
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2012

Parameter Tuning for Optimization Software
RadhaShilpa Koripalli
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Physical Sciences and Mathematics Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2862

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51289853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2862?utm_source=scholarscompass.vcu.edu%2Fetd%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Parameter Tuning for Optimization Software

Radha S Koripalli

Thesis submitted to the Faculty of the

Virginia Commonwealth University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematical Sciences, Statistics Concentration

J. Paul Brooks, David J. Edwards, Advisors

August, 2012

Richmond, Virginia

Keywords: optimal design, parameter tuning, optimization software

©2012, Radha S Koripalli

Parameter Tuning for Optimization Software

Radha S Koripalli

(ABSTRACT)

Mixed integer programming (MIP) problems are highly parameterized, and finding parameter

settings that achieve high performance for specific types of MIP instances is challenging.

This paper presents a method to find the information about how CPLEX solver parameter

settings perform for the different classes of mixed integer linear programs by using designed

experiments and statistical models. Fitting a model through design of experiments helps in

finding the optimal region across all combinations of parameter settings. The study involves

recognizing the best parameter settings that results in the best performance for a specific

class of instances. Choosing good setting has a large effect in minimizing the solution time

and optimality gap.

Contents

1 Introduction and Literature Review 1

1.1 Introduction . 1

1.2 Design of Experiments . 4

1.2.1 Optimal Designs . 7

1.3 D-Optimal Designs . 10

1.3.1 Algorithms for constructing D-Optimal Designs 10

1.4 Parameter Tuning and Benchmarking for Optimization Software 12

1.4.1 MILP Parameter Tuning . 17

2 Methodology 22

2.1 Introduction . 22

2.2 Method . 23

2.2.1 Building and Evaluating Model . 25

iii

2.2.2 Method for Limited Subset CPLEX Parameters Experiment 29

2.2.3 Method for Full Set CPLEX Parameters Experiment 29

2.2.4 Method for Pairwise coverage Heuristic 31

3 Results 34

3.1 CPLEX Results . 34

3.1.1 Limited Set Experiment . 35

3.1.2 Full Set Experiment . 43

4 Conclusions 50

A List of CPLEX parameters 58

B CPLEX Limited Case D-Optimal Model Profiler settings 69

C CPLEX Full Case D-Optimal Model Profiler settings 72

iv

List of Figures

1.1 Design of Experiments System . 4

2.1 JMP Result Report . 26

2.2 The Prediction Profiler . 27

2.3 The most desirable settings . 27

2.4 Options for Selecting the Number of Runs 28

2.5 Selection of important parameters from screening design result report for easy

class of instance . 30

3.1 Median solution time of limited set CPLEX parameters experiment for easy

instance . 38

3.2 Median Solution time of limited set CPLEX parameters experiment for medium

instance . 39

v

3.3 Average optimality gap of limited set CPLEX parameters experiment for

medium instance . 40

3.4 Average optimality gap of limited set CPLEX parameters experiment for hard

instance . 41

3.5 Parameter setting for the six parameters for Easy instance with solution time

as response . 42

3.6 Parameter setting for the six parameters for medium instance with optimality

gap as response . 42

3.7 Parameter setting for the six parameters for medium instance at different level

with optimality gap as response . 43

3.8 Parameter setting for the six parameters for medium instance with optimality

gap as response . 49

B.1 Parameter setting for the six parameters for easy instance with solution time

as response . 69

B.2 Parameter setting for the six parameters for medium instance with solution

time as response . 70

B.3 Parameter setting for the six parameters for medium instance with optimality

gap as response . 70

vi

B.4 Parameter setting for the six parameters for hard instance with optimality

gap as response . 71

C.1 Parameter setting for the six parameters for easy instance with solution time

as response . 72

C.2 Parameter setting for the six parameters for medium instance with solution

time as response . 73

C.3 Parameter setting for the six parameters for medium instance with optimality

gap as response . 73

C.4 Parameter setting for the six parameters for hard instance with optimality

gap as response . 74

vii

List of Tables

2.1 Six CPLEX parameters used for the limited case 24

3.1 Recommended settings and values by the model in CPLEX limited set exper-

iment . 36

3.2 Settings for the lowest response from design and response values in CPLEX

limited set experiment . 36

3.3 Recommended setting and values in pairwise coverage heuristic method . . . 36

3.4 Default setting and values . 37

3.5 Settings identified in full set experiment- easy class of instance with solution

time as the response . 44

3.6 Settings identified in full set experiment- medium class of instance with solu-

tion time as response . 45

3.7 Settings identified in full set- medium class of instance with average gap as

the response . 46

viii

3.8 Settings identified in full set experiment- hard class of instance with average

gap as the response . 47

3.9 Best values for pairwise method and default settings 48

A.1 CPLEX 59 parameters . 66

ix

Chapter 1

Introduction and Literature Review

1.1 Introduction

An optimization problem is the problem of finding the best solution from all feasible solutions.

Each individual unique optimization problem is termed as an instance. An instance of an

optimization problem is a pair (F, c), where F is any set, the domain of feasible points; c is

the cost function, a mapping

c : F −→ R1. (1.1)

The problem is to find an f ∈ F for which c(f) ≤ c(y) for all y ∈ F

Such a point f is called optimal solution.

Instances with the same constraints and objective functions are grouped into instance classes.

Each instance is associated with a set of solutions with a certain values. Solving the op-

timization problem is concerned with finding the best (or optimal) solution for each given

1

Radha S Koripalli Chapter 1. Introduction 2

instance, which is either the minimum (or maximum) value depending on the description of

optimization problem.

Different important optimization problems can be described as mixed integer linear pro-

gramming (MILP). The user must solve many instances of a certain class of MILPs, in

order to identify the best solver settings which results in considerable time savings. Within

MILP solvers, there are several parameters which control the execution of the underlying

algorithm and each parameter is assigned a specific value. A set of parameter values that

is assigned with one for each parameter when the solver is executed, is a setting. Finding

the best parameter settings can result in significant time savings. This paper presents the

best different (or optimal) settings for parameter values and class of instances which results

in time-savings. The MILP solver considered in this paper is CPLEX (CPL, 2009). The

collection of settings tested on a class of instances are termed designed experiments, consist-

ing of performing a predetermined set of runs (or settings) where the effects of a different

combination of parameters on a response is observed, which is considered as result of the

experiment. For each run, the factors are set by the experimenter to a predetermined quan-

tity called a level. The experiments are sometimes replicated for identifying the sources of

variation, to better estimate the true effects of treatments.

Design optimality involves choosing designs parameter settings that produce certain nice

characteristics in the results. Optimal designs allow parameters to be estimated without

bias and with minimum-variance. It also produces a design which provides a good fit, sta-

Radha S Koripalli Chapter 1. Introduction 3

bility of the prediction variance, small variances of the coefficients, detection of lack-of-fit,

guards against model misspecification and minimize the impact of small errors. Once the

designed experiment has been performed, the data is analysed by forming a mathematical

expression, or model, of the effects of the factors (or independent variables) on the response

(or dependent variables). A model is a mathematical expression that relates a function of the

factors to the response. To date, no rigorous analysis of integer programming parameter set-

tings has been conducted that accounts for the large number of categorical variables, forms

a model allowing for extrapolation, and does not require an unknown number of iterations

to arrive at a recommendation.

This work starts with the description of the basic principles of design of experiments (DOE)

(Section 1.2) which gives the brief overview about the concept of DOE and describes the

concept of optimal designs and Alphabetic optimality criteria. Section 1.3 describes a special

design type, the D-optimal design and the generation of the D-optimal design, which is

accomplished by the use of an exchange algorithm and is explained under algorithms for

the construction of D-Optimal design. Section 1.4 describes parameter tuning methods and

benchmarking metrics of , which briefly explains the methods used by different papers and

about the Selection Tool for Optimization Parameters (STOP) method (Baz et al., 2007)

and then discussed the set-up of our experiments (Section 2.2). Next, we report results

for both the limited experiment with subset of 6 parameters and the full experiment with

59 parameters methods and compare these results to the pairwise coverage heuristic results

(Section 3.1) and conclude with some general observations (Section 4).

Radha S Koripalli Chapter 1. Design of Experiments 4

1.2 Design of Experiments

There are two types of variables when we perform experiments: responses and factors. The

response gives us information about properties and general conditions of the studied system

or process. For example, the taste of a cake, fuel consumption of a car, etc. The factors

or the design variables, are our tools for manipulating the system. For example, amount of

flour in a cake mix recipe, exhaust gas re-circulation in a car engine, etc. Factors could be

either quantitative which may change according to a continuous scale or qualitative which

is a categorical variable, that can only assume certain discrete values.

Prior to conducting any experiments, the experimenter has to specify some input condi-

Figure 1.1: Design of Experiments System

tions: the number of factors, their range, number of responses and the experimental objective

Radha S Koripalli Chapter 1. Design of Experiments 5

(Eriksson, 2008). Considering the cake baking example we have our ingredients such as flour,

sugar, milk, eggs, etc. Regardless of the quality of these ingredients we still want our cake

to come out successfully. In every experiment there are inputs and in addition there are

factors (such as time of baking, temperature, geometry of the cake pan, etc.), some of which

we can control and others that we can’t control. The experimenter must think about factors

that affect the outcome. We also talk about the output and the yield or the response to our

experiment. For the cake, the output might be measured as texture, flavour, height, size, or

deliciousness, this process can be seen in Figure 1.1.

We generally want to center and scale (or code) our quantitative factors, or design variables,

such that the low level is represented by -1 and a high level is represented by +1. This

ensures they are scaled to lie in the [−1, 1] interval. Specifically, if a factor, X, has maximum

and minimum values xi,max and xi,min and takes values in a specified interval, as shown in

equation (1.2) (Atkinson, 2007).

xi,min ≤ xi ≤ xi,max(i = 1, 2, ..., k) (1.2)

where k is the number of factors. Then for any given value x, the coded variables are defined

by Montgomery (2008):

x′i =
(xi − xi0)
4i

, (1.3)

where

xi0 = (xi,min + xi,max)/2 (1.4)

Radha S Koripalli Chapter 1. Design of Experiments 6

and

4i = xi,max − xi0 = xi0 − xi,min. (1.5)

In order to understand how factors and responses relate to each other and to reveal which

factors are influential for which responses, it is favourable to calculate a polynomial model

of the form

y = f(x1, ..., xk) + ε (1.6)

where ε is a random error term, k is the number of factors and y is the response. Once a

function f() has been specified, the model matrix X that corresponds to the design matrix D

can also be defined (Montgomery, 2008). For example, if the model proposed is a first-order

polynomial with a constant (or intercept) term, then by defining βi as the coefficient for the

ith variable the proposed model is

y = β0 + β1x1 + β2x2 + ...+ βpxp + ε. (1.7)

We can extend the equation (1.7) to one with n number of responses and arrive at:

yi = β0 + β1x1i + β2x2i + ...+ βpxpi + εi, i = 1, ..., n, (1.8)

where yi stand for the response of the ith set of factors x1i,x2i....xpi. Equation (1.8) can also

be written in matrix notation as:

Y = Xβ + ε, (1.9)

where the n× (p+ 1) model matrix X contains all factors for responses, where n is the total

number of runs, p is the number of factors, 1 is counted for the intercept coefficient. Y and

ε are n×1 vectors. β are the regression coefficients of all the factors in X (Wu and Hamada,

Radha S Koripalli Chapter 1. Optimal Designs 7

2000).

Y =

y1

...

yn

 ,X =

1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...

1 xn1 xn2 · · · xnp

,β =

β1

...

βn

 , ε =

ε1

...

εn

 . (1.10)

1.2.1 Optimal Designs

Optimal design means a design that is “best” with respect to some statistical criterion (Mont-

gomery, 2008). In DOE for estimating statistical models, optimal designs allow parameters

to be estimated without bias, with minimum-variance and least number of experimental runs

to estimate the parameters (Atkinson, 2007). In practical terms, optimal experiments can

reduce the costs of experimentation by decreasing the number of experimental runs.

The optimality of a design depends on the statistical model and optimal designs are selected

based on maximizing (or minimizing) properties of transformations of the model matrix X

(Montgomery, 2008). These designs are assessed with respect to a statistical criterion, which

is related to the variance-covariance matrix (X ′X)−1 (Atkinson, 2007). Specifying an ap-

propriate model and specifying a suitable criterion function both require an understanding

of statistical theory and practical knowledge with designing experiments.

The minimizing or maximizing optimal criteria is expressed as a function of the moments

matrix, M(X) = X′X
n

. λ1, λ2, ..., λp are the eigenvalues of M(X) and are inversely propor-

Radha S Koripalli Chapter 1. Optimal Designs 8

tional to the square of the lengths of the axes of the confidence ellipsoid of the variable

coefficients. That is, the smaller λi (i is 1, 2, ..., p) is, the less confident we will be about

the variable coefficient estimate of the linear combination a′iβ̂ , where ai is the eigenvector

corresponding to λi and β̂ is the estimated coefficient(Atkinson (2007)).

There are many different optimal criteria, the mostly used criteria are mentioned below(Myers,

2009) :

Alphabetic optimality criteria

• A-optimality (average or trace)

◦ A-optimality criteria, seeks to minimizes the trace of the inverse of the information

matrix (X ′X). This criterion results in minimizing the average variance of the estimates

of the regression coefficients i.e., min
∑p

i=1
1
λi
.

• D-optimality (determinant)

◦ D-optimality which is one of the most popular criteria, seeks to minimize |(X ′X)−1|,

or which maximizes the determinant of the information matrix X ′X of the design. This

criterion results in minimizing the product of the generalized variances of the variable

coefficient estimates; i.e., minΠp
i=1

1
λi

• E-optimality (eigenvalue)

◦ E-optimality criteria, maximizes the minimum eigenvalue of the information matrix.

This criteria reduces the variance by minimizing the eigenvalues of (X ′X)−1; i.e., min

maxi 1
λi
.

Radha S Koripalli Chapter 1. Optimal Designs 9

Other optimality-criteria are concerned with the variance of predictions (Boyd, 2009):

• G-optimality (Global)

◦ A popular criterion is G-optimality, which seeks to minimize the maximum entry

in the diagonal of the hat matrix X(X ′X)−1X ′. This has the effect of minimizing the

maximum variance of the predicted values.

• I-optimality (integrated)

◦ A second criterion on prediction variance is I-optimality, which seeks to minimize

the average integrated prediction variance over the design space.

• V-optimality (variance)

◦ A third criterion on prediction variance is V-optimality, which seeks to minimizes

the average prediction variance over a set of m specific points

Since the optimality criterion of most optimal designs is based on some function of the

information matrix, the “optimality” of a given design is model dependent, this means there

can be first-order, second-order, etc. optimal designs. For example, an optimal design that

used a D-optimal criterion and the first order model would be termed a first-order D-optimal.

While an optimal design is best for a particular model, its performance may deteriorate on

other models. On other models, an optimal design can be either better or worse than a

non-optimal design. Therefore, it is important to benchmark the performance of designs

under alternative models.

Radha S Koripalli Chapter 1. D-Optimal Designs 10

1.3 D-Optimal Designs

Out of different design optimality criterion, the most widely used is the D-optimality cri-

terion. A design is said to be D-Optimal if |(X ′X)−1| is minimized. A D-optimal design

minimizes the volume of the joint confidence region on the vector of regression coefficients.

A measure of the relative efficiency of design 1 to design 2 according to the D-criterion is

given by:

De =

(
|(X ′2X2)

−1|
|(X ′1X1)−1|

) 1
p

(1.11)

where X1 and X2 are the X model matrices for the two designs and p is the number of model

parameters. Many popular software packages, including JMP, Design-Expert, and minitab

will construct D-Optimal designs.

1.3.1 Algorithms for constructing D-Optimal Designs

The usual way to construct optimal designs is to specify a model, determine the region of

interest, select the number of runs to make, specify the optimality criterion and then choose

the design points from a set of candidate points that the experimenter would consider using.

Usually the candidate points are a grid of points spaced over the feasible design region.

The alphabetically optimal design can be constructed analytically. One good example is the

2k design, which is D-, A-, G- and V-optimal for fitting a first order model in k variables or

for fitting a first order model with interaction. However, in most cases the optimal design is

not known, and a computer-based algorithm must be used to find the design.

Radha S Koripalli Chapter 1. D-Optimal Designs 11

Exchange Algorithms

Based on the complexity of the D-optimal designs and the huge number of possible combi-

nations of experiments, computer algorithms are used for the selection process.

An exchange algorithm selects the optimal design matrix X∗ by exchanging one or more

points from a generated start design and repeats this exchanges until the best matrix seems

to be found. The algorithms can be differentiated in two groups where a rank-1 algorithm

adds and deletes the points sequentially, and a rank-2 algorithm realizes the exchange by a

simultaneous adding and deleting process (Meyer and Nachtsheim, 1995).

Point Exchange algorithm is one of the design construction methods. The form of this al-

gorithm is, a grid of candidate points where an initial design from these points is selected.

Then the algorithm exchanges points that are in the grid but not in the design with points

currently in the design in an effort to improve the selected optimality criterion. As not every

possible design is evaluated, there is no guarantee that an optimal design has been found,

but the exchange procedure ensures that a design that is “close” to optimal results. Some

implementations repeat the design construction process several times, starting from different

initial designs, to increase the likelihood that a final design that is very near the optimal will

result (Montgomery, 2008).

Another way to construct optimal designs is with a coordinate exchange algorithm (Mont-

gomery, 2008). This method searches over each coordinate of every point in the initial design

recursively until no improvement in the optimality criterion is found. The procedure is usu-

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 12

ally repeated several times with each cycle starting with a randomly generated initial design.

See Meyer and Nachtsheim (1995) and Fabian (2008) for further details and discussion of

the Exchange algorithm.

1.4 Parameter Tuning and Benchmarking for Optimization Soft-

ware

The performance of optimization software improves if a few critical parameter values are

good. Which parameters are critical is decided by the class of instances. There are some

papers which show the effort made to find the best parameter settings for a variety of algo-

rithms.

Kohavi et al. (1995) describes the “Wrapper” method by considering the evaluation of the

best parameters as a discrete function optimization problem. This method uses best-first

search, which treats the parameter space as a set of connected nodes, and pursues the un-

visited successor node of visited nodes that has the best score and cross-validation to wrap

around the basic induction algorithm (Mitchell, 1982). The Wrapper method requires two

components, a search component which repeatedly suggests parameter settings and the eval-

uation component which evaluates these setting by running the induction algorithm several

times and getting an estimate of resulting accuracy. Also, this method is limited to numeric

or binary parameters.

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 13

Imbault and Lebart (2004) consider the parameter tuning for support vector machines

(SVMs),the results of which highly depends on the two parameters of the model: the scale

of the kernel and the regularization parameter. Estimating these parameters is referred to

as tuning.

Benchmark results from Imbault and Lebart (2004) suggests an improvement in the classi-

fication efficiency when compared to using no tuning at all and also this method is fairly

fast for even very large datasets. However, it has been observed that the initialisation of the

algorithm is crucial, i.e., bad initialization could lead to bad results.

The two techniques suggested by Imbault and Lebart (2004) to tune these parameters are

genetic algorithms and simulated annealing. These methods require a large number of suc-

cessive runs to be performed, each dependent on the results of previous runs and also, the

second technique, simulated annealing is restricted to continuous parameters. Both the

methods give similar results. Genetic algorithms tend to be faster. Simulated annealing

requires less parameter settings when compared to genetic algorithms. The main drawback

of these methods is their computational load.

Adenzo-Diaz (2004) developed the CALIBRA method for fine-tuning algorithms. This

method uses experimental design (Taguchi’s fractional factorial design) along with a lo-

cal search procedure to find the best values of the search parameters, but these values are

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 14

not guaranteed to be optimal. CALIBRA can also be used for searching the best possible

solution to a given problem instance, i.e., finding values for a set of parameters which pro-

vides the best possible answer to the problem of interest. This procedure consists of four

phases:

1. Perform a 2k full factorial experiment, with each parameter restricted to two extreme

values, using the results to identify the most important parameter.

2. Determine the initial solution for the local search. The local search uses the L9(3
4) design,

which can handle a maximum of 4 parameters, if the parameters are more than four, the

remaining parameters other than 4 are fixed to a chosen value.

3. Perform local search to find the optimal values of the parameters by incrementally reduc-

ing the range of parameters until the range converges to a single point.

4.Check if more experiments can be performed within the allotted budget. If a new search

is possible then it again starts the new search from step 2.

Audet et al. (2006) consider using mesh adaptive direct search for searching through the po-

tential parameters, which iteratively searches over a decreasing area of the parameter space.

It depends on the distance between parameters value, which does not apply to categorical

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 15

factors. This iterative search requires an unknown number of steps to find a minimum. Au-

det et al. (2006) used Black-Box approach for parameter estimation, which selects value for

the parameter which seems to perform better which can be specified by the user. In a way it

is beneficial as it allows user to use their full knowledge of the context to design appropriate

test sets and performance measures.

Hutter et al. (2009) consider different procedures based on Gaussian process models for op-

timizing the performance of parametrised, randomised algorithms. Hutter et al. (2009) re-

ferred to two approaches, sequential parameter optimisation (SPO) (Bartz-Beielstein, 2006)

and sequential kriging optimisation (SKO) (Huang, 2006); both approach were evaluated. A

Latin hyper-cube (LHD) design for the parameters is generated for both the models, and a

Gaussian process model is fit to the results. A new set of runs is then selected based on the

expected improvement, and the process repeats until a specified number of iterations have

completed, or negligible improvement is found in the Gaussian process model. This process

requires a large number of runs to make a recommendation, and finally, the performance of

SPO resulted in being more robust than SKO. The models used may not result in good ex-

trapolation properties, as Gaussian process models does not attempt to model points which

are not tested, and so the process may or may not estimate performance well at points which

are not explicitly tested.

Benchmarking is an important tool in the evaluation and development of solvers for mathe-

matical programming problems, in uncovering solver deficiencies, and in the quality assurance

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 16

process of mathematical programming software.

Hans D. Mittelmann (2006) developed an online server PAVER to help facilitate and au-

tomate performance analysis and visualization of benchmarking data taking into account

various performance metrics like robustness, efficiency and quality of solution. PAVER pro-

vides simple online tools for automated performance analysis, visualization, and processing

of benchmarking data. Benchmark data obtained by running several solvers over a set of

models can be automatically analyzed via online submission to the PAVER server. A de-

tailed performance analysis report is returned via e-mail in HTML format and is also initially

available online.

PAVER accepts benchmarking data in the form of GAMS trace files or generic data files,

where each data file contains data for a single solver over a model test set. Users submit

their data files via the online (worldwide web) submission tool at:

http : //www.gamsworld.org/performance/paver/pprocess_submit.htm.

The tool accepts the submission of up to eight data files, automatically performing cross

comparisons of each solver with respect to every other solver. After submission, the data

files are analyzed for correctness and formatting. If a data file does not have the proper

format, users receive an error message online. Provided the data files are valid, a scheduler

is invoked, which schedules the performance analysis job for a particular workstation. The

scheduling task takes the form of optimizing a mixed integer program, taking into account

current workstation workloads. The data files are then sent from the server to the next

available workstation specified by the schedule. The performance analysis is completed and

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 17

the results returned to the server. The server then sends the results via e-mail attachment

to the user.

The tools available in PAVER allow either direct comparisons between two solvers or compar-

isons of more than two solvers simultaneously. The solver square and resource time utilities

belong to the former and the performance profile utility to the latter. Because solvers use

different optimality metrics (measurements of optimality) and feasibility, the comparison of

benchmarking data from different solvers is inherently imprecise. It may be useful to verify

the solution provided by each solver using the same optimality and feasibility criteria. This

additional measure still does not guarantee a completely fair comparison.

1.4.1 MILP Parameter Tuning

Linear programming (LP or Linear optimization) is a mathematical method for getting the

best results in a given mathematical model for some different set of requirements represented

as linear relationship. If some of the unknown parameters are required to be integers, then

the problem is called Mixed Integer Linear Programming problem. A common approach

to modeling optimization problems with discrete decisions is to formulate them as mixed

integer optimization problems. Such a problem is called a mixed integer linear optimization

problem (MILP) (Nemhauser and Wolsey, 1988). Tuning different parameters concerned in

solving MILP problems results in considerable reductions in solve time.

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 18

STOP Methods

Baz et al. (2007) implement a method Selection Tool for Optimization Parameters (STOP)

for tuning software parameters using ideas from software testing and machine learning, which

reports the best settings of a parameter by trying a number of settings on representative

instances. The tests of methods are presented on three MILP solvers: CPLEX, CBC, and

GLPK. Out of these tests, the STOP method finds parameter values that outperform the

default values. Baz et al. (2007), also exhibit that significant reductions in solution times

can be made by considering the combination of heuristic and machine learning techniques.

With STOP 31% to 88% of improvement in total run time over default performance was

generally observed. This method attempts to find good parameter values using a relatively

small number of optimization trials, but as it tries many settings of a parameter this method

requires a significant investment of computer time, though it requires very little of the users

time. The general steps (Baz et al. ,2007) for STOP method are:

1. Select the initial settings of set of parameters using random, greedy heuristic or pairwise

coverage.

2. Record different metrics by running the solver on the initial settings selected above.

3. Use machine learning(either regression trees and artificial neural networks) to identify

additional settings based on the initial data obtained from the above two steps.

4. Record the results by running the solver on the additional settings obtained from step 3.

5. Output the best observed settings.

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 19

There are three methods used in step 1 (Baz et al., 2007) for selecting the initial settings:

random, greedy heuristic and pairwise coverage. The random selection of initial settings is

done by selecting the each value of a parameter randomly. This method is easy to execute

but might miss some interactions.

For the greedy heuristic method (Baz et al., 2007), initial settings are selected randomly

and then for each additional settings, all the possible combinations of settings are compared

with the already selected initial settings based on minimizing the number of parameters in

common. Then this method iteratively selects settings. Then again new settings are chosen

by minimizing the maximum number of parameter values in common with any individual

previously selected setting. Ties are broken based on the setting with the minimum sum of

parameter values in common with all previously selected settings. This method could become

complex for the large number of parameters as it requires extensive search of possible settings.

The pairwise coverage method used an algorithm from Cohen et al. (1997), which can gen-

erate a pairwise coverage test set where all pairs of parameter settings appear at least twice.

This test is used in identifying programming errors that are revealed when two parameter

values interact.

Step 3, i.e., machine learning, is an optional part of the algorithm. This method is used

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 20

to get the useful information from the initial settings to direct the selection of additional

settings by constructing good probabilistic models. Baz et al. (2007) suggests using either of

the two machine learning methods: regression trees or artificial neural networks. Regression

trees are used to find the two settings that had the largest effect in minimizing the solution

time. They are used as a non-parametric method regression. In linear regression, Regression

trees are used to identify the relationship between a continuous dependent variable and inde-

pendent variables. (See Breiman et al. (1984) for more details on Regression trees). Neural

networks are used to predict the response at every single point in the parameter space to

identify further points to test. This method is not suitable for extremely large parameter

space.

The STOP software in Baz et al. (2007) used only one metric TIME-TO-OPTIMALITY,

to optimize the parameter settings. TIME-TO-OPTIMALITY is the total time required to

solve an MILP instance optimally within the tolerance of the solver. Baz et al. (2009) ex-

tended the work of Baz et al. (2007) by considering two additional metrics, PROVEN-GAP

at time t and BEST-INTEGER-SOLUTION at time t. These two metrics are useful for the

users who may not need the optimal solution, which can reduce extensive use of computer

effort and may need a good quality solution within a reasonable period t. When settings

obtained from STOP with the TIME-TO-OPTIMALITY metric were used, the average im-

provement is larger than 55.01% for MIPLIB instances and with PROVEN-GAP metric

within 600 and 3600 seconds, average improvement is 58.35% and 65.53% respectively. With

the BEST-INTEGER-SOLUTION metric within 600 and 3600 seconds, it is up to a 35.33%

Radha S Koripalli Chapter 1. Parameter Tuning and Benchmarking for Optimization Software 21

and 38.24% improvement respectively. For more details on the computation part, see Baz et

al. (2009).

Chapter 2

Methodology

2.1 Introduction

Mixed integer programming (MIP) solvers have a large set of parameters which give users

control over a wide range of design choices. The MILP solver considered in this paper is

CPLEX (CPL, 2009)–a widely used commercial MIP solver. We use design of experiments

and statistical modelling to find the settings of the CPLEX solver parameters. Model fitting

can also explain the effects of the parameters through which we can identify the desirable and

bad settings. The two metrics considered in this paper are solution time and optimality gap.

Solution time is the CPU time required to achieve provable optimality and it is measured in

centi-seconds (cs). Gap is often given as a indicator of a solution to an MIP problem, and

for minimization problems gap is calculated as

G =
U − L
U

, (2.1)

22

Radha S Koripalli Chapter 2. Methodology 23

where G is the optimality gap, for minimization, U represents the best-known upper bound

on the optimal objective value and L represents the best-known lower bound on the optimal

objective value. Gap is measured in percentage (%), so it is always positive. Better solution

is found, when the gap is smaller.

The three instance classes considered are telecommunication network design problems (easy)

with 20 instances with solution time as the response from Yasser Tanvir (2009), cellular

metabolism instance class (medium) with 5 instances with solution time or optimality gap as

the response from Brooks et al. (2012) and MIPLIB subset problem (hard) with 3 instances

with optimality gap as response from Thorsten Koch et al. (2011). These instances were

used in our research on the basis of the perl script used by Charles(2010).

2.2 Method

Using the CPLEX 12.0 “parameters reference manual”, we identified 59 parameters (shown

in Appendix A) that can be modified in order to improve performance. The 59 parameters

we selected affect all aspects of CPLEX. They include 17 preprocessing presolve parame-

ters (mostly categorical); 15 MIP best bound strategy parameters (mostly categorical); 16

categorical parameters deciding how aggressively to use which types of cuts, cuts are con-

straints added to a model to restrict (cut away) non-integer solutions that would otherwise

be solutions of the continuous relaxation. The addition of cuts usually reduces the number

of branches needed to solve a MIP, and 11 simplex parameters. Most parameters have an

Radha S Koripalli Chapter 2. Methodology 24

“automatic” option as one of their values, which is a default value. We allowed this value,

but also included other values (for categorical parameters).

After the solver, instance class and the set of parameters of interest has been chosen, two

cases are considered:

1) a limited subset of 6 CPLEX parameters used by Baz et al. (2007), which can be seen in

Table 2.1 and

2) the full set of 59 parameters available to CPLEX (shown in Appendix A).

Table 2.1: Six CPLEX parameters used for the limited case

Parameter Levels Description

MIP emphasis [0,1,2,3,4] Controls trade-offs between speed,

feasibility, optimality and

moving bounds in MIP

Node selection [0,1,2,3] Sets the rule for selecting the next node

to process when backtracking

Branching var. sel. [-1,0,1,2,3,4] Sets the rule for selecting the

branching variable at the node

which has been selected for branching

Dive type [0,1,2,3] Controls the MIP dive strategy

Fractional cuts [-1,0,1,2] Decides whether or not Gomory fractional

cuts should be generated for the problem

MIR cuts [-1,0,1,2] Decides whether or not to generate MIR

cuts for the problem

The solution time and optimality gap is obtained by running the design runs for different

Radha S Koripalli Chapter 2. Methodology 25

instances through jobs submission on a Beowulf Linux cluster, which uses Sun Grid Engine

to submit the jobs with identical nodes,i.e., four 2.6GHz processors with 4GB RAM. The

Sun Grid Engine (SGE) is a queue and scheduler that accepts jobs and runs them on the

cluster for the user. SGE has a large set of programs that let the user submit/delete jobs,

check job status, and have information about available queues and environments. SGE has

the following advantages:

• Scheduling - allows us to schedule a virtually unlimited amount of work to be performed

when resources become available. This means we can simply submit as many tasks (or jobs)

as we like and let the queuing system handle executing them all.

• Load Balancing - automatically distributes tasks across the cluster such that any one node

doesn’t get overloaded compared to the rest.

• Monitoring/Accounting - ability to monitor all submitted jobs and query which cluster

nodes they are running on, whether they are finished, encountered an error, etc. Also allows

querying job history to see which tasks were executed on a given date, by a given user, etc.

2.2.1 Building and Evaluating Model

To build and evaluate the models a statistical software package called JMP is used. JMP

includes an array of statistical platforms that helps in building robust models for our data.

With methods for revealing relationships among variables in a process, JMP allows us to not

only make predictions but also to identify settings for factors that yield better performance.

The steps below explains how the settings are selected through profiler:

Radha S Koripalli Chapter 2. Methodology 26

1. For building a model in JMP, click Analyze in the task bar and then select Fit Model in

the drop down menu and then add response and factors to the corresponding fields and click

Run, this will generate the report as shown in Figure 2.1.

2. Select Prediction Profiler from the red triangle menu on the report title bar (Figure 2.1).

Figure 2.1: JMP Result Report

Scroll to the bottom of the report to open the Prediction Profiler. Open it by clicking the

disclosure button beside the Prediction Profiler title bar. The Profiler (Figure 2.2) displays

prediction traces for each parameter.

3. Click the red triangle icon in the Prediction Profiler title bar and select Desirability Func-

tions, which is to select the desirable response, i.e., if we want to minimize the response, we

Radha S Koripalli Chapter 2. Methodology 27

Figure 2.2: The Prediction Profiler

can select the desirability as minimum, otherwise by default it is set at maximum, which

is to maximize the response. Now select set desirability from the same drop down list and

Select the response goal as minimize desirability, as we seek our response solution time or

optimality gap to be minimum.

4. Click the red triangle icon in the Prediction Profiler title bar and select Maximize Desir-

ability. JMP automatically adjusts the graph to display the optimal settings (Figure 2.3).

Figure 2.3: The most desirable settings

The number of runs for constructing a first order or second-order model is suggested by JMP

- Design Generation panel. The Design Generation panel (Figure 2.4) shows the minimum

Radha S Koripalli Chapter 2. Methodology 28

number of runs needed to perform the experiment based on the effects we have added to the

model.

The Design Generation panel has the following options for selecting the number of runs we

want (Figure 2.4) (JMP,2005):

• Minimum is the smallest number of terms that can create a design. When you use Mini-

Figure 2.4: Options for Selecting the Number of Runs

mum, the resulting design is saturated (no degrees of freedom for error). This is an extreme

choice that can be risky, and is appropriate only when the cost of extra runs is prohibitive.

• Default is a custom design suggestion for the number of runs. This value is based on

heuristics for creating balanced designs with a few additional runs above the minimum.

• User Specified is a value that specifies the number of runs we want.

Radha S Koripalli Chapter 2. Methodology 29

2.2.2 Method for Limited Subset CPLEX Parameters Experiment

A total of 7680 settings of full-factorial design, with all the 6 CPLEX important parameters

used by Baz et al. (2007) are submitted as jobs using SGE to obtain the solution time and

optimality gap, these settings are independent of each other. Then for each combination

of settings of 7680 runs, the median of the solution time and average of optimality gap is

calculated. Median is considered for the solution time as it is a good measure when some of

the values for solution time are missing for the settings, as for the missing settings average

is not a good measure and average is considered for the optimality gap, as the gap for

the settings which achieves provable optimality for some settings is zero and when we log

transform, zero is invalid and also average tend to stabilize the variance. These results for

solution time and optimality gap are then used to find the possible outcomes for the optimal

designs.

The below process is followed to identify best settings:

Optimal Design: Construct a second-order D-optimal and I-Optimal designs to fit a second-

order regression model with the 6 CPLEX important parameters using JMP, and identify

which settings give the best performance and get the actual values for the solution time and

optimality gap for these settings from the full factorial results.

2.2.3 Method for Full Set CPLEX Parameters Experiment

Below process is followed to identify important parameters and best settings:

1. Screening : Construct a first-order D-optimal design with the two extreme levels of all the

Radha S Koripalli Chapter 2. Methodology 30

59 CPLEX parameters using JMP and identify the most influential parameters, by selecting

the parameters with p-value less than 0.1 from the JMP results report. For example, Fig-

ure 2.5 shows the screening design results report with sorted parameter estimates and the

p-value for the easy class of instance. The first six parameters shows the p-value as less than

0.1, these first six parameters were selected as the important parameters for the follow-up

design for easy instance class (section 3.1.2), as shown in the Figure 3.5.

Figure 2.5: Selection of important parameters from screening design result report for easy class of instance

2. Follow-up design: Construct a second-order D-optimal design in JMP to fit a second-order

regression model with the best influential parameters selected in the first step and identify

which settings give the best performance and then find the actual values for the solution

time and optimality gap for these settings by running the job using SGE.

The models fitted in the both the limited and full set experiments discussed above, are the

Radha S Koripalli Chapter 2. Methodology 31

linear regression models. The response used in the models is the log of the median over the

solution time of each instance of an instance class i.e., for easy median over the 20 instances

of each run, for medium median over 5 instances and for hard median of solution time over

3 instances and average gap. Both the response are log transformed, in order to reduce the

effects of increased variance in solution time and optimality gap as they both increases. For

easy class of instance, solution time is the only response considered; for medium solution

time and optimality gap are considered as two responses treated separately and for hard

optimality gap is considered as the only response.

In the follow-up step of full set experiment, the second-order model consists of all the main

effects and the second order interactions. For example, if we consider a second-order model

with two parameters x1 and x2, the model looks like the equation (2.2).

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi, i = 1, 2, ..., n. (2.2)

where y is the response variable, β0 is the intercept, β1,β2 are the coefficient of estimates for

the two factors x1 and x2, β3 is the coefficient of estimate for the interaction term x1x2, which

explains the interaction between the two factors x1 and x2 and if this term is significant,

then the effects of one factor depends on the level of the other.

2.2.4 Method for Pairwise coverage Heuristic

The best settings recommended in the limited and full set experiments are compared to the

pairwise heuristic method. pairwise heuristic method attempts a number of settings on each

Radha S Koripalli Chapter 2. Methodology 32

class of instance and reports the best setting observed.

When pairwise heuristic is compared to limited set experiment, the settings for pairwise

heuristic is generated by pairwise coverage algorithm with the six important parameters. In

Pairwise coverage method, an algorithm from Cohen et al. (1997) is used to generate the

pairwise coverage test sets. The objective of this algorithm is to have all pairs of parameter

values appear at least twice in settings. If the number of settings needed is higher than the

number the user allows, then we step down to the easier constraint that all pairs appear at

least once.

To get the actual solution time and the optimality gap, the settings obtained from the

pairwise heuristic are then extracted from the 7,680 settings from the full-factorial design

discussed in section 2.2.2 for easy, medium and hard class of instances. Then the best set-

tings for the pairwise heuristic can be obtained by getting the lowest value for the solution

time from all set of pairwise settings for easy and medium instance classes and lowest value

for optimality gap from all set of pairwise settings for medium and hard instance classes.

When pairwise heuristic is compared to full set experiment, the settings for pairwise heuristic

is generated by pairwise coverage algorithm with the all the 59 parameters. In this case,

for additional settings greedy heuristic can’t be used to reach the specified number of ini-

tial settings, because this method is intractable for the large set of parameters. Greedy

heuristic method selects the first settings randomly and then for each additional setting,

all possible settings are compared with the already selected settings. For each possible set-

ting, the number of parameter values in common with each of the already-selected settings

Radha S Koripalli Chapter 2. Methodology 33

are considered. Then the new setting that minimizes the maximum number in common

are chosen. This complete process is very difficult for large set of parameters, due to which

only pairwise coverage algorithm is used to generate all the settings in the full set experiment.

Chapter 3

Results

3.1 CPLEX Results

The results for both limited and full set experiments are shown in this section and these

results are compared to the pairwise selection heuristic method (Cohen et al., 1997), as it

also attempts to find better parameter settings for MIP solvers, and does not require an

open-ended number of iterations.

Optimal design can be a better choice for a user than the pairwise coverage, as with the

pairwise coverage one may not be able to fit a statistical model. In the case of optimal

design, the best runs from the design region are generated with a user specified model and

an optimality-criterion i.e., we can enforce constraints. Optimal designs such as a D-optimal

design minimize the volume of the joint confidence region of the regression coefficients.

Optimal design often requires fewer runs than a traditional design.

34

Radha S Koripalli Chapter 3. CPLEX Results 35

3.1.1 Limited Set Experiment

The process from method for the limited set experiment from section 2.2.2 are performed.

Considering the six important categorical CPLEX parameters- 4 parameters with 4 values

each and 2 parameters with 5 and 6 values each, results in a total of 7,680 potential combina-

tions of settings. All the 7,680 settings are then run on three instance classes easy, medium

and hard with 20, 5 and 3 instances respectively.

For constructing a D-optimal design with the six critical parameters mentioned in Table

2.1, a minimum of 204 runs are needed to fit a second order model with the main effects

and two factor interactions, we selected 240 runs, which is greater than the minimum runs

required, suggested by JMP -Design Generation panel as the default runs. With the 240

runs a second-order regression model is fit to the log of the median solution times across the

20 and 5 instances of easy and medium class of instance respectively and also a second-order

regression model is fit to the log of the average gap across the 5 and 3 instances of medium

and hard class of instance respectively. These models includes all the parameter levels for

each of the six CPLEX parameters considered, and with all main effects and two factor

interactions.

Then the second-order model is used to identify the setting that would give the faster pre-

dicted solution time for easy and medium and smaller optimality gap for medium and hard

class of instances though profiler and the recommended settings are shown in Table 3.1 be-

low. Also, settings with the lowest response from the design are shown in Table 3.2. Then

the CPLEX limited experiment recommendations are compared with pairwise method. In

Radha S Koripalli Chapter 3. CPLEX Results 36

Table 3.1: Recommended settings and values by the model in CPLEX limited set experiment

Instance(Value Type) MIPEmphasis NodeSels VarSels DIVtypes FracCuts MIRCuts Value

Easy(time) 1 1 4 1 2 0 0.765s

Medium(time) 2 2 -1 0 1 -1 20.99s

Medium(gap) 2 1 0 0 2 2 7.73%

Hard(gap) 4 1 4 1 1 1 47.116%

Table 3.2: Settings for the lowest response from design and response values in CPLEX limited set experiment

Instance(Value Type) MIPEmphasis NodeSels VarSels DIVtypes FracCuts MIRCuts Value

Easy(time) 1 1 3 1 -1 0 0.745s

Medium(time) 2 3 4 1 1 0 18.61s

Medium(gap) 2 1 0 0 2 1 7.07%

Hard(gap) 4 2 3 2 0 2 44.207%

pairwise method, 60 runs are selected using pairwise heuristic algorithm (Cohen et al., 1997),

and the fastest run in each of the sets was identified for easy and medium class of instance

and smallest average gap was selected for medium and hard class of instance. The results

are shown in Table 3.3 below.

Table 3.3: Recommended setting and values in pairwise coverage heuristic method

Instance (Value Type) MIPEmphasis NodeSels VarSels DIVtypes FracCuts MIRCuts Value

Easy(time) 1 0 3 0 -1 1 0.75s

Medium(time) 2 0 0 3 1 1 18.22s

Medium(gap) 2 1 4 3 -1 2 8.5807%

Hard(gap) 4 1 2 3 2 0 44.1409%

The solution time and optimality gap for the default settings obtained for the six CPLEX

Radha S Koripalli Chapter 3. CPLEX Results 37

parameters can be seen in Table 3.4

Table 3.4: Default setting and values

Instance (Value Type) MIPEmphasis NodeSels VarSels DIVtypes FracCuts MIRCuts Value

Easy(time) 0 1 0 0 0 0 0.99s

Medium(time) 0 1 0 0 0 0 1216.60s

Medium(gap) 0 1 0 0 0 0 19.8855%

Hard(gap) 0 1 0 0 0 0 82.2146%

Comparison

By comparing the results for CPLEX limited, pairwise coverage and default settings for the

six parameters, the results are shown in the plots, easy in Figure 3.1, medium with solution

time as the response in Figure 3.2, medium with optimality gap as the response in Figure

3.3 and hard with optimality gap as the response in Figure 3.4 instances. The x-axis in

the plots indicate the ordered runs and y-axis indicates the median solution time or average

optimality gap.

By looking at all the plot results, it is clear that recommendations from the fitted model

and pairwise coverage heuristic does much better than the defaults. Also, there is not much

difference between the recommendations of the pairwise coverage heuristic and the use of

optimal models.

In case of easy class of instances, from Figure 3.1, pairwise coverage method does slightly

better than the CPLEX model recommended settings, but the lowest setting from the design

runs does better than pairwise method; these settings are obtained by selecting the lowest

Radha S Koripalli Chapter 3. CPLEX Results 38

Figure 3.1: Median solution time of limited set CPLEX parameters experiment for easy instance

value for the response (i.e., minimum solution time) from the design runs.

For medium class of instance, with solution time as the response (Figure 3.2), pairwise

method does better than both the model recommended and the settings selected from the

design runs. Medium class, with optimality gap as the response, from Figure 3.3, model and

the lowest settings from design does better than the pairwise method.

In case of hard class of instance, with optimality gap as the response (Figure 3.4), pairwise

method recommendations is better than the model recommended settings and pairwise is

Radha S Koripalli Chapter 3. CPLEX Results 39

Figure 3.2: Median Solution time of limited set CPLEX parameters experiment for medium instance

comparable with settings from the design, both settings produce almost the same desirable

response.

CPLEX model also has the added benefit of providing information about the effects of the

parameters on solution time or gap across the instance class, for example, Figure 3.5 for easy

class of instances is shown, which indicates the best settings as (1 1 4 1 2 0) for the corre-

sponding six parameters, as this setting generates the best solution time, these setting are

Radha S Koripalli Chapter 3. CPLEX Results 40

Figure 3.3: Average optimality gap of limited set CPLEX parameters experiment for medium instance

obtained by following the steps mentioned in section 2.2.1. The effect of the parameters can

also be explained from the profiler in Figure 3.5; MIP emphasis switch parameter provides

the best solution time at level 1 and when it is set at level 3, solution time is increasing,

indicates that level 3 is not the good setting for the parameter MIP emphasis switch. Sim-

ilarly, the parameter MIP variable selection strategy provides the best solution time when

set at level 4 and solution is large at level 2, which indicates level 2 is not a good setting for

the parameter MIP variable selection strategy. The effects of the remaining parameters can

Radha S Koripalli Chapter 3. CPLEX Results 41

Figure 3.4: Average optimality gap of limited set CPLEX parameters experiment for hard instance

also be attained in the similar way by looking at the profiler.

The Prediction Profiler is a way to interactively change levels of a parameter and look at the

effects on the predicted response. For example, from the Figure 3.6, the best settings are (2

1 0 0 2 2), as it gives the best optimality gap, these settings are obtained by following the

steps from the section 2.2.1 and also we can say that the parameter MIP emphasis switch

provides the desirable result when set at 2, as the log(Gap) for the settings (2 1 0 0 2 2)

Radha S Koripalli Chapter 3. CPLEX Results 42

Figure 3.5: Parameter setting for the six parameters for Easy instance with solution time as response

Figure 3.6: Parameter setting for the six parameters for medium instance with optimality gap as response

in the Figure 3.6 shows -3.26202 which is same as optimality gap of 3.83%. Move the red

dotted lines to see the effect that changing the parameters value has on the response. Click

the red line in the time graph and drag it right and left to see the effect. When the dotted

red line for the parameter MIP emphasis switch is moved to 1, i.e., for setting (1 1 0 0 2 2)

Figure 3.7 indicates the log(Gap) as -2.03526, which is same as optimality gap of 13.064%,

which clearly shows the large percent of increase in optimality gap, this suggests that the

level 1 is not a recommended setting for the parameter MIP emphasis switch. In the similar

way, we can also check the effects for the other parameters. For all the remaining class of

instances, the profiler results are explained in Appendix C.

Radha S Koripalli Chapter 3. CPLEX Results 43

Figure 3.7: Parameter setting for the six parameters for medium instance at different level with optimality

gap as response

3.1.2 Full Set Experiment

All the 59 CPLEX parameters in Appendix A are considered in the full case and the method

for full case mentioned in the section 2.2.3 is applied. In the screening design, for constructing

a D-optimal design by considering the two extreme levels of all 59 parameters, a minimum

of 60 runs are needed to fit a model with all the main effects. We selected 64 runs, which

is greater than the minimum runs required, suggested by JMP -Design Generation panel as

the default runs.

The important parameters selected from the screening design are different for each class of

instance, due to which the number of runs for constructing the follow-up design varies for

all the three class of instances.

Radha S Koripalli Chapter 3. CPLEX Results 44

Table 3.5: Settings identified in full set experiment- easy class of instance with solution time as the response

Easy(Time) Best settings

CPX_PARAM_SIFTALG 0

CPX_PARAM_HEURFREQ -1

CPX_PARAM_SUBALG 0

CPX_PARAM_PREIND 1

CPX_PARAM_REDUCE 1

CPX_PARAM_THREADS 1

Solution time (s) 0.6

Solution Time

Easy Class of Instance

For the easy instance, the important parameters selected from the screening design are shown

in Table 3.5, parameter selection process is shown in section 2.2.3. With these parameters

a follow-up second-order D-optimal design is constructed. For constructing the design, a

minimum of 134 runs are needed to fit a second order model with all the main effects and

two factor interactions, we selected 144 runs, suggested by JMP -Design Generation panel

as the default runs. A second-order regression model is fit to the log of the median solution

times across the 20 instances.

Then the second-order model is used to identify the setting that would give the faster pre-

dicted solution time and the recommended settings for easy class of instance are shown in

Table 3.5 The value obtained for this setting is 0.6s.

Radha S Koripalli Chapter 3. CPLEX Results 45

Table 3.6: Settings identified in full set experiment- medium class of instance with solution time as response

Medium(Time) Best settings

CPX_PARAM_AGGCUTLIM 100

CPX_PARAM_REINV 10000

CPX_PARAM_HEURFREQ 100

CPX_PARAM_DEPIND 0

CPX_PARAM_PREIND 0

CPX_PARAM_THREADS 2

Solution time (s) 16

Medium Class of Instance

For the medium instance, the parameters selected are shown in Figure 3.6, for constructing

a second-order D-optimal model, a minimum of 201 runs are needed, we used 240 runs,

suggested by JMP -Design Generation panel as the default runs and a second-order regression

model is fit to the log of the median solution times across the 5 instances. The model includes

all the main effects and the second order interaction terms of the six CPLEX parameters

considered.

Then the second-order model is used to identify the setting that would give the faster pre-

dicted solution time and the recommended settings for medium in Table 3.6. The value

obtained for this setting is 16s.

Radha S Koripalli Chapter 3. CPLEX Results 46

Table 3.7: Settings identified in full set- medium class of instance with average gap as the response

Medium(Gap) Best settings

CPX_PARAM_AGGCUTLIM 10000

CPX_PARAM_BRDIR -1

CPX_PARAM_HEURFREQ 10

CPX_PARAM_BNDSTRENIND 0

CPX_PARAM_MIPCBREDLP 0

CPX_PARAM_THREADS 4

Optimality gap 4.86%

Optimality Gap

Medium Class of Instance

Medium class of instance is again considered for optimality gap. A follow-up second-order

D-optimal design is constructed with the important parameters selected from the screening

design, shown in Table 3.7. A minimum of 133 runs are required to construct a second-order

model with main effects and the interaction terms of the six parameters selected in screening

design. we selected 180 runs, which is more than the minimum required runs, suggested by

JMP - Design Generation panel and a second-order regression model is fit to the log of the

average optimality gap across the 5 instances.

Then the second-order model is used to identify the setting that would give the smaller

optimality gap and the recommended settings for medium class of instance are shown in

Table 3.7. The values given for this settings is 4.86%.

Radha S Koripalli Chapter 3. CPLEX Results 47

Table 3.8: Settings identified in full set experiment- hard class of instance with average gap as the response

Hard(Gap) Best settings

CPX_PARAM_MIPEMPHASIS 1

CPX_PARAM_NODESEL 1

CPX_PARAM_AGGCUTLIM 100

CPX_PARAM_FRACCAND 10

CPX_PARAM_HEURFREQ 10

CPX_PARAM_REDUCE 3

Optimality gap 74.86%

Hard Class of Instance

A follow-up second-order D-optimal design is constructed with the important parameters

selected from the screening design, shown in Table 3.8. A minimum of 183 runs are required

to construct a second-order model with main effects and the interaction terms. we selected

240 runs, which is more than the required runs, suggested by JMP - Design Generation panel

and a second-order regression model is fit to the log of the average optimality gap across the

3 instances.

Then the second-order model is used to identify the setting that would give the smaller

optimality gap and the recommended settings for hard class of instance is shown in Table

3.8. The values given for this settings is 74.86%.

Radha S Koripalli Chapter 3. CPLEX Results 48

Comparison

Then the CPLEX Full case results are compared with pairwise method. For this, 143 runs

generated by pairwise selection algorithm (Cohen et al., 1997) with all the 59 parameters,

and the fastest run in each of the sets was identified for easy and medium class of instance

and smallest average gap was selected for medium and hard class of instance. The faster

predicted solution time and smaller gap for the default settings are also noted for the 59

CPLEX parameters.

The values for pairwise method, CPLEX Full case model and default values for all the three

classes of instance can be seen in Table 3.9.

Table 3.9: Best values for pairwise method and default settings

Class of Instance Pairwise method values CPLEX Full case model values default settings values

Easy(time) 0.55s 0.60s 1.02s

Medium(time) 23.90s 16.00s 801.58s

Medium(gap) 0% 4.86% 15.16%

Hard(gap) 45.66% 74.86% 121.4%

By looking at the Table 3.9, the recommendation identified by the model still beats the

default average time. When model is compared with the pairwise heuristic results, for easy

class of instance, pairwise heuristic does better than the model, but for the medium class of

instance with solution time as the response, model does better than pairwise heuristic. In

case of optimality gap, pairwise heuristic does better than the model. However, the model

does better than the default settings and has the added benefit of providing information

Radha S Koripalli Chapter 3. CPLEX Results 49

about the effects of the each parameter value on solution time or optimality gap across the

instance classes, which can be explained through Figure 3.8 for medium class of instance

Figure 3.8: Parameter setting for the six parameters for medium instance with optimality gap as response

with optimality gap as the response, which indicates the best settings as (10000 -1 10 0 0

4) for the corresponding six parameters, as these settings results in the lowest optimality

gap which is desirable and these setting are obtained by following the steps mentioned in

section 2.2.1. The effect of the parameters can also be explained from the profiler in Figure

3.8. For example, parameter constraint aggregation limit provides the best optimality gap

at level 10000 and when it is set at 1000, optimality gap is increasing which is not desirable,

which indicates that 1000 is not the good setting for the parameter constraint aggregation

limit, the parameter MIP branching direction provides the best optimality gap when set at

level -1 and the optimality gap is high when set at level 1, which indicates that the level 1

is not a good setting for MIP branching direction. The effects of the remaining parameters

can also be explained in the similar way by looking at the profiler.

Chapter 4

Conclusions

The paper presented a method to find the best parameter settings using design of experi-

ments. The method is based on the key observation that models with different classes of

instances, can result in good settings and as well as it also provides the effects and signifi-

cance of the parameters.

Two experiments were conducted, one with a small subset of CPLEX parameters, and an-

other with 59 CPLEX parameters. In the small subset experiment, six important parameters

were considered and a D-optimal second-order model was constructed to identify the best

settings. Both the optimal small subset model and pairwise heuristic method gave the re-

sults which are much better than default settings and when the pairwise heuristic method is

compared with the optimal small subset model, both the methods, are pretty much equally

good.

50

Radha S Koripalli Chapter 4. Conclusions 51

In the full set experiment, all the 59 parameters were considered and a screening design was

constructed using JMP with two extreme levels of all the 59 parameters and then follows

with a follow-up design with the best selected parameters from the screening design for all

the three instance classes and the best setting were identified. We see some differences in

the full set experiment when compared with pairwise heuristic method, but there is no clear

winner and both the methods are better than the default.

Pairwise heuristic method is not desirable when the parameter effects are needed by the

user, this method is useful when the large number of parameters are tuned at once, to get

the best settings, but when the parameter effects is not desired.

Model provides an explicable effects of each parameter levels, which may be useful in un-

derstanding how instance classes interact with the various parameters. The effects of all the

parameters is easily visualized by examining the parameters interactively with the Prediction

Profiler.

Building different models with different modelling techniques and using different design pro-

cedures could result in even better results. For the limited set CPLEX parameters exper-

iment, identifying some more important parameters which could effect the response and

applying the method could improve the results. Also, the method can be extended with the

other different metrics, such as instead of time difference the maximum time for different

instances.

Radha S Koripalli Acknowledgements 52

Acknowledgements

I would like to thank my advisor’s, Dr. J. Paul Brooks and Dr. David J. Edwards, who were

abundantly helpful and offered invaluable assistance, support and guidance. Also, special

thanks to my family for their understanding through out my duration of studies.

Bibliography

[1] Abraham,B.,Chipman,H. and Vijayan,K.(1999) Some Risks in the Construction and

Analysis of Supersaturated Designs. University of Waterloo,Canada.

[2] Adenzo-Dı́az, B. and Laguna, M. (2004) Fine-tuning of Algorithms Using Fractional

Experimental Designs and Local Search.

[3] Atamtürk, A. and Savelsbergh, M. W. P. (2005) Integer-Programming Software Systems.

Annals of Operations Research, 140, 67Ű124.

[4] Atkinson, A. C., Donev, A. N., and Tobias, R. D. (2007) Optimum Experimental Designs

with SAS. vol. 34 of Oxford Statistical Science Series, Oxford University Press.

[5] Audet, C. and Orban, D. (2006) Finding Optimal Algorithmic Parameters Using Deriva-

tive Free Optimization. SIAM Journal on Optimization, 17, 642–664.

[6] Bartz-Beielstein T.(2006) Experimental Research in Evolutionary Computation: The New

Experimentalism. Springer Verlag.

[7] Baz, M., Brady Hunsaker, J. Paul Brooks and Abhijit Gosavi(2007) Automated Tuning

of Optimization Software Parameters. University of Pittsburgh.

53

Radha S Koripalli Bibliography 54

[8] Baz, M., Hunsaker, B., and Prokopyev, O. (2009) How much do we “pay” for using default

parameters?. Computational Optimization and Applications.

[9] Bixby, R. E. (2002) Solving Real-World Linear Programs: A Decade and More of Progress.

Operations Research, 50, 3–15.

[10] Booth, K.H.V., and Cox, D.R. (1962) Some systematic supersaturated designs.

Technometrics4,489-495.

[11] Boyd, Stephen P.,Lieven Vandenberghe (2009) Convex Optimization. Cambridge Uni-

versity Press.

[12] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984) Classification and

Regression Trees. Trees, Boulder: Westview.

[13] J. Paul Brooks, William P. Burns, Stephen S. Fong, Chris M. Gowen, Seth B. Roberts.

(2012) Gap Detection for Genome-Scale Constraint-Based Models, accepted to Advances

in Bioinformatics.

[14] Charles R. Stewart (2010) Automated Selection of Mixed Integer Program Solver Pa-

rameter Settings.

[15] Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C. (1997) The AETG

System: An Approach to Testing Based on Combinatorial Design. IEEE Transactions on

Software Engineering, 23, 437–444.

[16] CPL Ibmilog CPLEX,(2009) http://www-01.ibm.com/software/integration/

optimization/cplex

Radha S Koripalli Bibliography 55

[17] Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods. Cambridge, UK: Cambridge University Press.

[18] DuMouchel,W. and Jones, B. (1994) A Simple Bayesian Modification of D-Optimal

Designs to Reduce Dependence on an Assumed Model. Technometrics, 36, 37–47.

[19] Eriksson, L. (2008) Design of experiments: principles and applications. Umetrics

Academy publisher

[20] Fabian Triefenbach (2008) Design of Experiments:The D-Optimal Approach and Its

Implementation As a Computer Algorithm. Umea University,sweden.

[21] Hamadam, S. and Wu, C. F. J.(1992) Analysis of designed experiments with complex

aliasing. J. Qual. Technometrics,24, 130-7.

[22] Hans D. Mittelmann and Armin Pruessner(2006) Optimization Methods and Software.

Taylor and Francis ,Vol. 21, No. 1.

[23] Huang, D. T. T. Allen, W. I. Notz, and N. Zeng(2006) Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,

34(3):441–466.

[24] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2009) An Experimental

Investigation of Model-Based Parameter Optimisation: SPO and Beyond. in GECCO

09,Genetic and Evolutionary Computation.

[25] Imbault, F. and Lebart, K(2004) A stochastic optimization approach for parameter

tuning of Support Vector Machines. International Conference on Pattern Recognition.

Radha S Koripalli Bibliography 56

[26] JMP,(2005) JMP Design of Experiments, Release 6. SAS Institute Inc., Cary, NC, USA.

[27] Kohavi, R. and John, G. H. (1995) Automatic Parameter Selection by Minimizing Es-

timated Error,in Machine Learning. Proceedings of the Twelfth International Conference.

[28] Lin, D. K. J. (1993) A new class of supersaturated designs. Technometrics 35, 28-3 1.

[29] Lin, D. K. J. (1995) Generating supersaturatedd systematic designs. Technometrics,37,

213-225.

[30] Laundy, R., Perregaard, M., Tavares, G., Tipi, H., and Vazacopoulos, A. (2007) Solving

hard Mixed Integer Programming Problems With Xpress-MP: A MIPLAB 2003 Case Study.

Tech. Rep. 2, Rutgers Center for Operations Research.

[31] Meyer, R. K. , Nachtsheim, C. J. (1995) The Coordinate-Exchange Algorithm for Con-

structing Exact Optimal Experimental Designs. Technometrics 37(1), 60-69.

[32] Miller, A. J.(1990) Subset Selection in Regression. London: Chapman and Hall.

[33] Mitchell,T. M.(1982) Generalization as search. Artificial Intelligence 18,203-266.

[34] Montgomery, D. C. (2008) Design and analysis of experiments. Hoboken, NJ: Wiley.

[35] Raymond H. Myers,Douglas C. Montgomery, Anderson-Cook (2009) Response Surface

Methodology: Process and Product Optimization Using Designed Experiments. Third Edi-

tion, NJ: Wiley.

[36] Nemhauser, G. L., L. A. Wolsey(1988) Integer and Combinatorial Optimization. John

Wiley and Sons, Inc., New York.

Radha S Koripalli Bibliography 57

[37] Satterthwaite, F. (1959) Random Balance Experimentation. Technometrics, 1, 111-137

[38] Tang, B., and Wu, C.F.J. (1993) A method for constructing supersaturatedd esigns and

its E(s2) optimality.

[39] Thorsten Koch, T. Berthold, G. Gamrath, A. M. Gleixner, S. Heinz, D. E. Steffy, K.

Wolter, T. Achterberg, E. Andersen, O. Bastert, R. E. Bixby, E. Danna, A. Lodi, H.

Mittelmann, T. Ralphs and D. Salvagnin (2011) Mixed Integer Programming Library

version 5. Math. Prog. Comp. (2011) 3:103–163.

[40] Wu, C.F.J. (1993) Construction of supersaturated designs through partially aliased in-

teractions. Biometrika,80, 661-669.

[41] Wu, C. F. J. and Hamada, M. (2000) Design of Experiments: Planing, Analysis and

Parameter Design Optimization. John Wiley and Sons, INC., USA.

[42] Yasser Tanvir (2009) A System for Optimal Telecommunication Network Installation.

Appendix A

List of CPLEX parameters

The 59 CPLEX parameters used in the full case are mentioned below, with all the levels of

each parameter and the default setting using information from CPL (2009).

Description of CPLEX parameters

The description of the 59 CPLEX parameters from the above table are described here, using

information from CPL (2009).

1) CPX_PARAM_MIPEMPHASIS : MIP emphasis switch Controls trade-offs between

speed, feasibility, optimality, and moving bounds in MIP.

2) CPX_PARAM_NODESEL : MIP node selection strategy is used to set the rule for

selecting the next node to process when backtracking.

3) CPX_PARAM_V ARSEL : MIP variable selection strategy sets the rule for selecting

the branching variable at the node which has been selected for branching.

58

Radha S Koripalli Appendix A. List of CPLEX parameters 59

4) CPX_PARAM_DIV ETY PE : MIP dive strategy controls the MIP dive strategy. The

MIP traversal strategy occasionally performs probing dives, where it looks ahead at both

children nodes before deciding which node to choose.

5) CPX_PARAM_FRACCUTS : MIP Gomory fractional cuts switch decides whether

or not Gomory fractional cuts should be generated for the problem.

6) CPX_PARAM_MIRCUTS : MIP MIR (mixed integer rounding) cut switch decides

whether or not to generate MIR cuts (mixed integer rounding cuts) for the problem.

7) CPX_PARAM_AGGCUTLIM : Constraint aggregation limit for cut generation lim-

its the number of constraints that can be aggregated for generating flow cover and mixed

integer rounding (MIR) cuts.

8) CPX_PARAM_CLIQUES : MIP cliques switch decides whether or not clique cuts

should be generated for the problem.

9) CPX_PARAM_COV ERS : MIP covers switch decides whether or not cover cuts

should be generated for the problem.

10) CPX_PARAM_CUTPASS : Number of cutting plane passes sets the upper limit on

the number of cutting plane passes CPLEX performs when solving the root node of a MIP

model.

11) CPX_PARAM_CUTSFACTOR : Row multiplier factor for cuts limits the number

of cuts that can be added. The number of rows in the problem with cuts added is limited

to CutsFactor times the original number of rows. If the problem is presolved, the original

number of rows is that from the presolved problem.

12) CPX_PARAM_DISJCUTS : MIP disjunctive cuts switch decides whether or not

Radha S Koripalli Appendix A. List of CPLEX parameters 60

disjunctive cuts should be generated for the problem.

13) CPX_PARAM_EACHCUTLIM : Type of cut limit sets a limit for each type of cut.

This parameter allows you to set a uniform limit on the number of cuts of each type that

CPLEX generates.

14) CPX_PARAM_FLOWCOV ERS : MIP flow cover cuts switch decides whether or

not to generate flow cover cuts for the problem.

15) CPX_PARAM_FLOWPATHS : MIP flow path cut switch decides whether or not

flow path cuts should be generated for the problem.

16) CPX_PARAM_FRACCAND : Candidate limit for generating Gomory fractional

cuts limits the number of candidate variables for generating Gomory fractional cuts

17) CPX_PARAM_FRACPASS : Pass limit for generating Gomory fractional cuts lim-

its the number of passes for generating Gomory fractional cuts.

18) CPX_PARAM_GUBCOV ERS : MIP GUB cuts switch decides whether or not to

generate GUB cuts for the problem.

19) CPX_PARAM_IMPLBD : MIP implied bound cuts switch decides whether or not

to generate implied bound cuts for the problem.

20) CPX_PARAM_ZEROHALFCUTS : MIP zero-half cuts switch decides whether or

not to generate zero-half cuts for the problem.

21) CPX_PARAM_CRAIND : Simplex crash ordering decides how CPLEX orders vari-

ables relative to the objective function when selecting an initial basis.

22) CPX_PARAM_DPRIIND : Dual simplex pricing algorithm decides the type of pric-

ing applied in the dual simplex algorithm.

Radha S Koripalli Appendix A. List of CPLEX parameters 61

23) CPX_PARAM_PERIND (int) : Simplex perturbation switch decides whether to

perturb problems.

24) CPX_PARAM_PERLIM : Simplex perturbation limit sets the number of degenerate

iterations before perturbation is performed.

25) CPX_PARAM_PPRIIND : Primal simplex pricing algorithm sets the primal sim-

plex pricing algorithm.

26) CPX_PARAM_REINV : Simplex refactoring frequency sets the number of iterations

between refactoring of the basis matrix.

27) CPX_PARAM_SIFTALG : Sifting subproblem algorithm sets the algorithm to be

used for solving sifting subproblems.

28) CPX_PARAM_SINGLIM : Simplex singularity repair limit restricts the number of

times CPLEX attempts to repair the basis when singularities are encountered during the

simplex algorithm.

29) CPX_PARAM_STRONGCANDLIM : MIP strong branching candidate list limit

controls the length of the candidate list when CPLEX uses strong branching as the way to

select variables.

30) CPX_PARAM_STRONGITLIM : MIP strong branching iterations limit controls

the number of simplex iterations performed on each variable in the candidate list when

CPLEX uses strong branching as the way to select variables.

31) CPX_PARAM_SCAIND : Scale parameter decides how to scale the problem ma-

trix.

32) CPX_PARAM_BBINTERV AL : MIP strategy best bound interval sets the best

Radha S Koripalli Appendix A. List of CPLEX parameters 62

bound interval for MIP strategy.

33) CPX_PARAM_BRDIR : MIP branching direction decides which branch, the up or

the down branch, should be taken first at each node.

34) CPX_PARAM_FPHEUR : Feasibility pump switch turns on or off the feasibility

pump heuristic for mixed integer programming (MIP) models.

35) CPX_PARAM_HEURFREQ : MIP heuristic frequency decides how often to apply

the periodic heuristic.

36) CPX_PARAM_LBHEUR(int) : Local branching heuristic controls whether CPLEX

applies a local branching heuristic to try to improve new incumbents found during a MIP

search.

37) CPX_PARAM_MIPSEARCH : MIP dynamic search switch sets the search strategy

for a mixed integer program (MIP).

38) CPX_PARAM_SUBALG : MIP subproblem algorithm decides which continuous op-

timizer will be used to solve the subproblems in a MIP, after the initial relaxation.

39) CPX_PARAM_PARALLELMODE : Parallel mode switch sets the parallel opti-

mization mode. Possible modes are automatic, deterministic, and opportunistic.

40) CPX_PARAM_PROBE : MIP probing level sets the amount of probing on variables

to be performed before MIP branching. Higher settings perform more probing. Probing can

be very powerful but very time-consuming at the start.

41) CPX_PARAM_RINSHEUR : RINS heuristic frequency decides how often to apply

the relaxation induced neighborhood search (RINS) heuristic.

42) CPX_PARAM_STARTALG : MIP starting algorithm sets which continuous opti-

Radha S Koripalli Appendix A. List of CPLEX parameters 63

mizer will be used to solve the initial relaxation of a MIP.

43) CPX_PARAM_AGGFILL : Preprocessing aggregator fill limits variable substitu-

tions by the aggregator. If the net result of a single substitution is more nonzeros than this

value, the substitution is not made.

44) CPX_PARAM_AGGIND : Preprocessing aggregator application limit invokes the

aggregator to use substitution where possible to reduce the number of rows and columns

before the problem is solved.

45) CPX_PARAM_BNDSTRENIND : Bound strengthening switch decides whether to

apply bound strengthening in mixed integer programs (MIPs).

46) CPX_PARAM_COEREDIND : Coefficient reduction setting decides how coefficient

reduction is used. Coefficient reduction improves the objective value of the initial (and sub-

sequent) LP relaxations solved during branch and cut by reducing the number of non-integral

vertices.

47) CPX_PARAM_DEPIND : Dependency switch decides whether to activate the de-

pendency checker.

48) CPX_PARAM_MIPCBREDLP : MIP callback switch between original model and

reduced, presolved model controls whether your callback accesses node information of the

original model (off) or node information of the reduced, presolved model (on, default).

49) CPX_PARAM_PROBETIME : Time spent probing limits the amount of time in

seconds spent probing.

50) CPX_PARAM_PREDUAL : Presolve dual setting Decides whether CPLEX presolve

should pass the primal or dual linear programming problem to the linear programming op-

Radha S Koripalli Appendix A. List of CPLEX parameters 64

timization algorithm.

51) CPX_PARAM_PREIND(int) : Presolve switch decides whether CPLEX applies

presolve during preprocessing.

52) CPX_PARAM_PRELINEAR : Linear reduction switch decides whether linear or

full reductions occur during preprocessing.

53) CPX_PARAM_PREPASS : Limit on the number of presolve passes made limits the

number of presolve passes that CPLEX makes during preprocessing.

54) CPX_PARAM_PRESLV ND : Node presolve switch decides whether node presolve

should be performed at the nodes of a mixed integer programming (MIP) solution.

55) CPX_PARAM_REDUCE : Primal and dual reduction type decides whether primal

reductions, dual reductions, both, or neither are performed during preprocessing.

56) CPX_PARAM_RELAXPREIND : Relaxed LP presolve switch decides whether

LP presolve is applied to the root relaxation in a mixed integer program (MIP). Sometimes

additional reductions can be made beyond any MIP presolve reductions that were already

done.

57) CPX_PARAM_REPEATPRESOLV E : Reapply presolve after processing the root

node decides whether to re-apply presolve, with or without cuts, to a MIP model after pro-

cessing at the root is otherwise complete.

58) CPX_PARAM_SYMMETRY : Symmetry breaking decides whether symmetry break-

ing reductions will be automatically executed, during the preprocessing phase, in a MIP

model.

59) CPX_PARAM_THREADS : Global default thread count sets the default number of

Radha S Koripalli Appendix A. List of CPLEX parameters 65

parallel threads that will be invoked by any CPLEX parallel optimizer.

Radha S Koripalli Appendix A. List of CPLEX parameters 66

Table A.1: CPLEX 59 parameters

Number Parameter Levels Default

1 CPX_PARAM_MIPEMPHASIS [0,1,2,3,4] 0

2 CPX_PARAM_NODESEL [0,1,2,3] 1

3 CPX_PARAM_V ARSEL [-1,0,1,2,3,4] 0

4 CPX_PARAM_DIV ETY PE [0,1,2,3] 0

5 CPX_PARAM_FRACCUTS [-1,0,1,2] 0

6 CPX_PARAM_MIRCUTS [-1,0,1,2] 0

7 CPX_PARAM_AGGCUTLIM [3,10,100,1000,10000] 3

8 CPX_PARAM_CLIQUES [-1,0,1,2] 0

9 CPX_PARAM_COV ERS [-1,0,1,2] 0

10 CPX_PARAM_CUTPASS [-1,0,10,100,1000,10000] 0

11 CPX_PARAM_CUTSFACTOR [4,10] 4

12 CPX_PARAM_DISJCUTS [-1,0,1,2] 0

13 CPX_PARAM_EACHCUTLIM [0,10,100,1000,10000,2100000000] 2100000000

14 CPX_PARAM_FLOWCOV ERS [-1,0,1,2] 0

15 CPX_PARAM_FLOWPATHS [-1,0,1,2] 0

16 CPX_PARAM_FRACCAND [10,100,200,1000,10000] 200

17 CPX_PARAM_FRACPASS [0,10,100] 0

18 CPX_PARAM_GUBCOV ERS [-1,0,1,2] 0

19 CPX_PARAM_IMPLBD [-1,0,1,2] 0

20 CPX_PARAM_ZEROHALFCUTS [-1,0,1,2] 0

21 CPX_PARAM_CRAIND [0,1] 1

22 CPX_PARAM_DPRIIND [0,1,2] 0

23 CPX_PARAM_PERIND (int) [0,1] 0

Radha S Koripalli Appendix A. List of CPLEX parameters 67

Number Parameter Levels Default

24 CPX_PARAM_PERLIM [0,10,100,1000,10000] 0

25 CPX_PARAM_PPRIIND [0,1,2] 0

26 CPX_PARAM_REINV [0,10,100,1000,10000] 0

27 CPX_PARAM_SIFTALG [0,1,2] 0

28 CPX_PARAM_SINGLIM [10,100,1000,10000] 10

29 CPX_PARAM_STRONGCANDLIM [10,100,1000,10000] 10

30 CPX_PARAM_STRONGITLIM [0,10,100,1000,10000] 0

31 CPX_PARAM_SCAIND [-1,0,1] 0

32 CPX_PARAM_BBINTERV AL [0,1,7,10,100,1000,10000] 7

33 CPX_PARAM_BRDIR [-1,0,1] 0

34 CPX_PARAM_FPHEUR [-1,0,1,2] 0

35 CPX_PARAM_HEURFREQ [-1,0,10,100,1000,10000] 0

36 CPX_PARAM_LBHEUR(int) [0,1] 0

37 CPX_PARAM_MIPSEARCH [0,1,2] 0

38 CPX_PARAM_SUBALG [0,1,2,5] 0

39 CPX_PARAM_PARALLELMODE [-1,0,1] 0

40 CPX_PARAM_PROBE [-1,0,1,2,3] 0

41 CPX_PARAM_RINSHEUR [-1,0,10,100,1000,10000] 0

42 CPX_PARAM_STARTALG [0,1,2,5,6] 0

43 CPX_PARAM_AGGFILL [10,100,1000,10000] 10

44 CPX_PARAM_AGGIND [-1,0,10,100,1000,10000] -1

45 CPX_PARAM_BNDSTRENIND [-1,0,1] -1

46 CPX_PARAM_COEREDIND [0,1,2] 2

Radha S Koripalli Appendix A. List of CPLEX parameters 68

Number Parameter Levels Default

47 CPX_PARAM_DEPIND [-1,0,1,2,3] -1

48 CPX_PARAM_MIPCBREDLP [0,1] 1

49 CPX_PARAM_PROBETIME [0,10,100,1000,10000,1E+75] 1.00E+75

50 CPX_PARAM_PREDUAL [-1,0,1] 0

51 CPX_PARAM_PREIND(int) [0,1] 1

52 CPX_PARAM_PRELINEAR [0,1] 1

53 CPX_PARAM_PREPASS [-1,0,10,100,1000,10000] -1

54 CPX_PARAM_PRESLV ND [-1,0,1,2] 0

55 CPX_PARAM_REDUCE [0,1,2,3] 3

56 CPX_PARAM_RELAXPREIND [0,1] -1

57 CPX_PARAM_REPEATPRESOLV E [-1,0,1,2,3] -1

58 CPX_PARAM_SYMMETRY [-1,0,1,2,3,4,5] -1

59 CPX_PARAM_THREADS [0,1,4] 0

Appendix B

CPLEX Limited Case D-Optimal Model

Profiler settings

Easy(time)

Figure B.1 shows the best settings as (1 1 4 1 2 0).

Figure B.1: Parameter setting for the six parameters for easy instance with solution time as response

69

Radha S Koripalli Appendix B. CPLEX Limited Case D-Optimal Model Profiler settings 70

Medium(time)

Figure B.2 shows the best settings as (2 2 -1 0 1 -1).

Figure B.2: Parameter setting for the six parameters for medium instance with solution time as response

Medium(gap)

Figure B.3 shows the best settings as (2 1 0 0 2 2).

Figure B.3: Parameter setting for the six parameters for medium instance with optimality gap as response

Hard(gap)

Figure B.4 shows the best settings as (4 1 4 1 1 1).

Radha S Koripalli Appendix B. CPLEX Limited Case D-Optimal Model Profiler settings 71

Figure B.4: Parameter setting for the six parameters for hard instance with optimality gap as response

Appendix C

CPLEX Full Case D-Optimal Model

Profiler settings

Easy(time)

Figure C.1 shows the best settings as (0 -1 0 1 1 1).

Figure C.1: Parameter setting for the six parameters for easy instance with solution time as response

72

Radha S Koripalli Appendix C. CPLEX Full Case D-Optimal Model Profiler settings 73

Medium(time)

Figure C.2 shows the best settings as (100 10000 100 0 0 2).

Figure C.2: Parameter setting for the six parameters for medium instance with solution time as response

Medium(gap)

Figure C.3 shows the best settings as (10000 -1 10 0 0 4).

Figure C.3: Parameter setting for the six parameters for medium instance with optimality gap as response

Hard(gap)

Figure C.4 shows the best settings as (1 1 100 10 10 3).

Radha S Koripalli Appendix C. CPLEX Full Case D-Optimal Model Profiler settings 74

Figure C.4: Parameter setting for the six parameters for hard instance with optimality gap as response

Vita

Radha S Koripalli was born March 12, 1985 in Visakhapatnam,India. Ms. Radha received

her Bachelor of Science in Electronics and Communication Engineering from Jawaharlal

nehru university, India in 2006.

75

	Virginia Commonwealth University
	VCU Scholars Compass
	2012

	Parameter Tuning for Optimization Software
	RadhaShilpa Koripalli
	Downloaded from

	tmp.1404866539.pdf.YAbeH

