.09181                                                                      |                       |
| 1.14 0.<br>-1.321 0.<br>-1.232 0.                                                                                               | -1.889 0.0<br>-0.5447 0.<br>0.2992 0.1<br>1.739 0.0                                                | -1:639 0.<br>-1.716 0.0<br>-2:004 0.0<br>-2:054 0.0<br>1.063 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7632 0.4<br>-0.975 0.4<br>4.001 6.48                                           | -0.1023 0.9                                          | -0.3269 0.1<br>0.5995 0.1  | 0.6965 0.4<br>-2.183 0.0<br>0.1112 0.5                                                           |                                                                                    | -0.1649 0.<br>0.5349 0.1<br>-1.096 0.1                                                              |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | -0.9396 0.3<br>0.08403 0.3<br>0.07158 0.3                                                                                                                                                |                                                            | -0.8859 0.<br>2.104 0.0                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 1.668 0.0<br>2.103 0.0                                       |                             | 0.7359 0.4                                               |                                                                 |                          | 0.7114 0.0                                                                                       |                       |
|                                                                                                                                 |                                                                                                    | 0.001068 -1.<br>0.001171 -1.<br>0.001597 -2.<br>0.001678 -2.<br>0.00045 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | .18E-06 -0.1                                         |                            | 0.000193 0.6<br>0.001895 -2.<br>4.93E-06 0.1                                                     |                                                                                    |                                                                                                     |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                                                                                                                                                          |                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                             |                                                          |                                                                 |                          |                                                                                                  |                       |
| 85 0.000517<br>M4 0.000696<br>88 0.000605                                                                                       | 24 0.001418<br>07 0.000118<br>28 3.57E-05<br>11 0.001204                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | 41-                                                  | 57 4.26E-05<br>81 0.000143 |                                                                                                  | • •                                                                                | 22 1.09E-05<br>88 0.000114<br>9 0.000482                                                            |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 4 0.000352<br>5 2.81E-06<br>9 2.04E-06                                                                                                                                                   |                                                            | 6 0.000312<br>2 0.001759<br>6 0.001769                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 51 0.001108<br>56 0.001758                                   |                             | 0.000216<br>0.000216                                     |                                                                 |                          | 6 0.000309<br>14 0.000202<br>88 0.00115                                                          |                       |
| 9 0.1885<br>2 0.1894<br>7 0.1888                                                                                                | 3 0.1924<br>9 0.1907<br>9 0.1928<br>2 0.2341                                                       | 8 02429<br>5 02422<br>8 02433<br>8 02434<br>4 0.1904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 0.2184<br>1 0.2298<br>3 0.186                                                  | 8 0.3282<br>82 0.1974                                | 2 0.1857<br>3 0.1931       | 4 0.2016<br>4 0.2617<br>9 0.1879                                                                 |                                                                                    | 57 0.1962<br>8 0.2558<br>1 0.239                                                                    |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 2 02354<br>6 02735<br>7 0.3139                                                                                                                                                           |                                                            | 4 0.2916<br>2 0.1912                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 8 0.1851<br>6 0.1886                                         |                             | 2 0.1864                                                 |                                                                 |                          | 0.1944<br>3 0.1944<br>1 0.1868                                                                   |                       |
| 0.2149<br>-0.2502<br>-0.2327                                                                                                    | -0.3633<br>-0.1039<br>0.05769<br>0.4072                                                            | -0.398<br>-0.4155<br>-0.4878<br>-0.5<br>-0.5<br>0.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.1667<br>-0.2241<br>0.7443                                                     | -0.03358<br>-0.00852                                 | -0.06072<br>0.1158         | 0.1404<br>-0.5714<br>0.0209                                                                      | 0.278                                                                              | -0.03237<br>0.1368<br>-0.2621                                                                       | -0.140                                                             | 0.553                                                   | 0.743                                                                            | -0.651                                                  | -0.735                                                            | 0.0204                                                                                                                                                                                                                                                                                                                                                | 0.199                                                | -0.2212<br>0.02299<br>0.02247                                                                                                                                                            | -0.161                                                     | -0.2584<br>0.4022<br>0.4273                                                                                                                                                                       | 0.2776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.184                                                       | 0.3088                                                       | 0.399                       | 0.137                                                    | 0.2296<br>0.2877                                                | 0.143                    | 0.1745<br>0.1383<br>-0.3151                                                                      | 0.182                 |
| 4147 2514<br>352 2508<br>4778 2513                                                                                              | 2514<br>2513<br>2509<br>2511                                                                       | 2513<br>2512<br>2514<br>2512<br>2513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2514<br>2514<br>2513                                                             | 2504                                                 | 2514<br>2511               | 2509<br>2512<br>2513                                                                             | 2513<br>2508                                                                       | 2488<br>2512<br>2496                                                                                | 2503<br>2509<br>2509                                               | 2514<br>2513                                            | 2513<br>2502                                                                     | 2514                                                    | 2514<br>2514                                                      | 2514                                                                                                                                                                                                                                                                                                                                                  | 2511<br>2514                                         | 2510<br>2514<br>2513                                                                                                                                                                     | 2514                                                       | 2514<br>2514<br>2514                                                                                                                                                                              | 2.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2514                                                         | 2511<br>2514                                                 | 2509                        | 2513                                                     | 2505                                                            | 2499                     | 2514<br>2512<br>2472                                                                             | 2505                  |
|                                                                                                                                 | 0.5714<br>0.24<br>0.08428<br>0.2487                                                                | 0.9029<br>0.8926<br>0.8885<br>0.7768<br>0.8109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4697<br>0.5936<br>0.2282                                                       | 0.9676<br>0.773                                      | 0.5262<br>0.08119          | 0.944<br>0.8493<br>0.222                                                                         | 0.4655<br>0.07534                                                                  | 0.7383<br>0.1912<br>0.3022                                                                          | 0.3124                                                             | 0.8791                                                  | 0.2991<br>0.6269                                                                 | 0.9322                                                  | 0.4584                                                            | 0.1038                                                                                                                                                                                                                                                                                                                                                | 0.8212<br>0.2613                                     | 0.6553<br>0.02518<br>0.3582                                                                                                                                                              | 0.1475                                                     | 0.5764<br>0.4445<br>0.2775                                                                                                                                                                        | 0.2539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6393                                                       | 0.7014<br>0.4306                                             | 0.4722                      | 0.7667                                                   | 0.2828<br>0.1334                                                | 0.8474                   | 0.501                                                                                            | 0.7838                |
| 0.5028                                                                                                                          | 0.6223<br>0.6033<br>0.369<br>0.1957                                                                | 0.8271<br>0.8265<br>0.8277<br>0.828<br>0.828<br>0.6129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7637<br>0.7827<br>0.434                                                        | 0.9137<br>0.6526                                     | 0.5678<br>0.3787           | 0.682<br>0.8527<br>0.5051                                                                        | 0.4091<br>0.1585                                                                   | 0.6547<br>0.152<br>0.1891                                                                           | 0.2829                                                             | 0.8426<br>0.4992                                        | 0.2324<br>0.8011                                                                 | 0.8036                                                  | 0.3178<br>0.8249                                                  | 0.35                                                                                                                                                                                                                                                                                                                                                  | 0.8825<br>0.2831                                     | 0.8063<br>0.1363<br>0.8986                                                                                                                                                               | 0.3189                                                     | 0.1121<br>0.3828<br>0.3766                                                                                                                                                                        | 0.3181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5861                                                       | 0.4843<br>0.4024                                             | 0.4071                      | 0.4455                                                   | 0.2446<br>0.2743                                                | 0.6806                   | 0.6328<br>0.6328<br>0.4224                                                                       | 0.7045 (              |
| AG<br>C/T<br>C/T                                                                                                                | G/A<br>C/T<br>A/G                                                                                  | C/T<br>A/G<br>A/G<br>G/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/A<br>С/Т<br>С/Т                                                                | AG                                                   | 55                         | CIA<br>CIA<br>CIA                                                                                | AG                                                                                 | C/G<br>C/T<br>C/T                                                                                   | A C C                                                              | 06<br>CT                                                | C/T<br>C/A                                                                       | 1/C                                                     | L 9 G                                                             | S A G                                                                                                                                                                                                                                                                                                                                                 | A/G<br>A/G                                           | C/T<br>C/T<br>Ø/A                                                                                                                                                                        | CIA                                                        | S C C A                                                                                                                                                                                           | 2 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G/A                                                          | A/G<br>A/C                                                   | F0                          | AIC<br>AIC                                               | AG                                                              | AG                       | 61<br>10<br>10                                                                                   | GA                    |
| C 17C                                                                                                                           | 5752<br>A<br>C<br>G                                                                                | ⊢00<<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊢o⊢                                                                              | < ⊢                                                  | ⊢o                         | 00+                                                                                              | < 0                                                                                | 00∢)                                                                                                | - 0 0                                                              | 00                                                      | ⊢ <                                                                              | ⊢ (                                                     | 000                                                               | ><<                                                                                                                                                                                                                                                                                                                                                   | ⊢ 0                                                  | ⊢ ∪ Ø                                                                                                                                                                                    | 0                                                          | 0 U U                                                                                                                                                                                             | ) c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i < ୯                                                        | - <                                                          | ⊢ (                         | v < 0                                                    | 0 <                                                             | 0                        | 9 H H (                                                                                          | G GA                  |
| -00                                                                                                                             | et al. rs2815752<br>1<br>1<br>1                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0-                                                                              | 1                                                    |                            |                                                                                                  | 0 =                                                                                |                                                                                                     | - 0 0                                                              | 00                                                      | 0 -                                                                              | 1                                                       | - 0 -                                                             | - 0 0                                                                                                                                                                                                                                                                                                                                                 |                                                      | 0                                                                                                                                                                                        | 0                                                          | 00+                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | -0                                                           |                             | 00+                                                      | 500                                                             |                          | 000                                                                                              | -                     |
| 0.97<br>1.00<br>1.00<br>SNP rs2815752                                                                                           | Thor lefts son<br>1.00<br>0.89<br>0.96                                                             | 1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.86                                                                             | 0.92<br>0.812<br>SNP re100007                        | 0.966                      | 0.83<br>0.83<br>0.818<br>0.841                                                                   | 1<br>0.725                                                                         | 0.878<br>0.94<br>0.774                                                                              | - 8, 6                                                             |                                                         | 1.<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | SNP rs 105010<br>1.00                                   | 0.98                                                              | 9 - 9:<br>- 8:                                                                                                                                                                                                                                                                                                                                        | 1.00<br>0.705                                        | 0.722<br>0.97<br>1                                                                                                                                                                       | -                                                          | - 8 8                                                                                                                                                                                             | SNP rs8062405<br>0.845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88                                                           | 1.00                                                         |                             | 88                                                       | - 0                                                             | 1.00                     |                                                                                                  | -                     |
| Thorieifsson rs3766430<br>Thorieifsson rs1776012<br>Thorieifsson rs9424977<br>Thorieifsson Duplicate proxy                      | duplicate SNP-<br>infsson rs2815752<br>infsson rs1973993<br>infsson rs12562499<br>infsson rs543874 | ifsson<br>ifsson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ifsson                                                                           |                                                      | rs 10900767<br>rs 2736172  | Thorteitsson Juppicare proxy<br>Thorteifsson rs805297<br>Willier rs6912289<br>Willier rs12055715 |                                                                                    | ifsson                                                                                              | eifsson<br>eifsson                                                 |                                                         |                                                                                  | Thorleifsson Duplicate proxy<br>Thorleifsson rs10501087 | 2.0E10-07 Thorleitsson rs7124442<br>7.2E10-06 Thorleitsson rs6265 | Willer                                                                                                                                                                                                                                                                                                                                                | 2.2E10-06 Thorleifsson rs417644<br>Willer rs11173067 | Willer rs2017594<br>6.3E10-06 Thorleifsson rs9581881<br>Willer rs2255042                                                                                                                 | Willer rs12324805<br>Willer no proxy >.7                   | Willer<br>Thorieifsson<br>Thoriaifeson                                                                                                                                                            | Thorieifsson Duplicate proxy<br>Willer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thorleifsson                                                 | Thorleifsson                                                 | 6.30E-17 Willer rs9939609   | Thorleifsson<br>Thorleifsson                             | 3.90E-07 Willer rs17782313<br>2.6E10-06 Thorleifsson rs12970134 | Willer<br>5 Thorleifsson | 2.60E-0/ Willer rs11084/53<br>Willer rs2145270<br>Willer rs1076052                               | 0.69 Willer rs5768614 |
|                                                                                                                                 | 0.04<br>0.86<br>0.90<br>0.93                                                                       | 1.06<br>0.05<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                             |                                                      | 0.75                       |                                                                                                  |                                                                                    | 0.95                                                                                                | 0.82                                                               |                                                         |                                                                                  |                                                         |                                                                   | 2 <del>2</del> 8                                                                                                                                                                                                                                                                                                                                      |                                                      | 1.11                                                                                                                                                                                     |                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 0.85                                                         |                             |                                                          | 0.0<br>10.0                                                     | 0.94                     | 0.0                                                                                              |                       |
| 3.87<br>3.69<br>3.71<br>4.66                                                                                                    | 0.15<br>4.56<br>3.67<br>4.29                                                                       | 6.83<br>0.24<br>6.33<br>6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.66                                                                             | 4.14<br>2.45                                         | 2.25                       | 9 7<br>7<br>7                                                                                    |                                                                                    | 3.91                                                                                                | 3.13<br>5.07                                                       |                                                         | 5.01                                                                             | 5.89<br>5.68                                            | 5.67<br>5.67                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                  | 6.24                                                 | 5.02                                                                                                                                                                                     |                                                            | 3.92                                                                                                                                                                                              | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.55                                                         | 6.85<br>8.28                                                 | 0.29                        | 3.14                                                     | 0.21                                                            | 4.25                     | 77.0                                                                                             |                       |
| 0.446<br>0.455<br>0.458<br>0.581                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                      |                            | 0.676<br>0.86<br>0.39                                                                            |                                                                                    |                                                                                                     | 0.308                                                              |                                                         |                                                                                  |                                                         | 0.335                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.78<br>0.154<br>0.92                                                                                                                                                                    |                                                            |                                                                                                                                                                                                   | 0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                              | -                           |                                                          |                                                                 |                          | 0.65<br>0.65<br>0.45                                                                             | 69.0                  |
|                                                                                                                                 |                                                                                                    | - 0 0 1 0 4 20<br>8 8 0 1 0 1 0 4 20<br>8 8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                      |                            |                                                                                                  |                                                                                    |                                                                                                     |                                                                    |                                                         |                                                                                  |                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                                                                                                                                                          |                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                              |                             |                                                          |                                                                 |                          | 9<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | e GA                  |
| rs3766431<br>rs1776012<br>rs9424977<br>rs2568958                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                      |                            | rs10/7.595<br>rs2844479<br>rs12.210863<br>rs6911147                                              |                                                                                    | rs11976955<br>rs17069257<br>rs11773921                                                              |                                                                    |                                                         |                                                                                  |                                                         | rs925946<br>rs6265                                                |                                                                                                                                                                                                                                                                                                                                                       | rs836964<br>rs275982                                 |                                                                                                                                                                                          |                                                            |                                                                                                                                                                                                   | rs7498665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rs6499640<br>rs7190492                                       |                                                              | rs9939609                   |                                                          | rs17782313<br>rs12970134                                        | rs1423052<br>rs29941     | rs11084/53<br>rs2145270<br>rs1076052                                                             | rs4823535             |

 Table 5: 78 SNPs catalogued, alleles, frequencies, proxy and association information

 Image: State of the stat

| Model                                                    | Estimate | SE     | Т            | <i>p</i> -value |
|----------------------------------------------------------|----------|--------|--------------|-----------------|
| <i>Model</i> : <i>Covarian</i> $F_{(11,3023)} = 13.06$ , | U        |        | R-squ = 0.04 | 418             |
| Intercept                                                | 29.22    | 0.13   | 227.85       | < 2E-16         |
| PC1                                                      | 115.40   | 13.42  | 8.60         | < 2E-16         |
| PC4                                                      | -50.01   | 19.34  | -2.58        | 0.009           |
| Sex                                                      | 1.03     | 0.25   | 4.17         | 3.1E-05         |
| Age                                                      | 0.01     | 0.01   | 1.58         | 0.113           |
| PC1*Sex                                                  | 98.06    | 24.86  | 3.94         | 8.1E-05         |
| PC4*Sex                                                  | -76.75   | 38.06  | -2.02        | 0.044           |
| GRSS*PC1                                                 | 164.20   | 264.30 | 0.62         | 0.534           |
| GRSS*PC4                                                 | -105.40  | 372.60 | -0.28        | 0.777           |
| GRSS*Sex                                                 | 7.69     | 4.99   | 1.53         | 0.123           |
| GRSS*Age                                                 | -0.20    | 0.15   | -1.32        | 0.186           |
| GRSS                                                     | 11.69    | 2.48   | 4.71         | 2.6E-06         |

Table 6: Linear model predicting BMI including GRSS interactions with covariates

Note: BMI = body mass index kg/m<sup>2</sup>, GRSS = genetic risk sum score, PC1 = principal components score distinguishes European from African ancestry, PC2 = principal components score distinguishes Eastern from Western European ancestry, Adj. R-squ = adjusted R-squared.

# Chapter 3: Association of common and rare variation influencing body mass index: A combined single nucleotide polymorphism and copy number variation analysis

Adapted from: Roseann E. Peterson, Hermine H. Maes, Peng Lin, John R. Kramer, Victor M. Hesselbrock, Lance O. Bauer, John I. Nurnberger, Jr., Howard J. Edenberg, Danielle M. Dick and Bradley T. Webb. On the association of common and rare variation influencing body mass index: A combined Single Nucleotide Polymorphism and Copy Number Variation analysis. *European Journal of Human Genetics* (Submitted).

# ABSTRACT

As the architecture of complex traits incorporates a widening spectrum of genetic variation, analyses integrating common and rare variation are needed. Body mass index (BMI) represents a model trait, since common variation shows robust association but accounts for a fraction of the heritability. A combined analysis of single nucleotide polymorphisms (SNP) and copy number variation (CNV) was performed using 2,348 European and African-Americans from the Study of Addiction: Genetics and Environment. Genetic risk sum scores (GRSS) were constructed using 32 BMI-validated SNPs and aggregate-risk methods were compared: count versus weighted and proxy versus imputation. The weighted SNP-GRSS constructed from imputed probabilities of risk alleles performed best and was highly associated with BMI ( $p=4.3 \times 10^{-16}$ ) accounting for 3% of the phenotypic variance. In addition to BMI-validated SNPs, common and rare BMI/obesity-associated CNVs were identified from the literature. Of the 84 CNVs previously reported, only 21-kilobase deletions on 16p12.3 showed evidence for association with BMI (p=0.003, frequency=16.9%), with two CNVs nominally associated with moderate-obesity, 1p36.1 duplications (OR=3.1, p=0.009, frequency 1.2%) and 5q13.2 deletions (OR=1.5, p=0.048, frequency 7.7%). All other CNVs, individually and in aggregate, were not associated with BMI or obesity. The combined model, including covariates, SNP-GRSS, and 16p12.3 deletion accounted for 11.5% of phenotypic variance in BMI ( $p=3.34 \times 10^{-54}$ ) and area-under-the-curve (AUC) estimates significantly predicted obesity classification with maximum discriminative ability for morbid-obesity (AUC = 0.750). Results show that incorporating validated effect-sizes and allelic probabilities improve prediction algorithms. Although rare-CNVs did not account for significant phenotypic variation, results provide a framework for integrated analytic approaches.

## INTRODUCTION

Obesity, defined clinically by a body mass index (BMI) greater than  $30 \text{ kg/m}^2$ , is a serious public health problem that occurs in over 1/3 of American adults (11, 12, 127, 176) and is associated with numerous medical conditions including cardiovascular disease (13), type II diabetes (14, 15), cancer (16) and is comorbid with multiple psychiatric disorders (17-21). Although nutritional intake and physical activity affect relative body weight, twin and family studies have consistently shown a significant genetic contribution to body composition with heritability estimates of 40 to 70% (34-36).

Genome-wide association studies (GWAS) have successfully identified single nucleotide polymorphisms (SNPs) that contribute to inter-individual variation in BMI and common obesity (177, 178). To date, there are 32 SNPs showing robustly replicated association with BMI; these individually have small effects ranging 0.06 to 0.39 kg/m<sup>2</sup> change in BMI per risk allele and in aggregate they account for a limited proportion of the phenotypic variance (~1.45%) (63). The variant with largest effect, 0.39, is located in the first intron of the *fat mass and obesity-associated (FTO)* gene; this effect size corresponds to a weight increase per each risk allele of 2.5 pounds for an individual 5 feet 7 inches. The frequencies of the 32 risk-alleles range from 4 to 87% in populations of European descent (63-65).

Current GWAS designs are limited to detecting trait or disease associations with common variation in accordance with the common disease-common variant (CDCV) hypothesis (73). Although the number of robustly associated SNPs is limited, using the Genome-wide Complex Trait Analysis (GCTA) approach which uses all genetic variation measured, accounted for 17% of the phenotypic variance in BMI (179). However, this still leaves substantial heritability unaccounted for and has lead to efforts to identify rare variants contributing to common disease. Given the heritability of BMI and the observation that common SNPs only account for a portion of the expected phenotypic variance, additional classes of genetic variants such as structural and lower frequency variation are likely to influence body composition. Indeed there is a growing list of rare copy number variants (CNV) associated with BMI and obesity (74-82).

As the architecture of common complex traits and diseases has been associated with a widening spectrum of genetic variation, analyses integrating common and rare variation are needed. BMI represents a model trait for this approach, since common variation shows robust association but accounts for a limited portion of the heritability. Additionally, an increasing number of reports implicate structural and rare variation in BMI, which may account for a portion of the 'missing heritability'. Therefore, this study constructed and tested an integrated model of common and rare variation associated with BMI and obesity in 2,348 Americans of European and African descent from the Study of Addiction: Genetics and Environment (SAGE). We catalogued genetic variants associated with BMI and obesity from the literature, including common SNPs and common and rare CNVs. Given modest effect-sizes of common variants influencing BMI; the power to detect statistically significant genome-wide associations is limited. Therefore, instead of testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the total number of risk variants using loci with strong *a priori* evidence

was constructed and tested. We constructed SNP-GRSSs using 32 validated BMI-SNPs by both count and weighted methods. Additionally, to compare and extend existing methods, SNP-GRSSs using imputed genotype probabilities were constructed. Previously we applied the count method to a separate sample (180) and are extending this work to test weighted scores as well as scores constructed from imputed genotypes. Furthermore, common BMI/obesity-associated CNVs were tested individually as well as in aggregate by count scores. Given the limited power to detect low frequency variants (181, 182), rare BMI/obesity-associated CNVs were tested as collections by CNV-GRSSs. Additionally, since rare CNV burden scores have been associated with obesity (74, 77), the genome-wide load of rare CNVs was tested. Integrated linear and logistic regression models incorporated the following predictors via a stepwise process: standard covariates, SNP-GRSS, BMI/obesity-associated CNVs, common CNV-GRSSs, rare BMI/obesity-associated CNV-GRSSs and rare CNV genome-wide burden scores. Furthermore, to assess clinical utility, the best fitting models were tested for obesity risk prediction by plotting receiver operator criteria (ROC) curves.

## PARTICIPANTS AND METHODS

# Participants and phenotypes

Participants were from the Study of Addiction: Genes and Environment (SAGE) (183) which was one of eight Phase 1 studies in the Gene Environment Association (GENEVA) consortium (http://genevastudy.org/) (184). The SAGE sample was drawn from three contributing projects, which have been previously described in detail: the Collaborative Study on the Genetics of Alcoholism (COGA) (185, 186), the Collaborative Study on the Genetics of Nicotine Dependence (COGEND) (187) and the Family Study of Cocaine Dependence (FSCD). The FSCD sample did not have body composition variables available for analysis and was not included in this analysis. All SAGE participants provided written informed consent for genetic studies and agreed to share their DNA and phenotypic information for research purposes. All samples were deidentified and only subjects who consented to health research were included. The institutional review boards at all data collection sites granted approval for the use of the data.

Study variables were assessed by interview, using versions of the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) (188, 189). BMI was calculated from self-reported height and weight. Participants were removed from data analysis if they had missing data on either height or weight or if calculated BMI was less than 14.5 or greater than 60, as values not in this range were considered data entry errors. Clinical body weight categories were defined as overweight (BMI > 25), obese class I (BMI > 30), II (BMI > 35) and III (BMI > 40). Age was included as age at interview in years. AD was defined by the SSAGA according to DSM-IV criteria (190) and ND was defined as having a Fagerström Test for Nicotine Dependence score of 4 or greater as assessed from the SSAGA. Power calculations for genetic effects in the SAGE sample were computed using the software Quanto from variant frequency, effect-size, odds-ratio and percent variance accounted for by variants reported in original papers (191).

# Genotyping

Samples were genotyped on the Illumina Human 1M beadchip at the Center for Inherited Diseases Research at Johns Hopkins University. Data cleaning procedures included detection of gender mis-annotation and chromosomal anomalies, cryptic relatedness, population structure, batch effects, and Mendelian and duplication error detection. Details of quality control procedures have been previously reported (183). To minimize effects of population stratification, principal components (PC) were constructed using EIGENSOFT 3.0 (192) and SMARTPCA (193). As recommended by *Patterson et al.*, to avoid disruption of the eigenvalue structure, SNPs used to construct PC scores were pruned at  $r^2 > 0.7$  to correct for dependence between markers (193) and also limited to autosomes. 577,039 SNPs were used to generate 10 PCs. To circumvent over-fitting, only PCs that were associated with BMI and indicative of ancestral background were used in subsequent analyses (192-194).

# CNV calling

The Illumina 1M array has 1,072,820 probes (which includes 23,812 non-SNP "intensityonly" markers) that were used for CNV detection. Three widely-used programs were used for CNV calling: CNVPartition (Illumina StudioBead software), PennCNV (195), and QuantiSNP (196). Genomic waves were adjusted for CNVs called by PennCNV and QuantiSNP (197). Both PennCNV and QuantiSNP report a metric score for quality control purposes and as recommended by QuantiSNP documentation, CNV calls with a Log Bayes Factor (LBF) less than 10 were removed as well as poor quality samples based on quality control measures for CNV analysis as described in our previous work (198). CNV calls from the three programs were compared against each other and Combined CNV (CNVision.org) was used to integrate the calls from the programs (199). To increase the positive predicative rate (198), only CNVs that were called by at least two programs were analyzed. Given that calls in centromeric, telomeric and immunoglobin regions are prone to harbor false positives, CNV calls in those regions were removed from analyses (195, 200).

# Selection of BMI/obesity-associated genetic variation

BMI SNPs were catalogued from a large-scale BMI meta-analyses by *Speliotes* and colleagues (63). In brief, the meta-analysis incorporated a two-stage approach in which GWAS was performed on 249,796 individuals from 46 studies in the first stage and association was performed in an additional 125,931 individuals from 42 studies in the second stage. The meta-analyses of both stages identified 32 SNPs reaching genome-wide significance ( $p < 5x 10^{-8}$ ). Of the 32 validated BMI SNPs, 15 did not appear on the SAGE sample Illumina 1M array. Ungenotyped markers were ascertained by two approaches in order to compare methods: 1) imputation and 2) proxy SNPs. IMPUTE2 was used to phase the observed genotypes and impute unobserved genotypes (201, 202) using the 1000 Genomes phase 1 reference panel (release June 2011, b37) (203). The proxy method used the LD structure of the genome to identify highly correlated SNPs that appear on the array as proxies for the unobserved SNPs. For the 15 SNPs not present

on the array, proxies were identified using SNP Annotation and Proxy Search V2.1 (204) except for rs11847697, which did not have a highly correlated proxy SNP ( $r^2 < 0.7$ ) on the Illumina 1M array and was therefore not included in SNP-GRSSs constructed by the proxy method. Haploview version 4.10 was used to verify phase and corresponding proxy alleles (148, 149). Table 11 details information on the 32 catalogued SNPs.

BMI and obesity associated CNVs were catalogued from research published between January 2008 and January 2012 via PubMed search. Case reports, typical of monogenic inheritance, were not included in the catalogue as the focus of the current study was on common complex obesity. There were 3 BMI (63, 64, 205) and 83 obesityassociated CNV regions identified from the literature (75-79, 81, 206-209). Table 12 details information on the 84 catalogued CNVs.

## BMI SNP genetic risk sum scores

Common BMI-associated SNPs catalogued from the literature (n = 32) (63) were tested in aggregate by constructing GRSSs. There are primarily two methods for constructing genetic scores: count and weighted methods. The count method is the sum of the number of risk alleles, whereas the weighted method incorporates the sum of the number of risk alleles each weighted by its odds-ratio or effect size. In this study, the weighted scores were constructed from regression coefficients reported by *Speliotes et. al* (63). Count and weighted scores using the proxy method were calculated using the profile option in PLINK (150). If SNP information was missing in an individual then the scoring routine imputed expected values based on sample allele frequency. Count and weighted scores using imputed genotypes were constructed using R version 2.13.1 (210). Furthermore, to extend existing GRSS methodology, count and weighted scores were constructed using probabilities of imputed risk alleles (*p*) genotypes by the equation below. Count scores were calculated with  $\beta = 1$  and weighted scores with  $\beta =$  effect-size of each risk allele (A) reported by *Speliotes et. al* (63) summed over the number of risk alleles in the score (*n*).

$$\left(\sum_{1}^{n}\beta\left[\left(2*p(AA)\right)+p(Aa)\right]\right)/n$$

#### CNV association

In the SAGE sample, CNVs were considered common if they had a frequency of 1% or greater and determined rare if the frequency was less than 1%. Common CNVs previously shown to be associated with BMI/obesity were tested individually and in aggregate by count scores. Rare CNVs were tested in aggregate by count scores constructed from CNVs 1) previously reported to be associated with BMI/obesity and 2) not previously associated with BMI/obesity (genome-wide burden of rare variants). CNVs previously reported to be associated with BMI/obesity were considered the same region in the SAGE sample if the CNV boundaries shared at least 40% overlap with the CNV boundaries reported in the literature. Additionally, since there is evidence that the positive predictive rate is increased for large CNVs, which is likely due to the increased number of probes in larger variants, common and rare scores were also constructed from

only CNVs larger than 100-kb to potentially reduce the number of false positive calls in the score (198).

# Linear models

R (210) was used to fit linear and logistic regression models using established covariates for BMI including ancestrally informative PCs, sex and age. AD and ND were also included as covariates since SAGE is a sample selected for these traits. Predictors in linear models were included in a stepwise process and independent variables were centered to facilitate interpretation of effects. Interactions between all variables with significant main effects (n=8) were tested and included in the final model if the p-value of the interaction was less than the Bonferroni corrected significance level of 0.002.

# Prediction of obesity

To test whether the combined model of common and rare variation had clinical utility for obesity risk prediction, diagnostic efficiency was assessed. One method is to graph a receiver operator criteria (ROC) curve, which is a plot of the true positive rate (sensitivity) against the false positive rate (1 - specificity) and calculate the corresponding area-under-the-curve (AUC). An AUC is the probability that the predictor is greater for cases than controls (153, 154). An AUC may range from 0.5, non-informative (no greater than chance), to a maximum of 1.0, perfect discrimination between cases and controls. Generally, an AUC of 0.80 is suitable for screening while 0.99 is acceptable for diagnosis (211). Binary logistic regression was used to calculate predicted probabilities of the models and was used as the predictor to generate ROC curves. Discriminative accuracy of the model to predict BMI category was estimated by calculating the AUC from ROC curves using SPSS Statistics version 19.0. The StAR software was used to test for statistical differences between ROC curves (212).

# RESULTS

# Phenotypic detail

Complete data on height, weight, AD, ND, genotypes and CNVs were available for 1850 European-American and 498 African-American SAGE participants. Descriptive statistics for study variables are presented by sex in Table 7. The mean age of participants was 39.8 and ranged from 18 to 77. The average BMI of the sample was 27.5 kg/m<sup>2</sup>, which is considered overweight, with 26.9% of the sample being obese (Table 10). There was a significant race by sex interaction with BMI (t-test=6.84, p=1.01x10<sup>-11</sup>) indicating that females and African-Americans tended to have greater BMI. Males were more likely to be AD ( $\chi^2$ =286.02, p=3.65x10<sup>-64</sup>) and ND ( $\chi^2$ =9.36, p=0.002). The age by AD interaction was also significant (t-test=-3.11, p=0.002) indicating that older subjects were less likely to be AD. Additional sample characteristics have been previously reported (183).

# BMI SNP-GRSS

The mean number of BMI risk alleles per person for the 32 validated SNPs was 28.5 (SD=3.4) with a range from 18 to 39. The frequencies and distribution are shown in Figure 5. Power analyses calculated for the SAGE sample indicated 80% power to detect only one of the 32 BMI-validated variants; rs1558902 in FTO (Table 11) and a sample size of 177,492 would be needed to detect the smallest of the BMI-SNP effects. Indeed only two of the 32 BMI-SNPs were significantly associated with BMI in the SAGE sample after correction for multiple testing which included SNPs in or near FTO and BDNF. However, the sample size of SAGE has 99% power to detect the 32 variants in aggregate (GRSS), based upon effect-sizes reported in Speliotes et al. 2010 (63). Associations of the SNP-GRSSs with BMI are displayed in Table 8 and were highly significantly associated with BMI ( $p < 1.11 \times 10^{-12}$ ). To compare common methods for computing SNP-GRSSs, as well as extend existing approaches, six GRSSs were constructed: 1) proxy SNP score by count and 2) by weighted method, 3) imputed SNP score by count and 4) by weighted method and 5) imputed probability of risk allele score by count and 6) by weighted method (see METHODS section). In general, the SNP-GRSSs constructed by weighted methods performed better than count methods (z > 7.3, p < 0.0001) and increased the percent of variance accounted for by 0.5-0.9%. Additionally, SNP-GRSSs that were constructed from imputed genotype probabilities performed better than scores constructed by the proxy method (z > 3.2, p < 0.001) and increased the percent of variance accounted for by 0.1-0.4%. The SNP-GRSS constructed from weighted imputed allelic probabilities performed the best and accounted for 3% of the phenotypic variance in BMI.

### CNV association

Eighty-four BMI/obesity-associated CNVs were catalogued from the literature and tested for association with BMI and obesity in the SAGE sample. Detailed information may be found in Table 12. Of the reported CNVs in the literature, only 11 had sufficient information on frequency and effect-size/OR for power calculations and only 2 of these had 80% power to be detected in the SAGE sample. Power calculations for CNV aggregate risk scores were not performed because most of the variants reported in the literature did not cite corresponding effect-sizes or ORs. Of the 84 CNVs catalogued from the literature, 46 were called in the SAGE sample; 21 of these were common, including 17 deletions and 4 duplications, and 25 were rare, including 10 deletions and 15 duplications. Of the common CNVs, only a 21-kb deletion on 16p12.3 showed evidence for association with BMI ( $\beta$ =-0.057, p=0.003, frequency=16.9%). This CNV was also nominally associated with obese class I (OR=0.743, p=0.022) and II (OR=0.630, p=0.020). Additionally, two common CNVs were nominally associated with moderateobesity (obese class II BMI > 35) in the expected direction. The first was a duplication on 1p36.1 (OR=3.1, p=0.009, frequency 1.2%) which ranged in length from 49.3 to 150.8 kb with a median value of 66.4 kb. The second was a large deletion on 5g13.2 (OR=1.5, p=0.048, frequency 7.7%) and ranged in length from 577.5 to 2238 kb with a median value of 1635 kb. CNV-GRSSs were constructed separately for common and rare variants. Also, deletions and duplications were tested both together and separately as well as limited to large CNVs over 100 kb. None of the CNV-GRSSs, common or rare, were

significantly associated with BMI or obesity in the SAGE sample. Descriptive statistics as well as association results for CNV-GRSSs are presented in Table 13.

# Linear models

Results from linear regression analyses are displayed in Table 9. Ancestry was accounted for by three principal components PC1, PC4 and PC8 with PC1 distinguishing between European and African ancestries. PC1 and PC8 were associated with BMI in the full sample and PC4 was associated with BMI in the European-American sample. The base model (Model 1), which included the standard covariates, PC1 by sex and age by AD interactions but no genetic component accounted for 8.3% of the variance in BMI. Model 2, which added the SNP-GRSS and the 21-kb deletion on 16p12.3 to the base model, fit significantly better [ $F_{(3 \ 2335)}$ =27.9, p=9.79x<sup>-18</sup>] and accounted for an additional 3.2% of phenotypic variance in BMI for a total of 11.5%. Interactions between the covariates and the SNP-GRSS were not significant except for sex, which suggested that the SNP-GRSS was equally associated with BMI in European and African-Americans and across age. No significant interactions between the covariates and the 21-kb deletion on 16p12.3 were found, which indicated that the CNV was comparably associated with BMI in males and females, European and African-Americans and across the age range observed in SAGE.

# Obesity risk prediction

To test the discriminative accuracy of models to predict obesity classification, ROC curves were plotted and the corresponding AUCs were calculated. Three sets of nested models were tested: 1) covariates (molecularly derived ancestry, sex, age, ancestry by sex interaction), 2) covariates, SNP-GRSS and interaction with sex and 3) covariates, SNP-GRSS and three obesity-associated CNVs (the 21 kb deletion on 16p.12.3, the 66 kb duplication on 1p36.1, and the 1440 kb deletion on 5q13.2). Table 10 displays statistics from ROC curve analysis by BMI category. AUC estimates indicated the models significantly predicted overweight and obesity classification with maximum discriminative ability when employing model 3 to predict class III obesity (AUC = 0.750, 95% CI = [0.702, 0.7971]). Models that included genetic information had significantly greater AUCs than models only including covariates (Table 10).

# DISCUSSION

We have constructed an integrated model of common and rare variation catalogued from the literature and demonstrated its association with BMI in 1850 European-American and 498 African-American SAGE participants. This is one of the first studies to incorporate both SNPs and CNVs into an integrated genetic analysis for BMI and obesity risk prediction. The best fitting model included standard covariates, SNP-GRSS and a 21-kb deletion on 16p12.3, and accounted for 11.5% of the phenotypic variance in BMI ( $p=3.34x10^{-54}$ ).

The effects of BMI-associated SNPs were incorporated into the integrated model via an aggregate risk score. There were six SNP-GRSSs constructed from 32 validated

BMI-associated SNPs; count and weighted methods were compared. The weighted score constructed from imputed probabilities of risk alleles performed the best and was highly associated with BMI ( $p=4.3 \times 10^{-16}$ ), accounting for 3% of the phenotypic variance. Comparisons of SNP-GRSS methodology indicated the variance in BMI accounted for was increased by a third when weighted methods and imputed probabilities of risk alleles were incorporated. These findings highlight the value of large-scale meta-analysis validation efforts to characterized effect sizes for genetic variants. Our results suggest that incorporating well-characterized effect sizes into GRSSs as well as utilizing genotypic probabilities from imputation procedures may improve BMI prediction algorithms. Future research should test these methods for improved risk prediction in other complex traits and diseases.

Although there were 84 BMI/obesity-associated CNVs catalogued from the literature, only 46 were detected in SAGE and only one was significantly associated with BMI. Speliotes *et al.*, first reported the deletion on 16p12.3 in a large-scale BMI metaanalysis because a common BMI-decreasing allele was highly correlated with the same 21 kb deletion (63). In the present study, the CNV was also moderately associated with obesity classes I and II. The closest gene to the deletion is *GPRC5B*, which codes for a G-protein coupled receptor (family C group 5 member B); this receptor is of unknown function, and resides 50 kb upstream of the CNV (RefSeq, July 2008). Our results provide further evidence of a common CNV associated with body composition and suggest follow-up functional studies are warranted to verify its relevance to mechanisms underlying body composition.

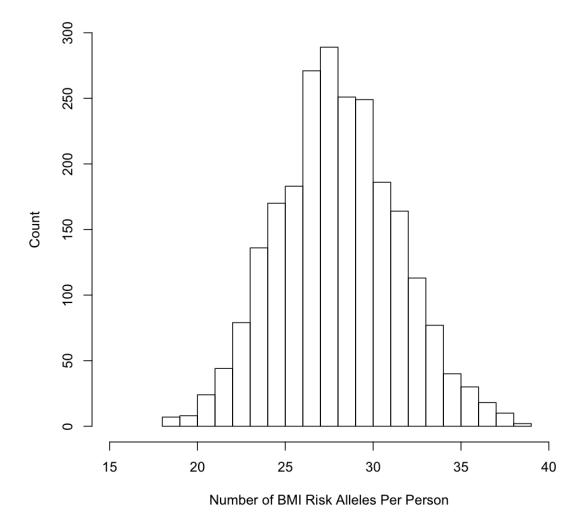
Additionally, two common CNVs were nominally associated with moderate obesity (obese class II BMI>35) in the expected direction. Both of these CNVs were originally reported to be associated with obesity in *Jarick et al.* (208). The first was a duplication on 1p36.1 and was originally reported to be associated with early-onset extreme obesity in 423 parent-offspring trios (208). The two closest genes were found within 50 kb downstream: *SYF2*, which codes for a nuclear protein which may be involved with pre-mRNA splicing, and *Clorf63*, an open reading frame (RefSeq, July 2008). The second common CNV of nominal significance with moderate obesity in the SAGE sample was a deletion on 5q13.2 (OR=1.5, p=0.048). This CNV was reported to be associated with early-onset extreme obesity in 423 parent-offspring trios and in a case-control sample of 453 extremely obese children/adolescents and 435 normal-weight and lean adults (208). This large deletion encompasses numerous genes, which are detailed in Supplemental Table 2.

With the exception of the three aforementioned CNVs, our results did not yield additional support for previously reported BMI/obesity-associated CNVs, either individually or in aggregate. There are several potential reasons for this. First, it is possible that the effect-size and frequency of variants were not large enough to be detected in the SAGE sample, even when examined in aggregate. Given the limited information on effect-sizes of the CNVs reported in the literature, assessing the power to detect these variants in the SAGE sample is not straightforward. Additionally, it is conceivable that the collections of CNVs examined here contained a greater number of false positives than true variants, which masked the potential for replication by risk scores. In fact, only 4 of the 84 CNVs identified from the literature have been associated with BMI/obesity in multiple studies (Supplemental Table 2). Large-scale BMI/obesity-

associated CNV meta-analyses are needed to validate variants and to characterize the magnitude of their effects. Another issue with CNV analysis is that the CNV calling methodologies from microarrays are limited, as most SNP-arrays were designed to measure common variation across the genome and not to primarily detect CNVs (213, 214). Furthermore, the resolution of arrays to call CNVs, as well as their boundaries, is limited by probe density and the use of different algorithms when applied to the same data may give inconsistent results (198, 215-221).

We also assessed whether the integrated models were clinically useful for obesity risk prediction. Our results indicated statistical discriminative ability to predict obesity classification from a model including standard covariates, SNP-GRSS and three obesityassociated CNVs (the 21 kb deletion on 16p.12.3, the 66 kb duplication on 1p36.1, and the 1440 kb deletion on 5q13.2). AUC estimates showed the models significantly predicted overweight and obesity classification with maximum discriminative ability when predicting class III obesity (AUC = 0.750, 95% CI = [0.702, 0.7971]). Previously, we had constructed a SNP-score by the count method comprised of 56 genome-wide significant as well as suggestive variants to predict obesity in the Molecular Genetics of Schizophrenia control sample and also found maximum discriminative ability when predicting class III obesity (AUC = 0.697, 95% CI = [0.663, 0.731]) (180). The present findings represent a 5% increase in the AUC although fewer markers were used but CNVs were also included. Other studies have used SNP-GRSS to predict obesity, which have incorporated 8-32 SNPs with corresponding AUC estimates ranging from 0.575 to 0.597 (63, 140, 142, 143). This study is one of the first to incorporate both SNP and CNV information into an integrated model predicting obesity classification. Although the AUC estimates were statistically significant, they were below 0.8, the threshold used in clinical practice for screening. However, the ability to predict morbid obesity (class III) approached clinical criteria for a screening test and performed better than previous genetic risk models predicting obesity.

There are several possible extensions of the work presented here. First, SAGE participants consisted of a selected sample for substance-use behaviors. It is possible that the findings reported here are not generalizable to the American population at large. Although we have included alcohol and nicotine dependence as covariates in all analyses, research has shown these phenotypes to have complex relationships with body composition (113, 222), and this may complicate interpretation to the general adult population. Additionally, despite incorporating aggregate risk scores, which analyze collections of variants simultaneously to increase power and reduce problems associated with multiple testing, it is possible that the SAGE sample may still lack adequate power to confirm associations in the literature. It is important to note, however, that inclusion of variants, which are not well validated in such scores, can reduce the efficiency of this method. It is likely that the strong association of the SNP-GRSSs and not the CNV-GRSSs with BMI is a result of the fact that the BMI-SNPs have been validated by large-scale meta-analysis while most of the CNVs have not. Therefore, future research should test for associations in both larger and population-based samples.


For many of the BMI/obesity-associated loci, it has yet to be determined if they do indeed represent the causative locus or if they are merely correlated with the causative variant. Fine mapping efforts are needed and will likely identify lower-frequency variants, which are typically not genotyped on commercial GWAS-arrays. As such, a

further extension of the work presented here is to include lower-frequency SNPs and INDELs identified by large-scale exome and genome sequencing efforts. Such studies are underway and include the UK10K project, a whole-genome sequencing study of 4,000 individuals and exome sequencing of an additional 6,000 individuals including 2,000 with extreme obesity phenotypes (83).

Furthermore, an important extension of an integrated model of BMI and obesity is to incorporate the moderating effects of the environment. Energy balance affects body composition, and research indicates that physical activity and food intake account for a significant portion of the variance in BMI, with estimates ranging from 5 to 10% (159-162). Additionally, at least two of the BMI-validated SNPs exhibit gene by environment interactions (GxE) (163, 165, 167, 173, 174, 223). For example, a large meta-analysis found that in physically active adults the effect of the *FTO* risk allele on obesity was attenuated by 27% (224). Given the considerable impact of the environment on body composition, future research needs to incorporate environmental variables into models of disease and risk prediction. Despite the potential limitations of the current study, this work provides a framework for integrating common and rare variation as both an alternative form of replication of genetic effects as well as for risk prediction of complex traits.

# **TABLES AND FIGURES**

Figure 5: Frequency of BMI risk alleles per person (SAGE)



Note: BMI = body mass index  $kg/m^2$ .

| Group | M    | lales | Fei  | males |
|-------|------|-------|------|-------|
|       | Mean | SD    | Mean | SD    |
| Age   | 40.6 | 9.4   | 39.3 | 8.6   |
| BMI   | 27.7 | 4.7   | 27.5 | 7.0   |
|       | N    | %     | N    | %     |
|       | 1011 | 43.7% | 1337 | 56.3% |
| Obese | 256  | 25.3% | 376  | 28.1% |
| AD    | 672  | 66.5% | 420  | 31.4% |
| ND    | 531  | 52.5% | 617  | 46.1% |

Table 7: Descriptive statistics by sex in the SAGE sample

Note: Age = age at interview, BMI = body mass index kg/m<sup>2</sup>, Obese =  $BMI > 30 \text{ kg/m}^2$ , AD = alcohol dependence, ND = nicotine dependence.

| GRSS Method                     | Mean<br>(SD) | Estimate<br>(SE) | T    | p-value                 | $R^2$ |
|---------------------------------|--------------|------------------|------|-------------------------|-------|
| 1. Proxy Count                  | 0.450        | 15.99            | 7.18 | 9.07x10 <sup>-13</sup>  | 0.022 |
|                                 | (0.06)       | (2.22)           |      |                         |       |
| 2. Proxy Weighted               | 0.063        | 126.22           | 8.56 | 2.05 x10 <sup>-17</sup> | 0.027 |
|                                 | (0.01)       | (14.75)          |      |                         |       |
| 3. Imputed Count                | 0.447        | 16.28            | 7.16 | 1.11 x10 <sup>-12</sup> | 0.022 |
|                                 | (0.05)       | (2.27)           |      |                         |       |
| 4. Imputed Weighted             | 0.062        | 128.75           | 8.51 | 2.94 x10 <sup>-17</sup> | 0.030 |
|                                 | (0.01)       | (15.12)          |      |                         |       |
| 5. Imputed Probability Count    | 0.894        | 8.17             | 7.21 | 7.33 x10 <sup>-13</sup> | 0.022 |
|                                 | (0.11)       | (1.13)           |      |                         |       |
| 6. Imputed Probability Weighted | 0.124        | 64.42            | 8.54 | 2.43 x10 <sup>-17</sup> | 0.031 |
|                                 | (0.02)       | (7.55)           |      |                         |       |

Table 8: Comparison of GRSSs constructed by count and weighted methods

Note: GRSS = genetic risk sum score, Mean = mean score for GRSS, Estimate = regression coefficient for GRSS, Count = GRSS constructed from the summation of the number of risk alleles, Weighted = GRSS constructed from the number of risk alleles weighted by effect-sizes reported in *Speliotes et al.* 2010, SNP = single nucleotide polymorphism, Proxy = highly correlated substitute SNPs were used for variants not directly genotyped on the array, Imputed = genotypes were inferred from 1000 Genomes reference panel, Imputed probability = probability of genotypes inferred from 1000 Genomes reference panel.

| Model              | Estimate         | SE                         | Т                         | <i>p</i> -value          |
|--------------------|------------------|----------------------------|---------------------------|--------------------------|
| Model 1: Covariate | F(92,338) = 23.6 | 6, p-value = 4.58x         | $(10^{-39}, R^2 = 0.083]$ |                          |
| Intercept          | 27.63            | 0.12                       | 227.36                    | $< 2x10^{-16}$           |
| PC1                | -98.82           | 8.67                       | -11.40                    | 2.40x10 <sup>-29</sup>   |
| PC4                | 10.54            | 7.63                       | 1.38                      | 0.167                    |
| PC8                | -30.20           | 9.59                       | -3.15                     | 0.002                    |
| Sex                | -0.46            | 0.26                       | -1.75                     | 0.081                    |
| Age                | 0.04             | 0.01                       | 3.31                      | 9.45x10 <sup>-4</sup>    |
| AD                 | -0.20            | 0.07                       | -2.81                     | 0.004                    |
| ND                 | -0.06            | 0.06                       | -0.91                     | 0.361                    |
| PC1*Sex            | -122.29          | 17.28                      | -7.08                     | $1.92 \times 10^{-12}$   |
| Age*AD             | -0.02            | 0.01                       | -3.60                     | $3.20 \times 10^{-4}$    |
| Model 2: Covariate | rs, GRSS & CNV   | $F[F_{(122,335)} = 25.34]$ | , $p$ -value = 3.34x10    | $P^{-54}, R^2 = 0.115$ ] |
| Intercept          | 27.63            | 0.12                       | 231.26                    | $< 2x10^{-16}$           |
| PC1                | -110.22          | 8.72                       | -12.63                    | 1.89x10 <sup>-35</sup>   |
| PC4                | 10.14            | 7.50                       | 1.35                      | 0.176                    |
| PC8                | -31.53           | 9.43                       | -3.34                     | 8.36x10 <sup>-4</sup>    |
| Sex                | -0.43            | 0.26                       | -1.65                     | 0.099                    |
| Age                | 0.04             | 0.01                       | 3.35                      | 8.15x10 <sup>-4</sup>    |
| AD                 | -0.20            | 0.07                       | -2.81                     | 0.005                    |
| ND                 | -0.07            | 0.06                       | -1.14                     | 0.253                    |
| PC1*Sex            | -131.38          | 17.26                      | -7.61                     | 3.91x10 <sup>-14</sup>   |
| Age*AD             | -0.02            | 0.01                       | -3.41                     | 6.59x10 <sup>-4</sup>    |
| SNP-GRSS           | 62.44            | 7.62                       | 8.19                      | 4.30x10 <sup>-16</sup>   |
| Sex*SNP-GRSS       | 44.37            | 15.19                      | 2.92                      | 0.003                    |
| Del 16p12.3        | -0.57            | 0.32                       | -1.78                     | 0.075                    |

Table 9: Linear models predicting BMI in the SAGE sample

Note:  $BMI = body mass index kg/m^2$ , GRSS = genetic risk sum score, PC = principal component score reflecting ancestral background, Age = age at interview, AD = alcohol dependence, ND = nicotine dependence, CNV = copy number variation, Del = deletion.

| Model            | AUC            | 95% CI        | Asy. Sig.              |
|------------------|----------------|---------------|------------------------|
| Overweight: n =  | 1443 (61.4%)   | )             |                        |
| 1. Covariates    | 0.679          | [0.657,0.700] | 2.68x10 <sup>-48</sup> |
| 2. SNP-GRSS      | 0.692***       | [0.671,0.714] | 9.23x10 <sup>-56</sup> |
| 3. CNV           | 0.694***       | [0.672,0.715] | $1.27 \times 10^{-56}$ |
| Obese Class I: n | e = 632 (26.99 | %)            |                        |
| 1. Covariates    | 0.621          | [0.594,0.647] | 2.74x10 <sup>-19</sup> |
| 2. SNP-GRSS      | 0.661***       | [0.637,0.686] | 2.77x10 <sup>-33</sup> |
| 3. CNV           | 0.662***       | [0.638,0.687] | $1.12 \times 10^{-33}$ |
| Obese Class II:  | n = 264 (11.2  | 2%)           |                        |
| 1. Covariates    | 0.648          | [0.610,0.685] | 5.22x10 <sup>-15</sup> |
| 2. SNP-GRSS      | 0.681*         | [0.646,0.716] | 6.97x10 <sup>-22</sup> |
| 3. CNV           | 0.690**        | [0.656,0.725] | 5.58x10 <sup>-24</sup> |
| Obese Class III: | n = 106, (4.5  | 5%)           |                        |
| 1. Covariates    | 0.711          | [0.660,0.762] | $1.97 \times 10^{13}$  |
| 2. SNP-GRSS      | 0.741*         | [0.692,0.790] | 4.81x10 <sup>-17</sup> |
| 3. CNV           | 0.750**        | [0.702,0.797] | 3.15x10 <sup>-18</sup> |

Table 10: Discriminative accuracy of covariates, SNP-GRSS and CNV predicting BMI category in the SAGE sample

Note: BMI = body mass index kg/m<sup>2</sup>, SNP = single nucleotide polymorphism, SNP-GRSS = genetic risk sum score constructed from imputed probability of carrying 32 BMI-associated SNPs by the weighted method, CNV = copy number variation, AUC = area-under the receiver operator criteria curve, Asy. Sig. = asymptotic significance, Overweight = BMI > 25 kg/m<sup>2</sup>, Obese I = BMI > 30 kg/m<sup>2</sup>, Obese II = BMI > 35 kg/m<sup>2</sup>, Obese III = BMI > 40 kg/m<sup>2</sup>, Covariates = PC1, PC4, PC8, sex, age, AD, ND, PC1\*sex, age\*AD, PC = principal component score reflecting ancestral background, Age = age at interview, AD = alcohol dependence, ND = nicotine dependence, \* = difference in AUC of the Model and Model 1 (Covariates) is p <0.05, \*\* = difference in AUC of the Model and Model 1 (Covariates) is p <0.01, \*\*\* = difference in AUC of the Model and Model 1 (Covariates) is p <0.01.

# FUNDING

This work was supported by the National Institute on Drug Abuse [DA26119]. Funding support for the Study of Addiction: Genetics and Environment (SAGE) was provided through the NIH Genes, Environment and Health Initiative [GEI] [U01 HG004422]. SAGE is one of the genome-wide association studies funded as part of the Gene Environment Association Studies (GENEVA) under GEI. Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center [U01 HG004446]. Assistance with data cleaning was provided by the National Center for Biotechnology Information. Support for collection of datasets and samples was provided by the Collaborative Study on the Genetics of Alcoholism (COGA) [U10 AA008401], the Collaborative Genetic Study of Nicotine Dependence (COGEND) [P01 CA089392], and the Family Study of Cocaine Dependence (FSCD) [R01 DA013423, R01 DA019963]. Funding support for genotyping, which was performed at the Johns Hopkins University Center for Inherited Disease Research, was provided by the NIH GEI [U01 HG004438], the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the NIH contract "High throughput genotyping for studying the genetic contributions to human disease" [HHSN862200782096C].

# ACKNOWLEDGEMENTS

We wish to thank the individuals who volunteered for the SAGE sample for their participation and the SARA Computing and Networking Services (<u>www.sara.nl</u>) for their support in using the Lisa Compute Cluster to generate principal component scores. Special thanks to Dr. T. Bernard Bigdeli, Ph.D., for guidance on imputation procedures and Dr. Charles O. Gardner, Ph.D., for statistical consultation.

# SUPPLEMENTAL DATA

Supplementary material includes three tables detailing BMI/obesity-associated SNPs and CNVs catalogued from the literature and results of association analyses in the SAGE sample.

| Table 11: 32 BMI SNPs |
|-----------------------|
|-----------------------|

| MFTA_ANALVSIS Spelintes et al 2010                                                                         | Shelintes et al | 2010               |               |             |                                               |              |                 |                                                                                                                                                            | SAGE SAMPLE | ADIF    |       |        |         |           |           |            |            |       |       |        |         |        |         |                  |                 |           |                         |
|------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---------------|-------------|-----------------------------------------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------|--------|---------|-----------|-----------|------------|------------|-------|-------|--------|---------|--------|---------|------------------|-----------------|-----------|-------------------------|
|                                                                                                            |                 |                    |               |             |                                               |              | Explained       |                                                                                                                                                            |             |         |       |        |         |           |           |            |            |       |       |        |         |        |         |                  | Explained       |           |                         |
| SNP_meta                                                                                                   | Chr Position    | ion effect_allel   | e other_allel | e Freq_met  | effect_allele other_alkie Freq_meta Beta_meta | a SE_meta    | Variance<br>(%) | P_meta                                                                                                                                                     | Frq_EA      | Beta_EA | SE_EA | T_EA   | P_EA B  | BONF_EA E | EMP_EA Fr | Frq_AA Bet | Beta_AA SI | SE_AA | T_AA  | P_AA E | BONF_AA | EMP_AA | EA_AAAA | r_meta_ca<br>_AA | Variance<br>(%) | Power SAG | Power SAGE Nearest Gene |
| rs2815752                                                                                                  | 1 72812440      | 2440 A             | 9             | 0.61        | 0.13                                          | 0.02         | 0.04            | $1.61 \times 10-22$                                                                                                                                        | 0.628       | 0.062   | 0.02  | 2.696  | 0.007   | 0.227     |           |            | 0.021 0    | 0.04  | 0.491 | 0.623  | 1       | 0.620  | 0.053   | 0.009            | 0.240           | 0.163     | NEGR1                   |
| rs1514175                                                                                                  | 1 74991644      | 1644 A             | U             | 0.43        | 0.07                                          | 0.02         | 0.02            | $8.16 \times 10.14$                                                                                                                                        | 0.424       | 0.044   | 0.02  | 1.892  | 0.059   | 1         | 0.058 0.  | 0.652 -0.  | 0.009      | 0.04  | 0.205 | 0.838  | 1       | 0.836  | 0.032   | 0.115            | 0.009           | 0.105     | TNNI3K                  |
| rs1555543                                                                                                  | 1 96944797      | 4797 C             | A             | 0.59        | 0.06                                          | 0.02         | 0.01            | $3.68 \times 10-10$                                                                                                                                        | 0.592       | -0.007  | 0.02  | -0.309 | 0.758   | 1         | 0.754 0.  |            | 0.037 0    | 0.04  | 0.847 | 0.398  | 1       | 0.401  | 0.003   | 0.902            | 0.006           | 0.077     | PTBP2                   |
| rs543874                                                                                                   | 1 177889480     | 9480 G             | A             | 0.19        | 0.22                                          | 0.03         | 0.07            | $3.56 \times 10-23$                                                                                                                                        | 0.196       | 0.052   | 0.02  | 2.260  | 0.024   | 0.766     | Ĭ         | 0.267 0.   |            | 0.04  | 2.595 | 0.010  | 0.312   | 0.009  | 0.065   | 0.001            | 0.455           | 0.250     | SEC16B                  |
| rs2867125                                                                                                  | 2 62.           | 622827 C           | F             | 0.83        | 0.31                                          | 0.03         | 0.15            | $2.77 \times 10-49$                                                                                                                                        | 0.838       | 0.034   | 0.02  | 1.458  | 0.145   | 1         | 0.147 0.  | 0.881 0.   |            | 0.04  | 1.779 | 0.076  | 1       | 0.076  | 0.043   | 0.034            | 0.171           | 0.467     | TMEM18                  |
| rs713586                                                                                                   | 2 25158008      | 8008 C             | F             | 0.47        | 0.14                                          | 0.02         | 0.06            | $6.17 \times 10-22$                                                                                                                                        | 0.475       | 0.032   | 0.02  | 1.388  | 0.165   | 1         | 0.170 0.  | 0.845 -0.  | 0.028 0    | 0.04  | 0.631 | 0.528  | 1       | 0.527  | 0.019   | 0.347            | 0.049           | 0.221     | RBJ                     |
| rs887912                                                                                                   | 2 59302877      | 2877 T             | U             | 0.29        | 0.1                                           | 0.02         | 0.03            | $1.79 \times 10-12$                                                                                                                                        | 0.296       | 0.034   | 0.02  |        | 0.146   | 1         |           | -          |            | 0.04  | 1.064 | 0.288  | 1       | 0.283  | 0.036   | 0.075            | 0.114           | 0.134     | FANCL                   |
| rs2890652                                                                                                  | 2 142959931     | 9931 C             | F             | 0.18        | 0.09                                          | 0.03         | 0.02            | $1.35 \times 10-10$                                                                                                                                        | 0.164       | 0.040   | 0.02  |        | 0.084   | 1         | 0.083 0.  |            |            |       | 0.257 | 0.797  | 1       | 0.791  | 0.034   | 0.098            | 0.130           | 0.105     | LRP1B                   |
| rs13078807                                                                                                 | 3 85884150      | 4150 G             | A             | 0.20        | 0.1                                           | 0.02         | 0.02            | $3.94 \times 10-11$                                                                                                                                        | 0.207       | 0.010   | 0.02  |        | 0.670   |           |           | Ì          |            |       | 0.913 | 0.362  | 1       | 0.360  | -0.001  | 0.962            | <0.001          | 0.105     | CADM2                   |
| rs9816226                                                                                                  | 3 185834499     | 4499 T             | A             | 0.82        | 0.14                                          | 0.03         | 0.03            | $1.69 \times 10-18$                                                                                                                                        | 0.819       | 0.060   | 0.02  |        | 0.009   | 0.283     |           |            |            |       | 0.658 | 0.511  | 1       | 0.505  | 0.054   | 0.009            | 0.226           | 0.134     | ETV5                    |
| rs10938397                                                                                                 | 4 45182527      | 2527 G             | A             | 0.43        | 0.18                                          | 0.02         | 0.08            | $3.78 \times 10-31$                                                                                                                                        | 0.444       | 0.053   | 0.02  |        | 0.022   |           |           |            |            |       | 0.275 | 0.784  | 1       | 0.789  | 0.044   | 0.031            | 0.170           | 0.278     | GNPDA2                  |
| rs13107325                                                                                                 | 4 103188709     | 8709 T             | U             | 0.07        | 0.19                                          | 0.04         | 0.03            | $1.50 \times 10.13$                                                                                                                                        | 0.069       | 0.036   | 0.02  |        | 0.118   |           |           |            | 0.092 (    |       | 2.111 | 0.035  | 1       | 0.036  | 0.048   | 0.018            | 0.153           | 0.134     | SLC39A8                 |
| rs2112347                                                                                                  | 5 75015242      | 5242 T             | U             | 0.63        | 0.1                                           | 0.02         | 0.02            | $2.17 \times 10.13$                                                                                                                                        | 0.631       | -0.010  | 0.02  |        | 0.658   |           |           |            |            |       | 1.452 | 0.147  | 1       | 0.151  | 0.006   | 0.776            | 0.003           | 0.105     | FLI35779                |
| rs4836133                                                                                                  | 5 124332103     | 2103 A             | U             | 0.48        | 0.07                                          | 0.02         | 0.01            | $1.97 \times 10.9$                                                                                                                                         | 0.535       | 0.022   | 0.02  |        | 0.347   |           |           |            |            |       | 1.155 | 0.249  | 1       | 0.243  | 0.028   | 0.170            | 0.044           | 0.077     | ZN F608                 |
| rs206936                                                                                                   | 6 34302869      | 2869 G             | A             | 0.21        | 0.06                                          | 0.02         | 0.01            | $3.02 \times 10-8$                                                                                                                                         | 0.198       | 0.013   | 0.02  | 0.572  | 0.568   | 1         |           | 0.531 -0.  | 0.075 0    | 0.04  | 1.730 | 0.084  | 1       | 0.083  | -0.006  | 0.758            | 0.016           | 0.077     | NUDT3                   |
| rs987237                                                                                                   | 6 50803050      | 3050 G             | A             | 0.18        | 0.13                                          | 0.03         | 0.03            | $2.90 \times 10-20$                                                                                                                                        | 0.181       | -0.013  | 0.02  |        | 0.583   | 1         |           |            | -          |       | 1.879 | 0.061  | 1       | 0.061  | 0.008   | 0.697            | 0.004           | 0.134     | TFAP2B                  |
| rs10968576                                                                                                 | 9 28414339      | 4339 G             | A             | 0.31        | 0.11                                          | 0.02         | 0.02            | $2.65 \times 10.13$                                                                                                                                        | 0.310       | -0.008  | 0.02  |        | 0.724   |           |           |            | -          |       | 1.885 | 0.060  | 1       | 0.057  | 0.012   | 0.565            | 0.008           | 0.105     | LRRN6C                  |
| rs4929949                                                                                                  | 11 860-         | 8604593 C          | F             | 0.52        | 0.06                                          | 0.02         | 0.01            | $2.80 \times 10-9$                                                                                                                                         | 0.515       | 0.043   | 0.02  |        | 0.060   |           |           | Ĩ          | -          |       | 1.062 | 0.289  | 1       | 0.284  | 0.044   | 0.031            | 0.193           | 0.077     | RPL27A                  |
| rs10767664                                                                                                 | 11 27725986     | 5986 A             | F             | 0.78        | 0.19                                          | 0.03         | 0.07            | $4.69 \times 10-26$                                                                                                                                        | 0.796       | 0.075   | 0.02  |        | 0.001   |           |           | Ĩ          | 0.012 0    |       | 0.269 | 0.788  | 1       | 0.782  | 0.062   | 0.002            | 0.386           | 0.250     | BDNF                    |
| rs3817334                                                                                                  | 11 47650993     | 1 T 1003           | U             | 0.41        | 0.06                                          | 0.02         | 0.01            | $1.59 \times 10.12$                                                                                                                                        | 0.404       | 0.005   | 0.02  |        | 0.821   |           | 0.816 0.  |            | -          | 0.04  | 2.006 | 0.045  | 1       | 0.050  | -0.015  | 0.459            | 0.012           | 0.077     | MTCH2                   |
| rs7138803                                                                                                  | 12 50247468     | 7468 A             | U             | 0.38        | 0.12                                          | 0.02         | 0.04            | $1.82 \times 10.17$                                                                                                                                        | 0.376       | 0.026   | 0.02  |        | 0.260   | 1         |           | -          | -          |       | 0.118 | 0.906  | 1       | 0.907  | 0.021   | 0.293            | 0.038           | 0.163     | FAIM2                   |
| rs4771122                                                                                                  |                 | 0180 G             | A             | 0.24        | 0.09                                          | 0.03         | 0.02            | $9.48 \times 10.10$                                                                                                                                        | 0.220       | -0.020  | 0.02  |        | 0.401   |           |           | ĺ          | -          | Ì     | 1.385 | 0.167  | 1       | 0.173  | -0.029  | 0.166            | 0.023           | 0.105     | MTIF3                   |
| rs11847697                                                                                                 | ,               | 5112 T             | U             | 0.04        | 0.17                                          | 0.05         | 0.01            | $5.76 \times 10-11$                                                                                                                                        | 0.042       | 0.016   | 0.02  |        | 0.496   |           |           | ĺ          | -          |       | 0.482 | 0.630  | 1       | 0.631  | 0.008   | 0.698            | 0.002           | 0.077     | PRKD1                   |
| rs10150332                                                                                                 |                 | 6964 C             | F             | 0.21        | 0.13                                          | 0.03         | 0.02            | $2.75 \times 10-11$                                                                                                                                        | 0.208       | 0.013   | 0.02  |        | 0.562   |           |           |            | -          |       | 0.981 | 0.327  | 1       | 0.326  | 0.001   | 0.955            | <0.001          | 0.105     | NRXN3                   |
| rs2241423                                                                                                  | -               | 6838 G             | A             | 0.78        | 0.13                                          | 0.02         | 0.03            | $1.19 \times 10.18$                                                                                                                                        | 0.768       | 0.004   | 0.02  |        | 0.847   | 1         | Ĭ         | Ĭ          | 0.015 0    | 0.04  | 0.350 | 0.726  | 1       | 0.722  | 0.007   | 0.738            | 0.001           | 0.134     | MAP2K5                  |
| rs12444979                                                                                                 | 16 19933600     | 3600 C             | F             | 0.87        | 0.17                                          | 0.03         | 0.04            | $2.91 \times 10-21$                                                                                                                                        | 0.857       | 0.065   | 0.02  | 2.823  | 0.005   |           | Ĭ         | Ì          | 0.018 0    | 0.04  | 0.415 | 0.678  | 1       | 0.676  | 0.047   | 0.021            | 0.232           | 0.163     | GPRC5B                  |
| rs7359397                                                                                                  | 16 28885659     | 5659 T             | U             | 0.40        | 0.15                                          | 0.02         | 0.05            | $1.88 \times 10-20$                                                                                                                                        | 0.382       | 0.030   | 0.02  |        | 0.188   |           | Ĭ         | Ĭ          | 0.035 (    | 0.04  | 0.776 | 0.438  | 1       | 0.441  | 0.031   | 0.127            | 0.082           | 0.192     | SH2B1                   |
| rs1558902                                                                                                  |                 | 3574 A             | F             | 0.42        | 0.39                                          | 0.02         | 0.34            | $4.8 \times 10-120$                                                                                                                                        | 0.420       | 0.086   | 0.02  | 1      | .80E-04 | 0.006 3   | -         | Ĭ          | 0.067      | 0.04  | 1.529 | 0.127  | 1       | 0.130  | 0.082   | 5.49E-05         | 0.579           | 0.807     | FTO                     |
| rs571312                                                                                                   | 18 57839769     | 9769 A             | U             | 0.24        | 0.23                                          | 0.03         | 0.1             | $6.43 \times 10-42$                                                                                                                                        | 0.236       | 0.039   | 0.02  |        | 0.092   | 1         | Ĭ         | Ì          | 0.044 0    | 0.04  | 1.020 | 0.308  | 1       | 0.308  | 0.021   | 0.312            | 0.032           | 0.335     | MC4R                    |
| rs29941                                                                                                    |                 | 9532 G             | A             | 0.67        | 0.06                                          | 0.02         | <0.01           | $3.01 \times 10.9$                                                                                                                                         | 0.679       | 0.022   | 0.02  |        | 0.337   | 1         | Ĭ         | Ĭ          | 0.058 0    | 0.04  | 1.307 | 0.192  | 1       | 0.191  | 0:030   | 0.145            | 0.076           | 0.053     | KCTD15                  |
| rs2287019                                                                                                  |                 | 2172 C             | F             | 0.80        | 0.15                                          | 0.03         | 0.04            | $1.88 \times 10.16$                                                                                                                                        | 0.812       | 0.064   | 0.02  |        | 0.005   | 0.172     | 0.006 0.  | 0.886 0.   | 0.063 (    | 0.04  | 1.440 | 0.151  | 1       | 0.151  | 0.064   | 0.002            | 0.317           | 0.163     | QPCTL                   |
| rs3810291                                                                                                  | 19 47569003     | 9003 A             | U             | 0.67        | 0.09                                          | 0.02         | 0.02            | $1.64 \times 10-12$                                                                                                                                        | 0.674       | 0.017   | 0.02  | 0.753  | 0.452   | 1         | 0.456 0.  | 179 -0     | 0.013 0    | 0.04  | 0.303 | 0.762  | 1       | 0.771  | 0.011   | 0.599            | 0.015           | 0.105     | TMEM160                 |
|                                                                                                            |                 |                    |               |             |                                               |              |                 |                                                                                                                                                            |             |         |       |        |         |           |           |            |            |       |       |        |         |        |         |                  |                 |           |                         |
| Note: BMI = body mass index. SNP = single nucleotide polymorphism. SAGE = Study of Addiction Genes and Env | / mass index.   | SNP = single nucle | otide nolvmoi | -nhiem SAGE | c = Shidu of A.                               | ddiction Gon | or and Envir    | isomont EA = Euronom American CACE methicinente - AA = African American CACE meticinente CND moto = CND reported in large metic and heliciter et al. 2010. | A second    |         |       |        |         |           |           |            |            |       |       |        |         |        |         |                  |                 |           |                         |

Nete Min - body mass index. SWP = singe nucleotic polymorphism, SAGE = Study of Addiction Genes and Environment, EA = European-American SAGE participants, SAF a Micra-American SAGE participants, SAP\_meta = SAP reported in large meta-analysis by Spolitote et al. 2014. effect, allele = SMI incressing allele, Freq. meta = requestion repared in strates = regression conflictent reported for effect allele in Spelicipants, SAF and and error, T = student's t-statistic, Bonfe = Bonferonia concerde analysis SAP = analysis by Spelicipate at al. Al. = regression conflictent reported for effect allele in Spelicipants, SAF and and error, T = student's t-statistic, Bonferonia concerde analysis SAP = empirita p-anale derived from 10,000 permutations, Bea, meta, A.A. = regression conflictent reported for AlSAGE participants Power = post-bor power calculations for the SAGE sample derived from risk variance accounted for as reported in Spelicles et al. 2010.

Table 12: CNVs catalogued from the literature and frequency in the SAGE sub-sample

| C.       |   |
|----------|---|
| - 5      |   |
| 5        |   |
| CNVS     |   |
| CNVS     |   |
| ď        |   |
| - 5      |   |
| rare     |   |
|          |   |
| ç        |   |
|          |   |
| oad      |   |
| <u> </u> |   |
| load     |   |
| -        |   |
| -        |   |
| wide     |   |
| wide     |   |
|          |   |
| e        |   |
| - 8      |   |
| ō        |   |
| č        |   |
| Genome   |   |
| Ō        | í |
| 2        |   |
| _        |   |

| Rare deletion genome-wide load                      | Median<br>4 | Range<br>0-62                                        | Beta BMI<br>0.010          | <b>P BMI</b><br>0.612 | <b>OR Ob1</b><br>1.004 | <b>P Ob1</b><br>0.645 | <b>OR Ob2</b><br>1.011 | <b>P Ob2</b><br>0.333 | <b>OR Ob3</b><br>0.999 | <b>P Ob3</b><br>0.947 |
|-----------------------------------------------------|-------------|------------------------------------------------------|----------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|
| Large Rare +100 Kb deletion genome-wide load        | 0           | 0-40                                                 | 0.014                      | 0.473                 | 1.009                  | 0.598                 | 1.022                  | 0.305                 | 1.026                  | 0.426                 |
| Rare duplication genome-wide load                   | 2           | 0-57                                                 | -0.015                     | 0.444                 | 1.01                   | 0.533                 | 1.006                  | 0.805                 | 0.963                  | 0.442                 |
| Large Rare +100 Kb duplication genome-wide load     | 0           | 0-19                                                 | -0.018                     | 0.363                 | 1.041                  | 0.241                 | 0.949                  | 0.363                 | 0.891                  | 0.268                 |
| Rare genome-wide load CNV                           | 7           | 0-119                                                | 0.001                      | 0.949                 | 1.006                  | 0.423                 | 1.009                  | 0.332                 | 0.994                  | 0.731                 |
| Large Rare +100 Kb genome-wide load CNV             | -           | 0-54                                                 | 0.003                      | 0.878                 | 1.014                  | 0.334                 | 1.009                  | 0.637                 | 1.008                  | 0.801                 |
| II. CNV-GRSSs comprised of rare variants previously |             | dentified to be associated wit<br>count Fred Beta BM | ociated with E<br>Beta BMI | 3MI/obesity<br>P BMI  | ~                      | P 0b1                 | OR Ob2                 | P 0b2                 | OR Ob3                 | P Ob3                 |
| Rare obecity deletion                               | 72          | 0 028                                                | -0.017                     | 0.37                  | 0.657                  | 0 177                 | 1 087                  | 0 827                 | 1 505                  | 0 435                 |
| Rare +100 Kb obesity deletion                       | 46          | 0.017                                                | -0.001                     | 0.968                 | 0.828                  | 0.545                 | 1.194                  | 0.618                 | 1.569                  | 0.302                 |
| Rare obesity duplication                            | 49          | 0.019                                                | 0.008                      | 0.65                  | 1.086                  | 0.781                 | 1.417                  | 0.363                 | 0.62                   | 0.626                 |
| Rare +100 Kb obesity duplication                    | 34          | 0.013                                                | 0.002                      | 0.906                 | 1.153                  | 0.701                 | 1.167                  | 0.77                  | 0.825                  | 0.85                  |
| Rare obesity CNV                                    | 120         | 0.046                                                | -0.008                     | 0.698                 | 0.838                  | 0.413                 | 1.235                  | 0.441                 | 1.143                  | 0.769                 |
| Rare +100 Kb obesity CNV                            | 80          | 0.031                                                | 0.001                      | 0.968                 | 0.941                  | 0.798                 | 1.187                  | 0.564                 | 1.381                  | 0.437                 |

# III. CNV-GRSSs comprised of common variants previously identified to be associated with BMI/obesity

| mmon Obesity deletion 2 0-7 -0.015 0.449 0.969 0.359 1.008 0.874 0.982 0.807<br>mmon Obesity duplication 0 0-3 -0.022 0.251 0.863 0.198 1.003 0.983 0.901 0.714<br>mmon Obesity CNV 0.876 0.975 0.733 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       |

Note: CNV = copy number variation, GRSS = genetic risk sum score, BMI = body mass index, Beta BMI = regression coefficient of GRSS predicting BMI, OR = odds ratio, Ob1 = obese class I (BMI > 30), Ob2 = obese class II (BMI > 35) , Ob3 = obese class III (BMI > 40), Kb = kilobase.

# Table 13: Common and rare CNV-GRSS

# Chapter 4: Association of common polygenic variation with body mass index across adolescent development: A longitudinal twin study

Adapted from: On the association of common polygenic variation with body mass index across adolescent development: A longitudinal twin study. Roseann E. Peterson, Bradley T. Webb, Elizabeth C. Prom-Wormley, Judy L. Silberg, Lindon J. Eaves, and Hermine H. Maes. Presentation. The 42nd Annual Meeting of the Behavior Genetics Association. June 24th, 2012. Edinburgh, Scotland, UK.

# ABSTRACT

A dramatic increase in the prevalence of obesity in developed countries and the numerous adverse consequences associated with elevated body weight in both children and adults highlight the necessity of research that aims to understand the genetic and environmental trajectories of relative body weight. Genome-wide association studies of body mass index (BMI) using large-scale adult samples have yielded 32 robustly associated genetic variants. Further research should address when during human development these variants begin to influence body weight. Therefore, we sought to utilize a developmental twin study design in order to determine the genetic and environmental architecture of BMI by variance components analysis and assess the effects of adult-validated BMI-SNPs across adolescence. Data analyses included 2,794 twin participants from the Virginia Twin Study of Adolescent Behavioral Development (ABD) ranging in age from 8 to 18 years old. BMI was calculated from weight and height for up to three waves of data collection. Variation in BMI at each age, as well as covariation across the age range was modeled using the independent pathway (IP) models which includes both genetic and environmental common and time-specific factors. BMI was found to be highly heritable, accounting for 74-91% of the variance over the course of adolescent development. Our best-fitting model indicated multiple genetic factors that contributed to BMI liability. including a genetic factor that loaded across development, a second common genetic factor that loaded later in adolescence and time-specific genetic factors important in midadolescence. Additionally, shared environmental effects were found to account for significant portions of the phenotypic variance (1-18%) for ages 11-16 in females and ages 8-14 in males. A unique environmental factor accounted for 2-13% of the phenotypic variance across development. To understand the importance of adult BMIassociated genetic variants across adolescent development, a genetic risk sum score (GRSS) was tested as an effect on latent genetic factors as well as on mean BMI. Preliminary results, assessed on a sub-sample of ABD twins, indicated that the GRSS was best modeled as an effect on mean BMI at each age group suggesting association across development with the magnitude of the effect differing at each time point considered. The GRSS accounted for 1-2.3% of the phenotypic variance in BMI across adolescence. These results, although preliminary, merit future research, which considers pubertal stage, both in the full ABD sample and additional replication cohorts.

## INTRODUCTION

Recent years have seen a dramatic increase in the prevalence of obesity in developed countries (32), with reports from the National Center for Health Statistics indicating over 35% of American adults and 17% of children and adolescents are obese (2). Childhood obesity is a serious public health problem that is associated with both immediate and long-term health consequences including increases in blood pressure, cholesterol and insulin resistance as well as social and psychological problems (22-25). Furthermore, research has demonstrated that obese children are more likely to become obese adults (26-30), which is associated with considerable morbidity and mortality including many leading causes of death in developed nations such as diabetes, heart disease and some types of cancer (2, 30, 225). Adolescence represents an important developmental period in which to study obesity because during this time there are rapid changes in physical growth, maturation, and nutritional needs as well as many health-related behaviors are established. Further research is warranted to understand the dynamic process of genetic and environmental influences on BMI from adolescence into adulthood.

Twin and family studies have shown consistently that relative body weight is under considerable genetic influence both in children and adults, with heritability estimates ranging from 50% to 90% (35, 51-54). There have been numerous twin studies examining genetic and environmental influences on adolescent BMI and obesity (35, 54, 55, 57-60, 226-241). However, only five of these studies have reported across the entire time-span of adolescence into adulthood (54, 55, 231, 238, 240). Two large twin study meta-analyses on BMI from birth to young adulthood have reported on over 12,000 twin pairs and found that the contribution of additive genetic effects (A) tend to increase over time while environmental factors common to family members (C) is greatest in childhood but diminishes in adolescence between the ages of 13 and 17 (54, 55). While impressive on scale, these studies do not address the architecture of these effects (i.e., number of factors, persistence across time). Three other studies that reported across adolescence, while longitudinal in design, applied only limited models (Cholesky parameterization), which do not quantify the relative proportion of factors that are common across time versus those that are time specific (242, 243) or examine variance components on rate of BMI change over time (244, 245). Therefore, further twin studies examining alternative models of the genetic and environmental structure across adolescence and into adulthood are warranted.

Genome-wide association studies (GWAS) of BMI using large-scale adult samples have yielded 32 robustly associated genetic variants (63-65) accounting for 1.45% of the phenotypic variation in BMI (63). In a meta-analysis by Speliotes *et al.*, the adult BMI-associated variants were also tested for association in sub-samples of children and adolescents. Based on case/control studies of extreme childhood obesity (n = 1,301-12,891), the authors found nine variants associated with obesity (after correction for multiple testing), including single nucleotide polymorphisms (SNP) in and near *FTO*, *TMEM18* and *MC4R;* in population based samples (n = 354-8,540), three obesityassociated variants were identified in or near *POMC*, *CADM2* and *TNNI3K*; and in parent-child trios with one extreme obese child, the transmission disequilibrium test (TDT) indicated that only alleles in FTO were significantly over-transmitted to obese children, however, 24 of the 32 effect sizes were in the expected direction (63). Furthermore, a study of 1,097 extreme obese and 2,760 lean controls aged 2-18, found 9 of the 32 adult BMI variants associated with increased risk of obesity including variants in and near *FTO*, *TMEM18*, *NRXN3*, *MC4R*, *SEC16B*, *GNPDA2*, *TNNI3K*, *QPCTL*, and *BDNF* and also reported 28 variants that were directionally consistent (246). Although, somewhat underpowered, these results indicate adult BMI-associated variants may also be important in childhood and adolescent obesity. A recent GWAS meta-analysis of 5,530 obese and 8,318 control children and adolescents aged 2-18, Bradfield *et al.* reported nine variants significantly associated with obesity. Of these, 7 were previously shown to be associated with adult BMI (*FTO*, *TMEM18*, *POMC*, *MC4R*, *FAIM2*, *TNNI3K* and *SEC16B*) and two were in novel loci for childhood obesity (*OLFM4* and *HOXB5*) (247).

While the aforementioned studies implicate a number of genetic variants associated in childhood, adulthood and potentially across the lifespan, they do not address when in development genetic effects begin to influence relative body weight. Therefore, we sought to utilize a developmental twin study design in order to determine the genetic and environmental architecture of BMI by variance components analysis and assess the effects of adult-validated BMI-SNPs across adolescence into adulthood. BMI was calculated from weight and height collected on up to three waves of data collection and ages ranging from 8 to 18 in 2,794 twin participants from the Virginia Twin Study of Adolescent Behavioral Development (ABD).

# METHODS

### **Participants**

Participants were from the Virginia Twin Study of Adolescent Behavioral Development (ABD), a longitudinal population-based twin study of adolescent psychopathology. Ascertainment and data collection have been described previously in detail (248-250). In brief, Caucasian twins aged 8 to 17 were recruited through Virginia schools and were followed-up every 18 months for up to three waves of data collection. Of 1,894 eligible Virginia families, 1412 participated in the first wave of data collection (74.5%); 1,047 of 1,302 families that continued to meet the age and Virginia residence requirements completed a second home interview (80%); 628 of 777 eligible families (81%) participated in a third wave of assessment. BMI was calculated from weight and height measurements were collected by trained field interviewers during home interviews who followed a standard protocol using portable scales and tape measures and was available for 2,794 of the ABD twin participants (54% female). For sufficient number of observations over time, age was binned to create five time points: 8-10, 11-12, 13-14, 15-16 and 17-18. If BMI data was collected more than once within a time interval then the average of the assessments was used.

# Genotyping

In total, there were 913 participants from 639 families (291 twin pairs, 348 singletons) genotyped on the Illumina Human 660 array. Our quality control procedures removed 2619 monomorphic SNPs, 19984 markers with minor allele frequency less than 1%, 23114 SNPs with greater than 1% missing data and 14 SNPs which deviated from Hardy-Weinberg Equilibrium ( $p < 10^{-6}$ ). Following these exclusions 497,153 genotyped markers remained for analysis. To reduce the effects of population stratification, principal components (PC) were constructed using EIGENSOFT 3.0 (192) and SMARTPCA (193). Because the ABD sample includes related individuals, standard PC analysis s subject to bias. Therefore, the HapMap3 reference panel (988 individuals from 11 human populations) (251) was used to determine SNP weights for each eigenvector and the ABD data was projected onto these values to generate PCs. As recommended by Patterson et al., SNPs used to construct PC scores were pruned at  $r^2 > 0.7$  to correct for dependence between markers, thereby avoiding disruption of the eigenvalue structure (193). A total of 254,680 autosomal SNPs were used to generate 10 PCs. To circumvent over-fitting, only the first two PCs, distinguishing European from African ancestry, were used in subsequent analyses (192-194).

### Genetic risk sum score

BMI SNPs were catalogued from a large-scale BMI meta-analyses by *Speliotes et al.* (63), with 32 SNPs identified as reaching genome-wide significance ( $p < 5x10^{-8}$ ). Of the 32 validated BMI SNPs, 15 did not appear on the ABD Illumina 660 array. Therefore, highly-correlated SNPs ( $r^2 > 0.7$ ) that appeared on the array were used as proxies for ungenotyped SNPs. Proxies for the missing SNPs were identified using SNP Annotation and Proxy Search V2.1 (204), except rs11847697 and rs13107325, for which proxies were unavailable. Haploview v4.10 was used to verify phase and corresponding proxy alleles (148, 149). BMI-associated SNPs were tested in aggregate by constructing GRSSs. There are primarily two approaches for constructing genetic scores: count and weighted methods. The count method is the summation of the number of risk alleles, whereas the weighted method incorporates the sum of the number of risk alleles each weighted by its odds-ratio or effect size. This study utilized the weighted method and constructed GRSS from regression coefficients reported by *Speliotes et. al* (63). GRSSs were calculated using the profile option in PLINK (150).

# Variance components modeling

The use of family data allows the particular sources of trait variance to be estimated. In the classical twin design, covariances of MZ and DZ twins are used to estimate the magnitude of genetic and environmental causes of family resemblance (252). This methodology is premised upon monozygotic, or "identical", twins (MZ) sharing all of their genes, while dizygotic, or "fraternal", twins (DZ) sharing half of their genes on average, and MZ and DZ twins sharing environmental experiences to the same extent (equal environment assumption). Following this logic, the correlation between genetic components is modeled as1.0 for MZ twins and 0.5 for DZ twins. Under the assumptions of random mating, no genotype-environment correlation or interaction, and equal environments for MZ and DZ twins, a greater similarity between MZ versus DZ twins is

attributed to additive genetic effects (A). Common environmental effects, as defined in biometrical twin modeling, refer to environmental influences that make family members more similar to each other. Therefore, by definition, these influences correlate 1.0 between both MZ and DZ twins. These shared environmental influences (C) will contribute to twin similarity in both MZ and DZ twins and will tend to increase DZ correlations relative to MZ correlations. However, non-additive genetic effects, known as dominance (D), tend to reduce the DZ correlation relative to MZ twins. The correlation of D is modeled as 1.0 between MZ twins and 0.25 for DZ twins. An additional source of variance is the unique environment (E), which includes factors in the environment that are not shared within families as well as random measurement error. Unique environmental influences are uncorrelated between co-twins and have the effect of decreasing the covariance between siblings. Furthermore, the principles of variance structure between multiple variables.

One approach to partitioning variance is to use structural equation modeling (SEM) (system of linear equations) and path analysis, which allows for flexible specification of models that include both latent (unobserved) and measured variables (253). In this study, we used SEM to examine the genetic and environmental architecture of BMI across adolescence development. As depicted in Figure 8, independent pathway (IP) models were specified to partition phenotypic variance into genetic and environmental factors that were shared across development as well as components that were time specific (243, 253). These models allow for the contributions of the common factors on the phenotypes measured over time to be different for each of the sources of variance, hence the name 'independent pathways'. ACE models, as opposed to ADE models, were fit as previous research has found shared environment to be important in adolescent BMI (35, 53, 54, 231-236, 238, 241, 254, 255) and upon inspection of the ABD data, the DZ correlations tended to be greater than half MZ correlations which is suggestive of common environmental effects. IP model fitting began with two common factors for each source of variance, A, C and E, along with specific A, C and E at each time point. To simplify the full model, A and C common and specific factors and E common factors were dropped one-by-one from the model. Specific unique environmental effects were not dropped as these include errors of measurement. Variance components models were fit separately by sex and parameters were estimated by full information maximum likelihood using OpenMx (256) in R (210). The log likelihood (-2LL) and Akaike's Information Criterion (AIC) were used to assess goodness-of-fit and relative parsimony of alternative models.

The collective effect of adult BMI-associated genetic variants on BMI across adolescent development was tested via a GRSS (see METHODS *Genetic risk sum score*). The GRSS was added to the best fitting ACE-IP model and was tested as an effect on mean BMI at each time point and separately as an effect on each of the latent genetic factors (Figure 12). To reduce the effects of population stratification, PC scores representing ancestral background were included as covariates in the models as an effect on the mean. As these models include covariates as definition variables, only twins with non-missing values may be used in the analyses. As a consequence, the effective sample size was reduced considerably (Table 18). However, including phenotypic data on ungenotyped relatives has been shown to improve statistical power to detect effects of genetic variants, as a finite mixture distribution may be used to estimate the probability of genotypes of those ungenotyped (257, 258). Although applying the mixture distribution approach represents the ideal method for this data, we tested the effect of the GRSS by two alternative methods in order to generate preliminary results. First, analyses were performed on an unrelated subset of the ABD twin sample for whom genotyping data was available. Path estimates of the best fitting IP model from the full twin sample were entered as fixed effects while the means, the regression on the PCs and the effects of the GRSS were estimated on mean BMI at each age and separately as an effect on each of the latent genetic factors. Second, we used the parameterization of the best-fit IP model from the full sample but allowed the ACE variance components to be estimated as well as the effect of the GRSS on a sub-sample of ABD twin pairs that were both genotyped. For each method, ten models were evaluated for each sex. Model I estimated the means at each age for the specified model (best-fit IP model) and Model II included the effect of PC covariates on Model I and was considered the baseline for subsequent model comparisons. Model III-VII added the effect of the GRSS separately at each age while Model VIII included the effect at all ages. Model IX included the effect of the GRSS on the first latent common genetic factor and Model X included the effect on the second common genetic factor. The significance of the score was evaluated by comparing models that included the effect of the GRSS and those without and goodness-of-fit of alternative models were assessed by -2LL and AIC.

# RESULTS

# Descriptive statistics

Means and variances of BMI across age groups are presented by sex and zygosity in Table 14. Females tended to have greater BMI than males at younger ages, while mean BMI for males and females were similar in older age groups (Figure 6). As depicted in Figure 7, the phenotypic variance of BMI tended to increase over time in both males and females, with the largest variance at age 17 for females.

# Twin model fitting

The full IP model included two common factors for A, C and E components as well as specific A, C and E components for each of five time points across adolescent development (age 8-18). Model fit and parameter estimates for full and reduced models appear in Table 15 and Table 16. In both females and males, the second C factor and all C specifics could be dropped without significant loss in model fit (Model II.c). According to AIC, the best fitting parameterization of the common C factor featured loadings on age groups 11-16 in females and 8-14 in males (Model II.e). Except for the loadings on age 11 in females, none of the common A factor loadings could be dropped (Model III). However, some of the specific A components could be dropped including age groups 8 and 17 in females and males and, additionally, age group 13 in males (Model IV). Furthermore, the second E factor could be dropped in both sexes (Model IV) without significant loss in model fit. Partial path diagrams for best-fit models are displayed in

Figure 9 and Figure 10. BMI was found to be highly heritable, accounting for 74-91% of the variance over the course of adolescent development. The total heritability and proportion of heritability due to common and specific genetic factors for BMI across adolescence are displayed in Table 17 and Figure 11. The proportion of phenotypic variance accounted for by common and specific ACE factors are displayed by age in Figure 11. In summary, the first common genetic factor, which loaded on all time points, tended to account for less of the variance over time from 88 to 41% in females and 74 to 39% in males while the second common genetic factor tended to increase over time from 15 to 49% between ages 13-17 in females and 8 to 50% between ages 11-17 in males. At age 11, 18% and 23% of the heritability was due to a specific genetic factor in females and males, respectively; 14% and 0% at age group 13; and 1% and 8% at age group 15. Thus, the majority of the genetic variance is accounted for by factors that contribute across the adolescent timeframe. Additionally, a common C factor accounted for 2-18% of the phenotypic variation in females from age 11 to 16 and 1-6% in males from age 8 to 14. Furthermore, a common E factor was significant across development and accounted for 2-6% of the phenotypic variance in females and 5-13% in males and specific E factors at each time point accounted for 2-10% of the variance.

### Genetic risk sum score (GRSS)

To understand the importance of adult BMI-associated genetic variants across adolescent development, variants were tested collectively by using a GRSS with an effect on each of the common genetic factors and on mean BMI at each age by two alternative methods. The first method assessed the effect of the GRSS in a subsample of unrelated ABD twins (359 females, 258 males) against the background of fixed genetic and environmental factors estimated from the full twin sample (2,794 twins, 54% female). The best fitting model according to goodness-of-fit statistics for both females and males, was Model VIII, which included the effect of the GRSS at each age. Results of model fitting appear in Table 18. The regression coefficients for the GRSS at each age ranged in effect from 0.05 to  $1.7 \text{ kg/m}^2$  change in BMI and were in the expected direction (positive, BMI) increasing). Next, we assessed the effect of the GRSS while simultaneously estimating genetic and environmental factors in a subsample of genotyped ABD twin pairs (242 female pairs, 152 male pairs). In agreement with the first method, the best fitting model, according to goodness-of-fit statistics, was Model VIII, which included the effect of the GRSS at each age. The results of model fitting are reported in Table 19. The regression coefficients for the GRSS at each age are in the expected direction and ranged in effect from 0.5 to 2.4 kg/m<sup>2</sup> change in BMI. However, the best fitting model according to the AIC, which accounts for model parsimony, differed for males and females; for females, Model VI was the best-fitting model, which only included the effect of the GRSS at age 15 (-0.55 change in BMI); for males, the best-fitting model was IX, which included the effect of the GRSS on the first genetic factor ( $0.74 \text{ kg/m}^2$  change in BMI). Linear regression indicated that the GRSS accounted for 1-2.3% of the phenotypic variance on BMI across adolescence.

## DISCUSSION

The purpose of this study was to utilize a developmental twin study design in order to determine the genetic and environmental architecture of BMI by variance components analysis and to assess the effects of adult-validated BMI SNPs across adolescence. Consistent with other twin and family studies (35, 54, 55, 57-60, 226-241), BMI was found to be highly heritable in the ABD sample, accounting for 74-91% of the variance over the course of adolescent development.

To date, only limited models of the genetic and environmental architecture of BMI have been applied across adolescent development (35, 36, 53). To extend results reported in the literature, independent pathway models were fit to examine genetic and environmental factors, which persisted across time, as well as, time specific. The best-fitting model indicated multiple genetic factors that contributed to BMI liability, including a factor that loaded across development, a second common genetic factor that loaded later in adolescence, and time-specific genetic factors important during mid-adolescence (ages 11 to 15). It is possible that these specific genetic components are reflective of genetic effects related to puberty. Puberty stage has been shown to be highly heritable (259) and to have a significant effect on BMI variance, with higher genetic variance at later pubertal stages (240). The findings reported here do not incorporate effects of puberty and are likely confounded by the use of chronological age without consideration of puberty stage. Accordingly, our forthcoming analyses will incorporate the effects of puberty on adolescent BMI development.

Our results indicated that shared environmental effects accounted for a portion of the phenotypic variance in adolescent BMI (1-18%), although timing differed between the sexes, with significant effects until ages 14 and 16 in males and females, respectively. These results were consistent with other twin studies which report environmental effects shared within families to be important for BMI, as well as, confirming these effects diminished in adolescence between the ages of 13 and 17 (54, 55). Additionally, our results indicated a common unique environmental factor, which loaded across development, accounting for 2-13% of the phenotypic variance in BMI. These results suggested that there were environmental factors specific to individuals that persisted across time to influence body composition. These results further supported the importance of environmental factors, both within families and specific to individuals, contributing to the progression of relative body weight. Previous research has identified specific environmental factors shown to influence obesity including food selection, physical activity, socioeconomic status and childhood abuse (260-268). For example, the heritability of BMI has been shown to decrease with high physical activity (260-262). Future research should incorporate known environmental moderators into variance decomposition modeling to further clarify the genetic and environmental architecture and tracking of relative body weight across the lifespan.

In addition, to investigate the effect of adult BMI-associated genetic variants in adolescence, variants were tested as a collection by a GRSS with an effect on each common genetic factor and on mean BMI at each age by two alternative methods. To the best of our knowledge, this is the first study to examine the association of adult BMIvariants across adolescence assessed within the context of genetic and environmental components determined by variance decomposition. Preliminary results, evaluated using subsamples of ABD twins, indicated that the GRSS was best modeled as an effect on mean BMI at each age group, suggesting association across development, with the magnitude of the effect differing at each time point considered and ranged in effect from 0.05 to  $2.4 \text{ kg/m}^2$  change in BMI.

The initial GRSS results reported here should be interpreted in light of several limitations. First, since only a portion of the ABD sample was genotyped, association analyses were performed on a reduced sample of twins, limiting our power to detect significant associations. Despite reported test-statistics reflecting improvement in modelfit with the addition of genetic scores, confidence intervals on the corresponding effectsizes were large and often inclusive of zero, indicating the need for larger sample sizes to resolve the nature of these effects. The inclusion of DZ twin pairs of opposite sex (DZo) in subsequent analyses would increase the effective sample size, as well as, allow for statistical examination of sex effects. Indeed, genetic epidemiology studies of adolescent body composition support the presence of sex limitation (51, 54, 56-60), as do molecular genetic studies (269, 270). Additionally, research indicates that including phenotypic data on ungenotyped relatives improves statistical power to detect effects of genetic variants, as a finite mixture distribution may be used to estimate the probability of unobserved genotypes in untyped individuals (257, 258). Thus, extensions to this work will not only include DZo twins to track sex effects in BMI across adolescence, but also incorporate mixture distribution methodology, to increase power to potentially detect relevant associations.

Additionally, our results found that a GRSS comprised of 30 adult BMIassociated genetic variants accounted for 1-2.3% of the phenotypic variance in BMI across adolescence. Other studies examining genetic risk scores in children incorporated 8 to 17 risk variants and found them to account for 0.8 to 2.2% of the phenotypic variance in BMI (271-275). To date, no studies of adolescent body weight have incorporated genetic risk scores in the context of twin methodology and variance decomposition. However, one longitudinal twin study by Haworth *et al.*, modeled the genetic and environmental architecture of BMI in children aged 4 to 11 by Cholesky decomposition and then separately examined the effect of a variant in *FTO* in a subset of unrelated twins. The authors reported that the SNP accounted for 0.1% of the variance at age 4 and increased over time to 1.0% by age 11 (234). There is a need for additional research examining the effects of validated obesity loci across development.

A number of extensions may be applied to the genetic sum score methodology presented herein. For example, other classes of genetic variation such as copy number variation (CNV), insertions, deletions and lower-frequency SNPs may be incorporated into genetic profiles, as well as comparison of methods based on allelic count versus weights. For example, our group has previously examined CNVs reported to be associated with BMI and obesity (Chapter 3), replicating an association with a deletion on 16p12.3 in an adult sample. Future research should examine these variants in samples of children and incorporate these into genetic burden scores. In addition, there are various other latent variable models that may be applied in conjunction with genetic risk scores to expand insight on the development of relative body weight. Potential models include simplex and growth curves, which would allow the assessment of variance components and genetic variants on innovations, transmissions and rate of change of BMI across time.

In summary, we have utilized a developmental twin study design to examine the genetic and environmental architecture of BMI by variance components analysis. We found BMI to be highly heritable accounting for 74-94% of the variance across adolescence, which was reflected by several genetic factors associated across time and at specific ages, as well as environmental factors, both common to family members and specific to individuals, persisting across development. Furthermore, we assessed the effects of adult-validated BMI-SNPs across adolescence within the context of genetic and environmental factors determined by variance decomposition. Our results indicated that the GRSS was associated across development and accounted for 1-2.3% of the phenotypic variance in BMI across adolescence. These findings, although preliminary, merit future research, which considers pubertal stage, both in the full ABD sample and additional replication cohorts. Understanding obesity development will aid in identifying obesogenic vulnerability time-points and facilitate targeted prevention and treatment efforts.

#### **TABLES AND FIGURES**

|            |                  | <u>FEMAI</u>     | LES             |                   | MALES            |                  |                 |                   |  |  |
|------------|------------------|------------------|-----------------|-------------------|------------------|------------------|-----------------|-------------------|--|--|
| Age<br>Zyg | Mean T1<br>(Var) | Mean T2<br>(Var) | Cor<br>(Cov)    | Pairs/<br>Singles | Mean T1<br>(Var) | Mean T2<br>(Var) | Cor<br>(Cov)    | Pairs/<br>Singles |  |  |
| 8 MZ       | 17.80<br>(8.38)  | 17.64<br>(8.51)  | 0.86<br>(7.29)  | 141/3             | 17.13<br>(8.30)  | 16.94<br>(7.29)  | 0.74<br>(5.74)  | 87/1              |  |  |
| 8 DZ       | 18.57<br>(17.50) | 17.47<br>(11.53) | 0.52<br>(7.38)  | 58/1              | 17.28<br>(11.35) | 17.49<br>(13.61) | 0.45<br>(5.58)  | 64/2              |  |  |
| 11 MZ      | 18.97<br>(12.14) | 18.87<br>(11.19) | 0.87<br>(10.13) | 159/0             | 19.05<br>(13.18) | 18.50<br>(12.03) | 0.92<br>(11.53) | 132/1             |  |  |
| 11 DZ      | 20.04<br>(19.76) | 19.55<br>(22.01) | 0.57<br>(11.80) | 82/1              | 18.89<br>(18.71) | 18.30<br>(17.18) | 0.59<br>(10.49) | 81/0              |  |  |
| 13 MZ      | 20.20<br>(12.79) | 20.25<br>(14.07) | 0.88<br>(11.80) | 199/1             | 20.34<br>(13.83) | 19.93<br>(13.63) | 0.90<br>(12.37) | 165/2             |  |  |
| 13 DZ      | 22.33<br>(25.50) | 21.64<br>(22.91) | 0.58<br>(14.04) | 101/2             | 20.63<br>(21.97) | 19.80<br>(26.84) | 0.59<br>(14.26) | 92/0              |  |  |
| 15 MZ      | 21.60<br>(17.87) | 21.42<br>(14.96) | 0.88<br>(14.45) | 223/3             | 21.30<br>(11.99) | 21.03<br>(10.86) | 0.87<br>(9.92)  | 170/2             |  |  |
| 15 DZ      | 23.29<br>(23.96) | 22.31<br>(19.39) | 0.58<br>(12.55) | 80/0              | 22.22<br>(17.02) | 21.97<br>(23.05) | 0.44<br>(8.78)  | 98/2              |  |  |
| 17 MZ      | 22.14<br>(27.86) | 21.95<br>(22.15) | 0.9<br>(22.39)  | 124/4             | 23.09<br>(18.83) | 22.89<br>(21.84) | 0.9<br>(18.32)  | 120/1             |  |  |
| 17 DZ      | 23.40<br>(28.03) | 22.59<br>(16.54) | 0.58<br>(12.55) | 49/3              | 23.01<br>(22.10) | 22.87<br>(14.39) | 0.41<br>(7.35)  | 50/4              |  |  |

Table 14: Descriptive statistics for BMI by zygosity and age group

Note: BMI = body mass index, Age = age group in years, Zyg = zygosity, MZ = monozygotic, DZ = dizygotic, T1 = twin one, T2 = twin two, Var = variance, Cov = covariance, Cor = within-pair Pearson correlation coefficient, Pairs = number of complete twin pairs, Singles = number of twin singletons.

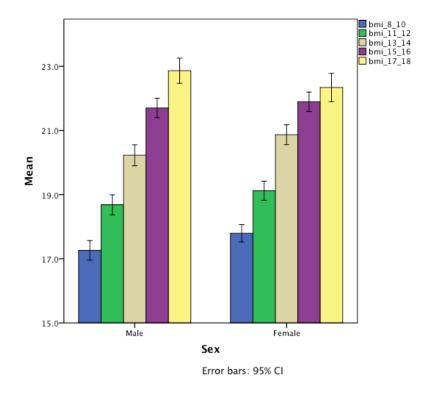
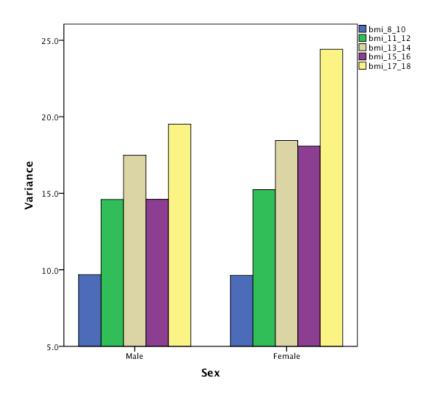
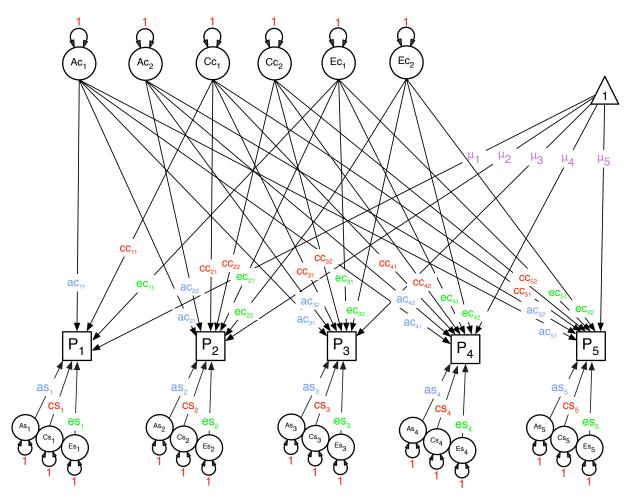




Figure 6: Mean BMI by sex and age group in the ABD sample

Figure 7: Variance BMI by sex and age group in the ABD sample




## Table 15: IP-1f Females and Males ABD

| e55<br>stdPathEst<br>stdPath^2<br>[95%CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.908<br>0.177<br>0.031<br>0.031                                                                                                                        | -0.908<br>-0.177<br>-0.031<br>0.031<br>015,0.051]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.897<br>-0.174<br>0.03<br>013,0.051]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.893<br>0.173<br>0.03<br>013,0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | e55<br>tdPathEst<br>stdPath^2<br> 95% CI]                                                                                                           | 1.023<br>0.235<br>0.055<br>0.5,0.085]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.99<br>-0.227<br>0.051<br>0.33,0078]                                                                                                                                                                                                                                                      | 1.01<br>0.231<br>0.053<br>0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.996<br>-0.226<br>0.051<br>033,0077]                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| es44<br>stdPathEst std1<br>stdPath^2 std1<br>[95% CI] [95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.962 C                                                                                                                                                | -0.96<br>-0.209<br>0.044<br>0.26,0.063][0.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.027 - 1.022 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0 | 1.031 0<br>0.222 0<br>0.049 1<br>0.32,0.068] [0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | es44<br>tdPathEst std1<br>ndPath/2 std1<br> 95% CI  [9                                                                                              | 0.87<br>0.209<br>0.044<br>02.9,0.065 [[0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.362<br>-0.209<br>0.044<br>029,0064 [[0.03                                                                                                                                                                                                                                                 | -0.85<br>-0.206<br>0.042<br>0.28,0.062][0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.865 -<br>0.212 -<br>0.045 0<br>029,0.065 [[0.03                                                                                                                                   |
| es33 es<br>stdPathEst stdPs<br>stdPath^2 stdP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.77 -0<br>-0.172 -0<br>0.03 0.0<br>0.14,0.046 [[0.026                                                                                                 | -0.762 -0<br>-0.171 -0<br>0.029 00<br>013,0.045][0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.736 11<br>0.165 0.<br>0.027 0<br>01,0.044] [0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.738 1)<br>-0.164 0.<br>0.027 0.<br>0.10.043][0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | es.33 es<br>hdPathEst stdP<br>udPath/2 stdP<br>[95%-CI] [95%                                                                                        | -0.81 0<br>-0.192 0<br>-0.037 0.<br>024,0.052][0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.809 0.<br>0.192 0.<br>0.037 0.<br>025,0.052][0.029                                                                                                                                                                                                                                        | -0.806 -4<br>-0.192 -0<br>0.037 -0<br>.024,0.052][0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.854 0.<br>0.201 0.<br>0.041 0.<br>028,0.056][0.02                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 [[0:0                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 7.01                                                                                                                                                | 0][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0][0                                                                                                                                                                                                                                                                                        | 20[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74100                                                                                                                                                                               |
| Est stdPathEst<br>^2 stdPath^2<br>1  95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 -1.003<br>4 -0.252<br>5 0.063<br>144 [[0.044,0.09                                                                                                     | -1.001<br>-0.252<br>0.063<br>142][0.044,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>0.251<br>0.063<br>146][0.043,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.999<br>0.251<br>10.040.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Est stdPathEs<br>^^2 stdPath<br>1/2 stdPath<br>31] [95%CI]                                                                                          | 3 -0.523<br>-0.138<br>8 0.019<br>134][0.004,0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 0.528<br>3 0.139<br>5 0.019<br>126][0.005,0.03                                                                                                                                                                                                                                            | 4 0.53<br>5 0.14<br>1 0.02<br>133][0.005,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 -0.503<br>6 -0.132<br>2 0.018<br>133][0.003,0.03                                                                                                                                  |
| ex44         ex55         ex11           stdPathEst         stdPathEst         stdPathEst           stdPath.2         stdPath.2         stdPath.2           stdPath.2         stdPath.2         stdPath.2           95%.CTI         95%.CTI         95%.CTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         | 1.03<br>0.324<br>0.105<br>0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 940.1<br>0.13<br>0.100<br>0.101<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.038<br>0.327<br>0.107<br>[0.08,0.143]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Est stdPathE<br>^^2 stdPath^<br>11 95%CI                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.827<br>-0.273<br>-0.075<br>-0.043,0.12                                                                                                                                                                                                                                                    | -0.864<br>-0.285<br>0.081<br>[0.048,0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.868<br>40.286<br>0.082<br>0.082<br>[0.048,0.13                                                                                                                                   |
| es SS<br>st stdPathEs<br>stdPath/2<br>[] [95% CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [sorro] [                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 2st stdPath<br>2 stdPath<br>2 stdPath<br>1  95%CI                                                                                                   | 0<br>0<br>10,0.042]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| es 44<br>est d PathEs<br>2 std Path 7<br>[95%CT]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 [00000]                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | cs33 cs44 cs55<br>stdPathEst stdPathEst<br>stdPath^2 stdPath^2<br>[95%6CI] [95%6CI] [95%6CI]                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             | <br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
| <del>1</del> 8 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.963<br>0.216<br>0.047<br>[0.0.142]                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | tt stdPathE<br>stdPath <sup>(2)</sup><br>[95%CI]                                                                                                    | -1.137<br>-0.27<br>0.073<br>[0,0.152]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.239<br>0.295<br>0.087<br>[0.006,0.159]                                                                                                                                                                                                                                                    | 1.221<br>0.29<br>0.084<br>[0.004,0.156]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.532<br>-0.361<br>0.13<br>[0.087,0.182]                                                                                                                                           |
| es22<br>stdPathEst<br>stdPath^2<br>[95%CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | es22<br>t stdPathEst<br>stdPath^2<br>95%CI                                                                                                          | 0.55<br>0.145<br>0.021<br>[0,0.115]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| csl1<br>stdPathEst<br>stdPath^2<br>[95%C1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>[0.0.042]                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | csII<br>stdPathEst<br>stdPath^2<br>95%CIJ                                                                                                           | [591-000] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| ac65<br>stdPathEst<br>stdPath^2<br>[95%CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.296<br>0.252<br>0.064<br>[0.0.124]                                                                                                                    | 1.308<br>0.254<br>0.065<br>[0,0.124]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.512<br>0.294<br>0.086<br>[0.023,0.139]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.543<br>0.298<br>0.089<br>[0.031,0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | as 55<br>stdPathEst<br>stdPath^2<br>95%CIJ                                                                                                          | 1.574<br>0.362<br>0.131<br>[0.035,0.233]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.984 1.865<br>-0.238 0.427<br>0.057 0.182<br>[0.001,0.117] [0.12,0.259]                                                                                                                                                                                                                   | -0.994 1.902<br>-0.241 0.435<br>0.058 0.189<br>[0.003,0.118][0.124,0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.211 -1.953<br>0.296 -0.444<br>0.088 0.197<br>[0.039,0.142][0.131,0.276                                                                                                            |
| as44<br>stdPathEst<br>stdPath^2<br>95%CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.193<br>0.193<br>0.037<br>[0.0.086]                                                                                                                    | 0.925<br>0.201<br>0.04<br>[0,0.088]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | as44<br>stdPathEst<br>stdPath^2<br>95%CI                                                                                                            | 0.875<br>0.211<br>0.044<br>[0,0.111]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.984<br>-0.238<br>0.067<br>[0.001,0.117                                                                                                                                                                                                                                                   | -0.994<br>-0.241<br>0.058<br>[0.003,0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.211<br>0.296<br>0.088<br>0.088                                                                                                                                                    |
| as33<br>stdPath/2<br>\$5%CII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.514<br>0.339<br>0.115<br>[0.035,0.202]                                                                                                               | 1.746<br>0.391<br>0.153<br>[0.106,0.208]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.824<br>-0.408<br>0.167<br>[0.125,0.218]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.828<br>-0.407<br>0.165<br>[0.124,0.217]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ac33<br>stdPathEst<br>stdPath^2<br>[95%CI]                                                                                                          | 1.151<br>0.273<br>0.074<br>[0,0.174]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.085<br>0.258<br>0.067<br>[0,0.163]                                                                                                                                                                                                                                                        | -1.098<br>-0.261<br>0.068<br>[0,0.164]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |
| as II as 22 as 33<br>as II as 22 as 33<br>stdPath Est stdPath Est<br>stdPath ^2 stdPath ^2<br>95%CTI 95%CTI 95%CTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.866 -1.514<br>0.469 0.339<br>0.22 0.115<br>[0.143,0.3 03][0.035,0.202]                                                                                | 1.868 1.746<br>0.47 0.391<br>0.221 0.153<br>[0.143,0.303][0.106,0.208]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.897 -1.824<br>-0.476 -0.408<br>0.227 0.167<br>[0.157,0.3 09][0.125,0.218]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.906 -1.828<br>0.479 -0.407<br>0.23 0.165<br>[0.158,0.312][0.124,0.217]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н              | as22<br>stdPathEst<br>stdPath^2<br>[95% CI]                                                                                                         | 1.626<br>0.43<br>0.184<br>0.184<br>[0.098,0.268]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.65<br>-0.436<br>0.19<br>[0.1,0.262]                                                                                                                                                                                                                                                      | 1.718<br>0.453<br>0.205<br>[0.15,0.269]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.689<br>0.444<br>0.197<br>[0.143,0.26]                                                                                                                                             |
| as II<br>stdPathEst s<br>stdPath^2 :<br>95%cII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.428<br>0.135<br>0.018<br>0.018<br>[0,0.133] [0                                                                                                        | 0.293<br>0.092<br>0.009<br>[0.0.123] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MALES: IP_IC   | as11<br>stdPathEst<br>stdPath^2<br>[95% CI]                                                                                                         | -0.265<br>-0.287<br>0.083<br>[0,0.2] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.928<br>0.307<br>0.094<br>[0,0.216]                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| <b>X</b> (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.29<br>0.251<br>0.063<br>0.063                                                                                                                         | -1.29<br>-0.251<br>0.063<br>0.0034]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.289<br>-0.251<br>0.063<br>1.039,0.094]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13<br>0.251<br>0.063<br>0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~              | eti esti asti asti azz. azi                                                                                     | 0.978<br>0.225<br>0.051<br>0.024,0.086]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01<br>0.231<br>0.053<br>0.053                                                                                                                                                                                                                                                             | 0.977<br>0.224<br>0.05<br>0.05<br>0.0601063]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.993<br>-0.226<br>0.051<br>0.051                                                                                                                                                  |
| ced1<br>stdPathEst s<br>stdPath^2 s<br>[95%CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1464 219 0422 001 0501 1051 129<br>0150 018 0113 0116 0226 0227 029<br>0100 018 0018 0003 0008 0002 0009<br>0000 0250003[0003[0003]00400[00150009]0000] | 1,425         1,63         2,34         -0,421         -0,7         -1,05         -1,067         -1,29           0,19         0,13         -0,13         -0,13         -0,13         -0,12         -0,21         -0,23         -0,35         -0,35         -0,35         -0,35         -0,35         0,35         0,35         0,35         0,35         0,35         0,36         0,32         0,36         0,35         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,32         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,35         0,36         0,37         0,36         0,37         0,36         0,35         0,36         0,35         0,36         0,37         0,36         0,37         0,36         0,37         0,36         0,37         0,36         0,37         0,36         0,37         0,35         0,36         0,37         0,36         0,37         0,38         0,37         0,38         0,37         0,38 </th <th>1.24         1.66         2.204         -0.417         -0.711         -1.071         -1.007         -1.289           0.778         0.131         0.49         -0.118         -0.218         -0.219         -0.291         -0.219         -0.216         -0.211         0.017         0.021         0.021         0.021         0.021         0.021         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031</th> <th>1647         2.053         2.579         0.412         0.702         1.03         1.022         1.3           0.46         0.44         0.470         0.171         0.022         0.24         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245</th> <th></th> <th>coff<br/>stdPathEst s<br/>stdPath^2 s<br/>[95%CI]</th> <th>1.06 1.067 0.941 0.227 0.978 0.231 0.027 0.978 0.139 0.025 0.258 0.259 0.251 0.225 0.258 0.031 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0</th> <th>1.061         1.061         0.992         0.929         1.01           0.352         0.236         0.236         0.231         0.231           0.14         0.079         0.056         0.651         0.033           0.074, 0.1877         0.075         0.056         0.631         0.033</th> <th>1         0.55         0.594         0.938         0.977           0.778         0.216         0.226         0.224           0.078         0.055         0.052         0.05           0.075         0.055         0.052         0.05</th> <th>-1.082 -1.072 -0.959 -0.928 -0.991<br/>-0.356 -0.282 -0.278 -0.20<br/>-0.356 -0.278 -0.217 -0.226<br/>-0.051 -0.059 -0.051<br/>-0.052 -0.195[ 0.052.0.078] [0.03 1.0.079 [0.026,0084</th> | 1.24         1.66         2.204         -0.417         -0.711         -1.071         -1.007         -1.289           0.778         0.131         0.49         -0.118         -0.218         -0.219         -0.291         -0.219         -0.216         -0.211         0.017         0.021         0.021         0.021         0.021         0.021         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031         0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1647         2.053         2.579         0.412         0.702         1.03         1.022         1.3           0.46         0.44         0.470         0.171         0.022         0.24         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245         0.245 |                | coff<br>stdPathEst s<br>stdPath^2 s<br>[95%CI]                                                                                                      | 1.06 1.067 0.941 0.227 0.978 0.231 0.027 0.978 0.139 0.025 0.258 0.259 0.251 0.225 0.258 0.031 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.025 0.059 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0 | 1.061         1.061         0.992         0.929         1.01           0.352         0.236         0.236         0.231         0.231           0.14         0.079         0.056         0.651         0.033           0.074, 0.1877         0.075         0.056         0.631         0.033 | 1         0.55         0.594         0.938         0.977           0.778         0.216         0.226         0.224           0.078         0.055         0.052         0.05           0.075         0.055         0.052         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.082 -1.072 -0.959 -0.928 -0.991<br>-0.356 -0.282 -0.278 -0.20<br>-0.356 -0.278 -0.217 -0.226<br>-0.051 -0.059 -0.051<br>-0.052 -0.195[ 0.052.0.078] [0.03 1.0.079 [0.026,0084    |
| ec31<br>stdPathEst s<br>stdPath^2 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.052<br>0.236<br>0.056<br>0.35,0.082][0                                                                                                                | -1.055<br>-0.236<br>0.056<br>0.36,0.082][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.071<br>-0.24<br>0.058<br>0.37,0.085][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.073<br>0.239<br>0.057<br>0.36,0.084][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | ec31<br>tdPathEst s<br>tdPath^2 ;<br>[95% CI]                                                                                                       | 0.291<br>0.235<br>0.055<br>0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.992<br>0.236<br>0.056<br>0.056                                                                                                                                                                                                                                                            | 0.994<br>0.236<br>0.056<br>035,0084][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.999<br>-0.226<br>0.051<br>03.2,0078][0                                                                                                                                           |
| ec21<br>stdPathEst st<br>stdPath^2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.701<br>0.176<br>0.031<br>0.15,0.033][0                                                                                                                | -0.7<br>-0.176<br>0.031<br>0.15,0.053 [[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.711<br>-0.178<br>0.032<br>0.15,0.054][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.702<br>0.176<br>0.031<br>0.15,0.053 ][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | cedi cesti cesti cella cella cella cella cella cella cella celladade statibación cal administrativa con cal con | 1.067<br>0.282<br>0.079<br>0.51,0.116[[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.061<br>0.28<br>0.079<br>051,0.114[[0                                                                                                                                                                                                                                                      | 1.056<br>0.278<br>0.078<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.072<br>-0.282<br>0.079<br>052,0.115][0                                                                                                                                           |
| ecf1<br>stdPathEst st<br>stdPath^2 s<br>[95%CI] ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.422<br>0.133<br>0.018<br>003,0044][0                                                                                                                  | -0.421<br>-0.132<br>0.018<br>004,0044][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.417<br>-0.131<br>0.017<br>004,0.043 [[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.412<br>0.13<br>0.017<br>004,0042][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ec11<br>stdPathEst st<br>stdPath^2 s<br> 95%CI]                                                                                                     | 1.08<br>0.3.59<br>0.1.29<br>075,0.199][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.063<br>0.352<br>0.124<br>0.124<br>074,0.187][0                                                                                                                                                                                                                                            | 1.082<br>0.3 <i>57</i><br>0.127<br>0.127<br>0.073,0.195] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.082<br>-0.356<br>0.127<br>072,0.195][0                                                                                                                                           |
| cc51<br>stdPathEst st<br>stdPath/2 st<br>[95% CT] ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.199<br>0.428<br>0.183<br>015,0399[[0                                                                                                                 | 2.34<br>0.455<br>0.207<br>032,0413][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.204<br>0.429<br>0.184<br>0.184<br>022.0.393][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.579<br>0.499<br>0.249<br>105,0.408 [[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | ec51 ec11<br>stdPathEst stdPathEst<br>stdPath^2 stdPath^2<br>]95%CT] [95%CT]                                                                        | -0.429<br>-0.099<br>0.01<br>[0.0.192] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e<br>                                                                                                                                                                                                                                                                                       | e<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e<br>                                                                                                                                                                               |
| cc41 cc51<br>stdPathEst stdPathEst<br>stdPath <sup>2</sup> stdPath <sup>2</sup><br>[95%cC1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.494<br>0.325<br>0.106<br>001,0.289][0.                                                                                                               | 1.653<br>0.359<br>0.129<br>008.0.303][0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.616<br>0.351<br>0.123<br>00.0301][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.053<br>0.443<br>0.196<br>1.118,029][0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | cc41<br>stdPathEst st<br>stdPath^2 st<br>[95%cT1] 1                                                                                                 | 0.198<br>0.048<br>0.002<br>[0,0.115]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| cc31<br>stdPath/2 st<br>stdPath/2 st<br>[95%CI] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.24<br>0.278<br>0.077<br>0.0243] [0.0                                                                                                                 | 1.425<br>0.319<br>0.102<br>00.0.258][0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.24<br>0.278<br>0.077<br>002.022] [0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.647<br>0.366<br>0.134<br>073,0.208] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                                                                                                     | 0.0187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| cc21<br>stdPath/2 std<br>stdPath/2 std<br>[95%CI] [5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.447<br>-0.112<br>0.013<br>[0.0.153] [0                                                                                                                | 0.333<br>-0.084<br>0.007<br>[0.0.121] [0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.452<br>-0.114<br>0.013<br>[0.0.121] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )<br>[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | cell ce21 ce31<br>stdPathEst stdPathEst stdPathCs<br>stdPath^2 stdPath^2<br>95%CII 95%CII 95%CII                                                    | 0.733<br>0.194<br>0.038<br>[0,0.326] [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.671<br>-0.177<br>0.031<br>[0,0.132]                                                                                                                                                                                                                                                      | -0.457<br>-0.121<br>0.015<br>[0,0.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
| 75 . 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.754<br>-0.237<br>0.056<br>[0.0.228] [0                                                                                                                | -0.682<br>-0.215<br>0.046<br>[0.0.199] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.481<br>-0.152<br>0.023<br>003,0.064]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | cell<br>stdPathEst std<br>stdPath^2 std<br>95%CII p                                                                                                 | 1.114<br>0.37<br>0.137<br>[0,0.352] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.895<br>-0.296<br>0.088<br>[0.0.238] [0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.103<br>-0.363<br>0.132<br>072,0.205]                                                                                                                                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                       | 4.098<br>0.797<br>0.634<br>[0.44,0.807] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.102<br>0.798<br>0.636<br>443,0.794][0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.902 -0.481<br>0.755 -0.152<br>0.569 0.023<br>89][0.436,0.707][0.003,0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ac51<br>stdPathEst std<br>stdPath^2 std<br>95%cTI p                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             | 3.677<br>0.841<br>0.707<br>621,0.781] [00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.685<br>0.837<br>0.701<br>613,0.776][0.0                                                                                                                                           |
| ac41 ac41 stdl at41 stdl a | 4.008 4<br>0.873 0<br>0.762 0<br>0.57,0.899] [0.45                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.068<br>0.883<br>0.78<br>0.78<br>598,0.899][0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.894<br>0.84<br>0.706<br>608.0.789][0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | ac41<br>stdPathEst std<br>stdPath^2 std<br>95%CII p                                                                                                 | 3.85<br>0.927<br>0.86<br>733,0.924][0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.803<br>0.921<br>0.849<br>781,0.911]0.6                                                                                                                                                                                                                                                    | 3.799<br>0.921<br>0.848<br>78,0.909] [0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.691<br>0.903<br>0.816<br>754,0.871][0.6                                                                                                                                           |
| ac31 a<br>dPathEst stdl<br>dPath^2 std<br>95%CII [99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.673 4<br>0.822 0<br>0.676 0<br>52,0.777] [0.5                                                                                                         | 3.63 3<br>0.813 0<br>0.66<br>0.66<br>508,0.773] [0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.658 4<br>0.819 0<br>0.671 1<br>529,0.766][0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.528 3<br>0.785 1<br>0.616 0<br>536.0.688][0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | ac31<br>tdPathEst std1<br>stdPath^2 std<br>[95%CI] ps                                                                                               | 3.593<br>0.852 (<br>0.726<br>549,0.829[[0.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.652<br>0.868<br>0.754<br>0.754<br>587,0.814][0.75                                                                                                                                                                                                                                         | 3.658<br>0.860<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7550<br>0.7 | 3.744<br>0.882<br>0.778<br>0.778<br>719,0.829][0.72                                                                                                                                 |
| - 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2849 3.265 3.673 4.673 4.68<br>0.886 0.82 0.822 0.873 0.812<br>0.801 0.673 0.676 0.762 0.659<br>0.885.0850[0.532.0.777] (0.57.0.899] (0.454.0.831]      | 2.883         3.276         3.63         3.941           0.907         0.824         0.813         0.857           0.823         0.678         0.666         0.735           0.829         0.678         0.669         0.735           0.829         0.678         0.669         0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.86         1.248         1.658         4.102         -0.804           0.9         0.816         0.819         0.835         0.616         0.645           0.81         0.871         0.78         0.556         0.064         0.064           0.81         0.871         0.78         0.556         0.064         0.064         0.02271           0.820.8871[bit:0.870, 766][0.559, 7766][0.559, 2899][0.443, 0.794][0.000, 0.2271]         0.021         0.221         0.221         0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.93 3.271 3.528 3.894<br>0.924 0.822 0.785 0.84<br>0.853 0.676 0.616 0.706<br>0.798.0.8921[0.591.0.749][0.536.0.688][0.608.0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | act1 ac1 ac1 ac1 ac1 ac1 ac1 ac1 ac1 ac1 ac                                                                                                         | 228 3.071 3.593 3.67 3.69<br>0.757 0.811 0.822 0.927 0.868<br>0.574 0.658 0.726 0.86 0.753<br>(0.372.0.775][0.421,0.752][0.431,0.924][0.467,0.856]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38 3.124 3.652 3.803 3.688<br>0.787 0.825 0.888 0.921 0.844<br>0.62 0.681 0.754 0.849 0.713<br>(0.517,0.709](0.586,0.753][0.687,0.814][0.758,0.754]                                                                                                                                       | 24         3.133         3.658         3.779         3.677         -1.229           7722         0.856         0.893         0.921         0.841         -0.405           0.627         0.883         0.735         0.888         0.707         0.161           0.627         0.833         0.735         0.888         0.707         0.164           0.627         0.836         0.735         0.888         0.707         0.164           0.625.01554[[b.686,08.163][b.786,0969][b.780,0763][b.780,0723]         0.706         0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2466 31.96 3.744 3.691 3.685 -1.103<br>2032 0.34 0.882 0.903 0.487 -0.363<br>0.66 0.778 0.878 0.816 0.70 0.132<br>(0.568.0737] (0.778) 0.778] (0.754.0.871] (0.613.0776)[0.072.026] |
| acl1 acl1 acl1 acl1 acl1 acl1 acl1 acl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.849 3.<br>0.896 0<br>0.803 0.<br>0.803 0.832                                                                                                          | 2.883 3.<br>0.907 0.<br>0.823 0.<br>629.0.898[0.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.86 3.<br>0.9 0.<br>0.81 0.0<br>0.82,0.891][0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.93 3.<br>0.924 0.<br>0.853 0.<br>086,0.892[[0.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MALES: IP_IC   | ac11 a<br>dPathEst stdP<br>tdPath^2 stdP<br>95% CIJ [95%                                                                                            | 2.28 3.<br>0.757 0.<br>0.574 0.<br>172,0.775][0.42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.38 3.<br>0.787 0.<br>0.62 0.<br>517,0.709][0.59                                                                                                                                                                                                                                           | 24 3.<br>0.792 0.<br>0.627 0.<br>523,0.715][0.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.466 3.<br>0.812 0<br>0.66 0<br>0.66 0<br>0.66 0                                                                                                                                   |
| p-value stdP-<br>stdP-<br>959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2<br>0.56                                                                                                                                             | 80<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 2<br>0.21 0<br>0 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IVW            | ne stdP<br>stdP<br>stdP                                                                                                                             | 0<br>1037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7 2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                               | 0.69 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.38 22 0007 00 00                                                                                                                                                                  |
| Difdf p-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Difdf p-v                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                           | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 0 0                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | DIFLL                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                           | 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 52                                                                                                                                                                               |
| C DITLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 203                                                                                                                                                     | 5.77 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.89 3.82<br>L 3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.8 4.73<br>1. 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                     | 6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5367.37 4.66                                                                                                                                                                                                                                                                                | 536629<br>II 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5367.49 10.<br>III. 5.                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 6555.07                                                                                                                                              | 6 6545.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6544.89<br>II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6543.8<br>III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | r vic                                                                                                                                               | 5376.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2415                                                                                                                                                    | 077 2420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8 2423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | л аг                                                                                                                                                | 71 2098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 2105                                                                                                                                                                                                                                                                                     | 29 2106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49 2108                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11385.07                                                                                                                                                | 11385.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11388.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11389.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                     | 9572.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 957.37                                                                                                                                                                                                                                                                                      | 9578.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67:83:40                                                                                                                                                                            |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                      | 9<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | EP                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ង                                                                                                                                                                                   |
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JIMIT                                                                                                                                                   | II. Drop Specific C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | III. Drop as I I, as 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV. Drop ec21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J L al Service |                                                                                                                                                     | LIP-I fFull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II. Drop C                                                                                                                                                                                                                                                                                  | III. Drop A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IV. Drop as33, oc21                                                                                                                                                                 |

| Iai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                          | . Ir                                                         | -21                                          | ге                                               | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | les                                           | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I IV                                                                                                                                                                                                                                                       | laie                                                | 5 II                                                         | ιш                                                                                          | e ABD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sai                                         | npi                                                                | e                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|
| d5<br>MPah Ext<br>dPah ^ 2<br>P6 Sccij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [25 00'0]<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 125000                                                       | 1000                                         | 0 000                                            | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0.00.43]                       | 0.000<br>171.0<br>171.0<br>171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                    | 1.56<br>0.305<br>0.093<br>772.0.122]                | 0.912<br>0.179<br>0.022<br>0.021                             | 0.915<br>0.179<br>0.022<br>0.022                                                            | 65<br>Dath Dat<br>Draft 22<br>SSACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23<br>0.23<br>0.05<br>0.053               | 0.981<br>0.228<br>0.052<br>0.052                                   | 0.988<br>0.23<br>0.053<br>0.053<br>0.053                          | 0.28<br>0.23<br>0.053<br>133.0.077]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.981<br>0.229<br>0.053<br>133.0.077]           | 0.989<br>0.231<br>0.053<br>034.0.078]                             | 00001                                                            | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.411<br>0.328<br>0.107<br>81.0.143]   | 0.945<br>0.22<br>0.048<br>0.048                                                                                                                                      | 0.945<br>0.22<br>0.048<br>0.048                                                  | 0.945<br>0.22<br>0.048<br>03.073]                        |
| 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126.0-<br>126.0-<br>100.00]                                 |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            | 8                                                   | 2                                                            | 2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    | 0.169<br>0.04<br>0.002<br>(0.0.047) [0.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| a 33<br>ad Path 15<br>ad Path 15<br>p8% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000,110.0<br>62.00<br>71.0-<br>0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00<br>177.0-<br>177.0-<br>177.0-<br>177.0-                | -0.764<br>-0.17<br>-0.029<br>-0.011.0.04                     | 0.762<br>0.169<br>0.029<br>0.011.0.04        | 41756<br>417<br>0029<br>1011,000                 | 41764<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.07<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17<br>-0.17 | 0754<br>0167<br>0028<br>0028                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17<br>0.17<br>0.029<br>0.011.0.0                                                                                                                                                                                                                         | 1271<br>0281<br>0079<br>0079                        | 01782<br>0174<br>0.05<br>0.060004                            | 0.78<br>0.173<br>0.05<br>0.015,0002                                                         | a.0<br>ad Path 2<br>ad Path 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02.03<br>0.2.03<br>0.0.41<br>0.0260         | 02.02<br>0.2 02<br>0.0 41<br>0.0 56 002                            | 0857<br>0203<br>0041<br>0026,0026]                                | 02.04<br>0.204<br>0.041<br>0.027,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08.88<br>01.99<br>0.04<br>0.023.002             | 02.02<br>02.02<br>00.41<br>00.56.002                              | 0.72<br>01.71<br>00.29<br>00.00                                  | 0.7%<br>0.1%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1191<br>0.283<br>0.08<br>0.08          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.0%<br>0.0%<br>0.0%<br>0.0%                                                     | 0.8.28<br>0.1.95<br>0.0.38<br>0.0.38<br>0.0.36<br>0.0.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.364<br>0.216<br>0.047<br>[0.00.74]                        |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   |                                                                    | 0<br>0<br>(0.0025] [C                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            | 8                                                   | <u> </u>                                                     | <u> </u>                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| edfacht<br>soffracht<br>soffrach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 060<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.908<br>-0.254<br>-0.254<br>-0.08<br>[0.0.123]            | -0.91<br>-0.25<br>-0.081<br>-0.081                           | -0.91<br>-0.250<br>-0.022<br>-0.022          | -0.91<br>-0.28<br>0.082<br>0.082<br>0.082        | 10.0<br>0.020<br>0.020<br>0.001<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.254<br>0.254<br>0.064<br>[0.0.1]            | -1.15<br>-0.36<br>-0.133<br>-0.133<br>-0.133<br>-0.133<br>-0.133<br>-0.133<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.143<br>-0.1 | 0.29<br>0.29<br>0.064<br>0.064                                                                                                                                                                                                                             | 0.377<br>0.347<br>0.12<br>0.02.0.1                  | 0.308<br>0.308<br>0.095<br>[0.068.0                          | 0.92<br>0.31<br>0.096<br>0.096                                                              | eitt<br>soffhaß<br>Deriven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.053<br>0.053<br>0.050<br>0.050            | 0.254<br>0.254<br>0.061<br>0.0700                                  | 0.838<br>0.283<br>0.08<br>0.08<br>0.08                            | 0.041 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.05551 0.05551 0.05551 0.05551 0.05551 | 0.250<br>0.250<br>0.062<br>0.045.0.1            | 0.284<br>0.296<br>0.002<br>0.002<br>0.002                         | 0.631<br>0.212<br>0.045<br>[0.0.11]                              | 40.09<br>40.25<br>0.055<br>0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.332<br>0.445<br>0.198<br>0.15.02     | 0.267<br>0.267<br>0.071<br>0.071<br>0.071                                                                                                                            | 0.267<br>0.207<br>0.071<br>0.071                                                 | 0.268<br>0.268<br>0.072<br>(0.042.0                      |
| at6<br>Path Da<br>Path Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05<br>0.205<br>0.042<br>0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.79<br>0.231<br>0.055<br>0.0125]                          |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | a 55<br>Pathor<br>Pathor<br>Pathor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| 2 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0                                  |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | cold<br>cold Party Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| es.0<br>odhathb<br>sofhathr<br>196%CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.221<br>0.275<br>0.076<br>[0.0.199]                        |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | cs.0<br>rodPach02<br>rodPach2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                           | -1.162<br>-0.275<br>0.076<br>[0.0.15]                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| o 22<br>od Path Ext<br>od Path *2<br>p8% C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 000                                                       |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | 522<br>240124<br>24012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | 4,732<br>4,192<br>0,037<br>0,0126]                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| Ext sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| od Pada<br>wid Pada<br>page sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [22.0070]<br>0<br>0                                         |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | ell hello<br>sethen 5<br>sethen 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0                                     | -0.625<br>-0.211<br>-0.211<br>-0.045<br>[0.01-48]                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| ar56<br>Mhath50<br>Mhath20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.057<br>10.0126]<br>10.0126]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.953<br>0.187<br>0.035<br>[0.0.133]                        | 0.028<br>10.155<br>10.028<br>10.028                          | 1.101<br>0.216<br>0.047<br>[0.0.131]         | 1.472<br>0.288<br>0.083<br>(0.0.139]             | 1.021<br>0.2<br>0.04<br>[0.0.117]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000<br>0.000<br>0.000<br>0.000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.011<br>0.198<br>0.009<br>(0.0.115]                                                                                                                                                                                                                       | [250 U0]<br>0<br>0                                  | 0.375<br>0.073<br>0.005<br>[0.0.105]                         |                                                                                             | acts<br>adhachta<br>odhach 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0106]                                     | [100.097]                                                          | 0<br>0<br>0 0 00]                                                 | 0<br>0<br>0<br>0<br>0.0.092]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 0 0 0 II                                                          | -1.771<br>-0.411<br>-0.169<br>-0.169                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                      | 0 000                                                                                                                                                                |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [sec 0 0]                                                   |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    | -1.17<br>-0.28<br>-0.78<br>-0.23<br>-0.23                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      | 01 28<br>01 28<br>01 28                                                          | 128<br>129<br>173<br>0129]                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  | -                                                        |
| as.33<br>sol Path<br>st dhoth<br>pol 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.457<br>0.32M<br>0.105<br>[0.0350.0.201]                   | 1.465<br>0.325<br>0.106<br>0.106                             | -1.462<br>0.122<br>0.105<br>0.105            | -1.82<br>-0.411<br>-0.410<br>-0.169<br>-0.123.02 | 0.322<br>0.322<br>0.104<br>0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30<br>0.258<br>0.050<br>0.060               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.402<br>0.321<br>0.103<br>0.103<br>0.0320.                                                                                                                                                                                                                | 0.000                                               | 0.316<br>0.316<br>0.1<br>0.1<br>0.0290.                      | 1.406<br>0.319<br>0.102<br>[[0.03.0.1]                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    | 0.09<br>0.163<br>0.027<br>0.0135]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| m 22<br>PathExt<br>Brach 2<br>6%CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.305<br>0.326<br>0.106<br>0.025]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                     | 1.363<br>0.341<br>0.116<br>0.116                             | 1.44<br>0.36<br>0.15<br>0.253                | 0.0.0                                            | 1.467<br>0.367<br>0.135<br>0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.013<br>0.512<br>0.512<br>0.262<br>79.0.354] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.575<br>0.294<br>0.156<br>50.0.241]                                                                                                                                                                                                                       | 1.24<br>0.312<br>0.097<br>0.178]                    | 1.54<br>0.386<br>0.149<br>0.149                              | 1.603<br>0.401<br>0.161<br>99.0.232]                                                        | ie 22<br>Pachárd<br>Pachárd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.559<br>0.406<br>0.165<br>79.0.25]         | 1.516<br>0.398<br>0.158<br>0.158<br>772,0.25]                      | 1.599<br>0.406<br>0.165<br>[0.079,0.25]                           | 1.681<br>0.44<br>0.193<br>13.0.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.09<br>0.445<br>0.198<br>410.261]              | 1.681<br>0.441<br>0.195<br>13.0261]                               | 1.71<br>0.462<br>0.204<br>0.204                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42<br>0.373<br>0.139<br>24.0.209]    | 1.714<br>0.451<br>0.204<br>141.0.27]                                                                                                                                 | 1.714<br>0.451<br>0.451<br>141.0.27]                                             | 1.716<br>0.452<br>0.204<br>142,0.27]                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>H</b>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                          | 0.574<br>0.18<br>0.032<br>0.0.138] [0               | -                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    | 0<br>0<br>0000] (0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 0] [980'0'0<br>0<br>0                                                                                                                                                | 2                                                                                | 0                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1322<br>0.415<br>0.171<br>[0.0.242]                         |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                          | 2 0 0 d                                             | 5 8 8 8<br>5 8 8 8                                           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   | _                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000                                   | 2000                                                                                                                                                                 |                                                                                  |                                                          |
| ect2<br>ad Path D<br>stdPath ^<br>P654C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2210.01<br>2000<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.519<br>-0.297<br>0.068<br>[0.0123]                       | 1.533<br>-0.299<br>0.069<br>0.069                            | -1.516<br>-0.297<br>0.068<br>[0.0126         | -15<br>-0.293<br>-0.086<br>[0.0122               | -1.521<br>-0.298<br>0.069<br>[0.0124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10201                                       | -1.25<br>-0.237<br>0.006<br>[0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5<br>0.294<br>0.067<br>[0.0123]                                                                                                                                                                                                                          |                                                     |                                                              |                                                                                             | cef2<br>ad Path E<br>stdPath *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.136<br>0.002<br>0.001<br>0.001            | 0.134<br>0.031<br>0.001<br>[0.0017]                                | $^{0.136}_{0.0019}$                                               | 0.138<br>0.002<br>0.001<br>[0.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.153<br>0.005<br>0.001<br>[0.0017]             | 0.131<br>0.031<br>0.001<br>[0.0018]                               | 1.405<br>0.335<br>0.105<br>0.105                                 | -1.612<br>-0.381<br>0.145<br>0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| ett<br>seldise<br>badirit<br>Piscij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [590.0<br>820<br>692.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.755<br>-0.165<br>-0.000<br>-0.000                        | 2000<br>1000<br>2000                                         | (500)<br>2017<br>2017                        | 0.065<br>0.065<br>0.065                          | 1752<br>164<br>027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94<br>216<br>017<br>2,0.075 []                | 1.015<br>1.222<br>0.09<br>1.0.115]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.72<br>0.02<br>0.02                                                                                                                                                                                                                                       |                                                     |                                                              |                                                                                             | ed<br>while<br>her?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 818<br>901<br>100                           | 89<br>20<br>043<br>2,0,072]                                        | 0.819<br>0.196<br>0.028<br>[0.0.07]                               | 873<br>1980<br>1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80<br>(211<br>044<br>3.0.073]                   | 10.069<br>10.069<br>10.069                                        | 388<br>114<br>1000                                               | 60 N 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 2                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                               | 2                                                                 | 2                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.608<br>-0.157<br>-0.157<br>-0.019                        |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                           | -                                                                  | 0129<br>0031<br>0001<br>[0.0.013]                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                               | -                                                                 | -                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| ec2<br>MPath Ex<br>(dPath ^ 2<br>p8 %CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.28<br>40.00<br>0.000<br>(0.0041)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.25<br>-0.063<br>0.004<br>[0.0.04]                        | -0.276<br>-0.069<br>0.005<br>[0.0041]                        | 0.243<br>0.061<br>0.004<br>[0.0041]          | -0.214<br>-0.054<br>0.003<br>[0.0039]            | 40.254<br>40.064<br>0.004<br>[0.0041]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.305<br>0.077<br>0.006<br>[1.00.27]          | -0.704<br>-0.175<br>0.031<br>[0.0112]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                |                                                     |                                                              |                                                                                             | ec2<br>of heth for<br>of heth 22<br>pot 960 Fict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.00<br>0.005<br>0.005<br>0.003            | -0.293<br>-0.077<br>0.006<br>[0.0029]                              | $\begin{array}{c} -0.297\\ -0.007\\ 0.006\\ [0.0.03]\end{array}$  | $\begin{array}{c} -0.296\\ -0.077\\ 0.006\\ [0.0.03]\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.00<br>0.004<br>0.004                         | $\begin{array}{c} -0.293\\ -0.077\\ 0.006\\ [0.0.03]\end{array}$  | 0.556<br>0.147<br>0.022<br>0.022                                 | -0.763<br>-0.197<br>0.039<br>-017,0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| eff<br>athlise<br>with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 002<br>002<br>002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.424<br>-0.007<br>0.007<br>0.007                          | 100<br>000<br>000                                            | 1400<br>1001<br>1000                         | 000<br>000<br>000                                | 000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001<br>001<br>001<br>001                      | 000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 481<br>000<br>000<br>000<br>000                                                                                                                                                                                                                            |                                                     | 203<br>208<br>061<br>001                                     | 202<br>208<br>001<br>001                                                                    | ed<br>addite<br>scott<br>scott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 015<br>236<br>056<br>8.0.002]               | 00%<br>053<br>0093]                                                | 1.015<br>0.236<br>0.056<br>0.026<br>0.025                         | 01<br>235<br>005<br>8,0.091]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 003<br>018<br>018<br>019                        | 012<br>226<br>026<br>9,0.002]                                     | 202<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | 10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 01<br>21<br>21<br>000<br>21<br>000                                                                                                                                   | 00<br>21 000]                                                                    | 075<br>(25<br>063<br>5,0.098]                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     | 310                                                          | 310                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 8                                                                                                                                                                    | 8                                                                                | 3                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.67<br>-0.147<br>0.022<br>[[0.001,0.069]                  |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     | 8                                                            | 8                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ×                                         |                                                                    | 0.061<br>0.25<br>0.053<br>10024.0086                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | <u> </u>                                                          | =                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 0216<br>0.219<br>0.48<br>0.048                                                                                                                                       | 031<br>021<br>10029.04                                                           | 0.01<br>0.22<br>0.04<br>1.0029.0                         |
| edi<br>dPathEo<br>dPath/2<br>85%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.839<br>-0.186<br>0.035<br>0.035<br>0.030<br>0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.855<br>0.192<br>0.07<br>0.007                             | -0.841<br>-0.187<br>0.035<br>0030.08                         | -0.856<br>-0.19<br>-0.00<br>0.000            | -0.873<br>-0.196<br>0.029<br>0040.08             | -0.847<br>-0.189<br>0.036<br>0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.055<br>0.145<br>0.021<br>0.021              | -1.253<br>-0.275<br>0.075<br>[0.01.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.87M<br>0.195<br>0.038<br>0.030                                                                                                                                                                                                                           |                                                     | 1.045<br>0.232<br>0.054<br>0.054                             | 1.047<br>0.233<br>0.054<br>0.054                                                            | ecit<br>diffedition<br>diffedition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.928<br>0.22<br>0.048<br>031.0.07v         | 0.929<br>0.22<br>0.088<br>0.048                                    | 0.928<br>0.22<br>0.048<br>0.048                                   | 0.923<br>0.219<br>0.048<br>0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.926<br>0.22<br>0.048<br>0.048                 | 0.929<br>0.219<br>0.048<br>031,0.074                              | 0.255<br>0.225<br>0.051<br>0.051                                 | -0.889<br>-0.211<br>0.044<br>017,0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 0.97<br>0.229<br>0.052<br>0.052<br>0.052                                                                                                                             | 0.97<br>0.229<br>0.052<br>0.052                                                  | 0.964<br>0.227<br>0.052<br>0.052<br>0.052                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.804<br>-0.201<br>0.04<br>0.04.00 [[0                     | 8                                                            | H H                                          | 8                                                | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H H                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                          |                                                     | 01660010<br>0193<br>0193                                     | 1                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - E                                         | Ĕ                                                                  | 1.159<br>0.301<br>0.091<br>057.0.125 J0                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E E                                             | 8                                                                 | Ĕ.                                                               | Ĕ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | 1.066<br>0.281<br>0.079<br>0.079<br>0.079                                                                                                                            | 88.80<br>88.80                                                                   | 007<br>231<br>231<br>231<br>231<br>231<br>231            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - B                                                         | 8                                                            | 8                                            | 8                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                          |                                                     | ē.                                                           | - A                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 S                                        | 510                                                                | 36                                                                | li i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ę.                                              | Ę                                                                 | 6                                                                | Ę.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | 310                                                                                                                                                                  | 310                                                                              | H][0                                                     |
| octt<br>solPath<br>solPath<br>p35%.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0'2000]<br>2(00<br>81'0-<br>81'0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4103000]                                                    | 40.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0 | 0.78<br>0.05<br>0.070<br>0.070               | 40.58<br>40.18<br>0.034<br>0.034<br>0.034        | 4.9%<br>4.18<br>4.09<br>4.00<br>9.00<br>10.00<br>0.7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.76<br>0.24<br>0.05<br>0.05<br>0.05          | 26.0-<br>11.0-<br>11.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75<br>0.17<br>0.00<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.7000<br>0.70000<br>0.70000<br>0.70000<br>0.700000<br>0.700000000 |                                                     | 0.15<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.46<br>0.14<br>0.021<br>0.020                                                              | et ll<br>self Pada<br>self Pada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0340                                        | 0340                                                               | 0342<br>0342<br>0.117<br>0.117                                    | 101<br>0.340<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101<br>0.1%<br>0.1%<br>0.1%<br>0.1%             | 1.01<br>0.34<br>0.115<br>0.115<br>(0075,0.                        | 1201<br>0.400<br>0.162<br>[0.085,0.                              | -1.25<br>-0.42<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73<br>-0.73 |                                        | 0354<br>0354<br>0125<br>0125<br>(00%015                                                                                                                              | 00 20 20 20 20 20 20 20 20 20 20 20 20 2                                         | 104<br>035<br>0125<br>0125<br>0126<br>0126               |
| ccf2<br>MPathExt<br>(dPath ^2<br>P65xCII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000<br>9000<br>66310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | -0.054<br>-0.01<br>-0.01<br>-0.01<br>-0.03<br>25]            |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | ceft<br>d Path Ecc<br>d Path Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.998<br>-0.092<br>0.009<br>0.009          |                                                                    | 40.398<br>40.092<br>0.009<br>[0.0201]                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| col2<br>offbathbat<br>offbath22 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 20<br>01 00<br>01                                            |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | ett<br>antibut<br>settibut<br>secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (19)<br>(19)<br>(19)                        |                                                                    | 88 0 0<br>[10]                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | _                                                            |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | 3 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                           |                                                                    | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| ad Path 2<br>ad Path 2<br>ad Path 2<br>p5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | 1.718<br>0.381<br>0.145<br>[0.0.301                          |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | 50.00<br>Albert bar<br>Albert bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4231<br>4231<br>0053<br>0053<br>[00230]     |                                                                    | 40.231<br>40.231<br>00.053<br>[0.0.207]                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| cc22<br>od Pada Exc<br>od Pada ^ 2<br>pol SuCIJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.248<br>0.004<br>0.004<br>[0.0.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 0.2%<br>0.061<br>0.004<br>0.004                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | ce22<br>d Padi Kor<br>d Padi Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.882<br>-0.229<br>-0.053<br>[0.01.86]     |                                                                    | $\begin{array}{c} -0.882\\ -0.229\\ 0.053\\ [0.0186] \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| odfhethlar<br>odfhethlar<br>odfhethlar<br>19654CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | -1.802<br>-0.369<br>0.136<br>0.036                           | 0.284<br>0.005<br>0.01 X28]                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | et all a second a sec | 8 ii 19                                     |                                                                    | 40.976<br>40.227<br>0.052<br>[0.0.262]                            | 88 5 8 <sup>[</sup> 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                             | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [3]                                                                                                                                                                                                                                                        |                                                     | [3                                                           | Ē                                                                                           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| ad Path 2<br>wd Path 2<br>wd Path 2<br>p5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.064<br>0.2.32<br>0.0.54<br>[[0.013,0.112    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                          |                                                     | 2                                                            | 2                                                                                           | X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,755<br>4,181<br>4,181<br>0,033<br>(0,019] |                                                                    | 40.755<br>40.181<br>181.0<br>181.0<br>181.0<br>10.033             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                                   |                                                                  | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · ·                              |                                                                                                                                                                      |                                                                                  |                                                          |
| col<br>dPathEo<br>dPath/2<br>86%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0 |                                                             | -1.188<br>-0.264<br>0.07<br>[0.0378]                         | 1.991<br>0.442<br>0.195<br>013,0.372         |                                                  | 1.839<br>0.409<br>0.168<br>0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.045<br>0.452<br>0.204<br>106.0.295          | 2.414<br>0.529<br>0.28<br>191,0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.855<br>0.413<br>0.17<br>0.17<br>0.53,0.277                                                                                                                                                                                                               | -2.131<br>-0.47<br>-0.47<br>-0.21<br>-0.21<br>-0.21 | 1.886<br>0.419<br>0.176<br>0.83.0.277                        | -1.911<br>-0.425<br>0.18<br>0.08                                                            | cc31<br>cc31<br>cdPath.bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.184<br>0.044<br>0.002<br>0.002            |                                                                    | 0.184<br>0.004<br>0.002<br>[0.0161]                               | 0.485<br>0.115<br>0.015<br>0.015<br>(0.0156]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | $\begin{array}{c} -0.978\\ -0.231\\ 0.053\\ (0.0129] \end{array}$ | 0.458<br>0.109<br>0.012<br>(0.0145]                              | 1.37<br>0.325<br>0.106<br>04.0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.214<br>0.288<br>0.083<br>01.0.173    | -1.023<br>-0.242<br>0.058<br>0.020.138                                                                                                                               | -1.023<br>-0.242<br>0.058<br>0.020.13                                            | 1.057<br>0.249<br>0.062<br>0.10.158                      |
| 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              | 2                                            |                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                          | 2                                                   | 2                                                            | 8                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    | -1.163<br>-0.302<br>0.091<br>[0.0.319]                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                      | 2                                                                                                                                                                    | 2                                                                                | 2                                                        |
| ¥ (1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  | <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0005                                          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>5</u>                                                                                                                                                                                                                                                   | 9992                                                | <u>5</u>                                                     | 9998                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  | _                                                        |
| off and a set of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 0.426<br>0.136<br>0.018<br>0.018                             | -                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | 8 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.078<br>40.05<br>0.109<br>1 [0.0.315]     |                                                                    | 4078<br>4030<br>0109<br>1 [0.0.313]                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| act2<br>drhah Kic<br>idhah ^2<br>NS SiCIJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.026<br>0.256<br>0.356<br>0.951.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.965<br>0.584<br>0.341<br>1.55,0.601                       | 3.005<br>0.592<br>0.351<br>0.351                             | 3.223<br>0.622<br>0.999<br>149.0.669         | 3.138<br>0.614<br>0.377<br>175,0.629             | 3.215<br>0.631<br>0.998<br>1.80.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | 3.526<br>0.68<br>0.462<br>1.291.0.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.291<br>0.646<br>0.417<br>227,0.631                                                                                                                                                                                                                       | 3.25<br>0.636<br>0.405<br>252.0.562                 | 3.555<br>0.697<br>0.496<br>272.0.646                         | 3.584<br>0.700<br>0.494<br>335,0.647                                                        | act<br>d Path Eor<br>d Path 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.032<br>0.705<br>0.497<br>261,0.644        | 3.073<br>0.716<br>0.512<br>319,0.665                               | 3.022<br>0.705<br>0.497<br>0.261,0.644]                           | 3.067<br>0.714<br>0.51<br>327,0.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.236<br>0.753<br>0.567<br>365.0.686            | 3.023<br>0.706<br>0.498<br>3010.66                                |                                                                  | 1.755<br>0.415<br>0.172<br>0640.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.766<br>0.63<br>0.413<br>227,0.567    | 3.048<br>0.71<br>0.504<br>1.33.0.65]                                                                                                                                 | 3.048<br>0.71<br>0.504<br>3460.65                                                | 3.026<br>0.707<br>0.5<br>344.0.648                       |
| AD<br>MINISK W<br>MCII V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 I 12 I<br>20 C<br>20 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.92<br>0.534<br>0.275<br>[0.161.0.489][0                   | 88<br>20<br>1-12-10                                          | 01<br>20<br>01<br>00<br>01<br>00<br>01<br>00 | 80<br>20<br>10.306<br>10                         | 86<br>21<br>24<br>21<br>24<br>21<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | 2.282<br>0.491<br>0.241<br>127,0.363 [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 514<br>572<br>0.464 [0                                                                                                                                                                                                                                     | 01.00<br>02.00<br>02.00                             | 61<br>200<br>0.451 [0                                        | 212<br>212<br>0.431 [0                                                                      | 40<br>41834 %<br>41834 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>80<br>167<br>2.0.29][0                | 271<br>101<br>102<br>102<br>102<br>102<br>103                      | 1.709<br>0.409<br>0.167<br>[0.062.0.29][0                         | 26<br>10<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86<br>83<br>0.316 JD                            | 0][020]<br>986<br>1720][0                                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      | 1.719<br>0.411<br>0.169<br>0.169<br>0.170,292][0                                 | 712<br>41<br>168<br>0.2.92] [0                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            | 2.509<br>0.569<br>0.301<br>41] [0.211.0.407         | 2<br>0<br>10<br>23                                           | 2<br>0<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | e<br>(160)<br>1501<br>2011<br>2011<br>11<br>2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                                        | 1 0<br>0 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n n n n n n n n n n n n n n n n n n n           | 1 0 0 0                                                           |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                      | =                                                                                                                                                                    | 2                                                                                | 1<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1      |
| ac32<br>soffwith Ext<br>soffwith 24<br>passe C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              | 1812<br>0408<br>0166<br>[0096,0339               | 1624<br>0361<br>0131<br>0131<br>[0032,0272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 1561<br>0342<br>0.117<br>0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 169<br>150<br>140<br>1006001                                                                                                                                                                                                                               | 1.723<br>0.38<br>0.145<br>[1007.0.241]              | 1.70<br>0.38<br>0144                                         | 1.72<br>0.385<br>0.146<br>0.146                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                           | 1.145<br>0.27<br>0.073<br>10003,0185]                              |                                                                   | 1.148<br>0.272<br>0.074<br>[0.0.232]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                   |                                                                  | 0.472<br>0.112<br>0.013<br>1 [0.0.099]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.794<br>0.188<br>0.036<br>0.036       | -                                                                                                                                                                    |                                                                                  | 0.792<br>0.187<br>0.035<br>10.0156                       |
| act2<br>dPathExt<br>dPath ^ 2<br>96%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.292<br>-0.073<br>0.005<br>[0.0.12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | -0.243<br>-0.061<br>0.004<br>[0.0.12]                        | 0.162<br>-0.04<br>0.002<br>0.001             | -0.628<br>-0.157<br>0.025<br>0.025               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | -0.851<br>-0.211<br>0.045<br>01-40.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | ac2<br>dPah Est<br>dPah 2<br>05%CII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.058<br>0.275<br>0.076<br>001.0.208]       | 1.117<br>0.203<br>0.006<br>012.0.189]                              | 1.058<br>0.275<br>0.076<br>0.010.206                              | 1.162<br>0.304<br>0.092<br>0.020.18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.301<br>0.302<br>0.117<br>0.117<br>0.25(0.199) | 1.101<br>0.289<br>0.084<br>015.0.183,                             |                                                                  | -1.249<br>-0.323<br>0.104<br>027,0.192]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.256<br>0.051<br>0.051<br>0.03.0.134] | 1.096<br>0.259<br>0.063<br>016.0.179]                                                                                                                                | 1.096<br>0.259<br>0.083<br>016.0.179                                             | 1.089<br>0.287<br>0.082<br>0.15.0.179]                   |
| ac51<br>odPath2xt w<br>odPath2xt w<br>[servc1] p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.75<br>0.932<br>0.868<br>804.0.918]          | 456<br>666<br>444<br>1.0.615 [0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 412<br>(67<br>488<br>9.0622]                                                                                                                                                                                                                               | 619<br>202<br>202                                   | 287<br>645<br>415<br>0.587]                                  | 3.273<br>0.642<br>0.412<br>59.0.573]                                                        | X X -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.402<br>0.577<br>0.333<br>147.0.535 [0.    | 2                                                                  | 2                                                                 | 2.514<br>0.585<br>0.382<br>1.99.0.538] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                               | 2                                                                 | 3.658<br>0.849<br>0.72<br>641.0.787]                             | 0106.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.981<br>0.692<br>0.48<br>27.0.636 [0  | 2.664<br>0.62<br>0.385<br>0.385<br>236.0.547 JO                                                                                                                      | 50<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 2.678<br>0.624<br>0.589<br>2.99,0.55] [0.                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ě                                                           | 2                                                            | 2                                            | 2                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            | A .                                                 | Ĕ                                                            | colloc                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                           | E.                                                                 | 8                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                               |                                                                   |                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 2 <u>1</u> 0                                                                                                                                                         | J.                                                                               | 0][0                                                     |
| ac41<br>sofPach Ext<br>sofPach 25<br>pacts 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3314<br>0.721<br>0.52<br>0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | 2                                                            |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                             | 3613<br>0791<br>0625<br>10512.0744]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                          | 3481<br>0.762<br>0.58<br>0.58<br>I 0.466,06.79      | 328<br>0715<br>0715<br>0.215<br>0.215<br>10.3%00             | 3257<br>0713<br>0508<br>[0396,06                                                            | those<br>dearf lose<br>dearf lose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3288<br>0.787<br>0.619<br>I 0.423,0784      |                                                                    | 3288<br>0787<br>0619<br>104240772                                 | 3295<br>0.79<br>0.624<br>1.0764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =                                               | 3417<br>0.819<br>0.671<br>0.671                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>e</u>                               | 3417<br>0818<br>0669<br>[0539,077                                                                                                                                    | 3417<br>0.818<br>0.669<br>[0539,07                                               | 3413<br>0817<br>0667<br>10537,077                        |
| ac31<br>MPathExt<br>(dPath ^ 2<br>26 Sect]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.12<br>0.693<br>0.48<br>0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.398<br>0.765<br>0.596<br>414.0.671                        | 3.104<br>0.69<br>0.475<br>0.475                              | 3.139<br>0.697<br>0.485<br>283.0.695         | 1999 U'90E 1<br>645 U<br>200 U<br>200 U<br>200 U | 3.219<br>0.716<br>0.513<br>389,0.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5%<br>0.70<br>0.629<br>0.52 (UV 0.52        | 3.277<br>0.718<br>0.516<br>424(0.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.178<br>0.707<br>0.5<br>0.5                                                                                                                                                                                                                               | 3.377<br>0.745<br>0.556<br>1.656                    | 3.167<br>0.704<br>0.496                                      | 3.14<br>0.698<br>0.487<br>0.487                                                             | acti<br>d'hañ Est<br>ofhañ 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.687<br>0.873<br>0.762<br>0.762            | 3.558<br>0.857<br>0.701<br>558,0.831                               | 3.687<br>0.873<br>0.762<br>0.762                                  | 3.789<br>0.899<br>0.808<br>0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.422<br>0.816<br>0.666<br>557,0.799            | 3.773<br>0.891<br>0.793<br>618.0.901                              | 3.607<br>0.899<br>0.738<br>0.738                                 | 3.735<br>0.886<br>0.786<br>714.0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.77<br>0.895<br>0.801<br>0.801        | 3.773<br>0.891<br>0.794<br>[0.620.9]                                                                                                                                 | 3.773<br>0.891<br>0.794<br>[0.620.9]                                             | 3.826<br>0.902<br>0.813<br>661,0.901                     |
| ethior w<br>utility w<br>utility w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 422<br>855<br>731<br>0.912][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - A                                                         | 8                                                            |                                              | 3.761<br>0.855<br>0.885<br>0.885<br>0.885        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.42<br>0.82<br>0.76<br>69.0.8770                                                                                                                                                                                                                          | 1<br>1<br>1                                         | 3.45<br>0.746<br>0.746<br>0.746                              | 3.406<br>3.855<br>0.727<br>547.0.792] [0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.700<br>0.72<br>0.519<br>318.0.723 [0-     | 2                                                                  | 8                                                                 | 2.89<br>0.756<br>0.572<br>1.39,0694] [0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 A                                             | 8                                                                 | 3.101<br>0.82<br>0.672<br>0.672<br>0.57.0773][0.                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | -                                                                                                                                                                    | 2                                                                                | 2.961<br>0.78<br>0.608<br>905.0.696 [0.                  |
| or volty<br>2 volty<br>1 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Dia                                                       | 2                                                            | H H                                          | × ×                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                          | ä                                                   | 1 10 6                                                       | 0116                                                                                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                          | 10                                                                 | 010                                                               | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e e                                             | 2                                                                 | =                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 210                                                                                                                                                                  | 210                                                                              | 10                                                       |
| aclt actively without the set from the set from the set from the set from the set of the | 2.84<br>0.886<br>0.785<br>[0.529.0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2704<br>2845<br>0345<br>0714<br>(06.99,09                   | 2854<br>0891<br>0794<br>[0.533.07                            | 2885<br>0902<br>0814<br>0814<br>[0.591,0.5   | 26%<br>0845<br>0.711<br>0.711<br>[0.636.09       | 2896<br>0.906<br>0.821<br>0.653.0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2714<br>0852<br>0726<br>[0.625.0.81]          | 2972<br>092%<br>0853<br>0853<br>[0802,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.8<br>09.19<br>0.844<br>0.723.03                                                                                                                                                                                                                         | 2941<br>0921<br>0347<br>(0742,09                    | 295<br>0925<br>0855<br>0855<br>[0.73,09                      | 3005<br>09.99<br>0.882<br>0.882<br>[0.844.0.5                                               | aclination and and and and and and and and and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 <i>0</i> )<br>0833<br>0694<br>[0484.083  | 2571<br>0.87<br>0.758<br>0.758<br>[0643,084                        | 2469<br>0833<br>0694<br>[0486.08]                                 | 2474<br>0836<br>0699<br>[0495,083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 262<br>0894<br>0.799<br>[0.669.03               | 25.88<br>0.863<br>0.744<br>[0.627.0.83]                           | 2297<br>0.77<br>0.593<br>[0.479,0.765                            | 2362<br>0.795<br>0.632<br>[0.528.0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2663<br>0389<br>0791<br>[0696.0346     | 25.49<br>0365<br>07.49<br>[0633.08]                                                                                                                                  | 2549<br>0865<br>0749<br>[0633,083                                                | 2538<br>0862<br>0743<br>[0.63,0.826                      |
| p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.0                                                         | -                                                            | -                                            | 0.39                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                          | •                                                   | 860                                                          | 0.02                                                                                        | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | 80                                                                 | -                                                                 | - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.13                                            | - %                                                               | 870<br>1000                                                      | ijij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>100</b>                             | 0.17                                                                                                                                                                 | 8 -                                                                              | 0.02                                                     |
| Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                           | ÷                                                            |                                              | Ξv                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                          | 51                                                  | ŝ                                                            | ≝ n                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | •                                                                  | ÷                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ξv                                              | = ~                                                               | <u> </u>                                                         | e n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - S                                    | <u> </u>                                                                                                                                                             | 5 M 2                                                                            | <u>=</u> ~                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| Diff LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.23                                                        | 0.02                                                         | 68.0                                         | 2.16                                             | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.00                                         | 8 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.02                                                                                                                                                                                                                                                       | 6. <u>6.</u>                                        | 6.22                                                         | 6.48                                                                                        | DistLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŀ                                           | 4.8)                                                               | •                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.65<br>8.65                                    | 2.19                                                              | 8 9 R                                                            | 88 <del>1</del> 8<br>87 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.4                                   | 8.57<br>6.38                                                                                                                                                         | 0.53                                                                             | 8.71<br>0.14                                             |
| AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6538,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85 1039                                                     | 81 9239                                                      | 621.02                                       | 6518.19<br>IL c                                  | 6617.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 661.85                                        | 96 3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6615.17                                                                                                                                                                                                                                                    | 16 52.91                                            | 6612-47                                                      | 6308.64<br>IV.b                                                                             | VIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.17.65                                    | 53.57.6                                                            | 5361.11                                                           | 5354.14<br>II.b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5352.79<br>IL c                                 | 5351.3<br>ILc                                                     | 53 <i>6</i> 7.9<br>ILe                                           | 5407.55<br>II.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5521.58<br>ILe                         | 5340.68<br>II.e                                                                                                                                                      | 5345.68<br>IV:b                                                                  | 5943.83<br>IV.b                                          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2412                                                        | 8                                                            | 9                                            | 2412                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                             | 2419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                          | -                                                   | 2                                                            | 2421 6                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                                          | 566                                                                |                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                               | 6                                                                 | 5                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 5                                                                                                                                                                    | 8                                                                                | 2104 5                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 8                                                            | 2                                            |                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2                                        | 7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                          | 70<br>74                                            | 2                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ri<br>                                      | n                                                                  | ×<br>-                                                            | н<br>т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                               | ĸ                                                                 | 77                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 8                                                                                                                                                                    | 71<br>20                                                                         |                                                          |
| 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113 48, 39                                                  | 113-64.1                                                     | 11346.0                                      | 11352-19                                         | 113-45.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11397.6                                       | 11393.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11346.1                                                                                                                                                                                                                                                    | 115235                                              | 113.90.4                                                     | 113 20 64                                                                                   | 1187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.056                                       | 9547.6                                                             | 1.889                                                             | 9541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e 205.6                                         | 96453                                                             | 93693                                                            | 9611.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9733.58                                | 9.551.6                                                                                                                                                              | 8971956                                                                          | 9 551 83                                                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                          | а.                                                           | 25                                           | 8                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | я                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                          | ĸ                                                   | 16                                                           | 8                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G;                                          | ×                                                                  | ą                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                               | R                                                                 | я                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                      | я                                                                                                                                                                    | R                                                                                | R                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              | factor                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                           |                                                                    |                                                                   | factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                      |                                                                                  |                                                          |
| JC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | timent<br>ctors                                             |                                                              | C& 2nd C                                     |                                                  | I, coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , ă                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            | stop                                                | ž                                                            | 2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 0.02                                                               |                                                                   | dượn spatific C. & 2nd C fácto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | , a.31                                                            | . 8                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                     | ×                                                                                                                                                                    |                                                                                  | ad5                                                      |
| MALIS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a dop both C factors                                        | specific C                                                   | u drop specific C& 2nd C                     | allo                                             | a keep co21, co31, co31, co41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a, dop 2nd A facto                            | b dopspecific A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86.22                                                                                                                                                                                                                                                      | a drop both E factors                               | b. drop 2 nd E facto                                         | / Dop NS ail1, a:5                                                                          | ICAL INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | Corrroo Erwicoment<br>a doep both C factors                        | dopspecific C                                                     | p coifie C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | allc                                            | keep ce 11, cc 21, a3 1                                           | a dop 2nd A flator                                               | drop specific A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unque announce<br>a deep both E factor | t drop 2 nd E facto<br>born NS A                                                                                                                                     | a drop aal 1, aa5 5                                                              | b. drop as 11 as 33, as 6                                |
| Table FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. IP2.FFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II. Corres<br>a. dop                                        | h drop                                                       | c. drop                                      | d dopall C                                       | e keep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a dop                                         | h dop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c. drop ac22                                                                                                                                                                                                                                               | a dob                                               | b. dop                                                       | V. Drop N                                                                                   | doler MAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2ffu                                       | 1. Comme<br>a despt                                                | b dops                                                            | c dop s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d dopall C                                      | e koepc                                                           | a dop 2                                                          | b. drops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a dopt                                 | b. dop.2                                                                                                                                                             | a dop a                                                                          | h dopa                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                     |                                                              |                                                                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*</b> **                                 | -                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                   | -                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                      | >                                                                                                                                                                    |                                                                                  |                                                          |

### Table 16: IP-2f Females and Males in the ABD sample Image: Compare the temperature of the temperature of tempe

Figure 8: Independent pathway diagram for two common ACE factors and specific ACE components for five observed variables



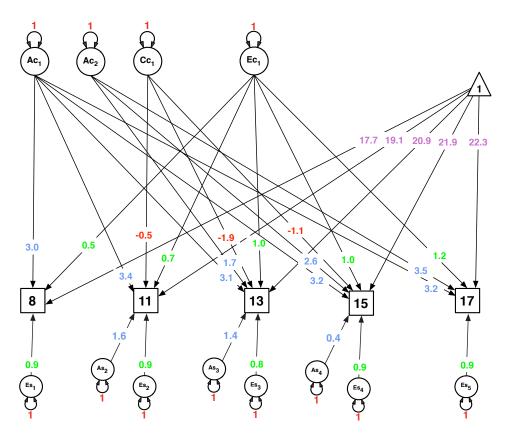
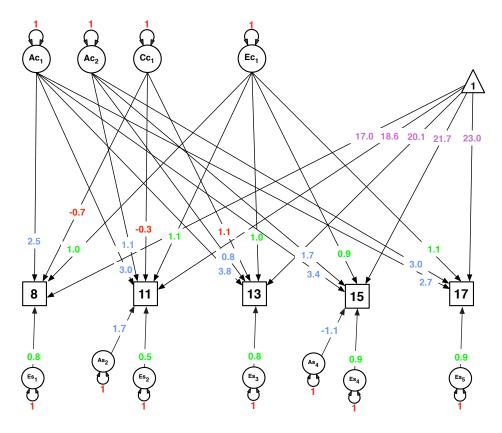



Figure 9: Partial IP path diagram with path estimates for females in the ABD sample

Figure 10: Partial IP path diagram with path estimates for males in the ABD sample



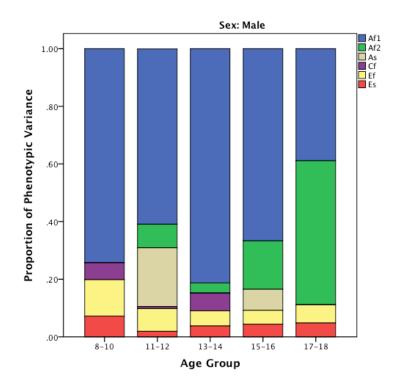



Figure 11: Proportion of phenotypic variance accounted for by common and specific genetic and environmental components by sex










Figure 12: Partial path diagram including effects of GRSS on BMI in females across adolescence

| Age<br>Group | Sex    | Total<br>Heritability | % A<br>Factor 1 | % A<br>Factor 2 | % A<br>Specific |
|--------------|--------|-----------------------|-----------------|-----------------|-----------------|
| 8-10         | Female | 0.88                  | 100             | 0               | 0               |
|              | Male   | 0.74                  | 100             | 0               | 0               |
| 11-12        | Female | 0.89                  | 82              | 0               | 18              |
|              | Male   | 0.89                  | 68              | 9               | 23              |
| 13-14        | Female | 0.74                  | 66              | 20              | 14              |
|              | Male   | 0.85                  | 96              | 4               | 0               |
| 15-16        | Female | 0.84                  | 60              | 39              | 1               |
|              | Male   | 0.91                  | 73              | 19              | 8               |
| 17-18        | Female | 0.91                  | 45              | 55              | 0               |
|              | Male   | 0.89                  | 44              | 56              | 0               |

Table 17: Total heritability and proportion of heritability due to common and specific genetic factors for BMI across adolescence

Note: BMI = body mass index, A = additive genetic component.

| Model: Females   | EP | -2LL    | df  | AIC     | Diff LL | Difdf | p-value | Beta<br>[95%CI]                                                           | Estimated Means          |
|------------------|----|---------|-----|---------|---------|-------|---------|---------------------------------------------------------------------------|--------------------------|
| I. Means         | 5  | 4471.75 | 794 | 2883.75 | -       | -     | -       | -                                                                         | 17.9 18.6 20.9 21.9 22.6 |
| II. Means & PCs  | 15 | 4412.09 | 784 | 2844.09 | -       | -     | -       | -                                                                         | 17.8 19.2 20.9 21.9 23.0 |
| III. Age 8-10    | 16 | 4410.25 | 783 | 2844.25 | 1.84    | 1     | 0.17    | 0.287                                                                     | 18.2 19.2 20.9 21.9 23.0 |
|                  |    |         |     |         |         |       |         | [-0.129,0.704]                                                            |                          |
| IV. Age 11-12    | 16 | 4411    | 783 | 2845    | 1.1     | 1     | 0.3     | -0.205                                                                    | 17.8 18.9 20.9 21.9 23.0 |
|                  |    |         |     |         |         |       |         | [-0.590,0.180]                                                            |                          |
| V. Age 13-14     | 16 | 4397.2  | 783 | 2831.2  | 14.89   | 1     | < 0.001 | 0.626                                                                     | 17.8 19.2 21.9 21.9 23.0 |
|                  |    |         |     |         |         |       |         | [0.307,0.944]                                                             |                          |
| VI. Age 15-16    | 16 | 4397.27 | 783 | 2831.27 | 14.83   | 1     | < 0.001 | -0.488                                                                    | 17.8 19.2 20.9 21.2 23.0 |
|                  |    |         |     |         |         |       |         | [-0.736,-0.239]                                                           |                          |
| VII. Age 17-18   | 16 | 4405.52 | 783 | 2839.52 | 6.57    | 1     | 0.01    | 0.609                                                                     | 17.8 19.2 20.9 21.9 23.9 |
|                  |    |         |     |         |         |       |         | [0.142,1.078]                                                             |                          |
| VIII. Each age   | 20 | 4391.6  | 779 | 2833.6  | 20.5    | 5     | < 0.001 | 0.573 0.743 1.027 0.352 0.651                                             | 18.6 20.3 22.4 22.4 24.0 |
|                  |    |         |     |         |         |       |         | [-0.157,1.304] [-0.101,1.587] [0.127,1.927] [-0.557,1.261] [-0.439,1.740] |                          |
| VIII.a Age 13-18 | 18 | 4394.71 | 781 | 2832.71 | 17.38   | 3     | < 0.001 | 0.424 -0.184 0.155                                                        | 17.8 19.2 21.6 21.6 23.2 |
| -                |    |         |     |         |         |       |         | [-0.151,0.999] [-0.866,0.497] [-0.775,1.085]                              |                          |
| IX. Common A1    | 16 | 4410.15 | 783 | 2844.15 | 1.94    | 1     | 0.16    | 0.159                                                                     | 18.5 19.9 21.6 22.6 23.7 |
|                  |    |         |     |         |         |       |         | [-0.065,0.384]                                                            |                          |
| X. Common A2     | 16 | 4412.09 | 783 | 2846.09 | < 0.001 | 1     | 0.98    | 0.004                                                                     | 17.8 19.2 20.9 21.9 23.0 |
|                  |    |         |     |         |         |       |         | [-0.245,0.252]                                                            |                          |

# Table 18: Effect of GRSS on common genetic factors and mean BMI by sex in an unrelated subsample of genotyped ABD participants (Method 1)

| Model: Males    | EP | -2LL    | df  | AIC     | Diff LL | Difdf | p-value  | Beta<br>[95%CI]                                                         | Estimated Means          |
|-----------------|----|---------|-----|---------|---------|-------|----------|-------------------------------------------------------------------------|--------------------------|
| I. Means        | 5  | 2914.75 | 571 | 1772.75 | -       | -     | -        | -                                                                       | 17.0 18.9 20.7 22.0 22.6 |
| II. Means & PCs | 15 | 2902.49 | 561 | 1780.49 | -       | -     | -        | -                                                                       | 16.9 18.9 20.3 22.0 22.7 |
| III. Age 8-10   | 16 | 2899.06 | 560 | 1779.06 | 3.43    | 1     | 0.06     | -0.627                                                                  | 16.2 18.9 20.3 21.9 22.7 |
| IV. Age 11-12   | 16 | 2894.64 | 560 | 1774.64 | 7.85    | 1     | 0.01     | [-1.296,0.041]<br>1.052                                                 | 17.0 20.3 20.3 21.9 22.7 |
| V. Age 13-14    | 16 | 2902.42 | 560 | 1782.42 | 0.07    | 1     | 0.79     | [0.311,1.793]<br>0.079                                                  | 16.9 18.9 20.4 21.9 22.7 |
| VI. Age 15-16   | 16 | 2894.71 | 560 | 1774.71 | 7.77    | 1     | 0.01     | [-0.555,0.714]<br>0.845                                                 | 17.0 18.9 20.3 23.1 22.7 |
| VII. Age 17-18  | 16 | 2891.76 | 560 | 1771.76 | 10.73   | 1     | p <0.001 | [0.248,1.443]<br>-1.575                                                 | 17.0 18.9 20.3 22.0 20.4 |
| 0               | 20 |         | 556 |         |         | 5     | •        | [-2.525,-0.625]<br>0.535 1.763 1.579 1.679 0.046                        | 17.8 21.3 22.5 24.3 22.6 |
| VIII. Each age  | 20 | 2875.93 | 550 | 1763.93 | 26.56   | 5     | p <0.001 | [-0.372,1.443] [0.700,2.827] [0.461,2.698] [0.602,2.757] [-1.274,1.365] | 17.8 21.3 22.5 24.3 22.6 |
| IX. Common A1   | 16 | 2891.2  | 560 | 1771.2  | 11.29   | 1     | p <0.001 | 0.465 [0.193,0.737]                                                     | 18.5 20.8 22.8 24.2 24.4 |
| X. Common A2    | 16 | 2902.01 | 560 | 1782.01 | 0.47    | 1     | 0.49     | 0.123<br>[-0.231,0.477]                                                 | 16.9 19.0 20.4 22.2 23.2 |

# Table 19: Effect of GRSS on common genetic factors and mean BMI by sex in a subsample of genotyped ABD twin pairs (Method 2)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . s                                           | 5 . 5                                                     | a                                                                   | s . s 6                                                            | e ci a [6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6<br>4<br>1002]                                 | 2<br>3<br>4<br>003                              | 2<br>3<br>4<br>003]                                                                                                                                   | 9<br>2<br>8<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 . 5 6                                                                     | S<br>Mile<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0857                                                                | 9000<br>9000                                                                                | 22<br>21(05]<br>21(05]                      | 18<br>86<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10001                                             | 96<br>50<br>1008                                                   | 5000                                                 | 81<br>28<br>21<br>2007                        | 10000 1000<br>1020<br>1020 1000                                              | 2 (94)<br>2 (94)                                                                     | 100                                                                         | 8         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1000 1000 1000 1000 1000 1000 1000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                             | 2                                                         |                                                                     | 2                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                               | 8                                               | 2 E                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      | 8                                             | 8                                                                            | 8                                                                                    | 8                                                                           |           |
| 0.199<br>0.199<br>0.199<br>0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 0.204<br>0.002<br>0.002<br>0.002                          |                                                                     |                                                                    | 8880-<br>0000<br>1000<br>2000-<br>1000<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>2000-<br>200 |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.204<br>0.002<br>0.002                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | Ĕ                                                                                           | 0.004<br>-0.162<br>0.026<br>3][0.012.0.072] | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                 | 8                                                                  | 8                                                    | 6                                             | 0.092<br>0.161<br>0.026<br>84](0.011,0.087                                   | e e                                                                                  | 8                                                                           |           |
| 200 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.715<br>0.169<br>0.029<br>10.005             | 0.701<br>0.109<br>0.029<br>0.029                          | 0.169<br>0.169<br>0.028<br>0.028                                    | 0.10<br>0.10<br>0.029<br>0.029                                     | -0.692<br>-0.167<br>0.028<br>][0.0090.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0 []<br>2010<br>2010<br>2010              | 0.169<br>0.169<br>0.028<br>0.028                | 0.169<br>0.167<br>0.028<br>0.028                                                                                                                      | 0.7<br>0.169<br>0.029<br>0.029<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.100<br>107.0<br>107.0<br>107.0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | -                                                                                           | -                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                 | 2                                                                  | 2                                                    | 2                                             | 0.847<br>0.225<br>0.061<br>7]0.027.0.084                                     | 2                                                                                    | 2                                                                           |           |
| ID:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.952<br>-0.268<br>0.072<br>0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.962<br>-0.271<br>0.074<br>0.074            | 0.955<br>0.272<br>0.074<br>0.074                          | 0.955<br>0.272<br>0.074<br>0.074                                    | 0.955<br>0.272<br>0.074<br>0.074                                   | -0.954<br>-0.272<br>0.074<br>0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.954<br>0.272<br>0.074<br>0.074                | 0.954<br>0.272<br>0.074<br>0.074                | 0.954<br>0.274<br>0.075<br>0.075                                                                                                                      | 0.957<br>0.274<br>0.075<br>0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.955<br>0.272<br>0.074<br>0.074                                            | ed2<br>volPathix<br>sofPath:2<br>ponsciaj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.617<br>40.187<br>10.005<br>10.005                                | 0.997<br>0.182<br>0.005<br>0.0050 07                                                        | [800.00]<br>1700<br>8710<br>8710            | 0.091 0.022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.002 | 0.091<br>0.02<br>0.020<br>0.00000                 | 0.991<br>0.1810<br>0.0050000                                       | -0.92<br>-0.177<br>-0.051<br>0.0000.067              | 0.0000 067<br>0.178<br>0.078<br>0.0000 067    | 0.589<br>0.178<br>0.078<br>0.006.0.067                                       | 0.000000                                                                             | 0.0590 0.1540 0.024                                                         | 1850      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1820<br>1820<br>1820<br>1820<br>1820<br>1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0815<br>-0.277<br>0.077<br>-0.077            | 0.822<br>0.282<br>0.08<br>8.0.127[0                       | 0.253<br>0.263<br>0.08<br>9.0.128[0                                 | 0.822<br>0.282<br>0.08<br>8.0.127[0                                | 0.823<br>0.262<br>0.08<br>8,0.127[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.821<br>0.282<br>0.08<br>8,0.136[0             | 0.252<br>0.252<br>0.08<br>8(.0.126[0            | 0.282<br>0.285<br>0.081<br>0.081                                                                                                                      | 0.822<br>0.285<br>0.061<br>80.0126][0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.822<br>0.262<br>0.08<br>8(0.127]0                                         | ell<br>d'antitat<br>d'antitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.164]                                                             | 1810/240                                                                                    | 0.678<br>0.328<br>0.108<br>025,0222]        | 0.6.53<br>0.3.09<br>0.0.96<br>0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.653<br>-0.307<br>00.04<br>048.0.184D           | 0.651<br>0.308<br>0.095<br>0.095                                   | 0.654<br>0.306<br>0.094<br>0.80 18][                 | -0.654<br>-0.311<br>0.097<br>05.0.185][       | 0.653<br>0.312<br>0.097<br>0.005.0.186][                                     | 0.65<br>0.316<br>0.1<br>0.1<br>051,0193[0                                            | 0.664<br>0.336<br>0.113<br>0.113                                            | 8990      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | cell<br>admathat vice<br>admathat vice<br>postscap postscap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | ĕ                                                                                           | ĕ                                           | ŭ<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ĕ                                                 | ĕ                                                                  | ē<br>                                                | ē<br>                                         | e<br>                                                                        | ĕ                                                                                    | ĕ                                                                           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| I pessec I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 044<br>044<br>045<br>045<br>045<br>045<br>045<br>045<br>045<br>045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | educed<br>software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| person of a contract of the co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | cd2<br>to the floor<br>to the floor<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>[0.0257                                              |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | all<br>adhahba<br>adhah 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| Social Control of Cont |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | ar 10<br>ar 10<br>ar 10<br>ar 10<br>br 10 |                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| Cill 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 2 5                                         |                                                           | 56<br>13<br>09]                                                     | 60                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | model<br>and hand be<br>and hand 20 and<br>personal personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | -                                                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | 5                                                                  | 0 12                                                 | 0 12                                          | [29000]<br>0<br>0                                                            | 0.00                                                                                 | 0 02                                                                        | 619       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 3 81 84 84 84 84 84 84 84 84 84 84 84 84 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                                                             | <u>5</u>                                    | [0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                              | 2                                                                  | 10.0                                                 | 10.0                                          | 10.0                                                                         | 10.0                                                                                 | 10.0                                                                        | 0         |
| 0.31<br>0.096<br>0.01<br>0.096<br>0.01<br>0.096<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                             | 2                                                         | 2                                                                   | 2                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                               | 2                                               |                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 2                                                                         | en Al Panka<br>and Panka<br>2. and Panka<br>1. posseria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 [00000]                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | E                                                                  | <br>E                                                |                                               |                                                                              |                                                                                      |                                                                             |           |
| 19.5%C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2090-<br>2090-                                | 0.193<br>0.193<br>0.037<br>[0.0141]                       | 161 0<br>161 0<br>161 0                                             | -0.0582<br>-0.194<br>0.038<br>[0.0141]                             | 0.79<br>0.225<br>0.061<br>[0.0152]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0720<br>702.0<br>702.0                          | 0.692<br>0.197<br>0.039<br>[0.0145]             | 0.0147<br>0.0147<br>0.0147                                                                                                                            | 0.637<br>0.183<br>0.033<br>0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.195<br>0.195<br>0.037<br>[0.0141]                                         | ed Path E<br>vol Path 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0 0 0                                                             | -1.302<br>-0.3966<br>-0.157<br>[0.0.27]                                                     | -1.329<br>-0.401<br>-0.161<br>-0.161        | 1.304<br>0.392<br>0.154<br>0.154<br>[0.076,0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.301<br>-0.391<br>0.153<br>[0.074,0.2           | 1309<br>0.4<br>0.16<br>[0.079,0.2                                  | 1.31<br>0.393<br>0.154<br>[0.069.03                  | 1299<br>0.992<br>0.154<br>0.050.2             | 1.305<br>1.305<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1. | 1.282<br>0.405<br>0.164<br>[0.076.0.2                                                | 1.294<br>0.405<br>0.164<br>0.164<br>[0.075,0.2                              | 1200      |
| 2000<br>6210<br>6210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | all<br>ad ha mile<br>sol ha mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               | 0<br>0<br>[0.0.415]                                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.213<br>0.015<br>0.015<br>0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | or Al<br>and Path Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.823<br>0.04<br>0.047]                                             |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.022 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>i</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | e42<br>dPath24 ed<br>dPath22 so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                   |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                   |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 40540<br>40153<br>40153<br>40153<br>40153<br>40105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | ed softwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    | · · · · ·                                            |                                               |                                                                              | <br>5                                                                                | <br>E                                                                       |           |
| 1087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -13.49<br>-13.49<br>-0.282<br>-0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1345<br>-0.279<br>0.078<br>0.078             | 0.282<br>0.282<br>0.08<br>0.08                            | 1.343<br>0.282<br>0.08<br>0.08                                      | 0.282<br>0.282<br>0.08<br>0.08                                     | -13.39<br>-0.282<br>-0.282<br>-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 134<br>0.283<br>0.08<br>0.08                    | 1.341<br>0.254<br>0.061<br>0.061                | 1.343<br>0.256<br>0.062<br>0.062                                                                                                                      | 1.344 0.054 0.061 0.061 0.061 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0 | 0.282 0.08 0.08 0.08 0.09 0.00 0.00 0.00 0.00                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                   | 2                                                                                           | 8                                           | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                 | 2                                                                  | 2                                                    | 2                                             | 0.818<br>0.2<br>0.04<br>1[0012.0.09]                                         | 2                                                                                    | 2                                                                           |           |
| 0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.099<br>-0.261<br>0.065<br>0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.094<br>-0.258<br>0.067<br>0.067            | 0.271<br>0.271<br>0.074<br>0.034                          | 1.135<br>0.074<br>0.074<br>0.034                                    | 0.271<br>0.271<br>0.074<br>0.074                                   | -1.143<br>-0.273<br>0.075<br>044,0118]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.271<br>0.271<br>0.073<br>0.073                | 0.271<br>0.271<br>0.073<br>0.0330116]           | 0.274<br>0.274<br>0.075<br>0.075                                                                                                                      | 1.15<br>0.276<br>0.076<br>0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.271<br>0.271<br>0.074<br>0.030                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             | 0.733<br>0.197<br>0.009<br>0.009            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               | 0.715<br>0.194<br>0.038<br>0.017,0.067]                                      |                                                                                      |                                                                             |           |
| 101<br>0.2M<br>0.0M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 010110100<br>0.076<br>0.076<br>0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.168<br>0.277<br>0076<br>45,012][0           | 1.152<br>0.278<br>0.077<br>0.077                          | 1.155<br>0.278<br>0.077<br>6.0.121.[0                               | 1.152<br>0.278<br>0.077<br>86.0 121 [0                             | 1.158<br>0.28<br>0.078<br>87.0.122[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.156<br>0.278<br>0.077<br>46,0.12][0           | 1.153<br>0.278<br>0.077<br>46,0.12] [0          | 1.162<br>0.281<br>0.079<br>860 122 [0                                                                                                                 | 1.151<br>0.279<br>0.078<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.152<br>0.278<br>0.077<br>0.077                                            | red I<br>Pratrix (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0544<br>0.173<br>0.00<br>0.00<br>0.00                             | 1.004<br>0.27<br>0.073<br>08.0125][                                                         | 0 282<br>0 282<br>0 282<br>0 282            | -0.961<br>-0.255<br>0.065<br>0330.115[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.961<br>0.255<br>0.065<br>0500.115[0             | 0.962<br>0.256<br>0.065<br>0500 115[0                              | 0.958<br>0.058<br>0.068<br>0.068                     | -0.061<br>-0.255<br>0.065<br>0530.114[0       | 0.962<br>0.255<br>0.065<br>0.005                                             | 0.952<br>0.269<br>0.072<br>06.0126[0                                                 | 0.951<br>0.264<br>007<br>05.0125][                                          | 9000      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0150.0110.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                      | 2                                                         | 2                                                                   | 2                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                        | <u> </u>                                        | 2                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 2                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               | 0.868<br>0.263<br>0.069<br>0.069                                             |                                                                                      |                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.000<br>40.09<br>40.00<br>0.0054<br>10.00200 [06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.69<br>-0.23<br>-0.250<br>[0.023.0          | 0.09<br>0.237<br>0.023,0                                  | 0.257<br>0.257<br>0.0056<br>[0.023,0.                               | 0.23<br>0.23<br>0.056<br>[0.023,0                                  | -0.68<br>-0.23<br>0.056<br>[0.023.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.69<br>0.28<br>0.056<br>[0.023.0               | 0.09<br>0.238<br>0.051<br>0.0540                | 0.055<br>0.0236<br>0.0051<br>[0.0024,0.                                                                                                               | 0.250<br>0.250<br>0.057<br>[0.023,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.025<br>0.0250<br>0.0230                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | 0.15                                                                                        | 8-0 00<br>1000                              | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000]                                           | 0.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 200<br>10<br>10<br>0.1000]                           | 10-<br>10-<br>00000                           | 0.365<br>0.174<br>0.00<br>0.000                                              | 0.15<br>0.15<br>0.00<br>0.0000                                                       | 0.15<br>0.15<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | 20        |
| 0.019<br>0.019<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | cc63<br>wdhah Ea<br>wdhah 2<br>wdhah 2<br>po5xd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.054<br>0.232<br>0.054<br>0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | cc42<br>soffbah124<br>soffbah72<br>periscij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                        |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 40111<br>40111<br>40105<br>0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | cell<br>telling<br>telling<br>terret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4200<br>40.54<br>0.000<br>0.000<br>0.000                            |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 4000 1000 1000 1000 1000 1000 1000 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | coll<br>dindro<br>dindro<br>dindro<br>dindro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.28<br>-1.28<br>-1.28<br>-1.28                                    |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.150<br>206<br>0.429<br>0.184<br>0.184<br>0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 83-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                   | -0.945<br>-0.231<br>0.053<br>[0.0.254]                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                             | S (8)                                                     | <del>-</del>                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a                                               | 7 F S                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | -1.094<br>-0.292<br>0.085<br>0.085                                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.100<br>1000<br>0.100<br>0.100<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                                             |                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                    | -                                                    |                                               | -1.379<br>-0.366<br>-0.134<br>-0.034                                         |                                                                                      |                                                                             |           |
| 200<br>010<br>010<br>010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.009<br>0.284<br>0.081<br>0.081              | 0.962<br>0.274<br>0.075<br>004,0187                       | 0.947<br>0.27<br>0.073<br>0.073                                     | 0.074<br>0.074<br>0.074<br>0.074                                   | 0.254<br>0.254<br>0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.953<br>0.272<br>0.074<br>0.04.0.192           | 40.00<br>0.079<br>0.079<br>0.079                | 0.259<br>0.259<br>0.072<br>0.072                                                                                                                      | 0.996<br>0.286<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.274<br>0.274<br>0.075<br>0.075                                            | oc21<br>widthath20<br>softwarh22<br>postic1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0514<br>0.156<br>0.024<br>[0.0.361]                               | 0.04<br>0.12<br>0.12<br>(0.026]                                                             | 1.161<br>0.35<br>0.123<br>0.123             | -1.252<br>-0.577<br>0.142<br>[0.0.291]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.25<br>0.376<br>0.141<br>[0.0.291]               | -1.211<br>-0.37<br>-0.157<br>[0.0.289]                             | 1.253<br>0.376<br>0.141<br>[0.0.288]                 | -1.299<br>-0.392<br>0.154<br>[0.0.309]        | -1.297<br>-0.392<br>0.154<br>[00.312]                                        | 1.246<br>0.394<br>0.155<br>[0.0.316]                                                 | -1.136<br>-0.355<br>-0.253<br>[0.0.253]                                     | 1144      |
| 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | ed<br>dramber<br>Mran-2<br>pessec a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0022<br>0454<br>0189<br>001553                                      | -0.7<br>-0.329<br>0.108<br>0.0.463]                                                         | 1.154<br>0.559<br>0.312<br>0.01.618]        | 0 01<br>0 000<br>0 001<br>0 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.025<br>0.012<br>0.0175]                         | 0 100 2000                                                         | 0.015<br>0.007<br>0.01.158]                          | -0.086<br>-0.041<br>0.002<br>[0.0.2]          | 000 100<br>1000 100<br>500 100                                               | 1000<br>1000<br>1000                                                                 | 0.258<br>0.15<br>0.017<br>0.01.493]                                         | 1.146     |
| 2 584<br>0.539<br>0.29<br>0.29<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 81<br>88<br>1091                                          | 88<br>60<br>10 (20)                                                 | 121<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12<br>20<br>10 (03)                             | 90<br>20<br>90<br>90<br>90                      | 108<br>157<br>1.637]                                                                                                                                  | 135<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151<br>1000                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               | 3006<br>0.741<br>0.549<br>0.151.0.781]                                       |                                                                                      |                                                                             |           |
| 0.000 0.000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               | 2029 2<br>0.55 0<br>0.303 0<br>098(0.566[0.15                                |                                                                                      |                                                                             |           |
| 1.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 221<br>221<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22<br>0.5<br>0.5<br>0.5                       | 2.2<br>0.5<br>0.3<br>29]0179.0                            | 2.3<br>0.5<br>0.3<br>82][0.18,0                                     | 2.25<br>0.54<br>0.34<br>0.35<br>0.35<br>0.35                       | 22<br>0.5<br>0.2<br>72[0171.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3<br>0.5<br>0.3<br>8.0                        | 23<br>0.5<br>0.3<br>0.3<br>0.3                  | 2.2<br>0.5<br>0.3<br>89[0178.0                                                                                                                        | 2.X<br>0.5<br>0.31<br>0.31<br>85]0186.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2<br>0.54<br>0.34<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              |                                                                                      |                                                                             |           |
| 0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 1440<br>11440<br>10722<br>101040 23310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.22<br>-0.28<br>0.084<br>[0.019.0           | 0.286<br>0.286<br>0.000<br>10017.0                        | 0.29<br>0.29<br>0.084<br>0.090                                      | 1.184<br>0.250<br>0.0700<br>0.710.0                                | 0.274<br>0.274<br>0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1219<br>0.293<br>0.086<br>0.086                 | 0.250<br>0.296<br>0.068<br>0.068                | 1.218<br>0.295<br>0.067<br>[0.019,0.                                                                                                                  | 0.209<br>0.293<br>0.090<br>0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.256<br>0.000<br>0.000                                                     | at software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15                                                                | -1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8<br>-1.8                                | 228<br>0.08<br>0.08<br>0.08                 | 1.71<br>0.45<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (0.02<br>1 (0.02<br>1 (0.02                     | 2 0 0 0 1 N                                                        | 2010<br>1000<br>1000<br>1000<br>1000                 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02          | 1.766<br>0.469<br>0.22<br>0.22                                               |                                                                                      |                                                                             |           |
| 0.107<br>0.107<br>0.011<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.253<br>40.071<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                   |                                                                                             | 1.868<br>0.564<br>0.18<br>0.018<br>0.018    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              | 0.946<br>0.250<br>0.000<br>(212.0.0] [5                                              |                                                                             |           |
| 2.92<br>0.00<br>0.07<br>0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.067<br>3.067<br>0.641<br>0.411<br>0.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.201<br>3.201<br>0.641<br>0.641<br>2.540.635 | 3.111<br>0.654<br>0.428<br>0.428                          | 3.079<br>0.647<br>0.419                                             | 3.113<br>0.605<br>0.628<br>0.628                                   | 3.167<br>0.667<br>0.445<br>0.247,0.645]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.112<br>0.657<br>0.432<br>•.2340.641]          | 3.105<br>0.659<br>0.424<br>0.23,0.65]           | 3072<br>0.653<br>0.427<br>1.228,0.64]                                                                                                                 | 3.086<br>0.653<br>0.4256<br>0.2340.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.109<br>0.654<br>0.428<br>0.237.0.632]                                     | inc51<br>outh-ablt or<br>outh-ablt or<br>outh-ablt or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | 234<br>0.571<br>0.326<br>0.006(0.775                                                        | .3517<br>-0364<br>0.746<br>0.0002.0001      | 2.544<br>0.619<br>0.383<br>0.146,0.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.561<br>-0.623<br>0.388<br>0.145,0302]          | .2565<br>-0.622<br>0.387<br>[0.15.0.795]                           | 2.994<br>-0.635<br>0.403<br>0.162,0771               | -2504<br>-0.608<br>-0.369<br>-0.369           | 2.42M<br>0.594<br>0.355<br>0.123,0.747]                                      | 2.377<br>0.597<br>0.356<br>0.124,0.756]                                              | 2.421<br>0.607<br>0.368<br>0.152.0.791]                                     | 1600      |
| 3245<br>5245<br>0.709<br>0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011e001000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.056<br>0.721<br>0.52<br>0.52                | 2 <i>977</i><br>0.71<br>0.505<br>51,0.644[0               | 2975<br>0.711<br>0.905<br>53,0.644[0                                | 2.978<br>0.711<br>0.505<br>51,0.644[0                              | 2.992<br>0.715<br>0.511<br>3.940.648F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.969<br>0.708<br>0.502<br>47,0.641[0           | 2.948<br>0.700<br>0.805<br>9.0.037] [           | 2.925<br>0.702<br>0.403<br>338,0.635] [0                                                                                                              | 2.907<br>0.668<br>0.487<br>0.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.976<br>0.71<br>0.505<br>351,0.644[0                                       | adhad ba<br>adhad ba<br>adhad 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1206 U 11<br>2890<br>2890<br>2890<br>2890<br>2890                   | 285<br>0.761<br>0.579<br>0.570                                                              | 2309<br>-0754<br>0.569<br>002.0947]         | 3.045<br>0.813<br>0.661<br>2.661<br>2.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3005<br>-3180<br>-3180<br>-380.080<br>-11720.080 | -3.048<br>-0.815<br>0.664<br>0.064                                 | -3.08<br>-0.825<br>-0.825<br>-0.82<br>-0.82<br>-0.83 | -2971<br>-0.805<br>0.645<br>364.0307[)        | 2.935<br>0.796<br>0.634<br>369.0301])                                        | 2.848<br>0.799<br>0.639<br>376,0301[)                                                | 2.893<br>0.806<br>0.65<br>a02.0369])                                        | 288       |
| 35%<br>35%<br>081<br>0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                             | 3.287<br>0.785<br>0.614<br>286.0.719[0.3                  | 019                                                                 | E.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 | 3214<br>0.777<br>0.604<br>474,0.712[0.3                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | e01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 2.949<br>0.792<br>0.628<br>0.628                                                            | -2428<br>-0.642<br>0.412<br>081.0922 [0     | 278<br>0.799<br>0.546<br>311,0.862[0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.791<br>-0.742<br>0.55<br>-0.0591 [0            | -2799<br>-0.744<br>0.553<br>0.150                                  | 2715<br>0736<br>(542<br>(1.0.876][0                  | -2732<br>-0.726<br>0.526<br>(0.293,0389 [0    | 2.745<br>0.728<br>0.53<br>293,0384 [0                                        | 2.523<br>0.712<br>0.507<br>271,0374 [0                                               | 2.733<br>0.758<br>0.575<br>0.575                                            | 1000      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | é.                                            | j j                                                       | Ē                                                                   | 8                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                               | 2                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                   | 2.568<br>0.782<br>0.611<br>0.611<br>0.611<br>0.611                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2389<br>-0718<br>-0.516<br>[0.241.0794[0.30      | 101282.01                                                          | 413<br>724<br>524<br>524<br>0.79] [0.5               |                                               | 6                                                                            | 8                                                                                    | 228<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 000       |
| 100 State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X.M<br>0.0941<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0.0805<br>0 | Ē                                             | 7 3.006<br>1880<br>877.0<br>877.0<br>1760<br>10.071,0.020 | 1015<br>0820<br>0820<br>0820<br>0820<br>0820<br>0820<br>0820<br>082 | 0.00<br>0.00<br>0.77<br>0.77<br>0.77                               | 0 3.089<br>0.879<br>0.775<br>0.775<br>0.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                               | 2                                               | 1220 0280<br>1220 0282<br>1220 0282                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . A                                                                         | ad han be<br>and han be<br>and han be<br>and han be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.771 2.339<br>0.831 0.708<br>0.691 0.501<br>0.290.0.915[[0151,036] | H                                                                                           |                                             | 4 2:<br>5 0:<br>5 0:<br>03][0.243,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 0.5<br>902[0241,                                | 401,000,000,000,000,000,000,000,000,000,                           | 7 2413<br>7 2724<br>7 0.524<br>0.524                 |                                               | 6 2.306<br>3 0.697<br>1 0.486<br>1929][0217,077                              | 1.913 2.196<br>0.931 0.694<br>0.866 0.482<br>(0.671,0.925/J0.215.077                 | 1.805 2.362<br>0.914 0.756<br>0.835 0.511<br>0.835 0.915[0.276,0.766]0.     | 181       |
| 2466<br>2466<br>0835<br>0835<br>0696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2552<br>0873<br>0761<br>0761<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2745<br>0932<br>0868<br>[0.808,0906           | 2707<br>2.93<br>0.864<br>0.802,0.900                      | 2699<br>0929<br>0864<br>[0.801,0906                                 | 2707<br>0.95<br>0.864<br>[0.802,0906]0                             | 2709<br>0.95<br>0364<br>[0.803,0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7<br>09.55<br>0.864<br>[0.802,05              | 2697<br>0929<br>0364<br>[0.802,0905]            | 2676<br>0928<br>0862<br>0862<br>[0.799,090                                                                                                            | 2.68<br>09.28<br>0.862<br>[0.80.905]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2707<br>0.93<br>0.864<br>0.802,0906J0                                       | and has<br>been been been been been been been been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020<br>0.00<br>0.00<br>0.00                                       | 1,809<br>0.874<br>0.764<br>[0.406.0.916                                                     |                                             | 1, 974<br>0, 935<br>0, 875<br>[0, 704, 0, 093]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                                    |                                                      | -1965<br>-0934<br>0.872<br>[0.666,093]        |                                                                              |                                                                                      |                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72                                          |                                                           | 042                                                                 | 960                                                                | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900                                             | 2010                                            | 0.14                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07                                                                        | produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | 0.08                                                                                        | 0.42                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83                                              | 0.15                                                               | 0.16                                                 | 8                                             | 0.65                                                                         | 4.00                                                                                 | 4.00                                                                        | 100.0-    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>se</u> v.                                  |                                                           | -                                                                   | -                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                               | -                                               | w                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                           | and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 2                                                                                           | 20 W                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                 | -                                                                  | -                                                    | -                                             | -                                                                            | v.                                                                                   | -                                                                           | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 316                                           |                                                           | 075                                                                 | 8                                                                  | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.8                                             | 3.19                                            | 8.4                                                                                                                                                   | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 <del>0</del>                                                            | TUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | 8                                                                                           | 18.58                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                              | 80                                                                 | 161                                                  | 1.63                                          | 8                                                                            | 23.01                                                                                | 18.66                                                                       | IS M      |
| 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 38                                         | 16 %                                                      | 264                                                                 | 16 %                                                               | 33.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1182                                            | 22.52                                           | W.51                                                                                                                                                  | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | > 16.90.91                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                   | 15.58                                                                                       | ()<br>89                                    | 8133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211288                                            | 82.13                                                              | 57 18                                                | 818                                           | 20158                                                                        | 408.2                                                                                | 95150                                                                       | 28.298    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × 1                                           | 50 D                                                      | я<br>a                                                              | ă<br>a                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                               | ă<br>o                                          | ă<br>s                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                   | -                                                                                           | -                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                 | 2                                                                  | 2                                                    | 2                                             | 2                                                                            | -                                                                                    | 2                                                                           | e1 59     |
| 1042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201                                           | 101                                                       | 105                                                                 | 1052                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                                             | 102                                             | [1.963]                                                                                                                                               | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1002                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e<br>0                                                              | 3                                                                                           | 000                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                 | 8                                                                  | 2                                                    | 8                                             | 8                                                                            | 2 64<br>3.252]                                                                       | 8                                                                           |           |
| 4780.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4791.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4794.81                                       | 16 108/29                                                 | 4780.4                                                              | 4780.91                                                            | 4777.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112229                                          | 4777.72                                         | 4772.51                                                                                                                                               | 47779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 1082.9                                                                    | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27902                                                               | 2015                                                                                        | 281513                                      | 2787.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12822                                             | 27863                                                              | 27852                                                | 27855                                         | 2787.0                                                                       | 2764.2<br>548] [0.4963.252]                                                          | 2768.56                                                                     | 2271.87   |
| G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                             | 8                                                         | 9                                                                   | 9                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                               | 9                                               | 1-0.76,10                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ca                                                                  | 7                                                                                           | R                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                 | 8                                                                  | 8                                                    | 8                                             | 8                                                                            | 111206,3354                                                                          | 8                                                                           | 8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Il sargle                                     |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 | VIII: 0.1858 Age 8-18<br>0.0450 5600.000 0.143.0.397<br>(-0.1551 5600.000 0.143.0.397<br>(-0.1721, 354)[-0.236,1.256](0.023,1.761)[-0.76,1085][-0.368 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                                                                             | ul suple                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               |                                                                              | 1968 Y 665                                                                           |                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -fit from fit                                 |                                                           |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                 | 18<br>0.143 0.797<br>06.1356] [1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | Elador                                                                                      | Lb Roduced to bis t-fit from full           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                    |                                                      |                                               | -                                                                            | VIII. GBS SAge 8-18<br>0.923 2054 2442 2.2711.870<br>[0.1151.736] [1.056,3.082][1.36 |                                                                             |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | La Drop Clador, Eflecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b Reduced to best-lift from                   | 2                                                         | III. GR SS Age 8<br>beal 0.194<br>[-0.546.0.726]                    | IV. GBSS Age 11<br>bea2 -0.018<br>[-0.545(0.516]                   | V. GBSS Age 13<br>bea3 0.886<br>[-0.061.1.029]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VI. GBSS Age 15<br>bead -0.550<br>[-1.1210.005] | VII. GRSS Age 17<br>bea5-0.390<br>[-0.9750.175] | 828 Age 8-<br>5600.900 (<br>1.354][-0.2                                                                                                               | EX GRSS AT<br>bea.4f10.204<br>[-0.0270.439]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X GBSS A2<br>beaA20.006<br>[-0.3040.317]                                    | WALKS IP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | a Drop Clacker, Eduto                                                                       | duced to be                                 | 4P.Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III. GRSS Age 8<br>betal -0.083<br>[-0.846,0689]  | IV. GRSS Age 11<br>beta20.334<br>[-0.372,1045]                     | V. GR SS Age 13<br>beta3 0.445<br>[-0.181,1087]      | VL GBSSAge 15<br>beta40.384<br>[-0.211.0.982] | VII. GBSSAge 17<br>beta50.558<br>[-0.062,1.137]                              | 3855Age5<br>2054 2442<br>1.736][1.0.                                                 | IX. GBS SAII<br>betaAII 0.756<br>[0.599,1094]                               | X. GBSSAD |
| 1 MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                             | IL AM ICS                                                 | 89                                                                  | 20 G 20 G                                                          | 80 0 0 C 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121 O.B.                                        | IL GB<br>465-0<br>0.975(                        | 6150<br>0.122.0                                                                                                                                       | 6. GR<br>96.AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . GBS<br>96.472<br>0.3040                                                   | Tate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                   | LaDo                                                                                        | Lb Ro                                       | II AMPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eetal-<br>[-0.8%                                  | IV. GI<br>beta2(<br>[-0.372                                        | V. GR<br>beta3(<br>[-0.18]                           | VL G<br>bea40<br>[-0.211                      | VII. G<br>xeta50<br>20.062                                                   | VIII. C<br>0.923.<br>[0.115,                                                         | IX. Gl<br>betaAt<br>[0.399]                                                 | 8         |

### SUPPLEMENTAL MATERIAL

Table 20: ABD sample sizes by age and zygosity

| ABD Sample                     | 8-10  | 11-12 | 13-14 | 15-16 | 17-18 | Total<br>Families |
|--------------------------------|-------|-------|-------|-------|-------|-------------------|
| ABD BMI Female (pairs/singles) | 199/4 | 241/1 | 300/3 | 303/3 | 173/7 | 607               |
| MZ                             | 141/3 | 159/0 | 199/1 | 223/3 | 124/4 |                   |
| DZ                             | 58/1  | 82/1  | 101/2 | 80/0  | 49/3  |                   |
| ABD BMI Male (pairs/singles)   | 151/3 | 213/1 | 255/2 | 268/4 | 170/5 | 495               |
| MZ                             | 87/1  | 132/1 | 165/2 | 170/2 | 120/1 |                   |
| DZ                             | 64/2  | 81/0  | 92/0  | 98/2  | 50/4  |                   |
| ABD BMI Female GRSS T1 & T2    | 77/3  | 101/0 | 135/0 | 138/0 | 91/0  | 242/45            |
| MZ (pairs/singles)             | 64/3  | 80/0  | 108/0 | 118/0 | 74/0  |                   |
| DZ (pairs/singles)             | 13/0  | 21/0  | 27/0  | 20/0  | 17/0  |                   |
| ABD BMI Male GRSS T1 & T2      | 41/2  | 59/0  | 87/0  | 94/0  | 63/0  | 152/46            |
| MZ (pairs/singles)             | 35/0  | 48/0  | 68/0  | 72/0  | 54/0  |                   |
| DZ (pairs/singles)             | 6/2   | 11/0  | 19/0  | 22/0  | 9/0   |                   |
| ABD BMI Female independent     | 119   | 159   | 194   | 195   | 132   | 359               |
| MZ                             | 64    | 80    | 109   | 119   | 74    |                   |
| DZ                             | 30    | 44    | 49    | 41    | 27    |                   |
| DZO                            | 25    | 35    | 36    | 35    | 31    |                   |
| ABD BMI Male independent       | 74    | 105   | 135   | 160   | 102   | 258               |
| MZ                             | 35    | 48    | 69    | 72    | 54    |                   |
| DZ                             | 24    | 29    | 41    | 47    | 23    |                   |
| DZO                            | 15    | 28    | 25    | 41    | 25    |                   |

## Chapter 5: Comparisons of energy intake and energy expenditure in overweight and obese women with and without binge eating disorder

#### Adapted from:

- 1) Bartholome LT\*, Peterson RE\*, Raatz SK, Raymond NC. \*Authors contributed equally to this work. A comparison of the accuracy of self-reported intake with measured intake of a laboratory overeating episode in overweight and obese women with and without binge eating disorder. *Eur J Nutr.* 2012 Feb 3.
- Raymond NC, Peterson RE, Bartholome LT, Raatz SK, Jensen MD, Levine JA. Comparisons of Energy Intake and Energy Expenditure in Overweight and Obese Women with and Without Binge Eating Disorder. *Obesity*. 2012 Apr;20(4):765-72. Epub 2011 Oct 20.

#### ABSTRACT

The purpose of this study was to determine whether there are differences in energy intake or energy expenditure that distinguish overweight/obese women with and without binge eating disorder (BED). Furthermore, research has demonstrated significant underreporting of food intake in obese individuals with and without BED. An improved understanding of the accuracy of self-reported food intake is central to diagnosis of eating disorders and monitoring response to treatment. Seventeen overweight/obese women with BED and 17 overweight/obese controls completed random 24-hour dietary recall interviews, participated in a laboratory eating episode and had total daily energy expenditure (TDEE) assessed by the doubly labeled water technique with concurrent food log data collection. Results indicated no between group differences in TDEE, basal metabolic rate (BMR) or thermal effect of food (TEF). According to dietary recall data, the BED group had significantly higher caloric intake on days when they had binge eating episodes than on days when they did not (3255 vs. 2343 kilocalories (kcal)). There was no difference between BED non-binge day intake and control group intake (2233 vs. 2140 kcal). Similar results were found for food log data and laboratory measured intake. Furthermore, when comparing TDEE to dietary recall and food log data, both groups displayed significant underreporting of caloric intake of similar magnitudes ranging 20-33%. Predicted energy requirements estimated via the Harris-Benedict equation underestimated measured TDEE by 23-24%. The BED group selfreported 90% of the laboratory measured intake compared to 98% for the control group. Mean differences between the methods indicated that on average both groups underreported intake, however the mean difference between methods was significantly greater in the BED group. Findings confirm that those with BED consume significantly more than controls during a laboratory binge and controls tended to be more accurate in recalling their intake 24 hours later. Our data suggest that increased energy intake reported by BED individuals is due to increased food consumption and not metabolic or reporting differences.

#### INTRODUCTION

Binge eating disorder (BED) is currently classified in the Diagnostic and Statistical Manual of Mental Disorders, 4<sup>th</sup> Edition (DSM-IV) (190) as a provisional diagnosis requiring further study to support its utility as an eating disorders diagnosis. Two central criteria describe binge eating in the DSM-IV: 1) "Eating in a discrete period of time an amount of food that is definitely larger than most individuals would eat during a similar period of time and under similar circumstances" and 2) "a sense of lack of control" (190). This study was designed to examine whether there are differences in energy intake or energy expenditure patterns, which distinguish those with binge eating disorder from typical overweight/obese controls. Differences in these biological and behavioral factors between groups may help to clarify whether BED is a distinct eating disorder from obesity by identifying metabolic and food intake differences between groups.

In both clinical and research settings, the food intake data necessary to determine if an individual fulfills the first criteria above are collected utilizing self-report techniques. Throughout medicine, there are concerns regarding the accuracy of selfreported data. Research has demonstrated significant underreporting of food intake in obese individuals with (276, 277) and without BED (278-280). For those with BED, precise measurements of energy intake are associated with additional challenges since eating episodes are often secretive and associated with feelings of embarrassment and guilt over how much one is eating (281-283). These characteristics of binge eating may influence accuracy of reporting.

Despite the challenges associated with precise, objective measurement of eating behaviors, laboratory studies have been utilized to study food intake in obese women with and without BED. Our group and others have measured food intake in the laboratory through the administration of a test meal to simulate a binge eating episode. Test meal composition has varied by laboratory and included liquid meals (284, 285), single item meals (286-289) and multiple item arrays of food (287, 290-293). Despite differing laboratory methodologies, results have consistently demonstrated that individuals with BED have greater total energy intake than non-BED weight matched controls when instructed to overeat. Furthermore, there is additional indirect evidence that women with BED are eating more than they expend as research has shown the proportion of women with BED in obese samples increases as BMI increases (294-296).

According to previous reports in the literature, having a positive energy balance (i.e., chronic overfeeding) leads to increased TDEE (297-299). TDEE is most accurately measured using doubly labeled water (DLW) method, which estimates TDEE within 4-5% in free living individuals (300). Reports utilizing the DLW method to measure TDEE suggest that obese individuals report approximately 60% of their actual energy intake (278, 279). However, few studies have specifically examined the accuracy of self-reported food intake data in BED. Yanovski's group examined the accuracy of self-reported data by comparing average daily food intake assessed by food records to estimated daily energy expenditure calculated by the Harris-Benedict equation (HBE) (276). The BED group reported energy intake equivalent to 94% of their predicted energy requirements compared to 60% in the non-BED obese group. The authors suggested that the BED group may be more accurate in reporting food intake than controls because of the psychological distress associated with binge eating may make the experience more memorable and thereby more accurate. However, given the limited number of studies, it remains unclear whether those with BED and non-BED individuals report food intake with comparable levels of accuracy. If these groups do not have consistent reporting patterns, food intake data must be interpreted with caution when trying to determine if they manifest distinctive eating patterns. An improved understanding of the accuracy of self-reported food intake data is central to distinguishing BED from typical obesity, making sound diagnosis, and monitoring response to treatment.

In the current study, we sought to replicate findings by our group and others that participants with BED will consume more kilocalories than their non-BED counterparts when instructed to overeat in the laboratory. Secondly, we hypothesize that those with BED are in a constant state of positive energy balance and therefore will have an elevated TDEE compared to the non-binge eating women. This is the first study to utilize the DLW method in the assessment of TDEE in BED. Additionally, Measured food intake in the laboratory was compared to dietary recall data to ascertain the accuracy of participants' recall of the overeating episode. We hypothesized that the overweight/obese control group would report approximately 60% of measured test meal intake, consistent with previous reports (278, 279), while the BED group would be more accurate as observed by Yanovksi and colleagues (276). Further, we sought to confirm the positive correlation between total food intake and BMI in those with BED during an overeating episode. A final aim of this paper was to explore the possibility of reduced dietary intake as a potential precursor to binge eating in BED. We compared food intake preceding the laboratory overeating episode to test meal intake to ascertain whether caloric intake before the test meal influences eating during the test meal.

#### **METHODS AND PROCEDURES**

#### **Participants**

Participants were 17 women who met DSM IV criteria for BED as defined in the appendix titled *Criteria Sets and Axes Provided for Further Study* and 17 women with no history of eating disorder symptoms including binge eating or purging behaviors. In order to participate in the study, women were required to be between the ages of 18 and 55, have no history of substance abuse or dependence within the six months prior to the study, and have no unstable comorbid medical or psychiatric conditions. Participants could not be smokers, pregnant, nursing or on a weight reduction diet as all of these conditions affect energy metabolism. Because of the difficulty recruiting participants free of psychiatric medications, participants were not excluded if they were on a stable dose (for at least 6 months) of antidepressant medication, were psychiatrically stable and had no plans to modify their medication during the duration of the study. Six participants with BED and 2 controls were on antidepressants during the time they were participating in the study. The study was conducted at the General Clinical Research Center (GCRC) of the University of Minnesota. This protocol was reviewed and approved by the

Institutional Review Board at the University of Minnesota and all participants partook in the informed consent process and signed a consent form.

Recruitment was performed by newspaper advertisements inviting overweight women aged 18 to 55 years old to participate in a paid research study at the University of Minnesota. A telephone screen was used to assess preliminary eligibility for the BED and control groups. Participants meeting initial criteria were scheduled for a complete evaluation at the Ambulatory Research Center (ARC) to determine eligibility. During this evaluation participants were interviewed using the Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P) (301); the Structured Clinical Interview for Axis II Personality Disorders (SCID-II) (302); and the Eating Disorder Examination, version 12.0D (EDE) (303). These assessments were used to confirm that BED participants fulfilled diagnostic criteria and to rule out any history of eating disorder symptoms in the control group. A physical exam, complete blood count, basic metabolic panel, and thyroid and liver function tests were performed to detect unknown medical conditions that could influence eligibility.

As part of the initial evaluation, participants were interviewed by a registered dietitian who was blind to their diagnostic status to assess typical food intake patterns, food selection, and preferred snack foods. Participants were presented with a standardized list of food items and asked to indicate which appealed to them. In addition, participants were asked if they had other favorite foods or recipes that they consumed when overeating. Based on this information, the dietitian created a snack tray personalized to each participant's eating preferences for the laboratory overeating episode. Snack trays included 6-10 food items, consisting of both savory and sweet, in quantities 2-3 times what participants reportedly consumed during an overeating episode.

Eligible participants were then scheduled for a 24-hour inpatient stay at the GCRC during which they would engage in a laboratory overeating episode and subsequently complete a telephone dietary recall of 24-hour period including the test meal. Patients were not informed that they were scheduled for a dietary recall interview until after completion of the overeating episode. This was done to ensure that knowledge of the recall would not influence eating behaviors in the laboratory. In addition to collecting food intake data for the test meal, the dietary recall protocol gathered self-reported food intake for the periods preceding and following the overeating episode. This enabled a comparison of pre-binge and post-binge food intake to intake during the test meal.

Eligible participants were scheduled for two procedures, six random 24-hour dietary recall interviews and a 24-hour inpatient stay on the General Clinical Research Center (GCRC). On the day of admission, participants were instructed not to eat after 12:00 noon. While on the inpatient unit, they consumed doubly labeled water for the TDEE measurement, received two baseline (DXA) scans and had BMR and TEF measured using indirect calorimetry. Details of each of these methods are provided below. Participants' height and weight were measured on admission. Weight was repeated two weeks later. The inpatient stay was scheduled to coincide with the luteal phase of the menstrual cycle, confirmed by estradiol and progesterone levels, to control for hormonal influences on food intake.

Laboratory binge eating episode

Participants were instructed not to consume any food or caloric beverages after 12 pm and to arrive at the GCRC no later than 5:30 pm. After admission procedures, participants were presented with a standard hospital dinner plus an excess of their preferential binge foods as ascertained by the dietary assessment. They were instructed to "Let yourself go and eat as much as you like". Participants were left alone to eat and told to notify the research team when they were finished with the meal. This same laboratory test meal protocol has been utilized in previous work by our group (293).

Upon completion of the meal, food trays were removed from the room. All food items presented to participants were weighed in the GCRC metabolic kitchen prior to service, and remaining portions were weighed after completion of the overeating episode. The exact quantity of each item consumed was calculated by difference in mass. The computer program Nutritionist IV (304) was used to calculate total food intake in kcal and grams (gm) and macronutrient intake in gm. To compare our results with others, macronutrient values in kcal were estimated from measured values in grams by the following standard conversion: 4.0 kcal/gm carbohydrate, 4.0 kcal/gm protein, and 9.0 kcal/gm fat.

#### Twenty-four hour dietary recall

Over a six to eight week period of time (that excluded the DLW data collection period) each participant received six random 24-hour dietary recall interviews that were conducted by the staff of the Nutrition Coordinating Center (NCC), Department of Epidemiology, School of Public Health, University of Minnesota. Four of the six were conducted during weekdays and two on weekends as this best approximates normal intake. The dietary recall interviews involved a detailed discussion of food intake and portion sizes with expert interviewers. The 24-hour dietary recall interview protocol has been described in previous studies by our group (305, 306). Dietary interviewers collected the 24-hour dietary recalls using a current version of the database each year. At the end of data collection, nutrients were recalculated for all dietary intake records on the most current version of the Nutrition Data System for Research (NDS-R) software version 4.01, Food and Nutrient Database 30, released November 1999. NDS-R is developed and maintained by the NCC, University of Minnesota, Minneapolis, MN. The NDS-R system prompts the interviewer to ask detailed questions about food intake over a 24-hour period. The interviewer asks the participant to recall the first eating episode during the 24-hour period. As the interviewer records food items during that eating episode the program prompts the interviewer to ask about additional foods that may be typically eaten with the specific item (e.g. condiments with hot dogs or the type of milk or sugar added to cereal). When the first eating episode is fully explored, the interviewer asks about the next eating episode and proceeds in this fashion through the entire 24 hour period. Prior to the data collection participants were trained in the use of food-portion visuals (picture of containers and shapes of specific quantities that are drawn to scale) to estimate dietary intake as described by Posner (307).

Additionally, on the afternoon following the laboratory test meal, participants completed a dietary recall interview for the 24-hour time period from midnight to midnight during which they engaged in the overeating episode. At the time the dietary

recall of the inpatient binge eating episode was collected, all participants had already competed at least one random recall with the NCC interviewers as part of the larger research protocol in which they were participating. Following collection of dietary recall data, eating episodes that occurred during the 24-hour period were defined as pre-binge, binge or post-binge. Pre-binge intake was defined as food consumption beginning at 12 am up to delivery of the test meal. Binge intake included only the test meal administered at the GCRC. Post-binge intake was defined as food consumption after the test meal until 11:59 pm. This breakdown enabled a comparison of pre-binge and binge intake to examine the role of reduced caloric intake as a precursor to binge eating episodes.

#### Food log

During the two weeks of urine collection participants also kept a food diary so that recorded intake could be compared to measured TDEE during the two week period of time. Participants were trained in the use of food logs by a training tape provided by the GCRC dietician. Food logs were routinely reviewed by the research team and further questions regarding intake were asked if recorded data lacked sufficient detail for calculation of energy intake.

#### Basal metabolic rate (BMR) and thermic effect of food (TEF)

BMR and TEF were measured using the Delta Track Metabolic Cart (SensorMedics, Yorba Linda, CA). BMR and TEF were collected for two participants (one BED and one control) on a SensorMedics Vmax 29 Metabolic cart (SensorMedics, Yorba Linda, CA) because of technical issues with equipment. Participants were awakened at a standardized morning hour, allowed to void, and then rested for one-half hour before BMR was measured. BMR was assessed using a thirty minute recording under the plastic hood while awake, in a semi-recumbent position in bed. The first 10 minutes were used to obtain a stable baseline. BMR was then calculated from the average of the next 20 minutes of data collection. Participants then drank a standardized oral meal replacement formula (Ensure High Protein, Abbot Laboratories) which contained 250 kilocalories (protein 14.4%, carbohydrate 64.0%, Fat 21.6%). TEF or postprandial thermogenesis was measured based on data collected over the next 5 hours by placing the participant under the hood to collect data for 15 minutes of every 30 minutes to prevent participant fatigue or agitation. The first 5 minutes of every 15 minute period was used to establish a stable baseline. Conventional methods were used to calculate daily TEF.

#### Total daily energy expenditure

TDEE was measured over 14 days using the doubly labeled water protocol (25, 30, 31). Baseline urine specimens were collected immediately prior to the timed ingestion of the isotopes (<sup>2</sup>H and O<sup>18</sup>). The amount administered was calculated according to a standardized procedure (25, 26). Following timed administration of the isotopes, urine samples were collected at 12 hour intervals each day for 14 days. Date and exact collection times were recorded on each bottle and specimens were dropped off to the clinic every three to four days during the two weeks of data collection. TDEE was derived using the slope-intercept equations described by Coward, et al. (32). Validation studies have determined the precision of the method to be within 4-5% (33).

#### Assessment of change in body composition through repeated DXA scans

Two baseline DXA scans (Lunar Prodigy, General Electric Medical, Madison, WI) were collected on the day the DLW was administered. They were repeated two weeks later at the completion of DLW protocol. Assessment of body composition is essential because if body weight and composition are stable, energy intake must be equal to energy expenditure. Collection of body composition data allows for an accurate comparison of food intake data (collected via dietary recalls and food logs) to the TDEE measured by DLW. If there was no change in body weight or composition, the measured TDEE should be equal to energy intake. Therefore, by comparing reported food intake to measured energy expenditure, we examined the accuracy of food log data kept over the two-week period when TDEE was assessed.

#### Predicted energy requirements

The Harris-Benedict equation (HBE), commonly used in clinical settings, calculates resting metabolic rate based on gender, weight, height and age (34). Predicted energy requirements can be made by adjusting for activity level. To attain predicted energy needs, participants' HBE estimates were multiplied by 1.35 to account for light activity.

#### Analysis of DLW by isotope ratio/mass spectrometry

Deuterium and <sup>18</sup>O in urine were measured using a dual inlet ThermoFinnigan DeltaS Isotope Ratio Mass Spectrometer (ThermoFisher Scientific, Bremen, Germany). Deuterium was analyzed using an H-Device by reducing 1 $\mu$ L water via a chromium furnace held at 825°C. The deuterium produced was measured against a calibrated hydrogen reference gas. <sup>18</sup>O was measured in a separate assay by equilibration of urine with CO<sub>2</sub>. 1ml urine was introduced into a 12ml exetainer and 5% CO<sub>2</sub> in Helium added to the tube. The sample was then allowed to equilibrate overnight at room temperature. Analysis of the C<sup>18</sup>O<sup>16</sup>O produced was performed by measurement against a CO<sub>2</sub> reference gas using a breath bench carousel inlet. In both assays, calibration curves were prepared to which the samples were compared.

#### Statistical analysis

Descriptive statistics, Pearson correlation coefficients and analysis of variance were calculated using SPSS version 17.0. The reporting accuracy was defined by two methods. The first method was the *directional difference*, which was defined as the mean difference of measured intake minus reported intake. Negative values reflect over-reporting while positive values signify under-reporting. The second method to determine reporting accuracy was the *absolute difference*, which was defined as the absolute value of the measured intake less the reported intake. Greater absolute difference values indicated greater inaccuracy overall despite whether the difference arose from under or

over-reporting. Analysis of variance was used to determine between group differences on total and macronutrient intake, directional and absolute difference between laboratory and dietary recall, and energy consumption throughout the day. The proportion of energy intake from carbohydrate, fat and protein was examined by dividing the macronutrient intake by total intake. Pearson's correlation coefficient was used to determine the relationship between BMI and total food intake. Student's *t*-tests and paired samples correlation coefficients were used to compare within group differences on laboratory, dietary recall data and energy consumption throughout the day. To assess the difference between correlation coefficients between groups, Fischer's r-to-z transformations were used.

#### RESULTS

#### Demographic data

There were no statistically significant differences between groups with regard to age and BMI (Table 21). The BMI range for the participants was 25.6 to 51.9 with 20.7% of the sample overweight (4 BEDs and 2 controls). Baseline binge frequency according to EDE assessments in the BED group ranged from twice per week to daily with a group mean of 17 episodes per month (median = 12).

#### Metabolic measurements

There were no between group differences in TDEE, BMR, or TEF (Table 21). TDEE was significantly correlated with total food intake in kcal as assessed by 24-hour recall in the whole sample (n = 29,  $r^2 = 0.422$ , p = 0.025) but not by food logs. When the two groups were examined separately there was no significant correlation between TDEE and intake as assessed by dietary recall in the BED group, but there was a trend that indicated a possible correlation in the control group (n = 13,  $r^2 = 0.522$ , p = 0.056).

#### Body composition

There were no differences between groups on baseline measures of fat and lean tissue compartment, follow-up fat and lean tissue compartments or on change in fat, change in lean, according to the DXA scan data. There were also no within group differences in baseline and follow-up on fat or lean tissue compartments. There were no within or between group differences in weight from baseline to follow-up.

#### Random 24-hour dietary recall data

BED participants had an average of 2.29 binge days during the 6 dietary recalls (median = 2, range = [0,5]). The BED group had a significantly higher caloric intake on days when they had binge eating episodes than on days when they did not (Table 23). Additionally, caloric intake in the BED group on binge days was significantly higher than control average intake. There was no difference between BED non-binge day intake and

control intake (Table 22). There was a trend toward higher average daily intake in the BED group (p=0.053). There was a significant group difference in number of kilocalories consumed per unit of BMI with the BED group consuming 76.2 kcal/BMI unit and the controls consuming 61.0 kcal/BMI unit.

#### Food log data

BED participants had an average of 7.5 binge days during 14 days of food log entries (median = 7.5, range = [4,11]). The food log data corroborated that BED participants consumed significantly more kcal on binge days than non-binge days (Table 23) and had greater intake on binge days than controls (Table 22). The BED group had similar intake on non-binge days to controls. There were no significant differences in average intake or kcal/BMI unit between groups according to food log data.

#### Energy expenditure versus reported intake

Daily intake as reported by the 24-hour recall data and the food log data were compared to actual TDEE as assessed by DLW (Table 24). BED participants reported caloric intake that was 80% of TDEE according to dietary recall data and 70% of TDEE according to food log data. Control participants reported caloric intake that was 67% and 72% of TDEE according to dietary recall and food log data, respectively. There were no significant group differences in under-reporting between groups.

#### Predicted energy requirements versus energy expenditure

There were no between group differences on HBE predicted energy requirements. When comparing predicted energy requirements to actual TDEE there were no group differences. Predicted energy requirements accounted for 76% and 77% of actual TDEE for BED and control groups respectively (Table 24).

## *Energy and macronutrient intake during an overeating episode: laboratory vs. dietary recall*

Table 25 reports descriptive and test statistics for laboratory and dietary recall intake. Total food intake was significantly greater in those with BED than those without according to laboratory (2305.1 vs. 1461.8 kcal; 466.3 vs. 294.4 gm) and dietary recall methodologies (2091.1 vs. 1312.8 kcal; 411.1 vs. 261.6 gm). Compared to overweight/obese controls, those with BED consumed significantly more grams of carbohydrate (laboratory: 294 vs. 71 gm; recall: 251 vs. 151 gm) and grams of fat (laboratory: 96 vs. 63 gm; recall: 99.7 vs. 59 gm) according to both methodologies. There was no significant difference between BED and control participants in protein intake.

The proportion of energy intake from carbohydrate, fat and protein was also examined. There was no significant difference between BED and control groups in the proportion of intake from carbohydrates and fats. Controls consumed a significantly greater proportion of energy intake from protein than those with BED according to the dietary recall data (15.1% vs. 20.1%). This difference was not significant when measured in the laboratory.

#### Multiple methods to evaluate accuracy of self-reported food intake data

Paired samples t-tests demonstrated no significant within group differences in total food and macronutrient intake between laboratory and dietary recall methodologies in either BED or control groups (Table 25). One exception was the proportion of total intake from fat, with the BED group reporting to consume more % fat in the dietary recall than was measured by the laboratory (24.1 vs. 19.7% %). Accuracy of reporting was further examined by calculating the ratio of self-reported intake assessed by dietary recall to measured intake in the laboratory (dietary recall / laboratory). The proportion of reported to measured food intake measured in grams was 0.94 (SD = 0.040) in the BED group and 0.89 (SD = 0.36) in the control group. There was no significant difference between groups (F (1, 28) = 0.147, p = 0.704). Additionally, there was no significant difference between groups when evaluating the dietary recall / laboratory ratio with food intake measured in kcal (0.98, SD = 0.45 vs. 0.90, SD = 0.36; F (1, 28) = 0.308, p = 0.584). The correlation between laboratory and dietary recall methodologies was calculated to evaluate accuracy of self-reported data. In both BED and obese control groups, significant within group correlations were found between laboratory and recall methods for total food intake measured in kcal (BED: r = 0.530, p=0.05, CON: r = 0.805, p < 0.05, r = 0.805, r = 0.8050.001). Total food intake measured in grams was significantly correlated between methods in the control group (r = 0.777, p < 0.001), but only a trend towards significance in the BED group (r = 0.465, p = 0.09). The difference between the two correlation coefficients approached significance (kcal z = 1.33, p = 0.091, gm z = 1.36, p = 0.086).

To further explore the accuracy of self-reported intake, we performed a between group comparison of the directional difference and the absolute value of the mean difference for total food and macronutrient intake assessed by laboratory and dietary recall methods (Table 26). Results demonstrated that the BED participants had much greater variability in their self-reported data as can be seen by the standard deviation of the group means and the magnitude of the absolute values of the mean for the majority of the comparisons in Table 26. There was a trend toward the absolute value of the difference being significantly greater in those with BED than obese controls.

#### Relationship between total food intake and BMI

Examining BED and obese control groups together, BMI and total food intake were not significantly correlated according to laboratory (kcal: r = 0.192, p = 0.292; gm: r = 0.199, p = 0.274) or dietary recall methodologies (kcal: r = 0.214, p = 0.265; gm: r = 0.206, p = 0.284). In the control group, BMI was significantly correlated with food intake in the laboratory (kcal: r = 0.541, p = 0.025; gm: r = 0.562, p = 0.019) and dietary recall data (kcal: r = 0.540, p = 0.038; gm: r = 0.543, p = 0.036). In those with BED, BMI and food intake were not significantly correlated according to laboratory (kcal: r = -0.057, p = 0.840; gm: r = -0.054, p = 0.849) or dietary recall data (kcal: r = -0.108, p = 0.714; g: r = -0.123, p = 0.675).

#### Patterns of energy consumption throughout the day

Table 27 reports descriptive and test statistics for patterns of energy consumption throughout the day. There were no significant differences between BED and obese control groups in pre-binge or post-binge caloric intake. No significant correlations were found between pre-binge and binge intake or post-binge and binge intake in the BED group. In the obese control group, pre-binge intake was significantly correlated with binge intake (r = 0.576, p = 0.025) and post-binge intake was marginally significant (r = 0.505, p = 0.055). Pre-binge and post-binge intake were significantly positively correlated in those with BED (r = 0.616, p = 0.019), obese controls (r = 0.564, p = 0.028) and overall (r = 0.465, p = 0.011).

#### DISCUSSION

The data do not support the hypothesis of higher energy expenditure in the BED group as there were no statistical differences in TDEE, BMR, or TEF between BED participants and overweight/obese controls. Using the doubly labeled water method in the current study, TDEE was 3214 and 3172 kcal/day in BED and non-BED participants, respectively. To the best of our knowledge, this is the first study to measure TDEE by the DLW method in overweight/obese females with BED. Obesity researchers using DLW to measure TDEE have reported values ranging from 2090 kcal/day in obese females during periods of dietary restraint (35) to 3708 kcal/day in obese females with a mean BMI of 37.4 kg/m2 (36). Examining studies of obese females with a BMI range from 29.6 to 33.0, the reported TDEE ranged from 2452 to 2952 kcal/day (37-41). The high TDEE in our study may be a result of higher BMI in our BED (34.8) and control groups (35.2) that approached that of Platte's participants (37.4) (36). Measurements of BMR in our BED and control groups are consistent with those for obese females reported in the literature ranging from 1502 kcal/day to 1680 kcal/day (37, 39, 40). As stated above, we found no difference between BED and non-BED in the thermic effect of food. Some researchers have demonstrated decreased TEF in obese participants (42), but these findings are controversial as others have found no difference between obese and normal weight individuals. Together these results suggest that there are not significant differences in energy expenditure and metabolic measurements between overweight/obese women with and without BED. Additionally, there was no difference in body composition between groups and no change in body composition over the two weeks of DLW sample collection within either group.

In clinical practice and weight loss programs, many still rely on the Harris-Benedict equation (HBE) to estimate energy requirements. We calculated daily energy expenditure using the HBE and compared it to TDEE measured by the DLW method. The HBE substantially underestimated measured TDEE in this sample by about 23% and 24% in the BED and control groups, respectively. Estimates of predicted energy expenditure calculated using the HBE should be interpreted with caution given this discrepancy. Further research is needed to validate the utility of the Harris-Benedict equation as an estimate of energy expenditure in overweight/obese and eating disordered individuals. Equations may need to be adjusted for accurate prediction of energy requirements for overweight/obese populations.

A second objective of this study was to assess differences in energy intake between groups. In the current study, the BED group ate significantly more on binge days than on non-binge days and controls. This finding was detected by both laboratory (2305 vs. 1462 kcal) and dietary recall methodologies (2091 vs. 1313 kcal). There was no difference between BED non-binge days and average daily consumption by controls. There was a trend toward the BED group consuming more kilocalories on average than the controls as assessed by 24-hour recall (BED = 2586.9 kcal, SD = 640.1, Control = 2140.0 kcal, SD = 659.1, F(1,32) = 4.032, p = .053) but not according to food log data. These discrepant results are likely due to the 24-hour recalls being a more accurate account of food intake than the food log entries (24-hour recall estimates were closer to TDEE as determined by DLW). It is also important to note that the BED group consumed significantly more kilocalories per BMI unit than did the control group adding additional support to the finding of higher daily caloric intake in the BED group.

Macronutrient intake data indicated that those with BED eat significantly greater amounts of carbohydrate and fat than obese controls during a laboratory overeating episode. However, there were no differences in the proportion of total energy intake derived from carbohydrates and fat between groups. This suggests that the differences in total carbohydrate and fat intake observed were secondary to increased food intake in BED participants and do not reflect differences in food selection. This is consistent with previous work by our group in which those with BED consumed significantly more total fat than obese controls, but the proportion of energy intake from fat was not significantly different between groups (293). Dietary recall data indicated that control participants consumed a significantly greater proportion of total energy from protein compared to the BED group. However, this difference was not significant according to laboratory measurements, which is the gold standard for measuring dietary intake. Results of our previous study detected no difference in total or proportion of protein intake between groups (293). We suspect this finding represents differences between groups in accuracy of reporting rather than a true difference in macronutrient consumption.

Other research groups have examined macronutrient intake when obese women with and without BED are instructed to overeat in the laboratory. Yanovski found that those with BED consumed significantly more fat (38.9% vs. 33.5%) and less protein (11.4% vs. 15.4%) than obese controls (292). Guss reported that obese women with BED (BMI >28) consumed a significantly greater proportion of energy from fat than normal weight controls (BMI 19-23), but observed no difference between obese women with and without BED (292). In contrast, Goldfein reported no difference in the proportions of macronutrient intake between obese women with and without BED when instructed to overeat in the laboratory (287). Given these findings and those of the present study, it remains unclear whether differences in macronutrient intake exist between obese women with and without BED. The three studies discussed above utilized an identical laboratory paradigm. Direct comparison of these findings to the current study is difficult because macronutrient consumption reflects both food selection and food presentation, which varies by laboratory protocol.

Our results and the literature review above raise important questions. If there are no differences between the BED and control groups metabolically and the BED group consumes more energy than the control group then over time the BED group should gain more weight. However, we did not find any statistically significant differences in body composition between baseline measures and the two week follow up. If the BED group is actually consuming more energy and the TDEE is not different from controls then it is possible that our method of measuring change in body composition was not sensitive enough to detect increases in body mass over the two week period or we did not have enough power to statistically support such differences between groups. The test-retest differences for duplicate measures on the DXA scanner was <2%, with the ability to detect changes as low as 0.6 kg (SD = 0.023) (44). The change in kg over the two week collection period for the BED group was +0.033 (SD = 1.62) and for the control group was -0.671 (SD = 1.66) which was not statistically different between groups. Additionally, our *post hoc* power to detect a mean difference of this magnitude between groups at an alpha level of 0.05 was 31.2%. Given the body composition change in this sample was within the confidence limits of the DXA scanner and the limited power to detect changes over a small time period, further research is needed to confirm that indeed BED is associated with higher overall caloric intake and weight gain.

A third objective was to determine the accuracy of caloric intake as assessed by dietary recall interview and food log data. This was done by comparing recorded intake with measured energy expenditure (TDEE) obtained from the doubly labeled water method. Since there was no change in body weight or composition as assessed by DXA during the 14 days of doubly water collection, we can assume that energy intake was equal to TDEE. BED participants reported caloric intake that was 80% of TDEE according to dietary recall data and 68% of TDEE according to food log data. Control participants reported caloric intake that was 70% and 73% of TDEE according to dietary recall and food log data, respectively. There were no significant differences between groups by either method. Reports comparing recorded intake in obese individuals to energy expenditure measured by the DLW method suggest that most report intake that is approximately 60% of predicted expenditure (19, 20). Although the expected 60% accuracy was within our 95% confidence region, our estimates on average were greater.

It is possible that our BED and control groups reported intake with greater accuracy as a result of the dietary recall interviews that the women participated in prior to collecting the self-reported food log data. The dietary recall interviews involved a detailed discussion of food intake and portion sizes with expert interviewers. Additionally, participants were required to watch a food record training video immediately prior to the two weeks of food log data collection. These activities may have trained participants in monitoring food consumption, leading to increased accuracy when recording intake in a food log later in the project. This may account for our groups reporting a higher percentage of TDEE than the 60% seen in most studies.

To expand on the findings above, we compared measured food intake in the laboratory to dietary recall estimates of intake to ascertain the accuracy of self-reported data in obese women with and without BED. To the best of our knowledge, this is the first study to compare laboratory and dietary recall measurements of a specific eating episode in adult women with BED. According to dietary recall interviews, BED and obese control groups reported 90% and 98% of measured food intake during an overeating episode in the laboratory, respectively. Furthermore, there were no

differences between groups in the accuracy of self-reported carbohydrate, fat, or protein intake.

When comparing random 24-hour dietary recall data with TDEE assessed using the DLW method in these same participants, we noted that the BED and obese control groups reported daily food intake at 80% and 68% of TDEE, respectively (277) Since accuracy of self-reported data for an isolated laboratory overeating episode was examined in the current study, direct comparisons to the results above cannot be made. Further research is required to determine if these findings can be replicated and, if so, what factors facilitate the observed improvement in reporting. It is possible that the participants in this study may have reported with greater accuracy because the laboratory environment and unique food presentation made the episode more memorable than eating in the natural environment thus resulting in improved recall of intake.

While there is not total consistency throughout the results, the three methods used to examine the accuracy of self-reported food intake taken together suggest that those with BED were less accurate than obese controls. Within group comparisons demonstrated no significant differences between laboratory and dietary recall methods in total food or macronutrient intake in either group. Significant positive correlations between measured and self-reported intake were observed in both groups. However, the correlation coefficients were larger in the control group (r = 0.805 vs. 0.530), indicating that they were on average more accurate than those with BED. There was a trend toward a significant difference between these correlation coefficients (p = 0.09). We also examined the directional difference and the absolute value of the mean difference between reported and measured intake to examine the direction and magnitude of the inaccuracies in the two groups. Mean differences indicated that both groups underreported intake, but those with BED did so to a greater extent (215 vs. 160 kcal, p =0.021). The mean of the absolute value of the difference suggests that the BED group tended to be less accurate at reporting their intake overall than controls (779 vs. 438 kcal, p = 0.061). The BED group also demonstrated greater variability in reporting as evidenced by standard deviations that were larger than those noted in controls. Overall, these findings are suggestive that those with BED tended to be less accurate with selfreported intake than obese controls.

Our findings suggest that the overweight/obese control participants demonstrated a trend to be more accurate at estimating total energy and macronutrient intake. It is possible that decreased accuracy of dietary recall data in participants with BED may be the result of subjective loss of control and consumption of an extremely large amount of food in a short period of time. Both of these factors may impair awareness of food consumption in BED relative to control participants. Further research is needed to confirm that BED participants are less accurate at reporting food intake than non-BED overweight/obese and to understand the mechanism of impaired accuracy.

Researchers have observed a positive correlation between food intake and BMI when participants with BED were instructed to binge eat in the laboratory (291) In the current study, we sought to confirm that eating in proportion to BMI accounts for the variability in food intake reported in those with BED. Our results indicated that BMI and food intake were significantly correlated in the obese control group, but not in the BED group. These findings are not consistent with those reported by Guss and colleagues (291), who noted a positive correlation between meal size and BMI in the BED group

under binge eating conditions. Significant correlations were not observed in the BED group when they were instructed to eat a normal meal or in obese control participants under binge or normal eating conditions. These results are not consistent with our findings and question the role of BMI in modulating food intake during a single eating episode in those with BED. Methodological differences between these studies make comparison of results difficult and demonstrate the need for further research addressing this issue.

A final aim of this study was to explore the role of reduced caloric intake as a potential precursor to binge eating in BED. To analyze patterns of energy consumption throughout the day, total daily caloric intake assessed by dietary recall was categorized as pre-binge, binge, or post binge intake. There were no significant correlations detected between pre-binge and binge intake or binge and post-binge intake in the BED group. These findings suggest that food intake preceding and following an overeating episode is not associated with food consumption during the overeating episode alone. In contrast, in the obese control group there were positive correlations between all of the comparisons, suggesting that those who eat more before the overeating episode also eat more during and afterwards. Further, significant positive correlations were noted between pre-binge and post-binge food intake in both groups. This observation suggests that those who tended to consume a larger amount of food preceding the overeating episode also tended to eat more following it. Likewise, those who ate less before the overeating episode also tended to eat more following it. Failure to compensate for overeating with reduced dietary intake may contribute to the development of obesity.

Strengths of our study include the multiple methods used to assess energy intake and the use of the gold standard doubly labeled water method to assess energy expenditure. Although the size of the sample is larger than much of the previous work in this area, it is still a limitation of this study. A larger sample size may have clarified the issue of whether there is a significant difference in average daily intake between those with BED and controls. A further limitation is the lack of inclusion of data on physical activity due to participant noncompliance and technical issues with monitors. Although BED is more common in females, another limitation is the lack of inclusion of men. Future studies should include both sexes.

In summary, a major finding of this study is that regardless of the method used to assess intake, both the BED and control groups underestimate their caloric consumption. It is also interesting to note that there is greater disparity in daily caloric intake between the two methods in the BED group than in the controls. However, both groups reported fewer kcal than required to maintain their current weight since the reported intake was less than the TDEE by both methods of assessment. Thus the main positive finding in our study was well summarized by Lichtman et al in their1992 article in which they compared TDEE using DLW with reported intake, "The failure of some obese subjects to lose weight while eating a diet they report as low in calories is due to an energy intake substantially higher than reported and an overestimation of physical activity, not the abnormality in thermogenesis" (35).

The findings of our group and others repeatedly demonstrate increased intake on binge days compared to non-binge days in BED women. This distinguishes those with BED from typical obesity and lends further support to the diagnostic utility of BED and its inclusion in the upcoming DSM-V. Further research will clarify with increasing precision the quantity, nutrient composition, and food selections that characterize binge eating episodes in BED. Characterizing the eating behaviors associated with BED – both in the laboratory and through self-reported data - will facilitate accurate diagnosis and assessment of treatment response.

#### ACKNOWLEDGEMENTS

This study was funded by a National Institutes of Health Grant (R01 MH 060199, MO1-RR00400), supported in part by the Minnesota Obesity Center Grant (P30 DK 60456) and National Institute on Drug Abuse (DA-26119). The authors wish to thank Jennifer Hommerding for her assistance with data collection.

#### TABLES

| ( <i>n</i> =BED/ <i>n</i> =CON)       | BED<br>Mean<br>(SD) | CON<br>Mean<br>(SD) | F     | р     |
|---------------------------------------|---------------------|---------------------|-------|-------|
| Age (years)<br>(17/17)                | 30.8<br>(7.2)       | 31.7<br>(8.5)       | 0.107 | 0.745 |
| BMI (kg/m2)<br>(17/17)                | 34.8<br>(6.0)       | 35.2<br>(6.9)       | 0.019 | 0.891 |
| TDEE<br>(15/14)                       | 3213.9<br>(552.8)   | 3171.8<br>(525.3)   | 0.044 | 0.835 |
| TEF<br>(15/14)                        | 35.4<br>(20.0)      | 29.7<br>(21.4)      | 0.534 | 0.472 |
| BMR<br>(15/14)                        | 1607.7<br>(246.8)   | 1628.1<br>(336.8)   | 0.035 | 0.853 |
| 24-hour Recall (Kcals)<br>(17/17)     | 2586.9<br>(640.1)   | 2140.0<br>(659.1)   | 4.023 | 0.053 |
| 24-hour Recall<br>(Kcals/BMI) (17/17) | 76.2<br>(23.4)      | 61.0<br>(14.2)      | 5.268 | 0.030 |
| Food Log (Kcals)<br>(14/16)           | 2234.4<br>(386.0)   | 2185.0<br>(535.4)   | 0.082 | 0.777 |
| Food Log<br>(Kcals/BMI) (14/16)       | 67.5<br>(17.4)      | 62.6<br>(14.0)      | 0.707 | 0.408 |

Table 21: Descriptive statistics and group differences in demographics, energy expenditure and energy intake measures

Note: BED = binge eating disorder, CON = control, n = sample size, SD = standard deviation, BMI = body mass index, TDEE = total daily energy expenditure, TEF = thermic effect of food, BMR = basal metabolic rate.

| BED<br>Binge<br>Days     | BED<br>Non-Binge<br>Days | Controls                 | Controls BED Binge<br>vs. Control |         | BED Non-Binge<br>vs. Control |       |  |  |
|--------------------------|--------------------------|--------------------------|-----------------------------------|---------|------------------------------|-------|--|--|
| Mean<br>(SD)<br><i>n</i> | Mean<br>(SD)<br><i>n</i> | Mean<br>(SD)<br><i>n</i> | F                                 | р       | F                            | р     |  |  |
|                          |                          | <u>24-ho</u>             | our Recall                        |         |                              |       |  |  |
| 3254.5<br>(520.0)<br>14  | 2233.4<br>(584.0)<br>17  | 2140.0<br>(659.1)<br>17  | 26.429                            | <0.0001 | 0.191                        | 0.665 |  |  |
|                          |                          | Fo                       | od Log                            |         |                              |       |  |  |
| 2983.0<br>(432.6)<br>11  | 1972.1<br>(305.0)<br>14  | 2185.0<br>(535.4)<br>16  | 16.815                            | <0.0001 | 1.721                        | 0.200 |  |  |

Table 22: Comparison of caloric intake on BED binge days and non-binge days with control data

Note: BED = binge eating disorder, SD = standard deviation.

| BED<br>Binge<br>Days     | BED<br>Non-Binge<br>Days | •      | Day vs.<br>inge Day |
|--------------------------|--------------------------|--------|---------------------|
| Mean<br>(SD)<br><i>n</i> | Mean<br>(SD)<br><i>n</i> | F      | р                   |
|                          | 24-hour Rec              | all    |                     |
| 3254.5<br>(520.0)<br>14  | 2343.1<br>(556.6)<br>14  | 26.429 | <0.0001             |
|                          | Food Log                 |        |                     |
| 2983.0<br>(432.6)<br>11  | 1972.5<br>(343.7)<br>11  | 16.815 | <0.0001             |

Table 23: Comparison of caloric intake on BED binge days with BED non-binge days

Note: BED = binge eating disorder, SD = standard deviation.

| ( <i>n</i> =BED/ <i>n</i> =Control) | BED<br>Mean<br>(SD) | Control<br>Mean<br>(SD) | F     | р     |
|-------------------------------------|---------------------|-------------------------|-------|-------|
| 24-hour Recall/TDEE (15/14)         | 0.797<br>(0.23)     | 0.675<br>(0.25)         | 1.885 | 0.181 |
| Food Log/TDEE<br>(15/13)            | 0.702<br>(0.19)     | 0.725<br>(0.24)         | 0.081 | 0.778 |
| HBE<br>(15/14)                      | 1759.5<br>(175.4)   | 1790.7<br>(257.4)       | 0.148 | 0.704 |
| PER<br>(15/14)                      | 2375.3<br>(236.8)   | 2417.5<br>(347.5)       | 0.148 | 0.704 |
| PER/TDEE<br>(15/14)                 | 0.757<br>(0.14)     | 0.774<br>(0.12)         | 0.121 | 0.731 |

Table 24: Descriptive statistics and group differences in energy expenditure versus reported intake

Note: BED = binge eating disorder, SD = standard deviation, TDEE = total daily energy expenditure, HBE = Harris-Benedict equation, PER = predicted energy requirements based on HBE and light activity.

| Laboratory test meal                         |                                              |                                                  | Dietary recall interview                      |                                             |                                                | Laboratory vs. Recall                              |                                                  |
|----------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| BED (n=15)                                   | CON (n=17)                                   |                                                  | BED (n=14)                                    | CON (n=15)                                  |                                                | BED                                                | CON                                              |
| Mean (SD)                                    | Mean (SD)                                    | F (1,31) (p)                                     | Mean (SD)                                     | Mean (SD)                                   | F (1,28) (p)                                   | t (p)                                              | t (p)                                            |
| 2305.1 (834.0)                               | 1461.8 (641.9)                               | 10.41 (0.003)                                    | 2091.1 (1044.1)                               | 1312.8 (847.5)                              | 4.89 (0.036)                                   | 0.859 (0.406)                                      | 1.240 (0.235)                                    |
| 466.3 (158.2)                                | 293.4 (123.6)                                | 12.02 (0.002)                                    | 411.1 (200.0)                                 | 261.6 (159.6)                               | 4.98 (0.034)                                   | 1.059 (0.309)                                      | 1.364 (0.194)                                    |
| 294.1 (97.9)<br>63.7 (6.2)<br>1176.2 (391.6) | 176.9 (70.9)<br>60.6 (5.0)<br>707.66 (408.9) | 15.29 (<0.001)<br>2.43 (0.129)<br>15.29 (<0.001) | 251.2 (128.1)<br>60.8 (8.5)<br>1004.8 (512.4) | 150.9 (84.9)<br>58.0 (8.3)<br>603.6 (339.7) | 6.26 (0.019)<br>0.812 (0.375)<br>6.26 (0.019)  | 1.376 (0.192)<br>2.015 (0.650)<br>1.376 (0.192)    | 1.585 (0.135)<br>1.682 (0.115)<br>1.585 (0.135)  |
| 96.3 (47.5)<br>19.7 (5.7)<br>867.1(427.4)    | 62.8 (32.4)<br>21.0 (4.6)<br>565.2 (291.3)   | 5.57 (0.025)<br>0.471 (0.498)<br>5.57 (0.025)    | 99.7 (54.6)<br>24.1 (5.1)<br>897.2 (491.2)    | 59.0 (45.5)<br>21.9 (5.3)<br>531.2 (409.4)  | 4.78 (0.038)<br>1.32 (0.260)<br>4.79 (0.038)   | -0.131 (0.897)<br>-2.426 (0.031)<br>-0.131 (0.897) | 0.563 (0.582)<br>-1.195 (0.252)<br>0.563 (0.582) |
| 75.9 (35.1)<br>16.5 (5.1)<br>303.5 (140.3)   | 53.7 (29.0)<br>18.4 (4.1)<br>214.7 (116.1)   | 3.84 (0.059)<br>1.25 (0.272)<br>3.84 (0.059)     | 60.2 (28.8)<br>15.1 (4.8)<br>240.7 (115.1)    | 51.7 (38.9)<br>20.1 (6.3)<br>206.8 (155.8)  | 0.438 (0.514)<br>5.83 (0.023)<br>0.438 (0.514) | 1.133 (0.278)<br>1.117 (0.284)<br>1.133 (0.278)    | 0.921 (0.372)<br>-0.838 (0.416)<br>0.921 (0.372) |

Table 25: Mean total energy and macronutrient intake during a laboratory over eating episode: Laboratory measurement vs. dietary recall interview

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, CHO = carbohydrate, gm = grams, SD = standard deviation, F = between groups F-test, t = within groups paired sample t-test, Kcal values were estimated from measured macronutrient values in gm using the following standard conversions: 4 kcal/gm CHO, 4 kcal/gm protein, 9 kcal/gm fat.

|             | Directional Difference |               | Absolute Value of Mean Difference |               |               |                       |
|-------------|------------------------|---------------|-----------------------------------|---------------|---------------|-----------------------|
|             | BED                    | CON           |                                   | BED           | CON           |                       |
|             | MD (SD)                | MD (SD)       | F (1,28) ( <i>p</i> )             | MD  (SD)      | MD  (SD)      | F (1,28) ( <i>p</i> ) |
| Total kcal  | 215.7 (939.0)          | 160.9 (502.4) | 6.03 (0.021)                      | 779.1 (527.5) | 438.6 (272.1) | 3.83 (0.061)          |
| Total grams | 54.0 (190.7)           | 35.4(100.6)   | 0.11 (0.744)                      | 158.9 (110.9) | 87.3 (57.6)   | 4.87 (0.036)          |
| CHO (g)     | 42.2 (114.7)           | 28.0 (68.5)   | 4.21 (0.050)                      | 97.0 (70.3)   | 56.8 (45.6)   | 2.30 (0.141)          |
| Fat (g)     | -1.5 (43.2)            | 3.4 (23.3)    | 5.00 (0.034)                      | 35.0 (23.4)   | 19.4 (12.4)   | 6.99 (0.014)          |
| Protein (g) | 13.3 (43.9)            | 4.02 (16.9)   | 4.00 (0.055)                      | 30.7 (33.2)   | 14.1 (9.6)    | 4.85 (0.036)          |

Table 26: Mean differences of total energy and macronutrient intake between laboratory and dietary recall methodologies

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, g = grams, CHO = carbohydrate, SD = standard deviation, MD = mean difference between laboratory and dietary recall, <math>|MD| = absolute value of mean difference between laboratory and dietary recall.

| Food intake (kcal)      | BED             | CON            | BED vs. CON   |  |
|-------------------------|-----------------|----------------|---------------|--|
|                         | Mean (SD)       | Mean (SD)      | F (1,28) (p)  |  |
|                         |                 |                |               |  |
| Pre-binge               | 1188.9 (449.9)  | 1038.0 (346.3) | 1.032 (0.319) |  |
| Binge                   | 2091.1 (1044.1) | 1312.8 (847.5) | 4.889 (0.036) |  |
| Post-binge              | 182.6 (152.0)   | 270.7 (338.6)  | 0.798 (0.380) |  |
|                         | · · · · · ·     |                | · · · · · ·   |  |
| Correlations            | BED             | CON            | Overall       |  |
|                         |                 |                |               |  |
| -                       | r (p)           | r (p)          | r (p)         |  |
| Pre-binge and binge     | -0.145 (0.620)  | 0.576 (0.025)  | 0.206 (0.284) |  |
|                         | 0.145(0.020)    | 0.570(0.025)   |               |  |
| 6 6                     | 0.107(0.715)    | 0 505 (0 055)  | 0.234(0.222)  |  |
| Post-binge and<br>binge | 0.107 (0.715)   | 0.505 (0.055)  | 0.234 (0.222) |  |

Table 27: Patterns of energy consumption throughout the day: Pre-binge, binge, and postbinge food intake

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, SD = standard deviation, r = Pearson's correlation coefficient.

# Chapter 6: Binge eating disorder mediates links between symptoms of depression, anxiety, and caloric intake in overweight and obese women

Adapted from: Roseann E. Peterson, Shawn J. Latendresse, Lindsay T. Bartholome, Cortney S. Warren, Nancy C. Raymond. Binge eating disorder mediates links between symptoms of depression, anxiety, and energy intake in overweight and obese women. *Journal of Obesity* [Epub 2012 Apr 12]

#### ABSTRACT

Despite considerable comorbidity between mood disorders, binge eating disorder (BED) and obesity, the underlying mechanisms remain unresolved. Therefore, the purpose of this study was to examine models by which internalizing behaviors of depression and anxiety influence food intake in overweight/obese women. Thirty-two women (15 BED, 17 controls) participated in a laboratory eating-episode and completed questionnaires assessing symptoms of anxiety and depression. Path analysis was used to test mediation and moderation models to determine the mechanisms by which internalizing-symptoms influenced kilocalorie (kcal) intake. The BED group endorsed significantly more symptoms of depression (10.1 vs. 4.8, p=0.005) and anxiety (8.5 vs. 2.7, p=0.003). Linear regression indicated that BED diagnosis and internalizing-symptoms accounted for 30% of the variance in kcal-intake (F(3,28)=4.002, p=0.017). Results from path analysis suggested that BED mediates the influence of internalizing-symptoms on total kcal-intake (empirical p < 0.001). The associations between internalizing-symptoms and food intake are best described as operating indirectly through a BED diagnosis. This suggests that symptoms of depression and anxiety influence whether one engages in binge eating, which influences kcal-intake. Greater understanding of the mechanisms underlying the associations between mood, binge eating and food intake will facilitate the development of more effective prevention and treatment strategies for both BED and obesity.

#### INTRODUCTION

Although there is considerable comorbidity between obesity, eating disorders and other major psychiatric disorders, the mechanisms underlying these associations have yet to be resolved. Binge eating disorder (BED), often associated with elevated body weight and mood disorders, is under consideration for inclusion in the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V). BED is defined by the DSM-IV as a provisional eating disorder diagnosis characterized by recurrent episodes of binge eating without weight control compensatory behavior and includes: (1) "eating, in a discrete period of time (e.g., within any 2-hour period), an amount of food that is definitely larger than what most people would eat during a similar period of time and under similar circumstances," and (2) "a sense of lack of control over eating during the episode". In addition, individuals with BED must experience distress about their binge eating and endorse three of the following symptoms: eating more rapidly than normal, eating until uncomfortably full, eating large amounts when not hungry, eating alone because of embarrassment, and feeling disgusted, depressed or guilty about overeating (87).

Although obesity is not a requirement for a BED diagnosis, research indicates that approximately 70% of those meeting criteria for BED are obese (21). While the prevalence of BED in community samples ranges from 2-5%, approximately 30% of obese individuals seeking weight control treatment meet criteria for BED (88, 89). The recurrent overeating that characterizes BED, along with the absence of compensatory behaviors exhibited by those with bulimia nervosa (BN), is most likely responsible for the high frequency of obesity in this group. Laboratory studies have demonstrated that obese BED individuals consume significantly more kilocalories (kcal) during an overeating episode than obese individuals without a BED diagnosis (285, 288, 290, 292, 305, 306, 308-310).

Psychiatric disorders, including depression and anxiety, have been associated with obesity and BED. The lifetime prevalence of major depressive disorder (MDD) and anxiety disorders in the United States is estimated at 17% and 29%, respectively (90). However, within obese populations, reported lifetime prevalence rates are increased to 32.8% for depression and 30.5% for anxiety (20). Additionally, Strine *et al.* found adults with a current or lifetime diagnosis of depression or anxiety were significantly more likely to engage in unhealthy behaviors such as physical inactivity and to be obese (20). Furthermore, research shows obese individuals with comorbid BED have even greater rates of depression and anxiety than obese individuals without BED (21, 295, 311-313). For example, Grilo *et al.* report, in a study of 404 BED patients, that lifetime history estimates were elevated to 52% for mood and 37.1% for anxiety disorders (311).

Despite general acknowledgment of the associations between body weight, BED and comorbid psychiatric disorders, the mechanisms underlying these relationships remain largely unknown. Previously, we have reported that overweight/obese women with BED consume significantly greater kcal-intake during a laboratory eating-episode than weight-matched women without BED (2305 vs. 1462 kcal) (310). To extend this work, we assessed symptoms of depression and anxiety in this sample and sought to examine how internalizing behaviors and BED may be associated with kcal-intake during the laboratory eating-episode. Based on the literature, we hypothesized that participants meeting BED criteria would endorse significantly more symptoms of depression and anxiety than weight-matched non-BED controls. However, the impact of a BED diagnosis and symptoms of depression and anxiety on kcal-intake was less clear as there are several potential mechanisms responsible for the association. It is possible that increased kcal-intake is the result of BED symptomatology. For instance, those with BED may use binge eating to alleviate or escape symptoms of depression and anxiety. Additionally, in converse, it is possible that BED symptomatology such as distress regarding lack of control over eating specifically elevates internalizing symptoms. For example, depression may increase food intake through increased appetite, a clinical feature of atypical depression subtype. Furthermore, it is possible that having both a BED diagnosis and elevated symptoms of depression and anxiety synergistically influence food intake in a non-additive manner.

A common statistical approach to examining relationships between variables is path analysis, in which alternative models can be applied to evaluate theoretical relationships and determine directionality of effects. We assessed three alternative models, depicted in Figure 13, to determine the mechanism of association that best fit our data. Path analysis was employed to evaluate three potential models: 1) The symptoms of depression and anxiety increase susceptibility to BED, which in turn influences caloric intake (Figure 13a), 2) A BED diagnosis influences symptoms of depression and anxiety, which subsequently influences caloric intake (Figure 13b) and 3) A BED diagnosis and symptoms of depression and anxiety function interdependently in relation to energy intake (Figure 13c).

## METHODS

#### *Participants*

Participants were recruited by newspaper and online advertisements inviting women at least 50 pounds overweight and between the ages of 18 and 45 to participate in a paid research study. Thirty-two women, including 15 meeting DSM-IV criteria for BED and 17 overweight/obese controls with no history of any binge eating or eating disorder behaviors, participated in the study. These women were recruited as part of a larger study examining food intake and energy expenditure measured via the doubly labeled water method (277, 310).

#### Group Assignment

Potential participants were interviewed with the Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P) (301), and the Eating Disorder Examination (EDE), Version 12.0D (303) to determine study eligibility and group assignment. Additionally, a medical history, physical exam and battery of laboratory tests were completed to detect unstable medical conditions, such as diabetes and impaired thyroid function, which would influence eligibility. Participants were excluded from the study if they had any unstable medical or psychiatric conditions, met DSM-IV criteria for substance abuse or dependency within 6 months of participation, or were currently dieting or participating in a weight loss program. Those with any history of BN or

compensatory behaviors were also excluded. Non-BED controls were free of any current or past eating disorder symptoms. The protocol was reviewed and approved by the Institutional Review Board at the University of Minnesota and all participants took part in the informed consent process and signed a consent form. Participants were paid \$300 upon completion of the entire study protocol.

#### Laboratory binge eating episode

This study utilized a protocol our group has previously reported (293, 306, 310). In brief, participants were interviewed by a research dietician regarding their general eating patterns and foods on which they typically snacked or overate. They indicated which items from a standardized list of snack foods appealed to them and could suggest extra foods or recipes. Based on the information gathered during the interview, a tray of binge foods was created for each participant incorporating their personalized snacking preferences. Each participant received 6 to 10 different kinds of food on their snack tray. Food items were presented in excessive quantities (two to three times what they endorsed eating during a binge) to ensure binge size was not limited by quantity of food.

Participants were admitted to the General Clinical Research Center (GCRC) for an overnight stay to participate in several study activities. They were instructed not to consume any food or caloric beverages between 12 and 5 PM. At approximately 5:30 PM they were presented with a multiple item array of foods, including their personalized binge tray and a standard hospital dinner, and were instructed to "Let yourself go and eat as much as you like." They were left alone in a private room to eat for as long as they liked and signaled the nursing staff when they were finished. The GCRC metabolic kitchen staff measured pre and post-prandial quantities of food. Caloric and macronutrient intake for the laboratory eating episodes were calculated using Nutritionist IV (304).

#### Self report measures of depression and anxiety

During the initial evaluation participants completed the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI) which are widely used self-report questionnaires consisting of items addressing how one has been feeling in the last week and measures the severity of depression and anxiety symptoms (314, 315). The scales have high internal consistency coefficients (i.e., BDI upwards of 0.80) and validity with other clinical assessments (316, 317). Scores on these indices range from 0 to 63 and correspond to normal (0-9 BDI, 0-7 BAI), mild (10-18 BDI, 8-15 BAI), moderate (19-29 BDI, 16-25 BAI) and severe (30-63 BDI, 26-63 BAI) depression and anxiety.

#### Analytic strategy and model validation

A set of three, theoretically driven path models (see Figure 13) were tested using Mplus version 5.0 (318). As MacKinnon and colleagues (319) have suggested, the traditional *causal steps approach* (320, 321) may lack the statistical power to detect some meaningful indirect effects. The mediation analyses presented here utilized the *product of coefficients* strategy (319, 322) to evaluate the extent to which a predictor influences

an outcome through some intermediary variable (Figure 13a and b). In doing so, the *indirect effect* is derived by taking a ratio of the product of the path coefficients from (1) the independent variable to the mediator and (2) the mediator to the dependent variable over the normal-theory standard error for that product [i.e.,  $(\beta 1 * \beta 2)/SE_{(\beta 1 * \beta 2)}$ ], the results of which are evaluated with respect to the Z-distribution. Moderation (Figure 13c) was assessed via the partial path coefficient for a product term (i.e.,  $\beta/SE_{\beta}$ ) in the presence of its individual components, and evaluated with respect to a *t*-distribution.

To protect against potential bias introduced by the small size of our sample, evidence of significance was assessed via permutation testing (153). From the original observed data, ten thousand novel datasets were generated via the random reordering of individuals' values on BED and kcal intake. This procedure was performed in R version 2.9.1 (323). Each of the permuted datasets can thus be reanalyzed within Mplus version 5.0 (318), with respect to the three alternative models depicted in Figure 13, and the test statistics from each iteration can be used to generate null distributions for each of the effects being scrutinized. Criteria for significance (i.e., empiric *p*-values) can be calculated using the formula (p+1)/(n+1), where p is the number of null tests that are more significant than the test conducted with the original data, and n is the total number of permutations (i.e., 10,000) on which the analyses are rerun. As a result, we are able to assess whether each of the hypothesized models would achieve significance in a much larger sample (i.e., 320,000), given the characteristics of our observed sample.

#### RESULTS

#### Descriptive statistics

Of the thirty-two women participants, 27 were European-American, 3 were African-American (9.4%) and 2 were Asian-American (6.3%). Means and standard deviations for total energy intake, depression and anxiety scores, and potential covariates (i.e., age and BMI) are presented by BED diagnosis on the diagonal in Table 28. ANOVA indicated that there were significant group differences in depression scores (10.1 vs. 4.8, F(1,30) =9.308, p = 0.005) and anxiety scores (8.5 vs. 2.7, F(1,30) = 10.830, p = 0.003) with BED participants having significantly higher mean scores than controls across these indices. No between-group differences were found regarding BMI (F(1,30) = 3.203, p = 0.784) or age (F(1,30) = 10.737, p = 0.674). Table 29 reports the prevalence of lifetime clinical depression and anxiety diagnoses by group. The BED group had significantly greater prevalence of mild depression (60 vs. 17.6%,  $\chi^2 = 6.10$ , p = 0.014), mild/moderate anxiety (33.3 vs. 5.9%,  $\chi^2 = 3.94$ , p = 0.047) and anxiety disorders (46.7 vs. 11.8%,  $\chi^2 =$ 4.80, p = 0.028). A detailed examination of food intake and energy expenditure in these participants are reported in additional manuscripts from our group (277, 310)

Pearson's correlation coefficients for bivariate associations between study variables are presented in the off-diagonal cells in Table 28. Within each cell, associations are presented separately for participants diagnosed with BED (top), weightmatched controls (middle) and across the entire sample (bottom). Significant positive correlations were found between kcal intake and depression, kcal intake and anxiety, and depression and anxiety within the full sample. When assessed within groups, no significant correlations were found except between depression and anxiety scales in the control group. Since neither BED nor internalizing symptoms were associated with age or BMI, these latter variables were not included in the path models described below.

#### Model fitting

Separate path models were run to test (a) the intermediary role of BED in associations between depression and anxiety symptoms and caloric intake, (b) the intermediary role of depression and anxiety symptoms in associations between BED and caloric intake, and (c) the interactive influences of BED and symptoms of depression and anxiety on caloric intake. In each case, the theoretical model accounted for a significant amount ( $\sim$ 30%) of the variance in energy intake. However, examination of the three alternative theoretical models revealed important mechanistic differences in the relationship between BED and symptoms of depression and anxiety as they serve to jointly influence energy intake. Results of the models (Table 30) depicted in Figure 13a and b suggest that while kcal intake is significantly influenced by both depression and anxiety symptoms ( $\beta_{total, depression} = 0.409, p = 0.006; \beta_{total, anxiety} = 0.399, p = 0.003$ ) and binge eating status ( $\beta_{total, BED} = -0.508, p \le 0.001$ ), the effects attributed to symptoms of depression and anxiety operate, in large part, through the influences they have on BED  $(\beta_{indirect. depression via BED} = 0.197, p = 0.052; \beta_{indirect. anxiety via BED} = 0.212, p = 0.046)$ . Note that the sign of the effects reflect coding of 1 for BED and 2 for controls in all analyses. That is, roughly half of the influence of depression (~48%) and anxiety (~53%) on caloric intake is mediated through BED. In contrast, the influence of BED status on caloric intake appears not to be mediated by symptoms of depression or anxiety ( $\beta_{indirect, BED via}$ depression = -0.103, p = 0.282;  $\beta_{indirect, BED via anxiety} = -0.096$ , p = 0.329); rather, those direct effects remained strong ( $\beta_{direct, BED with depression} = -0.404, p = 0.027; \beta_{direct, BED with anxiety} = -$ 0.411, p = 0.014). Results of the model depicted in Figure 13c indicate that BED and symptoms of depression and anxiety do not interdependently influence caloric intake. That is, neither the model including depression, nor the model including anxiety yielded significant partial path coefficients for an interaction between BED and the corresponding depression or anxiety symptoms ( $\beta_{BED x depression} = -0.279, p = 0.598; \beta_{BED x}$ anxiety = -0.268, p = 0.609) after taking into account their combined main effects; in each case, accounting for less than 1% of the total variance.

As described above, post-hoc analyses were conducted with 10,000 permuted datasets to determine whether the results observed with respect to the first theoretical model (i.e., BED mediating the association between symptoms of depression and anxiety and caloric intake) were simply due to chance and/or an artifact of the modest size of the present sample. The null distributions generated from these analyses suggested that the indirect effects of both depression and anxiety through BED were highly significant, as far fewer than 5% of the tests exceeded the *p*-values observed in the original data. In fact, of the 10,000 randomly generated datasets, only seven yielded indirect effects of depression through BED that were more significant than the effect observed in the original data (p = 0.0008), with only thirty-eight indirect effects of anxiety on BED exceeding the observed level of significance (p = 0.0009).

#### DISCUSSION

The purpose of this study was to examine models by which internalizing symptoms of depression and anxiety influence food intake in overweight/obese women. Our results indicate that BED women endorse significantly more symptoms of depression and anxiety. Additionally, linear regression indicated that BED diagnosis and internalizing-symptoms accounted for 30% of the variance in kcal-intake. Furthermore, results from path analysis imply that BED mediates the influence of internalizing-symptoms on total kcal-intake, which suggests the associations between internalizing-symptoms and food intake are best described as operating indirectly through a BED diagnosis.

The present study found that overweight/obese women with BED endorsed more symptoms of depression and anxiety than non-BED weight-matched controls. Mean scores for the BDI and the BAI indicated mild depression and anxiety in the BED group but normal levels in the control group. Other studies have found elevated depression and anxiety scores in BED individuals (285, 292, 312, 313, 324, 325). For example, in a study by Fandino *et al.*, depression and anxiety scores were significantly greater in the BED group than the obese control group as assessed by the Symptom Checklist 90 and the BDI (325). The lifetime prevalence of MDD in the BED and control groups was 46.7% and 29.4% respectively. These rates are similar to previous reports in BED (21, 295, 311-313) and non-BED obese groups (20). Lifetime prevalence of anxiety disorders was similar to rates of depression in the BED group (46.7%) but was much lower in the control group were due to the inclusion of overweight women or was an artifact of the limited sample size.

Laboratory studies have demonstrated that those with BED have greater total food intake than obese controls when instructed to overeat (285, 288, 290, 292, 305, 306, 308-310). Two such studies have reported on both food intake and depression symptoms (285, 292). In a sample of 10 obese BED women and 9 obese controls, Yanovski et al., found that the BED group consumed significantly more kcals (2962 vs 2017) and had significantly greater depression scores as measured by the BDI (18.9 vs 5.4) than controls. Additionally, they observed significant positive correlations between kcal intake and BDI score ( $r^2 = 0.41$ ) and between binge meal energy intake and BDI ( $r^2 = 0.28$ ). Geliebter and colleagues compared consumption of a liquid test-meal for 30 obese BED individuals (18 women) and 55 obese controls (43 women). The BED group consumed significantly more grams (1,032 vs 737) of the liquid test meal and endorsed significantly higher depression scores assessed by the Zung Depression Scale. However, a significant correlation between test meal intake and depression score was not found. The discrepancy could be due to several study design differences, including proportion of BED and control participants, inclusion of men and type of food intake (solid vs. liquid meal).

Furthermore, results from linear regression indicated that BED diagnosis and symptoms of depression and anxiety accounted for a significant amount (~30%) of the variance in caloric intake. However, examination of the three alternative models revealed important mechanistic differences in the relationship between BED, symptoms of depression and anxiety and subsequent energy intake. The model that best fit our data indicated that BED mediated the influence of depression and anxiety symptoms on total

kcal intake (Figure 13a). Specifically, our results suggest that the associations found between symptoms of depression and anxiety and food intake are best described as operating indirectly through a BED diagnosis. That is, symptoms of depression and anxiety influence whether one engages in pathological binge eating, which, in turn, influences caloric intake. Our findings did not support model b (BED predicted symptoms of depression and anxiety which, in turn, influence kcal intake) or model c (a significant interaction between symptoms of depression and anxiety and BED as being predictive of kcal intake).

These results highlight the importance of mood in relation to a BED diagnosis and subsequent caloric intake. Other research has also implicated mood in BED. Telch et al. interviewed 60 obese women with BED regarding their definition of binge eating and 33% reported it as eating to regulate negative affect (326). With the advent of Ecological Momentary Assessment procedures (EMA), prospective data on precursors to binge eating in the natural environment have been collected (327-331). A study by Stein et al. found in 33 obese women with BED that negative mood was significantly greater at prebinge times than at non-binge times and that participants attributed binge eating to mood more frequently than hunger or violation of extreme dietary restraint (abstinence violation) (329). Additionally, a study by Hilbert and Tuschen-Caffier, found that mood preceding a binge eating episode was more negative than mood prior to regular eating or at random assessments in a sample of 20 obese women with BED (330). Furthermore, in a meta-analysis of 36 EMA studies of BED and BN, negative affect was significantly greater preceding binge-eating relative to average affect and affect before regular eating (331). A growing body of literature implicates negative affect as a precursor to binge eating in BED.

The implications of the present study are potentially relevant to the clinical treatment of BED and obesity. Research has indicated that mood and eating disorder diagnoses affect weight loss and other treatment efforts. For example, Pagoto *et al.* reported that both BED and depression were associated with less weight loss and depression was associated with study attrition (332). Furthermore, in BED treatment, depression symptoms have been associated with both attrition from cognitive-behavioral therapy and severity of eating disorder psychopathology (333). The current results suggest that targeting mood may be useful in the treatment of BED and accentuate the importance of considering mood and BED status in weight management.

Among the major strengths of this study were utilizing path analysis to test relationships between BED, symptoms of depression and anxiety and kcal intake as well as using permutation procedures for model validation and statistical support. EMA studies have consistently demonstrated negative affect as a precursor to binge eating (331) in BED. However, these studies have relied on self-report of food intake. Research indicates that obese and BED populations tend to underreport their food intake (276-280, 310, 334, 335). Therefore, a further strength of this work was the inclusion of laboratory measured food intake to avoid inaccuracies often associated with self-report of dietary intake. Potential limitations include limited sample size and age range, exclusion of male participants and use of self-report questionnaires to measure symptoms of depression and anxiety. Future research is warranted to confirm our findings and should seek to compare energy intake and depression and anxiety in both women and men. Greater understanding of the mechanisms underlying the associations of depression and anxiety symptoms, binge eating and caloric intake will facilitate the development of more effective prevention and treatment strategies for both BED and obesity.

## ACKNOWLEDGEMENTS

This study was funded by National Institutes of Health Grants (R01 MH 060199, MO1-RR00400), supported in part by the Minnesota Obesity Center Grant (P30 DK 60456) and National Institute on Drug Abuse (DA-26119). Special thanks to Brion S. Maher, Ph.D., for statistical consultation on permutation procedures and Jennifer Hommerding, Psy.D., and Andrea Loveless, Psy.D., for assistance with data collection.

#### **TABLES AND FIGURES**

Figure 13: Theoretical models of the associations between internalizing symptoms, binge eating and caloric intake

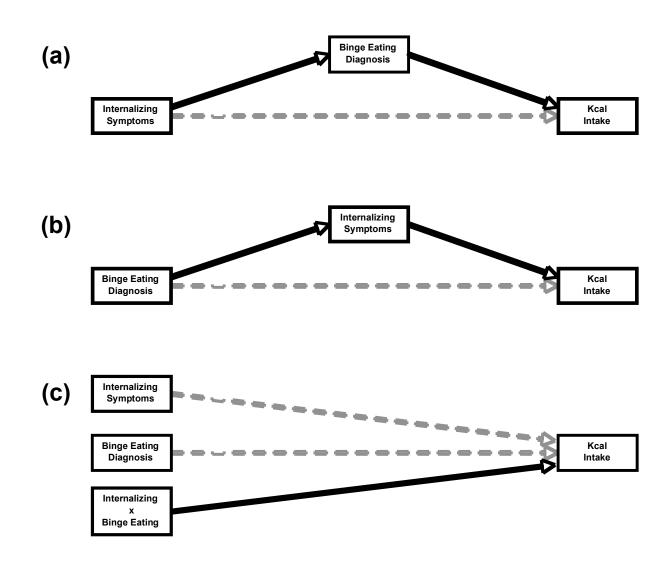



Figure 18. Theoretical models examined: (a) binge eating disorder mediates the associations between internalizing symptoms and kilocalorie intake, (b) internalizing symptoms mediate the association between binge eating disorder and kilocalorie intake, and (c) binge eating disorder interacts with internalizing symptoms in the prediction of kilocalorie intake. Note: Internalizing = symptoms of depression and anxiety.

|                                         | 1          | 2          | 3          | 4         | 5              |
|-----------------------------------------|------------|------------|------------|-----------|----------------|
| 1. Age                                  | 30.1 (6.7) |            |            |           |                |
|                                         | 31.3 (8.5) |            |            |           |                |
| 2. Body Mass Index (kg/m <sup>2</sup> ) | -0.17      | 24.2 (5.5) |            |           |                |
|                                         | -0.14      | 34.3 (5.5) |            |           |                |
|                                         | -0.15      | 34.9 (7.2) |            |           |                |
| 3. Depression Symptoms                  | -0.09      | -0.33      | 10 1 (4 0) |           |                |
|                                         | 0.06       | 0.34       | 10.1 (4.8) |           |                |
|                                         | -0.04      | 0.04       | 4.8 (5.0)  |           |                |
| 4. Anxiety Symptoms                     | -0.05      | -0.29      | 0.34       | 9 5 (6 5) |                |
|                                         | 0.35       | 0.24       | 0.66**     | 8.5 (6.5) |                |
|                                         | 0.04       | -0.08      | 0.57***    | 2.7 (3.1) |                |
| 5. Kilocalorie Intake                   | -0.10      | -0.06      | 0.28       | 0.27      | 2205 1 (024 0) |
|                                         | -0.26      | 0.54*      | 0.15       | 0.00      | 2305.1 (834.0) |
|                                         | -0.19      | 0.02       | 0.41*      | 0.40*     | 1461.8 (641.9) |

Table 28: Group means and inter-correlations for study variables

\* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001

Note: Off-diagonal cells depict Pearson's correlation coefficients for participants diagnosed with binge eating disorder (top; n = 15), controls (middle; n = 17), and the overall sample (bottom; n = 32); values on the diagonal reflect means and standard deviations for cases (top) and controls (bottom), with bold-face type indicating group differences (p < 0.01) as assessed via *F*-statistic with 1, 30 degrees of freedom.

| Diagnosis             | BED<br>n<br>(%) | Control<br>n<br>(%) | Chi-square | <i>p</i> -value |
|-----------------------|-----------------|---------------------|------------|-----------------|
| BDI-Mild              | 9<br>(60%)      | 3<br>(17.6%)        | 6.10       | 0.014           |
| BAI-<br>Mild/Moderate | 5<br>(33.3%)    | 1<br>(5.9%)         | 3.94       | 0.047           |
| MDD                   | 7<br>(46.7%)    | 5<br>(29.4%)        | 1.01       | 0.314           |
| Dep NOS               | 1<br>(6.7%)     | 0<br>(0%)           | 1.17       | 0.279           |
| GAD                   | 1<br>(6.7%)     | 0<br>(0%)           | 1.17       | 0.279           |
| Social Phobia         | 4<br>(26.7%)    | 1<br>(5.9%)         | 2.61       | 0.106           |
| Specific Phobia       | 2<br>(13.3%)    | 0<br>(0%)           | 2.42       | 0.120           |
| Panic Disorder        | 1<br>(6.7%)     | 0<br>(0%)           | 1.17       | 0.279           |
| PTSD                  | 1<br>(6.7%)     | 0<br>(0%)           | 1.17       | 0.279           |
| Anx NOS               | 0<br>(0%)       | 2<br>(11.8%)        | 1.88       | 0.170           |
| Any Dep Dx            | 8<br>(53.3%)    | 5<br>(29.4%)        | 1.89       | 0.169           |
| Any Anx Dx            | 7<br>(46.7%)    | 2<br>(11.8%)        | 4.80       | 0.028           |
| Any Dep/Anx Dx        | 10<br>(66.7%)   | 6<br>(35.3%)        | 3.14       | 0.077           |

Table 29: Lifetime clinical depression and anxiety diagnoses by group

Note: BED = binge eating disorder, Chi-square = Pearson's Chi-square 1 degree of freedom test, BDI-Mild = mild depression as assessed by the Beck Depression Inventory which corresponds to scores 10-18, BAI-Mild/moderate = mild to moderate anxiety as assessed by the Beck Anxiety Inventory which corresponds to scores 8-25, MDD = major depressive disorder, Dep NOS = depressive disorder not otherwise specified, PTSD = post traumatic stress disorder, Anx NOS = anxiety disorder not otherwise specified, Any Dep Dx = any DSM-IV depressive disorder diagnosis, Any Anx Dx = any DSM-IV anxiety disorder diagnosis, Any Dep/Anx Dx = any DSM-IV depressive or anxiety disorder diagnosis, dysthymic disorder and obsessive compulsive disorder were omitted from table because no participants met criteria for these disorders.

|            | Т      | 'otal Eff | <b>e</b> ct                  |       | Direct E | ffect                        |   | Inc    | lirect (N | (Iediated)                   | Effect                                 |
|------------|--------|-----------|------------------------------|-------|----------|------------------------------|---|--------|-----------|------------------------------|----------------------------------------|
| Mediator   | β      | SE        | <i>p</i> -value <sup>a</sup> | β     | SE       | <i>p</i> -value <sup>a</sup> | ı | β      | SE        | <i>p</i> -value <sup>a</sup> | empirical <i>p</i> -value <sup>b</sup> |
|            |        |           |                              |       |          |                              |   |        |           |                              |                                        |
| BED        | 0.409  | 0.150     | 0.006                        | 0.21  | 2 0.183  | 0.247                        |   | 0.197  | 0.101     | 0.052                        | 0.0008                                 |
| BED        | 0.399  | 0.136     | 0.003                        | 0.18  | 0.181    | 0.301                        |   | 0.212  | 0.106     | 0.046                        | 0.0009                                 |
|            |        |           |                              |       |          |                              |   |        |           |                              |                                        |
| Depression | -0.508 | 0.136     | < 0.001                      | -0.40 | 0.182    | 2 0.027                      |   | -0.103 | 0.096     | 0.282                        |                                        |
| Anxiety    | -0.508 | 0.136     | < 0.001                      | -0.41 | 1 0.168  | 0.014                        |   | -0.096 | 0.099     | 0.329                        |                                        |

Table 30: Standardized effects coefficients, standard errors and corresponding *p*-values for mediation models

<sup>a</sup> corresponding to the two-tailed test statistics for models run with sample data. <sup>b</sup> corresponding to the two-tailed test statistics for a series of analyses with 10,000 permuted datasets.

Note: BED = binge eating disorder, Signs of effects reflect coding of BED status as 1 and control as 2 in all analyses.

# Chapter 7: Genetic and environmental associations between body mass index, depression symptoms and impulsivity in a population-based sample of twins: VA30k

Adapted from: On the association of body mass index and depression in a population-based sample of twins. Roseann E. Peterson, B.A., Hermine H. Maes, Ph.D., Lindon J. Eaves, Ph.D., D.Sc., Presentation, June 19, 2009. Behavior Genetics Association. Minneapolis, Minnesota.

#### ABSTRACT

Obesity and major depressive disorder each represent diseases with complex etiologies which pose a significant burden to public health, affecting 33 and 16 percent of Americans, respectively. Reported heritability estimates are moderate-to-high and studies suggest both positive and negative correlations of these traits. Impulsivity is likely involved in the link between obesity and depression, as it has been associated with each. Despite numerous phenotypic associations between these traits, there has been a lack of reports in the literature investigating genetic and environmental associations between these phenotypes. Therefore, the purpose of this research was to use twin study methodology to investigate if shared genetic and/or environmental liability is potentially responsible for phenotypic associations found between relative body weight, depression symptoms, and impulsivity. Participants were ascertained through the Virginia Twin Registry and a volunteer twin sample solicited through the American Association of Retired Persons (n=14,457 twins, 63.8% female). Female respondents were found to have significantly lower body mas index (BMI) and impulsivity scores (Eysenck Personality Ouestionnaire), but significantly higher depression symptom scores (Symptoms Checklist) than males. A significant quadratic relationship was found between BMI and depression symptoms, indicating that those with the highest and the lowest BMI were more likely to have greater depression scores. Bivariate twin modeling results did not indicate a significant genetic or environmental correlation between BMI and depression symptoms. However, significant genetic and environmental correlations were found between BMI and impulsivity (rG =0.115, rE=0.046) and a significant genetic correlation between depression and impulsivity (rG=0.075). Trivariate independent pathway twin modeling indicated shared genetic and environmental liability between these traits, although, some sex differences were observed. A common genetic factor accounted for 2-16% of the genetic variance in these traits. For females, an environmental factor common to BMI and impulsivity accounted for 0.5% of the environmental variance in BMI and 62% in impulsivity. For males, an environmental factor common to depression symptoms and impulsivity accounted for 0.5% of the environmental variance in depression symptoms and 56% in impulsivity. Our findings warrant future research in order to confirm these results in additional cohorts as well as to examine how shared genetic risk may impact gene identification efforts.

#### INTRODUCTION

Obesity and major depressive disorder (MDD) represent serious public health problems and research suggests a prominent sex difference in both, with women appearing to be at increased risk (176, 336). According to the National Center for Health Statistics over 33% of American adults are considered obese while another 33% are overweight (127). Obesity is a general medical condition, defined clinically by a body mass index (BMI) greater than 30 kg/m<sup>2</sup>, and is associated with increased risk of numerous medical conditions including cardiovascular disease, insulin-resistance, cancer, and poor quality of life (12, 127). Similarly, depression is a debilitating psychiatric condition that has demonstrated correlations with decreased quality of life, impaired social functioning, eating disorders, substance abuse, and cardiovascular disease (295, 336-338). As reported by the 2006 National Comorbidity Survey Replication, the lifetime history estimates of MDD are 12.7% in men and 21.3% in women (90). However, within obese populations, reported lifetime prevalence rates of depression have been shown to be elevated upwards of 32% (20). Additionally, Strine et al. found adults with a current or lifetime diagnosis of depression were significantly more likely to engage in unhealthy behaviors such as physical inactivity and to be obese (20). Cross-sectional studies of BMI and depression have reported positive(93-97), negative (primarily in males) (98, 99) and no association (100-102) between these traits. However, a population based study from the Netherlands found a quadratic (U-shaped) association of BMI and depression indicating those with the lowest and the highest relative body weight were more likely to present with depression. In light of current DSM-IV MDD criteria, which include items related to increase and decrease in appetite, weight and energy expenditure, it is feasible that BMI in underweight and obese individuals may be associated with greater levels of depression (103). Further research is needed to clarify the nature of the association between body weight and depression.

A growing body of research implicates impulsivity in the development and maintenance of obesity. A national study found 17% of the general American population to be impulsive, with odds greater for men and those of younger ages (339). Impulsivity has been considered a multi-dimensional construct consisting of several components: urgency, lack of perseverance, lack of premeditation and sensation seeking (340). Obesity has been associated with dimensions of impulsivity based on both self-report and laboratory-based paradigms (341-348). For example, research conducted using the Iowa Gambling Task has shown obese groups tend to choose immediate rewards, even when future long-term negative consequences are associated with them (342, 345). Furthermore, impulsivity has been associated with dietary disinhibition and may represent a mechanism by which impulsivity may influence body weight via the inability to control what or how much one is eating (349). Dietary disinhibition, a construct from the Three Factor Eating Questionnaire which reflects a responsiveness to food stimuli and eating in response to emotional states (350), has been associated with BMI, obesity, overeating, decreased healthy food choices, and eating disorders including BED and BN, with less weight loss and with lower levels of physical activity (for a literature review see Brvant et al. 2007) (351, 352).

Impulsivity has been shown to be comorbid with psychiatric disorders. A recent report indicated 83% of those who endorsed impulsivity in a sample of American adults,

also met criteria for lifetime history of at least one psychiatric disorder (339). Research reports positive associations between impulsivity and depression. For example Peluso *et al.*, found significantly higher trait impulsivity, as assessed by the Barratt impulsivity scale (BIS), in participants with comorbid bipolar and MDD than controls (353). Additionally, work by our group found a significant positive correlation (r=0.354) between BIS scores and depression symptoms, as measured by the Beck depression inventory, in a sample of obese women with and without binge eating disorder (Peterson *et al.*, in preparation). Furthermore, impulsivity has been shown to be a predictor of future MDD diagnosis (339, 354) and suicidality in depressed persons (355-358).

Research indicates that genetic factors influence individual differences in BMI, depression and impulsivity. Twin, adoption and family studies have consistently shown a significant genetic contribution to body composition with heritability estimates ranging 40 to 70% (34-36). Heritability estimates for depression symptoms have been estimated between 30 and 40% (359) and for MDD between 40 and 50% (360). A large meta-analysis of 11,100 adults indicated impulsivity was moderately heritable, with 31% of the phenotypic variance due to additive genetic effects and 10% to dominance(361). Dietary disinhibition, an impulsivity-associated trait, has been shown to be moderately heritable with 45% of the variance due to additive genetic effects (362).

To date two family studies have examined the genetic and environmental architecture of depression and body composition (363, 364). The first, by Choy et al., was based on 2383 participants from the Netherlands Erasmus Rucphen Family study and did not find a significant genetic correlation between obesity and depression symptoms measured by the Center for Epidemiologic Studies Depression Scale (CES-D) or the depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) (363). However, a study by Afari et al., using a sample of 993 female twin pairs from the University of Washington Twin Registry, found significant phenotypic (OR=1.6, 95%CI=[1.2,2.1]) and genetic correlations (12%) between obesity and self-report endorsement of "Has your doctor ever told you that you have depression? (364)." Despite considerable phenotypic associations, there have been no twin and family studies reported in the literature investigating the genetic and environmental associations between BMI and impulsivity or depression and impulsivity. More research is needed to determine if shared genetic and/or environmental liability is responsible for the phenotypic associations found between these traits. Therefore, the purpose of this study was to examine phenotypic associations and the genetic and environmental architecture of BMI, depression symptoms, and impulsivity in a population based sample of twins, the Virginia 30,000 (VA30k).

#### **METHODS**

#### Participants and phenotypes

Ascertainment for the VA30k sample was through two sources, a volunteer twin sample solicited through the American Association of Retired Persons and the Virginia Twin Registry. Participants completed the Health and Lifestyle Questionnaire, which included abbreviated versions of the Symptoms Checklist (SCL-90) and the Eysenck Personality

Questionnaire (EPQ). Depression symptom scores were calculated from 10 questions from the SCL-90 depression sub-scale and impulsivity scores were calculated from 7 items from the EPQ impulsivity subscale. BMI, a standard measure of adiposity, was calculated from self-reported height and current weight. BMI categories were determined from standard clinical groups of underweight (<18.5), normal (18.5-24.9), overweight (25-29.9), obese (30-39.9) and morbidly obese (>40). BMI and depression scores were log transformed and impulsivity scores were arcsine transformed to meet assumptions of normality. Analysis of variance (ANOVA) was used to determine if there were significant differences in study variables by BMI category and age. Tukey's HSD multiple comparison procedure was used to infer in which groups the differences occurred. To explore possible differences in depression symptom profiles between BMI categories ANOVA was applied to individual depression symptom items.

### Classical twin methodology

The use of family data allows trait variance to be partitioned into the familial versus residual non-familial sources. In the classical twin design, covariances of MZ and DZ twins are used to estimate the magnitude of genetic and environmental causes of family resemblance (252). This methodology is premised upon monozygotic, or "identical", twins (MZ) sharing all of their genes, while dizygotic, or "fraternal", twins (DZ) sharing half of their genes on average, and MZ and DZ twins sharing trait-relevant environmental experiences to the same extent (equal environment assumption). Following this logic, the correlation between genetic components is modeled as 1.0 for MZ twins and 0.5 for DZ twins. Under the assumptions of random mating, no genotype-environment correlation or interaction, and equal environments for MZ and DZ twins, a greater similarity between MZ versus DZ twins is attributed to additive genetic effects (A). Common environmental effects, as defined in biometrical twin modeling, refer to environmental influences that make family members more similar to each other. Therefore, by definition, these influences correlate 1.0 between both MZ and DZ twins. These shared environmental influences (C) will contribute to twin similarity in both MZ and DZ twins and will tend to increase DZ correlations relative to MZ correlations. However, non-additive genetic effects, known as dominance (D), tend to reduce the DZ correlation relative to MZ twins. The correlation of D is modeled as 1.0 between MZ twins and 0.25 for DZ twins. An additional source of variance is the unique environment (E), which includes factors in the environment that are not shared within families as well as random measurement error. Unique environmental influences are uncorrelated between co-twins and have the effect of decreasing the covariance between siblings. Furthermore, the principles of variance decomposition for the univariate case may be extended to estimating the covariance structure between multiple variables.

## Model-fit

One approach to partitioning variance is to use structural equation modeling (SEM) and path analysis, which allows for flexible specification of models that include both latent (unobserved) and measured variables (253). In this study, SEM was used to examine the genetic and environmental architecture of BMI, depression symptoms, and impulsivity

for both univariate and multivariate modeling. Model parameters were estimated by full information maximum likelihood using OpenMx(256) in R(210). The goodness-of-fit was assessed by the likelihood-ratio test, which compares minus twice the log likelihood (-2LL) of models. This approximates a  $\chi^2$ -distribution and may be used for significance testing. Additionally, the relative parsimony of alternative models was assessed by Akaike's Information Criterion (AIC), with smaller values indicating better fit.

#### Univariate twin modeling and sex-limitation

Univariate models were applied to estimate heritability of individual traits, test the random sample assumption, and determine if there were significant sex differences in the genetic and environmental architecture of the phenotypes. Under the assumption that the twin sample reflects a random sample of the population, there should be no statistical differences on phenotypic mean or variance by twin order or type (zygosity). To test this assumption in the VA30k, phenotypic means and variances were equated by twin order and zygosity to determine if the model fit is significantly worse when compared to the model that estimated them freely. If no differences were found this suggested that the random sample assumptions were met. If significant differences were found, then these could indeed be due to the sample not being random or to some form of social interaction (i.e., sibling cooperation). Furthermore, if there are significant differences in trait variance by gender then it is possible that sex limitation may account for this difference. Two sources of sex limitation are: (1) *quantitative*, also known as scalar sex limitation, defined as sex differences in the magnitude of the genetic or environmental components and (2) *qualitative*, or non-scalar sex limitation, regarded as differences in the actual sets of genes or family environments that influence traits for males and females. For the latter source of sex limitation, addition of opposite sex DZ twins (DZo) to analyses is necessary. In designs of twins reared together, C and D sources of variance cannot be estimated simultaneously. Therefore, ACE and ADE models were tested separately. Along with ACE/ADE models, quantitative and qualitative sex differences were formally tested for BMI, depression symptoms, and impulsivity.

#### Bivariate twin modeling

To test for genetic and environmental contributions to the covariance between two traits, bivariate Cholesky decomposition was applied. This parameterization allows the phenotypic variance to be partitioned into (1) genetic/environmental components that account for variance in trait one and covariance with trait two and (2) a second genetic/environmental component accounting for the residual variance in the second trait, not accounted for by the first factors. As such, the ordering of the variables determines the interpretation (i.e., how much of the genetic variation in trait two is shared with trait one) <sup>[169, 179]</sup>. The specification of ACE/ADE models was dependent on best-fit models from univariate modeling. To simplify the full model, A and C/D common and specific factors and E common factors were dropped one-by-one from the model. Specific unique environmental effects were not dropped as these include errors of measurement.

#### Trivariate twin modeling

To test for shared genetic and environmental liability between BMI, depression symptoms and impulsivity, multivariate Cholesky parameterization and independent pathway (IP) models were fit to the data. Trivariate Cholesky decomposition was used as baseline fit for IP model comparison. As depicted in Figure 26, IP models were specified to partition phenotypic variance into genetic and environmental factors that were shared across all three phenotypes as well as components that were trait specific (243, 253). These models allow for the contributions of the common factors on the measured phenotypes to be different for each of the sources of variance, hence the name 'independent pathways'. IP model fitting began with two common factors for each source of variance, A, D and E, along with specific A, D and E for each variable. To simplify the full model, A and D common and specific factors and E common factors were dropped one-by-one from the model. As noted with previous models, specific unique environmental effects were not dropped as these include errors of measurement.

#### RESULTS

#### Phenotypic associations between age, BMI, depression symptoms, and impulsivity

BMI data was available for n=14,457 twins, of whom n=9,227 (63.8%) were female. The mean age was 52.3 and 48.9 years for females and males, respectively. As depicted in Figure 14, females tended to be older than males (F(1,14357)=119.1, p=1.25x10<sup>-27</sup>). Mean BMI was significantly lower for females (23.8 kg/m<sup>2</sup>) than for males (25.1 kg/m<sup>2</sup>) (F(1,14455)=310.1, p=1.05x10<sup>-27</sup>) and sex accounted for 2% of the phenotypic variance in BMI. Figure 15 displays the distribution of BMI by weight category and sex. Based on a definition of BMI greater than 30 kg/m<sup>2</sup>, 12% of the sample was considered obese. A quadratic association was observed between age and BMI, which accounted for 5.5% of the phenotypic variance in BMI (Figure 16).

Depression symptom scores, as assessed by the SCL-90 subscale, indicated that females endorsed significantly higher rates of depression symptoms than males (14.0 females, 13.5 males, F(1,14118)=306.8,  $p=5.69\times10^{-68}$ ). Additionally, age was found to be significantly associated with depression symptoms. Specifically, depression scores tended to be greater at younger ages (Figure 17). There was not a significant correlation between BMI and depression scores in females. However, in males a small negative correlation was observed (r=-0.06, p=1.8x10<sup>-6</sup>). As depicted in Figure 19, the depression symptom score was found to have a significant quadratic association with BMI, which accounted for 0.2% of the phenotypic variance. Exploration of depression symptom profiles by BMI category indicated similar endorsement of specific depression items for the underweight and obese groups, except loss of sexual interest, which showed no association with BMI status (Figure 22).

Impulsivity scores, as assessed by the EPQ subscale, indicated that males endorsed significantly higher rates of impulsivity symptoms than females (0.459 females, 0.485 males, F(1,12670)=26.9,  $p=2.19\times10^{-7}$ ). In addition, age was found to be significantly associated with impulsivity score, with greater impulsivity observed at younger ages (Figure 18). As depicted in Figure 20, the impulsivity score was found to have a significant positive association with BMI, which accounted for 0.7% of the phenotypic variance. Additionally, a small but significant correlation was found between depression symptoms and impulsivity in females (r=0.045,  $p=6.0x10^{-5}$ ) and males (r=0.070,  $p=2.2x10^{-6}$ ). Standardized depression symptom and impulsivity scores are displayed together by BMI category in Figure 21.

#### Univariate and sex-limitation twin modeling

The phenotypic means and variances of BMI are presented by twin order and zygosity type in Table 31. Means and variances were equated across twin order and across zygosity groups of the same sex without significant loss of model fit, indicating that assumptions regarding random population samples had been met (Table 32). However, means and variances could not be equated between males and females, which was suggestive of possible sex effects. Therefore, sex limitation models were applied in order to test for quantitative and qualitative differences between males and females. Variance component modeling results are displayed in Table 33 (ACE) and Table 34 (ADE). According to the AIC, the best fitting model was an AE model, with the genetic correlation between males and females being estimated. The results indicated that additive genetic effects accounted for 77% of the variance in females and 75% in males. The genetic correlation between males and females was estimated at 0.820 (95% CI =[0.697,0.956]), indicating significant qualitative sex differences although a considerable amount of the additive genetic effects associated with BMI was shared between males and females. These findings suggested that the increased phenotypic variance in females was due, in part, to greater additive genetic variance.

The phenotypic means and variances of depression symptoms, as assessed by the depression subscale of the SCL-90, are presented by twin order and zygosity type in Table 35. Means and variances could be equated across twin order and across zygosity groups of the same sex without significant loss of model fit (Table 36). However, means and variances could not be equated between males and females, which was suggestive of possible sex effects. Therefore, sex limitation models were applied to test for quantitative and qualitative differences between the sexes. Variance component modeling results are displayed in Table 37 (ACE) and Table 38 (ADE). Based on the AIC, the best fitting models were an ACE model in females and an AE model in males, with the genetic correlation between males and females equated to one, which indicates no qualitative sex differences for additive genetic effects. Results indicated additive genetic effects accounted for 28% and 36% of the variance in females and males, respectively, with approximately 8% of the variance in females due to shared environment.

The phenotypic means and variances of impulsivity, as assessed by the subscale of the EPQ, are presented by twin order and zygosity type in Table 39. Means and variances could be equated across twin order and across zygosity groups of the same sex without a significant drop in model fit (Table 40). However, means and variances could not be equated between males and females, suggesting possible sex effects. Therefore, sex limitation models were applied to test for quantitative and qualitative differences between males and females. Variance component modeling results are displayed in Table 41 (ADE). According to the AIC, the best fitting models were an ADE model in females and an AE model in males, with the genetic correlation between males and females equated to one. The results indicate additive genetic effects accounted for 8% and 32% of the variance in females and males, respectively, with approximately 24% of the variance in females accounted for by dominant genetic effects.

#### Bivariate twin modeling

Bivariate models were fit to BMI and depression symptoms and results are given in Table 42a. According to the AIC, the best fitting parameterization was model V, which indicated there were no statistically significant shared genetic or environmental liabilities between BMI and depression symptoms. The proportion of variance due to ACE factors is shown in Figure 23.

Variance decomposition models of BMI and impulsivity are displayed in Table 42b. The best fitting model according to AIC was III.b, which indicated that there were statistically significant shared genetic (rG = 0.115, 95%CI = [0.053,0.178]) and environmental correlations (rE = 0.046, 95%CI = [0.011,0.082]) between BMI and impulsivity symptoms. The relative proportion of ADE components are depicted in Figure 24. The proportion of the variance in impulsivity due to genetic effects shared with BMI was 2.8% and 4.4%, in females and males respectively, corresponding to 8.3% and 13% of the total genetic variance. The proportion of the variance in impulsivity due to environmental effects shared with BMI was 1.9% for females (2.8% of total environmental variance).

Results of bivariate model-fitting for depression and impulsivity are displayed in Table 42c. According to AIC, the best fitting model was IV, which indicated a statistically significant shared genetic correlation (rG = 0.075, 95%CI = [0.003, 0.151]) between depression and impulsivity symptoms. The variance decomposition is shown in Figure 25. The proportion of the variance in impulsivity due to genetic effects shared with depression symptoms was 1.3% for females and 2.2% for males, which corresponded to 4.0% and 6.5% of the total genetic variance.

#### Trivariate twin modeling

To test for shared genetic and environmental liability between BMI, depression symptoms and impulsivity, multivariate Cholesky parameterization and independent pathway models were fit to the data. The parameter estimates and fit-statistics are displayed in Table 43 and Table 44. The best fitting model according to the AIC was IP model IV.b and is depicted in Figure 27. The results indicated a significant common genetic factor that loaded on all traits, as well as, genetic effects specific to each phenotype. The common genetic factor exhibited sex differences, in that the factor loaded positively on all traits in females, but in males it loaded positively on impulsivity and BMI but negatively on depression symptoms. In addition, a significant environmental factor was found to load on impulsivity and BMI in females and on impulsivity and depression symptoms in males, further demonstrating sex differences in the nature of these traits.

The proportion of variance in BMI accounted for by ADE components is displayed in Figure 28. In females, 77% of the variance in BMI was due to additive genetic effects, of which 3.8% was due to shared effects with impulsivity and depression

symptoms, 66.7% was specific to BMI, and 29.5% was female specific effects and 23% of the variance was due to environmental components, of which only 0.5% was due to effects shared with impulsivity. In males, 75% of the variance in BMI was due to additive genetic effects, of which 16% was due to shared effects with impulsivity and depression symptoms and 84% was specific to BMI. The remainder of the phenotypic variance was due to a BMI specific environmental component (25%).

The ADE variance decomposition for depression symptoms is shown in Figure 29. In females, 35% of the variance was due to genetic effects, of which 2% was due to an effect shared with BMI and impulsivity, and 65% of the variance was due to environmental factors specific to depression symptoms. In males, the proportion of variance due to genetic factors was 38%, of which, 1.5% was an effect shared with BMI and impulsivity, 36% was accounted for by effects due to dominance, and 62.5% was an effect specific to depression symptoms. The environment accounted for 62% of the variance, of which, 0.5% was due to environmental effects in common with impulsivity.

The proportion of variance in impulsivity symptoms accounted for by ADE components is depicted in Figure 30. In females, 32% of the variance was due to genetic effects, of which 14% was from the common genetic factor, 15% from a specific additive genetic component, and 71% due to specific dominance. The environment accounted for 68% of the variance, of which, 62% was due to the shared factor with BMI and the remainder (38%) was an environmental component specific to impulsivity. In males, 32% of the variance was due to genetic effects, of which, 12% was from the common genetic factor and 88% from an impulsivity specific additive genetic component. The environment accounted for 68% of the variance, of which, 56% was due to the shared factor with depression symptoms and the remainder of the variance from an environmental component specific to impulsivity (44%).

#### DISCUSSION

The purpose of this research was to examine phenotypic associations between BMI, depression symptoms and impulsivity and to test for shared genetic and environmental liability between these traits in a population-based sample of twins. As expected, our results indicated that women had significantly greater depression symptoms and lower impulsivity than men, and significant positive correlations between BMI and impulsivity, and between depression symptoms and impulsivity were observed. However, rates of obesity in the VA30k sample (12%) were lower than expected given current national estimates (33%). According to national health reports, obesity rates doubled among American adults between 1980 and 2000, which may explain, in part, the lower obesity rate in the VA30k sample, as it was collected during this timeframe.

Reported associations between body weight and depression have been conflicted, with reports of positive, negative and no association between them. Our results indicated a curvilinear relationship between BMI and depression symptoms, signifying that those with the highest and the lowest relative body weight were more likely to endorse depression items. These findings are in agreement with a population-based study from the Netherlands which found a robust U-shaped association between BMI and depression symptoms. It is possible that the mixed findings on the nature of the BMI-depression relationship may be due, in part, to the assumption that there is a linear association between these traits when indeed it may be curvilinear. Furthermore, examination of depression symptom profiles by weight category indicated similar endorsement of specific depression items for the underweight and obese groups. These findings suggest that there may not be differences in depression profiles by BMI group but rather that those with the highest and the lowest BMIs tend to endorse more symptoms overall. Since both women and those with the highest and lowest BMI's were more likely to have increased depression scores, these groups might be targeted for prevention and intervention efforts.

We applied multivariate twin methods to test for shared genetic and/or environmental liability between these traits. The bivariate twin modeling results did not indicate a significant genetic or environmental correlation between BMI and depression symptoms. Our results are in agreement with a Dutch family study by Choy *et al.* which did not find a significant genetic correlation between BMI and depression symptoms (363). However, Afari *et al.* reported a significant genetic correlation between obesity and self-report endorsement of clinical depression in a sample of female twin from the USA, with this correlation accounting for 12% of the genetic variance (364). It is conceivable that the discrepancies in findings are due in part to different measures of depression (symptoms vs. diagnosis). Further research utilizing genetically informative designs are needed to determine the genetic and environmental structure of comorbidity between body composition and depression and, in particular, whether incorporating depression symptoms versus clinical depression and its subtypes will reveal significant differences in this architecture.

The results from our bivariate analyses on BMI and impulsivity indicated a significant genetic correlation (rG =0.115) between these traits with 8.3% and 13% of the genetic variance in impulsivity due to effects shared with BMI in females and males, respectively. Additionally, a significant environmental correlation (rE=0.046) was also found between these traits indicating ~2.5% of the environmental variance in impulsivity was due to effects shared with BMI. Furthermore, when examining depression symptoms and impulsivity a significant genetic correlation (rG=0.075) was observed, indicating 4% and 6.5% of the genetic variance in impulsivity was due to effects shared males, respectively. To our knowledge, this is the first twin study to report on shared liability between BMI and impulsivity and between depression symptoms and impulsivity.

The findings from our trivariate twin modeling indicated a significant common genetic factor influencing all three traits. However, we observed significant sex differences, as a positive association was found for all traits for females, but in males this genetic factor was positively associated with BMI and impulsivity but negatively associated with depression symptoms. This suggests that for females, a genetic component exists which is associated with greater impulsivity, BMI and depression symptoms, while in males this genetic component is associated with greater impulsivity and BMI but with decreased depression symptoms. This common genetic factor accounted for different proportions of the genetic variance in each trait as well as some sex differences were observed. The proportion of the genetic variance accounted for by this genetic factor was for BMI 3.8% in females and 16% males; for depression symptoms ~2.5%; and for impulsivity 12-14%. In females, an environmental factor

common to BMI and impulsivity accounted for 0.5% of the environmental variance in BMI and 62% in impulsivity. In males, an environmental factor common to depression symptoms and impulsivity was observed, accounting for 0.5% of the environmental variance in depression symptoms and 56% in impulsivity. Our multivariate twin modeling results suggest that there are shared genetic and environmental factors between BMI, depression symptoms and impulsivity. Further research is warranted to confirm these results in other cohorts as well as to examine how shared genetic and environmental liability may impact gene identification efforts.

A number of extensions to this work should be applied to future research. First, phenotypic associations in this sample indicated a significant quadratic effect of age on BMI as well as significant negative associations with depression symptoms and impulsivity. Future studies should incorporate these effects into modeling, in order to potentially detect differences in genetic and environmental liability by age. Furthermore, BMI and depression symptom scores were also found to have a curvilinear association. There are known limitations of structural equation modeling for the handling of nonlinear relationships. Additional research is needed to determine the effect of nonlinear relationships on variance decomposition methodology and parameter estimates. In addition, since classical twin designs may not model C and D components simultaneously, future models might utilize the extended twin design to determine the effect of each of these sources of variance on the covariance of these traits. Indeed, there are alternative models that may be applied, including models incorporating moderating effects of the environment as well as models of comorbidity (253, 365). For example, longitudinal phenotypic studies have found a reciprocal association between obesity and depression, suggesting that elevated BMI may increase depression and vice versa (91. 92). Therefore, future research should apply models of comorbidity and test direction of causation in a genetically informative sample. To the best of our knowledge, this is the first multivariate twin study to report on the genetic and environmental architecture of BMI, depression symptoms and impulsivity. Our results indicate shared genetic and environmental risk between these traits. Future research is warranted to confirm our findings in additional cohorts and examine how shared genetic risk may impact gene identification efforts.

## **TABLES AND FIGURES**

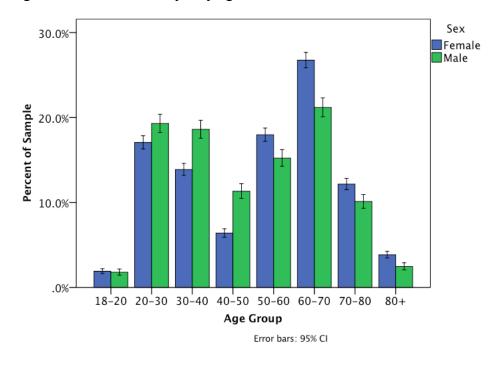



Figure 14: Percent of sample by age and sex

Figure 15: Percent of sample by weight category and sex

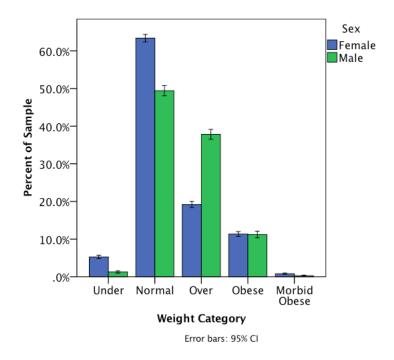



Figure 16: BMI by age and sex

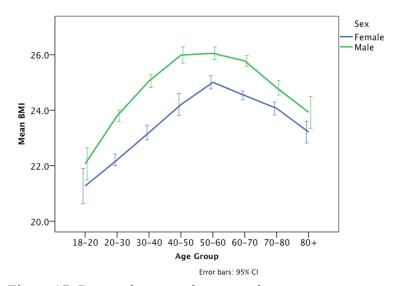



Figure 17: Depression score by age and sex

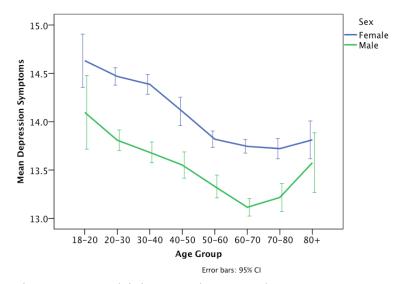
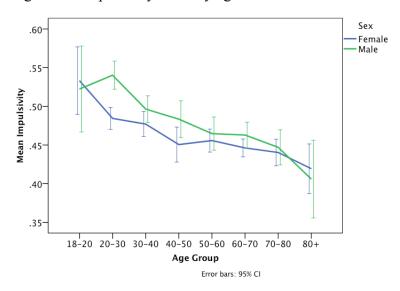




Figure 18: Impulsivity score by age and sex



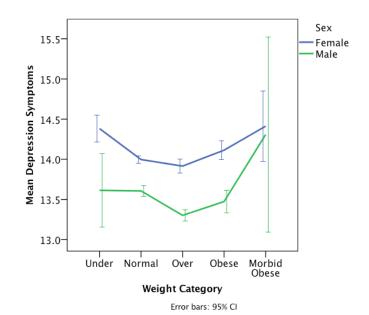



Figure 19: Depression symptoms by weight category and sex

Figure 20: Impulsivity score by weight category and sex

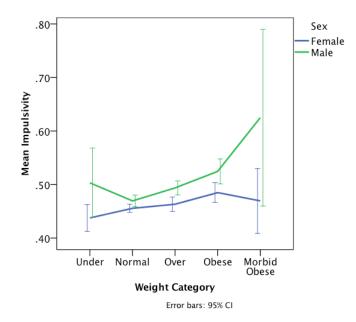
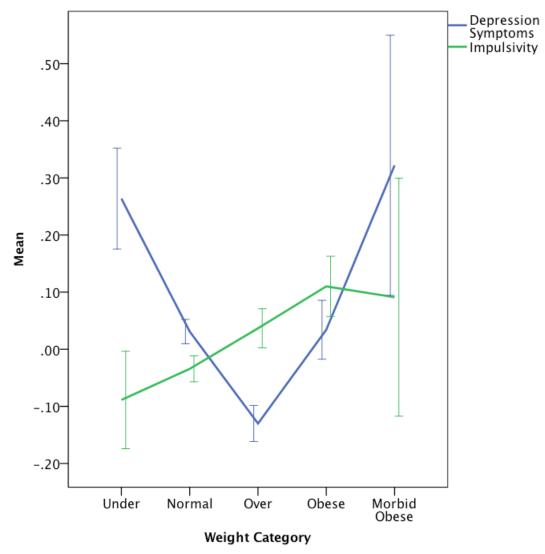
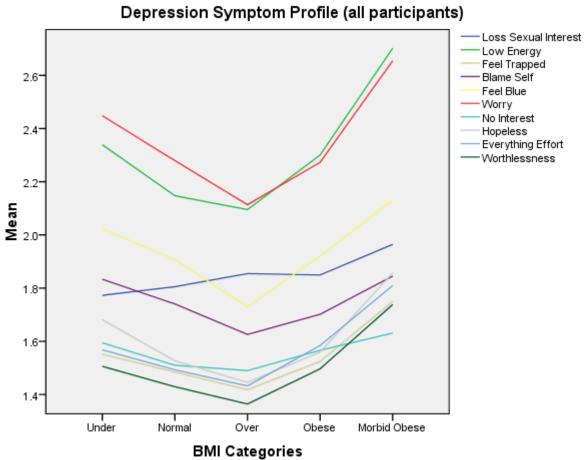





Figure 21: Depression symptoms and impulsivity score by weight category



Error bars: 95% CI

Figure 22: Depression symptom profile by weight category



| Group<br>(pairs/singletons) | Mean T1<br>(Variance) | Mean T2<br>(Variance) | Covariance | Correlation |
|-----------------------------|-----------------------|-----------------------|------------|-------------|
|                             |                       |                       |            |             |
| MZ female                   | 31.51                 | 31.51                 | 2.33       | 0.772       |
| (1894/84)                   | (3.07)                | (3.00)                |            |             |
| DZ female                   | 31.61                 | 31.57                 | 1.20       | 0.392       |
| (1206/67)                   | (3.10)                | (3.05)                |            |             |
| MZ male                     | 32.12                 | 32.08                 | 1.16       | 0.725       |
| (795/18)                    | (1.64)                | (1.58)                |            |             |
| DZ male                     | 32.15                 | 32.15                 | 0.70       | 0.382       |
| (590/20)                    | (1.80)                | (1.96)                |            |             |
| DZ opposite sex             | 32.13                 | 31.38                 | 0.77       | 0.318       |
| (1354/43)                   | (2.00)                | (2.97)                |            |             |

Table 31: Means and variances by twin group for BMI in VA30k

Table 32: Testing model assumptions for BMI VA30k

| Model          | EP | -2LL    | Df    | AIC     | Diff LL | Diff df | p-value |
|----------------|----|---------|-------|---------|---------|---------|---------|
| Saturated      | 25 | 42190.8 | 11885 | 18420.8 | -       | -       | -       |
| Mean order     | 21 | 42193.2 | 11889 | 18415.2 | 2.4     | 4       | 0.66    |
| Variance order | 17 | 42194.8 | 11893 | 18408.8 | 3.96    | 8       | 0.86    |
| Zyg same sex   | 13 | 42205.5 | 11897 | 18411.5 | 14.73   | 12      | 0.26    |
| Within sex     | 9  | 42213.3 | 11901 | 18411.3 | 22.52   | 16      | 0.13    |
| Across sex     | 7  | 42769.7 | 11903 | 18963.7 | 578.9   | 18      | < 0.01  |

|        | Ē | 110     | ,     |         | 37.4         | 3.4 | 1            |                                         | FEMALE                                 |                                         |                                         | MALE                                    |                                                                  |                             |
|--------|---|---------|-------|---------|--------------|-----|--------------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------|-----------------------------|
| Iabola | 2 | 777-    | €     | АЮ      | IT I         | đ   | p-<br>value  | a<br>A<br>stdA<br>[95%CI]               | c<br>C<br>stdC<br>[95%CI]              | e<br>E<br>stdE<br>[95%CI]               | a<br>A<br>staA<br>[95%CI]               | c<br>c<br>stdC<br>[95%CI]               | e<br>E<br>stdE<br>[95%CI]                                        | rg<br>-<br>[95%CI]          |
| ACE    | 6 | 42213.4 | 11901 | 18411.4 |              |     |              | 1.52<br>2.31<br>0.763<br>[0.672,0.785]  | 0.14<br>0.02<br>0.006<br>[0,0.094]     | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 1.19<br>1.41<br>0.753<br>[0.628,0.778]  | 0.0001<br>0.00<br>0.000<br>[0,0.118]    | 0.68<br>0.46<br>0.247<br>[0.222,0.276]                           | 0.824<br>-<br>[0.641,0.999] |
| AE/ACE | × | 42213.4 | 11902 | 18409.4 | 0.02         | -   | 0.89         | 1.53<br>2.33<br>0.769<br>[0.753,0.785]  |                                        | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 1.19<br>1.41<br>0.753<br>[0.628,0.778]  | 0.0001<br>0.00<br>0.000<br>[0,0.118]    | 0.68<br>0.46<br>0.247<br>[0.222,0.276]                           | 0.820<br>-<br>[0.697,0.962] |
| ACE/AE | ~ | 42213.4 | 11902 | 18409.4 | <0.01        | 1   | >0.99        | 1.52<br>2.31<br>0.763<br>[0.672,0.785]  | 0.14<br>0.02<br>0.006<br>[0,0.094]     | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 1.19<br>1.41<br>0.753<br>[0.723,0.778]  |                                         | 0.68<br>0.46<br>0.247<br>[0.222,0.276]                           | 0.824<br>-<br>[0.697,0.956] |
| AE     | ٢ | 42213.4 | 11903 | 18407.4 | 0.02         | 5   | 0.99         | 1.53<br>2.33<br>0.769<br>[0.753,0.785]  |                                        | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 1.19<br>1.41<br>0.753<br>[0.723,0.778]  |                                         | 0.68<br>0.46<br>0.247<br>[0.222,0.276                            | 0.820<br>-<br>[0.697,0.937] |
| ACE    | × | 42264.9 | 11902 | 18460.9 | 51.55        | -   | <0.01        | 1.34<br>1.79<br>0.588<br>[0.531,0.642]  | 0.74<br>0.54<br>0.178<br>[0.127,0.230] | 0.85<br>0.72<br>0.235<br>[0.219,0.252]  | 0.97<br>0.95<br>0.503<br>[0.421,0.579]  | 0.67<br>0.45<br>0.239<br>[0.171,0.310]  | 0.70<br>0.49<br>0.258<br>[0.231,0.290]                           | 0                           |
| ACE    | × | 42214.5 | 11902 | 18410.5 | 1.16         | -   | 0.28         | -1.49<br>2.23<br>0.734<br>[0.661,0.776] | 0.33<br>0.11<br>0.035<br>[0,0.105]     | -0.84<br>0.70<br>0.231<br>[0.216,0.248] | -1.15<br>1.33<br>0.708<br>[0.611,0.762] | -0.29<br>0.08<br>0.043<br>[0.001,0.135] | 0.68<br>0.47<br>0.249<br>[0.223,0.278]                           |                             |
| AE/ACE | ٢ | 42219.3 | 11903 | 18413.3 | 5.97<br>4.81 | 1   | 0.05<br>0.03 | -1.53<br>2.34<br>0.769<br>[0.752,0.784] |                                        | -0.84<br>0.70<br>0.231<br>[0.216,0.248] | -1.11<br>1.24<br>0.656<br>[0.558,0.758] | -0.42<br>0.17<br>0.092<br>[0,0.184]     | 0.69<br>0.48<br>0.253<br>[0.226,0.282]                           |                             |
| ACE/AE | 2 | 42220.2 | 11903 | 18414.2 | 6.80<br>5.64 | 1   | 0.03<br>0.02 | -1.47<br>2.15<br>0.704<br>[0.628,0.777] | 0.44<br>0.19<br>0.063<br>[0,0.137]     | -0.84<br>0.71<br>0.233<br>[0.217,0.250] | -1.19<br>1.41<br>0.750<br>[0.721,0.776] |                                         | 0.69<br>0.47<br>0.250<br>[0.224,0.279]                           |                             |
| AE     | 9 | 42222.7 | 11904 | 18414.7 | 9.35<br>8.19 | n 0 | 0.02<br>0.02 | -1.53<br>2.34<br>0.768<br>[0.751,0.784] |                                        | -0.84<br>0.71<br>0.232<br>[0.216,0.249] | -1.19<br>1.41<br>0.749<br>[0.720,0.775] |                                         | $\begin{array}{c} 0.69\\ 0.47\\ 0.251\\ 0.225,0.281 \end{array}$ |                             |

# Table 33: Univariate ACE Sex Limitation BMI VA30k

| 1 able 54.                          | Univariate                              | ADE SE                                  | K Liiiiiaii                             |                                         |                                                                   |                                         |                                         |                                                                           |                                                                   |
|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| rg<br>-<br>[95%CI]                  | 0.831<br>-<br>[0.697,1.217]             | 0.831<br>-<br>[0.697,1.084]             | 0.820<br>-<br>[0.697,0.982]             | 0.820<br>-<br>[0.697,0.937]             | 0 1 1 1                                                           |                                         |                                         |                                                                           |                                                                   |
| e<br>E<br>stdE<br>[95%CI]           | -0.68<br>0.46<br>0.247<br>[0.222,0.275] | -0.68<br>0.46<br>0.247<br>[0.222,0.275] | -0.68<br>0.46<br>0.247<br>[0.222,0.276] | -0.68<br>0.46<br>0.247<br>[0.222,0.276] | -0.67<br>0.45<br>0.242<br>[0.219,0.269]                           | 0.68<br>0.46<br>0.246<br>[0.221,0.274]  | 0.68<br>0.46<br>0.246<br>[0.221,0.274]  | 0.68<br>0.47<br>0.249<br>[0.223,0.278]                                    | $\begin{array}{c} 0.69\\ 0.47\\ 0.251\\ [0.225,0.281]\end{array}$ |
| MALE<br>d<br>D<br>stdD<br>[95%CI]   | 0.19<br>0.04<br>0.020<br>[0,0.299]      | 0.19<br>0.04<br>0.020<br>[0,0.299]      |                                         |                                         | $\begin{array}{c} 1.11\\ 1.22\\ 0.663\\ 0.435, 0.780 \end{array}$ | -0.48<br>0.23<br>0.121<br>[0,0.329]     | -0.61<br>0.37<br>0.20<br>[0.054,0.332]  |                                                                           |                                                                   |
| a<br>A<br>staA<br>[95%CI]           | -1.17<br>1.37<br>0.733<br>[0.456,0.778] | -1.17<br>1.37<br>0.733<br>[0.456,0.778] | -1.19<br>1.41<br>0.753<br>[0.725,0.778] | -1.19<br>1.41<br>0.753<br>[0.725,0.778] | 0.42<br>0.18<br>0.095<br>[0,0.322]                                | -1.09<br>1.18<br>0.633<br>[0.427,0.762] | -1.02<br>1.04<br>0.557<br>[0.424,0.698] | -1.19<br>1.41<br>0.751<br>[0.723,0.777]                                   | -1.19<br>1.41<br>0.749<br>[0.720,0.775]                           |
| e<br>E<br>stdE<br>[95%CI]           | 0.84<br>0.70<br>0.231<br>[0.215,0.247]  | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 0.84<br>0.70<br>0.231<br>[0.215,0.247]  | 0.84<br>0.70<br>0.231<br>[0.215,0.247]  | 0.83<br>0.69<br>0.229<br>[0.214,0.245]                            | 0.84<br>0.70<br>0.231<br>[0.215,0.247]  | 0.84<br>0.70<br>0.231<br>[0.215,0.248]  | 0.84<br>0.70<br>0.230<br>[0.215,0.247]                                    | 0.84<br>0.71<br>0.232<br>[0.216,0.249]                            |
| FEMALE<br>d<br>b<br>stdD<br>[95%CI] | 0<br>0<br>0<br>[0,0.176]                |                                         | 0<br>0<br>0<br>[0,0.176]                |                                         | 1.13<br>1.28<br>0.426<br>[0.279,0.589]                            | 0.37<br>0.14<br>0.046<br>[0,0.200]      |                                         | $\begin{array}{c} 0.66\\ 0.43\\ 0.143\\ 0.143\\ [0.014,0.269]\end{array}$ |                                                                   |
| a<br>A<br>stdA<br>[95%CI]           | -1.53<br>2.33<br>0.769<br>[0.594,0.785] | -1.53<br>2.33<br>0.769<br>[0.753,0.785] | -1.53<br>2.33<br>0.769<br>[0.594,0.785] | -1.53<br>2.33<br>0.769<br>[0.753,0.785] | $\begin{array}{c} 1.02\\ 1.04\\ 0.346\\ 0.183, 0.493 \end{array}$ | -1.48<br>2.19<br>0.724<br>[0.570,0.783] | -1.53<br>2.33<br>0.769<br>[0.752,0.785] | -1.38<br>1.90<br>0.627<br>[0.501,0.755]                                   | -1.53<br>2.34<br>0.769<br>[0.751,0.784]                           |
| p-<br>value                         | 1                                       | >0.99                                   | 0.88                                    | 66.0                                    | <0.01                                                             | 0.31                                    | 0.35<br>0.31                            | 0.10<br>0.06                                                              | 0.02<br>0.02                                                      |
| Dif                                 | ,                                       | 1                                       | -                                       | 7                                       | -                                                                 | -                                       | 1                                       | 1                                                                         | m 0                                                               |
| Diff                                |                                         | <0.01                                   | 0.02                                    | 0.02                                    | 88.49                                                             | 1.03                                    | 2.08<br>1.05                            | 4.62<br>3.59                                                              | 9.35<br>8.32                                                      |
| AIC                                 | 18411.3                                 | 18409.3                                 | 18409.4                                 | 18407.4                                 | 18497.8                                                           | 18410.4                                 | 18409.4                                 | 18412.0                                                                   | 18414.7                                                           |
| qt                                  | 11901                                   | 11902                                   | 11902                                   | 11903                                   | 11902                                                             | 11902                                   | 11903                                   | 11903                                                                     | 11904                                                             |
| -2LL                                | 42213.3                                 | 42213.3                                 | 42213.4                                 | 42213.4                                 | 42301.8                                                           | 42214.4                                 | 42215.4                                 | 42218.0                                                                   | 42222.7                                                           |
| EP                                  | 6                                       | ~                                       | $\infty$                                | ٢                                       | ×                                                                 | ×                                       | L                                       | ٢                                                                         | 9                                                                 |
| Model                               | ADE                                     | AE/ADE                                  | ADE/AE                                  | AE                                      | ADE                                                               | ADE                                     | AE/ADE                                  | ADE/AE                                                                    | AE                                                                |

# Table 34: Univariate ADE Sex Limitation BMI

| Group<br>(pairs/singletons) | Mean T1<br>(Variance) | Mean T2<br>(Variance) | Covariance | Correlation |
|-----------------------------|-----------------------|-----------------------|------------|-------------|
|                             |                       |                       |            |             |
| MZ female                   | 0.527                 | 0.521                 | 0.042      | 0.325       |
| (1910/67)                   | (0.12)                | (0.12)                |            |             |
| DZ female                   | 0.511                 | 0.538                 | 0.029      | 0.220       |
| (1203/69)                   | (0.12)                | (0.13)                |            |             |
| MZ male                     | 0.397                 | 0.404                 | 0.033      | 0.345       |
| (805/8)                     | (0.09)                | (0.10)                |            |             |
| DZ male                     | 0.431                 | 0.423                 | 0.019      | 0.159       |
| (590/20)                    | (0.11)                | (0.10)                |            |             |
| DZ opposite sex             | 0.430                 | 0.541                 | 0.019      | 0.154       |
| (1362/35)                   | (0.11)                | (0.12)                |            |             |

Table 35: Means and variances of depression symptoms by twin group

Table 36: Testing model assumptions (SCL-90)

| Model          | EP | -2LL   | df    | AIC      | Diff LL | Diff df | p-value |
|----------------|----|--------|-------|----------|---------|---------|---------|
| Saturated      | 25 | 7546.5 | 11914 | -16281.5 | _       | _       | _       |
| Mean order     | 21 | 7552.2 | 11918 | -16283.8 | 5.75    | 4       | 0.22    |
| Variance order | 17 | 7559.6 | 11922 | -16284.5 | 13.06   | 8       | 0.11    |
| Zyg same sex   | 13 | 7567.5 | 11926 | -16284.5 | 20.98   | 12      | 0.05    |
| Within sex     | 9  | 7577.2 | 11930 | -16282.8 | 30.69   | 16      | 0.01    |
| Across sex     | 7  | 7844.8 | 11932 | -16019.2 | 298.28  | 18      | < 0.01  |

|         |         |        |       |          |              |           |              |                                                                          | FEMALE                                    |                                           |                                           | MALE                                      |                                                    |                                                     |
|---------|---------|--------|-------|----------|--------------|-----------|--------------|--------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| Model   | EP      | -2LL   | df    | AIC      | Diff<br>LL   | Dif<br>df | p-<br>value  | A a                                                                      | J C                                       | <b>थ</b> मि                               | A a                                       | J C                                       | <b>थ</b> म                                         | 50 -                                                |
|         |         |        |       |          |              |           |              | stdA<br>[95%CI]                                                          | stdC<br>[95%CI]                           | stdE<br>[95%CI]                           | staA<br>[95%CI]                           | stdC<br>[95%CI]                           | stdE<br>[95%CI]                                    | -<br>[95%CI]                                        |
| ACE     | 6       | 7577.2 | 11930 | -16282.8 | ,            | ı         | ı            | 0.181<br>0.033<br>0.269<br>[0.145,0.390]                                 | 0.105<br>0.011<br>0.091<br>[0,0.197]      | -0.278<br>0.078<br>0.634<br>[0.602,0.679] | -0.195<br>0.038<br>0.361<br>[0.177,0.417] | 0.009<br><0.001<br>0.0008<br>[0,0.153]    | -0.258<br>0.067<br>0.638<br>[0.583,0.700]          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| AE/ACE  | ~       | 7579.9 | 11931 | -16282.1 | 2.67         | 1         | 0.10         | 0.212<br>0.045<br>0.371<br>[0.334,0.406]                                 |                                           | -0.276<br>0.076<br>0.629<br>[0.594,0.666] | -0.195<br>0.038<br>0.362<br>[0.206,0.417] | <0.001<br><0.001<br>0<br>[0,0.134]        | -0.258<br>0.<br>0.638<br>[0.583,0.699]             | -0.898<br>-<br>[-0.999,-0.615]                      |
| ACE/AE  | ×       | 7577.3 | 11931 | -16284.7 | 0.07         | 1         | 0.79         | 0.184<br>0.034<br>0.279<br>[0.180,0.391]                                 | 0.101<br>0.010<br>0.083<br>[0,0.170]      | -0.278<br>0.077<br>0.638<br>[0.602,0.674] | -0.195<br>0.038<br>0.364<br>[0.306,0.418] |                                           | -0.258<br>0.067<br>0.636<br>[0.582,0.694]          |                                                     |
| AE      | L       | 7579.9 | 11932 | -16284.1 | 2.67         | 2         | 0.26         | $\begin{array}{c} 0.212 \\ 0.045 \\ 0.371 \\ [0.334, 0.406] \end{array}$ |                                           | -0.276<br>0.076<br>0.629<br>[0.594,0.666] | -0.195<br>0.038<br>0.362<br>[0.303,0.417] |                                           | -0.258<br>0.067<br>0.638<br>0.638                  | -0.898<br>-<br>[-0.999,-0.615]                      |
| ACE     | 8       | 7582.1 | 11931 | -16279.9 | 4.88         | 1         | 0.03         | -0.159<br>0.025<br>0.207<br>[0.104,0.296]                                | -0.133<br>0.018<br>0.146<br>[0.075,0.232] | -0.280<br>0.078<br>0.646<br>[0.609,0.685] | -0.149<br>0.022<br>0.213<br>[0.084,0.314] | -0.117<br>0.014<br>0.130<br>[0.060,0.229] | -0.262<br>0.069<br>0.657<br>[0.600,0.719]          | 0                                                   |
| ACE     | 8       | 7577.2 | 11931 | -16284.8 | <0.01        | 1         | >0.99        | -0.181<br>0.033<br>0.269<br>[0.145,0.387]                                | -0.105<br>0.011<br>0.091<br>[0,0.197]     | -0.278<br>0.078<br>0.639<br>[0.602,0.679] | -0.195<br>0.038<br>0.361<br>[0.255,0.417] | -0.009<br><0.0008<br>0.0087]              | -0.258<br>0.067<br>0.638<br>0.638                  |                                                     |
| AE/ACE  | Γ       | 7580.2 | 11932 | -16283.8 | 3.00         | 1 7       | 0.22<br>0.08 | -0.212<br>0.045<br>0.370<br>[0.333,0.404]                                |                                           | -0.277<br>0.076<br>0.631<br>[0.596,0.667] | -0.186<br>0.035<br>0.330<br>[0.200,0.410] | -0.051<br>0.003<br>0.025<br>[0,0.139]     | -0.260<br>0.068<br>0.645<br>0.645<br>[0.590,0.702] |                                                     |
| ACE/AE  |         | 7577.3 | 11932 | -16286.7 | 0.07<br>0.07 | - 1       | 0.97<br>0.80 | -0.184<br>0.034<br>0.279<br>[0.180,0.384]                                | -0.101<br>0.010<br>0.084<br>[0,0.170]     | -0.278<br>0.077<br>0.638<br>[0.602,0.674] | -0.195<br>0.038<br>0.364<br>[0.306,0.418] |                                           | -0.258<br>0.067<br>0.637<br>[0.582,0.694]          |                                                     |
| 29<br>9 | ی<br>۲0 | 7580.4 | 11933 | -16285.7 | 3.16<br>3.16 | m 0       | 0.37<br>0.21 | -0.211<br>0.045<br>0.369<br>[0.333,0.404]                                |                                           | -0.277<br>0.077<br>0.631<br>[0.597,0.667] | -0.193<br>0.037<br>0.357<br>[0.300,0.411] |                                           | -0.260<br>0.067<br>0.643<br>0.643<br>[0.589,0.700] |                                                     |

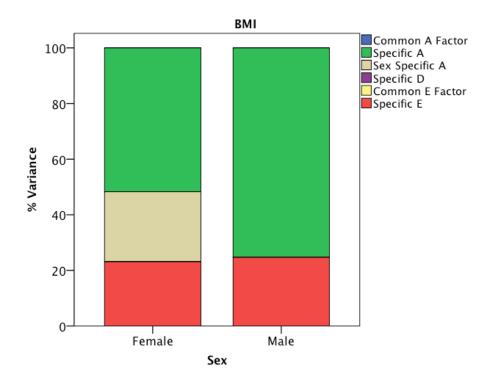
# Table 37: Univariate ACE Sex Limitation Depression Symptoms (SCL-90) VA30k

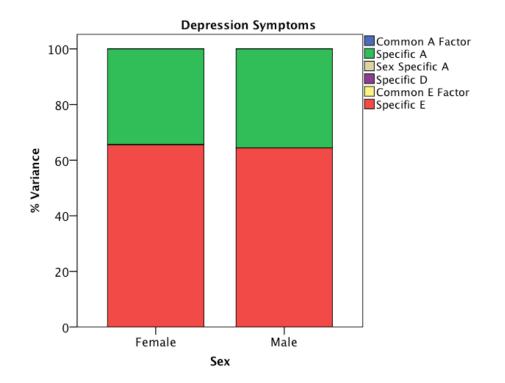
| Model   | EP  | -2LL    | Df    | AIC      | Diff<br>LL    | Dif<br>df | p-<br>value        | a<br>A<br>stdA<br>195%,CI1                  | FEMALE<br>d<br>D<br>stdD                  | e<br>E<br>stdE<br>195%.CII                          | a<br>A<br>staA<br>105%/CI1                                              | MALE<br>d<br>D<br>stdD                   | E<br>E<br>stdE<br>195%CTI                         | rg<br>-<br>1950, CTI            |
|---------|-----|---------|-------|----------|---------------|-----------|--------------------|---------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------|
| ADE     | 6   | 7579.85 | 11930 | -16280.1 |               | 1         |                    | 0.212<br>0.045<br>0.371<br>[0.268,0.406]    | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | -0.276<br>-0.276<br>0.076<br>0.629<br>[0.594,0.666] | -0.191<br>-0.191<br>0.036<br>0.347<br>[0.147,0.417]                     | 0.041<br>0.002<br>0.016<br>[0,0.234]     | 0.258<br>0.067<br>0.637<br>0.637<br>[0.579,0.697] | -0.917<br>-0.999,-0.615]        |
| AE/ADE  | ~   | 7579.85 | 11931 | -16282.1 | 0             | -         | 66.0<              | 0. 212<br>0.045<br>0. 371<br>[0.334,0.406]  |                                           | -0.276<br>0.076<br>0.629<br>[0.594,0.666]           | -0.191<br>0.036<br>0.347<br>[0.163,0.417]                               | 0. 041<br>0. 002<br>0.016<br>[0,0.218]   | 0. 258<br>0. 067<br>0. 637<br>[0.579,0.697]       | -0.917<br>-<br>[-0.999,-0.615]  |
| ADE/AE  | 8   | 7579.86 | 11931 | -16282.1 | 0.01          | 1         | 0.92               | 0. 212<br>0. 045<br>0. 371<br>[0.270,0.406] | 0.000<br>0.000<br>0.000<br>[0,0.103]      | -0.276<br>0.076<br>0.629<br>[0.594,0.666]           | -0.195<br>0.038<br>0.362<br>[0.303,0.417]                               |                                          | 0. 258<br>0. 067<br>0. 638<br>[0.583,0.697]       | -0.898<br>-<br>[-0.999,-0.615]  |
| AE      | ٢   | 7579.86 | 11932 | -16284.1 | 0.01          | 7         | 96 <sup>.</sup> 0< | 0. 212<br>0. 045<br>0. 371<br>[0.334,0.406] |                                           | -0. 276<br>0. 076<br>0. 629<br>[0.594,0.666]        | -0. 195<br>0. 038<br>0. 362<br>[0.303,0.417]                            |                                          | 0. 258<br>0. 067<br>0. 638<br>[0.583,0.697]       | -0. 898<br>-<br>[-0.999,-0.615] |
| ADE     | ×   | 7606.3  | 11931 | -16255.6 | 26.49         | -         | <0.001             | 0.159<br>0.025<br>0.209<br>[0.058,0.330]    | 0.144<br>0.021<br>0.17<br>[0.050,0.325]   | -0.274<br>0.075<br>0.621<br>[0.586,0.657]           | -0.028<br>0.001<br>0.007<br>[0,0.239]                                   | 0.198<br>0.039<br>0.377<br>[0.139,0.438] | -0.254<br>0.064<br>0.616<br>[0.562,0.674]         | 0                               |
| ADE     | ×   | 7579.94 | 11931 | -16282.1 | 0.0           | 1         | 0.77               | -0.212<br>0.045<br>0.37<br>[0.266,0.405]    | -0.004<br>0.000<br>0.000<br>[0,0.107]     | 0.276<br>0.076<br>0.63<br>[0.595,0.666]             | -0.179<br>0.032<br>0.308<br>[0.145,0.408]                               | 0.077<br>0.006<br>0.057<br>[0,0.236]     | 0.258<br>0.067<br>0.635<br>[0.578,0.697]          | 1.0                             |
| AE/ADE  | ٢   | 7579.94 | 11932 | -16284.1 | 0.09<br><0.01 | 1 7       | 0.96<br>0.95       | -0.212<br>0.045<br>0.37<br>[0.334,0.405]    |                                           | 0.276<br>0.076<br>0.63<br>[0.595,0.666]             | -0.179<br>0.032<br>0.306<br>[0.161,0.408]                               | 0.078<br>0.006<br>0.059<br>[0,0.220]     | 0.258<br>0.067<br>0.635<br>0.538,0.697]           | 1.0                             |
| ADE/AE  | ~ 1 | 7580.35 | 11932 | -16283.6 | 0.5<br>0.42   | 1 7       | 0.78<br>0.52       | -0.211<br>0.045<br>0.369<br>[0.261,0.403]   | 0.000<br>0.000<br>0.000<br>[0,0.113]      | 0. 277<br>0. 077<br>0. 631<br>[0.597,0.667]         | -0.193<br>0.037<br>0.357<br>[0.300,0.411]                               |                                          | 0. 260<br>0. 067<br>0. 643<br>[0.589,0.700]       | 1.0                             |
| 30<br>₽ | 9   | 7580.35 | 11933 | -16285.6 | 0.5<br>0.42   | ς<br>α    | 0.92<br>0.81       | -0.211<br>0.045<br>0.369<br>[0.333,0.403]   |                                           | 0. 277<br>0. 077<br>0. 631<br>[0.597,0.667]         | $\begin{array}{c} -0.193 \\ 0.037 \\ 0.357 \\ 0.360, 0.411 \end{array}$ |                                          | 0. 260<br>0. 067<br>0. 643<br>[0.589,0.700]       | 1.0                             |

Table 38: Univariate ADE Sex Limitation Depression Symptoms (SCL-90) VA30k

| Group<br>(pairs/singletons) | Mean T1<br>(Variance) | Mean T2<br>(Variance) | Covariance | Correlation |
|-----------------------------|-----------------------|-----------------------|------------|-------------|
|                             |                       |                       |            |             |
| MZ female                   | 0.373                 | 0.379                 | 0.019      | 0.323       |
| (1929/49)                   | (0.061)               | (0.057)               |            |             |
| DZ female                   | 0.380                 | 0.373                 | 0.007      | 0.113       |
| (1226/45)                   | (0.064)               | (0.058)               |            |             |
| MZ male                     | 0.412                 | 0.400                 | 0.018      | 0.313       |
| (803/7)                     | (0.059)               | (0.056)               |            |             |
| DZ male                     | 0.426                 | 0.410                 | 0.012      | 0.189       |
| (588/19)                    | (0.057)               | (0.063)               |            |             |
| DZ opposite sex             | 0.396                 | 0.375                 | 0.004      | 0.072       |
| (1380/17)                   | (0.059)               | (0.059)               |            |             |

Table 39: Means and variances of impulsivity (EPQ) by twin group VA30k


Table 40: Testing model assumptions for impulsivity (EPQ)


| Model          | EP | -2LL   | df    | AIC      | Diff LL | Diff df | p-value |
|----------------|----|--------|-------|----------|---------|---------|---------|
| Saturated      | 25 | -193.3 | 11964 | -24121.3 | _       | _       | _       |
| Mean order     | 21 | -188.9 | 11968 | -24124.9 | 4.42    | 4       | 0.35    |
| Variance order | 17 | -182.4 | 11972 | -24126.4 | 10.90   | 8       | 0.21    |
| Zyg same sex   | 13 | -180.2 | 11976 | -24132.2 | 13.09   | 12      | 0.36    |
| Within sex     | 9  | -176.8 | 11980 | -24136.8 | 16.58   | 16      | 0.41    |
| Across sex     | 7  | -141.7 | 11982 | -24105.8 | 51.56   | 18      | < 0.001 |

| -           |                      |                                            |                                           |                                           |                                           |                                           |                                          |                                           |                                          |                                          |
|-------------|----------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| ž           | -<br>-<br>[95%CI]    | -0.756<br>-<br>[-0.999,0.999]              | -0.470<br>-<br>[-0.920,-0.131]            | -0.756<br>-<br>[-0.999,-0.188]            | -0.470<br>-<br>[-0.815,-0.131]            | 0 ' ' '                                   |                                          |                                           |                                          |                                          |
| ى           | E<br>stdE<br>[95%CI] | 0.199<br>0.040<br>0.680<br>[0.625,0.738]   | 0.199<br>0.040<br>0.680<br>[0.625,0.738]  | 0.199<br>0.040<br>0.680<br>[0.625,0.738]  | 0.199<br>0.040<br>0.680<br>[0.625,0.738]  | -0.199<br>0.039<br>0.674<br>[0.618,0.732] | 0.200<br>0.040<br>0.680<br>[0.625,0.738] | 0.199<br>0.040<br>0.678<br>[0.621,0.739]  | 0.200<br>0.040<br>0.680<br>[0.625,0.739] | 0.203<br>0.041<br>0.702<br>[0.646,0.761] |
| MALE<br>d   | D<br>stdD<br>[95%CI] | <0.0001<br><0.0001<br><0<br>0<br>[0,0.170] | <0.0001<br><0.0001<br>0<br>[0,0.210]      |                                           |                                           | 0.077<br>0.006<br>0.102<br>[0,0.318]      | -0.014<br>0.0002<br>0.003<br>[0,0.173]   | -0.107<br>0.012<br>0.197<br>[0.015,0.324] |                                          |                                          |
| æ           | A<br>staA<br>[95%CI] | -0.137<br>0.019<br>0.320<br>[0.118,0.375]  | -0.137<br>0.019<br>0.320<br>[0.118,0.375] | -0.137<br>0.019<br>0.320<br>[0.262,0.375] | -0.137<br>0.019<br>0.320<br>[0.262,0.375] | -0.115<br>0.013<br>0.225<br>[0.015,0.348] | 0.136<br>0.019<br>0.317<br>[0.155,0.374] | 0.086<br>0.007<br>0.125<br>[0.021,0.293]  | 0.137<br>0.019<br>0.320<br>[0.262,0.375] | 0.132<br>0.017<br>0.298<br>[0.239,0.354] |
| ಲ           | E<br>stdE<br>[95%CI] | -0.202<br>0.041<br>0.681<br>[0.643,0.721]  | -0.204<br>0.041<br>0.693<br>[0.656,0.731] | -0.202<br>0.041<br>0.681<br>[0.643,0.721] | -0.204<br>0.041<br>0.693<br>[0.656,0.731] | 0.201<br>0.041<br>0.678<br>[0.640,0.718]  | 0.202<br>0.041<br>0.680<br>[0.642,0.720] | 0.204<br>0.042<br>0.695<br>[0.657,0.734]  | 0.202<br>0.041<br>0.680<br>[0.642,0.719] | 0.205<br>0.042<br>0.703<br>[0.665,0.741] |
| FEMALE<br>d | D<br>stdD<br>[95%CI] | 0.109<br>0.012<br>0.200<br>[0,0.341]       |                                           | 0.109<br>0.012<br>0.200<br>[0,0.326]      |                                           | 0.122<br>0.015<br>0.251<br>[0.056,0.359]  | 0.117<br>0.014<br>0.231<br>[0.055,0.342] |                                           | 0.121<br>0.015<br>0.243<br>[0.116,0.327] |                                          |
| æ           | A<br>stdA<br>[95%CI] | 0.084<br>0.007<br>0.119<br>[0,0.325]       | 0.135<br>0.018<br>0.307<br>[0.269,0.344]  | 0.084<br>0.007<br>0.119<br>[0.010,0.325]  | 0.135<br>0.018<br>0.307<br>[0.269,0.344]  | 0.065<br>0.004<br>0.071<br>[0,0.259]      | 0.073<br>0.005<br>0.089<br>[0,0.258]     | 0.135<br>0.018<br>0.305<br>[0.266,0.343]  | 0.068<br>0.005<br>0.077<br>[0.009,0.195] | 0.133<br>0.018<br>0.297<br>[0.259,0.335] |
| 4           | value                |                                            | 0.08                                      | >0.99                                     | 0.22                                      | 0.07                                      | 0.72                                     | 0.02 0.01                                 | 0.92<br>0.83                             | 0.01<br><0.01                            |
| Dif         | df                   |                                            | 1                                         | 1                                         | 0                                         | -                                         | -                                        | 1 7                                       | 1 7                                      | с сı                                     |
| Diff        | ΓΓ                   |                                            | 3.00                                      | <0.01                                     | 3.00                                      | 3.25                                      | 0.12                                     | 7.48<br>7.36                              | 0.17 0.05                                | 11.94<br>11.81                           |
| AIC         |                      | -24135.9                                   | -24134.9                                  | -24137.9                                  | -24136.9                                  | -24134.6                                  | -24137.8                                 | -24132.4                                  | -24139.7                                 | -24129.9                                 |
| df          |                      | 11980                                      | 11981                                     | 11981                                     | 11982                                     | 11981                                     | 11981                                    | 11982                                     | 11982                                    | 11983                                    |
| -2LL        |                      | -175.9                                     | -172.9                                    | -175.9                                    | -172.9                                    | -172.6                                    | -175.8                                   | -168.4                                    | -175.7                                   | -163.9                                   |
| EP          |                      | 6                                          | 8                                         | ~                                         | 2                                         | ∞                                         | 8                                        | 2                                         | F                                        | 0                                        |
| Model       |                      | ADE                                        | AE/ADE                                    | ADE/AE                                    | AE                                        | ADE                                       | ADE                                      | AE/ADE                                    | 1<br>ADE/AE                              | 32<br>¥                                  |

# Table 41: ADE models impulsivity (EPQ) VA30k

Figure 23: Proportion of variance in BMI and depression symptoms due to ACE components (Bivariate)





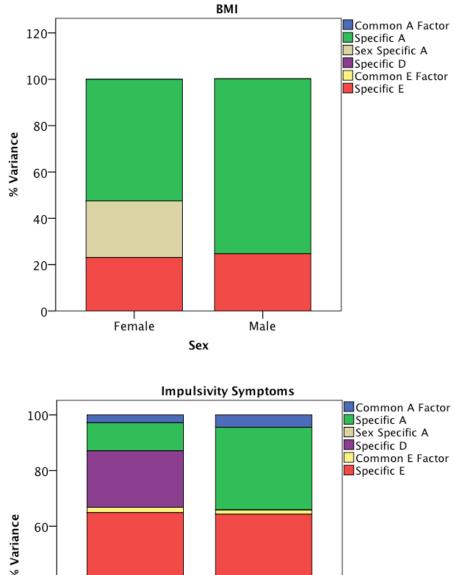



Figure 24: Proportion of variance in BMI and impulsivity symptoms due to ADE components (Bivariate)

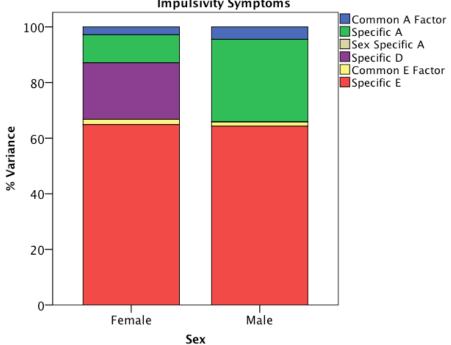
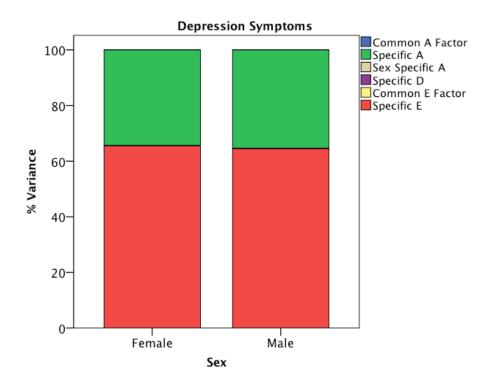
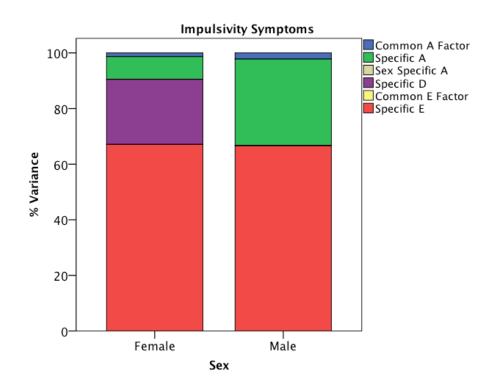





Figure 25: Proportion of variance in depression symptoms and impulsivity due to ADE components (Bivariate)





| Ia                             | ble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42:                                                                                                      | BIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aria                                                                                                         | te n                                                                                   | noa                                                     | lels of E | SIVI.                                                                                                           | I, ae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pres                                                                                                             | SS10                                                                                                                          | nα                                                                                                                                                                                                                                                         | . 1m                                                                                                                             | pul                                                                                | SIVI                                                     | ity |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|-----|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|
| rgDEPmf                        | 95%CI<br>0.488<br>0.125,0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                      | 0.5<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                          | 0.5                                                                                    | 0.5                                                     |           | rgMPmf                                                                                                          | 195%CIJ<br>0.259<br>0.000_0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.497<br>-<br>[0.436,0.500]                                                                                      | 0.498<br>-<br>0.398,0.500]                                                                                                    | 0.499                                                                                                                                                                                                                                                      | 0.496<br>0.490(0.499]                                                                                                            | 0.494<br>-<br>0.487,0.498]                                                         | 0.5                                                      |     | rgiMPmf                     | 0.352<br>0.352<br>-<br>[0,0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.264 0.0005 0.5 0.495<br>[40.524,1] [-0.034.0.050] [0.500,0.500] [0.347,0.500]                                                             | 0.008 0.5 0.5 0.5<br>[00.005.0.040] [0.500,0.500] [0.40.0200]                                                   |                                                                                                             |                                                                                     |                                                           |
|                                | 95%CI 95%CI 95%CI 95%CI -0.004 0.409 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                      | 0.409<br>-<br>0.347,0.479]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.409<br>0.347,0.468]                                                                                        | 0.409<br>[0.347,0.468]                                                                 | 0.41<br>-<br>0.349,0.469]                               |           | rgBMImf                                                                                                         | 95%CII 95%CII 95%CII 95%CI<br>0.037 0.432 0.259<br>[0.001_0.074] [0.361,0.300] [0.000_0.300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5<br>-<br>[0.5,0.5]                                                                                            | 0.038 0.432 0.498<br>[0.001,0.075] [0.432,0.500] [0.398,0.500]                                                                | 0.044 0.408 0.499<br>[0.008,0.079] [0.348,0.466] [0.496,0.500]                                                                                                                                                                                             | 0.046 0.413 0.496<br>[0.011,0.082] [0.353,0.471] [0.490,0.499]                                                                   | 0.415 0.494<br>[0.356,0.473] [0.487,0.498]                                         | 0.41<br>-<br>0.349,0.469]                                |     | rgDEPmf                     | 1955%ct1 1955%ct1<br>0.007 0.499<br>-<br>[-0.05.0.042] [0.292,0.500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5<br>-<br>[0.500,0.500]                                                                                                                    | 0.5<br>-<br>[0500,0.500]                                                                                        | • • •                                                                                                       | • • •                                                                               |                                                           |
| н.                             | -0.004<br>-0.004<br>-0.041,0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                    | -0.002 0.409<br>-0.035,0.039] [0.347,0.479]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001 0.409<br>[-0.035,0.037] [0.347,0.468]                                                                  |                                                                                        |                                                         |           | 31                                                                                                              | [95%CI]<br>0.037<br>[0.001_0.074] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.038<br>-<br>[0.001,0.075]                                                                                      | 0.038<br>-<br>0.001,0.075]                                                                                                    | 0.044<br>-<br>0.008,0.079]                                                                                                                                                                                                                                 | 0.046<br>-<br>0.011,0.082]                                                                                                       |                                                                                    |                                                          |     | з.                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0005<br>-<br>[-0.034,0.050                                                                                                                 | 0.008                                                                                                           | 0.009<br>-<br>[-0.023,0.041]                                                                                |                                                                                     |                                                           |
|                                | 95%CI<br>-0748<br>-1.11 [4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ξ<br>· · ·                                                                                                   |                                                                                        |                                                         |           |                                                                                                                 | 95%CI<br>0.999<br>-<br>[-1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 778.0<br>-<br>[[.0.070.0-]                                                                                       | 0.999<br>-<br>[-1,1]                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | ę.                          | -0.158<br>-0.158<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                 |                                                                                                             | • • •                                                                               |                                                           |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          | -0.01<br>-<br>.068,0.077]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.006                                                                                                       | -0.005<br>-<br>.048,0.037]                                                             |                                                         |           | ¥1                                                                                                              | 95%CI<br>-0.079<br>-0.541,0.147]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.085<br>-<br>1.389,0.136]                                                                                      | -0.063<br>-<br>0.477,0.145]                                                                                                   | 0.098<br>-<br>1.046,0.152]                                                                                                                                                                                                                                 | 0.115<br>-<br>1.053,0.178]                                                                                                       | 0.153<br>-<br>1.099,0209]                                                          |                                                          |     | v                           | 0.078<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.118<br>-<br>[-0.195,0.595]                                                                                                                 | 0.045<br>-<br>[-0.029,0.119]                                                                                    | 0.058<br>-<br>[-0.036,0.154]                                                                                | 0.075<br>-<br>[0.003,0.151]                                                         |                                                           |
| 57<br>E3                       | 0.816<br>0.816<br>0.666<br>0.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.816<br>0.666<br>0.608,0.730] [-(                                                                       | 0.817<br>0.667<br>1609,0.734] [-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.822<br>0.676<br>1.618,0.739] [-(                                                                           | 0.822 -0.005<br>0.676 -<br>[0.618,0.739] [-0.048,0.037]                                | 0.822<br>0.676<br>[0.618,0.739]                         |           |                                                                                                                 | 95% CJ 95% CJ 95% CJ 0.894 -0.079<br>0.8 - 0.873 -0.079<br>0.8 - 0.873 [-0.541,0.147]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.896 -0.085<br>0.804 -<br>[0.737,0.877] [-0.389,0.136]                                                          | 0.895<br>0.802<br>0.802(0.874) [-                                                                                             | 0.911<br>0.832<br>0.764,0.905] [0                                                                                                                                                                                                                          | 0.899<br>0.811<br>0.744,0.883] [0                                                                                                | 0.902 0.153<br>0.813 -<br>[0.746.0.886] [0.099.0.209]                              | 0.898<br>0.806<br>[0.740,0.879]                          |     | e22<br>E22                  | 0.837<br>0.701<br>[0.644,0.764]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.839<br>0.703<br>[0.630,0.783]                                                                                                              | 0.725 0.006 0.851 0.045<br>0.526 0.005 0.725 0.725<br>[0.481,0.575] [-0.016,0.025] [0.666,0.789] [-0.029,0.119] | 0.726 0.008 0.838 0.058<br>0.526 0.006 0.702 -<br>0.481,0.576] [-0.014,0.025] [0.645,0.765] [-0.036,0.154]  | 0.838 0.075<br>0.703 -<br>[0.646,0.766] [0.003,0.151]                               | 0.838<br>0.702<br>[0.645,0.765]                           |
|                                | 95%CI<br>-0.003<br>-0.001<br>[-0.015,0.012] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002<br>0.001<br>0.004,0.014] [0                                                                        | 0.002<br>0.001<br>0.013,0.014] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001<br>0.0004<br>0.013,0.014] [0                                                                           |                                                                                        |                                                         |           | 61<br>[2]                                                                                                       | 95%CI<br>0.033<br>0.015<br>[0.0.030] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 0.034<br>0.015<br>1.001,0.015] [0                                                                                             | 0.04<br>0.018<br>1.003,0.018] [0                                                                                                                                                                                                                           | 0.042<br>0.019<br>1.005,0.034] [0                                                                                                |                                                                                    |                                                          |     | e21<br>E21                  | 0.006<br>0.006<br>0.004<br>0.016,0.025]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0004<br>0.0003<br>[-0.020,0.030]                                                                                                           | 0.006<br>0.005<br>[-0.016,0.025]                                                                                | 0.008<br>0.006<br>-0.014,0.025]                                                                             |                                                                                     |                                                           |
| ell<br>Ell                     | 95% CII         95% CII <t< td=""><td>0.457 0.002 0.816 -0.042<br/>0.209 0.001 0.666<br/>[0.19,0.231] [-0.064,0014] [0.668,0.730] [-0.106,0.022]</td><td>0.454 0.002 0.817 -0.01<br/>0.206 0.001 0.667<br/>0.187.0.228] [-0.013.0.014] [0.669.0.077]</td><td>0454 0.001 0.822 -0.006<br/>0.206 0.0004 0.676 -<br/>(0.187,0.227] [-0.013,0.014] [0.618,0.739] [-0.055,0.043]</td><td>0.454<br/>0.206<br/>[0.187,0.227]</td><td>0.454<br/>0.206<br/>[0.187,0.227]</td><td></td><td></td><td>95%CI<br/>0.452<br/>0.204<br/>[0.185,0.226]</td><td></td><td>0.452 0.034 0.895 -0.063<br/>0.205 0.015 0.802 -<br/>[0.204,0.205] [0.001,0.015] [0.802,0.874] [-0.477,0.145]</td><td>0.454 0.04 0.911 0.098<br/>0.206 0.018 0.832 -<br/>[0.187.0.227] [0.005.0.018] [0.764.0.905] [0.046.0.122]</td><td>0.454 0.042 0.899 0.115<br/>0.206 0.019 0.811 -<br/>[0.187.0.227] [0.005.0.034] [0.744.0.883] [0.053.0178]</td><td>0.454<br/>0.206<br/>[0.187,0.227]</td><td>0.454<br/>0.206<br/>[0.187,0.227]</td><td></td><td>ell<br/>Ell</td><td>-</td><td>0.713 0.0004 0.839 0.118<br/>0.509 0.0003 0.703 -<br/>[0.450.0.575] [-0.020,0.030] [0.650,0.783] [-0.195.0.995]</td><td>0.725<br/>0.526<br/>[0.481,0.575]</td><td>0.726<br/>0.526<br/>[0.481,0.576]</td><td>0.726<br/>0.527<br/>[0.482,0.576]</td><td>0.725<br/>0.526<br/>[0.481,0.576]</td></t<> | 0.457 0.002 0.816 -0.042<br>0.209 0.001 0.666<br>[0.19,0.231] [-0.064,0014] [0.668,0.730] [-0.106,0.022] | 0.454 0.002 0.817 -0.01<br>0.206 0.001 0.667<br>0.187.0.228] [-0.013.0.014] [0.669.0.077]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0454 0.001 0.822 -0.006<br>0.206 0.0004 0.676 -<br>(0.187,0.227] [-0.013,0.014] [0.618,0.739] [-0.055,0.043] | 0.454<br>0.206<br>[0.187,0.227]                                                        | 0.454<br>0.206<br>[0.187,0.227]                         |           |                                                                                                                 | 95%CI<br>0.452<br>0.204<br>[0.185,0.226]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.452 0.034 0.895 -0.063<br>0.205 0.015 0.802 -<br>[0.204,0.205] [0.001,0.015] [0.802,0.874] [-0.477,0.145]                   | 0.454 0.04 0.911 0.098<br>0.206 0.018 0.832 -<br>[0.187.0.227] [0.005.0.018] [0.764.0.905] [0.046.0.122]                                                                                                                                                   | 0.454 0.042 0.899 0.115<br>0.206 0.019 0.811 -<br>[0.187.0.227] [0.005.0.034] [0.744.0.883] [0.053.0178]                         | 0.454<br>0.206<br>[0.187,0.227]                                                    | 0.454<br>0.206<br>[0.187,0.227]                          |     | ell<br>Ell                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.713 0.0004 0.839 0.118<br>0.509 0.0003 0.703 -<br>[0.450.0.575] [-0.020,0.030] [0.650,0.783] [-0.195.0.995]                                | 0.725<br>0.526<br>[0.481,0.575]                                                                                 | 0.726<br>0.526<br>[0.481,0.576]                                                                             | 0.726<br>0.527<br>[0.482,0.576]                                                     | 0.725<br>0.526<br>[0.481,0.576]                           |
| C 77                           | 0.000<br>0.000<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 0<br>0.001<br>[0,0.038] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                                        |                                                         |           | d22<br>D77                                                                                                      | 95%CI<br>0.0001<br>0.08<br>[0.0.325] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11<br>0.053<br>[0.0.256] [0                                                                                    | 0<br>0.074<br>[0,0.074] [0                                                                                                    |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | d22<br>D22                  | 0.05<br>0.05<br>0.003<br>0.003<br>0.0225]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.051<br>0.003<br>[0,0280]                                                                                                                   |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| 5 5                            | 95%CI<br>0.000<br>0<br>[-0.035,0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002<br>0<br>[0,0.002]                                                                                  | -0.032<br>-0.002<br>[-0.052,0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                        |                                                         |           | 421<br>171                                                                                                      | 95%CI<br>0.282<br>0.084<br>[0,0.186]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.201<br>0.084<br>[0,0.175]                                                                                      | 0.272<br>0.077<br>[0,0.178]                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | 421<br>D21                  | Powell         Powell<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.424 0.067 0.565 0.36 -0.014 0.051<br>0.18 0.029 0.334 0.13 -0.005 0.003<br>[0.040,0.357] [-0.043,0.119] [0.061,040] [0.0230]               |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| 5                              | 0.014<br>0.014<br>0<br>1] [0,0.095]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>[0.0.004]                                                                                      | 0.052<br>0.003<br>[0,0.084]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                                        |                                                         |           | IIP III                                                                                                         | 0.296<br>0.088<br>0.088<br>0.0258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.418<br>0.175<br>0.051,0306                                                                                     | 0.283<br>0.081<br>0.080,0254                                                                                                  |                                                                                                                                                                                                                                                            | ••••                                                                                                                             | ••••                                                                               | ••••                                                     |     | IIP                         | 0.127<br>0.127<br>0.127<br>4] [0.0.262]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36<br>0.13<br>0] [0,0.292]                                                                                                                 | 2]                                                                                                              | 3] .                                                                                                        | 3] .                                                                                |                                                           |
|                                | 195%CII         195%CII         195%CII         195%CII         195%CII         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.792 -0.026 0.618 0<br>0.528 -0.02 0.383 0<br>[0.585,0673] [-0.052,0011] [0.311,0.450] [0,0.004]        | 0.79 -0.006 0.617 0.052<br>0.624 -0.005 0.38 0.003<br>[0.537,067] [-0.0333,0.033] [0.253,045] [0.0.084]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.792 -0.004 0.611<br>0.627 -0.003 0.373<br>[0.584,0.671] [-0.027,0.021] [0.307,0.440]                       | 0.792 -0.003 0.611<br>0.627 -0.003 0.373<br>[0.584,0.671] [-0.023,0.018] [0.307,0.440] | 0.611<br>0.373<br>[0.306,0.440                          |           | a22<br>A 77                                                                                                     | J95%CII         J95%CII <t< td=""><td>0.672 -0.049 0.571 0.418<br/>0.451 -0.033 0.329 0.175<br/>(0.319,0.584] [-0.122,0.057] [0.133,0.426] [0.051,0.306]</td><td>0.739 -0.035 0.555 0.283<br/>0.546 -0.036 0.309 0.081<br/>[0.371,0.654] [-0.126,0.071] [0.081,0.451] [0.080,0.254]</td><td>0.792 0059 0.592<br/>0.627 0.046 0.354<br/>[0.584,0.671] [0.022,0.072] [0.281,0.354]</td><td>0.792 0.07 0.608<br/>0.627 0.056 0.375<br/>[0.585,0.672] [0.026,0.087] [0.302,0.448]</td><td>0.792 0.093 0.603<br/>0.628 0.074 0.373<br/>[0.585,0.673] [0.048,0.102] [0.300,0446]</td><td>0.615<br/>0.379<br/>[0.306,0.451]</td><td></td><td>a22<br/>A22</td><td>0.571<br/>0.571<br/>0.329<br/>6] [0.115,0.39</td><td>0.565<br/>0.324<br/>9] [0.061,0.41</td><td>0.539 0.025 0.554<br/>0.29 0.013 0.554<br/>[0.239,0.343] [-0.009,0.036] [0.245,0.372]</td><td>0.539 0.034 0.573<br/>0.29 0.018 0.33<br/>0.239,0343] [-0.011,0.048] [0.267,0.393]</td><td>0.538 0.043 0.572<br/>0.29 0.023 0.329<br/>[0.238,0.342] [0.001,0.047] [0.266,0.393]</td><td>0.574<br/>0.33<br/>[0.267,0.393]</td></t<> | 0.672 -0.049 0.571 0.418<br>0.451 -0.033 0.329 0.175<br>(0.319,0.584] [-0.122,0.057] [0.133,0.426] [0.051,0.306] | 0.739 -0.035 0.555 0.283<br>0.546 -0.036 0.309 0.081<br>[0.371,0.654] [-0.126,0.071] [0.081,0.451] [0.080,0.254]              | 0.792 0059 0.592<br>0.627 0.046 0.354<br>[0.584,0.671] [0.022,0.072] [0.281,0.354]                                                                                                                                                                         | 0.792 0.07 0.608<br>0.627 0.056 0.375<br>[0.585,0.672] [0.026,0.087] [0.302,0.448]                                               | 0.792 0.093 0.603<br>0.628 0.074 0.373<br>[0.585,0.673] [0.048,0.102] [0.300,0446] | 0.615<br>0.379<br>[0.306,0.451]                          |     | a22<br>A22                  | 0.571<br>0.571<br>0.329<br>6] [0.115,0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.565<br>0.324<br>9] [0.061,0.41                                                                                                             | 0.539 0.025 0.554<br>0.29 0.013 0.554<br>[0.239,0.343] [-0.009,0.036] [0.245,0.372]                             | 0.539 0.034 0.573<br>0.29 0.018 0.33<br>0.239,0343] [-0.011,0.048] [0.267,0.393]                            | 0.538 0.043 0.572<br>0.29 0.023 0.329<br>[0.238,0.342] [0.001,0.047] [0.266,0.393]  | 0.574<br>0.33<br>[0.267,0.393]                            |
|                                | -0.032<br>-0.026<br>-0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.026<br>-0.02<br>5] [-0.052,0.01                                                                       | -0.006<br>-0.005<br>1 [-0.033,0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.004<br>-0.003<br>[] [-0.027,0.02                                                                          | -0.003<br>-0.003<br>[] [-0.023,0.0]                                                    |                                                         |           | a21                                                                                                             | 95%CI<br>-0.08<br>-0.032<br>-0.133,0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.049<br>-0.033<br>[-0.122,0.057]                                                                               | -0.035<br>-0.026<br>[-0.126,0.071]                                                                                            | 0.059<br>0.046<br>[0.022,0.072]                                                                                                                                                                                                                            | 0.07<br>0.056<br>[0.026,0.087]                                                                                                   | 0.093<br>0.074<br>[0.048,0.102]                                                    |                                                          |     | a21<br>A21                  | 0.045<br>0.045<br>0.019<br>1 [-0.035,0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.067<br>0.029<br>] [-0.043,011                                                                                                              | 0.025<br>0.013<br>1 [-0.009,0.03                                                                                | 0.034<br>0.018<br>] [-0.011,0.04                                                                            | 0.043<br>0.023<br>[0.001,0.045]                                                     |                                                           |
|                                | 0.792<br>0.792<br>0.626<br>0.5250671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 0.79<br>0.624<br>[0.537,0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.792<br>0.627<br>[0.584,067                                                                                 | 0.792<br>0.627<br>[0.584,067                                                           | 0.792<br>0.627<br>[0.584,0.67]                          |           | MALES:<br>aft                                                                                                   | 0.539<br>0.539<br>0.539<br>0.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.672<br>0.451<br>[0.3 19,0.584]                                                                                 | 0.739<br>0.546<br>[0.371,0.654]                                                                                               | 0.792<br>0.627<br>[0.584,0.671]                                                                                                                                                                                                                            | 0.792<br>0.627<br>[0.585,0.672]                                                                                                  | 0.792<br>0.628<br>[0.585,0.673]                                                    | 0.792<br>0.627<br>[0.584,0.671]                          |     | MALES:<br>all<br>All        | 0.426<br>0.426<br>0.181<br>[0.064,0342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.424<br>0.18<br>[0.040,0.337                                                                                                                | 0.539<br>0.29<br>[0.239,0343                                                                                    | 0.539<br>0.29<br>[0.239,0343                                                                                | 0.538<br>0.29<br>[0.238,0342                                                        | 0.539<br>0.29<br>[0.239,0343]                             |
| #5.22<br>A422                  | 0.010<br>0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                                        |                                                         |           | as22<br>Ac77                                                                                                    | 95%CI<br>0.325<br>0.106<br>0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | as 22<br>As 22              | 0.005 0.062<br>-0.243 -0.051<br>-0.005 0.062<br>-0.059 [0,0.300] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| a21<br>A21                     | 0.126<br>0.126<br>0.073<br>0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          | [6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                        |                                                         |           | as21                                                                                                            | -0.018<br>-0.018<br>-0.009<br>[-0.151,0.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| ast!<br>Ast!                   | 198%CII         1000         0.010           0.558         -0.004         -0.955         0.955         0.125         0.100         0.10         0.10         0.010         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.11         0.010         0.12         0.010         0.11         0.010         0.11         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.015         0.016         0.016         0.015         0.016         0.016         0.016         0.015         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         0.016         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [ <i>L</i>                                                                                               | 0.558 0.002 0.967 0.585<br>0.311 0.001 0.956 0.342<br>[0.292,0.331] [-0.019,0.021] [0.882,0.944] [0.130,0.539]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 258 0 000 0 96 0 585<br>0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 0.96 0.585<br>0.921 0.342<br>[0.870,0.975] [0.127,0.538]                               | 0.96 0.583<br>0.921 0.339<br>[0.870,0.975] [0.126,0.54] |           | asll                                                                                                            | 0.507<br>0.257<br>0.257<br>0.0.490]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | 0.511<br>0.261<br>0.261                                                                                                       | 0.588         0.041         0.921         0.87           0.311         0.023         0.88         0.345           0.311         0.023         0.88         0.345           [0.292,0.331]         [0.004,0.041]         [0.800,0.900]         [0.134,0.236] | 0.573<br>0.328<br>0.17,0.521                                                                                                     | 0.908 0.567<br>0.824 0.321<br>[0.777,0.874] [0.111,0.513]                          | 0.907 0.583<br>0.822 0.339<br>[0.776,0.873] [0.126,0.534 |     | asll                        | -0.022<br>-0.005<br>2] [0,0255]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [6                                                                                                                                           |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| 61<br>E22                      | 0.95%<br>0.965<br>0.931<br>18] [0.876,0.989]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.966<br>0.934<br>21][0.881,0.9                                                                          | 0.967<br>0.936<br>21] [0.882,0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.96<br>0.921<br>20][0.870,0.97                                                                              | 0.96<br>0.921<br>[0.870,0.97                                                           | 0.96<br>0.921<br>[0.870,0.97                            |           | 622<br>E.W                                                                                                      | 0.907<br>0.907<br>0.824<br>0.776,0.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.906<br>0.822<br>[0.775,0.873]                                                                                  | 0.906<br>0.821<br>0.821,0.872                                                                                                 | 0.921<br>0.85<br>0.85<br>0.803,0.900                                                                                                                                                                                                                       | 0.907<br>0.824<br>] [0.777,0.874                                                                                                 | 0.908<br>0.824<br>[0.777,0.874                                                     | 0.907<br>0.822<br>[0.776,0.873                           |     | 622<br>E22                  | 0.247<br>0.718<br>0.718<br>0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86<br>0.74<br>665,0.77                                                                                                                     | 0.741<br>0.741<br>0.700,0.78                                                                                    | 0.847<br>0.717<br>9] [0.676,0.76                                                                            | 0.846<br>0.717<br>[0.676,0.760]                                                     | 0.846<br>0.716<br>[0.676,0.760                            |
| 621<br>E21                     | -0.004<br>-0.004<br>-0.002<br>23 [-0.022,0.018]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002<br>0.001<br>57] [-0.018,0.0                                                                        | 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                         |                                                                                        | [18                                                     |           | 621<br>E21                                                                                                      | 95%CI<br>0.034<br>0.019<br>1 [0.0.038]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.034<br>0.019<br>0.0.08]                                                                                        | 0.034 0.019 [0.001,0.038                                                                                                      | 0.041<br>0.023<br>[0.004,0.041                                                                                                                                                                                                                             | 0.042<br>0.024<br>[0.006,0.042                                                                                                   |                                                                                    |                                                          |     | 621<br>E21                  | 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0 | 0.0004<br>0.0004<br>6] [-0.024,0.0                                                                                                           | 0.847 0.007 0.86<br>0.717 0.006 0.741<br>[0.677,0.759] [-0.018,0.030] [0.700,0.784]                             | 0.008<br>0.006<br>0.005                                                                                     | [6                                                                                  | [6                                                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.558<br>0.311<br>[0.292,0.33                                                                                | 0.558<br>0.311<br>[0.292,0.331]                                                        | 0.558<br>0.311<br>[0.292,0.331                          |           | ell                                                                                                             | 95% CJ 95% CJ 95% CJ 0.002 0.557<br>0.241 0.311<br>[0.017,0.423] [0.292,0.331]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.275 0.558<br>0.327 0.311<br>[0.156.0.426] [0.295.0.332]                                                        | 0 0.557 0.034 0.906 0.511<br>0.338 0.311 0.019 0.521 0.261<br>[0.168,0.450] [0.311,0.231] [0.001,0.038] [0.872] [0.100,0.261] | 0.558<br>0.311<br>[0.292,0.331                                                                                                                                                                                                                             | 0508 0538 0.042 0.907 0.573<br>0.258 0.311 0.024 0.824 0.288<br>0.111.0.567 [0.293,0.332] [0.006,0.042] [0.770,0874] [0.170,221] | 0.096,0.347] [0.292,0.331]                                                         | 0.558<br>0.311<br>0.292,0.331                            |     | E EI                        | 0.873,07541 [0.9756c1] [0.847<br>0.844 0.006 0.847<br>0.712 0.005 0.718<br>[0.673,0754] [-0.019,0.030] [0.676,0762] [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.034 -0.129 0.473 0.847 0.0004 0.86<br>0.001 -0.004 0.241 0.718 0.0004 0.74<br>0.0168] [-0.095.0.051][0.082.0.738][0.665.0.735][0.665.0773] | 0.847<br>0.717<br>[0.677,0.79                                                                                   | 0.503 0.847 0.008 0.847<br>0.253 0.717 0.006 0.717<br>0.1220.344] [0.677.0.799] [-0.017,0.029] [0.676.0760] | 0.5 0.847<br>0.25 0.717<br>[0.120,0.284] [0.677,0.759]                              | 0.206 0.847<br>0.256 0.717<br>[0.123,0.347] [0.678,0.759] |
|                                | 0.135<br>0.135<br>0.135<br>8] [0,0.281]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.359<br>0.145<br>9] [0.013,0.25                                                                         | 0.001<br>0.154<br>[0,03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                        |                                                         |           | d22<br>072                                                                                                      | 0.0002<br>0.0002<br>0.241<br>0.017,0.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.275<br>0.327<br>0.156,0.426                                                                                    | 0<br>0.338<br>[0.168,0.430                                                                                                    |                                                                                                                                                                                                                                                            | 0.508<br>0.258<br>[0.111,0.367]                                                                                                  | 0.488<br>0.238<br>[0.096,0.347                                                     | 0.542<br>0.294<br>[0.141,0.399]                          |     | d22<br>D22                  | 0.456<br>0.456<br>0.213<br>[0,0.360]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.473<br>0.241<br>1] [0.082,0.37                                                                                                             |                                                                                                                 | 0.503<br>0.253<br>[0.122,0.34                                                                               | 0.5<br>0.25<br>[0.120,0.28                                                          | 0.506<br>0.256<br>[0.123,0.34                             |
| 8 8                            | 95%CI<br>-0.275<br>-0.026<br>[-0.102,0.068]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.126<br>0.037<br>7] [-0.004,0.07                                                                        | -0.392<br>0<br>[-0.019,0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                                                                        |                                                         |           | 12h                                                                                                             | 95%CI<br>0.491<br>0.072<br>[0.0.213]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.501<br>0.071<br>[0,0.160]                                                                                      | 0.582<br>0.063<br>[0,0.148]                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | d21<br>D21                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.129<br>-0.004<br>[-0.095,0.05                                                                                                             |                                                                                                                 |                                                                                                             |                                                                                     |                                                           |
| 5 5                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.293<br>0.086<br>82][0.001,0.18                                                                         | 0.833         -0.006         0.563         0           0.694         -0.005         0.317         0           (0.497.0.957)         [-0.031.0.043]         [0.145.0.256]         [0.0.053]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43]<br>                                                                                                      | 43]<br>· · ·                                                                           | 43] -                                                   |           | IIP                                                                                                             | 0.148<br>0.022<br>0.0187]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.142<br>0.02<br>[0.0.122]                                                                                       | 0.108<br>0.012<br>0.012                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | II                          | 0.034 0.001 [0,0.122]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                 | - [ <i>t</i>                                                                                                | [6                                                                                  |                                                           |
| a22<br>A22                     | 1 95%C<br>0.569<br>0.325<br>0.15] [0.018,0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.572<br>0.328<br>12] [0.157,0.4                                                                         | 0.363 0.317 0.317 0.317 0.317 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0.697<br>0.485<br>025] [0.428,0.5                                                                          | 1 0.697<br>0.485<br>0.22] [0.428,0.5                                                   | 0.697<br>0.485<br>[0.428,0.543]                         |           | a22<br>437                                                                                                      | 0.198<br>0.198<br>0.039<br>3] [0,0.190]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.246<br>0.061<br>8] [0,0.221]                                                                                   | 0.05<br>0.05<br>4][0.050,0.20                                                                                                 | 0.598<br>0.361<br>[0.311,0.41                                                                                                                                                                                                                              | 0.355<br>0.128<br>0] [0.036,0.26                                                                                                 | 0.38<br>0.148<br>1 [0.056,0.28]                                                    | 0.305<br>0.093<br>[0.011,0.23                            |     | a22<br>A22                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.267<br>0.072<br>2] [0,0.245]                                                                                                               | 0.559<br>0.313<br>0.270,0.35                                                                                    | 0.29<br>0.084<br>1] [0.012,0.20                                                                             | 0.295<br>0.088<br>0.015,0.20                                                        | 0.285<br>0.081<br>[0.009,0.206]                           |
| 8:<br>a21<br>A21               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.024<br>-0.023<br>-0.06,0.0                                                                            | -0.006<br>-0.005<br>57] [-0.031,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.833 -0.004 0.697<br>0.694 -0.003 0.485<br>[0.497,0.915] [-0.032,0.025] [0.428,0.543]                       | 0.834 -0.004 0.697<br>0.695 -0.003 0.485<br>[0.498,0.915] [-0.027,0.022] [0.428,0.543] | -<br>-<br>-                                             |           | a21                                                                                                             | 95%CI<br>-0.016<br>-0.014<br>-0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.008 -0.021<br>1.017 -0.021<br>[0.908,1.075] [-0.106,0.048] [                                                   | 0.874 -0.014 0.223<br>0.764 -0.012 0.05<br>[0.533,0.764] [-0.094,0.044] [0.050,0.209]                                         | 0.832 0.059 0.598<br>0.692 0.049 0.361<br>[0.499,0.908] [0.023,0.076] [0.311,0.411]                                                                                                                                                                        | 0.841 0.041 0.355<br>0.707 0.035 0.128<br>[0.513,0.925] [0.014,0.060] [0.036,0.266]                                              | 0.846 0.059 0.38<br>0.716 0.05 0.148<br>[0.522,0.932] [0.028,0.074] [0.056,0.281]  |                                                          |     | a21<br>A21                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.623 0.032<br>0.389 0.02<br>[0.219,0.404] [-0.030,0.102]                                                                                    | 0.615 0.025 0.559<br>0.378 0.015 0.313<br>[0.334,0.423] [-0.010,0.041] [0.270,0.357]                            | 0.615 0.017 0.29<br>0.378 0.01 0.084<br>[0.334,0.423] [-0.006,0.031] [0.012,0.207]                          | 0.615 0.022 0.295<br>0.378 0.014 0.088<br>[0.334,0.423] [0.001,0.030] [0.015,0.209] |                                                           |
| FEMALES<br>all                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.833<br>0.694<br>[0.497,0.9                                                                                 |                                                                                        | 0.835<br>0.697<br>[0.501,0.917]                         |           | FEMALES                                                                                                         | 95%CI         95%CI         95%CI         95%CI           0.87         -0.016         0.138           0.757         -0.014         0.039           (0.519,1057)         -0.090,0.043         [0.0.190]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.008<br>1.017<br>[0.908,1.072                                                                                   | 0.874<br>0.764<br>[0.533,0.76                                                                                                 | 0.832<br>0.692<br>[0.499,090]                                                                                                                                                                                                                              | 0.841<br>0.707<br>[0.513,092                                                                                                     | 0.846<br>0.716<br>[0.522,093                                                       | 0.835<br>0.697<br>[0.501,0917]                           |     | FEMALES:<br>all<br>All      | 0.617<br>0.617<br>0.381<br>[0.127,0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.623<br>0.389<br>[0.219,0.404                                                                                                               | 0.615<br>0.378<br>[0.334,0.423                                                                                  | 0.615<br>0.378<br>[0.334,0.423                                                                              | 0.615<br>0.378<br>[0.334,0.423                                                      | 0.615<br>0.378<br>[0.334,0.423]                           |
| f p-value                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                          | 0.28                                                                                   | 0.36                                                    |           | an la series de la s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95-0                                                                                                             | 09.0                                                                                                                          | 0.04                                                                                                                                                                                                                                                       | 19.0                                                                                                                             | 0.13                                                                               | < 0.0001                                                 |     | p-value                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.47                                                                                                                                         | 0.06                                                                                                            | 0.86                                                                                                        | 0.89                                                                                | 0.56<br>0.11<br>0.04                                      |
| Didt                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                        | 9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L L                                                                                                          | 2 8                                                                                    | 3 9                                                     |           | Distr                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e                                                                                                                | 7                                                                                                                             | ٢                                                                                                                                                                                                                                                          | Ŷ                                                                                                                                | ~ =                                                                                | *                                                        |     | Difdr                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | е                                                                                                                                            | 90 VI                                                                                                           | r- 4                                                                                                        | 30 V                                                                                | 6 N -                                                     |
| AIC DIITLL                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21169.4 9.12                                                                                             | 21167.08 4.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21162.05 9.77                                                                                                | 21160.06 9.77                                                                          | 21158.12 9.83                                           |           | The second se | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.23                                                                                                             | 69 0.75                                                                                                                       | 66 14.71                                                                                                                                                                                                                                                   | 45 4.51                                                                                                                          | .11 11.17<br>6.66                                                                  | 25 42.3                                                  |     | (EPQ)<br>DIFFLL             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83 2.51                                                                                                                                      | 43 IS.II<br>12.55                                                                                               | 58 3.26<br>0.7                                                                                              | 89 3.57<br>1.01                                                                     | 04 7.72<br>4.46<br>4.15                                   |
| (SCL-90)<br>df A               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23830 211                                                                                                | 23829 2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23834 2110                                                                                                   | 23835 2110                                                                             | 23836 211:                                              |           | ALC ALC                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 20645.17                                                                                                      | 79 20644.69                                                                                                                   | 84 20648.66                                                                                                                                                                                                                                                | 83 20640.45                                                                                                                      | 84 20645.11                                                                        | 85 20674.25                                              |     | & Impulsivity -             | 19701.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 19697.83                                                                                                                                   | 4 19700.43<br>IL                                                                                                | 3 19690.58<br>II.                                                                                           | 4 19688.89<br>II.                                                                   | 5 19691.04<br>111.b<br>1V.                                |
| sion Symptoms<br>-2LL          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68829.4 2                                                                                                | 68825.08 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68830.05 2                                                                                                   | 68830.06 2                                                                             | 68830.12 2                                              |           | vity (EPQ)                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68405.17 23880                                                                                                   | 68402.69 23879                                                                                                                | 68416.66 23884                                                                                                                                                                                                                                             | 68406.45 23883                                                                                                                   | 68413.11 23884                                                                     | 68444.25 23885                                           |     | JP Tr 4L                    | 332 239(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.83 2.39.09                                                                                                                                 | 8.43 2.3914                                                                                                     | 6.58 2.3913                                                                                                 | 6.89 2.3914                                                                         | 1.04 23915                                                |
| BMI & Depression               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 68                                                                                                    | 23 681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 681                                                                                                       | 15 681                                                                                 | 13 681                                                  |           | BMI & Impulsivity<br>EP -21                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 6840                                                                                                          | 23 6840                                                                                                                       | 17 6841                                                                                                                                                                                                                                                    | 18 6840                                                                                                                          | 16 6841                                                                            | 14 6844                                                  |     | ression Symptoms<br>EP -2LL | 25 6751.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 67515.83                                                                                                                                  | 16 67528.43                                                                                                     | 17 6751658                                                                                                  | 15 67516.89                                                                         | 13 67521.04                                               |
| x Limitation B                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | effects                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                                        |                                                         |           | Limitation BM                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                    |                                                          |     | imitation Dep               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                 |                                                                                                             | 13                                                                                  |                                                           |
| able 1: Bivariate Sex<br>fodel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drop Sex specific effects                                                                                | drop as22 & as21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | V. Drop e21 (rE)                                                                       | .Drop a21 (rA)                                          |           | Bivariate Sex.                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drop Sex specific effects                                                                                        | rop as 22 & as 21                                                                                                             | AE (drop d11,d21,d22)                                                                                                                                                                                                                                      | .E/ADE AE/AE (keep df22)                                                                                                         | Drop e21 (rE)                                                                      | Drop a21 (rA)                                            |     | Bivariate Sex I             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trop Sex specific effects                                                                                                                    | AE (drop d11,d21,d22)                                                                                           | AE/ADE AE/AE<br>(keep df22)                                                                                 | Drop e21 (rE)*                                                                      | trop a21 (rA)                                             |
| able 1<br>fodel                | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Dro                                                                                                    | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAE                                                                                                          | V. Dr                                                                                  | , Dro                                                   |           | de 2. Bivar                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop.                                                                                                            | ropas                                                                                                                         | VE (                                                                                                                                                                                                                                                       | IV/IT                                                                                                                            | Drop                                                                               | Drop:                                                    | I   | lel. B                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sqort                                                                                                                                        | iAE(                                                                                                            | (keep                                                                                                       | - dorc                                                                              | Irop a                                                    |

# Table 42: Bivariate models of BMI, depression & impulsivity

# Table 43: Trivariate independent pathway models of impulsivity, BMI & depression Sx


|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        | -                                                                       |                                                                          | 1                                           |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                 | es.33<br>Sul -2<br>Sul -2<br>[95%CI]  | 0.203<br>0.784<br>0.614<br>[0.0.684]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.803<br>0.784<br>0.614<br>[0.0.684]      | 0.803<br>0.784<br>0.614<br>0.614           | 0.804<br>0.785<br>0.617<br>0.617      | 0.806<br>0.787<br>0.619<br>[0.0.684]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.807<br>0.788<br>0.621<br>[0.0.684]                                    | 0.807<br>0.788<br>0.621<br>[0.0.684]                                      | 0.807<br>0.788<br>0.621<br>[0.0.684]                                      | 0.807<br>0.788<br>0.621<br>[0.0.684]                                      | 0.807<br>0.788<br>0.62<br>[0.0.684]                                        | 0.807<br>0.788<br>0.621<br>[0.0.684]                                  | 0.806<br>0.787<br>0.62<br>[0.0.684]                                        | 0801<br>0.080<br>0.0617<br>0.0610                                          | 0.819<br>0.8<br>0.64<br>[0.0.7]                                        | 0.808<br>0.789<br>0.623<br>0.5650.688                                   | 0.807<br>0.788<br>0.621<br>[0.0.684]                                     | 0.807<br>0.788<br>0.62<br>[0.0.684]         |
|                                                                                                                 | es22<br>8d<br>8d*2<br>6%CI            | 0.451<br>0.494<br>0.244<br>0.274]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.451<br>0.494<br>0.244<br>0.244          | 0.451<br>0.494<br>0.244<br>0.244           | 0.452<br>0.495<br>0.245<br>0.245      | 0.451<br>0.495<br>0.245<br>0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.453<br>0.497<br>0.247<br>0.247                                        | 0.453<br>0.497<br>0.247<br>0.247                                          | 0.453<br>0.497<br>0.247<br>0.247                                          | 0.453<br>0.497<br>0.247<br>0.247                                          | 0.453<br>0.497<br>0.247<br>0.247                                           | 0.453<br>0.497<br>0.247<br>0.247                                      | 0.453<br>0.497<br>0.247<br>0.247                                           | 0.453<br>0.497<br>0.247<br>22.0.275]                                       | 0.453<br>0.497<br>0.247<br>0.247                                       | 0.453<br>0.497<br>0.247<br>0.247                                        | 0.453<br>0.497<br>0.247<br>22.0.275]                                     | 0.453<br>0.497<br>0.247<br>222.0.275]       |
|                                                                                                                 | _                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0.711<br>0.653<br>0.426<br>0.0723] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                       | 2                                                                         | 2                                                                         | 2                                                                         | 2                                                                          | 2                                                                     | 2                                                                          | 2                                                                          | 2                                                                      | 2                                                                       | 156<br>143<br>021<br>0.733] [0.                                          | 2                                           |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0.399 0<br>0.39 0<br>0.152 0<br>0.0315 [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                       | -                                                                         | -                                                                         | -                                                                         | -                                                                          |                                                                       | -                                                                          | -                                                                          | -                                                                      | -                                                                       | 4.389 0<br>4.38 0<br>0.145 0<br>0.0283 [0]                               | _                                           |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           | 9.0.0                                                                     | 0.0.0                                                                     | 0.00                                                                       | 0.0.0                                                                 | 0.000                                                                      | 00<br>000<br>000                                                           |                                                                        | 000                                                                     | 999                                                                      | 3338                                        |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0<br>0<br>[0.0.225]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                       | -                                                                         |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | ds11<br>Sol<br>Sol^2<br>[96%CI]       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -0.045<br>-0.041<br>-0.002<br>[0.0.1.94]   | 0.017<br>0.016<br>0.016<br>0.016      | 40.052<br>40.048<br>0.002<br>[0.0.197]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.027<br>-0.025<br>0.001<br>[0.0.199]                                  | -0.028<br>-0.026<br>0.001<br>[0.0.163]                                    | -0.028<br>-0.026<br>0.001<br>[0.0.163]                                    | -0.028<br>-0.026<br>0.001<br>[0.0.163]                                    | • • • •                                                                    |                                                                       |                                                                            | • • • •                                                                    |                                                                        | • • • •                                                                 |                                                                          |                                             |
|                                                                                                                 | ac30<br>844<br>8472<br>96%CI          | 0.471<br>0.46<br>0.212<br>[0.0.406]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.471<br>0.46<br>0.212<br>[0.0.406]       | 0.474<br>0.463<br>0.214<br>(0.0.407]       | 0.485<br>0.473<br>0.224<br>0.80.382]  | 0.378<br>0.369<br>0.136<br>[0.0.394]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.494<br>0.482<br>0.233<br>0.233                                        | 0.494<br>0.482<br>0.233<br>0.233                                          | 0.494<br>0.482<br>0.233<br>0.233                                          | 0.499<br>0.488<br>0.238<br>0.238                                          | 0.499<br>0.488<br>0.238<br>0.238                                           | 0.484<br>0.472<br>0.223<br>0.10.378]                                  | 0.497<br>0.485<br>0.236<br>0.236                                           | -0.496<br>-0.484<br>0.234<br>109.0.385]                                    | 0.606<br>0.392<br>0.35<br>289.0.408                                    | 0.497<br>0.485<br>0.235<br>0.235                                        | 0.494<br>0.483<br>0.233<br>108.0.387]                                    | 0.488<br>0.477<br>0.227<br>104.0.381]       |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 0.799<br>0.811<br>0.658<br>0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            | 1733<br>1903<br>1803<br>1645<br>0.749] [0                              | 2                                                                       | 2                                                                        | 1617<br>1676<br>1487<br>0.749] [0           |
| Conception of the second se |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                         | _                                          | _                                     | 0.582<br>0.535<br>0.236<br>0.091.0.36] [0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                       | _                                                                         | _                                                                         | _                                                                         | _                                                                          | ø.                                                                    | _                                                                          | _                                                                          | _                                                                      | _                                                                       | _                                                                        | _                                           |
| 1444                                                                                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       | 000<br>000<br>000<br>000<br>000                                            | 000<br>000<br>000<br>000                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                        |                                                                         | 000<br>000<br>000<br>000<br>000                                          | 000<br>000<br>000<br>000<br>000             |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 0.027<br>0.03<br>0.001<br>[0.0.266]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | 84<br>842<br>842<br>98%G              | 0.039 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0 | 0.369<br>0.339<br>0.115<br>0.115          | 0.371<br>0.34<br>0.116<br>[0.0.734         | 0.309<br>0.467<br>0.218<br>[0.0.736   | 0.545<br>0.501<br>0.251<br>[0.0.735]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.897<br>0.824<br>0.68<br>[0.0.738                                      | 0.898<br>0.825<br>0.68<br>[0.0.738                                        | 0.883<br>0.811<br>0.658<br>[0.0.738                                       | 0.88<br>0.308<br>0.653<br>[0.0.738                                        | 0.896<br>0.823<br>0.678<br>[0.0.738                                        | 0.898<br>0.825<br>0.68<br>[0.0.738                                    | 0.673<br>0.618<br>0.382<br>0.382<br>[0.0.737                               | 0.485<br>0.445<br>0.198<br>[0.0.737                                        | 0.676<br>0.621<br>0.386<br>[0.0.737                                    | 0.823<br>0.756<br>0.571<br>[0.0.737                                     | 0.883<br>0.811<br>0.657<br>[0.0.736                                      | 0.701<br>0.708<br>0.501<br>102.037          |
|                                                                                                                 | 4631<br>Std<br>Std^2<br>[95%CI]       | 40.087<br>40.085<br>0.007<br>[0.0.2.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.087<br>-0.085<br>0.007<br>[0.0.236]    | -0.087<br>-0.085<br>0.007<br>[0.0.268]     | -0.07<br>-0.068<br>0.005<br>[0.0.276] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | de21<br>Sol ~2<br>Sol ~2<br>PSNCI     | 0.2749<br>0.273<br>0.075<br>[0.0.303]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.249<br>0.273<br>0.075<br>1.008.0.303]   | 0.299<br>0.285<br>0.081<br>0.081           | 0.213<br>0.234<br>0.055<br>[0.0.338]  | [600.00]<br>262.0-<br>262.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | dell<br>8d<br>8d^2<br>86%CI]          | 0.030<br>0.099<br>0.029]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.241<br>0.099<br>0.099                   | 0.228<br>0.21<br>0.044<br>0.0253]          | 0.156<br>0.144<br>0.021<br>0.0.195]   | -0.203<br>-0.187<br>0.005<br>[0.0.201]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>0.000<br>0<br>0<br>0.0199]                                     |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 4.307<br>-0.3<br>0.09<br>0.0409]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | 0.082<br>-0.08<br>0.006<br>0.047]                                         | 0.082<br>-0.08<br>0.006<br>0.047]                                         | 0.082<br>-0.08<br>0.006<br>0.047]                                         | 0.082<br>-0.08<br>0.006<br>0.047]                                          | 0.092<br>0.09<br>0.062                                                | -0.072<br>-0.07<br>0.005<br>[0.0.03]                                       | -0.072<br>-0.07<br>0.005<br>[0.0.03]                                       | -0.08<br>2.078<br>2.000<br>2.0030                                      | -0.014<br>-0.013<br>0.002<br>0.0014]                                    |                                                                          | 4063<br>4062<br>0.003<br>0.029]             |
|                                                                                                                 | _                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                         | _                                          | _                                     | 0.086<br>0.094<br>0.009<br>0.0.289] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                       | _                                                                         | _                                                                         | _                                                                         | _                                                                          | _                                                                     |                                                                            |                                                                            | -                                                                      | -                                                                       | 0.245<br>0.269<br>0.072<br>06.0.762]                                     | 0.87<br>0.545<br>0.296<br>0.20734] [0       |
| -                                                                                                               |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         |                                            | -                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                       | 2                                                                         | 2                                                                         | 2                                                                         | <u></u>                                                                    | <u></u>                                                               | 2                                                                          | <u></u>                                                                    | 2                                                                      | <u></u>                                                                 | ž                                                                        | 2                                           |
| 1111                                                                                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                       | 0.000                                      | 8888                                  | -0.01<br>-0.009<br>0<br>[0.0.2.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                      | 0.1<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                  | 1.0<br>1.0<br>0.0<br>0.0<br>0.0                                            | 1.0-<br>1.0-<br>0.0<br>(1000]                                         | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 0.0<br>1.0<br>0.0000]                                                      | 0.0<br>0.0<br>0.0000]                                                  | 010<br>010<br>000<br>000<br>000                                         | 0.2<br>0.0<br>0.0003U                                                    | 010<br>100<br>000<br>000<br>000             |
|                                                                                                                 | safr.3<br>safr.2<br>safr.2<br>1 p5%CI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | 0.512<br>0.441<br>0.195<br>[0.0.37]        |                                       | 0.504<br>0.434<br>0.189<br>[0.0.367]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.56<br>0.483<br>0.233<br>[0.0.387                                      | 0.561<br>0.483<br>0.234<br>[0.0.387                                       | 0.562<br>0.484<br>0.234<br>[0.0.387                                       | 0.562<br>0.484<br>0.234<br>[0.0.387                                       | 0.562<br>0.484<br>0.234<br>[0.0.367                                        | 0.275<br>0.237<br>0.056<br>[0.0.300                                   | 0.553<br>0.476<br>0.227<br>[0.0.38/                                        | 0.364 0.236 0.236 0.236                                                    | 0.557<br>0.48<br>0.23<br>[0.0.382                                      | 0.304<br>0.434<br>0.189<br>0.189                                        | 0.566<br>0.488<br>0.238<br>[0.0.388                                      | 0.483<br>0.416<br>0.173<br>[0.0.362         |
| SCI IV PROS                                                                                                     | -                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.303<br>-0.276<br>0.076<br>[0.0.2.99]   |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           | • • • •                                                                    |                                                                       |                                                                            |                                                                            |                                                                        | • • • •                                                                 |                                                                          |                                             |
|                                                                                                                 | 6530<br>84<br>84<br>85472<br>95%CI    | 0.956<br>0.806<br>0.65<br>[0.0.687]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.956<br>0.806<br>0.65<br>[0.0.687]       | 0.956<br>0.306<br>0.65<br>[0.0.687]        | 0.956<br>0.806<br>0.65<br>[0.0.687]   | 0.956<br>0.806<br>0.65<br>[0.0.687]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.956<br>0.306<br>0.65<br>1.614.0.687]                                  | 0.956<br>0.306<br>0.65<br>1.614.0.687]                                    | 0.956<br>0.306<br>0.65<br>1.614.0.687]                                    | 0.956<br>0.306<br>0.65<br>1.614.0.687]                                    | 0.956<br>0.306<br>0.65<br>0.65                                             | 0.956<br>0.807<br>0.65<br>0.65                                        | 0.956<br>0.306<br>0.65<br>0.65                                             | 0.956<br>0.306<br>0.65<br>0.65                                             | 0.959<br>0.809<br>0.654<br>1.618.0.691]                                | 0.956<br>0.807<br>0.65<br>0.65                                          | 0.956<br>0.306<br>0.65<br>1.614.0.687]                                   | 0.957<br>0.807<br>0.651<br>0.651            |
|                                                                                                                 | ed2<br>Sol<br>Sol^2<br>PSNCI          | 0.478<br>0.478<br>0.228<br>0.0247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.555<br>0.478<br>0.228<br>0.0247]        | 0.455<br>0.478<br>0.229<br>0.0247]         | 0.556<br>0.48<br>0.23<br>0.0.247]     | 0.554<br>0.477<br>0.228<br>0.0238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.557<br>0.48<br>0.23<br>0.023[[]                                       | 0.557<br>0.48<br>0.23<br>0.023[[]                                         | 0.557<br>0.48<br>0.23<br>0.023[[]                                         | 0.557<br>0.48<br>0.23<br>0.023[[]                                         | 0.557<br>0.48<br>0.23<br>0.0.247] [1                                       | 0.557<br>0.48<br>0.23<br>0.23<br>0.0.247] [1                          | 0.557<br>0.48<br>0.23<br>0.0247] [1                                        | 0.557<br>0.48<br>0.231<br>2.15,0.247[                                      | 0.557<br>0.48<br>0.23<br>0.0247] [1                                    | 0.556<br>0.479<br>0.23<br>0.0247] [1                                    | 0.557<br>0.48<br>0.23<br>0.023                                           | 0.5%<br>0.479<br>0.23<br>0.0.247] [1        |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | _                                          | -                                     | 0.852<br>0.775<br>0.6<br>[0.0.716] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                       | -                                                                         | -                                                                         | -                                                                         | -                                                                          | -                                                                     | -                                                                          | 2                                                                          | -                                                                      | -                                                                       | -                                                                        | _                                           |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 0.022<br>0.019<br>0.0.107] [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                       | -                                                                         | 99 2                                                                      |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                       |                                                                           | 321]                                                                      | 321]                                                                      | 6 C C C                                                                    | 6 7 9 E                                                               | e e e e                                                                    |                                                                            | *E                                                                     | 8E                                                                      |                                                                          | 321                                         |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         |                                            |                                       | 0.35<br>0.319<br>0.101<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         | 2                                                                         | 2                                                                         | 2                                                                         | <u></u>                                                                    | <u></u>                                                               | ē.                                                                         | 0.52<br>0.473<br>0.223<br>82[0.051.0.307                                   | ē.                                                                     | 0.528<br>0.48<br>0.231<br>82[0109.0.317                                 | 0.524<br>0.476<br>0.277<br>82] [0.0.31]                                  | 2                                           |
|                                                                                                                 |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                         | _                                          | 2                                     | 0.508<br>0.429<br>0.184<br>0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                       | 2                                                                         | 2                                                                         | 2                                                                         | 2                                                                          | ¥ .                                                                   | 2                                                                          | 2                                                                          | 2                                                                      | 2                                                                       | 2                                                                        | 2                                           |
| -                                                                                                               | ad2<br>Sol<br>Sol^2<br>P5%CI          | 0.87<br>0.75<br>0.563<br>0.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.871<br>0.75<br>0.563<br>0.563           | 0.873<br>0.752<br>0.566<br>[0.388.0.77     | 0.996<br>0.859<br>0.738<br>[0.0.777]  | 0.877<br>0.755<br>0.571<br>[0.39,0.778]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.829<br>0.714<br>0.51<br>[0.0.769]                                     | 0.828<br>0.713<br>0.509<br>[0.0.769]                                      | 0.828<br>0.713<br>0.509<br>[0.0.761]                                      | 0.828<br>0.713<br>0.509<br>[0.0.761]                                      | 0.828<br>0.713<br>0.509<br>[0.0.761]                                       | 0.945<br>0.814<br>0.663<br>[0.439.0.76                                | 0.8.32<br>0.717<br>0.514<br>[0.0.764]                                      | 0.813<br>0.701<br>0.491<br>[0.0.743]                                       | 0.83<br>0.715<br>0.511<br>0.511                                        | 0.85<br>0.732<br>0.536<br>[0.0.767]                                     | 0.829<br>0.714<br>0.51<br>[0.0.762]                                      | 0.85<br>0.732<br>0.536<br>[0.0.77]          |
| 00 1970                                                                                                         | acti<br>Sed<br>Sed~2<br>P6%C1]        | 0.191<br>0.174<br>0.03<br>[0.0.292]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.191<br>0.174<br>0.03<br>[0.0.292]       | 0.237<br>0.215<br>0.046<br>[0.0.298]       | 0.297<br>0.27<br>0.073<br>[0.0.267]   | 0.267<br>0.243<br>0.059<br>[0.0.226]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25<br>0.227<br>0.052<br>[0.0.221]                                     | 0.25<br>0.227<br>0.052<br>[0.0.221]                                       | 0.25<br>0.227<br>0.052<br>[0.0.221]                                       | 0.25<br>0.227<br>0.052<br>[0.0.221]                                       | 0.238<br>0.216<br>0.047<br>[0.0.167]                                       | 0.338<br>0.308<br>0.095<br>013,0249]                                  | 0.238<br>0.216<br>0.047<br>[0.0.167]                                       | 0.227<br>0.206<br>0.043<br>[0.0.163]                                       | 0.235<br>0.214<br>0.046<br>[0.0.165]                                   | 0.269<br>0.244<br>0.06<br>[0.0.183]                                     | 0.201<br>0.183<br>0.033<br>[0.0.161]                                     | 0.282<br>0.256<br>0.066<br>[0.0.19]         |
|                                                                                                                 | ec31<br>Sod<br>Sod^22<br>96%CI]       | -002<br>-0.0667]<br>-0.0667]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.02<br>0.0667]                          | -0.018<br>-0.015<br>-0.0666]               | -001<br>-0000-<br>-0000-<br>-0000-    | 129900<br>0<br>000-<br>000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.007<br>-0.006<br>-0.0051]                                            | -0.007<br>-0.006<br>-0.0051]                                              | -0.007<br>-0.006<br>-0.0051]                                              | 4008<br>4007<br>0<br>0.053[]                                              | 4007<br>4006<br>0<br>00.651]                                               |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0.064<br>0.055<br>0.003<br>0.0.247] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                       | -                                                                         | -                                                                         | -                                                                         | -                                                                          | 0.03<br>1.026<br>1.001<br>0.248]                                      | 1001<br>1002<br>0.248]                                                     |                                                                            | 1001<br>1002<br>0.248]                                                 | 003<br>1034<br>1001<br>0.246]                                           | 004<br>001<br>0.248]                                                     | 003<br>001<br>0.248]                        |
|                                                                                                                 | eell<br>Sad<br>Sadr2 S<br>PB%4CII P1  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         | -                                          | -                                     | 0.307<br>0.279<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.070<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.07700000000 | -                                                                       | -                                                                         | -                                                                         | -                                                                         | -                                                                          | 0.728<br>0.662<br>0.438<br>(0.0.721] [0                               | -                                                                          |                                                                            | -                                                                      | -                                                                       | -                                                                        | 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       | 9998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9992                                                                    | 000ğ                                                                      | 0.0                                                                       | 000ğ                                                                      | 0.000                                                                      | 9998                                                                  | 9998                                                                       | 0000                                                                       | 9995                                                                   | 9996                                                                    | 9996                                                                     | 0999                                        |
|                                                                                                                 | de31<br>54<br>1 95%CI                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.03<br>-0.03<br>-0.028<br>1] [0.0.079]  | 4001<br>4003<br>100001<br>100087           | 5 -0.094<br>9 -0.079<br>8] [0.0.078]  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | 4c21<br>8d<br>8d*2<br>96%C1           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.087<br>0.075<br>0.006<br>0.006          | 0.091<br>0.078<br>0.006<br>0.006           | 0.196<br>0.169<br>0.029<br>[0.0.028]  | 010<br>000<br>000<br>000<br>0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |
|                                                                                                                 | dell<br>Sal<br>Sal^2<br>[95%CI]       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.498<br>0.453<br>0.205<br>[0.0.346]      | 0.406<br>0.424<br>0.18<br>[0.0.3.49]       | -0.315<br>-0.316<br>-0.1<br>[0.0.35]  | 0.038<br>0.158<br>0.158<br>0.0348]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.088<br>0.08<br>0.006<br>[0.0.321]                                     | • • • •                                                                   | • • • •                                                                   | • • • •                                                                   | • • • •                                                                    |                                                                       |                                                                            |                                                                            |                                                                        | • • • •                                                                 |                                                                          |                                             |
|                                                                                                                 | ac31<br>Sad<br>Sad~2<br>ps%CI         | -0.406<br>-0.399<br>0.129<br>[0.0.385]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.426<br>-0.339<br>0.129<br>[0.0.385]    | -0.413<br>-0.348<br>0.121<br>[0.0.385]     | 120.0-<br>120.0-<br>120.0-            | -0.483<br>-0.407<br>0.166<br>0.166<br>[0.0.386]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.101<br>0.085<br>0.007<br>[0.0.043]                                    | 0.101<br>0.085<br>0.007<br>[0.0.043]                                      | 0.101<br>0.085<br>0.007<br>[0.0.043]                                      | 0.101<br>0.085<br>0.007<br>[0.0.043]                                      | 0.101<br>0.085<br>0.007<br>[0.0.043]                                       | 0.098<br>0.083<br>0.007<br>[0.0.045]                                  | 0.091<br>0.006<br>0.006<br>0.0033]                                         | 0.082<br>0.069<br>0.005<br>[0.0.022]                                       | 0.099<br>0.084<br>0.007<br>[0.0.041]                                   | 0.082<br>0.069<br>0.005<br>[0.0.029]                                    | 0.091<br>0.077<br>0.006<br>[0.0.037]                                     |                                             |
|                                                                                                                 | ac21<br>Std<br>Std^2<br>P8%v.C1]      | 1002<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.057<br>-0.049<br>0.002<br>[0.0.739]    | -0.05<br>0.003<br>0.003<br>0.003<br>0.003  | -0.068<br>-0.099<br>[0.0.78]          | 1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.189<br>0.163<br>0.026<br>0.026                                        | 0.189<br>0.163<br>0.026<br>0.026                                          | 0.189<br>0.163<br>0.026<br>0.026                                          | 0.189<br>0.163<br>0.026<br>0.026                                          | 0.188<br>0.162<br>0.026<br>0.026                                           | 0.299<br>0.223<br>0.05<br>0.05                                        | 0.196<br>0.169<br>0.029<br>0.029                                           | 0.241<br>0.207<br>0.043<br>0.060 758]                                      | 5610<br>500<br>500<br>500                                              | 0.244<br>0.21<br>0.044<br>0.01.0.774]                                   | 0.168<br>0.145<br>0.021<br>0.01,0.653]                                   | 0.284<br>0.244<br>0.06<br>0.010.776]        |
| TAL DO                                                                                                          | acl1<br>Sod<br>Sod^2<br>95%CI         | 4 103<br>4 000<br>0 000<br>0 283]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.103<br>-0.093<br>0.009<br>[0.0.278]    | -0.113<br>-0.103<br>0.011<br>[0.011,0.307] | 0.278<br>0.253<br>0.064<br>[0.0.31]   | -0.056<br>-0.051<br>0.000<br>[0.0.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.246 0.189<br>0.224 0.163<br>0.05 0.026<br>0.001.0.26] [0.002.0.774] [ | 0.246 0.189<br>0.234 0.163<br>0.05 0.026<br>[0.001.0.26] [0.002.0.774] [1 | 0.246 0.189<br>0.234 0.163<br>0.05 0.026<br>[0.001.0.26] [0.002.0.774] [1 | 0.246 0.189<br>0.223 0.163<br>0.05 0.026<br>[0.001.0.26] [0.002.0.774] [1 | 0.248 0.188<br>0.225 0.162<br>0.051 0.026<br>[0.001.0.258][0.002.0.774] [1 | 0.15 0.299<br>0.136 0.229<br>0.019 0.025<br>[0.001.0.096][0.004.0.05] | 0.232 0.196<br>0.211 0.169<br>0.045 0.029<br>[0.001.0.255 [0.002.0.707] [1 | 0.257 0.241<br>0.234 0.207<br>0.055 0.043<br>[0.055.0.259][0.006.0.758] [1 | 0.232 0.193<br>0.211 0.166<br>0.044 0.028<br>[0.002.0.236] [0.028.0.6] | 0.19 0.244<br>0.172 0.21<br>0.03 0.044<br>[0.001.0.283][0.001.0.774] [1 | 0.269 0.168<br>0.244 0.145<br>0.06 0.021<br>[0.002.0.288 [0.001,0.653] [ | 0.155<br>0.141<br>0.02<br>0.001.0.269 [0    |
| 8                                                                                                               | p-rates p                             | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 2                                       | 180                                        | 0.8<br>0.44<br>[                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.66<br>0.21<br>[0.0                                                    | 034                                                                       | 094<br>[01                                                                | 960<br>970                                                                | 898<br>[0.0                                                                | 093<br>0.14<br>[0.0                                                   | 960<br>[0.0                                                                | 0.81<br>0.04<br>[0.0                                                       | 012<br>012<br>000                                                      | 0.69<br>0.02<br>[0.0                                                    | 09<br>0.12<br>[00                                                        | 0.86                                        |
| 16(SCL-90)                                                                                                      | Distr p-                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                         |                                            |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | ~                                                                         |                                                                           | _                                                                         | 9                                                                          | a-                                                                    | -                                                                          | ~-<br>~-                                                                   | ~                                                                      |                                                                         | ~_<br>~_                                                                 | ~                                           |
| on Sympon                                                                                                       | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           | -                                                                         | -                                                                         | -                                                                          |                                                                       | -                                                                          | -                                                                          | -                                                                      | -                                                                       | -                                                                        | _                                           |
| & Depress                                                                                                       | BATLI                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>2                                    | н<br>10<br>11                              | N 101<br>80                           | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 416<br>312                                                            | 9 416                                                                     | 9 416                                                                     | 2 417                                                                     | 418                                                                        | 4 6.36                                                                | 1 6.07                                                                     | 6 1013<br>405                                                              | 237                                                                    | 22.2                                                                    | 0 85<br>243                                                              | 6 6                                         |
| (EPQ), BM                                                                                                       | AK                                    | N RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 M 002                                  | 33072.44                                   | 33071.04<br>II.b                      | 330.69.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33068.19<br>1 II.a                                                      | 33064.19                                                                  | 330.00.19                                                                 | 33058.2                                                                   | 3056.21                                                                    | 33056.4<br>111.f                                                      | 3 305 4 1                                                                  | 330.56 16<br>IV:b                                                          | 305447<br>IV:b                                                         | 330.57.82<br>IV.b                                                       | 3054.53<br>IVb                                                           | 3056.27                                     |
| In publicity 1                                                                                                  | 4                                     | 56795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33794                                     | 36795                                      | 38796                                 | 38797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 357.99                                                                  | 338.01                                                                    | 38.03                                                                     | 338.04                                                                    | 338.05                                                                     | 338.06                                                                | 38807                                                                      | 338.08                                                                     | 338.08                                                                 | 338.08                                                                  | 338.08                                                                   | 338.08                                      |
| Limitation                                                                                                      | 116-                                  | 104662.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104662.03                                 | 10-466.2.44                                | 104663.04                             | 10-4663.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104666.19                                                               | 104666.19                                                                 | 104666.19                                                                 | 104666.2                                                                  | 10466.21                                                                   | 101668.4                                                              | 101668.1                                                                   | 10-4672.16                                                                 | 10-4670.47                                                             | 104673.82                                                               | 104670.53                                                                | 104671.27                                   |
| fade I: Tóronine bidopoidos Pathory Sec Linitation Impánioly (EPQ), BMI & Depression Syntpoins (SCL.20)         | 6                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                         | 9                                          | ų                                     | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                       | 5                                                                         | 8                                                                         | ×                                                                         | 8                                                                          | я                                                                     | 16                                                                         | R                                                                          | R                                                                      | R                                                                       | R                                                                        | 8                                           |
| ad opend on 1                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | 22                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           | 2                                                                         |                                                                            | so                                                                    |                                                                            | s)                                                                         | 5                                                                      | 2                                                                       | 2                                                                        | io.                                         |
| Trivariate le                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it. Sex Specific A<br>a. drop anf i3 3    | o. drop as \$33& ads 22                    | dop all asfs                          | p 4/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . drop dc31,dc21                                                        | dop D factor                                                              | L drop ds2 2                                                              | . dop dc33 females                                                        | f, drop ds I I males                                                       | 1V. Dop E<br>a. dop ek31 femiles                                      | , drop erac21                                                              | dop ek21 femile                                                            | . dop dra33 maler                                                      | dop em31 maks                                                           | v. Loop ano31 make                                                       | b. drop ak31 females                        |
| Table I:                                                                                                        | Model                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a dro                                     | b.dx                                       | c. dia                                | III Drop D<br>a. drop dc31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b. dro                                                                  | e, dio                                                                    | d dro                                                                     | e. dio                                                                    | f. deg                                                                     | a dro                                                                 | b. dro                                                                     | c. dia                                                                     | d. dro                                                                 | e dia                                                                   | a do                                                                     | b. dro                                      |
|                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                           |                                                                           |                                                                           |                                                                            |                                                                       |                                                                            |                                                                            |                                                                        |                                                                         |                                                                          |                                             |

# Table 44: Trivariate Cholesky parameterization of impulsivity, BMI & depression Sx

8,83,84 8,83,84 8,84,84 8,84,84 8,84,84 8,84,84 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,75,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,94 1,155,9 844 1442 1442 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 14444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 E I I I A32 A32 Sol 2 Sol 2 423 A23 Sel<sup>+</sup>2 a31 A31 Sol 501-2 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 a21 A21 Sol^2 0.01101 0.01101 0.01101 0.01101 0.01101 0.01101 0.01101 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.01111 0.011111 0.011 NAU Sol m02 A.02 Sol Sol^2 8 2 8 8 851 861 81,2 - 5 5 5 A.61 S64 864 864 m21 A/21 S of 64^2 8 8 8 8 a El Sel 1 E 3 S 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0. ezi E21 Sod Bd^2 8.11 8.12 8.13 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 P221 011 84 84.2 2000 52660 8464 ····· A33 A33 Sol 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 A32 84 81-2 421 A21 S6d 8d^2 8368 8868 1 7 8 <u>9</u> 8886 888 p-v altec 888 288 1990 Deff LL 14.39 1.75 2.28 1.2.39 0.28 17.4 នន 2 5 E 12.66 875 354 AIC 82.53 11 3054.90 III b 11 P 3052.28 IVa 003.28 054.83 IVa Va Va Vb Vb 5814 5816 ÷ 5812 27 9467.628 468785 311 04676 ŝ : Drop A 1 a3 2 (co v B M Drop D drop all D 15 topE e31,e32

Figure 26: Trivariate independent pathway sex limitation model

a. Females



b. Males

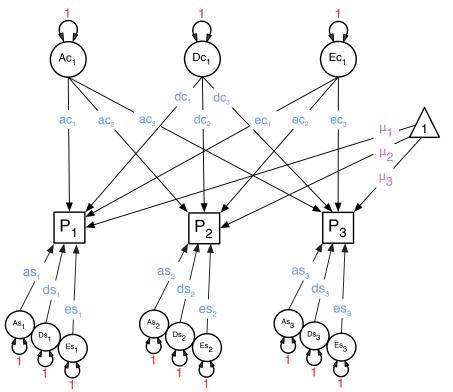
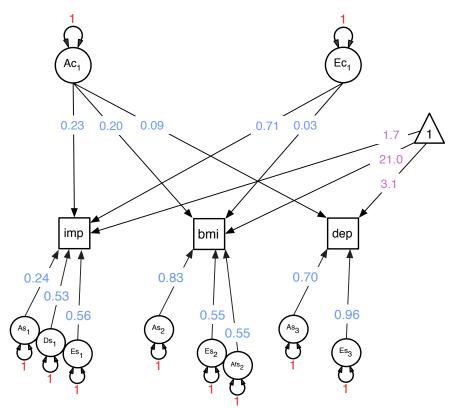
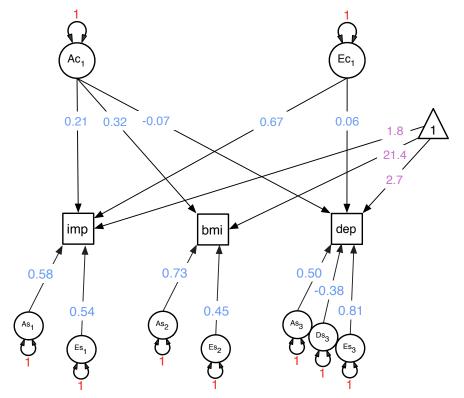





Figure 27: Best fitting model

a. Females



b. Males



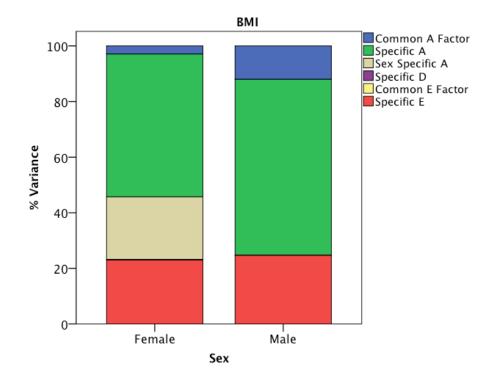



Figure 28: Proportion of variance in BMI accounted for by ADE components (Trivariate)

Figure 29: Proportion of variance in depression symptoms accounted for by ADE components (Trivariate)

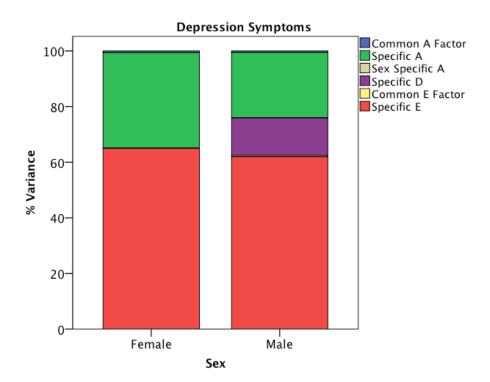
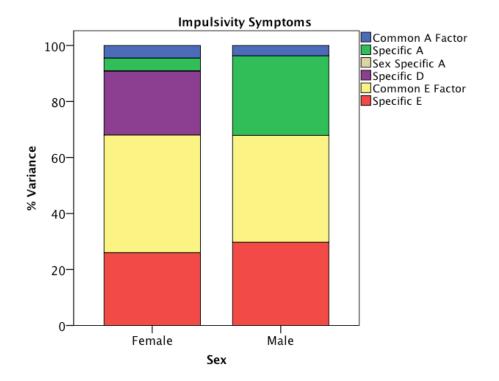




Figure 30: Proportion of variance in impulsivity symptoms accounted for by ADE components (Trivariate)



# Chapter 8: Evidence of shared genetic risk between body composition and smoking behaviors

Adapted from:

- On the genetic and environmental relationship of body mass index, smoking initiation and nicotine dependence in a population-based sample of twins. Roseann E. Peterson, Lindon J. Eaves, Hermine H. Maes. Presentation. XIX World Congress of Psychiatric Genetics, September 13<sup>th</sup>, 2011. Washington, D.C., USA.
- Evidence of Shared Polygenic Risk Among Smoking Behaviors and Body Composition. Roseann E. Peterson, Xiangning (Sam) Chen, Jingchun Chen, Bradley T. Webb, Hermine H. Maes. Presentation. 4<sup>th</sup> International Conference on Quantitative Genetics, June 21, 2012. Edinburgh, Scotland, UK.

## ABSTRACT

Obesity and nicotine dependence (ND) are complex, heterogeneous diseases, which pose a significant burden to public health, affecting 33 and 20 percent of Americans, respectively. Cross-sectional studies of ND are generally supportive of a negative relationship between smoking and body mass index (BMI), but a positive association is supported by the observation that within smoking cohorts, heavy smokers tend to be of increased body weight compared to light smokers. Genetic factors have consistently been demonstrated to influence individual differences in body mass index (BMI) and nicotine dependence (ND), with twin and family studies estimating heritabilities in the order of 0.70 and 0.60 respectively. A growing body of evidence demonstrates the utility of genome-wide association studies (GWAS) for identifying single nucleotide polymorphisms (SNP) that contribute to disease risk. The GWAS approach has been applied to BMI and smoking behaviors (SB) using sample sizes in the tens of thousands, yielding several putative risk variants of small effects on individual traits. However, most studies do not examine common versus specific genetic effects, despite many complex traits demonstrating comorbidity. Moreover, without consideration of geneticallycorrelated traits, the power of genome-wide studies of complex disease to detect etiologically relevant variation may be limited. Therefore, the purpose of this study was to investigate whether genetic variants affecting BMI or SB were common to multiple behaviors or were trait-specific. In total, 75 BMI and 54 SB associated SNPs were catalogued from large-scale GWAS meta-analyses and tested for association in n=2,802 (41% African-American) older adults (68-80 years old) from the Health Aging and Body Composition study (Heath ABC). Results indicated current smokers had significantly lower BMI and abdominal visceral fat than never or former smokers in both sexes. We observed three BMI-associated SNPs also nominally associated with smoking traits: rs1900273 in STK33, rs2145270 near BMP2 and rs12127438 in the 1q42.2 locus. Additionally, three SB-associated SNPs were found to be nominally associated with body composition variables: rs11072774 in CHRNB4, rs2640732 in SCARA3 and rs6945244 in *PDE1C*. These findings are suggestive of partially shared genetic risk between smoking and body composition. Future research should confirm these associations and address putative mechanisms underlying this overlapping genetic architecture.

#### INTRODUCTION

Obesity and nicotine dependence (ND) represent complex heterogeneous diseases affecting 33 and 20 percent of Americans, respectively (106, 127, 129). Both are associated with numerous medical conditions including cancer, cardiovascular disease and major depressive disorder (12, 127, 128, 366, 367). Phenotypic associations between smoking and body composition suggest a complex relationship and the causes of these associations remain incompletely understood. Cross-sectional studies of smoking behavior are typically supportive of a negative relationship between current smoking and body mass index (BMI) (109-111) which may be due in part to effects of nicotine on energy homeostasis including a reduction of energy intake (112-116) and enhanced capacity for energy expenditure (113, 368-370). Furthermore, the metabolic effects of nicotine might partially explain why smoking cessation is often followed by weight-gain (113, 117, 118). In contrast, however, a positive association is supported by the observation that within smoking cohorts, heavy smokers tend to be of increased body weight compared to light smokers (119-121). This may reflect a clustering of risky behaviors in addition to smoking- increased alcohol consumption, poor diet and reduced physical activity (371-374). Additionally, smoking has been associated with accumulation of visceral fat and increased waist circumference (122-124), which may be the result of nicotine's effects on sex hormones (375, 376) and cortisol levels (377, 378). For these reasons, the elucidation of the genetic and environmental mechanisms underlying these associations remains an important public health endeavor.

Genetic factors have consistently been demonstrated to influence individual differences in BMI and smoking behaviors (SB). Although an increase in energy intake coupled with reduced physical activity contributes to increases in adiposity, findings from twin and family studies have estimated large heritabilities on the order 0.70 for relative body weight (35, 36). Similarly, twin and family studies have estimated heritabilities in the order of 0.50-0.70 for smoking initiation and 0.60 for ND (379-383). To date, there have been no published multivariate twin and family studies on the genetic and environmental architecture of relative body weight and smoking behavior. However, our group has examined the possibility of shared genetic and environmental liability between BMI, smoking initiation and ND in a population-based sample of adult twins from the Virginia 30,000 study (n=14,177, 63.9% female). Preliminary results of fitting trivariate modified causal-contingent-common pathway models, which account for the contingency of ND on smoking initiation, found 1-5% of the variance in smoking initiation and nicotine dependence to be accounted for by genetic factors in common with BMI (Peterson *et al.*, in preparation). Preliminary results are presented in SUPPLEMENTAL MATERIAL section of this chapter.

Genome-wide association studies (GWAS) have successfully identified polymorphisms that contribute to disease risk for numerous complex traits and diseases (72). As applied to BMI and smoking behaviors (SB), GWAS have yielded several putative risk variants of small effects on individual traits using sample sizes in the tens of thousands. The first common single nucleotide polymorphisms (SNPs) associated with BMI and common obesity were in the *fat mass and obesity-associated (FTO)* gene and near *melanocortin 4 receptor (MC4R)* and have since been widely replicated (66, 130135). Additionally, two large-scale BMI meta-analyses by Thorleifsson *et al.* (2009) and Willer *et al.* (2009) yielded 13 genetic loci reaching genome-wide significance, including the previously implicated variants in and near *FTO* and *MC4R*. A recent mega-analysis, performed on 249,796 individuals from 46 studies has confirmed 32 BMI-associated SNPs. Although highly significant, the identified genetic variants had modest effects, corresponding to a 0.06-0.4 kg/m<sup>2</sup> change in BMI per allele, and modest odds ratios for obesity (BMI>30 kg/m<sup>2</sup>) ranging between 1.03 and 1.3.

Similarly, large-scale GWAS for smoking traits have yielded putative risk variants of individually small effect. Three large meta-analyses of smoking initiation. consumption and cessation from Oxford-GlaxoSmithKline (Ox-GSK), the Tobacco and Genetics Consortium (TAG) and ENGAGE consortia were published as a series that included a combined analysis of over 140,000 individuals of European descent from 45 studies (384-386). Findings from these studies revealed one region associated with smoking initiation on 11p14.1, which includes the *brain-derived neurotrophic factor* (BDNF) (385). Additionally, the combined analysis of all three studies yielded five loci associated with smoking quantity, including the previously identified 15q25 locus which harbors three genes encoding neuronal nicotinic acetylcholine receptor subunits (NAChR), CHRNA5, CHRNA3 and CHRNA4 (384-386); a second locus encoding NAChRs on 8p11 in and near CHRNB3 and CHRNA6 (386); variants on 19q13 in and near CYP2A6 and CYP2B6 that code nicotine metabolizing enzymes (385, 386); SNPs on 7p14 in an intergenic region and variants on 10q25 in LOC100188997, a gene for noncoding RNA (385). A single variant near the DBH locus (9q34) was found to be associated with smoking cessation; this gene encodes dopamine  $\beta$ -hydroxylase, which catalyzes the conversion of dopamine to norepinephrine. As in the aforementioned studies of body composition, smoking variants were highly significant but had modest effect on behavior, with odds ratios ranging from 1.06 to 1.12 (384-386).

The causes of the observed associations between body composition and smoking behavior remain incompletely understood. It is possible that these traits share a common liability influenced by genetic and environmental factors. For example, genetic variants in *BDNF* have been associated with increased body mass and also with smoking initiation (63-65, 385). However, despite many complex traits demonstrating comorbidity, most studies do not examine common versus specific effects. Therefore, the purpose of this study was to investigate whether genetic variants affecting BMI or smoking behavior were common to multiple behaviors or were trait specific in n=2,802 (41% African-American) older community-dwelling adults (68-80 years old) from the Health Aging and Body Composition study (Health ABC). To the best of our knowledge, this is the first study to test BMI and SB variants in the same cohort across multiple traits.

# **METHODS**

## Participants

Participants were from the Health ABC study, a prospective community based sample of body composition changes over time in elderly American adults. Participants were recruited from 1997-1998 from Pittsburgh, PA, and Memphis, TN metropolitan area residents who were Medicare eligible and between the ages of 69 and 80 years old. Participants were excluded if they reported difficulty walking a quarter of a mile or climbing 10 stairs without resting. All participants gave written informed consent and both study sites approved the protocol. There were 1663 white and 1139 black participants included in the present study.

# Phenotypes

BMI was calculated from laboratory measured height and weight during initial evaluation. To test various BMI thresholds, BMI was partitioned into clinical categories with BMI ranges of underweight <18, normal 18-25, overweight 25-30 and obese 30+ kg/m<sup>2</sup>. Physical activity (PhyAct) was estimated from a structured interview of 27 questions and summarized as kcal/kg/week. Computerized tomography was used to determine abdominal visceral adiposity density (AbVFat). Smoking habits and race were self-reported via telephone interview. Smoking status (smoke) was defined as never, current or former smoker. Smoking status was further partitioned into ever smoker (EvSmo), former versus current smoker (cessation) and current smoker (CurSmo). Smoking duration was measured as pack years (PkYrs) and was calculated as the number of packs of cigarettes smoked per day multiplied by years as a smoker.

# Genotyping

Genotyping in the Health ABC was performed by the Center for Inherited Disease Research using the Illumina Human 1M-Duo BeadChip system. Analysis was restricted to SNPs with minor allele frequency greater than or equal to 1%, call rate greater than or equal to 98% and Hardy-Weinberg Equilibrium p-value greater than 10<sup>-5</sup>. There were 8 samples removed for genotypic sex mismatch.

#### Selection of SNPs

Preliminary SNP selection identified 78 variants meeting criteria for genome-wide or suggestive significance in either of two large meta-analyses of BMI; 43 from Thorleifsson *et al.* (2009) and 35 from Willer *et al.* (64, 65). Thorleifsson and colleagues report genome-wide significant ( $p < 1.6^{-7}$ ) associations with 29 SNPs in 11 chromosomal regions, using a discovery sample of n=34,416 and replication sample of n=5,586. The Willer *et al.* meta-analysis detected 8 genome-wide significant ( $p < 5.0^{-8}$ ) SNPs in first-and second-stage samples of n=32,387 and n=54,316, respectively. The only variants found to be genome-wide significant in both meta-analyses were in and near *FTO* and *MC4R*. The remaining genetic loci were suggestive in the opposing meta-analyses

(p<0.05), except rs7138803 on 12q13 (p=0.14). Significance level for one SNP, rs10938397 on 4p12, could not be compared between meta-analyses because there was no corresponding proxy SNP. Of the 78 BMI variants catalogued, 57 had matching SNPs on the Illumina Human 1M-Duo array. For the 20 SNPs not present, proxies (16 with  $r^2>0.8$ ; 2 with  $r^2>0.7$ ) were identified using SNP Annotation and Proxy Search (SNAP) V2.1 (147). Following removal of 2 variants from Willer *et al.* for which no proxies were available ( $r^2>0.7$ ), a total of 75 SNPs remained.

SNP selection for smoking traits were catalogued from three large meta-analyses on smoking initiation, consumption and cessation from Ox-GSK, TAG and ENGAGE consortia which included a combined analysis of over 140,000 individuals from 45 studies (384-386). There were 510 SNPs reported in Ox-GSK associated with EvSmo, smoking quantity and cessation of which 157 remained significant ( $p < 10^{-5}$ ) in the combined sample with TAG and ENGAGE. The TAG consortium reported 5 SNPs associated with consumption, 8 with EvSmo and 1 with cessation ( $p < 10^{-8}$ ) in the combined sample. There were 921 SNPs reported by ENGAGE associated (p<0.05) with cigarette consumption and EvSmo of which 437 remained significant ( $p < 10^{-5}$ ) in the combined sample with TAG and Ox-GSK. There were a total of 595 SNPs catalogued from the three large meta-analyses that were significant at the  $p < 10^{-5}$  level in the combined analysis of which 179 appeared on the Health ABC Illumina Human 1M-Duo array. HapMap phase 2 (CEU, release 23, 90 individuals, 3.96 million SNPs) was used to determine independence of the 595 SNPs catalogued (70). SNP pruning at 0.7 level indicated 69 independent SNPs of which 54 appeared on the Health ABC Illumina Human 1M-Duo array. There were 15 SNPs catalogued from Ox-GSK from fine mapping of the 15q25 locus that did not have corresponding proxies on the Illumina array.

Haploview version 4.10 was used to determine phase and corresponding proxy alleles (148, 149). In order to avoid bias due to correlated effects, SNP pruning ( $r^2>0.7$ ) was performed using PLINK v. 1.07p (150). In summary, there were 75 BMI and 54 SB SNPs used for association in this study. Although our SNP selection threshold was more liberal than the traditional genome-wide significance threshold, it was more conservative than other models of complex disease risk prediction (151, 152).

#### Association Analyses

Linear and logistic regression was used to incorporate effects of covariates on outcome variables of body composition and smoking traits. Given there are phenotypic and SNP allele frequency differences found in European and African ancestries, analyses were run separately for self-identified race, white and black. To reduce spurious associations due to population stratification, principal component (PC) scores reflecting ancestral population sub-structure of each subject were computed (192, 387, 388). Eigensoft (192, 193) was used to generate 10 PCs from 336,680 independent SNPs (linkage disequilibrium <0.5) in the European-American and 578,446 SNPs in the African-American sample. There were 12 participants removed from analyses due to outlying PC scores. PCs 1, 2 and 5 were associated with study variables and were therefore included as covariates in subsequent regression analyses along with gender and age. PLINK v. 1.07p was used for association and meta-analyses (150).

## RESULTS

#### Phenotypic

Descriptive statistics for study variables are presented in Table 45. Analysis of variance indicated that males had significantly greater AbVFat (F(1,2694)=88.88, p=8.71x10<sup>-21</sup>) and longer duration of tobacco exposure as assessed by PkYrs (F(1,2758)=185.22, p=7.11x10<sup>-41</sup>) than females. There were no statistical differences on PhyAct by gender. Pearson's Chi-Square and subsequent *post hoc* analyses indicated that males were more likely to be former smokers and females more likely to have never smoked (chi-squ=236.5, p=4.0x10<sup>-52</sup>). Additionally, females were more likely to be obese (chi-squ=24.2, p=8.2x10<sup>-7</sup>). As depicted in Figure 31, current smokers had significantly lower BMI than never or former smokers in males (F(2,1362)=18.9, p=7.83x10<sup>-9</sup>) and in females (F(2,1430)=13.15, p= 2.17x10<sup>-6</sup>). Similarly, current smokers had significantly lower AbVFat than never or former smokers in males (F(2,1309)=20.60, p=1.54x10<sup>-9</sup>) and females (F(2,1377)=10.01, p=4.8x10<sup>-5</sup>)(Figure 32). As shown in Figure 33, there were no significant differences in PkYrs across BMI categories in males (F(3,1342)=1.45, p=0.330). However, in females the underweight group had significantly greater PkYrs than the normal, overweight and obese groups (F(3,1410)=5.75, p=0.001).

#### BMI SNPs

Among genetic variants previously implicated in BMI, 23 were associated (p<0.05) with either BMI, AbVFat, BMICat or obesity (Table 48). Twelve of which were in the same direction for both racial groups. Table 46 lists association results suggestive for multiple traits. There were three BMI SNPs nominally associated with both body composition variables and smoking traits. The top associated SNP was rs1900273 on chromosome 11 in STK33 for association with BMI (p=0.001). This SNP was also associated with AbVFat and PkYrs in both samples (p<0.023). SNP rs2145270 near BMP2 on chromosome 20 was associated with obesity (p=0.014), smoking status (p=0.007) and EvSmo (p=0.016). Finally, rs12127438 in the 1q42.2 locus was associated with BMI and BMICat in both ethnicity-based cohorts (p<0.033) and PkYrs in the European-American group (p=0.036).

#### Smoking SNPs

Among genetic variants previously implicated in SB, 13 were associated (p<0.05) with either Smoke, PkYrs, EvSmo, cessation or CurSmo (Table 49). Seven of which were in the same direction for both racial groups. The top associated SB SNP was rs9633423 on chromosome 1 with smoking cessation (p=0.008). Table 47 lists association results suggestive in multiple traits for previously implicated SB SNPs. There were three SB SNPs associated with both body composition variables and smoking traits. SNP rs11072774 on chromosome 15 in CHRNB4 was associated with BMI (p=0.037), obesity (p=0.003) and CurSmo(p=0.020) in both racial groups. In the white group, rs2640732 on chromosome 8 in SCARA3 was significantly associated with cessation, CurSmo and obesity (p<0.033). SNP rs6945244 on chromosome 7 in PDE1C was associated with

Smoke, EvSmo and PhyAct in both groups and additionally with obesity in the white group (p<0.037).

#### DISCUSSION

The purpose of this work was to examine phenotypic associations between body composition and smoking behavior in an elderly cohort and to test if genetic variants shown previously to be associated with either body composition or smoking behavior were associated with multiple traits in the Health ABC study. Since studies report significant phenotypic associations between body composition and smoking behavior, the work presented here investigated whether the association of these traits was due in part to shared genetic liability. Phenotypic results from the Health ABC study indicated there were body composition differences between smoking status groups. Specifically, current smokers tended to have lower BMI and abdominal visceral fat than former or non-smokers. These results are in agreement with other cross-sectional studies of smoking behavior, which are supportive of lower body weight in smokers (109-111).

To examine shared genetic liability, 75 BMI and 54 SB variants catalogued from large-scale GWAS meta-analyses were tested for association with body composition and smoking behavior variables. Among genetic variants previously implicated in BMI, 23 were nominally associated (p<0.05) in this sample with BMI, abdominal visceral fat or obesity in the expected direction, which included SNPs in or near *FTO* and *MC4R*. Among these, there were three variants that were also nominally associated with smoking traits in the Health ABC study. The first SNP was in the 1q42.2 locus between the *TSNAX* and *DISC1* genes and was negatively associated with BMI and pack years. This suggests that a BMI-decreasing allele is also associated with decreased smoking duration. However, a SNP in the STK33 gene (11p15.4), was found to be negatively associated with abdominal visceral fat and BMI but positively associated with pack years, suggesting that this allele is associated with lower body weight but with increased smoking duration. A third variant, on chromosome 20p12.3, was associated with a decrease in obesity but an increase in ever smoking with the closest gene *bone morphogenetic protein 2 (BMP2*).

Among genetic variants previously implicated in smoking behavior, 13 were nominally associated (p<0.05) with smoking variables in the Health ABC study. Of these, three were also nominally associated with body composition variables. The first variant, on chromosome 7 located within the gene *PDE1C*, was associated with never smoking, decreased obesity and increase in physical activity. A second SNP, on chromosome 8 in the gene *SCARA3*, was associated with cessation, non-smoking and an increase in obesity. The third variant, located at the 15q25 locus, resides near a cluster of genes encoding nicotinic acetylcholine receptors and found to be associated with increased BMI and obesity, as well as with former and non-smoking. The genetic associations found in the Health ABC study reflect the complex phenotypic associations found between these traits. Although SNPs in and near *BDNF* were previously associated with body composition and smoking behaviors (64, 65, 385), there was no evidence of association in the Health ABC sample. However, despite their preliminary nature, these results merit future research and, in particular, follow-up in additional replication cohorts. It is important to consider that genetic variants selected for association in this study, although significant in the meta-analyses from which they were catalogued, demonstrated relatively modest effects on their respective traits. As a result, replication attempts will have limited power to achieve genome-wide significance (125). Issues related to multiple testing further complicate this. The likelihood of observing a false positive finding increases with the number of tests performed and significance values reported here were not corrected for multiple testing. However, the results from Health ABC are preliminary, and several additional studies will be incorporated into the final analyses, with significance evaluated by appropriate measures including Bonferroni correction and empirical significance derived by permutation procedures.

Interpretation of these results should consider several limitations. First, this study was conducted using a selected sample. That is, participants were eligible if they were both elderly and in relatively good physical health. It is possible that this ascertainment strategy influenced the results and limits the ability to generalize the findings across the lifespan. Additionally, sex differences on the genetic analyses of these traits were not assessed. Further studies are warranted to determine effects of age and gender on the genetics of body composition, smoking behaviors and the causes of correlation between these traits.

Preliminary results were suggestive of partially shared genetic risk between smoking and body composition. Without consideration of genetically-correlated traits, genome-wide studies of complex disease may be limited in their power to detect etiologically relevant variation. Future research needs to address mechanisms underlying the associations between these traits and moderating effects of the environment to aid both obesity and nicotine dependence prevention and treatment efforts.

# TABLES AND FIGURES

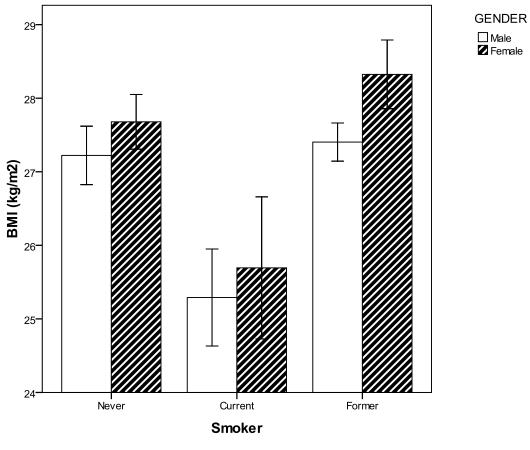



Figure 31: BMI by smoking status in males and females from the HABC study

Error bars: 95% Cl

Note: BMI = body mass index, kg = kilograms, m = meter.

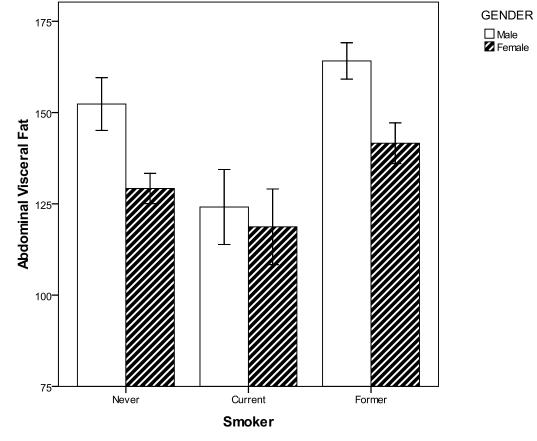



Figure 32: Mean abdominal visceral fat density by smoking status in males and females

Error bars: 95% Cl

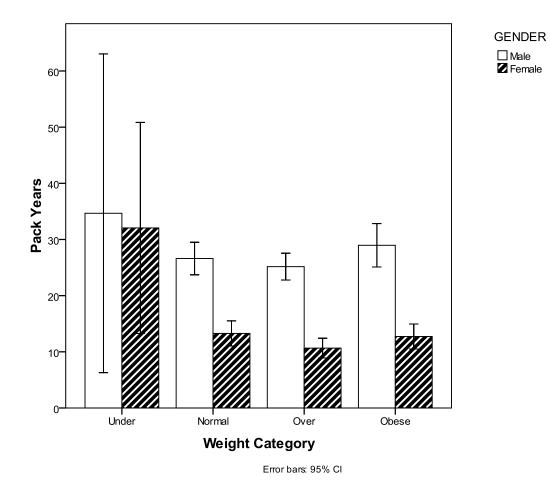



Figure 33: Mean pack years by BMI category in males and females

Note: BMI = body mass index, kg = kilograms, m = meter.

|                          | Overall | Males   | Females |
|--------------------------|---------|---------|---------|
| N                        | 2802    | 1367    | 1435    |
| (%)                      |         | (48.8%) | (51.2%) |
| Race                     |         |         |         |
| White                    | 1663    | 879     | 784     |
| Black                    | 1139    | 488     | 651     |
| Age (yrs) mean           | 73.6    | 73.8    | 73.5    |
| BMI (kg/m2) mean         | 27.4    | 27.1    | 27.7    |
| AbVFat mean              | 144     | 156.3   | 132.3   |
| PhyAct (kcal/kg/wk) mean | 82.8    | 81.7    | 83.9    |
| Obese N                  | 715     | 292     | 423     |
| (%)                      | (25.5%) |         |         |
| Smoke N                  |         |         |         |
| Never                    | 1206    | 393     | 813     |
| (%)                      | (43%)   |         |         |
| Current                  | 293     | 150     | 143     |
| (%)                      | (10.5%) |         |         |
| Former                   | 1299    | 822     | 477     |
| (%)                      | (46.4%) |         |         |
| Pack Years mean          | 19.2    | 26.5    | 12.4    |
| (median)                 | 4       | 17      | 0       |

Table 45: Descriptive statistics for HABC study variables by gender

Note: BMI = body mass index, kg = kilograms, m = meter, kcal = kilocalories, wk = week, AbVFat = abdominal visceral fat, PhyAct = physical activity.

|     |            |    |                                  |                                     | <u>White</u>                 | Black                                          |                                     |                              |                                         | <u>Meta-Analysis</u>                |                                       |  |
|-----|------------|----|----------------------------------|-------------------------------------|------------------------------|------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------|--|
| Chr | SNP        | A1 | Trait                            | β/OR                                | SE                           | Р                                              | β/OR                                | SE                           | Р                                       | β/OR                                | Р                                     |  |
| 1   | rs12127438 | G  | BMI<br>BMICat<br>PkYrs           | -0.034<br>-0.056<br>-0.051          | 0.02<br>0.03<br>0.02         | 0.160<br><b>0.033</b><br><b>0.036</b>          | -0.048<br>-0.030<br>0.046           | 0.03<br>0.04<br>0.03         | 0.101<br>0.460<br>0.112                 | -0.040<br>-0.048<br>-0.004          | <b>0.033</b><br><b>0.029</b><br>0.942 |  |
| 11  | rs1900273  | С  | AbVFat<br>BMI<br>BMICat<br>PkYrs | -0.041<br>-0.057<br>-0.038<br>0.056 | 0.02<br>0.02<br>0.02<br>0.02 | 0.091<br><b>0.020</b><br>0.120<br><b>0.021</b> | -0.052<br>-0.062<br>-0.066<br>0.023 | 0.03<br>0.03<br>0.03<br>0.03 | 0.088<br><b>0.031</b><br>0.056<br>0.425 | -0.045<br>-0.059<br>-0.048<br>0.043 | 0.017<br>0.001<br>0.017<br>0.023      |  |
| 20  | rs2145270  | С  | EvSmo<br>Obesity                 | 1.171<br>0.851                      | 0.08<br>0.09                 | <b>0.038</b><br>0.085                          | 1.121<br>0.852                      | 0.09<br>0.09                 | 0.201<br>0.080                          | 1.150<br>0.851                      | 0.016<br>0.014                        |  |

Table 46: Association results for SNPs previously implicated in BMI suggestive for multiple traits

Table 47: Association results for SNPs previously implicated in smoking behaviors suggestive for multiple traits

|     |            |    |                                       | White                            |                              |                                                |                                  | <u>Black</u>                 |                                                | <u>Meta-Analysis</u>             |                                       |  |
|-----|------------|----|---------------------------------------|----------------------------------|------------------------------|------------------------------------------------|----------------------------------|------------------------------|------------------------------------------------|----------------------------------|---------------------------------------|--|
| Chr | SNP        | A1 | Trait                                 | β/OR                             | SE                           | Р                                              | β/OR                             | SE                           | Р                                              | β/OR                             | Р                                     |  |
| 7   | rs6945244  | Т  | EvSmo<br>Obesity<br>PhyAct            | 0.882<br>0.821<br>0.024          | 0.08<br>0.09<br>0.02         | 0.094<br><b>0.033</b><br>0.323                 | 0.883<br>0.986<br>0.062          | 0.10<br>0.10<br>0.03         | 0.191<br>0.885<br><b>0.037</b>                 | 0.882<br>0.897<br>0.040          | <b>0.034</b><br>0.238<br><b>0.037</b> |  |
| 8   | rs2640732  | G  | Cessation<br>CurSmo<br>Obesity        | 0.714<br>0.716<br>1.228          | 0.16<br>0.15<br>0.09         | 0.033<br>0.028<br>0.025                        | 1.306<br>1.216<br>0.930          | 0.15<br>0.14<br>0.11         | 0.080<br>0.155<br>0.516                        | 0.967<br>0.937<br>1.077          | 0.911<br>0.805<br>0.595               |  |
| 15  | rs11072774 | Т  | BMI<br>Cessation<br>CurSmo<br>Obesity | 0.024<br>0.589<br>0.641<br>1.207 | 0.02<br>0.22<br>0.22<br>0.12 | 0.315<br><b>0.018</b><br><b>0.041</b><br>0.102 | 0.059<br>0.870<br>0.799<br>1.353 | 0.03<br>0.18<br>0.16<br>0.12 | <b>0.041</b><br>0.426<br>0.168<br><b>0.011</b> | 0.039<br>0.733<br>0.739<br>1.276 | 0.037<br>0.109<br>0.020<br>0.003      |  |

Note: Chr = chromosome, A1 = allele tested,  $\beta$  = beta estimate for linear regression, OR = odds ratio for logistic regression, SE = standard error of the estimate, SNP = single nucleotide polymorphism, BMI = body mass index, AbVFat = abdominal visceral fat, PhyAct = physical activity, BMICat = clinical BMI category (under, normal, overweight, obese), Smoke = smoking status (never, current, former), PkYrs = pack years, EvSmo = ever vs never smoked, Cessation = former vs current smoker, CurSmo = current smoker.

|     |            |    |           |        | <u>White</u> |                |        | <u>Black</u> |                | <u>Meta-A</u>    | <u>nalysis</u> |
|-----|------------|----|-----------|--------|--------------|----------------|--------|--------------|----------------|------------------|----------------|
| Chr | SNP        | A1 | Trait     | β/OR   | SE           | Р              | β/OR   | SE           | Р              | β/OR             | Р              |
| 1   | rs3766431  | т  | AbVFat    | 0.017  | 0.02         | 0.477          | -0.062 | 0.03         | 0.040          | -0.020           | 0.608          |
| 1   | rs9424977  | С  | PhyAct    | 0.018  | 0.02         | 0.458          | 0.077  | 0.03         | 0.010          | -0.028           | 0.559          |
| 1   | rs3101336  | Ă  | Cessation | 0.718  | 0.17         | 0.045          | 0.971  | 0.12         | 0.811          | 0.851            | 0.281          |
| •   |            |    | CurSmo    | 0.713  | 0.16         | 0.033          | 0.969  | 0.11         | 0.783          | 0.848            | 0.277          |
|     |            |    | PhyAct    | 0.036  | 0.03         | 0.153          | -0.062 | 0.03         | 0.037          | -0.012           | 0.810          |
| 1   | rs2568958  | G  | Cessation | 0.715  | 0.17         | 0.043          | 0.970  | 0.12         | 0.808          | 0.849            | 0.281          |
|     | 102000000  | Ŭ  | CurSmo    | 0.711  | 0.16         | 0.032          | 0.969  | 0.11         | 0.786          | 0.847            | 0.279          |
|     |            |    | PhyAct    | 0.035  | 0.02         | 0.159          | -0.062 | 0.03         | 0.037          | -0.012           | 0.804          |
| 1   | rs2815752  | С  | Cessation | 0.716  | 0.02         | 0.133          | 0.970  | 0.00         | 0.808          | 0.850            | 0.281          |
| 1   | 132013732  | U  | CurSmo    | 0.710  | 0.17         | 0.032          | 0.969  | 0.12         | 0.786          | 0.847            | 0.201          |
|     |            |    | PhyAct    | 0.036  | 0.02         | 0.153          | -0.062 | 0.03         | 0.700<br>0.037 | -0.012           | 0.810          |
| 1   | rs1973993  | т  | AbVFat    | -0.047 | 0.02         | 0.053          | 0.063  | 0.03         | 0.037          | -0.053           | 0.010          |
| 1   | rs10783050 | Ċ  |           | 0.071  | 0.02         | 0.055<br>0.003 | 0.003  | 0.03         | 0.635          | 0.047            | 0.005          |
| I   | 1810703030 | C  | AbVFat    | 0.071  | 0.02         | 0.003          | 0.015  | 0.03         | 0.635          | 0.047            | 0.097          |
| 4   | ro10012460 | C  | BMI       |        |              |                |        |              |                | 0.038            |                |
| 1   | rs10913469 | C  | BMI       | 0.049  | 0.02         | 0.045          | -0.013 | 0.03         | 0.648          |                  | 0.523          |
| 1   | rs12127438 | G  | BMI       | -0.034 | 0.02         | 0.160          | -0.048 | 0.03         | 0.101          | -0.040<br>-0.048 | 0.033          |
|     |            |    | BMICat    | -0.056 | 0.03         | 0.033          | -0.030 | 0.04         | 0.460          |                  | 0.029          |
| ~   |            |    | PkYrs     | -0.051 | 0.02         | 0.036          | 0.046  | 0.03         | 0.112          | -0.004           | 0.942          |
| 2   | rs2867125  | А  | AbVFat    | 0.000  | 0.02         | 0.993          | 0.066  | 0.03         | 0.029          | 0.031            | 0.349          |
|     |            |    | Obesity   | 0.716  | 0.13         | 0.009          | 1.093  | 0.14         | 0.520          | 0.882            | 0.552          |
| ~   |            | •  | PhyAct    | -0.043 | 0.02         | 0.082          | 0.079  | 0.03         | 0.008          | 0.017            | 0.785          |
| 2   | rs4854344  | G  | Obesity   | 0.716  | 0.13         | 0.010          | 0.970  | 0.11         | 0.774          | 0.840            | 0.249          |
| _   |            |    | PhyAct    | -0.042 | 0.02         | 0.089          | 0.087  | 0.03         | 0.004          | 0.021            | 0.743          |
| 2   | rs7561317  | Α  | Obesity   | 0.715  | 0.13         | 0.009          | 1.004  | 0.10         | 0.973          | 0.854            | 0.353          |
|     |            |    | PhyAct    | -0.044 | 0.02         | 0.080          | 0.091  | 0.03         | 0.002          | 0.023            | 0.738          |
| 2   | rs10206343 | С  | BMI       | -0.056 | 0.02         | 0.020          | -0.009 | 0.03         | 0.763          | -0.035           | 0.139          |
| 3   | rs7647305  | Т  | BMI       | -0.034 | 0.02         | 0.159          | -0.053 | 0.03         | 0.066          | -0.042           | 0.024          |
|     |            |    | BMICat    | -0.024 | 0.03         | 0.426          | -0.078 | 0.03         | 0.024          | -0.049           | 0.065          |
| 5   | rs467650   | С  | Obesity   | 0.971  | 0.09         | 0.755          | 0.807  | 0.09         | 0.020          | 0.884            | 0.182          |
| 6   | rs1524097  | С  | EvSmo     | 0.708  | 0.11         | 0.002          | 0.894  | 0.12         | 0.366          | 0.790            | 0.042          |
|     |            |    | PkYrs     | -0.051 | 0.02         | 0.035          | 0.016  | 0.03         | 0.586          | -0.020           | 0.559          |
|     |            |    | Smoke     | -0.154 | 0.05         | 0.001          | -0.057 | 0.05         | 0.283          | -0.109           | 0.026          |
| 7   | rs7810507  | Α  | AbVFat    | 0.044  | 0.02         | 0.068          | 0.055  | 0.03         | 0.071          | 0.048            | 0.011          |
|     |            |    | PkYrs     | 0.003  | 0.02         | 0.896          | 0.092  | 0.03         | 0.002          | 0.046            | 0.298          |
| 8   | rs17069257 | С  | BMI       | 0.053  | 0.02         | 0.029          | -0.018 | 0.03         | 0.542          | 0.019            | 0.582          |
|     |            |    | BMICat    | 0.069  | 0.03         | 0.039          | -0.043 | 0.04         | 0.289          | 0.015            | 0.785          |
|     |            |    | Cessation | 0.718  | 0.22         | 0.133          | 1.440  | 0.15         | 0.015          | 1.036            | 0.918          |
|     |            |    | Smoke     | -0.014 | 0.04         | 0.738          | -0.095 | 0.05         | 0.040          | -0.053           | 0.189          |
| 9   | rs4742700  | А  | EvSmo     | 1.234  | 0.08         | 0.008          | 1.040  | 0.12         | 0.743          | 1.161            | 0.069          |
|     |            |    | Smoke     | 0.082  | 0.03         | 0.015          | 0.020  | 0.05         | 0.696          | 0.063            | 0.025          |
| 9   | rs867559   | G  | Cessation | 0.762  | 0.22         | 0.211          | 1.378  | 0.13         | 0.016          | 1.051            | 0.868          |
|     |            | -  | Smoke     | -0.047 | 0.04         | 0.268          | -0.078 | 0.04         | 0.056          | -0.063           | 0.032          |
| 10  | rs11255232 | G  | BMICat    | 0.079  | 0.03         | 0.023          | -0.006 | 0.08         | 0.939          | 0.066            | 0.038          |
| . • |            | -  | Obesity   | 1.405  | 0.12         | 0.004          | 0.985  | 0.23         | 0.946          | 1.239            | 0.207          |
| 11  | rs1900273  | С  | AbVFat    | -0.041 | 0.02         | 0.091          | -0.052 | 0.03         | 0.088          | -0.045           | 0.017          |
| • • |            | Ŭ  | BMI       | -0.057 | 0.02         | 0.020          | -0.062 | 0.03         | 0.031          | -0.059           | 0.001          |
|     |            |    | BMICat    | -0.038 | 0.02         | 0.120          | -0.066 | 0.03         | 0.056          | -0.048           | 0.017          |
|     |            |    | DivilGat  | -0.030 | 0.02         | 0.120          | -0.000 | 0.00         | 0.000          | -0.040           | 0.017          |

Table 48: Association results for SNPs previously implicated in BMI

|    |            |   | PkYrs     | 0.056  | 0.02 | 0.021 | 0.023  | 0.03 | 0.425 | 0.043  | 0.023 |
|----|------------|---|-----------|--------|------|-------|--------|------|-------|--------|-------|
| 11 | rs7481311  | Т | AbVFat    | -0.020 | 0.02 | 0.424 | -0.086 | 0.03 | 0.005 | -0.051 | 0.126 |
| 11 | rs10835211 | А | PkYrs     | -0.007 | 0.02 | 0.793 | -0.059 | 0.03 | 0.043 | -0.030 | 0.243 |
| 11 | rs4752856  | Α | Cessation | 1.409  | 0.15 | 0.027 | 0.711  | 0.22 | 0.126 | 1.020  | 0.955 |
|    |            |   | Obesity   | 1.173  | 0.09 | 0.089 | 0.731  | 0.16 | 0.049 | 0.942  | 0.800 |
| 12 | rs7138803  | А | BMI       | -0.027 | 0.02 | 0.264 | 0.068  | 0.03 | 0.018 | 0.019  | 0.685 |
| 13 | rs7336332  | G | Cessation | 0.893  | 0.23 | 0.630 | 1.377  | 0.14 | 0.018 | 1.157  | 0.493 |
|    |            |   | CurSmo    | 0.827  | 0.23 | 0.414 | 1.281  | 0.12 | 0.046 | 1.076  | 0.734 |
| 15 | rs12324805 | С | AbVFat    | -0.057 | 0.02 | 0.018 | 0.032  | 0.03 | 0.300 | -0.015 | 0.739 |
|    |            |   | PhyAct    | 0.067  | 0.02 | 0.007 | 0.004  | 0.03 | 0.903 | 0.038  | 0.234 |
| 15 | rs8024593  | G | PhyAct    | -0.051 | 0.02 | 0.040 | 0.022  | 0.03 | 0.477 | -0.039 | 0.040 |
| 16 | rs6499640  | G | BMICat    | -0.010 | 0.02 | 0.699 | -0.069 | 0.03 | 0.046 | -0.034 | 0.239 |
| 16 | rs8050136  | Α | BMI       | 0.058  | 0.02 | 0.017 | -0.030 | 0.03 | 0.291 | 0.015  | 0.730 |
|    |            |   | BMICat    | 0.065  | 0.03 | 0.010 | -0.016 | 0.03 | 0.642 | 0.028  | 0.490 |
|    |            |   | Obesity   | 1.232  | 0.09 | 0.023 | 0.910  | 0.09 | 0.303 | 1.059  | 0.707 |
| 16 | rs3751812  | Т | BMI       | 0.055  | 0.02 | 0.025 | -0.036 | 0.03 | 0.219 | 0.011  | 0.813 |
|    |            |   | BMICat    | 0.062  | 0.03 | 0.016 | -0.041 | 0.06 | 0.476 | 0.023  | 0.640 |
|    |            |   | Obesity   | 1.229  | 0.09 | 0.025 | 0.744  | 0.16 | 0.069 | 0.974  | 0.915 |
| 16 | rs11075989 | Т | BMI       | 0.057  | 0.02 | 0.020 | -0.012 | 0.03 | 0.682 | 0.024  | 0.480 |
|    |            |   | BMICat    | 0.063  | 0.03 | 0.014 | 0.003  | 0.03 | 0.934 | 0.037  | 0.217 |
|    |            |   | Obesity   | 1.229  | 0.09 | 0.025 | 0.949  | 0.09 | 0.566 | 1.080  | 0.553 |
| 16 | rs7190492  | Α | BMI       | -0.054 | 0.02 | 0.029 | 0.035  | 0.03 | 0.225 | -0.011 | 0.812 |
| 16 | rs8044769  | Т | BMI       | -0.048 | 0.02 | 0.048 | 0.034  | 0.03 | 0.244 | -0.009 | 0.834 |
|    |            |   | BMICat    | -0.052 | 0.03 | 0.040 | 0.050  | 0.04 | 0.189 | -0.005 | 0.927 |
| 18 | rs10871777 | G | BMI       | 0.041  | 0.02 | 0.092 | 0.045  | 0.03 | 0.118 | 0.043  | 0.022 |
|    |            |   | PhyAct    | 0.056  | 0.02 | 0.024 | -0.021 | 0.03 | 0.477 | 0.019  | 0.619 |
| 18 | rs12970134 | Α | BMI       | 0.049  | 0.02 | 0.044 | 0.052  | 0.03 | 0.071 | 0.050  | 0.007 |
| 20 | rs2145270  | С | EvSmo     | 1.171  | 0.08 | 0.038 | 1.121  | 0.09 | 0.201 | 1.150  | 0.016 |
|    |            |   | Obesity   | 0.851  | 0.09 | 0.085 | 0.852  | 0.09 | 0.080 | 0.851  | 0.014 |
|    |            |   | Smoke     | 0.071  | 0.03 | 0.030 | 0.061  | 0.04 | 0.108 | 0.067  | 0.007 |
| 22 | rs4823535  | Α | PhyAct    | -0.019 | 0.02 | 0.439 | 0.085  | 0.03 | 0.004 | 0.032  | 0.544 |
|    |            |   |           |        |      |       |        |      |       |        |       |

Note: Chr = chromosome, A1 = allele tested,  $\beta$  = beta estimate for liner regression, OR = odds ratio for logistic regression, SE = standard error of the estimate, SNP = single nucleotide polymorphism, BMI = body mass index, AbVFat = abdominal visceral fat, PhyAct = physical activity, BMICat = clinical BMI category (under, normal, overweight, obese), Smoke = smoking status (never, current, former), EvSmo = ever smoked, Cessation = former vs current smoker, CurSmo = current smoker.

|     |            |    |                     | White          |              |                       |                 | <u>Black</u> |                       | <u>Meta-Analysis</u> |                       |  |  |
|-----|------------|----|---------------------|----------------|--------------|-----------------------|-----------------|--------------|-----------------------|----------------------|-----------------------|--|--|
| Chr | SNP        | A1 | Trait               | β/OR           | SE           | Р                     | β/OR            | SE           | Р                     | β/OR                 | Р                     |  |  |
| 1   | rs839758   | G  | BMI                 | -0.011         | 0.02         | 0.659                 | 0.061           | 0.03         | 0.035                 | 0.023                | 0.514                 |  |  |
|     |            |    | BMICat              | 0.005          | 0.02         | 0.839                 | 0.071           | 0.03         | 0.029                 | 0.035                | 0.289                 |  |  |
|     |            |    | Obesity             | 1.002          | 0.09         | 0.980                 | 1.268           | 0.09         | 0.008                 | 1.128                | 0.307                 |  |  |
| 1   | rs2782641  | G  | Cessation           | 1.078          | 0.15         | 0.626                 | 0.748           | 0.13         | 0.031                 | 0.891                | 0.529                 |  |  |
| 1   | rs10888740 | Α  | PkYrs               | -0.012         | 0.02         | 0.617                 | -0.059          | 0.03         | 0.044                 | -0.033               | 0.159                 |  |  |
| 1   | rs9633423  | Т  | Cessation           | 1.299          | 0.16         | 0.092                 | 1.340           | 0.14         | 0.043                 | 1.321                | 0.009                 |  |  |
|     |            |    | CurSmo              | 1.283          | 0.15         | 0.096                 | 1.194           | 0.13         | 0.161                 | 1.230                | 0.032                 |  |  |
|     |            |    | PhyAct              | -0.018         | 0.02         | 0.471                 | 0.067           | 0.03         | 0.025                 | 0.023                | 0.589                 |  |  |
| 1   | rs6683734  | А  | AbVFat              | -0.015         | 0.02         | 0.536                 | 0.074           | 0.03         | 0.016                 | -0.042               | 0.156                 |  |  |
|     |            | ~  | PhyAct              | -0.049         | 0.02         | 0.047                 | 0.033           | 0.03         | 0.276                 | -0.010               | 0.807                 |  |  |
| 2   | rs16824949 | G  | PkYrs               | 0.036          | 0.02         | 0.143                 | -0.067          | 0.03         | 0.025                 | -0.014               | 0.782                 |  |  |
| 7   | rs6945244  | Т  | EvSmo               | 0.882          | 0.08         | 0.094                 | 0.883           | 0.10         | 0.191                 | 0.882                | 0.034                 |  |  |
|     |            |    | Obesity             | 0.821          | 0.09         | 0.033                 | 0.986           | 0.10         | 0.885                 | 0.897                | 0.238                 |  |  |
|     |            |    | PhyAct              | 0.024          | 0.02         | 0.323                 | 0.062           | 0.03         | 0.037                 | 0.040                | 0.037                 |  |  |
| 7   |            |    | Smoke               | -0.057         | 0.03         | 0.079                 | -0.075          | 0.04         | 0.065                 | -0.064               | 0.011                 |  |  |
| 7   | rs6948856  | A  | Obesity             | 0.761          | 0.11         | 0.012                 | 1.086           | 0.09         | 0.384                 | 0.913                | 0.608                 |  |  |
| 8   | rs2640732  | G  | Cessation           | 0.714          | 0.16         | 0.033                 | 1.306           | 0.15         | 0.080                 | 0.967                | 0.911                 |  |  |
|     |            |    | CurSmo              | 0.716          | 0.15         | 0.028                 | 1.216           | 0.14         | 0.155                 | 0.937<br>1.077       | 0.805                 |  |  |
| 15  | r02656060  | 0  | Obesity             | 1.228          | 0.09         | 0.025                 | 0.930           | 0.11         | 0.516                 |                      | 0.595                 |  |  |
| 15  | rs2656069  | G  | AbVFat              | 0.011<br>0.052 | 0.02<br>0.02 | 0.653<br><b>0.037</b> | -0.075<br>0.030 | 0.03<br>0.03 | <b>0.013</b><br>0.313 | -0.030<br>0.043      | 0.482<br><b>0.024</b> |  |  |
| 15  | rs3885951  | С  | PhyAct              | 0.052          | 0.02         | 0.037                 | -0.204          | 0.03         | 0.313                 | -0.043               | 0.024<br>0.776        |  |  |
| 15  | 183003931  | C  | BMICat              | 1.155          | 0.04         | 0.316                 | 0.380           | 0.12         | 0.079<br>0.009        | 0.698                | 0.770                 |  |  |
| 15  | rs578776   | т  | Obesity             | 0.052          | 0.14         | 0.310<br>0.036        | 0.380           | 0.07         | 0.557                 | 0.038                | 0.510<br>0.047        |  |  |
| 15  | rs12441998 | Ġ  | PhyAct<br>Cessation | 0.667          | 0.02         | 0.030                 | 1.228           | 0.03         | 0.106                 | 0.038                | 0.791                 |  |  |
| 15  | 1312441330 | 0  | PkYrs               | -0.048         | 0.02         | 0.049                 | -0.012          | 0.03         | 0.692                 | -0.033               | 0.076                 |  |  |
| 15  | rs11072774 | т  | BMI                 | 0.024          | 0.02         | 0.315                 | 0.059           | 0.03         | 0.002                 | 0.039                | 0.037                 |  |  |
| 10  | 1311072114 | •  | Cessation           | 0.589          | 0.22         | 0.018                 | 0.870           | 0.18         | 0.426                 | 0.733                | 0.109                 |  |  |
|     |            |    | CurSmo              | 0.641          | 0.22         | 0.041                 | 0.799           | 0.16         | 0.168                 | 0.739                | 0.020                 |  |  |
|     |            |    | Obesity             | 1.207          | 0.12         | 0.102                 | 1.353           | 0.12         | 0.011                 | 1.276                | 0.003                 |  |  |
| 15  | rs17487514 | Т  | Obesity             | 1.021          | 0.10         | 0.837                 | 0.657           | 0.20         | 0.037                 | 0.848                | 0.450                 |  |  |
| 15  | rs16970006 | Ċ  | BMI                 | 0.018          | 0.02         | 0.471                 | 0.066           | 0.03         | 0.023                 | 0.039                | 0.102                 |  |  |
|     |            | •  | BMICat              | 0.040          | 0.05         | 0.418                 | 0.218           | 0.10         | 0.034                 | 0.106                | 0.217                 |  |  |
|     |            |    | Cessation           | 0.435          | 0.40         | 0.039                 | 1.848           | 0.39         | 0.115                 | 0.900                | 0.884                 |  |  |
|     |            |    | CurSmo              | 0.437          | 0.39         | 0.036                 | 1.365           | 0.33         | 0.347                 | 0.788                | 0.676                 |  |  |
|     |            |    | Obesity             | 1.249          | 0.17         | 0.191                 | 1.952           | 0.27         | 0.014                 | 1.484                | 0.070                 |  |  |
| 15  | rs11072794 | Т  | Cessation           | 0.652          | 0.18         | 0.020                 | 1.364           | 0.15         | 0.035                 | 0.951                | 0.891                 |  |  |
|     |            |    | CurSmo              | 0.701          | 0.18         | 0.045                 | 1.318           | 0.14         | 0.044                 | 0.971                | 0.926                 |  |  |
| 15  | rs7177699  | С  | CurSmo              | 1.336          | 0.14         | 0.046                 | 1.005           | 0.16         | 0.973                 | 1.167                | 0.278                 |  |  |
| 15  | rs4380028  | А  | AbVFat              | 0.038          | 0.02         | 0.113                 | 0.051           | 0.03         | 0.099                 | 0.043                | 0.023                 |  |  |
| 15  | rs11072810 | Т  | Obesity             | 0.986          | 0.09         | 0.875                 | 0.826           | 0.09         | 0.039                 | 0.902                | 0.243                 |  |  |
| 16  | rs802698   | А  | PhyAct              | -0.053         | 0.02         | 0.033                 | 0.017           | 0.03         | 0.563                 | -0.020               | 0.572                 |  |  |
| 19  | rs3889806  | А  | Cessation           | 0.674          | 0.17         | 0.021                 | 0.876           | 0.20         | 0.500                 | 0.755                | 0.031                 |  |  |
|     |            |    | CurSmo              | 0.717          | 0.16         | 0.039                 | 0.926           | 0.19         | 0.678                 | 0.801                | 0.080                 |  |  |
|     |            |    | PhyAct              | -0.019         | 0.02         | 0.435                 | -0.072          | 0.03         | 0.016                 | -0.043               | 0.103                 |  |  |
| 19  | rs7251950  | Т  | Cessation           | 1.386          | 0.16         | 0.038                 | 1.119           | 0.17         | 0.520                 | 1.259                | 0.049                 |  |  |
|     |            |    |                     |                |              |                       |                 |              |                       |                      |                       |  |  |

Table 49: Association results for SNPs previously implicated in smoking behaviors

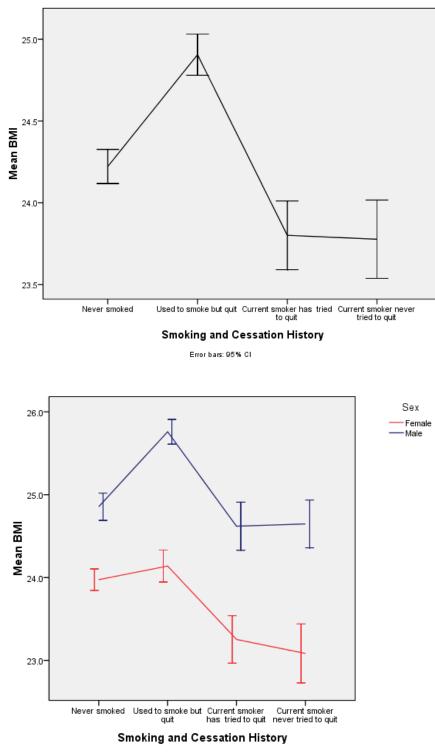

# SUPPLEMENTARY MATERIAL



Figure 34: Daily cigarette consumption by BMI and sex in the VA30k sample

Error bars: 95% Cl

Figure 35: Smoking history by BMI and sex in the VA30k sample



Error bars: 95% Cl

Figure 36: Partial modified CCC model path diagram for BMI, smoking initiation and nicotine dependence

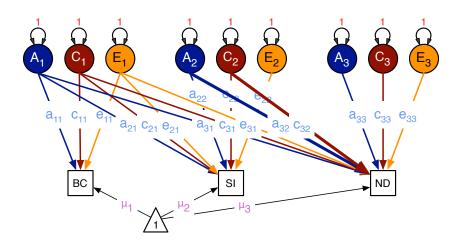



Figure 37: CCC path estimates for females (VA30k)

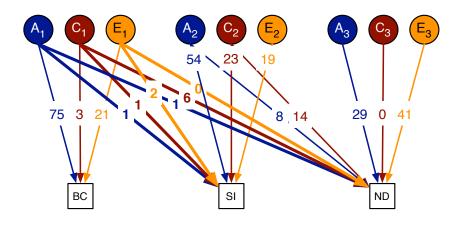
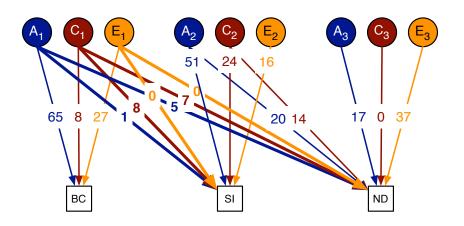




Figure 38: CCC path estimates for males (VA30k)



# **Chapter 9: Global Discussion**

Obesity is a serious public health crisis and recent estimates of its incidence are the highest in United States history, with 35% and 17% of American adults and children affected, respectively (2). The clinical definition of adult obesity is operationalized as a body mass index (BMI) greater than 30 kg/m<sup>2</sup>. Although the prevalence of common obesity has increased dramatically over the past 30 years–largely thought to be due to changes in the environment, such as high calorie diets and sedentary lifestyles—twin and family studies have shown consistently that relative body weight is under considerable genetic influence in both children and adults, and heritability estimates range from 40% to 90% (35, 51-54).

Given the large heritability estimates reported for BMI, molecular genetic approaches represent a useful tool with which to examine underlying mechanisms of and genetic susceptibility to obesity. To date, a number of approaches have been utilized to identify BMI/obesity-associated genes including candidate gene, linkage and association studies. While candidate gene and linkage studies have been useful in detecting genetic factors of large effect for rare forms of obesity, they have proven relatively unsuccessful for discovering genes of relatively small effect, such as those thought to underlie genetic liability to common complex obesity and BMI.

Genome-wide association studies (GWAS) have successfully identified polymorphisms influencing numerous complex traits and diseases (72). However, this approach has been met with important limitations. A number of potential factors have been proposed that may reduce the power of this methodology in general, as well as for the field of common complex obesity specifically. The survey of limitations presented in Chapter 1 highlights the following issues: replication of variants with small effects, utility of risk prediction, generalizability to multiple racial groups and across the lifespan and affects of comorbidity with other traits and disorders. The research reported herein attempts to address many of these issues, towards developing improved methods to delineate the genetics of BMI and common complex obesity, along with the corresponding associations with depression symptoms and smoking behavior. In the subsequent discussion, we first summarize key findings from each of the chapters, discuss limitations of this research and propose extensions for future research.

#### Research findings

This research integrated clinical, twin, and genetic association studies to further our understanding of the genetics of BMI and common complex obesity in the context of genetic risk sum scores (GRSS), clinical risk prediction, development across adolescence into adulthood, and comorbidity with depression symptoms and smoking behavior. A summary of the dissertation studies appears in Figure 39. The first three studies (Chapters 2-4) incorporated GRSS methodology, which effectively summarizes the effects of a number of risk alleles into a composite score. In Chapter 2, the MGS-C sample was used for proof-of-principle of this methodology, that is, the use of a GRSS as an alternative form of replication. The MGS-C had limited power to detect the previously BMI-associated variants individually but in aggregate, as a count score, was found to be highly

associated with BMI (p-value =  $3.19 \times 10^{-6}$ ) but explained a limited amount of the variance (0.66%). However, estimates of the area under receiver operator criteria curve (AUC) indicated that the GRSS and covariates significantly predicted overweight and obesity classification with maximum discriminative ability for predicting class III obesity (AUC=0.697). An additional finding was that the GRSS was associated in both European- and African-Americans, despite the fact that the BMI-associated variants were catalogued from meta-analyses of primarily European descent.

In Chapter 3, we extended this GRSS methodology by constructing scores from proxy versus imputed SNPs and count versus weighted methods. The weighted SNP-GRSS constructed from imputed probabilities of risk alleles performed best and was highly associated with BMI ( $p=4.3 \times 10^{-16}$ ), accounting for 3% of the phenotypic variance. In addition to BMI-validated SNPs, common and rare BMI/obesity-associated CNVs were identified from the literature and incorporated into a score in the hopes of increasing risk prediction. Of the 84 CNVs previously reported, only a 21-kilobase deletion on 16p12.3 demonstrated evidence of association with BMI (p=0.003, frequency=16.9%) in the SAGE sample, with two CNVs showing nominal association with moderate-obesity, 1p36.1 duplications (OR=3.1, p=0.009, frequency 1.2%) and 5q13.2 deletions (OR=1.5, p=0.048, frequency 7.7%). The combined model, which included covariates, SNP-GRSS, and 16p12.3 deletion, accounted for 11.5% of phenotypic variance in BMI ( $p=3.34 \times 10^{-54}$ ) and AUC estimates significantly predicted obesity classification with maximum discriminative ability for morbid-obesity (AUC = 0.750). These results illustrate how prediction algorithms may be improved by incorporating validated effect-sizes and allelic probabilities. Furthermore, in agreement with Chapter 2, the GRSS was associated in both European- and African-Americans despite the BMI-associated variants being catalogued from meta-analyses primarily of European descent.

Because there has been only limited research on when during development BMIassociated variants begin to influence BMI, we utilize in Chapter 4 the ABD longitudinal twin study in order to assess the effects of adult-validated BMI-SNPs across adolescence into adulthood (age 8 to 18). BMI was found to be highly heritable, accounting for 74-91% of the variance over the course of adolescent development and, furthermore, modeling indicated multiple genetic factors that contributed to BMI liability, including a genetic factor that loaded across development, a second common genetic factor that loaded later in adolescence and time-specific genetic factors important in midadolescence. Additionally, shared environmental effects were found to account for significant portions of the phenotypic variance (1-18%) for ages 11-16 in females and ages 8-14 in males. A unique environmental factor accounted for 2-13% of the phenotypic variance across development. To better understand the importance of adult BMI-associated genetic variants across adolescent development, we tested a weighted GRSS as an effect on latent genetic factors as well as on mean BMI. Preliminary results indicated that the GRSS was best modeled as an effect on mean BMI at each age group, suggesting association across development with the magnitude of the effect differing at each time point considered and ranged in effect from 0.05 to 2.4 kg/m<sup>2</sup> change in BMI. The GRSS accounted for 1-2.3% of the phenotypic variance in BMI across adolescence. To our knowledge, this is the first study of BMI to incorporate GRSS methodology in the context of variance decomposition.

In Chapters 5 through 8, BMI and common complex obesity are approached from the perspective of comorbidity through phenotypic and genetic associations with binge eating disorder (BED), depression symptoms and smoking behavior. In Chapters 5 and 6, we used the UofMN study, a clinical sample of overweight and obese women with and without BED, to examine the relationship of BED, food intake and internalizing symptoms of depression and anxiety. In Chapter 5, energy intake and energy expenditure were assessed by multiple methods to potentially identify differences in food intake, metabolism and accuracy of self-reported food intake in obese groups with and without BED. The results indicated no between group differences in total daily energy expenditure (TDEE), basal metabolic rate (BMR) or thermal effect of food (TEF). According to dietary recall data, the BED group had significantly higher caloric intake on binge eating episode days than non-binge days (3255 vs. 2343 kilocalories (kcal)). No difference was observed between BED non-binge day intake and control group intake (2233 vs. 2140 kcal). We observed similar results for food log data and laboratory measured intake. Our data suggest that increased energy intake reported by BED individuals is due to increased food consumption and, critically, not metabolic differences. When comparing TDEE to data on dietary recall and food log, both groups displayed significant underreporting of caloric intake of similar magnitudes ranging 20-33%. Furthermore, predicted energy requirements estimated via the Harris-Benedict equation underestimated measured TDEE by 23-24%. These results, taken together, provide support for under-reporting of food intake by both BED and non-BED obese groups.

In Chapter 6, we used the UofMN sample to examine models by which BED and internalizing symptoms of depression and anxiety influence food intake in overweight/obese women. The BED group was found to endorse significantly more symptoms of depression (10.1 vs. 4.8, p=0.005) and anxiety (8.5 vs. 2.7, p=0.003). Linear regression indicated that BED diagnosis and internalizing symptoms accounted for 30% of the variance in kcal-intake (F(3,28)=4.0, p=0.017). Results from path analysis suggested that BED mediates the influence of internalizing symptoms on total kcal-intake (empirical p<0.001). The associations between internalizing symptoms and food intake are best described as acting indirectly through a BED diagnosis. This suggests that symptoms of depression and anxiety influence whether an individual engages in binge eating, which itself influences kcal-intake. Improved understanding of the mechanisms underlying the associations between mood, binge eating and food intake will facilitate the development of more effective prevention and treatment strategies for both BED and obesity.

In Chapters 7 and 8, associations between BMI, depression symptoms and smoking behavior were examined by two different types of genetically informative samples: twin studies and GWAS. In Chapter 7, twin study methodology was utilized in order to investigate whether shared genetic and/or environmental liability is responsible for phenotypic associations found between BMI, depression symptoms, and impulsivity in the VA30k sample. A significant quadratic relationship was found between BMI and depression symptoms, indicating that those individuals with the highest and the lowest BMI were more likely to endorse higher depression scores. Bivariate twin modeling results did not indicate a significant genetic or environmental correlation between BMI and depression symptoms. However, significant genetic and environmental correlations were found between BMI and impulsivity (rG =0.115, rE=0.046), as well as a significant genetic correlation between depression and impulsivity (rG=0.075). Trivariate independent pathway twin modeling indicated shared genetic and environmental liability between these traits and a common genetic factor accounting for 2-16% of the genetic variance in these traits. In females, an environmental factor common to BMI and impulsivity accounted for 0.5% of the environmental variance in BMI and 62% in impulsivity accounted for 0.5% of the environmental variance in depression symptoms and impulsivity. Our findings suggested partially shared genetic and environmental risk between BMI, depression symptoms and impulsivity.

The purpose of Chapter 8 was to investigate whether genetic variants previously identified to be associated with either BMI or smoking behavior were common to multiple behaviors or were trait-specific in the HABC study. Phenotypic associations indicated current smokers had significantly lower BMI and abdominal visceral fat than "never" or former smokers in both sexes. In total, three BMI-associated SNPs demonstrated nominally significant associations with smoking traits: rs1900273 in *STK33*, rs2145270 near *BMP2* and rs12127438 at the 1q42.2 locus. Additionally, three smoking behavior-associated SNPs were found to be nominally associated with body composition variables: rs11072774 in *CHRNB4*, rs2640732 in *SCARA3* and rs6945244 in *PDE1C*. Our preliminary findings are suggestive of partially shared genetic risk between smoking and body composition in a sample of European- and African-Americans.

#### Limitations and extensions

The findings reported herein are best interpreted within the context of several limitations. First, although SNP-GRSSs were significantly associated with BMI, they only accounted for a limited proportion of the phenotypic variance (0.5-3%) and, accordingly, obesity risk prediction based on these scores was not found to have clinical utility. Moreover, while it was hoped that by including an additional class of genetic variants (i.e., CNVs) we would be able to account for more of the phenotypic variance in BMI, all but three of the CNVs catalogued from the literature failed to demonstrate evidence of association with BMI or obesity, even when tested in aggregate. However, as large-scale exome and genome sequencing initiatives identify lower frequency variants and other types of variation such as INDELs, the framework we have provided for integrating common and rare variation may be applied.

There are potentially several other extensions to GRSS methodology. For example, the GRSS reported here were constructed from variants that met genome-wide significance. Alternatively, these scores could be constructed from a wider significance threshold to determine the probability level that captures maximal predictive ability. Furthermore, an important extension of an integrated model of BMI and obesity is to incorporate the moderating effects of the environment. At least two of the BMI-validated SNPs exhibit gene by environment interactions. Future research should incorporate environmental variables into models of disease and risk prediction, as consideration of only genetic effects will surely be of limited potential.

Several of the reported phenotypic associations indicated a significant quadratic association, including age and BMI. Additionally, a quadratic association was found

between BMI and depression symptoms. This finding could explain, in part, conflicting reported findings on the nature of the association of BMI and depression, and further highlights the importance of addressing the possibility of higher order associations between variables (i.e., quadratic, cubic). Furthermore, there are known limitations of structural equation modeling for the handling of nonlinear relationships. Additional research is needed to determine the effect of curvilinear relationships on variance decomposition methodology and parameter estimates.

Another limitation of this research was the application of only a few of the potentially relevant latent variable twin models. Other longitudinal models, which would be particularly insightful, are simplex and growth curves, as they allow for the assessment of the contributions of variance components and genetic variants on innovations, transmissions and rate of change of BMI across time. In addition, since C and D components cannot me modeled simultaneously in classical twin designs, future models might utilize the extended twin design to determine the effect of each of these sources of variance among others such as assortative mating. Of particular interest is the application of models of comorbidity to potentially determine the direction of effect, as longitudinal phenotypic studies have found a reciprocal association between obesity and depression. Future research should apply models of comorbidity and test direction of causation in genetically informative samples. Our results suggest that there is partially shared genetic risk between BMI, depression symptoms and impulsivity and BMI and smoking behavior. More studies are needed to determine how correlated liability affects gene-finding efforts.

#### Closing remarks

Given the seriousness of the global obesity epidemic among both children and adults, research elucidating the genetic and environmental liability to BMI and development of obesity is essential. It is well recognized that excess body weight is the result of positive energy balance, that is, excess caloric intake relative to energy expenditure. Although energy balance appears straightforward, its relationship with obesity is quite complex and involves the interplay of genetic, environmental, and psychological determinants. Despite twin and family studies consistently demonstrating that relative body weight is under considerable genetic influence in both children and adults, only a limited number of genetic variants have been identified to date and these account for only a fraction of the heritability. The so-called "missing heritability" has been speculated to reside in lower frequency and other classes of variants yet to be elucidated by the holy grail of molecular genetic studies-whole-genome sequencing. Longitudinal twin studies indicate there are multiple genetic and environmental factors that persist across time, as well as time-specific factors, that influence relative body weight. However, most genetic association studies have been performed on crosssectional studies ignoring the potential confounders of development. Furthermore, BMI and obesity are associated and comorbid with multiple traits and diseases, and studies have demonstrated correlated liability between traits. Nonetheless, most genetic association studies do not account for effects of correlated liability beyond the use of a few basic covariates. This next era of gene finding efforts by large-scale sequencing will certainly identify additional genetic variation and likely shed light on new pathways

involved in disease etiology. However, to fully understand common complex obesity we need to move beyond the rather simplistic model of performing linear associations between genetic variant and "trait" and move towards building integrated models incorporating development, comorbidity, and, importantly, effects of the environment.

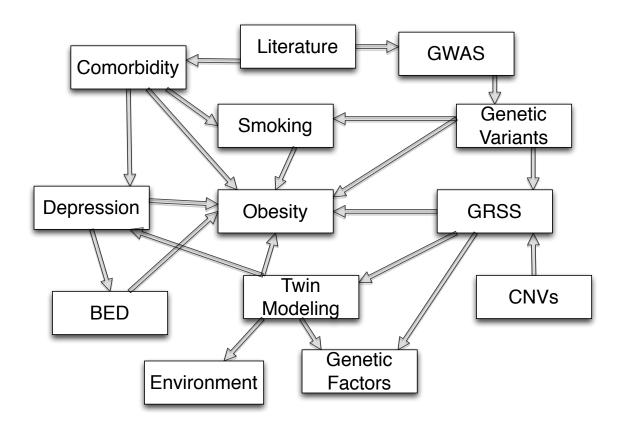



Figure 39: Summary of dissertation studies

## **Reference List**

1. Caballero B. The global epidemic of obesity: an overview. *Epidemiol Rev* 2007; 29: 1-5.

2. Ogden C, Carroll M, Kit B, Flegal K. Prevalence of obesity in the United States, 2009-2010. *NCHS data brief* 2012;: 1-8.

3. Dietz WH, Bellizzi MC. Introduction: the use of body mass index to assess obesity in children. *Am J Clin Nutr* 1999; **70**: 123S-125S.

4. Lesser G. Issues in body fatness measurement. Arch Intern Med 2009; 169: 636-636.

5. Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? *Am J Epidemiol* 1996; **143**: 228-239.

6. Romero Corral A, Somers VK, Sierra Johnson J, Thomas RJ, Collazo Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. *Int J Obes* 2008; **32**: 959-966.

7. Deurenberg P, Yap M. The assessment of obesity: methods for measuring body fat and global prevalence of obesity. *Bailliere's best practice research.Clinical endocrinology metabolism* 1999; **13**: 1-11.

8. Deurenberg P, Deurenberg Yap M. Validity of body composition methods across ethnic population groups. *Forum Nutr* 2003; **56**: 299-301.

9. Freedman D, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. *Pediatrics* 2009; **124 Suppl 1**: S23-S34.

10. Freedman D, Wang J, Ogden C, Thornton J, Mei Z, Pierson R, et al. The prediction of body fatness by BMI and skinfold thicknesses among children and adolescents. *Ann Hum Biol* 2007; **34**: 183-194.

11. Ogden CL, Carroll MD, Flegal KM. Epidemiologic trends in overweight and obesity. *Endocrinol Metab Clin North Am* 2003; **32**: 741-60, vii.

12. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. *Gastroenterology* 2007; **132**: 2087-2102.

13. Apovian C, Gokce N. Obesity and cardiovascular disease. Circulation 2012; 125: 1178-1182.

14. Chen L, Magliano D, Zimmet P. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. *Nature reviews.Endocrinology* 2011;.

15. Temelkova Kurktschiev T, Stefanov T. Lifestyle and Genetics in Obesity and type 2 Diabetes. *Experimental and clinical endocrinology diabetes* 2011;.

16. Faulds M, Dahlman Wright K. Metabolic diseases and cancer risk. Curr Opin Oncol 2012; 24: 58-61.

17. de Wit L, Fokkema M, van Straten A, Lamers F, Cuijpers P, Penninx BWJH. Depressive and anxiety disorders and the association with obesity, physical, and social activities. *Depress Anxiety* 2010; **27**: 1057-1065.

18. Carpiniello B, Pinna F, Pillai G, Nonnoi V, Pisano E, Corrias S, et al. Obesity and psychopathology. A study of psychiatric comorbidity among patients attending a specialist obesity unit. *Epidemiol Psichiatr Soc* 2009; **18**: 119-127.

19. Duncan AE, Grant JD, Bucholz KK, Madden PA, Heath AC. Relationship between body mass index, alcohol use, and alcohol misuse in a young adult female twin sample. *J Stud Alcohol Drugs* 2009; **70**: 458-466.

20. Strine TW, Mokdad AH, Dube SR, Balluz LS, Gonzalez O, Berry JT, et al. The association of depression and anxiety with obesity and unhealthy behaviors among community-dwelling US adults. *Gen Hosp Psychiatry* 2008; **30**: 127-137.

21. Grucza RA, Przybeck TR, Cloninger CR. Prevalence and correlates of binge eating disorder in a community sample. *Compr Psychiatry* 2007; **48**: 124-131.

22. Dietz WH. Health consequences of obesity in youth: childhood predictors of adult disease. *Pediatrics* 1998; **101**: 518-525.

23. Schwartz MB, Puhl R. Childhood obesity: a societal problem to solve. Obesity reviews 2003; 4: 57-71.

24. Whitlock E, Williams S, Gold R, Smith P, Shipman S. Screening and interventions for childhood overweight: a summary of evidence for the US Preventive Services Task Force. *Pediatrics* 2005; **116**: e125-e144.

25. Freedman D, Mei Z, Srinivasan S, Berenson G, Dietz W. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. *J Pediatr* 2007; **150**: 12-17.e2.

26. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. *Prev Med* 1993; **22**: 167-177.

27. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. *N Engl J Med* 1997; **337**: 869-873.

28. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. *Int J Obes* 1999; **23 Suppl 8**: S1-107.

29. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. *BMJ.British medical journal* 2005; **331**: 929-929.

30. Biro F, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr 2010; 91: 1499S-1505S.

31. McAllister E, Dhurandhar N, Keith S, Aronne L, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. *Crit Rev Food Sci Nutr* 2009; **49**: 868-913.

32. Bleich S, Cutler D, Murray C, Adams A. Why is the developed world obese? *Annu Rev Public Health* 2008; **29**: 273-295.

33. Bleich SN, Ku R, Wang YC. Relative contribution of energy intake and energy expenditure to childhood obesity: a review of the literature and directions for future research. *Int J Obes* 2011; **35**: 1-15.

34. Stunkard AJ, Foch TT, Hrubec Z. A twin study of human obesity. *JAMA (Chicago, Ill.)* 1986; **256**: 51-54.

35. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. *Behav Genet* 1997; **27**: 325-351.

36. Silventoinen K, Kaprio J. Genetics of Tracking of Body Mass Index from Birth to Late Middle Age: Evidence from Twin and Family Studies. *Obesity Facts* 2009; **2**: 196.

37. O'Rahilly S, Farooqi IS, Yeo GSH, Challis B. Minireview: human obesity-lessons from monogenic disorders. *Endocrinology* 2003; **144**: 3757-3764.

38. Mutch D, Clément K. Unraveling the genetics of human obesity. PLOS Genetics 2006; 2: e188-e188.

39. Hinney A, Vogel CIG, Hebebrand J. From monogenic to polygenic obesity: recent advances. *European child adolescent psychiatry* 2010; **19**: 297.

40. Beales P. Obesity in single gene disorders. Prog Mol Biol Transl Sci 2010; 94: 125-157.

41. Farooqi IS, Keogh J, Yeo GSH, Lank E, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. *N Engl J Med* 2003; **348**: 1085-1095.

42. Loos RJF. The genetic epidemiology of melanocortin 4 receptor variants. *Eur J Pharmacol* 2011; **660**: 156-164.

43. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. *Nat Genet* 1998; **20**: 111-112.

44. Vaisse C, Clement K, Guy Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. *Nat Genet* 1998; **20**: 113-114.

45. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh J, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. *N Engl J Med* 2007; **356**: 237-247.

46. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. *Nature* 1998; **392**: 398-401.

47. Hinney A, Vogel CIG, Hebebrand J. From monogenic to polygenic obesity: recent advances. *European child adolescent psychiatry* 2010; **19**: 297-310.

48. Rankinen T, Zuberi A, Chagnon Y, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. *Obesity* 2006; **14**: 529-644.

49. Ranadive S, Vaisse C. Lessons from extreme human obesity: monogenic disorders. *Endocrinol Metab Clin North Am* 2008; **37**: 733-51, x.

50. Farooqi IS, O'Rahilly S. Monogenic obesity in humans. Annu Rev Med 2005; 56: 443-458.

51. Schousboe K, Willemsen G, Kyvik K, Mortensen J, Boomsma D, Cornes B, et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. *Twin research* 2003; **6**: 409-421.

52. Silventoinen K, Kaprio J. Genetics of tracking of body mass index from birth to late middle age: evidence from twin and family studies. *Obesity facts* 2009; **2**: 196-202.

53. Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. *Int J Obes* 2010; **34**: 29-40.

54. Dubois L, Ohm Kyvik K, Girard M, Tatone Tokuda F, Prusse D, Hjelmborg J, et al. Genetic and Environmental Contributions to Weight, Height, and BMI from Birth to 19 Years of Age: An International Study of Over 12,000 Twin Pairs. *PLoS ONE* 2012; **7**: e30153-e30153.

55. Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. *Int J Obes* 2010; **34**: 29-40.

56. Harris JR, Tambs K, Magnus P. Sex-specific effects for body mass index in the new Norwegian twin panel. *Genet Epidemiol* 1995; **12**: 251-265.

57. Bodurtha JN, Mosteller M, Hewitt JK, Nance WE, Eaves LJ, Moskowitz WB, et al. Genetic analysis of anthropometric measures in 11-year-old twins: the Medical College of Virginia Twin Study. *Pediatr Res* 1990; **28**: 1-4.

58. Ortega Alonso A, Pietiläinen K, Silventoinen K, Saarni S, Kaprio J. Genetic and environmental factors influencing BMI development from adolescence to young adulthood. *Behav Genet* 2012; **42**: 73-85.

59. Hur Y. Sex difference in heritability of BMI in South Korean adolescent twins. *Obesity* 2007; **15**: 2908-2911.

60. Cornes B, Zhu G, Martin N. Sex differences in genetic variation in weight: a longitudinal study of body mass index in adolescent twins. *Behav Genet* 2007; **37**: 648-660.

61. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. *Nature* 1994; **372**: 425-432.

62. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. *Nature* 1997; **387**: 903-908.

63. Speliotes E,K., Willer C,J., Berndt S,I., Monda K,L., Thorleifsson,Gudmar, Jackson A,U., et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nat Genet* 2010; **42**: 937.

64. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. *Nat Genet* 2009; **41**: 25-34.

65. Thorleifsson G, Walters GB, Gudbjartsson D, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. *Nat Genet* 2009; **41**: 18.

66. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. *Nat Genet* 2008; **40**: 768-775.

67. Loos RJF. Genetic determinants of common obesity and their value in prediction. *Best practice research.Clinical endocrinology metabolism* 2012; **26**: 211-226.

68. Saunders C, Chiodini B, Sham P, Lewis C, Abkevich V, Adeyemo A, et al. Meta-analysis of genomewide linkage studies in BMI and obesity. *Obesity* 2007; **15**: 2263-2275.

69. Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. *Am J Hum Genet* 2001; **69**: 936-950.

70. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. *Nature* 2007; **449**: 851-861.

71. Hirschhorn J, Lettre G. Progress in genome-wide association studies of human height. *Horm Res* 2009; **71 Suppl 2**: 5.

72. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* 2007; **447**: 661-678.

73. Schork N, Murray S, Frazer K, Topol E. Common vs. rare allele hypotheses for complex diseases. *Current opinion in genetics development* 2009; **19**: 212-219.

74. Ahituv N, Kavaslar N, Schackwitz W, Ustaszewska A, Martin J, Hebert S, et al. Medical sequencing at the extremes of human body mass. *Am J Hum Genet* 2007; **80**: 779-791.

75. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. *Nature* 2010; **463**: 671.

76. Bochukova E, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. *Nature* 2010; **463**: 666.

77. Wang K, Li W, Glessner J, Grant SFA, Hakonarson H, Price RA. Large copy-number variations are enriched in cases with moderate to extreme obesity. *Diabetes* 2010; **59**: 2690-2694.

78. Bachmann Gagescu R, Mefford H, Cowan C, Glew G, Hing A, Wallace S, et al. Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. *Genetics in medicine* 2010; **12**: 641.

79. Glessner J, Bradfield J, Wang K, Takahashi N, Zhang H, Sleiman P, et al. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. *Am J Hum Genet* 2010; **87**: 661.

80. Shinawi M, Sahoo T, Maranda B, Skinner SA, Skinner C, Chinault C, et al. 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. *American journal of medical genetics.Part A* 2011; **155A**: 1272-1280.

81. Jacquemont, Sebastien, Reymond, Alexandre, Zufferey, Flore, Harewood, Louise, Walters R, G., Kutalik, Zoltan, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. *Nature* 2011; **478**: 97-102.

82. Sofos E, Pescosolido M, Quintos J, Abuelo D, Gunn S, Hovanes K, et al. A novel familial 11p15.4 microduplication associated with intellectual disability, dysmorphic features, and obesity with involvement of the ZNF214 gene. *American journal of medical genetics*.*Part A* 2011;.

83. Moran N. UK10K Seeks to Sequence 10,000 Individual Genomes. BioWorld 2010;: 1-3.

84. Mather A, Cox B, Enns M, Sareen J. Associations of obesity with psychiatric disorders and suicidal behaviors in a nationally representative sample. *J Psychosom Res* 2009; **66**: 277-285.

85. Berkowitz R, Fabricatore A. Obesity, psychiatric status, and psychiatric medications. *Psychiatr Clin North Am* 2011; **34**: 747-764.

86. Petry N, Barry D, Pietrzak R, Wagner J. Overweight and obesity are associated with psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. *Psychosom Med* 2008; **70**: 288.

87. American Psychiatric Association. (ed) *Diagnostic and statistical manual of mental disorders*. 4th ed. Washington, DC: , 1994.

88. Spitzer RL, Yanovski S, Wadden T, Wing R, Marcus MD, Stunkard A, et al. Binge eating disorder: its further validation in a multisite study. *Int J Eat Disord* 1993; **13**: 137-153.

89. de Zwaan M. Binge eating disorder and obesity. *Int J Obes Relat Metab Disord* 2001; **25 Suppl 1**: S51-5.

90. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. *Arch Gen Psychiatry* 2005; **62**: 617-627.

91. Blaine B. Does Depression Cause Obesity?: A Meta-analysis of Longitudinal Studies of Depression and Weight Control. *J Health Psychol* 2008; **13**: 1190-1197.

92. Luppino F, de Wit L, Bouvy P, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. *Arch Gen Psychiatry* 2010; **67**: 220-229.

93. Wing, Matthews, Kuller, Meilahn, Plantinga, Waist to hip ratio in middle-aged women. Associations with behavioral and psychosocial factors and with changes in cardiovascular risk factors. *Arteriosclerosis and thrombosis* 1991; **11**: 1250.

94. Istvan, Zavela, Weidner, Body weight and psychological distress in NHANES I. *Int J Obes* 1992; 16: 999.

95. Becker, Margraf, Trke, Soeder, Neumer, Obesity and mental illness in a representative sample of young women. *Int J Obes* 2001; **25 Suppl 1**: S5.

96. Richardson L, Garrison M, Drangsholt M, Mancl L, LeResche L. Associations between depressive symptoms and obesity during puberty. *Gen Hosp Psychiatry* 2006; **28**: 313.

97. Baumeister, Hrter, Mental disorders in patients with obesity in comparison with healthy probands. Int J Obes 2007; **31**: 1155.

98. Crisp, McGuiness, Jolly fat: relation between obesity and psychoneurosis in general population. *Br Med J* 1976; **1**: 7.

99. Stewart, Brook, Effects of being overweight. Am J Public Health 1983; 73: 171.

100. Han, Tijhuis, Lean, Seidell, Quality of life in relation to overweight and body fat distribution. Am J Public Health 1998; **88**: 1814.

101. John U, Meyer C, Rumpf H, Hapke U. Relationships of psychiatric disorders with overweight and obesity in an adult general population. *Obes Res* 2005; **13**: 101.

102. Kress A, Peterson M, Hartzell M. Association between obesity and depressive symptoms among U.S. Military active duty service personnel, 2002. *J Psychosom Res* 2006; **60**: 263.

103. de Wit LM, van Straten A, van Herten M, Penninx BW, Cuijpers P. Depression and body mass index, a u-shaped association. *BMC Public Health* 2009; **9**: 14.

104. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. *Br J Addict* 1991; **86**: 1119-1127.

105. Etter JF, Duc TV, Perneger TV. Validity of the Fagerström test for nicotine dependence and of the Heaviness of Smoking Index among relatively light smokers. *Addiction* 1999; **94**: 269-281.

106. Anonymous. Cigarette smoking among adults--United States, 2007. MMWR.Morbidity and Mortality Weekly Report 2008; **57**: 1221.

107. Anonymous. Vital signs: current cigarette smoking among adults aged >= 18 years--United States, 2005-2010. *Morb Mortal Weekly Rep* 2011; **60**: 1207-1212.

108. Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US). 2010;.

109. Shimokata, Muller, Andres, Studies in the distribution of body fat. III. Effects of cigarette smoking. *JAMA* 1989; **261**: 1169.

110. Flegal, Troiano, Pamuk, Kuczmarski, Campbell, The influence of smoking cessation on the prevalence of overweight in the United States. *New England Journal of Medicine, The* 1995; **333**: 1165.

111. Huot, Paradis, Ledoux, Factors associated with overweight and obesity in Quebec adults. *Int J Obes* 2004; **28**: 766.

112. Hofstetter A, Schutz Y, Jéquier E, Wahren J. Increased 24-hour energy expenditure in cigarette smokers. *N Engl J Med* 1986; **314**: 79-82.

113. Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. *Am J Clin Nutr* 2008; **87**: 801.

114. Chen H, Saad S, Sandow S, Bertrand P. Cigarette smoking and brain regulation of energy homeostasis. *Frontiers in Pharmacology* 2012; **3**: 147-147.

115. Perkins KA, Epstein LH, Marks BL, Stiller RL, Jacob RG. The effect of nicotine on energy expenditure during light physical activity. *N Engl J Med* 1989; **320**: 898-903.

116. Perkins KA. Metabolic effects of cigarette smoking. J Appl Physiol 1992; 72: 401-409.

117. Filozof C, Fernández Pinilla MC, Fernández Cruz A. Smoking cessation and weight gain. *Obesity reviews* 2004; **5**: 95-103.

118. Aubin H, Farley A, Lycett D, Lahmek P, Aveyard P. Weight gain in smokers after quitting cigarettes: meta-analysis. *BMJ.British medical journal* 2012; **345**: e4439-e4439.

119. Bamia, Trichopoulou, Lenas, Trichopoulos, Tobacco smoking in relation to body fat mass and distribution in a general population sample. *Int J Obes* 2004; **28**: 1091.

120. John, Hanke, Rumpf H, Thyrian, Smoking status, cigarettes per day, and their relationship to overweight and obesity among former and current smokers in a national adult general population sample. *Int J Obes* 2005; **29**: 1289.

121. Chiolero A, Jacot-Sadowski I, Faeh D, Paccaud F, Cornuz J. Association of cigarettes smoked daily with obesity in a general adult population. *Obesity* 2007; **15**: 1311.

122. Barrett Connor E, Khaw KT. Cigarette smoking and increased central adiposity. *Ann Intern Med* 1989; **111**: 783-787.

123. Canoy D, Wareham N, Luben R, Welch A, Bingham S, Day N, et al. Cigarette smoking and fat distribution in 21,828 British men and women: a population-based study. *Obes Res* 2005; **13**: 1466-1475.

124. Clair C, Chiolero A, Faeh D, Cornuz J, Marques Vidal P, Paccaud F, et al. Dose-dependent positive association between cigarette smoking, abdominal obesity and body fat: cross-sectional data from a population-based survey. *BMC Public Health* 2011; **11**: 23-23.

125. Sebastiani P, Timofeev N, Dworkis D, Perls T, Steinberg M. Genome-wide association studies and the genetic dissection of complex traits. *Am J Hematol* 2009; **84**: 504-515.

126. Anonymous. Prevalence and Trends in Obesity Among US Adults, 1999-2008, January 20, 2010, Flegal et al. 303 (3): 235 – JAMA. **2012**.

127. National Center for Health Statistics. NHANES data sets and related documentation.

128. Kopelman PG. Obesity as a medical problem. *Nature* 2000; **404**: 635.

129. Ogden C, Carroll M, Curtin L, McDowell M, Tabak C, Flegal K. Prevalence of overweight and obesity in the United States, 1999-2004. *JAMA* 2006; **295**: 1549.

130. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. *Science* 2007; **316**: 889-894.

131. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. *Nat Genet* 2007; **39**: 724-726.

132. Herbert A, Gerry N, McQueen M, Heid I, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. *Science* 2006; **312**: 279.

133. Scuteri A, Sanna S, Chen W, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. *PLoS Genetics* 2007; **3**: e115.

134. Hinney A, Nguyen T, Scherag A, Friedel S, Brnner G, Mller T, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. *PloS one* 2007; **2**: e1361.

135. Chambers J, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. *Nat Genet* 2008; **40**: 716.

136. Yang Q, Khoury M, Friedman J, Little J, Flanders WD. How many genes underlie the occurrence of common complex diseases in the population? *Int J Epidemiol* 2005; **34**: 1129-1137.

137. Maher B. Personal genomes: The case of the missing heritability. *Nature* 2008; **456**: 18-21.

138. Meigs J, Shrader P, Sullivan L, McAteer J, Fox C, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. *New England Journal of Medicine, The* 2008; **359**: 2208.

139. Talmud P, Hingorani A, Cooper J, Marmot M, Brunner E, Kumari M, et al. Utility of genetic and nongenetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. *BMJ.British medical journal (Clinical research ed.)* 2010; **340**: b4838.

140. Renström F, Payne F, Nordström A, Brito E, Rolandsson O, Hallmans G, et al. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. *Hum Mol Genet* 2009; **18**: 1489.

141. Zhao J, Bradfield J, Li M, Wang K, Zhang H, Kim C, et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. *Obesity* 2009; **17**: 2254.

142. Li S, Zhao J, Luan J, Luben R, Rodwell S, Khaw K, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. *Am J Clin Nutr* 2010; **91**: 184.

143. Cheung CY, Tso AW, Cheung BM, Xu A, Ong KL, Fong CH, et al. Obesity Susceptibility Genetic Variants Identified from Recent Genome-Wide Association Studies: Implications in a Chinese Population. *J Clin Endocrinol Metab* 2010;.

144. Sanders A, Duan J, Levinson D, Shi J, He D, Hou C, et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. *Am J Psychiatry* 2008; **165**: 497-506.

145. Shi J, Levinson D, Duan J, Sanders A, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. *Nature* 2009; **460**: 753-757.

146. Sanders A, Levinson D, Duan J, Dennis JM, Li R, Kendler K, et al. The Internet-based MGS2 control sample: self report of mental illness. *Am J Psychiatry* 2010; **167**: 854-865.

147. Johnson A, Handsaker R, Pulit S, Nizzari M, O'Donnell C, de Bakker PIW. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. *Bioinformatics* 2008; **24**: 2938-2939.

148. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* 2005; **21**: 263.

149. Barrett J. Haploview: visualization and analysis of SNP genotype data. *Cold Spring Harbor protocols* 2009; **2009**: pdb.ip71.

150. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* 2007; **81**: 559.

151. Evans D, Visscher P, Wray N. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. *Hum Mol Genet* 2009; **18**: 3525.

152. Purcell S, Wray N, Stone J, Visscher P, O'Donovan M, Sullivan P, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature* 2009; **460**: 748.

153. Armitage P, Colton T. *Encyclopedia of biostatistics*, John Wiley: Chichester, West Sussex, England; Hoboken, NJ, 2005.

154. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology* 1982; **143**: 29-36.

155. Janssens ACJW, Aulchenko Y, Elefante S, Borsboom GJJM, Steyerberg E, van Duijn C. Predictive testing for complex diseases using multiple genes: fact or fiction? *Genetics in medicine* 2006; **8**: 395-400.

156. Wang Y, Beydoun M, Liang L, Caballero B, Kumanyika S. Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. *Obesity* 2008; **16**: 2323-2330.

157. Yang J, Benyamin B, McEvoy B, Gordon S, Henders A, Nyholt D, et al. Common SNPs explain a large proportion of the heritability for human height. *Nat Genet* 2010;.

158. Flint J, Mackay TFC. Genetic architecture of quantitative traits in mice, flies, and humans. *Genome Res* 2009; **19**: 723-733.

159. Chambers J, Swanson V. A health assessment tool for multiple risk factors for obesity: age and sex differences in the prediction of body mass index. *Br J Nutr* 2010; **104**: 298-307.

160. Newby PK, Weismayer C, Akesson A, Tucker K, Wolk A. Longitudinal changes in food patterns predict changes in weight and body mass index and the effects are greatest in obese women. *J Nutr* 2006; **136**: 2580-2587.

161. French SA, Jeffery RW, Forster JL, McGovern PG, Kelder SH, Baxter JE. Predictors of weight change over two years among a population of working adults: the Healthy Worker Project. *Int J Obes* 1994; **18**: 145-154.

162. Jebb SA, Moore MS. Contribution of a sedentary lifestyle and inactivity to the etiology of overweight and obesity: current evidence and research issues. *Med Sci Sports Exerc* 1999; **31**: S534-S541.

163. Rampersaud E, Mitchell B, Pollin T, Fu M, Shen H, O'Connell J, et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. *Arch Intern Med* 2008; **168**: 1791.

164. Lappalainen T, Tolppanen A, Kolehmainen M, Schwab U, Lindstrom J, Tuomilehto J, et al. The common variant in the FTO gene did not modify the effect of lifestyle changes on body weight: the Finnish Diabetes Prevention Study. *Obesity* 2009; **17**: 832.

165. Qi L, Kraft P, Hunter D, Hu F. The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. *Hum Mol Genet* 2008; **17**: 3502.

166. Brandsttter A, Lingenhel A, Zwiauer K, Strobl W, Kronenberg F. Decrease of Lp(a) during weight reduction in obese children is modified by the apo(a) kringle-IV copy number variation. *Int J Obes* 2009; **33**: 1136.

167. Razquin C, Martinez JA, Martinez-Gonzalez MA, Bes-Rastrollo M, Fernndez-Crehuet J, Marti A. A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in FTO and body weight changes. *Int J Obes* 2010; **34**: 266.

168. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. *Nature* 1997; **385**: 165-168.

169. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. *Cell* 1997; **88**: 131-141.

170. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. *Nat Genet* 1999; **21**: 119-122.

171. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. *Transgenic Res* 2000; **9**: 145-154.

172. Samama P, Rumennik L, Grippo J. The melanocortin receptor MCR4 controls fat consumption. *Regul Pept* 2003; **113**: 85-88.

173. Branson R, Potoczna N, Kral J, Lentes K, Hoehe M, Horber F. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. *New England Journal of Medicine, The* 2003; **348**: 1096-1103.

174. Potoczna N, Branson R, Kral J, Piec G, Steffen R, Ricklin T, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. *Journal of gastrointestinal surgery* 2004; **8**: 971-81.

175. Valladares M, Domnguez-Vsquez P, Obregn AM, Weisstaub G, Burrows R, Maiz A, et al. Melanocortin-4 receptor gene variants in Chilean families: association with childhood obesity and eating behavior. *Nutr Neurosci* 2010; **13**: 71-78.

176. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. *JAMA* 2006; **295**: 1549-1555.

177. Loos RJF. Recent progress in the genetics of common obesity. Br J Clin Pharmacol 2009; 68: 811.

178. Day F, Loos RJF. Developments in obesity genetics in the era of genome-wide association studies. *Journal of nutrigenetics and nutrigenomics* 2011; **4**: 222-238.

179. Yang J, Manolio T, Pasquale L, Boerwinkle E, Caporaso N, Cunningham J, et al. Genome partitioning of genetic variation for complex traits using common SNPs. *Nat Genet* 2011;.

180. Peterson R, Maes H, Holmans P, Sanders A, Levinson D, Shi J, et al. Genetic risk sum score comprised of common polygenic variation is associated with body mass index. *Hum Genet* 2011; **129**: 221-30.

181. Li B, Leal S. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. *Am J Hum Genet* 2008; **83**: 311-321.

182. Bansal V, Libiger O, Torkamani A, Schork N. Statistical analysis strategies for association studies involving rare variants. *Nature reviews.Genetics* 2010; **11**: 773-785.

183. Bierut L, Agrawal A, Bucholz K, Doheny K, Laurie C, Pugh E, et al. A genome-wide association study of alcohol dependence. *Proc Natl Acad Sci U S A* 2010; **107**: 5082-5087.

184. Cornelis M, Agrawal A, Cole J, Hansel N, Barnes K, Beaty T, et al. The Gene, Environment Association Studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. *Genet Epidemiol* 2010; **34**: 364-372.

185. Bierut L, Saccone N, Rice J, Goate A, Foroud T, Edenberg H, et al. Defining alcohol-related phenotypes in humans. The Collaborative Study on the Genetics of Alcoholism. *Alcohol Research and Health* 2002; **26**: 208-213.

186. Edenberg H, Bierut L, Boyce P, Cao M, Cawley S, Chiles R, et al. Description of the data from the Collaborative Study on the Genetics of Alcoholism (COGA) and single-nucleotide polymorphism genotyping for Genetic Analysis Workshop 14. *BMC genetics* 2005; **6 Suppl 1**: S2-S2.

187. Bierut L, Madden PAF, Breslau N, Johnson E, Hatsukami D, Pomerleau O, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. *Hum Mol Genet* 2007; **16**: 24-35.

188. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI, et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. *J Stud Alcohol* 1994; **55**: 149-158.

189. Hesselbrock M, Easton C, Bucholz KK, Schuckit M, Hesselbrock V. A validity study of the SSAGA-- a comparison with the SCAN. *Addiction* 1999; **94**: 1361-1370.

190. American Psychiatric Association., American Psychiatric Association. Task Force on DSM-IV. *Diagnostic and statistical manual of mental disorders : DSM-IV-TR*. American Psychiatric Association: Washington, DC, 2000.

191. Gauderman WJ MJ. QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2006;.

192. Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* 2006; **38**: 904.

193. Patterson N, Price A, Reich D. Population structure and eigenanalysis. PLOS Genetics 2006; 2: e190.

194. Shriner D. Investigating population stratification and admixture using eigenanalysis of dense genotypes. *Heredity* 2011; **107**: 413-420.

195. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. *Genome Res* 2007; **17**: 1665-1674.

196. Colella S, Yau C, Taylor J, Mirza G, Butler H, Clouston P, et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. *Nucleic Acids Res* 2007; **35**: 2013-2025.

197. Diskin S, Li M, Hou C, Yang S, Glessner J, Hakonarson H, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. *Nucleic Acids Res* 2008; **36**: e126-e126.

198. Lin P, Hartz S, Wang J, Krueger R, Foroud T, Edenberg H, et al. Copy number variation accuracy in genome-wide association studies. *Hum Hered* 2011; **71**: 141-147.

199. Sanders S, Ercan Sencicek AG, Hus V, Luo R, Murtha M, Moreno-De-Luca D, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. *Neuron* 2011; **70**: 863-885.

200. Need A, Ge D, Weale M, Maia J, Feng S, Heinzen E, et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. *PLOS Genetics* 2009; **5**: e1000373-e1000373.

201. Howie B, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLOS Genetics* 2009; **5**: e1000529-e1000529.

202. Howie B, Marchini J, Stephens M. Genotype Imputation with Thousands of Genomes. *G3: Genes, Genomes, Genetics* 2011; **1**: 457-470.

203. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. *Nature* 2010; **467**: 1061-1073.

204. Johnson A, Handsaker R, Pulit S, Nizzari M, O'Donnell C, de Bakker PIW. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. *Bioinformatics* 2008; **24**: 2938.

205. Sha B, Yang T, Zhao L, Chen X, Guo Y, Chen Y, et al. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. *J Hum Genet* 2009; **54**: 199.

206. Jeon J, Shim S, Nam H, Ryu G, Hong E, Kim H, et al. Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. *BMC Genomics* 2010; **11**: 426.

207. Chen Y, Liu Y, Pei Y, Yang T, Deng F, Liu X, et al. Copy Number Variations at the Prader-Willi Syndrome Region on Chromosome 15 and associations with Obesity in Whites. *Obesity* 2011;.

208. Jarick I, Vogel CIG, Scherag S, Schfer H, Hebebrand J, Hinney A, et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. *Hum Mol Genet* 2011; **20**: 840.

209. Huang L, Teng D, Wang H, Sheng G, Liu T. Association of copy number variation in the AHI1 gene with risk of obesity in Chinese population. *European journal of endocrinology* 2012;.

210. R Development Core Team. R: A language and environment for statistical computing. 2011;.

211. Janssens ACJW, van Duijn C. Towards predictive genetic testing of complex diseases. *Eur J Epidemiol* 2006; **21**: 869-870.

212. Vergara I, Norambuena T, Ferrada E, Slater A, Melo F. StAR: a simple tool for the statistical comparison of ROC curves. *BMC Bioinformatics* 2008; **9**: 265-265.

213. McCarroll S, Altshuler D. Copy-number variation and association studies of human disease. *Nat Genet* 2007; **39**: S37-S42.

214. Cooper G, Zerr T, Kidd J, Eichler E, Nickerson D. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. *Nat Genet* 2008; **40**: 1199-1203.

215. Baross A, Delaney A, Li HI, Nayar T, Flibotte S, Qian H, et al. Assessment of algorithms for high throughput detection of genomic copy number variation in oligonucleotide microarray data. *BMC Bioinformatics* 2007; **8**: 368-368.

216. Winchester L, Yau C, Ragoussis J. Comparing CNV detection methods for SNP arrays. *Briefings in functional genomics and proteomics* 2009; **8**: 353-366.

217. Dellinger A, Saw S, Goh L, Seielstad M, Young T, Li Y. Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. *Nucleic Acids Res* 2010; **38**: e105-e105.

218. Zhang D, Qian Y, Akula N, Alliey Rodriguez N, Tang J, Gershon E, et al. Accuracy of CNV Detection from GWAS Data. *PLoS ONE* 2011; **6**: e14511-e14511.

219. Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. *Nat Biotechnol* 2011; **29**: 512-520.

220. Eckel Passow J, Atkinson E, Maharjan S, Kardia SLR, de Andrade M. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform. *BMC Bioinformatics* 2011; **12**: 220-220.

221. Koike A, Nishida N, Yamashita D, Tokunaga K. Comparative analysis of copy number variation detection methods and database construction. *BMC genetics* 2011; **12**: 29-29.

222. Loureno S, Oliveira A, Lopes C. The effect of current and lifetime alcohol consumption on overall and central obesity. *Eur J Clin Nutr* 2012;.

223. Valladares M, Domnguez-Vsquez P, Obregn AM, Weisstaub G, Burrows R, Maiz A, et al. Melanocortin-4 receptor gene variants in Chilean families: association with childhood obesity and eating behavior. *Nutr Neurosci* 2010; **13**: 71-78.

224. Kilpeläinen, T. O. et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. *PLoS Medicine* 2011; Nov;8(11):e1001116.

225. Anonymous. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. *Obes Res* 1998; **6 Suppl 2**: 51S-209S.

226. Wang ZQ, Ouyang Z, Wang DM, Tang XL. Heritability of blood pressure in 7- to 12-year-old Chinese twins, with special reference to body size effects. *Genet Epidemiol* 1990; **7**: 447-452.

227. Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. *Int J Obes* 1996; **20**: 501-506.

228. Beunen G, Maes HH, Vlietinck R, Malina RM, Thomis M, Feys E, et al. Univariate and multivariate genetic analysis of subcutaneous fatness and fat distribution in early adolescence. *Behav Genet* 1998; **28**: 279-288.

229. Faith MS, Pietrobelli A, Nuñez C, Heo M, Heymsfield SB, Allison DB. Evidence for independent genetic influences on fat mass and body mass index in a pediatric twin sample. *Pediatrics* 1999; **104**: 61-67.

230. Pietiläinen KH, Kaprio J, Rissanen A, Winter T, Rimpelä A, Viken RJ, et al. Distribution and heritability of BMI in Finnish adolescents aged 16y and 17y: a study of 4884 twins and 2509 singletons. *Int J Obes* 1999; **23**: 107-115.

231. Silventoinen K, Pietiläinen KH, Tynelius P, Sørensen TIA, Kaprio J, Rasmussen F. Genetic and environmental factors in relative weight from birth to age 18: the Swedish young male twins study. *Int J Obes* 2007; **31**: 615-621.

232. Silventoinen K, Bartels M, Posthuma D, Estourgie-van Burk GF, Willemsen G, van Beijsterveldt, Toos C E M., et al. Genetic regulation of growth in height and weight from 3 to 12 years of age: a longitudinal study of Dutch twin children. *Twin research and human genetics* 2007; **10**: 354-363.

233. Hur Y, Kaprio J, Iacono WG, Boomsma DI, McGue M, Silventoinen K, et al. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins. *Int J Obes* 2008; **32**: 1455-1467.

234. Haworth CMA, Carnell S, Meaburn E, Davis OSP, Plomin R, Wardle J. Increasing heritability of BMI and stronger associations with the FTO gene over childhood. *Obesity* 2008; **16**: 2663-2668.

235. Haworth CMA, Plomin R, Carnell S, Wardle J. Childhood obesity: genetic and environmental overlap with normal-range BMI. *Obesity* 2008; **16**: 1585-1590.

236. Wardle J, Carnell S, Haworth C, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. *Am J Clin Nutr* 2008; **87**: 398-404.

237. Duncan A, Agrawal A, Grant J, Bucholz K, Madden PAF, Heath A. Genetic and environmental contributions to BMI in adolescent and young adult women. *Obesity* 2009; **17**: 1040-1043.

238. Lajunen H, Kaprio J, Keski Rahkonen A, Rose RJ, Pulkkinen L, Rissanen A, et al. Genetic and environmental effects on body mass index during adolescence: a prospective study among Finnish twins. *Int J Obes* 2009; **33**: 559-567.

239. Haberstick B, Lessem J, McQueen M, Boardman J, Hopfer C, Smolen A, et al. Stable genes and changing environments: body mass index across adolescence and young adulthood. *Behav Genet* 2010; **40**: 495-504.

240. Dellava J, Lichtenstein P, Kendler K. Genetic variance of body mass index from childhood to early adulthood. *Behav Genet* 2012; **42**: 86-95.

241. Nan C, Guo B, Warner C, Fowler T, Barrett T, Boomsma D, et al. Heritability of body mass index in pre-adolescence, young adulthood and late adulthood. *Eur J Epidemiol* 2012; **27**: 247-253.

242. McArdle JJ, Goldsmith HH. Alternative common factor models for multivariate biometric analyses. *Behav Genet* 1990; **20**: 569-608.

243. Loehlin J. The Cholesky approach: A cautionary note. Behavior Genetics 1996; 26: 65-69.

244. McArdle JJ. Latent variable growth within behavior genetic models. Behav Genet 1986; 16: 163-200.

245. Eaves LJ, Long J, Heath AC. A theory of developmental change in quantitative phenotypes applied to cognitive development. *Behav Genet* 1986; **16**: 143-162.

246. Zhao J, Bradfield J, Zhang H, Sleiman P, Kim C, Glessner J, et al. Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. *Obesity* 2011; **19**: 2436-2439.

247. Bradfield J, Taal HR, Timpson N, Scherag A, Lecoeur C, Warrington N, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. *Nat Genet* 2012;.

248. Meyer JM, Silberg JL, Simonoff E, Kendler KS, Hewitt JK. The Virginia Twin-Family Study of Adolescent Behavioral Development: assessing sample biases in demographic correlates of psychopathology. *Psychol Med* 1996; **26**: 1119-1133.

249. Hewitt JK, Silberg JL, Rutter M, Simonoff E, Meyer JM, Maes H, et al. Genetics and developmental psychopathology: 1. Phenotypic assessment in the Virginia Twin Study of Adolescent Behavioral Development. *J Child Psychol Psychiatry Allied Disciplines* 1997; **38**: 943-963.

250. Eaves LJ, Silberg JL, Meyer JM, Maes HH, Simonoff E, Pickles A, et al. Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. *J Child Psychol Psychiatry Allied Disciplines* 1997; **38**: 965-980.

251. Altshuler D, Gibbs R, Peltonen L, Dermitzakis E, Schaffner S, Yu F, et al. Integrating common and rare genetic variation in diverse human populations. *Nature* 2010; **467**: 52-58.

252. Eaves LJ, Last KA, Young PA, Martin NG. Model-fitting approaches to the analysis of human behaviour. *Heredity* 1978; **41**: 249-320.

253. Neale MC. Methodology for genetic studies of twins and families, , 1992.

254. Silventoinen K, Kaprio J. Genetics of tracking of body mass index from birth to late middle age: evidence from twin and family studies. *Obesity facts* 2009; **2**: 196-202.

255. Dellava J, Lichtenstein P, Kendler K. Genetic variance of body mass index from childhood to early adulthood. *Behav Genet* 2012; **42**: 86-95.

256. Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, et al. OpenMx: An Open Source Extended Structural Equation Modeling Framework. *Psychometrika* 2011; **76**: 306-317.

257. Visscher P, Duffy D. The value of relatives with phenotypes but missing genotypes in association studies for quantitative traits. *Genet Epidemiol* 2006; **30**: 30-36.

258. Maes H, Neale M, Chen X, Chen J, Prescott C, Kendler K. A twin association study of nicotine dependence with markers in the CHRNA3 and CHRNA5 genes. *Behav Genet* 2011; **41**: 680-690.

259. Eaves L, Silberg J, Foley D, Bulik C, Maes H, Erkanli A, et al. Genetic and environmental influences on the relative timing of pubertal change. *Twin research* 2004; **7**: 471-481.

260. Mustelin L, Silventoinen K, Pietiläinen K, Rissanen A, Kaprio J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. *Int J Obes* 2009; **33**: 29-36.

261. Silventoinen K, Hasselbalch A, Lallukka T, Bogl L, Pietiläinen K, Heitmann B, et al. Modification effects of physical activity and protein intake on heritability of body size and composition. *Am J Clin Nutr* 2009; **90**: 1096-1103.

262. Naukkarinen J, Rissanen A, Kaprio J, Pietilinen KH. Causes and consequences of obesity: the contribution of recent twin studies. *Int J Obes* 2011;.

263. Shin S, Miller D. A longitudinal examination of childhood maltreatment and adolescent obesity: results from the National Longitudinal Study of Adolescent Health (AddHealth) Study. *Child Abuse Neglect* 2012; **36**: 84-94.

264. Sarlio-Lähteenkorva S, Silventoinen K, Lahti Koski M, Laatikainen T, Jousilahti P. Socio-economic status and abdominal obesity among Finnish adults from 1992 to 2002. *Int J Obes* 2006; **30**: 1653-1660.

265. Midei AJ, Matthews KA. Interpersonal violence in childhood as a risk factor for obesity: a systematic review of the literature and proposed pathways. *Obesity reviews* 2011; **12**: e159-e172.

266. Lane S, Bluestone C, Burke C. Trajectories of BMI from early childhood through early adolescence: SES and psychosocial predictors. *British Journal of Health Psychology* 2012;.

267. Hornor G. Child sexual abuse: consequences and implications. *Journal of pediatric health care* 2010; **24**: 358-364.

268. Hu G, Tuomilehto J, Silventoinen K, Barengo NC, Peltonen M, Jousilahti P. The effects of physical activity and body mass index on cardiovascular, cancer and all-cause mortality among 47 212 middle-aged Finnish men and women. *Int J Obes* 2005; **29**: 894-902.

269. Benjamin A, Suchindran S, Pearce K, Rowell J, Lien L, Guyton J, et al. Gene by sex interaction for measures of obesity in the framingham heart study. *Journal of Obesity* 2011; **2011**: 329038-329038.

270. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. *Nat Genet* 2010; **42**: 949-960.

271. Zhao J, Bradfield J, Li M, Wang K, Zhang H, Kim C, et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. *Obesity* 2009; **17**: 2254-2257.

272. Elks C, Loos RJF, Sharp S, Langenberg C, Ring S, Timpson N, et al. Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth. *PLoS Medicine* 2010; **7**: e1000284-e1000284.

273. Elks C, Loos RJF, Hardy R, Wills A, Wong A, Wareham N, et al. Adult obesity susceptibility variants are associated with greater childhood weight gain and a faster tempo of growth: the 1946 British Birth Cohort Study. *Am J Clin Nutr* 2012; **95**: 1150-1156.

274. den Hoed M, Ekelund U, Brage S, Grontved A, Zhao J, Sharp S, et al. Genetic susceptibility to obesity and related traits in childhood and adolescence: influence of loci identified by genome-wide association studies. *Diabetes* 2010; **59**: 2980-2988.

275. Mei H, Chen W, Jiang F, He J, Srinivasan S, Smith E, et al. Longitudinal Replication Studies of GWAS Risk SNPs Influencing Body Mass Index over the Course of Childhood and Adulthood. *PLoS ONE* 2012; **7**: e31470-e31470.

276. Yanovski SZ, Sebring NG. Recorded food intake of obese women with binge eating disorder before and after weight loss. *Int J Eat Disord* 1994; **15**: 135-50.

277. Raymond N, Peterson R, Bartholome L, Raatz S, Jensen M, Levine J. Comparisons of Energy Intake and Energy Expenditure in Overweight and Obese Women With and Without Binge Eating Disorder. *Obesity* 2011;.

278. Black AE, Prentice AM, Goldberg GR, Jebb SA, Bingham SA, Livingstone MB, et al. Measurements of total energy expenditure provide insights into the validity of dietary measurements of energy intake. *J Am Diet Assoc* 1993; **93**: 572-9.

279. Prentice AM, Black AE, Coward WA, Davies HL, Goldberg GR, Murgatroyd PR, et al. High levels of energy expenditure in obese women. *British medical journal (Clinical research ed.1981)* 1986; **292**: 983-7.

280. Westerterp K, Goris AHC. Validity of the assessment of dietary intake: problems of misreporting. *Current opinion in clinical nutrition metabolic care* 2002; **5**: 489-93.

281. Mitchell JE, Crow S, Peterson CB, Wonderlich S, Crosby RD. Feeding laboratory studies in patients with eating disorders: a review. *Int J Eat Disord* 1998; **24**: 115.

282. Walsh BT, Boudreau G. Laboratory studies of binge eating disorder. *Int J Eat Disord* 2003; **34 Suppl**: S30-8.

283. Wilson GT. Assessment of binge eating. In: Fairburn CG, Wilson GT (eds). *Binge eating: Nature, assessment, and treatment*. New York, NY, US: Guilford Press, 1993, pp. 227-249.

284. Galanti K, Gluck M, Geliebter A. Test meal intake in obese binge eaters in relation to impulsivity and compulsivity. *Int J Eat Disord* 2007; **40**: 727.

285. Geliebter A, Hassid G, Hashim SA. Test meal intake in obese binge eaters in relation to mood and gender. *Int J Eat Disord* 2001; **29**: 488-494.

286. Anderson DA, Williamson DA, Johnson WG, Grieve CO. Validity of test meals for determining binge eating. *Eating Behav* 2001; **2**: 105-12.

287. Goldfein JA, Walsh BT, LaChausse JL, Kissileff HR, Devlin MJ. Eating behavior in binge eating disorder. *Int J Eat Disord* 1993; **14**: 427-31.

288. Gosnell BA, Mitchell JE, Lancaster KL, Burgard MA, Wonderlich SA, Crosby RD. Food presentation and energy intake in a feeding laboratory study of subjects with binge eating disorder. *Int J Eat Disord* 2001; **30**: 441-446.

289. Sysko R, Devlin M, Walsh BT, Zimmerli E, Kissileff H. Satiety and test meal intake among women with binge eating disorder. *Int J Eat Disord* 2007; **40**: 554-61.

290. Cooke EA, Guss JL, Kissileff HR, Devlin MJ, Walsh BT. Patterns of food selection during binges in women with binge eating disorder. *Int J Eat Disord* 1997; **22**: 187-193.

291. Guss J, Kissileff H, Devlin M, Zimmerli E, Walsh BT. Binge size increases with body mass index in women with binge-eating disorder. *Obes Res* 2002; **10**: 1021-9.

292. Yanovski SZ, Leet M, Yanovski JA, Flood M, Gold PW, Kissileff HR, et al. Food selection and intake of obese women with binge-eating disorder. *Am J Clin Nutr* 1992; **56**: 975-980.

293. Raymond NC, Bartholome LT, Lee SS, Peterson RE, Raatz SK. A comparison of energy intake and food selection during laboratory binge eating episodes in obese women with and without a binge eating disorder diagnosis. *Int J Eat Disord* 2007; **40**: 67-71.

294. Spitzer RL, Devlin M, Walsh BT, Hasin D, Wing R, Marcus M, et al. Binge eating disorder: A multisite field trial of the diagnostic criteria. *Int J Eat Disord* 1992; **11**: 191-203.

295. de Zwaan M, Mitchell JE, Seim HC, Specker SM, Pyle RL, Raymond NC, et al. Eating related and general psychopathology in obese females with binge eating disorder. *Int J Eat Disord* 1994; **15**: 43-52.

296. Adami GF, Gandolfo P, Campostano A, Cocchi F, Bauer B, Scopinaro N. Obese binge eaters: metabolic characteristics, energy expenditure and dieting. *Psychol Med* 1995; **25**: 195-198.

297. Bandini LG, Schoeller DA, Edwards J, Young VR, Oh SH, Dietz WH. Energy expenditure during carbohydrate overfeeding in obese and nonobese adolescents. *Am J Physiol* 1989; **256**: E357-E367.

298. Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. *Am J Clin Nutr* 1992; **56**: 641-655.

299. Klein S, Goran M. Energy metabolism in response to overfeeding in young adult men. *Metabolism*, *clinical and experimental* 1993; **42**: 1201-1205.

300. Cole TJ, Coward WA. Precision and accuracy of doubly labeled water energy expenditure by multipoint and two-point methods. *Am J Physiol* 1992; **263**: E965-73.

301. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders. Patient Edition (SCID-P, Version 2). New York: New York State Psychiatric Institute, Biometrics Research; 1995;.

302. Spitzer RL, Williams JBW, Gibbon M, First MB. User's guide for the structured clinical interview for DSM-III-R: SCID, Washington, DC, US: American Psychiatric Association, 1990.

303. Fairburn CG C, Z. The Eating Disorder Examination. New York: Guilford Press; 1993;.

304. Nutritionist IV. In. San Burno: Hearst Corporation; 1999.

305. Raymond NC, Neumeyer B, Warren CS, Lee SS, Peterson CB. Energy intake patterns in obese women with binge eating disorder. *Obes Res* 2003; **11**: 869-879.

306. Bartholome LT, Raymond NC, Lee SS, Peterson CB, Warren CS. Detailed analysis of binges in obese women with binge eating disorder: Comparisons using multiple methods of data collection. *Int J Eat Disord* 2006; **39**: 685-693.

307. Posner BM, Borman CL, Morgan JL, Borden WS, Ohls JC. The validity of a telephone-administered 24-hour dietary recall methodology. *Am J Clin Nutr* 1982; **36**: 546-553.

308. Goldfein JA, Walsh BT, LaChaussee JL, Kissileff HR, Devlin MJ. Eating behavior in binge eating disorder. *Int J Eat Disord* 1993; **14**: 427-431.

309. Guss JL, Kissileff HR, Devlin MJ, Zimmerli E, Walsh BT. Binge size increases with body mass index in women with binge-eating disorder. *Obes Res* 2002; **10**: 1021-1029.

310. Bartholome L, Peterson R, Raatz S, Raymond N. A comparison of the accuracy of self-reported intake with measured intake of a laboratory overeating episode in overweight and obese women with and without binge eating disorder. *Eur J Nutr* 2012;.

311. Grilo CM, White MA, Masheb RM. DSM-IV psychiatric disorder comorbidity and its correlates in binge eating disorder. *Int J Eat Disord* 2009; **42**: 228-234.

312. Azarbad L, Corsica J, Hall B, Hood M. Psychosocial correlates of binge eating in Hispanic, African American, and Caucasian women presenting for bariatric surgery. *Eating Behav* 2010; **11**: 79-84.

313. Jones-Corneille L, Wadden T, Sarwer D, Faulconbridge L, Fabricatore A, Stack R, et al. Axis I Psychopathology in Bariatric Surgery Candidates with and without Binge Eating Disorder: Results of Structured Clinical Interviews. *Obesity Surg* 2010;.

314. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561-571.

315. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. *J Consult Clin Psychol* 1988; **56**: 893-897.

316. Stanley MA, Beck JG. Anxiety disorders. Clin Psychol Rev 2000; 20: 731-754.

317. Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: Twentyfive years of evaluation. *Clin Psychol Rev* 1988; **8**: 77-100.

318. Muthén LK, Muthén BO. Mplus User's Guide. Fifth Edition. 1998-2007; 5.0.

319. MacKinnon D, Lockwood C, Hoffman J, West S, Sheets V. A comparison of methods to test mediation and other intervening variable effects. *Psychol Methods* 2002; **7**: 83-104.

320. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *J Pers Soc Psychol* 1986; **51**: 1173-1182.

321. Judd CM, Kenny DA. Process Analysis. Evaluation Review 1981; 5: 602-619.

322. Preacher K, Hayes A. SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior research methods, instruments, computers* 2004; **36**: 717-731.

323. R Development Core Team. R: A language and environment for statistical computing. 2009; 2.9.2.

324. Peterson C, Thuras P, Ackard D, Mitchell J, Berg K, Sandager N, et al. Personality dimensions in bulimia nervosa, binge eating disorder, and obesity. *Compr Psychiatry* 2010; **51**: 31-36.

325. Fandio J, Moreira R, Preissler C, Gaya C, Papelbaum M, Coutinho W, et al. Impact of binge eating disorder in the psychopathological profile of obese women. *Compr Psychiatry* 2010; **51**: 110-114.

326. Telch CF, Pratt EM, Niego SH. Obese women with binge eating disorder define the term binge. *Int J Eat Disord* 1998; **24**: 313-317.

327. Smyth J, Wonderlich S, Sliwinski M, Crosby R, Engel S, Mitchell J, et al. Ecological momentary assessment of affect, stress, and binge-purge behaviors: day of week and time of day effects in the natural environment. *Int J Eat Disord* 2009; **42**: 429.

328. Smyth J, Wonderlich S, Crosby R, Miltenberger R, Mitchell J, Rorty M. The use of ecological momentary assessment approaches in eating disorder research. *Int J Eat Disord* 2001; **30**: 83.

329. Stein R, Kenardy J, Wiseman C, Dounchis J, Arnow B, Wilfley D. What's driving the binge in binge eating disorder?: A prospective examination of precursors and consequences. *Int J Eat Disord* 2007; **40**: 195-203.

330. Hilbert A, Tuschen-Caffier B. Maintenance of binge eating through negative mood: a naturalistic comparison of binge eating disorder and bulimia nervosa. *Int J Eat Disord* 2007; **40**: 521-530.

331. Haedt Matt A, Keel P. Revisiting the affect regulation model of binge eating: a meta-analysis of studies using ecological momentary assessment. *Psychol Bull* 2011; **137**: 660-681.

332. Pagoto S, Bodenlos J, Kantor L, Gitkind M, Curtin C, Ma Y. Association of major depression and binge eating disorder with weight loss in a clinical setting. *Obesity* 2007; **15**: 2557-2559.

333. Masheb RM, Grilo CM. Examination of predictors and moderators for self-help treatments of bingeeating disorder. *J Consult Clin Psychol* 2008; **76**: 900-904.

334. Lichtman SW, Pisarska K, Berman ER, Pestone M, Dowling H, Offenbacher E, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. *N Engl J Med* 1992; **327**: 1893-1898.

335. Scagliusi FB, Ferriolli E, Pfrimer K, Laureano C, Cunha CSF, Gualano B, et al. Characteristics of women who frequently under report their energy intake: a doubly labelled water study. *Eur J Clin Nutr* 2009; **63**: 1192-1199.

336. Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, De Graaf R, Vollebergh W, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. *Int J Methods Psychiatr Res* 2003; **12**: 3-21.

337. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). *JAMA* 2003; **289**: 3095-3105.

338. Creed F, Morgan R, Fiddler M, Marshall S, Guthrie E, House A. Depression and anxiety impair health-related quality of life and are associated with increased costs in general medical inpatients. *Psychosomatics* 2002; **43**: 302-309.

339. Chamorro J, Bernardi S, Potenza M, Grant J, Marsh R, Wang S, et al. Impulsivity in the general population: a national study. *J Psychiatr Res* 2012; **46**: 994-1001.

340. Whiteside SP, Lynam DR. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. *Personality and Individual Differences* 2001; **30**: 669-689.

341. Mobbs O, Crépin C, Thiéry C, Golay A, Van der Linden M. Obesity and the four facets of impulsivity. *Patient Educ Couns* 2010; **79**: 372-377.

342. Elfhag K, Morey L. Personality traits and eating behavior in the obese: poor self-control in emotional and external eating but personality assets in restrained eating. *Eating Behav* 2008; **9**: 285-293.

343. Nederkoorn C, Smulders FTY, Havermans R, Roefs A, Jansen A. Impulsivity in obese women. *Appetite* 2006; **47**: 253-256.

344. Guerrieri R, Nederkoorn C, Stankiewicz K, Alberts H, Geschwind N, Martijn C, et al. The influence of trait and induced state impulsivity on food intake in normal-weight healthy women. *Appetite* 2007; **49**: 66-73.

345. Davis C, Levitan R, Muglia P, Bewell C, Kennedy J. Decision-making deficits and overeating: a risk model for obesity. *Obes Res* 2004; **12**: 929-935.

346. Davis C, Strachan S, Berkson M. Sensitivity to reward: implications for overeating and overweight. *Appetite* 2004; **42**: 131-138.

347. Davis C, Patte K, Levitan R, Reid C, Tweed S, Curtis C. From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. *Appetite* 2007; **48**: 12-19.

348. Guerrieri R, Nederkoorn C, Jansen A. The interaction between impulsivity and a varied food environment: its influence on food intake and overweight. *Int J Obes* 2008; **32**: 708-714.

349. Yeomans M, Leitch M, Mobini S. Impulsivity is associated with the disinhibition but not restraint factor from the Three Factor Eating Questionnaire. *Appetite* 2008; **50**: 469.

350. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. *J Psychosom Res* 1985; **29**: 71-83.

351. Bryant, King, Blundell, Disinhibition: its effects on appetite and weight regulation. *Obesity reviews* 2008; **9**: 409.

352. French S, Epstein L, Jeffery R, Blundell J, Wardle J. Eating behavior dimensions. Associations with energy intake and body weight. A review. *Appetite* 2012; **59**: 541-549.

353. Peluso MAM, Hatch JP, Glahn DC, Monkul ES, Sanches M, Najt P, et al. Trait impulsivity in patients with mood disorders. *J Affect Disord* 2007; **100**: 227-231.

354. Granö N, Keltikangas-Järvinen L, Kouvonen A, Virtanen M, Elovainio M, Vahtera J, et al. Impulsivity as a predictor of newly diagnosed depression. *Scand J Psychol* 2007; **48**: 173-179.

355. Swann A, Steinberg J, Lijffijt M, Moeller, Impulsivity: differential relationship to depression and mania in bipolar disorder. *J Affect Disord* 2008; **106**: 241.

356. Smith A, Witte T, Teale N, King S, Bender T, Joiner T. Revisiting impulsivity in suicide: implications for civil liability of third parties. *Behavioral sciences the law* 2008; **26**: 779-797.

357. Beskow J. Depression and suicide. Pharmacopsychiatry 1990; 23 Suppl 1: 3-8.

358. Corruble E, Damy C, Guelfi JD. Impulsivity: a relevant dimension in depression regarding suicide attempts? *J Affect Disord* 1999; **53**: 211-215.

359. Kendler KS, Walters EE, Truett KR, Heath AC, Neale MC, Martin NG, et al. Sources of individual differences in depressive symptoms: analysis of two samples of twins and their families. *Am J Psychiatry* 1994; **151**: 1605-1614.

360. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and metaanalysis. *Am J Psychiatry* 2000; **157**: 1552-1562.

361. Bezdjian S, Baker L, Tuvblad C. Genetic and environmental influences on impulsivity: a metaanalysis of twin, family and adoption studies. *Clin Psychol Rev* 2011; **31**: 1209-1223.

362. Neale B, Mazzeo S, Bulik C. A twin study of dietary restraint, disinhibition and hunger: an examination of the eating inventory (three factor eating questionnaire). *Twin research* 2003; **6**: 471-478.

363. Choy WC, Lopez-Leon S, Aulchenko YS, Mackenbach JP, Oostra BA, van Duijn CM, et al. Role of shared genetic and environmental factors in symptoms of depression and body composition. *Psychiatr Genet* 2009; **19**: 32-38.

364. Afari N, Noonan C, Goldberg J, Roy Byrne P, Schur E, Golnari G, et al. Depression and obesity: do shared genes explain the relationship? *Depress Anxiety* 2010; **27**: 799-806.

365. Neale, Kendler, Models of comorbidity for multifactorial disorders. Am J Hum Genet 1995; 57: 935.

366. Mokdad A, Marks J, Stroup D, Gerberding J. Actual causes of death in the United States, 2000. *JAMA* (*Chicago*, *Ill.*) 2004; **291**: 1238.

367. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, et al. Tobacco and cancer: recent epidemiological evidence. *J Natl Cancer Inst* 2004; **96**: 99.

368. Klesges RC, Stein RJ, Hultquist CM, Eck LH. Relationships among smoking status, body composition, energy intake, and physical activity in adult males: a longitudinal analysis. *J Subst Abuse* 1992; **4**: 47-56.

369. Perkins KA. Effects of tobacco smoking on caloric intake. Br J Addict 1992; 87: 193-205.

370. Martínez de Morentin PB, Whittle A, Fernø J, Nogueiras R, Diéguez C, Vidal Puig A, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. *Diabetes* 2012; **61**: 807-817.

371. Serdula MK, Byers T, Mokdad AH, Simoes E, Mendlein JM, Coates RJ. The association between fruit and vegetable intake and chronic disease risk factors. *Epidemiology* 1996; **7**: 161-165.

372. Thompson RL, Margetts BM, Wood DA, Jackson AA. Cigarette smoking and food and nutrient intakes in relation to coronary heart disease. *Nutrition research reviews* 1992; **5**: 131-152.

373. Kvaavik E, Meyer H, Tverdal A. Food habits, physical activity and body mass index in relation to smoking status in 40-42 year old Norwegian women and men. *Prev Med* 2004; **38**: 1-5.

374. Chiolero A, Wietlisbach V, Ruffieux C, Paccaud F, Cornuz J. Clustering of risk behaviors with cigarette consumption: A population-based survey. *Prev Med* 2006; **42**: 348-353.

375. Brand J, Chan M, Dowsett M, Folkerd E, Wareham N, Luben R, et al. Cigarette smoking and endogenous sex hormones in postmenopausal women. *J Clin Endocrinol Metab* 2011; **96**: 3184-3192.

376. Field AE, Colditz GA, Willett WC, Longcope C, McKinlay JB. The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormone-binding globulin in middle-aged men. *J Clin Endocrinol Metab* 1994; **79**: 1310-1316.

377. Steptoe A, Ussher M. Smoking, cortisol and nicotine. *International journal of psychophysiology* 2006; **59**: 228-235.

378. Badrick E, Kirschbaum C, Kumari M. The relationship between smoking status and cortisol secretion. *J Clin Endocrinol Metab* 2007; **92**: 819-824.

379. Koopmans, Slutske, Heath, Neale, Boomsma,. The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. *Behav Genet* 1999; **29**: 383.

380. Kendler, Neale, Sullivan, Corey, Gardner, Prescott, A population-based twin study in women of smoking initiation and nicotine dependence. *Psychol Med* 1999; **29**: 299.

381. Batra V, Patkar A, Berrettini W, Weinstein S, Leone F. The genetic determinants of smoking. *Chest* 2003; **123**: 1730.

382. Vink J, Willemsen G, Boomsma D. Heritability of smoking initiation and nicotine dependence. *Behav Genet* 2005; **35**: 397.

383. Maes H, Sullivan P, Bulik C, Neale M, Prescott C, Eaves L, et al. A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. *Psychol Med* 2004; **34**: 1251.

384. Liu J, Tozzi F, Waterworth D, Pillai S, Muglia P, Middleton L, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. *Nat Genet* 2010; **42**: 436.

385. AnonymousGenome-wide meta-analyses identify multiple loci associated with smoking behavior. *Nat Genet* 2010; **42**: 441-447.

386. Thorgeirsson T, Gudbjartsson D, Surakka I, Vink J, Amin N, Geller F, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. *Nat Genet* 2010; **42**: 448.

387. Patterson N, Hattangadi N, Lane B, Lohmueller K, Hafler D, Oksenberg J, et al. Methods for highdensity admixture mapping of disease genes. *Am J Hum Genet* 2004; **74**: 979.

388. Freedman M, Reich D, Penney K, McDonald G, Mignault A, Patterson N, et al. Assessing the impact of population stratification on genetic association studies. *Nat Genet* 2004; **36**: 388.

Roseann Elizabeth Peterson was born on June 10<sup>th</sup>, 1981 in Saint Paul, Minnesota. Following her high school graduation from Roseville Area High School, she attended the University of Minnesota (U of MN) in Minneapolis, Minnesota, where she earned a Bachelor of Arts in Biology, Psychology and a Minor in Chemistry. As part of her Liberal Arts education, she studied the German language and after attending a summer session at Universität Heidelberg, she completed her proficiency exam in 2002. During her undergraduate education, she was employed as a research assistant in Dr. Kathleen Thomas's Cognitive Developmental Neuroimaging Laboratory where she administered serial reaction time and implicit learning tasks to children and adults and assisted with electroencephalogram and magnetic resonance imaging. She also taught community education classes such as Crash N' Burn Chemistry and Beginning German at Southwest Public High School. Post-baccalaureate, Ms. Peterson was employed as a research coordinator under the direction of Dr. Nancy C. Raymond, M.D., in the Department of Psychiatry and the Deborah E. Powell Center for Women's Health, A Nationally Designated Center of Excellence. She coordinated studies researching energy intake and expenditure patterns and mechanisms of impulsivity in eating disordered women and organized women's health research conferences. In addition, Roseann volunteered as a crisis counselor at the Rape and Sexual Abuse Center of Minneapolis, MN where she provided crisis intervention and supportive counseling to survivors of sexual violence. She moved to Richmond, Virginia in 2007 to pursue an advanced degree in Human and Molecular Genetics at Virginia Commonwealth University (VCU). Her dissertation advisor was Dr. Hermine H. Maes, Ph.D., Assistant Professor in the Department of Human and Molecular Genetics and Massey Cancer Center. Ms. Peterson studied the genetic and environmental influences on obesity, mood disorders and substance use with an emphasis on statistical methodology. She has received recognition for her work, including a Meritorious Student award from the Society of Behavioral Medicine, the Thompson award for best presentation by a trainee from the Behavior Genetics Association and the Kenneth S. Kendler award for Excellence in Predoctoral Research. She has served the VCU graduate student community as Research Symposium Chair and Vice President of the Graduate Student Association. She will continue her research in Richmond, Virginia as a postdoctoral fellow at the Virginia Institute for Psychiatric and Behavioral Genetics at VCU.