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USING NEXT GENERATION SEQUENCING (NGS) TO IDENTIFY AND PREDICT 

MICRORNAS (MIRNAS) POTENTIALLY IMPACTING SCHIZOPHRENIA   AND 

BIPOLAR DISORDER  

 

by 

Vernell Seay Williamson 

 

 

Advisor: Vladimir Vladimirov 

 

The last decade has seen considerable research focusing on understanding the 

factors underlying schizophrenia and bipolar disorder. A major challenge encountered in 

studying these disorders, however, has been the contribution of genetic, or etiological, 

heterogeneity to the so-called “missing heritability” [1-6]. Further, recent successes of 

large-scale genome-wide association studies (GWAS) have nonetheless seen only 

limited advancements in the delineation of the specific roles of implicated genes in 

disease pathophysiology. 

 The study of microRNAs (miRNAs), given their ability to alter the transcription of 

hundreds of targeted genes, has the potential to expand our understanding of how 
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certain genes relate to schizophrenia and bipolar disorder. Indeed, the strongest finding 

of one recent mega-analysis by the Psychiatric GWAS consortium (PGC) was for a 

miRNA, though little can be said presently about its particular role in the etiologies of 

schizophrenia and bipolar disorder [52].  

Next generation sequencing (NGS) is a versatile technology that can be used to 

directly sequence either DNA or RNA, thus providing valuable information on variation in 

the genome and in the transcriptome. A variation of NGS, MicroSeq, focuses on small 

RNAs and can be used to detect novel, as well as known, miRNAs [26,125, 126].  

The following thesis describes the role of miRNAs in schizophrenia and bipolar 

disorder in various experimental settings. As an index of the interaction between 

multiple genes and between the genome and the environment, miRNAs are great 

potential biomarkers for complex disorders such as schizophrenia and bipolar disorder.   

Project Overview 

In the forthcoming discussion, a number of concepts will be presented regarding 

schizophrenia and bipolar disorder and how researchers have sought to understand the 

genetic architectures of these disorders. We present in this thesis in six chapters, 

described as follows. Chapter one is intended as an introduction to both disorders, by 

describing the hallmark symptoms and what is currently known in regard of their genetic 

structure. Additionally, chapter one presents earlier epidemiological and genetic 

research to highlight better the potential of miRNAs’ studies to complement existing 

research. Chapters two, three, and four describe three separate but related studies 

focusing on the detection, validation, and assessment of miRNAs. These chapters are 

described in the manner of a research manuscript, i.e. abstract, introduction, material 
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and methods, results and discussion.  

Because of their complex nature, schizophrenia and bipolar disorder have not 

yielded to cursory approaches, paradigms, or specific assays. Rather, their undoubtedly 

complex genetic structure necessitates an approach which integrates information from 

both genetic epidemiological and molecular genetic studies. In chapter five, we present 

a synthesis of the entire project, summarizing key findings and highlighting project 

limitations. Lastly, chapter six examines what future steps could be taken with this 

research. 

 

Figure 1 Project Overview 
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Chapter 1 Rationale and Background 

Any thesis describing the use of a particular approach to the study of a given 

disease must provide justification for its use within the larger framework of the field. To 

that end, we present previous research in the field of psychiatry, starting with 

epidemiological, followed by genetic and expression studies, and finally with recent 

miRNA research. Despite their respective limitations, these studies have established 

that risk of developing schizophrenia and bipolar disorder has an inherited component 

or, stated another way, that the incidence of these disorders is genetically mediated 

[139]. However, mediation is different from outright control and, therefore, the field has 

struggled to find definite sources of causality.   

Defining the Phenotype 

That the genetic architecture of schizophrenia and bipolar disorder remains elusive 

is not surprising. Diagnosis of these disorders has been largely one of self-report and 

observation, relying on tools such as the diagnostic and statistic manual of mental 

disorders (DSM-IV), the OPCRIT+ and the ICD-10 [170, 171, 172, 173].  Indeed, a slight 

inconsistency across these tools has existed historically [181]. Further, considerable 

clinical and genetic evidence exists for overlap between schizophrenia and bipolar 

disorder, as well as with other disorders such as schizoaffective disorder and autism, 

making the problem of defining the phenotype even more acute [91,92, 95,127, 128]. 

Diagnostic criteria for schizophrenia can be partitioned into six separate subfields: 1) 

Characteristic Symptoms, 2) Social/Occupational dysfunction, 3) Duration, 4) 

Schizoaffective and Mood Disorder exclusion, 5) Substance/General Medical Condition 
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exclusion, and 6) Relationship to a Pervasive Developmental Disorder [95, 172, 211]. A 

threshold of minimum number of symptoms has been set in order for a diagnosis to be 

place, i.e. hallucinations, delusions, disorganized speech, catatonic behavior, and 

affective flattening need be present for a month for a diagnosis of schizophrenia to be 

made [95]. Bipolar Disorder can be classified as type 1 or type 2, depending on the 

frequency and severity of manic episodes [95,212].      

 The “flexibility” of the phenotypic definition, in each case, would necessarily 

introduce a large amount of variability, which would further complicate the search for 

causative variation. Regardless of the particular causes of these difficulties, it remains 

clear that additional avenues of research are needed if we are to truly understand the 

genetic architecture of schizophrenia and bipolar disorder. 

 

 

Figure 2 Categories by which schizophrenia and bipolar disorder are classified. 
Schizophrenia is diagnosed if two or more of the classic symptoms, e.g. 
delusions, hallucinations, disorganized speech/behavior, catatonic behavior, and 
negative symptoms are present for a significant period of time during a 1-month 
period.  A diagnosis for bipolar disorder requires the alternation of both manic 
and depressive symptoms.  

Duration 

Frequency 

Type Severity 

Social 
Interaction 
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Schizophrenia and bipolar disorder affect approximately 1% of the population and, 

though not as prevalent as major depression, their toll on the quality of human life is 

keen and solely felt [165]. It is likely because of the complex polygenic nature of both 

disorders that multiple sources of information are required for a true understanding to be 

achieved.  By presenting a brief overview of molecular psychiatry in this chapter, it is 

hoped that the reader will come to realize how the study of miRNAs might be used to 

complement existing research. That is, miRNAs, through their nature of mediating with 

the outside environment, might be used as a way of explaining the phenotypic variability 

currently observed by researchers in schizophrenia and bipolar disorder. 

 Moreover, a single miRNA is estimated to target as many as 200 genes. Therefore, 

identifying even a small group of miRNAs implicated in disease etiology might simplify 

the job of identifying causality considerably [53, 174]. In order to successfully integrate 

the study of miRNAs into molecular psychiatry, however, they must first be understood 

with respect to their own individual actions upon gene targets and each other. Simply 

put, the numbers of miRNAs must be clearly delimited and defined. To that end, this 

thesis presents an approach to detecting and validating novel miRNA within the larger 

disease framework of schizophrenia and bipolar disorder.   

Genetic Epidemiology of psychiatric disease 

 Family, twin and adoption studies were originally conceived as a way of 

documenting the correlation of risk (λ) to relatives of affected persons. Family studies 

asked the question, “is risk in developing the disease inherited and does it aggregate in 
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families?” Twin studies examined the level of risk present among types of twins, i.e. 

monozygotic (MZ) and dizygotic (DZ). Adoption studies were able to disentangle the 

effects of the environment from genetics by examining the course of the disease in 

children adopted away from affected parents [152]. 

Family studies 

Starting first with Rudin, family studies have shown that a child of a parent with a 

psychiatric disorder has a tenfold elevated risk of developing the disorder compared 

with general population [91,92]. Early family studies were criticized on primarily 

methodological grounds, but later studies suggest that risk for schizophrenia is 

approximately 2-9% in first degree relatives and, for bipolar disorder to range from 3-

15% [139, 145].  Further, morbid risk was shown to diminish as the amount of shared 

genetic material diminished [140] (see figure 3). Of particular interest is the similar 

percentage of morbid risk for MZ twins (48%) and offspring of dual matings (46%). 

These two types of relationships would, conceivably, share the largest amount of 

genetic material.  

One key criticism of family studies has been the inability to parse whether the 

observed effects are entirely due to genetic effects, the environment, or some 

combination of both [145]. Additional criticisms include small sample size and the lack of 

systematic ascertainment and proper controls [181]. Despite these criticisms, family 

studies have demonstrated consistently that risk associated with developing 

schizophrenia and/or bipolar disorder has an inherited element. 
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Figure 3 Lifetime morbid risk (MR) for schizophrenia in various classes of relatives. 
Image adapted from Gottesman. 

    

Twin studies 

Twin studies represent an approach to quantify directly the overall genetic and 

environmental components of risk shared by family members, measured in terms of 

rates of concordance between twins. Concordance is defined as the probability that a 

twin will have the disorder if the other is affected. For monogenetic traits, healthy 

monozygotic (MZ) twins demonstrate a genetic concordance of 1 and dizygotic (DZ) 

twins a concordance of 0.5. In complex polygenic diseases such as schizophrenia and 

bipolar disorder, however, the observed rates vary across studies. Such studies have 

also allowed for additional questions to be asked, including the role of the environment 

and the possibility of epigenetic mechanisms influencing discordance between 

monozygotic twins. Twin studies have been criticized for assuming that environments 
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are equal between MZ and DZ twin pairs [181].  

Modern twin studies from Denmark, Switzerland, Germany and the United 

Kingdom have all benefited from hospital registries which have allowed for more 

systematic and focused study than the previous family based approaches [91,138,139]. 

In addition, hospital registries have enabled larger study designs, further strengthening 

conclusions. Concordance rates have been less than 1 and variable across individual 

studies, however [142, 181]. Concordance for schizophrenia has been estimated to be 

~40-50% for MZ twins and 17% for DZ twins [4, 9, 140, 145, 152]. Concordance for 

bipolar disorder has been estimated to be ~67% for MZ twins, compared to 20% in DZ 

twins [4, 91, 140]. In addition, in many of these twin studies a notable degree of 

discordance between monozygotic twins has been observed, which some take as 

evidence in support of epigenetic mechanisms [3,4, 140, 152].   

Adoption Studies 

 Adoption studies have asked whether increased risk in family members is still 

present even though parents and offspring do not share a common environment; there 

were four experimental designs employed in adoption studies [181]. In the first, children 

adopted away from affected parents were followed.  An example of this study design is 

a recent Finish-based study profiling 361 families, which showed that 4.9% of children 

adopted away from schizophrenic mothers ultimately developed the disorder, compared 

to 1.1% among the offspring of control mothers [142]. The second type of design 

focuses on rates of disease occurrence in biological family members and controls. An 

example of this design type was a study of bipolar disorder which found that 7% of 

biological parents developed the disorder, compared to 1.8% of adoptive parents [146]. 
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The third design type, termed “cross-fostering”, examined adopted children who were 

“unaffected” at the time of adoption but later came to be diagnosed with the disorder 

[152]. Lastly, the fourth type examined children adopted away from affected parents, 

along with the adoptive parents themselves, thus providing insight into the relevance of 

rearing environment [152].  At the core of these studies is the notion that the source of 

stress, i.e. the presence of a sick parent, might give rise to symptoms in children and 

whether the mere presence of such stress could precipitate disease onset. Despite 

yielding relatively low percentages, these studies suggest that risk is persistent even 

with a change in the rearing environment, further strengthening the argument for genetic 

inheritance [145,146]. 

The true impact of family, twin, and adoptions studies, then, has been to 

demonstrate that schizophrenia and bipolar disorder are substantially heritable and to 

quantify the relative role of genetics and environment in their etiology. In order to 

appreciate their full contribution to the field, one must consider these paradigms as a 

unit. Despite differences in diagnostic criteria and concept, these studies provide 

remarkably consistent findings and a rationale for pursuing genetic research towards 

uncovering the biological underpinnings of disease etiology.    

Genetic Research 

Linkage  

Linkage studies represent the first attempt at discerning the particular genetic loci 

which comprise the genetic structure of psychiatric disease. The objective of linkage 

studies was to map genomic regions where sets of genes/loci were co-inherited by 
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affected members of family group. Linked loci segregate together during meiosis; often 

in linkage association, standard tandem repeats (STRs) are used as a point of focus.  A 

logarithmic score of odds (LOD score: equation below) measures the likelihood of the 

observed data in a situation of no linkage (free recombination of theta value =0.5) 

compared to the likelihood of the data at a specific value of theta less than 0.5. A LOD 

of 3 or greater (a likelihood ratio equals to 1000 to 1) is considered to evidence of 

linkage between features.  

              
                             

                                  
  

 

Linkage studies have provided support for the roles of several regions in the 

etiologies of schizophrenia or bipolar disorder, including 6p24-22, 1q21-22, 13q32-34, 

8p21-22, 6q16-25, 22q11-12, 5q21-q33, 10p15-p11, and 1q42 [86,100, 101]. Many of 

these reported linkage peaks encompass quite large genomic regions and have not 

been robust to replication efforts, i.e. genes within these linkage peaks have not yet 

been unambiguously identified or confirmed. Furthermore, these linkage studies were 

limited by small sample sizes and specification of unconfirmed genetic models and 

polygenetic inheritance. Of note, however, is the identification of a linkage peak on 

chromosome 22q13.1 and its association with what is now known about the genetic 

structure of Velo-cardio-facial syndrome (VCFS) [139]. This finding is illustrates how 

linkage studies have led to novel approaches to asking questions about a specific 

region and the role of structural variants in schizophrenia.  
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Structural variants 

VCFS is caused by a copy number deletion (CND) on 22q13.1, and recent 

studies have documented that 28% of VCFS patients demonstrate a psychotic 

phenotype resulting from that deletion [139,178, 179, 181, 182]. Structural variants or 

genomic deletion and/or duplications underlie a number of neurodevelopmental 

disorders including autism and can vary in size from 1 kilobase to several megabases 

[182, 216].  

 In VCFS, the deletion size varies between1.5 to 3 megabases (Mb), affecting 35 

to 60 known genes [183]. One of the genes in 22q11 is catechol-O-methyl transferase 

(COMT) which is involved in the biodegradation of catecholamine. COMT has a 

functional SNP (rs4680), which has been demonstrated significant associations in a 

number of candidate gene association studies (see following section). The deletion 

present on 22q11 is an example of a rare structural variant which until recently has been 

thought to play a limited role on the etiology of schizophrenia and bipolar disorder. It has 

been estimated that structural variants account for, at most, 10-15% of schizophrenia 

cases and as a whole, are not expected to explain a large amount of total population 

risk [181, 214]. They are seen as highly penetrant and of recent origin, often specific to 

individual families [214]. In a study of 418 persons, individuals with schizophrenia were 

found to be more than three times as likely than controls (p=0.0008) to have a structural 

variant affecting 1 or more genes [214].     

Candidate Gene Association        

 Candidate gene association studies, in contrast to linkage analysis, search for 

susceptibility genes that are present in a population rather than a family and have 
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focused, principally, on single nucleotide polymorphisms (SNPs) as an index feature 

[175]. The most commonly employed experimental design in candidate gene 

association is the case control format because it is easier to collect large numbers of 

subjects, as compared to the familial cases [154, 155, 168, 176]. SNPs can be selected 

based on their predicted effect on a specific protein (nonsynonymous SNPs), or gene 

activity (splicing enhancers, stop codons) and the relationship to each other in terms of 

linkage disequilibrium (figure 3) [169, 176]. Synonymous or noncoding SNPs, also 

important, are expected to affect gene function indirectly [176]. One unique SNP 

function, that of affecting miRNA secondary structure, will be explored in greater detail 

in chapter four of this thesis. Unlike the microsatellites typical of linkage studies, SNPs 

are generally of low information content (i.e. nucleotide diversity) and candidate gene 

association studies are more successful in isolate populations [176].   

 The key shortcoming of candidate gene studies has been the fact that genes are 

investigated individually often based on a priori assumptions regarding its role in the 

biology of the disorder. Simply put, candidate gene studies have never provided a gene 

that has been rigorously and unambiguously replicated across multiple studies. 

Approximately 800 genes have been tested using this approach and none of them have 

been fully established [91].  

  A number of other genes have, however, been identified through other 

approaches such as positional follow-up of linkage studies and these genes have been 

replicated to a limited degree in association studies. These genes include 1) catechol 

methyl transferase (COMT, 22q11.21), 2) neuregulin 1 (NRG1, 8p12), 3) dysbindin 

(DTNBP1, 6p22.3), 4) diacylglycerol kinase (DGKH, 13q14.11) and 6) ankyrin-g (ANK3, 
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10q21) [100, 101, 123, 139, 155, 156, 157, 180].   

 In the COMT gene, the functional SNP rs4680 (Val108/158Met) has been proven 

to reduce expression of the functional isoform of COMT four-fold [198]. COMT is 

responsible for degradation of dopamine and is located in a region of the genome 

implicated in schizophrenia by linkage and CNV studies (see previous section for a 

discussion of VCFS). The frequency of this polymorphism varies worldwide, ranging 

from 1% in South American populations to 62% in Europeans [198,199]. There is 

evidence of over-representation of one version of this SNP (Met/Met) in poor-

responders to anti-psychotics [198, 200].  

 The SNP rs3924999 located in the second exon of NRG1, changes the amino 

acid arginine (Arg) to glutamine (Gln) [201,202]. A number of different isoforms are well 

known to be produced by NRG1; some of these isoforms induce growth and 

differentiation of epithelial, neuronal and glial cells [203]. The core haplotype containing 

rs3924999 has been tested in a number of populations, including Chinese Han family 

trios. In that study, studying 246 Chinese families and using PCR-based restriction 

fragment length polymorphism and high-performance liquid chromatography, rs3924999 

was significant in transmission disequilibrium tests (p = 0.007752) and the haplotype 

containing this SNP also demonstrated significance (Χ2=46.068, df=7, p <0.00001). 

 Association signals for genes such as RGS4 and DISC1, originally identified 

through expression studies and translocation respectively, have likewise been 

inconclusive [181, 185, 186]. RGS4 belongs to a gene family regulating G-protein 

signaling pathways. Expression of RGS4 was shown to be decreased across the 

cerebral cortex of schizophrenic patients [163, 204]. Studies testing SNPs rs951436, 
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rs951439, and rs2661319 have generated mixed results, depending on experimental 

platform and population [204,205]. In a group of 218 schizophrenic Taiwanese families, 

no association was observed either by individual SNP or haplotype [204].     

 The gene DISC1 is involved in cell proliferation, differentiation, migration, 

neuronal axon growth and cell-to-cell adhesion. In cell models, the truncated gene fails 

to interact with its binding partners, fasciculation and elongation protein zeta-1 (FEZ1), 

lissencephaly 1 protein (LIS1), and nuclear distribution element –like (NUDEL) [206]. 

The disruption of this gene was originally found to segregate with psychotic symptoms 

in a Scottish pedigree [205, 206]. Additional family studies detected no evidence of this 

disruption but instead identified SNPs associated with a reduction in hippocampal 

structure [205, 206, 214]. In another association study, a three-SNP haplotype 

(hCV219779(C)-rs821597 (G)-rs821616 (A)] was shown to be significantly associated 

(P = 0.002) [214]. Still, other genes such as multiple EGF-like domains (MEGF10), 

which do not possess a cogent biologically based reason for selection, yet have 

produced an positive association nonetheless [154]. Though its function was unknown 

at the time of its testing, MEGF10 has since been linked to myopathy, respiratory 

distress and dysphagia [215]. 
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Figure 4 Linkage disequilibrium map as generated by the program Haploview. The gene 
pictured here is cannabinoid receptor 1 (CNR1), implicated in a number of disorders 
including nicotine addiction. This gene currently has 240 documented variants. Image 
adapted from Chen et al 2008.  

 

Genome-wide Association (GWAS)  

 As a result of the completion of the human genome project, the identification of 

millions of catalogued polymorphisms have allowed GWAS to arise as an unbiased 

approach to assess genome-wide variation, while at the same time it preserves single 

variant resolution, that may point to a disease specific association. GWAS capitalize on 

the presence of linkage disequilibrium between variants to effectively minimize the 

number of variants needed to cover the genome and focuses on variants that occur in 

relatively high frequency in the population. They are, therefore, explicitly testing for 

common variation (minor allele frequency MAF >= 5%) present in the population. Nearly 

20 separate GWAS (figure 5) have been published implicating genes such as 

transcription factor 4 (TCF4), neurogranin (NRGN) and the major histocompatibility 
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complex region (MHC) [75, 158, 159, 160]. Early GWAS used pooling and small sample 

sizes largely due to cost constraints, but these were quickly abandoned as the 

technology become more efficient to use [187,188,189]. Consortia such as the 

International Schizophrenia Consortium (ISC), Molecular Genetics of Schizophrenia 

(MGS), and the Psychiatric GWAS Consortium (PGC) have arisen to maximize sample 

size and available resources [75]. A number of consistent trends have begun to emerge 

from these GWAS. In particular the MHC region and TCF4 have been replicated in a 

number of primary studies [75,158, 159, 160, 220, 221]. Stefansson et al. studied the 

DNA from eight separate European locations in 7662 cases and 29,053 controls and 

identified seven significant SNPs in the MHC region (rs6913660, rs13219354, 

rs6932590, rs13211507, rs3131296, rs12807809, rs9960767) that survived correction 

for multiple testing [221]. In the TCF4 gene, only SNP rs9960767 was significant after 

follow-up (p = 4.1 x10-9). The MHC region was also reported by Li et al in a group of 

Han Chinese (N = 2496 cases, N = 5184 controls), though through a smaller set of the 

same SNPs (rs6932590: p = 0.00096, rs3131296: p = 1.29 X10-6, rs3130375: p = 1.76 

X 10-5) [220]. One significant SNP in TCF4 (rs2958182: p =3.64 X 10 -6) was identified 

by Li et al; this SNP was near to rs9960767 [220, 221].  

  Concerns arising from current GWAS studies include non-overlap of primary 

results and a limited number of findings.  
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Figure 5 Recent GWAS generating a significant finding at a  p < 5  X 10-8. A number 
of genes which have been replicated across the studies include TCF4 and the 

MHC region. Image adapted from Bergen and Petryshen (2012). 

 

   

Recently in the largest GWAS to date (17836 cases and 33859 controls, respectively) 

the PGC group reported their most significant novel finding to be a polymorphism 
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(rs1625579) located in the primary transcript of a miRNA gene, hsa-miR-137, thus 

providing the strongest evidence for miRNA involvement in the etiology of schizophrenia 

and bipolar disorder. Smaller studies stemming from this GWAS have, additionally, 

corroborated a shared relationship between bipolar disorder and schizophrenia [52, 94, 

98]. Hsa-miR-137, identified in the PGC GWAS is implicated in neural development and 

neurite formation [52, 161]. In stage one of this GWAS, seventeen predicted targets 

were enriched for association (p < 10-4) which was nearly as twice as many as control 

genes. Verified gene targets for hsa-mir-137 include TCF4, cub and sushi domain-

coding protein1 (CSMD1). That hsa-mir-137 and its targets were both identified on the 

same GWAS provides strong support for the role of miRNAs in schizophrenia.   

Gene Location Associated SNP P(GC-adjusted) OR 

miR137 1p21.3 rs1625579 2.65 x 10
-6 

1.11 

PCGEM1 2q32.3 rs17662626 1.70 x 10
-3 

1.16 

TRIM26 6p21.3-p22.1 rs2021722 1.55 x 10
-3 

1.10 

CSMD1 8p23.2 rs10503253 7.60 x 10
-3 

1.08 

MMP16 8q21.3 rs7004633 0.011 1.05 

CNNM2 10q24.32 rs7914558 1.l07 x 10
-3 

1.08 

NT5C2 10q24.33 rs11191580 5.09 x 10
-3 

1.09 

STT3A 11q24.4 rs548181 0.068 1.04 

CCDC68 18q21.2 rs12966547 2.29 x 10
-5 

1.08 

TCF4 18q21.2 rs17512836 0.085 1.08 

Table 1Top Targets from PGC GWAS studies. Among them include TCF4, and hsa-
mir-137 which has been shown to be involved in neurite development and 
branching. 
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Expression studies – Protein Coding Genes 

 Like GWAS, expression profiling of protein coding genes has also used high 

throughput technology to quantitatively assess variation on a wide scale, with the 

principal focus being protein-coding genes [162,163]. The intent of this research was to 

provide a more realistic assessment of the real time functionality of protein coding 

genes. Likewise, the use of postmortem brain tissue from affected subjects has been 

viewed as a more immediate way of addressing the problem by directly assessing 

expression levels in the tissue believed to be most affected, though these approaches 

are not without problems. Several trends have been identified in these studies including 

disturbances in synaptic function, energy metabolism, and oligodendrocyte function but 

results are inconsistent across studies [148, 149, 150,151,152, 162, 163]. Data 

interpretation, due to existing disparity across platforms and sample groups is difficult. 

Gene expression can be affected conceivably by a number of factors including 

upstream cis-acting motifs, epigenetic mechanisms, and experimental confounds. The 

changes in genes expression resulting from the pathology may simply not be present at 

the time of the death.  Additionally, and perhaps more telling with respect to its 

usefulness in molecular psychiatry, it is difficult in gene expression studies to distinguish 

between gene expression changes resulting from primary pathology, or some 

compensatory mechanism [162, 163, 164].   

Expression studies – MicroRNAs 

Expression profiling of post mortem brain tissue suggest that aberrant miRNA 

may be linked to the etiology of schizophrenia/bipolar disorder. This type of study 



 

29 

 

represents the newest attempt in molecular psychiatry to study the molecular and 

genetic architecture of schizophrenia and bipolar disorder. Starting in 2007 there have 

been 11 separate studies that implicate miRNAs in the disease using a variety of 

platforms including qPCR and expression microarrays [7, 8, 27, 28, 48, 102, 103, 

136,138, and more recently115] 

Like expression profiling of protein coding genes, postmortem expression studies 

are thought of as a direct measure of activity within the brain. Specific brain regions 

harboring relevant affected functions, i.e. speech centers or centers of higher function 

have been targeted by these types of studies. These studies have been limited in 

scope, however, and produced limited results due to a heavy reliance on annotated 

miRNAs and commercial platforms. Like expression studies of protein coding genes, 

postmortem samples however are easily affected by confounders such as sample 

storage conditions, brain pH and lifetime medication used by subjects. In addition, the 

clinical and genetic heterogeneity underlying these early studies contributes heavily to 

their limitation. The studies have focused principally on the dorsolateral prefrontal cortex 

(Brodmann's area 9-46) and the superior temporal gyrus because of their role in 

working memory and social cognition. Additionally the numbers of subjects assessed in 

this manner have been low, varying from 13 to 105 as it has been traditionally difficult to 

gain samples from a large number of subjects. A total of 16 miRNAs have been 

identified with increased expression in these studies and 11 have miRNAs have 

associated with decreased expression [7, 8, 27, 28, 48, 102, 103, 136, 138]. MiRNAs 

which have been identified with increased expression include hsa-mir-105, -128a, -15a, 

-15b, -16, -17, -199*, -20a, -222, -34a, -452*, -486, -487a, -502, -652, -132, -212 and 
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hsa-mir-7[103]. miRNAs which have been identified with decreased expression include 

hsa-mir-106b, -151, -20b, -224, -30a, -30b, -30d, -30e, -383, -432, and hsa-mir-

505[103].  

In reviewing these studies, one can clearly see a large amount of variation in the 

miRNAs that are identified as dysregulated and in the directionality of their individual 

fold change.  A meta-analysis of six studies yielded 44 miRNAs reported with any 

degree of consistency. Of these, only four (hsa-mir-212, -181b, -29c, and -7) were 

reported in more than two. The Pearson correlations (ρ) for these miRNA are depicted 

in the figure below. Of note, only hsa-mir-181b was reported in more than two studies 

with directional consistency.  Though this meta-analysis was undoubtedly influenced by 

the way in which the expression values were identified, e.g. literature search, this 

nonetheless illustrates that miRNA expression studies, similarly to, genetic studies are 

subject to the same limitations, namely, sample size and tissue heterogeneity.  At the 

very least, this small meta-analysis suggests that miRNA expression profiling may be as 

problematic as the early studies involving protein coding genes.  
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Figure 6 Comparisons of miRNAs and their reported levels was made across six 
expression profiling studies. A total of 44 miRNAs were reported in multiple studies (R = 
-.934). Only four of these hsa-mir-181b (3), hsa-mir-29c (3), hsa-mir-7 (4), and hsa-mir-

212(3) were reported in more than two. The values for the respective studies are 
pictured in the above plots. Only the values reported for hsa-mir-181b was found to be 

in a consistent direction.  

  

 Expression profiling of peripheral tissues sources other than brain have been 

predicated on the notion that miRNA expression levels are reflective of a specific health 

state and as such that there should some overlap in the levels seen in the brain with 

that of blood. These studies undoubtedly contain greater variation as the sample 

sources is even farther removed and more easily affected by confounding.  Blood 

samples are easier to obtain and could potentially be used to highlight miRNA 

expression differences between cases and controls as demonstrated by Lai et al (2011) 

[48].  In their study, seven miRNA signatures (hsa-mir-34a, -449a,  
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-564, -432, -548d, -572 and hsa-mir-652) were detected to correlate with negative 

symptoms, neurocognitive scores and event potentials. This signature was used by the 

researchers as a diagnostic indicator, generating an area under the curve (AUC) of 85% 

and receiver operating characteristics (ROC) of 95%. Blood is a heterogeneous 

suspension, comprised of multiple cell types and is potentially also affected by 

confounders such as drug exposure therefore some degree of caution should be 

exercised regarding these results.    

 From the studies reviewed above, one can see clearly that schizophrenia and 

bipolar disorder each possess an inherited component which, conceivably, is discernible 

through genetic and molecular studies. To date, researchers studying these diseases 

have made considerable progress in understanding the genetic architecture of both, 

thanks largely to the knowledge generated by the mapping of the human genome and 

the development of new methodology that allows a comparison of the phenotype with 

genetic loci. More work is needed, however, in order to explain the inter-subject 

variability seen in each disease and miRNAs through their control functions could 

service to address this problem. This field already has evidence originating from GWAS 

and expression studies implicating miRNAs in schizophrenia and bipolar disorder. By 

detecting novel miRNAs, studying their interaction with target genes and studying 

factors that might affect their function, we can better understand their role in 

schizophrenia and bipolar disorder. This thesis addresses these topics in a series of 

experiments using deep sequencing, qPCR, and SNP imputation.  
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Chapter 2.  Detection of microRNAs through Next Generation Sequencing 
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Abstract  

     Next generation sequencing has become a preferred method for investigators 

interested in detecting novel miRNAs. Its depth of scope, flexibility and seemingly 

“agnostic approach” to data collection makes it an attractive option for those wishing to 

build a miRNA profile of a specific cell type or tissue. To that end, a deep sequencing 

experiment was performed on a commonly used cell line, neuroblastoma (ATCC: crl- 

2217) using the Illumina/Solexa. A total of 113 miRNAs were detected in the model cell 

line, 25 of which could be considered novel candidates. Based on estimates of the 

probable number of miRNAs found in wild-type samples, this number of miRNAs was 

low and prompted an assessment of the sample with additional software. A receiver 

operating characteristics curve (ROC) based on simulation data suggested that the 

software initially used in analysis, miRDeep, was in fact the most suitable for our 

purposes. In addition, a wide divergence in the numbers of miRNA predicted between 

the programs compared suggests that additional improvement is needed in the design 

of current software.  

One of the novel miRNA predicted in the neuroblastoma data set, PRD5 was 

shown to be differentially expressed in schizophrenic patients from the Stanley Medical 

Research Institute (SMRI). Comparison of the expression values of this novel miRNA in 

postmortem brain tissue with the genes, zinc finger 804A (ZNF804A) and chromosome 

10 open reading frame 26 (C10orf26) suggests that an interaction may be occurring.  

Both of these genes have been implicated in schizophrenia/bipolar disorder GWAS. In 

addition to the novel miRNAs that were detected in this study, five novel candidates 

were also identified that result from alternative pathways of biogenesis. These miRNAs, 
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derived from small nucleolar RNAs, were validated in a RNA tissue panel of 20 normal 

human tissues. The identification of these miRNAs suggests that current theories 

regarding the biogenic source of miRNAs should be reconsidered. In particular, it 

demonstrates that reads deemed unusable by virtue of their mapping location should 

not be discarded, but rather reassessed using different criteria.  
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 Introduction 

 MicroRNA Biogenesis and Function  

 MicroRNAs (miRNAs) are short non-coding RNA sequences which measure 

approximately 18-22 bases in length. Classical miRNA biogenesis is, briefly, a three-

step process that starts in the cell's nucleus and ends with the creation of the mature 

sequence within the cytoplasm [9, 47, 51, 53, 90]. Each step in the process results in a 

definable product which can be then predicted computationally and validated through 

Northern Blot or PCR based analyses. The primary miRNA (pri-miRNA) is a double-

stranded structure that measures over 1 kilobase (kb) in length and has a guanine cap 

and poly-adenylated tail. In the first stage of miRNA biogenesis, the pri-miRNA is 

cleaved by Drosha and its partner DiGeorge critical region 8 (DGCR8) to form the 

precursor strand (pre-miRNA). The second stage in miRNA biogenesis occurs when the 

pre-miRNA is exported from the nucleus to the cytoplasm by exportin 5 (EXP5). Once in 

the cytoplasm, the precursor (pre-miRNA) is processed by Dicer and its partner TAR 

RNA-binding protein (TRBP). Dicer cleaves the arms of the pre-miRNA approximately 

22 bases from the site of the Drosha cleavage, creating a double-stranded duplex 

containing the mature sequence and the star sequence (miRNA:miRNA*). 

 

Figure 2 The guide or mature sequence is found in the precursor opposite to the 
star. It is the mature sequence that survives degradation and directs the gene 
targeting. Image adapted from http://www.gene-tools.com/TargetSites.gif. 
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Thermodynamic studies have suggested that the strand with the least stable base pairs 

(the mature sequence) at the 5' end survive degradation [53,54]. The strand opposite to 

the mature strand, the star sequence, is generally moved for degradation (see above 

figure for relative positions of the star and mature sequence within the precursor) [217]. 

In general, prediction algorithms focus on the second and third stage of miRNA 

biogenesis to assess the presence of novel miRNAs.  

 Currently, the main repository for the annotation of miRNAs is the website 

miRBase. The current release of miRBase (v18) holds over 18226 miRNAs from 

species as diverse as zebrafish and chicken as well as arapidopsis. For humans, 

miRBase (v18) holds 1527 precursors and 1921 mature sequences [53]. The rules for 

determining whether a miRNA is a true candidate are: 1) whether its predicted precursor 

sequence folds into a viable hairpin, 2) whether the mature sequence can be detected 

in a size fractionated sample and 3) whether the candidate sequence falls within one of 

the hairpin’s respective legs or stems [93].  

 

Figure 7 Classic stem-loop structure/hairpin generated by RNAfold. This program is 
used in many pipelines to assess the minimum free energy of candidate hairpins.  
Pictured is hsa-miR-24. 
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 There is now growing evidence, stemming largely from NGS studies that miRNA-

like sequences can result from non-coding RNA sources such as small nucleolar RNA 

(snoRNA) and transfer RNA (tRNA) [11-19,23]. In particular, snoRNAs are a family of 

conserved nucleolar RNA encoded in the introns of protein coding sequences that are 

approximately 200 bases in length. There are two officially recognized classes of 

snoRNA (Box C/D, Box H/ACA) which work in conjunction with other proteins in 

complexes called SNRPs to control 2-O-ribose methylation and pseudouridylation 

respectively. SnoRNAs target principally ribosomal RNA, transfer RNA and small 

nuclear RNA; classes are distinguished on the presence of key sequence motifs and in 

their interactions with molecules such as dyskerin and fibrillarin. H/ACA snoRNA are 

distinguished by the H motif box (consensus ANANNA; N = purine or pyrimidine) and 

the ACA (ACA) and C/D boxes snoRNAs are distinguished by conserved C (UGAUGA) 

and D (CUGA) motifs, respectively. Recently, a third (Orphan) and fourth (composite) 

class of snoRNAs have been suggested [73]. The function of these two classes is 

currently unknown but they possess the same structural motifs as the Box H/ACA and 

Box C/D snoRNA.  

 One characteristic that sets snoRNAs apart from that of miRNAs is the cellular 

location at which the molecule is thought to be functional. The biogenic pathways of 

both molecules, however, are extremely similar (figure below) with the exception of the 

participation of the enzyme Drosha. Drosha does not participate in the biogenesis of 

snoRNAs whereas it figures heavily into that of miRNAs. Several groups have found 

miRNAs that originate from and overlap with larger snoRNA molecules [11-19, 23]. One 
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group, in particular, discovered a miRNA in a HITS-CLIP sequencing experiment which 

effectively reduced mRNA expression of the gene cyclin-dependent kinase 19 (CDK19) 

by 20% [13].  HITS-CLIP sequencing, the sequencing of RNA isolated by cross-linking 

immunoprecipitation, is widely used form of NGS for the mapping of protein-RNA 

binding sites in vivo [224]. 

 A subgroup of orphan snoRNAs are expressed exclusively in the amygdala, 

hippocampus, and nucleus accumbens, and in animal studies is thought to affect 

contextual fear conditioning and brain function [23]. Further, one cluster of this subclass, 

HBII-52, was also shown to regulate alternative splicing in serotonin receptor 2c and 

implicated in the etiology of the neurodevelopmental Prader Willi Syndrome [104].  

 The fact that these brain expressed snoRNAs do not function as traditional 

snoRNAs would, suggests that other potential regulatory functions for the molecules 

exist. It is conceivable, then, that orphan snoRNAs could act as an additional source for 

miRNAs potentially relevant to brain function and that, as such, this biogenic pathway 

needs to be investigated.   
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Figure 8 A comparison of the classical biogenic pathways in miRNAs and snoRNAs. 
Distinct similarities exist both in the enzymes used in the process and the 
locations within the cell where these activities occur. Pictured in the above 
diagram left is the miRNA biogenic pathway and right is the snoRNA biogenic 
pathway. Images are adapted from Miyoshi et al, 2010 and www. cipsm.com.  
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Figure 9 H/ACA (A) and C/D Box (B) structure. The secondary structure of these 
molecules suggests that a portion could function as a hairpin and from that yield a 
functional miRNA like fragment. Image taken from www-snorna.biotoul.fr 
 

 Most miRNAs regulate gene function negatively through imperfect binding with 

the 3' untranslated region (UTR) [51, 52, 54, 55]. Animal miRNAs pair with 3’UTR of 

their target genes though the “seed” region (consisting of nucleotides 2-7) at the 5' end 

of the mature strand. Depending on the percent match of the interaction, the miRNA can 

affect either the degradation of a mRNA target or its translational inhibition [90]. It has 

been estimated that miRNAs may influence as much as 30% of the human 

transcriptome [47]. Target validation for miRNAs has been slow at best and outpaced by 

discovery techniques. One study, using Drosophilia as a model organism, estimated 

that as high as 60% of annotated miRNAs in miRBase lack clearly defined 

experimentally validated targets [51, 54].  
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 Regardless, miRNAs have been implicated in a number of human diseases 

including Cancer, Fragile X syndrome, and coronary heart disease [191, 207, 208]. 

Currently, the largest field of study has been Cancer research where great strides have 

been made identifying miRNA affecting oncogenes involved in throat and gastric cancer 

[209, 210].  

 Deep sequencing experimental protocol 

 There are a number of second generation platforms routinely used today for the 

sequencing of miRNA, e.g. Illumina, Roche 454 and ABI Solid. The basic protocol is the 

same for sample isolation but varies considerably for library preparation and actual 

sequencing. In sample preparation, the small RNA fraction is extracted either using 

phenol/chloroform or a silica-based column method and is eluted using ethanol 

precipitation. The sample then is fractionated and adapters are attached which are 

platform specific sequences. Small RNA has been shown to be more stable than mRNA 

and has been isolated successfully in a variety of tissue and cell types [61]. In general, 

deep sequencing represents improvement over earlier Sanger/capillary based 

techniques as there is no amplification through bacterial cloning. MiRNA comprise 

approximately 0.01% of the total RNA fraction and a recent comparison between 

methods used to isolate miRNA show that enrichment may be necessary for successful 

detection [61]. Typical endogenous expression of miRNA within the cell falls within 500 

copies, though some cell-type specific miRNA have been demonstrated to be expressed 

at much higher levels [56].  

There are several limitations to MicroSeq technology that must be addressed and 

many of these introduce biases that must be overcome before the results from 



 

43 

 

individual studies are compared. First, PCR based amplification creates sequencing 

errors primarily at the 3' end of the read; it has been estimated that errors due to either 

thermal stress on the enzyme or through editing occurs a rate of 7.2 X 10-6 base pairs 

[96]. A second issue is the limited comparability of expression values across samples 

due to the methodology regarding the normalization of read levels. Third, unequal 

representation of fragments in the library preparation may also occur due to naturally 

occurring imbalances in expression levels. Currently, no set statistical approach exists 

that allows researchers to easily compensate for biases induced during PCR 

amplification, library creation, or sample preparation although a few significant 

advances have been recently made [20, 21, 65].  

Because of the acknowledged issues with this type of dataset, the relative 

expression levels of any miRNA identified in MicroSeq data should be approached with 

caution and additional validation should be performed with more established methods 

such as quantitative (qPCR). Several studies show the relative magnitude of MicroSeq 

data to correlate well (r2 = 0.8) with qPCR [111,112]. Despite the issues raised above 

MicroSeq datasets can still be successfully used to determine presence of novel or 

known miRNAs within a particular sample.   

Computational prediction of miRNAs and their targets 

 Recently, there has been an increase in the number of programs written toward 

the prediction of miRNAs from deep sequencing data. The manner in which this data is 

evaluated with respect to prediction is three fold: 1) reads are mapped to a reference 

genome 2) the loci to which the read is mapped is expanded computationally and folded 

to determine secondary structure, and 3) the secondary structure is evaluated to 
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determine whether it is a miRNA hairpin. Programs differ on the basis of whether they 

are comparative or non-comparative in nature. Comparative programs assess whether 

the proposed candidate is phylogenetically conserved and non-comparative programs 

focus more heavily on species-specific examples. The number of species used in non-

comparative programs is largely up to the user and non-comparative programs are 

thought to more useful in the detection of newly evolved novel miRNAs. 

The program, miRDeep, is a non-comparative program that predicts the 

presence of miRNA from deep sequencing data using conditional probabilities [83,84]. 

miRDeep employs a flexible format, accommodating data generated by a 454 Life 

Sciences/Roche or an Illumina/Solexa sequencer. Using the steps of classic biogenesis 

as a guide, the pipeline first compares the reads to a target genome, and then evaluates 

the read's suitability on a thermodynamic scale. The algorithm assumes that if a read is 

related to miRNA, then it must either be a portion of a star, a loop sequence or a mature 

sequence. The read must demonstrate characteristics similar to already annotated 

examples, e.g. definite evidence of a present 2nt 3' overhang. Additional characteristics 

include the minimum free energy of the predicted precursor strand and in miRDeep2 the 

level of demonstrated homology to a species closely related to the target genome.  Also, 

miRDeep makes the assumption that because mature sequences tend to be more 

abundant in the cell than any other miRNA related sequence, reads which conform 

structurally to “mature sequences” will likewise be the most abundant in the data file. 

 The software generates a logarithm of the odds (LOD) score which is based in 

part on read frequency. If a read meets structural criteria for being considered a mature 

sequence and is found to be frequently represented in the data file it receives a higher 
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score than those that are less frequently found. Structural stability of the predicted 

precursor, as well as conservation of the 5’ end of the mature sequence is also factored 

into the LOD score through parameter fitting. Because miRDeep is a pipeline, it allows 

the user to choose the mapping tool and software for free energy evaluation. In this 

project, we used the program Oligomap to map the reads rather than Blast and RNAfold 

to evaluate free energy [87]. It is generally acknowledged that Blast is poorly suited to 

the process of mapping deep sequencing reads; Oligomap with its heuristic approach to 

short read mapping greatly speeds up the process.    

 miRanalyzer is a web-based tool based on a random forest classifier and trained 

on experimental data [66]. A benefit of web-based applications such as miRanalyzer is 

that they allow the user to analyze their results without having access to a large amount 

of computer resources. The first version of the software targeted seven model species 

(human, mouse, rat, fruit-fly, round worm, zebrafish and dog). Newer versions have 

since incorporated plant genomes and predictions based on plant models. miRanalyzer 

uses the program Bowtie to map the reads to the target genome [67]. Apart from 

specifying the number of allowable mismatches, and the acceptable p level for a 

credible prediction, the user is restricted, however, from employing any other changes.  

 The current version of the deep sequencing small RNA analysis pipeline (DSAP) 

differs from miRDeep or miRanalyzer in that its algorithm focuses more strongly on 

miRNA expression rather than prediction of known and novel forms [85]. By employing a 

technique where reads are clustered into unique groups and then mapped onto existing 

RFAM and miRNA databases (ergo only known miRNAs can be detected), the program 

circumvents the need for annotated genome required by the other software. In addition, 
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DSAP provides the user with superior processing speeds, e.g. 2 million sequences were 

bench marked at less than 15 minutes [85]. This program uses Supermatcher from the 

EMBOSS tool kit which is a combination of word match and the Smith-Waterman 

dynamic programming algorithm [218, 219]. The speed of DSAP is partly due to the use 

of Supermatcher which is designed to perform local pairwise alignments between a 

single sequence – typically a large one – and that of a database.  

  

The relative strengths and weaknesses of these programs have largely been 

unexamined as the field has been focused on the development of viable algorithms that 

do not place undue stress on the computational resources of a typical laboratory 

interested in deep sequencing. To that end, several developers have chosen to create 

web-based applications that moves read mapping steps to a location offsite from the 

user. The above table lists several software that have been created in this vein. Two of 

these programs (Seqbuster, MiRTools) are web-based applications that allow the user 

to analyze their data off site. Our comparison of miRDeep, miRDeep2, miRanalyzer and 

DSAP represent one of the first attempts to compare programs in terms of their 

 

Table 2 Other software used in the analysis of deep sequencing data. MiRDeep, 
miRanalyzer represent two of the most popular open-source software used for 
the analysis of deep-sequencing data. 
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respective suitability to the detection of novel miRNA.  

 Algorithmic approaches for target prediction 

Successful prediction of targets for novel miRNAs involves careful consideration 

of homology, Watson-Crick binding, and minimum free energy (MFE). In addition, 

several authors have suggested that site accessibility and co-expression be considered 

as factors [51, 54]. Briefly, the mature sequence pairs with the gene’s 3’UTR through 

Watson-Crick binding in three ways:1) seed only, 2) seed plus additional bases on the 

5’end of the mature sequence and 3) additional bases binding on the 3’ end of the 

mature sequence. The seed is defined as bases 2-8 on the 5’ end of the mature 

sequence and many believe that seed binding is all that is required for a gene to be 

functionally affected [51,55].  

  

Figure 10 Ways in which the mature sequence may bind with a target gene. The 
seed (bases 2-8) on the 5' end of the mature sequence has been demonstrated 
to be instrumental in whether a miRNA targets a gene. Image adapted from Lai, 
Current Biology, 2005 

 

Different programs vary with respect to the emphasis given to each respective 

characteristic and in the manner that the 3' UTR is defined [55]. Of the various software, 

miRanda, one of the oldest, is generally viewed to be the most sensitive [51]. It creates 

a threshold score based on homology, Watson-Crick binding, and MFE to rank its target 
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predictions. As the most sensitive, however, miRanda is apt to contain the highest 

percentage of false positives and should be screened carefully. PITA, by contrast, 

considers site accessibility and co-expression as key factors in target determination 

[47]. The ΔΔG score generated by PITA takes into account how strongly the miRNA 

binds to a proposed target with that target folded into its probable secondary structure. 

The combination of miRanda and PITA allows us to be more restrictive in the gene 

targets selection. While overlap is certainly desired when comparing predictions of 

these programs, it is small at best, estimated at ~11% [47]. A small overlap percentage, 

however, is desirable as it will ensure that the generated predictions are robust and less 

likely to be a result of type I error.  

Materials and Methods 

 

 

Figure 11 Steps taken in chapter two. Read processing includes filtering for 
contamination and other non-miRNA specimens as well as the adapter sequence 
utilized on the reaction. 
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Neuroblastoma deep sequencing 
 
Total RNA containing the small RNA fraction was isolated from pelleted 

neuroblastoma cell lines (ATCC: crl-2217) using the mirVana Paris kit (Ambion) 

following manufacturer's specifications. After isolation and ethanol precipitation (95% 

Ethanol/Sodium Acetate, pH. 4.5), the RNA concentration for the neuroblastoma cell line 

was 4μg/μl. Library preparation, PCR reaction, and deposition were prepared according 

to standard protocol and slides were analyzed on an Illumina/Solexa system. The 

sample was sequenced at a concentration of 1 μg/μl. Post sequencing, a shell script 

was used to convert fastq files into two fasta files, with one containing the reads and 

another containing quality scores. The reads in the fasta file were then cleaned of the 

tag sequence and homopolymers longer than 4 nucleotides (nt) and size sorted (>18nt).  

Sample contamination was determined by the percentage of reads which mapped to 

the E. coli and M. musculus genomes. These two organisms are common sources of 

contamination due to their popularity as lab models. In the neuroblastoma cell line, 

individual base quality diminished considerably at the 3’ end of the read sequence (e.g. 

enzyme depletion), similar to what has already been shown [99]. This finding was 

compensated prior to final processing by trimming five bases from the 3’ end. Sample 

contamination overall was negligible (<0.1%) eliminating only a small number of reads. 

Final read processing was performed by a perl script that removed redundant 

sequences, formatting the file into a series of reads and read counts. A total of 

6,904,317 reads were analyzed from this data set to yield 1,214,402 unique reads after 

cleaning. 
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Stage Count 

Total Reads 6904317 

Unique Reads following cleaning 1214402 

Number of Times reads mapped to human genome 16097885 

Number of rimes reads mapped 5 or fewer times 19569 

Number of verified miRNA 88 

Number of unknown miRNA 25 

 

Table 3 Read number after each subsequent step of processing. Reads are eliminated 
by miRDeep that map more than 5 times to the genome because they are assumed to 
be degradation products of other more highly expressed RNA. Multiple hits occur in part 
due to the physical size of the trimmed read (18 bases). Smaller reads in general have 
a higher probability of mapping in multiple regions. 
 

Validation of miRNA predictions in Neuroblastoma and a RNA tissue panel 
 

 All novel miRNA predictions generated by miRDeep, were verified in the original 

cell line using qPCR. Briefly, RNA was isolated from wild-type neuroblastoma cells 

(concentration 10ng/ul) and assessed in triplicate on a HT Fast 7900 (ABI) using 

Taqman Assay.  Neuroblastoma cells (ATCC: crl-2217) were grown at 37˚C and 5% CO2 

in a 1:1 mixture of Eagle’s Minimum Essential Medium, F12 Medium, supplemented with 

10% bovine serum (FBS) and 1% non-essential amino acids. The average RNA integrity 

number (RIN) value for all samples tested was 8.2. The protocol for qPCR was a two 

step process including cDNA synthesis and Realtime qPCR and can be found in a 

number of papers published by our lab [8, 26]. On average the standard deviation (SD) 

between replicates was less than 0.03.  The average Cq values were normalized using 
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ΔΔCt method against an endogenous reference snoRNA RNU44.  

 Separately, all novel miRNA candidates derived from snoRNA were validated in a 

RNA panel of 20 normal Human tissues (First Choice, Life Technologies). Sample 

validation was performed in the same manner as described above with the exception of 

the source RNA originating from a commercial platform rather than a cell line. The 

purpose behind using a tissue panel rather than a cell line in this instance was to 

determine whether the novel sno-derived miRNA were differentially expressed across a 

wide range of normal human tissues. Differential tissue expression has been viewed as 

a classic indicator of miRNA status in traditionally derived miRNAs [15], therefore it was 

used here as a way of affirming candidate status. A graph showing the validation results 

of the sno-derived miRNA can be found in section entitled “Detection of novel miRNAs 

from alternative biogenic sources”.   

Validation in Postmortem Brain Tissue from the SMRI  

200 mg of postmortem brain tissue, originating from the dorsolateral prefrontal 

cortex (Brodman’s Area 46) were received from the Stanley Medical Research Institute 

(SMRI). This sample was used to: 1) determine if any identified novel miRNA was also 

expressed in brain tissue and 2) determine if any novel miRNA was significantly 

differentially expressed between cases and controls.  Exclusion criteria for subjects 

included: 1) brain pathology, 2) central nervous system disease, 3) poor RNA quality, 4) 

IQ < 70, 5) age <30 years, and 6) substance abuse within one year of death. Total 

descriptive parameters for this study group can be found in the table below. Total RNA 

was isolated from approximately 100mg of this tissue using the MirVana-Paris Kit 

(Ambion, Texas). The RNA integrity number (RIN) was determined using nano chip 
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(Agilent) on the 2100 Bioanalyzer (Agilent, California) and was 7.2. The protocol for 

cDNA synthesis was performed according to manufacturer’s recommendations and can 

be found in papers published by our lab [8, 26]. All novel miRNA candidates were 

validated in triplicate in this sample and normalized using ΔΔCt method against the 

snoRNA RNU44 

Profile Diagnosis 

Age years at death 

Sex Male, female 

Race Caucasian, African American 

DOD date of death 

Refrigerator Interval from estimated time of death to refrigeration of body at ME’s office 
(hours) 

Suicide Status death by suicide 

PMI post-mortem interval (hours) 

RIN RNA Integrity Number 

Brain PH acidity-alkalinity (log scale; 7=neutral) 

Left  Brain Side of brain 

Right Brain (see above) 

Brain Weight Relative mass of brain (g) 

Age Of Onset age of first symptoms (years) 

Duration Of Illness age at death minus age of onset (years) 

Time In Hospital total for all psychiatric hospitalizations (years) 

Lifetime Alcohol Use Years 

Lifetime Drug Use Years 

Smoking At TOD if person had smoked previously but had quit in the past, this was coded 
"no." 

Psychotic Feature Diagnosis 

Lifetime Antipsychotics fluphenazine equivalents (mg) 

Table 4 Descriptive parameters for the Stanley Medical Research Institute sample 
set 

 

Performance Comparison of Prediction Software 

 Using three different programs, miRDeep (v1, 2), miRanalyzer and DSAP, we   

analyzed seven data sets (GSE494809, GSE494810, GSE494811, GSE494812, 

GSE715665, our neuroblastoma dataset, and a simulated dataset) to provide a critical 

evaluation of program performance [26]. Initial miRNA predictions by miRDeep were 
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thought to be too low and we hoped to receive confirmation by comparing them to those 

generated by miRanalyzer and DSAP.  Additionally, we felt justified that the relative 

operator curves for each program generated in the simulated dataset was sufficient to 

determine which program might be best suited to the detection of novel miRNA 

candidates (figure 12). The biological data sets used in this comparison include miRNA 

profiles drawn on peripheral mononuclear blood cells, HL60 cells,  K562 cells, breast 

cancer cells and neuroblastoma cells and were downloaded from Geo Omnibus [210].  

In addition, a simulation data set was created using the program Flux Simulator and 

included 100 known miRNA that were 'spiked in' to the simulation at a prevalence of 

0.1% to provide a basis against which ROC curves could be drawn. The parameters 

shown below in table 4 were chosen to mimic the characteristics of the neuroblastoma 

dataset though characteristics derived from comparisons of publicly available data 

demonstrated considerable variability in terms of size, GC median content and GC 

standard deviation.   
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Figure 12 ROC curve were created using simulated data generated by Flux Simulator. 

The ROC curves suggest that miRanalyzer and DSAP is less specific with regard to 

miRNA detection than miRDeep. The area under the curve (AUC) for miRDeep, 

miRDeep2, miRanalyzer, and DSAP was 0.94, 0.89, 0.72, and 0.70 respectively. In 

addition, in figure 13 a greater number of novel miRNA candidates were reported by 

miRanalyzer than either miRDeep or miRDeep2. miRanalyzer appears to detect a 

greater number of lowly expressed novel miRNAs, e.g. based on fewer unique reads 

and an examination of the normalized expression levels confirms this finding. Judging 

from the number of unique reads, these lowly expressed miRNAs detected by 

miRanalyzer may in fact be false positives but will be difficult to validate conclusively 

without costly additional study. The program comparisons suggest that, despite differing 

stringency levels, after adjustment for total number, they all identify a similar set of 

known and novel predictions. Different stringency levels are likely, however, to affect the 
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number of possible novel candidates for functional verification. Stringency levels may 

also play a key factor if one is interested in working with miRNAs that are lowly 

expressed or have recently arisen in an organism's course of evolution.  

 

Table 5 Parameters employed in creating simulation data 

Results 

  Using the program miRDeep, we detected a total of 113 miRNAs (known and 

novel) in the neuroblastoma cells. Eighty-eight of these miRNAs were known and 

validated through blast (default parameters) to miRBase and 25 were considered novel. 

In comparing these predictions to those of miRanalyzer, we derived a list of 17 miRNA 

which overlapped between the two programs. 12 of these 17 miRNAs were validated 

successfully using qPCR with Cq values ranging from 19.10 to 36.10 (table 5). The 

higher value range (>30) for some of the novel miRNAs may suggest these to be false 

positives, however, we think they simply might be very low expressed, since some of 

them, originally thought by us as novel, have already been reported in miRBase (table 

5). The reader should also note, looking at table 5, the apparent inability to validate 

precursor predictions. Despite testing precursor predictions from both miRDeep and 
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miRanalyzer, only 11% (2 out of 12) of the precursor predictions were successfully 

validated with Taqman. In contrast, seventy percent of the consensus mature 

predictions were successfully validated. The difference in the validation success for 

these two features may indicate either 1) an algorithmic flaw in the way the precursor is 

predicted in this software or 2) an overall flaw in the way the experimental procedures 

are performed initially. The precursors predicted by miRDeep and miRanalyzer when 

aligned were in many cases discontinuous representations of each other, and this 

variability undoubtedly impacted attempts at validation. 

 

Figure 13 Novel miRNAs predicted in the neuroblastoma cell lines and six additional 
datasets. Predictions were generated by miRDeep, miRDeep2 and miRanalyzer 

 

Table 6 Novel miRNA predictions that were validated in the original neuroblastoma cell 
line. On the right are amplification curves generated by the 7900HT. 
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Experimental Verification of miRNA presence in post mortem tissue 

 All  novel miRNAs  validated in the neuroblastoma cell line were also tested a 

second time in post mortem brain samples from SMRI to determine if any were 

significantly associated with schizophrenia and bipolar disorder. All novel miRNAs 

tested were validated successfully in postmortem brain tissue with Cq values averaging 

~26. One miRNA candidate, PRD5, was shown to be significantly differentially 

expressed between schizophrenic subjects and healthy controls (b(i)= -0.078; t=-2.3; 

p=0.025), but no differential expression was observed between bipolar subjects and 

controls. Due to presence of heavy outliers (figure 5) the disease effects on PRD5 

expression were estimated within the robust multiple regression model (using the 

Huber’s method) adjusting for potential confounding effects such as drug, lifetime anti-

psychotics, PMI, RI and RIN. A box plot comparing the three diagnostic groups is 

pictured in figure 14. This initial finding prompted us to pursue PRD5 further, both 

bioinformatically and experimentally. 

 

Figure 14 On the left, box plots of the three diagnostic groups. Outliers are marked as 
green (SD≥2) and red (SD≥3) symbols. On the right are the amplification curves 

generated by the 7900 HT. 
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Bioinformatic Analysis of PRD5 and its predicted targets 

PRD5 is located in an intergenic region of chromosome 17, nearest to a cluster of 

homeobox (HOX) genes. HOX genes are responsible for basic body structure and 

regulation; of that cluster, HOXB9 has been shown to bind to B-cell translocation gene 2 

(BTG2) a transcription co-regulator involved in neurite formation. Reanalysis of the 

datasets used in the software comparison (see previous section a discussion of the 

software used) determined that PRD5 was found in HL60 and K562 cells. Detection in 

multiple datasets along with our laboratory validation lends additional evidential support 

to the status of PRD5. In addition, structurally, this miRNA satisfies criteria drawn up by 

Sewer et al (2005), including minimum free energy, symmetric secondary structure and 

size of the terminal loop [88].   

Target prediction 

The precise prediction of miRNA gene targets is important as it provides 

information on the biological processes going on in the cell and allows for additional 

experimental study of gene candidates. The software used in target prediction have 

increasingly incorporated both functional (e.g. biologically based parameters) and 

logistic (e.g. consensus approach across multiple programs) to compensate for a high 

false positive rate [151]. Although, after following these approaches the false positive 

rates are substantially minimized [151], the remaining target predictions nevertheless 

still must be viewed with caution.  

Thus, the PRD5 predictions were filtered with the above described functional and 

logistic approached in an attempt to derive viable gene candidate set for further follow 
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up. 

Threshold screening using FDR based approaches 

  In one last attempt to control for type I error occurring during gene target 

prediction, a false discovery rate (FDR) was used. 1499 predictions generated by 

miRanda, TargetScan, and PITA were assessed using the Benjamini-Hochberg method. 

In the figure below, one should note that a high number of genes (769 < q 0.05) 

remained after multiple correction testing. The fact that nearly 50% of the predicted 

targets did not survive multiple correction testing is illustrative of the acknowledged false 

positive rate that is inherent in miRNA target prediction. Among the genes surviving 

correction for multiple testing include ZNF804A, C10orf26, and TCF4.  

 

 

Figure 15 A false discovery rate (FDR:Benjamini Hochberg) was performed on the p 
values generated by the program miRanda. 

 

 



 

60 

 

Threshold screening using biologically based approaches 

Next, a consensus approach was taken to filter predicted targets from miRanda, 

PITA (v7) and TargetScanCustom [91]. The union of these programs effectively 

combines an algorithmic emphasis on: 1) species-specific conservation (miRanda), 2) 

seed conservation (TargetScanCustom) and 3) site accessibility (PITA). In this analysis, 

the targets that were identified in all three programs include transcription factor 4 

(TCF4), calcium channel, voltage-dependent , L type, alpha 1C subunits (CACNA1c), 

glutamate receptor, ionotropic, AMPA1 (GRIA1) and zinc finger 804A (ZNF804). These 

top targets showed consistency of the binding site across all known isoforms and high 

native expression. It also should be noted that TCF4, ZNF804A and C10orf26 are three 

genes that survived correction for multiple testing in the previous section. All of these 

genes have been cited as significant in schizophrenia/bipolar disorder related GWAS 

studies [52]. 

  Chi square assessment of target enrichment 

 To determine whether the potential targets of PRD5 generated by miRanda, 

TargetScan, and PITA have any bearing on schizophrenia, a chi- square test was 

performed comparing these targets with unrelated gene sets predicted for Multiple 

Sclerosis (MS), Parkinson's disease (PD), and Cancer. Genes were initially chosen from 

annotated databases (SZgene.org, PDgene.org, MSgene.org and cgap.nci.nih.gov) 

matching for the average relative size of the 3’UTR sequences of targets predicted by 

PRD5. These databases are comprised of gene association studies as well as meta-

analyses and emphasis. Only those targets which had a seed sequence length greater 

than 7 bases and showed evolutionary conservation between human, mouse and rat 
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organism was included in the chi-square statistic. From that comparison, targets for this 

miRNA are moderately enriched for schizophrenia (N= 2291, df = 4, p < 0.03).   

Experimental assessment of co-expression of miRNA targets in postmortem 
brain tissue  

 
PRD 5 was validated in a two different formats, e.g. neuroblastoma and  

postmortem prefrontal cortex in human samples from SMRI using real time quantitative 

PCR (see above sections for validation experiments performed in neuroblastoma). In 

this section, the expression levels of PRD5 were compared to two of its predicted gene 

targets C10orf26 and ZNF804A in the SMRI samples (figures 11,12) 

The C10orf26 and ZNF804A genes were assessed similarly to PRD5, using the 

reference genes, IPO8, HMB5, and PPIA as a reference. Choice of a reference gene for 

each set of assays was based on their level of consistency [124].    

The relationship between PRD5, ZNF804A, and C10orf26 expression levels was 

assessed using partial correlations, adjusting for the effect of potential confounding 

effects of antipsychotics on gene express levels. C10orf26 was significantly negatively 

correlated (r = -0.38, n=102, p = 0.004) with PRD5 whereas ZNF804A was significantly 

positively correlated (r=0.4, n= 102, p = 0.0006). The direction of each correlation 

suggests that PRD5 may be targeting the 3’UTR of C10orf26 and the 5’UTR of 

ZNF804A; the binding site alignments generated by one of the used prediction program 

suggest a similar conclusion.   
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Figure 16 Effect of Lifetime Antipsychotic use on the levels of PRD5. The effect of 
potential confounders, e.g. gender, age, brain PH was estimated on PRD5 
expression levels. Pictured on this graph are the 35 Schizophrenic and 7 Bipolar 
patients 
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Figure 18 Binding site alignments for C10orf26 and ZNF804A generated by 
miRanda. Strong 3' compensatory binding along with a definite seed suggests 
that these genes are good probable targets for the novel miRNA PRD5. Pictured 
on top is the predicted binding site for the 3'UTR of C10orf26 and on the bottom 
is the predicted binding site for the 5’ UTR of ZNF804A. 

 

 

 

Figure 17 Correlation of expression values of novel miRNA and C10orf26 and 
ZNF804A. The colors green, cyan, and red indicate control, Schizophrenics, and 
Bipolars respectively.  The correlation values for PRD5 and C10orf26 and 
ZNF804 were r = -.38, and r = 0.4 respectively.  
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Detection of Novel miRNA from alternative biogenic sources 

 Also present in our in-house MicroSeq data set were five novel candidate 

miRNAs which were derived from snoRNAs. These additional novel miRNA were 

predicted from 119438 reads not originally used by miRDeep to predict the novel 

miRNAs described above. These reads were excluded by the software because they 

mapped to genomic regions traditionally thought not have potential miRNAs, i.e. those 

regions which contained snoRNAs. The exclusion of the reads, however reduced the 

amount of information gained by the experiment and so a bioinformatic pipeline was 

devised which reassessed the suitability of these reads and their mapped loci for 

miRNA prediction.  

 This pipeline included several steps traditionally included in miRNA prediction, 

i.e. assessment of precursor stability based on thermodynamics but allowed for the 

biogenic source to include snoRNA. First, the excluded reads were re-mapped against 

snoRNA-LBME-db [73]. This database houses the sequences for all currently known 

snoRNA sequences for humans. If the read mapped to an existing snoRNA structure, 

subunits of the larger molecule were created using a sliding window of 100 bases. Each 

subunit was then assessed using the program miPred. MiPred, a random forest 

program which determines the likelihood that a precursor hairpin is a true miRNA 

generates empirical p values for each sequence through 1000 permutations.  

 The initial p values from miPred ranged from 0.015 to 0.001 and percent 

confidence scores range from 76.7% to 52.8%. The sno-derived novel miRNA 

candidates mapped to E2, U69, ACA61, ACA45, and HBII-99B (table 6). One sno-

derived miRNA, mapping to ACA45, detected in this pipeline was a replication of a 
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previous finding in a fibroblast cell lines (pictured below) [13]. In that work, the 

functionality of the sequence was demonstrated using a luciferase assay for cyclin-

dependent kinase 19 (CDK19) [13]. It should be noted that one of the five sno-derived 

miRNA belongs to the orphan class of snoRNA described earlier in this chapter. Other 

sno-derived miRNA detected in the dataset but not tested because they have already 

been annotated include ones originating from 1) ACA36: hsa-mir-664, 2) ACA55: hsa-

mir-4667-3p, 3) E3: hsa-mir-199a-5p, 4) HBII61: hsa-mir-1248 and 5) mgh28s-2411: 

hsa-mir-136-5p. 

 

Figure 19 ACA45 snoRNA. Colored in red is the approximate mapped location of the 
dataset.  
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To determine whether the novel miRNA candidates were differentially expressed 

according to tissue type, all five were evaluated using a RNA panel of normal human 

tissues (First Choice, Life Technologies). Pictured in the figure below, the miRNA 

demonstrated expression among the twenty tissues on the panel that were different but 

not significantly so (two way ANOVA: df = 4, F =0.47083, p = 0.632). 

 

Table 7 MiPred predictions for excised precursor for five potential novel sno-derived 
miRNA. Candidates include one described by Ender et al (ACA45) to have 
miRNA-like characteristics. This sno-derived miRNA was shown to associate 
with Argonaut proteins and to inhibit mRNA expression of cyclin-dependent 
kinase 19 (CDK19). 
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Figure 20 Relative expression values of sno-derived miRNA candidates as assayed 
in a RNA tissue panel of twenty normal human tissues. No significant difference 
was observed between the various tissues for this class of miRNA. 

 Chapter Discussion 

Analysis of MicroSeq data is a complicated and computationally intensive 

process, but it is, without doubt, the most potentially productive data type generated 

to date with regard to the amount and types of findings generated therein. A key 

focus of chapter one has been the identification of novel miRNA and their evaluation 

in postmortem tissue samples. We successfully identified and validated in cell lines 

and postmortem brain tissue a number of novel miRNA demonstrating the 

usefulness of this technique for miRNA discovery.   

 Additionally, we compared a number of popular software in terms of the number 
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of miRNA generated as well as multiple versions of the same software in our dataset 

and six other publically available ones. We discovered that stark disagreement 

between these programs exists in terms of the precursor structure and the absolute 

numbers of predictions generated. ROC curves of simulated data clearly indicate 

that the program miRDeep is the most suitable software for the prediction of novel 

miRNA candidates. Because of the differences in stringency in the various 

programs, however, we suggest that a consensus approach across multiple 

programs be used when identifying novel miRNAs that will be evaluated for further 

study. Using a multi-program approach, we will able to successfully validate 68% (12 

out of 17 overlapping) classically derived novel miRNA in the original cell line.  

Additionally, another five novel miRNAs derived from snoRNA molecules were 

validated in a RNA tissue panel but did not show significant differences based on 

tissue type. It is unlikely that this group of novel miRNAs impact disease status as 

they did not show significant tissue based differences in expression. However, their 

detection suggests that alternative modes of biogenesis are possible for miRNAs 

and that by focusing on traditional biogenic pathways, current prediction software 

potentially misses a significant route of discovery. We were able to detect these 

miRNAs, further, in a set of reads excluded by the analytical software thereby 

increasing the potential effectiveness of the technology through a reassessment of 

current definitions for the detection of novel miRNAs.  Accordingly, we might suggest 

a reconsideration of the underlying rationale of these software and their results.  

The multiple program approach is a prudent cost effective methodology for the 
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identification of novel miRNAs using MicroSeq. It is difficult to directly compare the 

success rate, i.e. the number of miRNAs predicted versus validated, of the multi-

program approach to the approaches used by other studies as most do not choose 

to validate their total set of predictions [210]. The current costs associated with deep 

sequencing and validation of novel predictions necessitates filtering approaches that 

generate the best possible candidates for testing. We suggest that a multi-program 

approach provides a good basis upon which additional selection methods can 

conceivably be employed.  

Additional findings of this study, more pertinent to schizophrenia and bipolar 

disorder include the detection of the novel miRNA PRD5.  While performing 

validation in the postmortem brain tissue of affected subjects, we identified PRD5 to 

be differentially expressed in schizophrenia cases only. This finding suggested that 

additional bioinformatic analysis and exploration of this miRNA is warranted. First, 

we sought to validate this miRNA in other cell lines than neuroblastoma. Using the 

datasets employed in the software comparison, we found presence of PRD5 in HL60 

and K562 cells. HL60 are a common lab model for studying blood and K562 cells 

develop characteristics similar to erythrocytes. Second, a chi-square statistics 

comparing the predicted targets for this miRNA in a number of disease-specific gene 

sets showed mild enrichment for schizophrenia. Third we investigated the co-

expression of this miRNA with two of its top predicted targets. From the list of 

predicted targets, filtered using a FDR test statistic and a multi-program approach, 

we chose two genes, C10orf26 and ZNF804A with which to compare to PRD5. 

These genes survived FDR based correction, were predicted by multiple programs, 
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and showed binding site consistency across known isoforms. The directionality of 

the co-expression of C10orf26 and ZNF804A with PRD5 in conjunction with the 

manner in which the miRNA is predicted to bind to the gene suggests that PRD5 

may be involved in their regulation. Thus, all of this evidence, although tentative, 

strongly supports future experimental work on PRD5 in the pathophysiology of 

schizophrenia.         
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Chapter 3.  Prediction of targets for differentially expressed miRNAs in the SMRI 
sample 

 

 

 

 

 

 

 

Adapted From:  

Kim, A.H. Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J.L. et 
al. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals 
affected with schizophrenic and bipolar disorder. Schizophrenia Research, 124 
(1-3), 183-191. 
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Abstract  

667 miRNAs were profiled using a real-time PCR based technique in the 

prefrontal cortex in a group of Schizophrenia (N=35) and Bipolar Disorder (N= 35) from 

Stanley Medical Research Institute (SMRI) [8]. Twenty-two miRNA were determined to 

be differentially expressed using a high-throughput commercial method (TLDA, Life 

Technologies); seven of which the initial twenty-two were verified a second time using 

single tube assay (Taqman, Life technologies). 3371 targets were predicted using 

miRanda for five of these differentially expressed miRNA (hsa-miR-132, hsa-miR-132*, 

hsa-miR-154*, hsa-miR-212, and hsa-mir-34a). In other words, each of the five miRNA 

genes on average predicted 634 gene targets.  

Given that a single miRNA has been estimated to target approximately 200 

genes, this number is likely to contain a large number of false positives and in need of 

filtering.  We, therefore, used two approaches to filtering these predictions and to the 

selection of candidates for additional testing, i.e. a false discovery rate (FDR) statistic 

(π0 = 1) and a biologically-based threshold that considers the effects of alternative 

splicing, co-expression, and mRNA site accessibility [116]. The biologically-based 

threshold approach attempts to account for other stochastic parameters that might 

impact the successful binding of a miRNA to a mRNA target sequence, in particular the 

consistency with which a binding site is located.  

Two genes, tyrosine hydroxylase (TH) and phosphogluconate dehydrogenase 

(PGD), were selected that survived correction for multiple testing using the FDR statistic 

and the biologically based threshold approach. TH had had previously been suggested 

by Jacewicz et al, 2008 to be a candidate gene for schizophrenia [225].  The gene 



 

73 

 

expression level of both of these candidates was assessed in post mortem brain tissue 

from SMRI subjects using qPCR.  Based on qPCR results, gene expression analyses 

show TH and PGD to be negatively correlated with hsa-miR-132 and -212 (p = 0.0001, 

0.0017, 0.0054 and 0.017, respectively), suggesting a probable miRNA:mRNA 

interaction.  
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Introduction 

 MiRNAs possess several characteristics which make comparison of their relative 

expression levels on a large scale difficult without significant technological adjustment. 

First, though mature sequences are defined as 22 bases in length, sequencing of these 

molecules has shown experimentally their length to be more variable, ranging from ~15 

to 25. This means that probes used in the detection of miRNA must be designed such 

that they bind with enough stability to compensate for these slight length differences. In 

addition, these probes must also be able to differentiate between members of a 

particular seed family which typically only differ by one or two bases.  Second, variable 

GC content creates differences in melting temperatures potentially affecting the 

efficiency with which the probe binds to the target.  Third, in the creation of cDNA, the 

miRNA generally lacks the poly A tail of mRNA or a consensus sequence that can be 

used in enrichment.  Taken together, these issues have combined to make it difficult for 

anyone to assess miRNA variation in a high throughput manner, without making 

substantial adjustments in the way individual miRNA are detected and quantified.  

 Significant technological advances have been made, e.g. stem-loop primer 

design and locked nucleic acid chemistry (LNA) which facilitate high- throughput 

expression profiling through increased assay specificity. The stem-loop primer design 

was first advanced by Chen et al in 2005 [226].  Stem-loop primers bind to the 3’ end of 

a miRNA molecule increasing specificity through base stacking and reduced spatial 

constraint.  This primer design is extremely sensitive, capable of detecting as few as 

seven copies of sample per reaction with a high level of correlation between input and 

result ( r2 > 0.994) [226]. Additionally, stem-loop primers are insensitive to miRNA 
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precursor sequences or genomic DNA potentially diluting any observed signal.  

 Originally created in 1998, LNA chemistry improves melting temperature (TM) 

normalization and facilitates more accurate probe binding in high throughput platforms 

[227, 228].  In LNA chemistry the ribose moiety of a RNA nucleotide is modified with a 2’ 

oxygen and a 4’carbon, locking the ribose sugar into a 3’-endo conformation. Because 

LNA monomers [2’-0,4’-C-methylene-β-o-ribofuranosyl monomer] mimic RNA 

nucleotides they can be mixed commercially in a wide variety of formats lower melting 

temperature substantially.     

 Approximately eleven separate miRNA expression profiling studies have been 

performed since 2007, examining the relationship between miRNA dysregulation and 

disease with varying results (see chapter one for an expanded discussion of these 

studies). Very few miRNAs have been identified that have performed with any degree of 

consistency in these studies - with hsa-mir-181b being the best candidate overall – but 

many of the targets of these implicated miRNAs include key genes already identified in 

genetic studies of schizophrenia and bipolar disorder. The source of this inconsistency 

is most likely due to the small number of subjects sample and the nature of the 

confounders present in post mortem brain tissue. These studies, nevertheless, suggest 

a rationale for exploring further the nature of the relationship between a miRNA and its 

target gene. 

 This chapter delineates the steps and issues involved in miRNA target prediction 

following an expression profiling study in schizophrenic and bipolar patients from the 

SMRI. It uses miRNA expression profiling of the schizophrenic and bipolar patients from 

the SMRI as an example to illustrate the cogent issues involved miRNA target prediction 
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and the steps required for the successful prediction of gene target prediction. In this 

chapter, successful prediction of miRNA targets is defined as the experimental 

validation of gene targets through the significant partial correlation of respective 

expression levels of both miRNA and predicted gene target following adjustment for 

experimental confounds. We explore FDR-based approaches to the filtering of gene 

target prediction algorithms as well as biologically based thresholds, highlighting 

specifically the effect of alternative splicing on the consistency of the binding site 

placement.  

Materials and Methods 

 Description of samples used in profiling and gene expression validation  

200 mg of postmortem brain tissue, originating from the dorsolateral prefrontal 

cortex (Brodman’s Area 46) were received from the Stanley Medical Research Institute 

(SMRI). Exclusion criteria for subjects included: 1) brain pathology, 2) central nervous 

system disease, 3) poor RNA quality, 4) IQ < 70, 5) age <30 years, and 6) substance 

abuse within one year of death. Total demographics for this study group can be found in 

chapter 2 of this thesis. Total RNA was isolated from approximately 100mg of this tissue 

using the miRVana-Paris Kit (Ambion, Texas). RNA quality (RIN) was measured using 

nano chip on the 2100 Bioanalyzer (Agilent, California) and was 7.2. The protocol for 

cDNA synthesis and rtPCR was performed according to manufacturer’s 

recommendations.  



 

77 

 

Target Prediction  

  Gene targets were predicted using the program miRanda (August 2010 release) 

from the 3’UTR sequences of all known protein coding genes (grCh37.p8). The settings 

for miRanda include: 1) scale = 4.0, 2) gap opening penalty = -2.0, 3) gap extend 

penalty = -8.0 and 4) energy threshold (kcal/mol) = -20.0. MiRanda uses affine penalties 

of length with respect to gap opening and extension; the algorithm also employs a 

scaling factor to the first eleven positions of the mature sequence to reflect 5’-3’ 

symmetry [224]. Further, in keeping with experimental observations, four rules are 

applied within the algorithm with respect to the conceptualized seed portion of the 

mature sequence. First, no mismatches are allowed between positions 2-4 of the 5’ end 

of the mature sequence. Second, 5 or fewer mismatches are allowed between positions 

3-12 of the 5’ end of the mature sequence. These first two rules protect what is 

generally believed to be the most crucial point of miRNA:mRNA alignment,  the seed 

sequence.  The third rule allows for 5 or fewer mismatches between positions 9 and L-5, 

where L is total alignment length. The last four rule states that 2 or fewer mismatches in 

the last five positions of the mature sequence [224]. The last two rules focus more on 

the 3’ end of the sequence and allow for flexibility based on the any gaps which might 

introduced in the initial alignment. 

 There are currently 59871 genes annotated in the Ensemble database 

(GrCh37.p8), 22088 of which are classified as protein coding. The predicted targets for 

this project were based on protein coding genes only.  A protein coding gene was 

defined as a locatable region of the genome which could be inherited and possessed a 
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combination of regulatory regions, transcribed regions, and/or functional sequence 

regions [229,230, 231, 232].  As there is no current consensus for the true numbers of 

genes present in the genome, this number represents an estimation based on a 

combination of ab initio gene prediction software and comparative approaches [229, 

230, 231, 232]. The 3’UTR sequences were downloaded for each gene using Ensembl 

Biomart API and the median size for the sequences was 702 bases.  

Screening using biologically-based approaches 

All predicted targets from the previous section were screened on the basis of co-

expression, number of transcripts, prediction number per genes and degree of binding 

site consistency across multiple transcripts. Studies have suggested that the number of 

times a program predicts the presence of a binding site within a particular gene 

correlates with the likelihood that the prediction is true [51]. In addition, a high co-

expression of both target gene and miRNA means that there are sufficient numbers of 

both to bond within the cell. The presence of a binding site in multiple transcripts of a 

particular gene suggests that it might be important to the cell’s function, so much so that 

it is maintained regardless of alternative splicing.  

In this project, a computational pipeline was created which: 1) identified 

transcripts for each target prediction through the expressed sequence tag database 

(EST) Aceview, 2) aligned the transcripts using ClustalW 

(ebi.ac.uk/Tools/msa/clustalW2), and 3) assessed the consistency of the location of the 

binding site across those transcripts. In order to minimize bias, the sequence order of 

alignments of the individual gene transcripts was permuted 1000 times. Clustal W 
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performs a pairwise alignment of the first two input sequences from which a nearest 

neighbor guide tree is created that is used to align all other sequences. In this scheme, 

the sequence order impacts the initial pairwise alignment and thus the creation of the 

nearest neighbor guide tree. Therefore permutation of sequence order is important to 

reduce the possibility of this bias occurring. The settings for Clustal W included: 1) gap 

open penalty = 10.0, 2) gap extension penalty = 1.0 and 3) weight matrix = IUB. 

Co-expression was determined by comparing values for gene targets and 

predicting miRNA in the Gene Expression Atlas (release 12.09) (www.ebi.ac.uk/gxa). 

This database is currently holds the expression data from Affymetrix expression arrays 

for 703295 genes across 3384 separate experiments [223].   

Screening using False Discovery Rate 

 A number of different approaches to correction for multiple testing have been 

developed including Bonferroni tests, permutation testing, and empirical p value. Many 

of these tests can be too strict and reduce the power to observe a significant result. By 

focusing on the p values of a particular test and creating adjusted p values (q value), the 

FDR has the ability to discover significant results without sacrificing statistical power. 

For example, a p value of 0.05 in a specific test implies that 5% of all tests will result in 

false positives. If one uses a FDR based correction on the same of tests, the adjusted p 

values, assess a fewer number of tests, i.e. q values only assess the number of 

significant tests. In this example, the adjusted p values would only index the number of 

significant tests rather than the total experiment.         

http://www.ebi.ac.uk/gxa
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Results  

Prediction of targets for hsa-mir-132 and hsa-mir-212 using biological filtering 

 Initially miRanda predicted a total of 4482 separates genes as potential targets; 

approximately 75% of these genes (3371) had multiple transcripts. When biological 

filtering was applied, this number was reduced further to 2156. From this number based 

on co-expression levels of the targets, site consistency across multiple transcripts, TH 

and PGD were selected further experimental tests. Both TH and PGD showed greater 

than 95% level binding site consistency and were highly expressed in the cerebellum , 

and brain.  

Prediction of targets for hsa-mir-132 and hsa-mir-212 using FDR-based filtering 

 FDR analysis of the gene target predictions suggested an interesting pattern with 

respect to the miRNAs, hsa-mir-132, -212, and -154. Though both miRNAs (hsa-mir-

132, -212) were predicted to have a number of significant predictions, after FDR 

adjustment, hsa-mir-212 indicated a higher number than hsa-mir-132. These miRNAs 

overlap each other in the genome and share a portion of their precursor and seed 

sequence hsa-mir-132(-5p: ACCGTGGCTTTCGATTGTTACT) and hsa-mir-212 (-5p: 

ACCTTGGCTCTAGACTGCTTACT).  

 The lower number of significant targets predicted for hsa-mir-132 compared to 

hsa-mir-212, despite their sequence overlap, suggests that hsa-mir-132 exercises a 

stronger control over its targets, thus causing a greater impact on the gene function and 

cell phenotype, respectively. Indeed, hsa-mir-132 has been shown to be implicated not 

only in Schizophrenia but in other psychiatric conditions such as autism, alcohol and/or 
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drug dependence [130].   

 

 FDR analysis of the gene targets for hsa-mir-154* suggest, in addition, a large 

number of significant target predictions. Given that hsa-mir-154* is a star sequence and 

as such occurs on average less frequently this is likely to be a problematic finding. The 

typically lower levels of the star sequence in comparison to the mature, generally seen 

in the cell, make the star sequences less likely to be functional, ie. their lower levels 

place them at a disadvantage when competing for access to binding sites.

gene hsa-miR-132 hsa-miR-132* hsa-miR-154* hsa-miR-212 hsa-miR-34a

TH 4 7 10 13

C6orf60 6 6

PPIL5 2 5 2

ELA2A_HUMAN 4 4

SNHG5 4 4

Cxorf26 4 2 2

MCOLN3 4 4

MMP26 4 4

ADRA1A 1 6 1

 

Table 8 Extracted excerpt from target table generated for differentially 
expressed miRNA. Pictured are genes having multiple transcripts (> 3), 
multiple predictions, and a significant p value after FDR correction. The A 
number of filtering steps were employed against the initial predictions 
generated by miRanda including 1) binding site consistent across multiple 
transcripts and 2) high conservation of site in multiple species. The complete 
table with all unfiltered predictions can be found in appendix 7.  
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Figure 21 Density distributions calculated for predicted targets of each respective 
miRNA.   

Experimental assessment of Co-expression 

  Gene target predictions for TH and PGD were verified using single tube 

validation (depicted in figure 17).  miRNA  assays were run in triplicate and normalized 

against the reference snoRNA RNU44 using the 2-ΔΔ algorithm; gene expression assays 

were run in triplicate and normalized against the reference control IPO8 using the 2-ΔΔ 

algorithm. A different reference gene was in these two studies due to the differing nature 

of the gene input.   Spearman (p) coefficient was used to estimate miRNA correlations. 

Mild negative correlation between gene PGD and TH and hsa-mir-132 and hsa-mir-212 

expression levels was detected (PGD: R = -0.29, p = 0.0017 hsa-mir-132, R = -0.22, p = 

0.0017 hsa-mir-212; TH: R = -0.41, p = 0.0001 hsa-mir-132, R = -0.35, p = 0.00054 hsa-

mir-212). 
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Figure 22 Spearman (p) Coefficient correlation plots for genes PGD (A) and TH 
(B).Values were log-transformed and raised to the power of 1/3 to approximate a 
normal distribution. The values were then fitted into an analysis of covariance 
(ANCOVA) model with pH, age, RIN, sex, and disease status as covariates.  
Image taken from Kim et al, 2010. 

Chapter Discussion 

Predicting gene targets for miRNAs is an important step in miRNA research as it 

positions the miRNA within the grander genomic context and allows one to infer function 

through associated gene networks. The process by which these targets are predicted 

and identified however is less than ideal and suffers from a high false positive rate. At 

present, the source of this error is unclear. Many authors suggest that it is due to the 
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small size and binding behavior of the mature sequence in animal genomes. Unlike 

plant miRNA, animal miRNAs bind imperfectly with their target miRNA and are affected 

by dynamic cellular factors such as molecule concentration, thermodynamics as well as 

additional features present in the genome. 

 The participation of these factors, thus, increases the difficulty to accurately 

capture and predict entirely what is occurring in the cell at any point in time. One 

example of those factors not adequately explained by current algorithmic approaches to 

miRNA prediction are miRNA sponges [233,234, 235]. MiRNA sponges” soak up” the 

miRNA s that would otherwise target a functional gene with a similar sequence. These 

sponges are often pseudo-genes which have a functional 3’UTR matching that of the 

target mRNA. Recently, one such “sponge” has been reported for PTEN [233,234,235].  

In chapter 3 we predicted targets for five miRNA that were shown to be 

differentially expressed in group of Schizophrenic and Bipolar patients. 3371 targets 

were initially predicted for these five miRNA, with each miRNA having on average of 

600.  Assessment of these targets showed that 75% of them had multiple transcripts 

and of this 75%, 63% has multiple predictions occurring within the 3’UTR sequence. 

Multiple predictions for a gene could inflate a FDR test statistic. At the same time, the 

presence of multiple sites would suggest an increased likelihood for binding between 

the miRNA and the mRNA target.   

Correction for multiple testing among these miRNA using a FDR based statistic 

effectively reduced the number of gene predictions but comparison between the 

individual miRNAs was problematic, especially so in the case of hsa-mir-212, and -132. 
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Notably, there was a difference in the number of significant predictions for hsa-mir-212 

and -132, despite their overlapping seed sequences. This discrepancy may be due to 

some inherent difference in the relationship of these two miRNA with their respective 

targets or it may speak to some difficulty with comparing FDR across experiments [133]. 

One would expect that because these miRNAs overlap in sequence and location that 

they would target a similar number of genes. The two gene targets that were validated 

experimentally, TH and PGD survived screening by both FDR statistic and biologically 

based parameters. Both genes show expression patterns that negatively correlate with 

hsa-mir-132, -212, suggesting that the 3’UTR is targeted. Certainly, additional tests are 

needed to validate the interaction of hsa-mir-132, -212 with these targets, e.g western 

blots.  
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Chapter 4. Bioinformatic assessment of imputed variants with respect to miRNA 

efficiency 
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Abstract  

 
Imputation of single nucleotide polymorphisms (SNPs) has rapidly become a 

preferred method for increasing the resolution of SNP arrays. Imputation of 93 

Affymetrix version 5 SNP microarrays was performed in order to provide increased 

resolution and definition of existing SNP data from the SMRI sample. The reference 

panel and legend files used in the imputation were based on HapMap3. Over two million 

additional SNPS were generated having an R2 value greater than 0.5 and a confidence 

index greater than 0.99. Several steps pre-and post imputation were employed to 

ensure quality. Pre-imputation steps taken included: 1) examining arrays for surface 

flaws and experimental biases, 2) excluding SNPs based on low call rate, and 3) 

excluding SNPs which violated Hardy Weinberg equilibrium (HWEV). To filter SNPs for 

HWEV, a false discovery rate (FDR) was used.  Post-imputation steps included an 

assessment of imputation accuracy through SNP masking and the use of confidence 

intervals/test statistics generated by the program IMPUTE2/SNPTEST.  

Imputed SNPs were assessed bioinformatically to determine which could 

potentially affect the miRNA function and biogenesis. Of particular emphasis was the 

identification of SNPs which affect miRNA secondary structure (miRSNPs) because 

such a variant could theoretically impact the largest number of genes without radically 

changing the genome. Another area of focus was whether SNPs fell within differentially 

methylated regions; the rationale for this analysis stemmed from the significantly high 

number of miRNAs that have been found to be located on or within predicted CpG 

islands [184].   

A large number of imputed SNPs were found to fall within CG rich isochores and 
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previously identified differentially methylated regions. 35% were SNPs present in the 

platform but that had been excluded during quality control.   A much smaller number of 

SNPs (66) were identified as impacting miRNA regulatory function through an alteration 

of its secondary structure; this latter finding is in line with earlier estimates of the 

distribution of miRSNPs.  This project demonstrates that the utility of the imputation 

approach for identifying relevant SNPs for study. Though the number of microarrays 

used in this imputation and the size of the reference panel undoubtedly affected its 

accuracy the fact that all of the chips were processed in the same lab using the same 

sample precluded any introduced bias that might have arisen through batch effects.   
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Introduction 

Imputation has become a well established practice for increasing statistical power 

of GWAS studies to identify relevant variants. In imputation, the haplotype patterns of a 

densely genotyped reference population are used to predict the missing genotypes of a 

study group, using flanking genotyped SNPs from that group as a guide [29,37]. SNP 

imputation has been shown to boost GWAS power by as much as 10% and can be used 

to compare results across multiple genotyping platforms [37,40]. Several programs are 

now available with which to impute SNPs, e.g. IMPUTE2, PLINK, MACH, fastPHASE 

and the methods by which the programs make their determination vary [30-32, 36, 38]. 

IMPUTE2 uses a Markov chain Monte Carlo algorithm (MCMC) and has an accuracy 

rate of > 95% with SNPs that are in high LD and have adequate sampling density [30-

32].Overall, in a comparison of the software mentioned above, IMPUTE2 was shown to 

provide superior results with regard to the effect of linkage disequilibrium (LD), marker 

density, minor allelic frequency (MAF) on imputation accuracy (IA) [33, 35]. Sources for 

the reference files include well characterized populations such as those represented by 

the HapMap 3, Seattle SNPS, and the UK10K. Recently, the 1000 Genomes Project 

has become a popular source for reference material surpassing the HapMap3 both in 

terms of numbers of individuals (~2500) and geographical regions (> 25) sampled [36].  

The bioinformatic assessment of the role played by a variant in the etiology of a 

disorder can encompass a number of characteristics regarding function including 

location, effect on protein structure, species conservation, as well as its relationship to 

other noncoding features present in the genome. Typically, linkage disequilibrium (see 

chapter one for a discussion) has been used to filter the number of SNPs needed for 
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testing to adequately cover a particular gene.  

 In particular, variants which affect miRNA regulatory efficiency (miRSNPs) have 

been highly sought after in the last few decades because their ability to impact large 

numbers of genes simultaneously [44, 43, 49, 55, 56, 57, 58, 59, 60]. Falling into a 

number of classes, variants can either: 1) affect the secondary structure of the miRNA, 

2) fall within the binding sites of a miRNA’s predicted targets or 3) possess some other 

characteristic that necessarily impacts miRNA functionality. Assessment of the strength 

of a variants impact on the miRNA is determined on its location, with SNPs falling in the 

seed sequence or terminal loop having a higher probability of affecting functionality 

[174].   

 Materials and Methods 

Sample Description 

     Briefly, raw cel files from 93 microarray chips (Affymetrix version 5) were downloaded 

from the Stanley Medical Research Institute Online Genomics database (www. 

stanleygenomics.org) and analyzed using methods employed by the programs 

Affymetrix Power Tools (APT) and Beagle call. The chips were used to index SNP and 

structural variation in a group of Schizophrenic, Bipolar and Control patients. The 

Affymetrix version 5 SNP chip is comprised of a majority of SNPs taken from the  

previous 500K mapping chip sets as well as an additional  1.8 million probes that can be 

used to measure features such as copy number variation. Description of the methods 

employed in sample ascertainment and processing have been described elsewhere 

[108]. The sample contained approximately a 2:1 male to female ratio and this was 
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compared to a known gender list for all samples. 

For this project, the intensity values were extracted from their respective chips 

(“apt cel-extract”) and input into each program accordingly. Additionally, variability 

among individual probes was normalized using quantile normalization and a loess 

curve.  

Quality Assessment of Microarrays prior to Imputation 

      As strict quality control (QC) is important to imputation, a number of steps were 

taken prior to imputation that would insure result superiority. All microarrays were 

screened using established methods Affymetrix PowerTools (APT) and an in-house R 

script that uses large deviations in probe intensity to detect the presence of physical 

flaws in microarray. Any microarrays demonstrating significant physical flaws, e.g. 

scratches, thumb prints, bubbles were discarded.  

 

Figure 23 R scripts comparing intensity deviations were used to identify surface flaws 
on SNPs chips. Pictured is an example of the output generated by this script.  
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Determining Individual genotypes using Affymetrix PowerTools and Beagle Call 
 
     Genotypes were determined twice, first with APT and then with BeagleCall to 

determine agreement [38]. SNPs were removed that either:1) violated Hardy Weinberg 

equilibrium, 2) did not exhibit complete genotype agreement between APT and 

BeagleCall, or 3) that have a call rate (CR) < 95%. Call rate was defined, visualized 

below, as the difference between the total number of SNPs and the number of SNPs for 

which 95% or greater individuals were genotyped divided by the total number of SNPs 

assayed on the chip overall.    

                

Hardy Weinberg violations are often an indication of assay failure and have been shown 

to significantly impact the summary odds ratio of gene association studies by more than 

10% [106]. A false discovery rate (FDR) was applied to the genotyped SNPs to exclude 

SNPs which effectively violated the Hardy Weinberg Equilibrium 

(p  q   1,  p2   q2   2pq   1 . To compensate for cryptic stratification, a reference set 

comprised of individuals from several different populations was created that included 

information from HapMap 3. The table below lists number of samples and SNPs 

associated with each respective population in that reference panel. Cryptic stratification 

and cryptic relatedness is most often present when the hidden origin of members of a 

study group is not taken into account. These “confounders” often produce false signals 

of association within a GWAS study. An imputation reference panel that is made up of 

multiple ethnic groups can provide a wider reference frame thereby diluting these 

effects [29].  
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population Sample number Polymorphic SNPs 

ASW 87 1543115 

CEU 165 1397814 

CHB 137 1341772 

CHD 109 1311767 

GIH 101 1408904 

JPT 113 1294406 

LWK 110 1526783 

MXL 86 1453054 

TSI 102 1419970 

MKK 184 1532002 

YRI 203 1493761 

Table 9 HapMap3 release 3 reference panel information 

 Assessment of Imputation Accuracy  

     After imputation, SNP quality was determined both on a study-wide as well as per 

SNP basis. To determine study-wide imputation accuracy (IA), 5% of the original 

genotypes were  masked for each chromosome and the chips imputed a second time 

focusing on regions containing the missing SNPs. Per SNP QC was determined using 

the `info‘ metric generated by IMPUTE2/SNPTest. This score (0-1) corresponds to the 

amount of information at an individual SNP about the population allele frequency; it can 

be interpreted as αN where N is the number of subjects and α is the score [29]. This 

score corresponds well to the dosage measure R2 provided by MACH [37]. While, 

currently, there is no set threshold for screening SNPs, several authors have found an 

info metric of 0.3 to be acceptable [32,33]. In this project, SNPs having an ‘info’ metric of 

0.5 and a confidence interval greater than 0.9 were retained.  
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Imputation of SNPs using Impute2 

A Perl script was written that split each chromosome into overlapping intervals of 

five megabases each and then imputed SNPs using that interval. A sliding window was 

used, extracting data sequentially and creating regions of overlap which were later 

filtered. All SNPs were prephased prior to imputation using the program Shape-It [121].  

GWAS files were aligned to the forward strand of the human reference sequence 

(Hg18). Technically it is not necessary to split chromosomes in this manner but this step 

was done to allow for parallel computing and to allow for quick comparison of those 

regions which overlapped with centromeres (centromere locations are downloadable 

from www.hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBand.txt.gz) and 

chromosome ends. Impute2 allows a default buffer zone of 250 kilobases which was 

compared to determine consistency. After imputation, the fragments were concatenated 

into a single file. Sex chromosomes (X and Y) were not imputed due to the problems 

associated with hemizygosity.    

 Results 

Pre-imputation Quality Control  

Overall, seventy–four percent of all arrays (69 out of 93) had a call rate greater than 

95%. In addition, qualitative assessment of physical flaws using the previously 

described R script was unable to eliminate any single microarray.    

http://www.hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBand.txt.gz


 

95 

 

 

Figure 24 Call Rate was determined for each array using APT.  

 

Figure 25 Calculated FDR values for HWEV. Based on an FDR (0.05), 
approximately 5% of SNPs should be viewed with caution as they are false 
positives. Pvalues pictured left and adjusted p values( Q values) pictured right 

 

A false discovery rate statistic (FDR = 0.05) was calculated on genotypes after HWEV p 
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values were determined using PLINK [120].  438,681SNPs called by Beagle and APT 

were assessed with the FDR test statistic; 21,934 of that number (5%) should be viewed 

with caution as potentially representing false positives. The inclusion of these SNPs into 

the imputation process may have affected the validity of the subsequent SNPs that were 

generated.    

Post imputation Quality Control  

The average imputation accuracy percentage was 97.6%. Chromosomes 1,2, 

and 3 demonstrated the highest accuracy level (98%, 96%, and 95%, respectively) 

whereas chromosome 14 demonstrated the lowest (85%). The low level of imputation 

accuracy for chromosome 14 may in fact be the reason why no bioinformatically 

significant SNPs were discovered in this region (see discussion of this in next section).   

Bioinformatics of Screened SNPs 

  Over 2.5 million additional SNPs were generated using IMPUTE2 and screened 

bioinformatically. The program GTool (well.ox.ac.uk/~cfreeman/software/gwas/gtooll) 

was used to convert genotype probabilities into respective alleles which were then 

assessed.  Two main areas of functional impact were considered: 1) potential 

methylation and 2) miRNA structure. Perl scripts were written in each case that 

performed analysis. To determine potentially methylated SNPs, the Perl script assessed 

the alleles of the imputed SNPs in terms of their nucleotide content and their respective 

position with regard to predicted CpG Islands, genomic isochores, and an experimental 

database comprised on Methylseq and BSseq data established by the Salk Institute for 

Biological studies [107, 117, 118]. The liftover tool (www.genome.ucsc.edu/cgi-

http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool/html
http://www.genome.ucsc.edu/cgi-bin/hgliftover
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bin/hgliftover) was used to convert genome coordinates between the assemblies used 

by these three sources. 

  The coordinates for the CpG islands were taken from UCSC Genome Browser 

and are based on the parameters set by Gardiner-Garden and Fromme [118]. Briefly, in 

order to be considered a CpG island, a region must be longer than 200 bases, have a 

GC content greater than 50% and a observed/expected GC ratio greater than 0.6 [118]. 

The isochore coordinates used were determined by Costanini et al [107] through 

genomic segmentation. The methylation database 

(neomorph.salk.edu/human_methylome), comprised of Methylseq and BSseq data 

provides single base resolution maps of H1 human embryonic stem cells and IMR90 

fetal lung fibroblasts as well as differentially methylated regions that can be assessed.     

 

 

Figure 26 Number of Imputed SNPs falling within CPG islands 
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Interestingly, a large number of the imputed SNPs were located within CpG 

islands in the genome suggesting them to be of significant importance (figure26). When 

comparing this number to the number of genotyped SNPs present on the array with a 

chi-square test (df = 1, N = 838461, p < 0.0001) there was a significant enrichment for 

imputed SNPs falling in these regions. It must be said, however, that only 15% of 

genotyped SNPs from the original platform with a high GC content (>60%) actually 

survived quality control filtering (call rate, HWEV). The significant number of SNPs may 

in fact be the result of backwards imputation where SNPs previously excluded due to 

QC measures were captured by IMPUTE2. 

Nevertheless, the CpG islands which contain imputed SNPs in turn fell within 

several prominent (H3) isochores on the respective chromosomes. In particular, almost 

all of the imputed methylated SNPs on chromosome 1 and 19 were found in H3 

isochores having a GC % greater than 53%.  
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Figure 27 Isochore map for Human genome as generated by Constanini et al. 

 

Isochores are large regions of DNA (>300 kilobases) with a high degree of 

uniformity in guanine (G) and cytosine (C) content. There are five families of isochores, 

L1, L2, H1, H2, H3 which vary in terms of the %GC and location throughout the 

genome. Isochores have been implicated in biological functions such as gene density, 

recombination and replication timing. Studies aimed at elucidating the boundaries 

between the individual families have suggested a positive trend in SNP density in 

isochores of high GC content [107].It is not unusual to find CpG islands within a much 

larger isochore.  

The reader should note however a lack of potential methyl SNPs on chromosome 

14; this was probably due to an issue with imputation accuracy (see previous section) or 
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it may be due to lower number of isochores occurring on this chromosome. The map 

above (figure 27) shows chromosomes 12, 13, and 14 to have long regions where the 

GC content is low < 37%.  

 A second way in which imputed SNPs were assessed was through their potential 

effect on the secondary structure of annotated miRNAs. A Perl script was written that 

mapped the location of imputed SNPs to miRNAs currently documented in miRBase. To 

be considered, SNPs should fall within the mature or the precursor sequence. Once 

mapped the script then used RNAfold to predict the secondary structure of the miRNA 

and to predict the overall minimum free energy. If the minimum free energy changes by 

greater than one degree, the SNP was considered to have a significant impact on the 

regulatory function of the molecule. Studies targeting genes such as AVPR1 have 

shown that a one degree change in the miRNA can have a significant impact on the 

miRNA function [119]. Pictured in figure 28 is example output from this script, 

demonstrating the potential effects of SNP introduction on miRNA secondary structure. 

Hsa-mir-1324 pictured in figure 28 was found to have a total of seven SNPs within its 

structure; six of these SNPs were imputed from the microarray. Four of these SNPs 

located on the 5’ leg of the hairpin function to raises the negative free energy over two 

degrees (-32.50˚ to -30.10˚) and to introduce additional bulges within the structure. In 

the picture, the miRNA is shown with the major allele express in all four of the SNPs of 

interest; on the right is the same miRNA with the minor allele.  
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Figure 28 Example output from allele substitution script. The inclusion of four SNPs 
(circled in red) within the precursor structure of hsa-mir-1324 introduces multiple 

bulges within the structure and lowering the minimum free energy. 

 

The number of SNPs affecting secondary structure varied dramatically according to 

chromosome with chromosome 1 having the largest number and chromosomes 11,12, 

and  14-16 showing none. The reason for this is unclear as to why some of the largest 

chromosomes, having the greatest number of annotated miRNA are underrepresented. 

It is possible that the lack of SNPs on chromosomes 11, 12, and 14-16 may be due to 

the success of the imputation process as a similar underrepresentation is present 

among the methylated SNPs. The number of miRNA related SNPs already present on 

the platform (N =25) however showed a similar distribution to that of imputed SNPs 

(table below).   
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Chromosome Sequence Length  

(in base pairs) 

# of miRNAs version 5 SNPs Imputed SNPs 

1 245203898 135 5 15 

2 243315028 101 0 5 

3 199411731 77 0 4 

4 191610523 57 0 0 

5 180967295 69 0 2 

6 170740541 56 0 3 

7 158431299 70 0 6 

8 145908738 71 0 7 

9 134505819 72 3 2 

10 135480874 67 2 11 

11 134978784 76 3 0 

12 133464434 62 0 0 

13 114151656 37 1 2 

14 105311216 89 1 0 

15 100114055 58 4 0 

16 89995999 56 0 0 

17 81691216 88 2 1 

18 77753510 31 0 1 

19 63790860 111 1 0 

20 63644868 39 1 2 

21 46976537 19 0 1 

22 49476972 38 2 4 

Table 10 Genotyped and Imputed SNPs that potentially affect miRNA function 
through altering its structure.  

 In addition, when the distribution of the SNPs was examined, a majority of SNPs 

(85.3%) were found to be located within the precursor sequence, followed by 9.7% 

 

Figure 29  66 imputed SNPs were found to fall within the mature sequence or its 
precursor, affecting secondary structure. SNPs are included on this graph if their 
alleles affect a minimum free energy change greater than one degree. 
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 within the mature sequence and 5% within the terminal loop. This finding was expected 

as SNPs that fall within the mature sequence or the terminal loop of the precursor are 

thought to have a greater impact on miRNA regulatory function and should be in lesser 

number. 

Chapter Discussion 

The GWAS SNP array is dense experimental device that uses the principles of 

linkage disequilibrium to assess common SNP variation. Linkage disequilibrium, i.e. the 

nonrandom association of two or more alleles at two or more loci enables even genomic 

coverage and eliminates the need for testing of every SNP. GWAS design however 

eliminates SNPs that may possess crucial function and importance.  Therefore, 

imputation of pre-existing GWAS increases SNP resolution and expands the potential 

knowledge base of information for researchers. 

In this project, we were able to use imputation to focus on two areas impacting 

miRNA regulatory function e.g. methylation and structural changes. We were able to 

impute a high number of SNPs that appear to fall within either CpG island/isochores and 

were able to identify sixty-six SNPs that affect miRNA secondary structures. In the first 

instance, the number of SNPs gained represents a substantial increase over the 

numbers of SNPs originally genotyped.  In the genotyped SNPs, only 15% of probes 

having a high GC survived quality control filtering (call rate, HWEV). The unusually high 

number of SNPs that were identified may have been a combination of genotyped SNPs 

that had previously failed quality control but were “backwards imputed” using the 

program and novel SNPs.  In this regard, imputation of the GWAS enabled us to 

overcome technical issues unique to high GC regions.  In the second instance, 
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imputation generated an additional 66 SNPs that fell within miRNA structures and for 

whom there was differential effect based on respective alleles. Compared to the 25 

genotype SNPs present on the array (table), this represents a modest increase. The 

distribution of these SNPs was unusual when one compares chromosome size and 

number of already present miRNAs.  
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Chapter Five: Global Discussion 

 
The preceding chapters illustrate ways in which miRNAs can be evaluated 

experimentally to learn more about their role in the etiology of Schizophrenia and 

Bipolar disorder. Genetic epidemiology has yielded consistent evidence of an inherited 

component for each of these disorders and has provided adequate rationale for 

pursuing studies such as linkage analysis, candidate gene study, GWAS, and 

expression profiling to learn more about the genetic architecture of these disorders.  

These studies, however, have often created more questions than they have answered 

and have had issues of limited replication and consistency. Further, some studies such 

as linkage analysis were not really appropriate for use in studying these types of 

complex polygenic disorders. Other studies, i.e. candidate gene association, have been 

too limited in their approach to ever generate any findings of real value. Only GWAS 

have had the needed breadth and scale necessary to study Schizophrenia and Bipolar 

Disorder; the genes that have been replicated with any degree of consistency, e.g. 

TCF4 and NRGN, have been identified through large scale GWAS marshalling large 

subject numbers. One such Mega-GWAS performed by the PGC implicates one miRNA 

in Schizophrenia and Bipolar Disorder, hsa-mir-137 and provides some of the first 

substantial evidence that miRNAs could be implicated in Schizophrenia.     

  miRNAs may help to explain the phenotypic variability observed in 

Schizophrenia and Bipolar Disorder, but before it can integrated into the body of 

knowledge more must be learned about its biogenesis and relationship to target genes 

within the body. It is necessary, then, to clearly delineate the complete list of miRNAs 
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present in the human genome and to further document their relationship with individual 

gene targets. The human body possesses approximately 20,000 active genes, many of 

which are functional at only specific times in the human life span. By fine tuning 

transcription, miRNAs work to maintain homeostasis in the body and sharpen cellular 

responses to environmental crisis [190,191].  As an example, consider the interactions 

of methyl CpG-binding protein 2 (MeCP2), brain derived neurotrophic factor (BDNF) 

with the miRNAs hsa-mir-132 and hsa-mir-212. MeCP2 is a transcription factor which 

binds to methylated cytosines on CpG dinucleotides in DNA, recruiting transcriptional 

repressors and effectively stopping gene expression MeCP2 targets to the promoter III 

region of BDNF which represses expression of this gene. Hsa-mir-212, -132 target 

MeCP2 limiting its expression which in turn affects the functionality of BDNF.  Ultimately, 

over or under expression of MeCP2 causes the neurodevelopmental defects seen in 

Rett Syndrome [191, 212].     

Detection of miRNAs through Deep Sequencing 

   Chapter Two of this thesis summarizes the results of a deep sequencing 

study performed in our lab using the Illumina/Solexa. Deep sequencing and qPCR were 

used to create a miRNA profile of an affected population and a cell line model used as a 

proxy for human neural function. The goal of this project was the detection and 

identification of known and novel miRNAs in neuroblastoma cells.  After initial detection, 

interesting novel candidates were validated in postmortem brain tissue of affected 

subjects from the Stanley Medical Research Institute.  At the time the experiment was 

first performed, the available length for a typical read was small (~ 36 bases) but still 

adequate for the detection of miRNA candidates. We achieved our goal in this project of 
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identifying miRNAs within this cell line though the number was admittedly small. We 

believe that this small number was in part due to the stringency of the analytical 

software that was used.  Subsequent comparison of popular software in a number of 

different types of data confirmed our suspicion. Excessive stringency is acceptable if 

one wishes to detect novel miRNAs for additional testing. Given the costs of validation, 

one cannot simply afford to waste time or resources on novel candidates that cannot be 

easily verified in the lab. Initially in our study, we identified 25 novel miRNA candidates 

in neuroblastoma cells.  Seventeen of this number (68%) was found to be predicted by 

both miRDeep and miRanalyzer in a program comparison. Using that number of 

miRNAs (17), we were able to validate 12 successfully both in the original cell line and 

in post mortem brain tissue representing a 70.6% success rate overall.  Comparison of 

the success rate of this multi-program approach to ones used in other studies is difficult 

as most do not choose to validate all of their predictions [63,210]. 

Our results from the deep sequencing study also suggested the possibility of 

additional novel miRNAs being derived from alternative biogenic sources such as 

snoRNA molecules. This finding proved simultaneously the strength of deep sequencing 

as a technology for discovery as well as the need for improved operationally defined 

criteria for the detection of novel miRNA candidates. In deep sequencing, a large 

number of reads are routinely set aside as unmapped by analytical software. This 

elimination of reads mapping to regions traditionally deemed unlikely to house miRNAs, 

i.e. snoRNAs, necessarily reduces the effective amount of information gained from deep 

sequencing technology. We used the eliminated portion of our data to predict the 

presence of these sno-derived novel candidates and were able to successfully confirm 
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their presence in the original cell line and a RNA tissue panel. So, by using an 

expanded definition of the possible biogenic pathways for miRNAs, we were able to 

better utilize the technology ultimately making it more efficient and effective in its 

intended purpose. 

  Also, in this deep sequencing study, we detected a novel miRNA (PRD5) which 

could potentially play a role in the regulation of the genes ZNF804a and C10orf26.   

Originating from traditional biogenic pathways, this novel miRNA was shown to be 

differentially expressed in the postmortem brain tissue of affected subjects from the 

SMRI. This finding must be replicated in other affected groups and its status should be 

expanded using other laboratory techniques such as a luciferase test and/or western 

blotting before it can be stated that PRD5 is a miRNA involved in Schizophrenia. 

Nevertheless, the correlation of the relative expression profiles of PRD5 with ZNF804A 

and C10orf26 suggests that this miRNA affects these genes in a different fashion, with 

ZNF804a being predicted to increase its expression and C10orf26 to exhibit a decrease.  

Target predictions generated by miRanda, Pita, and TargetScan for ZNF804A and 

C10orf26 intuitively mirror the observed differences in expression direction in the post 

mortem brain tissue. PRD5 was predicted by these programs to target the 5’UTR of 

ZNF804A and not the 3’UTR (see figure 18). Conversely, PRD5 was predicted to target 

the 3’UTR of C10orf26 and not the 5’UTR. There have only been a limited number of 

accounts suggesting that miRNAs target 5’UTR of genes but when they have been 

identified, increased mRNA expression was observed. A recent letter examining this 

lack of 5’ targets suggests that it may be due to a predominant focus on cross species 

conservation and the exclusion of less-conserved sites as unreliable [114]. Further, 
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some assert that the strength of the effect is diminished if the miRNA targets the 5’UTR 

thereby making successful detection more difficult to achieve [192]. Regardless, the 

biological implication of 5’ targeting of PRD5 on ZNF804A in this project is intriguing and 

makes this miRNA worthy of additional study. 

 Selection of predicted gene targets of individual miRNA 

Chapter Three explores the issues encountered when selecting appropriate 

targets of specific miRNAs for experimental validation and testing. In this chapter, 

miRNA profiling of postmortem brain tissue detected seven differentially expressed 

miRNAs in subjects from the Stanley Medical Research Institute. Targets were predicted 

using miRanda against the 5’ and 3’UTRs of all known genes (GRCh37).  Filtering and 

selection of targets for each miRNA was first performed using an FDR threshold and 

then a second time using a more biologically attuned approach incorporation the effects 

of alternative splicing, target gene co-expression levels, and mRNA site accessibility 

into the process.  Stringent FDR screening of these targets however generated 

inconsistent results for three miRNA out of the seven tested (hsa-mir-132, -212 and -

154*) when one considers the known biology of each. First, the FDR results suggested 

that hsa-mir-154* had the highest proportion of credible targets in the predicted list. hsa-

mir-154* is a star sequence which, because of its low native concentration, would be 

unlikely to possess so many targets. Most star sequences are degraded following their 

separation from the mature sequence and only are found in wild-type cells in trace 

levels [59]. Second, hsa-mir-132 and -212 share seed sequences which would suggest 

that a similar number of targets should survive FDR filtering.   This was, however, not 

the result of FDR filtering, as the filtered targets for hsa-mir-212 were more numerous 
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than that of hsa-mir-132. The seed sequence is seen as an essential factor for 

miRNA:mRNA binding, so important that many think that the seed is all that is 

necessary for binding to occur (see chapter 3 for a longer description of this process). 

Many prediction algorithms such as miRanda weigh more heavily the degree to which 

the seed sequence maps to the prospective binding site than the rest of the mature 

sequence. Therefore, if two miRNAs share a seed sequence one would expect a similar 

number of predicted targets to be generated.  

The algorithms used in current miRNA target prediction attempt to replicate the 

interaction between the mature sequence and the gene’s untranslated region (5’ or 3’ 

end). The success with which they do this is however questionable as most algorithms 

are thought to have extremely high false positive rates. The miRNA research community 

has attempted to compensate for this inadequacy by introducing a greater number of 

biological parameters into the target prediction process [51, 53, 151].  Unfortunately, the 

number of experimentally documented interactions is currently too limited on which to 

build credible target prediction algorithms with which we can evaluate using statistics. 

Further, the sheer number of possible targets for any one miRNA is cost prohibitive to 

allow for complete experimental validation and strict assessment of false positive rates. 

 One of the underlying assumptions regarding the use of FDR is independence of 

individual tests; in this case, this assumption was most certainly violated by the 

occurrence of multiple binding sites within a single gene. Multiple binding sites can 

occur within a gene making those sites interdependent and inflating the FDR statistic 

[114]. 

Nevertheless, uniform bias free approaches to target prediction are needed if the 
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field is to advance. Other approaches can be employed including permutation or an 

empirical p value but these approaches can be costly to perform in the lab and will only 

be suited to use with specific miRNA. We suggest that a uniform bias free approach to 

target prediction can be routinely implemented only after more is known about the 

stochastic factors present within the cell that influence miRNA binding.     

SNPs which impact miRNA functionality 

Finally, chapter four examines how single nucleotide polymorphisms could 

potentially impact the regulatory function of a miRNA in two ways, through the promoter 

and through the structure of the precursor and the mature sequence. By imputing the 

HapMap3 reference panel onto the Affymetrix version 5 SNP framework, we were able 

to nearly double the number of markers potentially yielding information on methylation 

and miRNA structure. Over 2.5 million additional SNPs were imputed from the HapMap3 

reference panel onto this framework, demonstrating the utility of imputation for 

increasing GWAS resolution.  Despite a low number of arrays with which to work, we 

were able to identify 66 SNPs that appear to impact miRNA secondary structure. This 

number was in addition to the 25 SNPs that were already present on the platform. This 

number is encouraging given the assumed impact that a single SNP has on miRNA 

secondary structure and suggests that miRNAs might be more variable that previously 

thought.  

Certainly, SNPs can affect miRNAs in a variety of other forms, e.g. SNPS within 

transcription factors, Drosha and Dicer enzymes but the two types of SNPs profiled in 

this project arguably has the greatest immediate impact on miRNA function. Indeed, 

changes in the structure of a single miRNA can radically shift the number of genes it 
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targets. For example, new gene targets can be created if SNPs fall within the seed 

sequence, by potentially shifting the sequence composition. Furthermore, the lack of 

experimentally verified miRNA: mRNA interactions make it difficult to assess the impact 

that SNPs within target sites might have.  A limited number of SNPs in targets and 

miRNAs have been identified as being significantly associated in Schizophrenia. These 

studies have been hampered by a lack of experimentally proven targets, small sample 

size, and limited focus [59, 192]. These significant SNPs, as a result of these factors 

generally have not withstood correction for multiple testing.  This is to be expected 

considering the small effect size individual SNPs has on the disorder. Evidence coming 

from previous genetic research, i.e. GWAS studies is quite clear about the size of the 

effect size of individual SNPs (median Odds ratio: ~1.33) [192,193]. It is no surprise, 

therefore, that SNPs associated with miRNAs in cases to also have similar effect sizes. 

It is necessary therefore to assess the role of SNPs genome-wide to truly determine 

their impact on miRNA function. 

Closing Remarks  

Corvin suggests that, in the future, genetic parameters will likely replace parts of 

the DSM-IV proven inefficient in the diagnosis of Schizophrenia and Bipolar disorder 

[95]. Psychiatric genetics however has only recently built a large enough knowledge 

base to accomplish this task. Previous techniques such as linkage analysis and 

candidate gene studies have only been able to provide a small piece of information 

necessary to fully comprehend the genetic structure. Even GWAS proponents admit that 

in order for the GWAS to be truly effective, the number of subjects tested must increase. 

We suggest, too, that in order to truly contribute to the current body of knowledge more 
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must be known about the function of miRNAs and in a greater number of subjects. 

Recent findings of alternative modes of biogenesis would suggest that we still do not 

know enough about its sources In addition, target prediction and validation is a slow 

process, hampered by algorithms with inherently high false positive rates. In order to 

improve current software and reduce these rates, we must simply know more about 

miRNA:mRNA interaction event, including indirect factors which might influence binding 

success. Low-cost, high throughput methods of target validation would be of 

tremendous use in this regard as they would allow   

Limitations 

Admittedly the projects described in Chapters 2, 3, and 4 have a number of clear 

limitations. First, MicroSeq data lacks a coherent system of normalization; and without it 

any statement of observed values cannot be made with any degree of certainty. 

Expression levels are simply not as straightforward as reads per kilobase per million 

(RPKM) and can be impacted by a number of experimental biases [20]. Further, without 

normalization, observed expression values cannot be compared between studies and 

laboratories. The lack of statistical quality control for MicroSeq is perhaps indicative of 

the newness of the field. Originally, the cost of this procedure was the rate limiting factor 

on the number of studies performed and any data generated from this technology was 

seen as precious.  Lowering costs and advances in protocol have made MicroSeq more 

accessible; researchers are becoming aware of a need for a strong statistically based 

analytical foundation. Originally, recognizing the need for validation, researchers have 

employed qPCR to compensate for the deficiencies of deep sequencing. In this thesis in 

chapter two, qPCR was used in this capacity to determine novel miRNA levels and 
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validate presence [65].   

A second limitation of this project is the high false positive rate of miRNA target 

prediction software. Indeed, this limitation is well known in the field of miRNA research 

overall. Early work in this field focused exclusively on the detection of probable 

candidates, setting aside the more important issue of functionality. In fact, early rules for 

the validation of a new miRNA candidate included:1) the presence of a hairpin structure 

(see figure 2,3), 2) the presence of the mature sequence within one leg of the hairpin 

and not within the loop of the structure and 3) the detection of a size appropriate 

fragment experimentally [93]. As a result, the miRNA research is now filled an excess of 

annotated miRNA without proven targets. In designing the original software, researchers 

had to rely on what they believed to be true about miRNA:mRNA interaction.  With 

added experimentation, we are realizing that the picture is more complicated than 

previously thought and that factors such as co-expression, mRNA site accessibility play 

a role. A heavier emphasis on establishing targets for miRNA therefore will enable us to 

refine prediction software through more providing biological correlates that can be 

factored into prediction algorithms. 

 A third limitation to this project surrounds the probabilistic nature of SNP 

imputation. Certainly one can attempt to ensure that the genotypes on which SNP is 

based are as correct as possible but imputation is a probability and can be subject to 

error. Comparisons between programs used to generate imputation have demonstrated 

that it can be affected by features as linkage disequilibrium and minor allele frequency 

and that some programs perform better in certain situations than others. A small, limited 

reference panel and number of microarray most likely contributed to the inconsistency 
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of the findings documented in this chapter.  

 Unfortunately, one of the problems inherent with working postmortem brain tissue 

is its limited number of available samples. Consortiums similar to the ones devoted to 

GWAS studies (described in the first chapter of this thesis -genetic studies section) 

could conceivably be used to increase sample size and increase confidence in data 

findings. Other problems then must be addressed such as inter-site variability and batch 

effects. Imputation can be used to facilitate cross platform/cross group comparability but 

we should always be aware the effect of technical variation in this studies and work to 

create methods that minimize their effects. 
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Chapter Six: Future Directions   

This work and others like it only present a glimpse of the potential that these 

technologies may yet have in the field of personalized genomics. A necessary part of 

this sort of research is vigorous experimental validation.  High-throughput technologies 

such as deep sequencing constantly are being improved with better resolution and 

added read length. Third generation sequencing promises to eliminate potential biases 

created by PCR and library construction as well as providing larger read length. As this 

field matures, the analytical techniques will also mature, generating greater confidence 

in expression levels. Recent advances in this field include the realization that T4 ligase 

has a biased effect on library construction, artificially affecting read counts [20, 21, 65, 

68].  

Recent improvements to qPCR techniques include the addition of locked nucleic 

acid (LNA) based oligonucleotides to expression platforms. Originally created in 1998, 

LNA technology facilitates melting temperature (Tm) normalization, increases thermal 

stability of duplexes and increases target specificity.  Faster acting and more efficient 

polymerases such as fusion taq polymerase have also been introduced that decrease 

reaction time, enabling researchers to assay more targets in a shorter amount of time. 

Also, additional means by which data are normalized such as quantile normalization, 

delta delta CT, and the rank invariant approach afford researchers a better set of tools 

with which to identify and compensate for experimental biases.  

One future direction for this project is the need for additional testing of the 

identified novel miRNAs. In particular, there must be additional experimental work, i.e. 

luciferase assay and western blots, proving their effect on predicted targets. In the case 
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of the sno-derived miRNA candidates, one must also prove that they are actively 

processed similarly to the classically derived specimens.  To do that, the sequence for 

the predicted mature miRNA, its precursor and the entire gene must be expressed into 

an appropriate cell line and the subsequent expression of each sequence type must be 

assessed. Alternatively, one might also isolate the individual cell components with 

ultracentrifugation and verify the native expression of molecules with qPCR. If these 

molecules are being processed by the cell's machinery as suspected, one might expect 

to see high levels of the active mature sequence in the cytoplasm.  

As for the novel miRNA (PRD5), targets for this miRNA must be verified through 

luciferase assay and western blot assay. A future direction for this miRNA might not only 

be the validation of targets but also an exploration of the synergistic effects of this 

miRNA with miRNA such as hsa-mir-137. In TCF4, the predicted binding site for PRD5 

is 1103 bases away from the site predicted for hsa-mir-137.  Conceivably, PRD5 can be 

transfected both in combination with hsa-mir-137 and separately to see if it 1) targets 

the same genes with the same magnitude and 2) PRD5 and miR-137 act synergistically 

on their mutual targets. 

This is a necessary step if the field is to progress toward a more realistic view of 

true mechanism of miRNA affecting gene pathways. Even with the findings generated 

by expression profiling, the general trend has been to investigate one miRNA at a time, 

validating targets and then focusing on pathways. Admittedly this is more efficient than 

examining each gene at a time, but it does not take into account that miRNA often 

function in consort, with multiple miRNA targeting a single gene simultaneously. By 

examining the effect of two or more miRNA on gene targets we can start to create a 
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more realistic picture of miRNA regulation on translation. Once the synergistic effects of 

miRNA are established in relevant cell lines, then their effects can be explored in animal 

models.  

Lastly, one final future direction is the use of multivariate analytical approaches to 

identify common classes of miRNAs with similar functional patterns. The field is only 

now becoming technically advanced to permit shift from a simple detection to asking 

globally more important questions of functionality. Perhaps in the future, we will be able 

to successfully integrate miRNAs in other psychiatric genetic datasets to achieve a 

complete view of the structure of Schizophrenia and Bipolar Disorder. 
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Appendix 1: Databases Consulted in This Project  

Database location Focus Chapters 

miRBase www.mirbase.org miRNA database containing 
annotated sequences 

2,3,4 

Genome 
Browser 

www.genome.ucsc.edu General genomics database 
housed at University of California, 
Santa Cruz 

2,3,4 

snoRNABase www.snorna.biotoul.fr Human, Yeast  snoRNAs 
database; Contains sequences 

3 

Human 
Methylome 

www.neomorph.salk.edu/
human_methylome 

Housed at Salk Institute, 
methylation of fetal fibroblasts 
and  H1 cells 

4 

RFAM10.1 www.rfam.sanger.ac.uk RNA families, sequence, and 
covariance models 

2 

Stanley 
Medical 
Research 
Institute 
Online 
Genomics 
Database 

www.stanleygenomics.org Study of Schizophrenia and 
Bipolar Disorder. Holds 988 arrays 
across 6 different platforms 

4 

SZGene www.SZgene.org Variation associated with 
Schizophrenia; Holds 1727 
studies and 287 meta-analyses 

2 

PDGene www.pdgene.org Variation associated with 
Parkinson’s Disease; Holds 876 
studies and 889 meta-analyses 

2 

MSGene www.msgene.org Variation associated with Multiple 
Sclerosis; Holds 789 studies and 
324 meta-analyses 

2 

Cancer 500 www.variantgps.nci.nih.go
v/cgfseq/pages/snp500.d
o 

Re-sequencing of 102 reference 
samples from four ethic groups 

2 

HapMap www.hapmap.ncbi.nlm.nih
.gov 

Single nucleotide polymorphisms 4 

Aceview www.aceview.ncbi.nlm.nig
.gov 

Alternative splicing based on EST 
database 

3 

Biomart www.biomart.org Central clearinghouse for multiple 
datasets and species  

2,3,4 
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Appendix 2: Programs Used in This Project 

Program Name Type Focus Chapters 

miRDeep/miRDeep2 Executable miRNA prediction 2 

miRanalyzer Web miRNA prediction 2 

DSAP Web miRNA prediction 2 

Oligomap Executable mapping and alignment 2 

Bowtie Executable mapping and alignment 2 

Flux Capacitor Executable simulation of RNAseq datasets 2 

BLAST Web mapping and alignment 2 

RNAFold Executable Prediction of miRNA secondary structure 2,3 

David Web Functional annotation of gene lists 2,3 

IMPUTE2 Executable SNP Imputation 4 

GTOOL Executable Manipulation of imputed genotypes 4 

Shape-IT Executable Genotype Phasing 4 

Affymetrix 
PowerTools 

Executable Microarray quality control and genotype 
prediction 

4 

Beagle Call Executable Genotype prediction using haplotypes 4 

SNPTest Executable SNP quality control and tests of association 4 

miPred Web Prediction of hairpin (miRNA) status 2 

miRanada Executable miRNA target prediction 2,3 

PITA Executable miRNA target prediction,  based on site 
accessibility 

2,3 

TargetScanS Web miRNA target prediction, based on seed 
conservation 

2,3 

StringDB Web Protein protein networks 2,3 

LinRegPCR Executable Assessment of PCR specificity and quality 2,3 

Perl Executable Free-form scripting language 2,3,4 

R Executable Statistical scripting language 4 

PLINK Executable Genotype manipulation, association test, 
Hardy Weinberg violations 

4 

SNPInfo Web-
based 

Functional prediction of SNPs and their 
proxies 

4 

PolyPhen Web-
based 

Allelic impact on protein structure 4 

Haploview executable Identification of proxy SNPs through linkage 
disequilibrium 

4 
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Appendix 3: Known miRNAs predicted by deep sequencing in Neuroblastoma  

 

#miRNA read count #miRNA read count 

hsa-let-7a 661  hsa-miR-30a 2621 

hsa-let-7b 635  hsa-miR-30c 226 

hsa-let-7e 126  hsa-miR-30d 2840 

hsa-let-7f 2472  hsa-miR-30e 921 

hsa-miR-1 1893  hsa-miR-3200-5p 68 

hsa-miR-101 141  hsa-miR-320a 2921 

hsa-miR-103 4730  hsa-miR-330-3p 1227 

hsa-miR-106a 1632  hsa-miR-342-3p 330 

hsa-miR-106b* 78  hsa-miR-361-5p 65 

hsa-miR-107 2560  hsa-miR-365* 384 

hsa-miR-10a 393  hsa-miR-3662 68 

hsa-miR-10b 64  hsa-miR-421 165 

hsa-miR-1254 152  hsa-miR-423-3p 4428 

hsa-miR-1255a 1146  hsa-miR-423-5p 9230 

hsa-miR-1269 160  hsa-miR-503 113 

hsa-miR-1285 108  hsa-miR-505* 63 

hsa-miR-1292 61  hsa-miR-548h 211 

hsa-miR-1301 968  hsa-miR-641 92 

hsa-miR-140-3p 953  hsa-miR-7 35355 

hsa-miR-146b-5p 258  hsa-miR-744 276 

hsa-miR-148a 1443  hsa-miR-877 291 

hsa-miR-148b 403  hsa-miR-9 386 

hsa-miR-148b* 194  hsa-miR-92a-1* 1916 

hsa-miR-151-3p 57  hsa-miR-92b* 385 

hsa-miR-15a 94  hsa-miR-93 98 

hsa-miR-17 177  hsa-miR-941 271 

hsa-miR-17* 6206  hsa-miR-34c-5p 47 

hsa-miR-181a 5288  hsa-miR-99b* 42 

hsa-miR-181b 4121  hsa-miR-425 41 

hsa-miR-181c 134  hsa-miR-548u 41 

hsa-miR-181d 944  hsa-let-7c 40 

hsa-miR-182 2064  hsa-miR-574-5p 40 

hsa-miR-186 172  hsa-miR-16-2* 39 

hsa-miR-191 5385  hsa-miR-148a* 38 

hsa-miR-192 95  hsa-miR-3131 38 

hsa-miR-193b* 99  hsa-miR-378 36 

hsa-miR-194 86  hsa-miR-548j 36 

hsa-miR-196a 467  hsa-miR-320b 35 
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hsa-miR-19b 252  hsa-miR-128 34 

hsa-miR-21 458  hsa-miR-181a* 34 

hsa-miR-2110 150  hsa-miR-25* 34 

hsa-miR-221 2226  hsa-miR-30a* 33 

hsa-miR-221* 1636  hsa-miR-3179 33 

hsa-miR-222 22997    

hsa-miR-26a 2108    

hsa-miR-27b 734    
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Appendix 4: Normalized Cq Values for novel miRNA validated in postmortem tissue of 
SMRI 

 

subject/sample id MiR-1 MiR-5 miR-6 miR-7 MiR-14 

1 1.01894045 0.84629946 1.46977941 1.24387353 0.95019166 

2 2.39271567 1.61832298 1.96196511 1.17405489 0.79900177 

3 1.00594383 0.86830881 1.36958586 1.05946795 0.68493109 

4 1.12914413 1.64978674 0.94386999 1.57730274 1.01970397 

5 0.56817619 0.6803742 0.79879666 5.0727868 0.92610679 

6 1.3428047 1.05268949 0.72083466 1.98731336 1.26838277 

7 0.76332535 0.94386999 1.53732225 0.89089055 1.18191825 

8 0.43473533 0.61119269 0.19750214 0.26876551 0.84811352 

9 0.67136541 0.83015933 0.56845597 0.5540471 0.96246797 

10 1.62794202 1.71456133 1.45103233 1.09402061 1.10134793 

11 0.34439372 0.69806841 0.27700831 0.38925321 0.93207016 

12 1.69185893 1.12970014 0.89662716 2.21643227 0.53188526 

13 0.59048415 0.60226088 0.35580062 0.52294843 0.90205324 

14 0.459721 0.5162782 0.29918735 0.50319191 1.02232534 

15 0.65016155 0.82484799 1.09402061 9.2148328 1.11701015 

16 0.69772483 0.65048171 0.89662716 1.13697449 1.07343165 

17 0.72511918 0.65888582 0.73958111 1.0392624 0.8876941 

18 0.3672236 0.49043731 0.17789052 0.40976277 0.81820405 

19 0.44806827 0.62590709 0.1971303 0.57580032 0.95815332 

20 0.49019593 0.59840763 0.349015 0.3030528 1.12204015 

21 0.46268122 0.64218479 0.22127331 0.42041929 0.96061646 

22 0.50294424 0.6339937 0.1744979 0.73014772 0.72148269 

23 0.79840351 0.73014772 0.2142848 7.74861329 0.46006548 

24 0.49019593 0.40194801 0.40976277 0.52970483 0.71273748 

25 0.67568846 0.56845597 0.64218479 0.52294843 0.92018158 

26 1.40451249 1.05946795 1.25994416 0.55761471 0.73080413 

27 1.09348216 1.30103499 0.57211636 0.96841681 0.9837028 

28 0.80871874 1.47924359 0.68475526 0.88519065 0.94653939 

29 1 1.10815517 0.35809169 1.7591512 1.36467189 

30 1.58667796 1.12247234 3.29975502 2.24506819 0.90611527 

31 1.0454396 0.92586905 1.23591524 0.67602118 0.98749847 

32 0.85132972 0.91405956 0.81432702 0.36977021 1.17661983 

33 4.91015415 2.16025153 3.34238728 20.8211414 1.86185128 

34 0.98675906 1.03261322 0.75396019 0.77356811 1.14605976 

35 0.52944412 0.42585104 0.45994737 3.58690328 0.73977101 

36 0.98866096 0.72547625 0.19586907 0.47190903 0.80414669 

37 0.9785597 0.9024007 2.79258089 0.94994774 1.59604129 

38 0.6093505 0.86275338 0.62993742 0.64631993 1.10488813 

39 0.70855614 1.06629006 0.73014772 0.6803742 1.20721968 

40 2.53663319 2.33321496 5.00808324 1.88784383 1.44768334 

41 1.18863816 1.34346593 1.37840488 12.1437134 1.38319073 
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42 0.82391301 0.71622278 1.20458803 0.90821142 1.07619114 

43 0.55484176 1 0.39937636 0.3445633 0.9786646 

44 0.75358911 0.68916452 0.95606462 0.54698021 0.89743322 

45 1.94845303 1.93694018 1.36958586 1.47924359 0.94532509 

46 0.87909432 1.50800334 0.7443434 0.86275338 0.84380442 

47 0.45444023 0.53654853 0.39682115 0.38925321 0.80363071 

48 0.65016155 0.42859317 0.25978701 1.85183998 0.74262545 

49 1.11474186 1.0392624 3.17509323 3.63324545 1.42098574 

50 0.5829525 0.69806841 0.78356248 1.58745928 0.70636155 

51 0.52944412 0.75396019 0.85174894 0.29727316 0.99258214 

52 2.66002328 1.6711017 2.00011004 0.86830881 1.15863349 

53 1.04008521 1.09402061 2.31828709 1.33487045 0.88201464 

54 2.9007959 2.05212605 2.65280589 7.26689068 0.86242119 

55 0.87684022 1.151664 1.0392624 0.4124013 1.2913841 

56 2.59759569 2.02595111 2.06534006 1.1968811 1.21265589 

57 0.78771408 0.71622278 1.11529078 1.8282197 1.39209735 

58 1.01437264 0.78356248 0.71164039 0.68916452 1.15714709 

59 2.97814659 2.55258526 3.23682403 3.34238728 1.10488813 

60 1.01632776 0.77854926 1.31784414 9.45447904 0.96866548 

61 0.82021949 1.03261322 0.40453623 0.59077492 0.95263433 

62 0.79942908 1.0459544 0.46888976 2.92091227 1.19105682 

63 1.93350321 2.0920239 1 0.9622209 1.89318293 

64 0.72838446 0.81171782 0.87670909 0.34789671 1.20180784 

65 0.32506289 0.79879666 0.72083466 0.43973941 1.03022994 

66 1.45124935 1.11529078 1.92454767 0.72028984 0.727528 

67 1.34539284 1.53732225 3.13459481 9.70035766 1.54761863 

68 1.05082157 1.42793437 0.92884519 0.69583171 1.20026606 

69 3.69968534 3.03559431 5.27962315 2.70438228 1.34208694 

70 0.91949258 1.2201511 0.5172952 0.98092859 0.99321944 

71 0.74397705 0.52970483 0.25978701 1.7591512 0.83894408 

72 5322437.7 0.55761471 1.01291983 0.45408073 0.72519691 

73 1.03973478 1.02009674 1.82939353 1.14503038 1.44026878 

74 0.41193384 0.77356811 0.40976277 1 1.22753505 

75 7.88524667 5.17141295 14.7223652 28.884767 2.98803989 

76 3.07527354 2.10549482 5.54973332 1.78187913 1.2118778 

77 1.057588 0.89662716 2.23070428 1 0.8208341 

78 9.97970849 3.84930711 12.0660181 21.0901469 2.97655471 

79 0.82709212 0.90821142 1.48876871 0.98724497 1.03380692 

80 1.70494036 1.43252436 2.03899658 1.63923143 1.36493469 

81 1.48136525 1.35211675 1.45103233 0.77356811 1.10836857 

82 1.8652399 1.30941259 0.59077492 1.62874365 0.80296043 

83 0.97417292 0.83550488 0.90821142 0.57580032 0.72575569 

84 0.19817477 3.03559431 4.29309673 2.56902182 0.94508242 

85 1.13714454 1.17405489 0.65048171 0.90821142 1.2629399 

86 0.41325797 0.66739851 0.94386999 1.2201511 1.1165084 

87 0.44749345 0.72547625 1 4.49038343 0.64985574 

88 2.812788 1.64978674 5.58546906 14.534581 2.14367665 
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89 2.51555533 2.55258526 2.13269745 1.77047869 1.140556 

90 1.32908512 0.61397016 2.3938939 0.80911697 0.86619355 

91 0.99566599 0.96841681 1.58745928 1.36958586 1.22289524 

92 0.66493265 0.71622278 0.3030528 0.45117553 1.18275302 

93 1.7673371 1.30103499 3.25766653 2.61896926 1 

94 1.0474546 0.97465262 1.25188305 0.75881508 1.10425006 

95 6.02197255 3.40737065 3.9748454 6.47400423 0.84239744 

96 1.0454396 0.79879666 0.80394026 0.49677368 0.85607882 

97 7.07656863 4.0610273 7.56879777 10.5676586 1.27935458 

98 4.825794 1.86376432 3.70388374 2.84687481 0.82347261 

99 1.87123557 1.26805717 0.98724497 0.94994774 1.22517363 

100 0.77219547 0.64631993 1.62874365 0.65888582 1.04958598 

101 2.10175876 1.32632997 2.47196648 1.08006634 0.71824836 

102 1.30960843 1.06903119 2.91162806 1.45476252 1.44582613 

103 0.31078113 0.9024007 1.54730874 1.34346593 0.97302746 

104 1.71481777 1.37840488 1.91223445 1.4052041 0.65420822 

105 2.0275551 1.11529078 0.10782637 0.84088485 1.16909183 
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Appendix 5: Example code for functions performed in thesis 

A. Code written in R 
 

1. Linear Regression 
library(MASS) 
data<- read.table (“CQvalues.txt”) 
summary (data) 
summary(ols <-lm(RIN~CQ + diagnosis, data = cdata) 
opar<-par(mfrow = c(2,2), oma = c(0,0,1.1, 0)) 
plot(ols,las =1) 
par(opar) 
summary(rr.huber <-rlm(RIN~CQ + diagnosis, data = cdata)) 
#huber weights 
Hw<-data.frame(state=cdata$subject, resid = rr.huber$resid, weight = rr.huber$w) 
Hw2 <- hweights[order(rr.huber$w), ] 
 
2. False Discovery Method: Benjamini Hochberg Method 
data<-read.table (“pvalues.txt”) 
p.adjust(data, methods   “BH”, n   length(p)) 
 
B. Code written in Perl  
 
1. SNP Haplotype Phasing and Imputation 
use strict; use warnings; 
my $genfile = shift; my $chromosomenum = shift; my $intervalsize = shift;  my 

$chromosomelength = shift; 
if (!defined ($chromosomelength)){ 
 die "name of gen, chromosome, intervalsize, and chromosomelength\n"; 
 } 
 
my ($start,$div,$end, $pos); 
$div = int("$chromosomelength"/"$intervalsize"); 
my $j = 0; $start = $j +1; 
$pos = $chromosomelength - $intervalsize; 
open OUT, ">chromosize.txt"; 
 while ($j < $div){ 
  if ($start > $pos){ 
  print OUT "$pos\t$start\n"; 
  }else{ 
  print OUT "$start\t$pos\n"; 
  } 
  $start = $pos; $pos = $pos -$intervalsize; $j = $j + 1; 
  } 
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 close OUT; 
my $i = 0; 
open FH, "chromosize.txt"; 
while ($i < $div){ 
 while (my $line = <FH>){ 
 chomp $line; 
 if($line =~/(\S+\s+\S+)/){ 
 my $in = $1; 
 my $section = "$i$genfile";  
 print "\nphasing chr$chromosomenum $in\n"; 
`impute2 -phase -m chr15.1000K.map -g $genfile -strand_g chr15.strand -int $in -o 

$section `; 
 $i = $i +1;  
 }}} 
 
use strict; use warnings; 
my $map = shift; my $ref = shift; my $leg = shift; my $int = shift; my $out = shift; 
if (!defined($out)){ 
 die "map,ref,legend,intervals,out\n"; 
} 
my ($start, $end, $diff);my $j = 1;my $pattern = "chr15.calls_haps"; 
open VAL, $int; 
 while (my $line = <VAL>){ 
 chomp $line; 
  if ($line =~ /(\d+)\s+(\d+)/){ 
  $start = $1; 
  $end = $2; 
  $diff = ($end - $start); 
  if ($diff eq 5000000){ 
   #print "$start\t$end\n"; 
   print "$j$pattern\n"; 
  `impute2 -m $map -known_haps_g "$j$pattern" -h $ref -l $leg -int $start 

$end -o "$j$out" `; 
   $j = $j + 1; 
 }else{ 
}}} 
 
2. miRNA Target Prediction  
use strict;use warnings; 
my $file = shift; my $header = 

"query\tgene\tMFE\tmatchlen\tpercent\tqueryseq\treferenceseq\n"; 
print "$header"; my ($queryname, $genename, $matchlen, $querymatchper, 

$refmatchper, $MFE, $querysequence, $refsequence); 
open FH, $file; 
 while (my $line = <FH>){ 
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  chomp $line; 
  if ($line =~/^\>(\S+)\s+\d+\:.*(ENSG\d+):\d+:\d+\s+\d+\.\d+\s+.*\%/){ 
   print "\n$1\t$2\t"; 
   }elsif ($line 

=~/Forward:\s+Score\:\s+(\d+\.\d+)\s+Q\:\d+\s+to\s+\d+.*Align\s+Len\s+\((\d+)\)\s
+\((\d+\.\d+)\%\)\s+\((\d+\.\d+)\%\)/){ 

   print "$1\t$2\t$3\t$4\t"; 
   }elsif ($line =~/Energy:(.*)/){ 
                        print "$1\t"; 
                        }elsif ($line =~/Query.*\s+(3'.*)/){ 
   print "$1\t"; 
   }elsif ($line =~/Ref.*\s+(5'.*)/){ 
   print "$1\t";  
   }else{}} 
 
3. Assessment of SNPs within CPG islands  
use strict;use warnings; my $cpgisland = shift; my $mirna = shift; my $chromosome 

= shift; 
if (!defined($chromosome)){ 
 die "name of cpgisland file, mirna file, and target chromosome\n"; 
 } 
open MIR, $mirna; 
 while (my $line = <MIR>){ 
  chomp $line; 
  if ($line =~/(hsa\-mir\-\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)/){ 
   my $mir = $1; 
   my $mirchrom = $2;  
  if ($mirchrom eq $chromosome){ 
   my $start = $3; 
   my $end = $4; 
   open CPG, $cpgisland; 
   while (my $line = <CPG>){ 
    chomp $line; 
    if ($line =~/(\S+)\s+(\S+)\s+(\S+)/){ 
    my $chrom = $1; 
    my $cpgstart = $2; 
    my $cpgend = $3; 
  if (($mirchrom eq $chrom) && ($start > $cpgstart) && ($start < $cpgend)){ 
  #if (($mirchrom eq $chrom) && ($start < $cpgstart) && ($end > $cpgstart) 

&& ($end < $cpgend)){  
  # if (($mirchrom eq $chrom) && ($start > $cpgstart) && ($start < $cpgend) 

&& ($end > $cpgend)){    
    print 

"$mir\t$mirchrom\t$start\t$end\t$chrom\t$cpgstart\t$cpgend\n"; 
       }}}}}} 
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Appendix 6: Known miRNAs identified in Neuroblastoma  

#miRNA read count #miRNA read count 

hsa-let-7a 661  hsa-miR-30a 2621 

hsa-let-7b 635  hsa-miR-30c 226 

hsa-let-7e 126  hsa-miR-30d 2840 

hsa-let-7f 2472  hsa-miR-30e 921 

hsa-miR-1 1893  hsa-miR-3200-5p 68 

hsa-miR-101 141  hsa-miR-320a 2921 

hsa-miR-103 4730  hsa-miR-330-3p 1227 

hsa-miR-106a 1632  hsa-miR-342-3p 330 

hsa-miR-106b* 78  hsa-miR-361-5p 65 

hsa-miR-107 2560  hsa-miR-365* 384 

hsa-miR-10a 393  hsa-miR-3662 68 

hsa-miR-10b 64  hsa-miR-421 165 

hsa-miR-1254 152  hsa-miR-423-3p 4428 

hsa-miR-1255a 1146  hsa-miR-423-5p 9230 

hsa-miR-1269 160  hsa-miR-503 113 

hsa-miR-1285 108  hsa-miR-505* 63 

hsa-miR-1292 61  hsa-miR-548h 211 

hsa-miR-1301 968  hsa-miR-641 92 

hsa-miR-140-3p 953  hsa-miR-7 35355 

hsa-miR-146b-
5p 

258  hsa-miR-744 276 

hsa-miR-148a 1443  hsa-miR-877 291 

hsa-miR-148b 403  hsa-miR-9 386 

hsa-miR-148b* 194  hsa-miR-92a-1* 1916 

hsa-miR-151-3p 57  hsa-miR-92b* 385 

hsa-miR-15a 94  hsa-miR-93 98 

hsa-miR-17 177  hsa-miR-941 271 

hsa-miR-17* 6206  hsa-miR-34c-5p 47 

hsa-miR-181a 5288  hsa-miR-99b* 42 

hsa-miR-181b 4121  hsa-miR-425 41 

hsa-miR-181c 134  hsa-miR-548u 41 

hsa-miR-181d 944  hsa-let-7c 40 

hsa-miR-182 2064  hsa-miR-574-5p 40 

hsa-miR-186 172  hsa-miR-16-2* 39 

hsa-miR-191 5385  hsa-miR-148a* 38 

hsa-miR-192 95  hsa-miR-3131 38 

hsa-miR-193b* 99  hsa-miR-378 36 

hsa-miR-194 86  hsa-miR-548j 36 
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hsa-miR-196a 467  hsa-miR-320b 35 

hsa-miR-19b 252  hsa-miR-128 34 

hsa-miR-21 458  hsa-miR-181a* 34 

hsa-miR-2110 150  hsa-miR-25* 34 

hsa-miR-221 2226  hsa-miR-30a* 33 

hsa-miR-221* 1636  hsa-miR-3179 33 

hsa-miR-222 22997    

hsa-miR-26a 2108    

hsa-miR-27b 734    
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