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ABSTRACT

ASSESSMENT OF THE ROLE OF SOLUTE CARRIER DRUG TRANSPORTERS IN
THE SYSTEMIC DISPOSITION OF FLUOROQUINOLONES: AN IN VITRO-IN VIVO
COMPARISON

By Aditi Mulgaonkar, B. Pharmacy

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2012

Major Director: Douglas H. Sweet, Ph.D.
Associate Professor
Department of Pharmaceutics, School of Pharmacy

Fluoroquinolones (FQs) are broad-spectrum charged antimicrobials exhibiting excellent
tissue/fluid permeation. Thus, FQ disposition depends essentially on active transport and
facilitative diffusion. Although most early transporter studies investigating renal elimination of
FQs have focused on apical efflux of FQs from renal proximal tubule cell (RPTC) into urine,
their basolateral uptake mechanism(s) from blood into RPTC (i.e., first step to tubular secretion)

has not yet been explored in detail. Renally expressed SLC22 members: organic anion (OATYS)



Xiv
and cation (OCTs) transporters are known to transport such small organic ionic substrates
(molecular weight ~400 Da). Hence it is of interest to explore the role of these basolateral
transporters in renal elimination of FQs, and to further quantitatively assess their impact in
clinically observed FQ drug-drug interactions (DDI).

An initial systematic review of clinical literature for FQs (n=18) demonstrated substantial
differences among their renal clearance (CLe,~46-fold) and unbound renal clearance (CL ey ~20-
fold), and suggested that tubular secretion and reabsorption could be major determinants of FQ
half-life, efficacy, and DDIs. FQs (n=13) identified from the above review were investigated by
in-vitro transport studies using stably transfected cell lines, for potential interactions with organic
cation [human (h) OCT1, hOCT2 and hOCT3] and anion [mouse (m) and hOAT3, hOAT1; and
hOAT4] transporters. Further, Kinetic inhibition studies were conducted to determine inhibition
potency (Ki/lICsq values) for those FQs exhibiting significant OCT/OAT inhibition in preliminary
interaction experiments.

Gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin were determined to be
competitive inhibitors of hOCT1 with K; = 250+18, 161+19, 136+33, and 94+8 uM,
respectively. Moxifloxacin competitively inhibited hOCT3-mediated uptake, K; = 1,598+146
MM. Enoxacin, fleroxacin, levofloxacin, lomefloxacin, moxifloxacin, prulifloxacin, and
sparfloxacin exhibited competitive inhibition for mOat3 with K; = 396+15, 817+31, 515+22,
539+27, 1356+114, 299+35, 205+£12 uM, respectively. Fleroxacin and pefloxacin were found to
inhibit hOAT1 with ICsy = 2228+84 and 1819+144 respectively. Despite expression in
enterocytes, hepatocytes, and RPTC, hOCT3 does not appear to contribute significantly to FQ

disposition. However, due to hepatic and potential RPTC expression, hOCT1 could play an



XV

important role in elimination of these antimicrobials. Among renally expressed OATS in humans,

hOAT1 and hOATS are likely to be involved in FQ elimination.



CHAPTER 1

ROLE OF RENAL SECRETORY AND REABSORPTIVE DRUG TRANSPORTERS IN

SYSTEMIC DISPOSITION OF FLUOROQUINOLONES

Drawn from manuscript published in Expert Opin Drug Metab Toxicol. May 2012; 8(5): 553-69

1. A INTRODUCTION

Recently, ciprofloxacin gained notoriety when it was used for the prophylaxis and treatment
of Anthrax infection during the 2001 bioterrorist attacks which killed several people in the
United States. However, as a class, quinolones have been employed in the treatment of bacterial
infections for nearly 50 years. The first quinolone, nalidixic acid, was identified as an extremely
effective agent in the treatment of urinary tract infections, but it suffered from poor oral
absorption, short half-life, and its efficacy was limited to a narrow range of anaerobic gram-
negative organisms (9, 141). Further intensive structure-activity relationship studies led to the
development of successive generations of FQs which mainly improved their in vitro
antimicrobial activity, i.e., being effective against a broader range of gram-negative microbes,

some gram-positive organisms, and exhibiting higher potencies.



One of the earliest quinolone modifications was substitution of a hydrogen by a fluorine atom
at position 6 of the 4-quinolone ring (Figure 1.1), resulting in these agents being referred to as

fluoroquinolones (FQs), with flumequine being the first FQ (9, 141).

Second-generation FQs (e.g., ciprofloxacin, enoxacin, norfloxacin, ofloxacin) demonstrate
increased activity against gram-negative bacteria, as well as Staphylococcus species, and
improved tissue penetration, broadening their spectrum of use to include certain respiratory tract
and soft-tissue infections. Third-generation FQs (e.g., grepafloxacin, levofloxacin, sparfloxacin)
can be taken once daily — as a result of their prolonged half-life - and are also effective against
some gram-positive organisms and atypical pathogens including species of Chlamydia,
Haemophilus, Legionella, and Mycoplasma (9, 98, 141). Coupled with excellent oral
bioavailability, their therapeutic indications were expanded to include treatment of conditions
such as community-acquired pneumonia, acute bronchitis, pyelonephritis and prostatitis. Fourth-
generation compounds (e.g., gatifloxacin, moxifloxacin, trovafloxacin) exhibit a further
enhancement of activity against a still wider range of bacterial pathogens, expanding their
therapeutic indications further, including penicillin- and cephalosporin-resistant pneumonias (9,
98, 141). However, despite this increased spectrum of activity and greater in vitro potency, FQs
as a class have been associated with a number of significant adverse effects, which has resulted
in a lack of FQ use as primary therapeutics for many indications (98, 101, 141, 153, 154).
Currently, further structural modifications aimed at improving their pharmacokinetic (PK)
properties and reducing adverse reactions are being investigated, and some later fourth-

generation FQs (e.g., gemifloxacin) exhibit significant reductions in adverse effects (9).



Figure 1.1. Prototypical fluoroquinolone structure

The structure of ciprofloxacin is shown indicating the two ionizable groups of FQs: the
piperizinyl ring nitrogen (cation) and the carboxylic acid (anion) group. A fluorine atom (F) is
shown at position 6. (Adapted from manuscript published in Expert Opin Drug Metab Toxicol.
May 2012; 8(5): 553-69)



1. B. ACTIVE TRANSPORT AND FLUOROQUINOLONE DISPOSITION

Despite being rapidly absorbed after oral administration, FQs exhibit a fairly broad range
in oral bioavailability, from around 55% to greater than 90% (65, 121). Literature has suggested
that FQs exist primarily as ionic species in the physiological pH range (Table 3.5, 3.6), including
at the more acidic pH values as found in the gastrointestinal (Gl) tract (29). Therefore, passive
diffusion across the Gl epithelium and other systemic tissue barrier epithelia should be a
negligible component of their overall absorption, distribution, and elimination, making it likely
that active transport and facilitated diffusion mechanisms are involved. Recently, a number of in
vivo and in vitro studies have pointed towards the involvement of members of the ATP Binding
Cassette (ABC) and Solute Carrier (SLC) transporter families in the handling of FQs (see
Section 1.3) (4, 165, 186). Most FQs are eliminated primarily by renal excretion (Table 3.2), and
secretion into the gastrointestinal lumen, hepatobiliary excretion, and hepatic metabolism
represent important elimination routes for only a few of these agents (67, 121). Known hepatic
metabolism involves CYP450-mediated oxidation (desmethylation and N-oxidation) and
glucuronidation (4, 141). Hepatobiliary excretion of these metabolites can lead to enterohepatic
recirculation, resulting in increased residence time and terminal elimination half-life, similar to
the effect of co-administration of probenecid or cimetidine on renal FQ elimination (see Section
1.C). However, the circulating metabolites are thought not to contribute to the clinical
antimicrobial efficacy, and no clinically significant metabolic drug-drug interactions have been

identified.



1. C. EARLY IN VIVO AND IN VITRO DISPOSITION STUDIES INDICATING
TRANSPORTER-MEDIATED FLUX OF FLUOROQUINOLONES

Investigations in humans with ciprofloxacin and temafloxacin, compounds exhibiting minor
biliary excretion, found that after intravenous administration as much as 18% of the dose
appeared in the feces, indicating an apparent intestinal secretory component (52, 151, 152).
Later studies in rats confirmed intestinal secretion of parenterally administered ciprofloxacin,
fleroxacin, and sparfloxacin, and demonstrated that co-administration of ciprofloxacin or
pefloxacin significantly reduced the in vivo intestinal clearance of ofloxacin, suggesting a
common transport system (132, 135). Subsequent inhibition of in vivo intestinal elimination of
ofloxacin by verapamil and quinidine indicated possible involvement of the ABC transporter
family, e.g., MDR1, in this process (132). In vitro studies conducted in Caco-2 cell monolayers,
a model system for human intestine, demonstrated verapamil-sensitive secretion of grepafloxacin
and sparfloxacin, also pointing to ABC transporter involvement in the intestinal secretion of FQs
(23, 205). Such transporter-mediated secretion from the systemic circulation into the gut lumen
may contribute to the therapeutic efficacy of certain FQs in the treatment of Gl infections such as
bacterial diarrhea.

A number of in vivo PK studies in humans have examined the effects of co-administration of
cimetidine or procainamide, known inhibitors of the ‘classical’ renal organic cation transport
system, on the renal secretion of FQs: Co-administration of cimetidine inhibited (~13-28%) the
renal clearance of enoxacin, fleroxacin, gemifloxacin, and temafloxacin (1, 111, 146, 149).
Conversely, concomitant administration of ciprofloxacin, levofloxacin, or ofloxacin decreased
procainamide renal clearance (10, 103). Furthermore, it has been reported that co-administration

of probenecid, the prototypical inhibitor of the ‘classical’ renal organic anion transport system,



significantly decreased (by ~25-60%) the renal clearance of ciprofloxacin, enoxacin, fleroxacin,
gatifloxacin, gemifloxacin, levofloxacin, and norfloxacin in healthy volunteers (38, 42, 52, 75,
95, 119, 142, 144, 149, 159, 197, 198). This unique clinical footprint of interaction with both the
renal organic cation and organic anion transport systems is thought to be due to the zwitterionic
nature of these molecules (Figure 1.1 and Tables 3.5 and 3.6). Such drug-drug interactions have
been confirmed in rats as well, where the renal clearance of ofloxacin, which exhibits 80-95%
recovery in urine after oral dosing, was significantly reduced upon co-administration of either
probenecid (~50%) or cimetidine (~70%) (39). Thus, despite renal secretion of FQs being well
established as a major pathway for their elimination, the specific in vivo molecular mechanisms
involved in their disposition have remained unclear.

Parallel in vitro studies conducted in renal cell lines also supported involvement of both
organic cation and organic anion transporters in renal FQ handling: For example, the apical
efflux from levofloxacin-loaded LLC-PK1 cells (derived from the porcine kidney) was
significantly stimulated by an inwardly directed H" gradient, suggesting a role for the renal brush
border H*/organic cation antiport system in FQ elimination (124). However, cimetidine failed to
inhibit basal uptake of levofloxacin in LLC-PKZ1 cells. On the other hand, in the opossum kidney
cell model, enoxacin, grepafloxacin, and levofloxacin, each significantly inhibited the basal
accumulation of para-aminohippurate, the prototypical organic anion transport system substrate
(106). Furthermore, both levofloxacin and probenecid caused a significant inhibition of para-
aminohippurate efflux across the apical membrane (106).

Recently, the cloning of hundreds of genes coding for transport proteins has made it possible
to perform studies examining FQ interaction with known transporters selectively expressed in in

vitro cell culture models; either by molecular identification of the transporters expressed in the



cell culture model (e.g., Caco-2 cells) or via establishment of transfected cell lines expressing
specific transporters. Results from these types of studies investigating the involvement of ABC
and SLC transporter family members are summarized in the following sections.
1. D. ATP BINDING CASSETTE (ABC) TRANSPORTERS AND DISPOSITION OF
FLUOROQUINOLONES

The human ABC superfamily currently consists of 49 identified transporter proteins
organized into 7 separate gene families (A-F; species differences do exist) (190). As their name
implies, ABC transporters are able to directly utilize cellular energy by binding and hydrolyzing
ATP, using the released energy to drive unidirectional transport (efflux) of substrate molecules
across cell membranes (4). Due to their action as ‘efflux pumps’, a number of ABC transporters
are linked to multidrug resistance. To date, members of the ABCB, ABCC, and ABCG families
have been implicated in FQ disposition (Figure 1.2). In human RPTCs, there is evidence for
protein expression and function for multidrug resistance protein 1 (MDR1, ABCB1,; also known
as P-glycoprotein), multidrug resistance associated protein 2 (MRP2, ABCC2), MRP4 (ABCC4),
and breast cancer resistance protein (BCRP, ABCG2) (Figure 1.2). ABC transporters mediate the
movement of a wide range of molecules including lipids, peptides, nucleosides, and xenobiotics

ranging from less than 200 Da to about 1900 Da (140).

Concerning MRP1 (ABCC1), although transfection studies with polarized LLCPK-1 cells
have demonstrated the basolateral membrane localization of human MRP1, its localization in
human RPTCs has not been demonstrated (35, 85). However, if basolateral targeting is assumed,
the efflux pump activity of MRP1 would potentially reduce the uptake of FQs from the systemic
circulation and aid reabsorptive flux from the urine (Figure 1.2). In support of this hypothesis,

ofloxacin was found to inhibit MRP1 activity in over-expressing human leukemia cells (178).



Further, the efflux of grepafloxacin was enhanced in MRP1 transfected LLCPK-1 cells (136).
There are also a number of additional MRP family members for which renal mMRNA expression
has been reported, but no functional or protein expression data are available, and it is possible in
the future that additional MRPs may be identified that could contribute to basal FQ efflux in

RPTCs.

MDR1 is expressed in the apical membrane (Figure 1.2) and mediates the efflux of substrates
into the urine (179). When its transport function was examined in polarized LLCPK-1 or MDCK
(derived from canine kidney) cells transfected with MDR1, enhanced secretory transport and/or
inhibition of transporter activity by grepafloxacin, levofloxacin, and sparfloxacin was observed
(28, 74, 120). Further, studies utilizing Mdrl knockout mice reported increased plasma
concentrations and decreased urinary clearance of grepafloxacin, as well as significantly
enhanced CNS permeation of sparfloxacin (28, 136). Apical expression of BCRP (Figure 1.2),
coupled with increased inhibitable secretory flux of ciprofloxacin, grepafloxacin, norfloxacin,
and ofloxacin across BCRP expressing MDCK cell monolayers, suggest a role for this
transporter in renal FQ secretion (5, 69, 107). In support of this hypothesis, Bcrp knockout mice
were found to have significantly elevated kidney tissue levels of ciprofloxacin and grepafloxacin
as compared to wildtype, as well as significantly increased plasma concentration of
ciprofloxacin, after both oral and intravenous dosing (5, 107). Both MRP2 and MRP4 have been
localized apically in human RPTCs (Figure 1.2), but investigations into FQ handling by these
two transporters have not been reported (139, 185). However, studies in Eisai-hyperbilirubinemia
rats, which are naturally Mrp2 deficient, demonstrated decreased biliary excretion of
grepafloxacin, suggesting a role for Mrp2 in FQ disposition (137). Further, experiments with a

murine macrophage model found that significantly increased protein expression of Mrp2 and



Mrp4 correlated with ciprofloxacin-resistance, but only knockdown of Mrp4 expression resulted
in reversal of the resistance phenotype. Thus, it is likely that MRP2 and MRP4 contribute to FQ

secretion in human RPTCs.

These in vitro studies have provided considerable evidence to support the ABC transporter
mediated flux of FQs in the body. However, for the purpose of this dissertation, the SLC-
mediated transport of these agents will be highlighted further.

1. E. SOLUTE CARRIERS AND DISPOSITION OF FLUOROQUINOLONES:

1.E.1 Introduction to SLC mediated transport of ionic species:

SLCs are another class of membrane transporter proteins that mediate the movement of
organic substrate molecules across barrier epithelia. The human SLC superfamily of transporters
is currently proposed to be comprised of 55 separate gene families encompassing 362 identified
transporter proteins (species differences do exist) (61). Presently, there is substantial evidence
implicating members of the SLC22 (organic cation/anion/zwitterion transporters) and SLC47
(MATE) families in the renal handling of FQs. The SLC22 family (26 identified members)
includes the organic cation transporters (OCTs and OCTNSs), which handle mainly cationic and
zwitterionic organic molecules, and the organic anion transporters (OATS), which mainly
transport anionic and zwitterionic organic molecules (Figure 1.2) (164, 165, 186, 201). The
SLC22 family members OCT1 (SLC22Al1), OCT2 (SLC22A2), OCT3 (SLC22A3), OAT1
(SLC22A6), and OAT3 (SLC22A8) are expressed in the basolateral membrane of RPTCs and in
vivo serve to mediate the accumulation of substrate molecules from the blood into RPTCs
(Figure 1.2) (91, 165, 186). In the apical membrane OCTN1 (SLC22A4) and OCTN2
(SLC22A5) likely mediate the efflux of substrate molecules from the RPTCs into the urinary

space, whereas OAT4 (SLC22A11) and URAT1 (SLC22A12) have been proposed to mediate
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reabsorption of substrates from the urine into RPTCs (Figure 1.2) (91, 165, 186). The SLC47
multidrug and toxin extrusion transporters (MATES; 2 identified members) mostly interact with
cationic and zwitterionic molecules (175, 177). While both MATE1 (SLC47A1) and MATE2
(SLC47A2) are found in the apical membrane of human RPTCs, only eight of the identified
SLC22 family members are conclusively known to function in this tissue (Figure 1.2) (165, 175,
186).

The existence of the SLC superfamily of drug transporters was first surmised during the
study of the physiological functioning of the primary elimination organs — liver and kidney
(165). The renal elimination of visible charged organic molecules such as indigo carmine and
phenol red following oral administration, led to exhaustive studies to comprehend the potential
renal physiological mechanisms causing the removal of these species from the blood into the
urine (165). This allowed generation of detailed renal proximal tubule cell (RPTC) models,
explaining the potential processes resulting in secretion of organic anion and cations into the
urine (165). It was later concluded that these processes may be mediated by specialized
membrane proteins (165). Such initial physiological observations were the basic foundation for
the subsequent cloning and functional characterization of individual transporter proteins within
the different transporter families.

As all the barrier epithelia in the body, including the RPTC, are polarized, the driving forces
governing the trans-cellular entry and exit of charged molecules are very different (165, 201).
Thus understanding of these physiological mechanisms is important, in order to assess
localization of the identified transporters in these barrier epithelial models, and furthermore,
accurately determine the transport mechanisms involved in the overall flux of ionic species (e.g.,

renal secretion in case of RPTC) (165, 201). The progress in cloning of individual transporters in
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the barrier epithelia, and intensive in vitro studies demonstrating their functions in heterologous
expression systems, revealed that the earlier opinions regarding transcellular movement of ionic
species were, in fact, oversimplified (165). It was demonstrated by such in vitro studies that
multiple transporter paralogs of each gene family could mediate the cellular entry and
subsequent exit of charged molecules (165). It was also revealed that transport pathways for
organic anions and organic cations, were not mutually exclusive, and that some molecules such
as zwitterionic substrates (e.g., FQs) could be transported by either OATs, OCTs or even both
systems, to determine their overall flux (Figure 1.1 and 1.2) (93, 138, 165). Moreover, the
identified transporters exhibited considerable overlap in substrate (xenobiotics and endogenous
molecules) specificities, e.g., the organic anion/cation/zwitterion transporter (Slc22) family has
overlapping substrate specificities with organic anion transporting polypeptide (OATP; Slc21),
multidrug and toxin extrusion (MATE; Slc47), and the ATP-binding cassette (ABC; Abc)
families of transporters (46, 165). With the developments in transport literature, experimental
evidence has now confirmed that organic ionic substrates can potentially enter the cell via
OCTs/OATsS/OATPs and exit via OCTN/ MATE/ABC transporters: this has introduced a whole
new concept of substrate ‘crossover’ (Figure 1.2) (46, 165). In addition to this, a number of
single nucleotide polymorphisms (SNPs) in multiple transporter gene families (e.g., OCTs,
OATPs), that affect their degree of activity, and subsequently substrate PK, have been identified
(71, 173, 180). Such advancement in scientific knowledge concerning active transporters
mediating in vivo flux of organic ionic xenobiotics and endogenous molecules, has indeed
increased complexities in the physiological pathways governing their ‘net’ PK (46, 73, 165).
This has thus introduced a new challenge for accurate prediction of biologically relevant

(mechanistic) models demonstrating the ‘net’ transport of charged molecules.
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Figure 1. 2. Proposed renal proximal tubule cell model, illustrating drug transporters and
pathways involved in fluoroquinolone disposition

The figure shows potential transport mechanisms and pathways involved in the renal elimination
of FQs. FQs which exist predominantly as zwitterions and anions in blood (pH 7.4), may enter
renal proximal tubule cells via the action of basolateral uptake transporters such as organic anion
(OAT1 and 3) and organic cation (OCT1, 2 and 3) transporters. Cellular exit into the urinary
space via apical efflux transporters may involve organic cation (OCTN1 and OCTN2), multidrug
and toxin extrusion (MATE1 and MATEZ2), and/or ATP-binding cassette (MDR1, BCRP, MRP2,
and MRP4) transporters. Finally, FQs may be excreted in the urine, or subjected to active
reabsorption mediated by uptake transporters expressed in the apical membrane, such as the
organic anion transporters OAT4 and/or URATL1. Note: Expression and basolateral localization
of OCT1 in human RPTC is still controversial, although this has been confirmed for the rat
ortholog of Octl. FQ transport by organic anion transporting polypeptide 4C1 (OATP4C1) is
currently unexplored; however, the related transporter OATP1A2 (which is not expressed in
human RPTCs) has been implicated in intestinal FQ transport. The potential role of human
MRP1 transport in the efflux of FQs from the cell back into the bloodstream (due to its
basolateral localization) has yet to be explored. FQ", FQ", and 'FQ" denote anionic, cationic, and
zwitterionic FQ microspecies, respectively. (Adapted from manuscript published in Expert Opin
Drug Metab Toxicol. May 2012; 8(5): 553-69)
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1.E.2 SLC transporter family mediating disposition of fluoroquinolones:

SLC transport function is indirectly coupled to cellular energy, using the energy stored in
concentration gradients and/or the membrane potential as driving force. Although hepatic
expression of hOCT1 is well accepted, its renal expression and localization still remains
controversial (80, 91, 180). However, localization of the rat Octl ortholog to the basolateral
membrane in the RPTCs was demonstrated (80). Nevertheless, potential interactions of
OCT1/Octl with the FQs have yet to be explored in detail. Due to its basolateral membrane
targeting and membrane potential-sensitive mechanism of action, OCT2/Oct2 is established as an
influx carrier mediating the movement of substrates from the renal circulation into the cytoplasm
of RPTCs (115, 167, 170). Accordingly, the inhibition of hOCT2-mediated transport in
transfected cells by grepafloxacin, levofloxacin, and moxifloxacin suggests that renal FQ
elimination may be due to the action of this transporter (72, 125). While OCT3/Oct3 also has
been demonstrated to function as a facilitated-diffusion carrier, mediating the RPTC
accumulation of substrates from the blood, interaction of this transporter with FQs remains
unexplored (82).

Both OAT1/Oatl and OAT3/Oat3 are basolateral organic anion/dicarboxylate exchangers
that utilize the outwardly directed endogenous a-ketoglutarate gradient to drive RPTC uptake of
subtrates from the systemic circulation (20, 115, 166, 168, 169, 171). A recent study with stably-
expressing cell lines demonstrated that ciprofloxacin is a substrate for mOat3, and has moderate
interactions with hOATS3; while this FQ did not demonstrate significant interactions with
hOAT1/mOatl (187). Also, norfloxacin, ofloxacin, and gatifloxacin each exhibited a
concentration-dependent inhibition of mOat3-mediated transport (187). Furthermore,

experiments in Oat3 knockout mice using clinically relevant ciprofloxacin concentrations
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demonstrated that the in vivo effect of transporter deletion is similar to the reported effect of
concomitant probenecid administration on FQ disposition in humans (187).

It is of note that, although RPTC influx of FQs via hOATP4C1 (SLCO4C1) has not been
reported, it should be investigated in the future (Figure 1.2). This is based upon a report
identifying the related transporter, hOATP1A2 (SLCO1A2), as mediating accumulation of
levofloxacin and likely being responsible for the high-affinity uptake component for levofloxacin
identified in Caco-2 cells (100). hOATP1A2-mediated uptake of ciprofloxacin, enoxacin,
gatifloxacin, lomefloxacin, and norfloxacin were also observed (100).

Apical RPTC membrane localization coupled with an organic cation/H” exchange
mechanism properly situates OCTN1/Octnl and OCTN2/Octn2 as potential efflux pathways for
FQs (174, 203, 204). While direct OCTN1/Octnl-mediated transport of FQs has not been
demonstrated, both levofloxacin and ofloxacin produced significant inhibition of
tetraethylammonium transport in OCTN1-expressing cells, suggesting this transporter may play
a role in renal FQ secretion (204). Evidence for OCTNZ2 interaction with FQs is also somewhat
indirect, as it was investigated as inhibition of carnitine transport in a Caco-2 cell isolate found to
express OCTN2, but not OCTNL1 (62). In these Caco-2 cells, both levofloxacin and grepafloxacin
produced significant inhibition of carnitine uptake, supporting involvement of OCTN2 in both
intestinal absorption and RPTC efflux of FQs (62).

The apical efflux and reabsorption of small organic anions into and out of the urinary space
still remains somewhat poorly understood. Early studies with apical membrane vesicles
supported both a facilitated diffusion mechanism (efflux) and an anion exchange mechanism
(uptake or efflux depending upon energetics) (164, 165, 186). Despite being immunolocalized to

the apical RPTC membrane, the mechanism of hOAT4 action also remains clouded, as
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conflicting data indicating it is a facilitated diffusion carrier and an exchanger were reported (15,
32, 57). Further complicating the issue is debate over whether the exchange mechanism drives
efflux from the RPTCs or the reabsorption of compounds from the urinary space into RPTCs.
Currently, there are no studies investigating the interaction of FQs with hOAT4 and its potential
role in the secretion and/or reabsorption of FQs remains unknown. Finally, hURAT1/Uratl
localization to the apical membrane of RPTCs and its function as an organic anion/urate
exchanger are consistent with its mediating the efflux of organic anions from RPTCs into the
urine in exchange for certain substrate molecules such as urate (33). Whether FQs can substitute
for urate and, thus, be actively reabsorbed from the urinary space by URAT1 remains
uninvestigated.

The transporters hAMATE1/Matel and hMATE2/Mate2 represent mammalian orthologs of
bacterial transporters demonstrated to confer resistance to FQ therapy (13). Although MATE1
and MATE2 were initially identified in the same study, only MATELl was functionally
characterized and found to operate as an organic cation/H" exchanger targeted to the apical
membrane of RPTCs (Figure 1.2) (127). The rat ortholog of MATE1 was reported to transport a
number of FQs including ciprofloxacin, enoxacin, gatifloxacin, levofloxacin, and norfloxacin
(123). The function and membrane targeting of MATE2 has not been reported. However, what
appears to be a kidney-specific splice variant of MATEZ2, sometimes referred to as MATE2-K,
has been examined. This variant contains a 108 basepair deletion in Exon7 resulting in the loss
of 36 amino acids in the length of the protein product, but it still shares 94% amino acid identity
with the full-length MATEZ2 isolate (105). Functional analysis confirmed it operates as an
organic cation/H™ exchanger and is likely targeted to the apical membrane, however the antibody

used to establish localization would recognize both the full-length and truncated MATE2-K
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forms (105). Levofloxacin and ciprofloxacin were found to be potent inhibitors of the MATE2K
variant (175).
1. F. FLUOROQUINOLONE-ASSOCIATED ADVERSE EFFECTS

Although the FQs have been used extensively for a wide array of infections down the years,
there have been several mild-to-severe adverse events observed on their clinical use in patients.
The most common adverse effects associated with these agents range from mild effects on the
gastrointestinal tract such as nausea, vomiting, and diarrhea, to moderate or severe phototoxicity,
to extremely serious CNS effects including seizures, anxiety, and toxic psychosis (98, 101, 141,
153, 154). A number of other rare adverse events have been reported including severe renal
(crystalluria, interstitial nephritis, hemolytic-uremic syndrome, and acute renal failure) and
hepatic toxicities, cardiac effects, hypoglycemia, and tendon rupture (98, 101, 141, 153, 154).
These toxicities are generally associated with higher serum, tissue, and urinary FQ
concentrations, resulting from their prolonged presence in the body. As a result, several FQs had
to be withdrawn from the U.S. market. For example, temafloxacin was removed from the market
soon after its approval due to high instances of hemolysis and renal failure (122, 154).
Trovafloxacin was linked to severe hepatotoxicity in over 100 patients, sometimes resulting in
hepatic necrosis and acute hepatic failure (154). Cardiac effects including tachycardia,
prolongation of the QTc interval, and onset of torsades de pointes, including fatalities, have been
observed with a number of FQs including levofloxacin, moxifloxacin, sparfloxacin, gatifloxacin,
and grepafloxacin; this cardiac risk contributed to the withdrawal of the latter three (8, 141, 154).
Ciprofloxacin, moxifloxacin, and pefloxacin have been associated with tendinitis and tendon
rupture in patients of all ages (84, 101, 154). Incidences of tendon injury became so prevalent

that in 2008 the FDA issued a class label change for a Boxed Warning for increased risk of
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tendinitis and tendon rupture. Also more recently, in 2011, the FDA issued yet another class
label change for a Boxed Warning for increased risk of FQ-associated exacerbation of
Myasthenia Gravis. Although most FQ-associated adverse effects occur only rarely, FQs have
been prescribed with caution. Due to these adverse events, and their known elimination routes,
FQs need to be administered with caution, and suitable dosage adjustments need to be conducted
for some FQs depending on the clinical scenario and patient kinetics (88, 155). Also, as most of
these rare adverse events occur due to complex mechanisms which still have to be studied in
detail, it has become essential to study the PK of these agents to prevent their accumulation due
to any pre-existing condition (e.g. renal impairment), or any potential drug interaction. Thus, a
more complete understanding of the molecular mechanisms underlying these adverse effects,
including the potential contribution of transporter proteins to their PK behavior and target organ

toxicities is critical.
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CHAPTER 2

RESEARCH HYPOTHESES AND SPECIFIC AIMS

2.A HYPOTHESES:

2.A.1 For fluoroquinolones (FQ) excreted unchanged in urine, in addition to passive glomerular
filtration, active transport systems are involved in their renal tubular secretion and/or
reabsorption.

2.A.2 Due to the zwitterionic nature and small molecular size of these molecules, members of
the Solute Carrier (SLC22) transporter family, i.e., organic anion (OATS) and organic cation
(OCTs) transporters, are likely to be involved in renal elimination of the FQs.

2.A.3 For at least some SLC22 family members, the PK interactions with the FQs will prove to

be clinically significant.

18



2.B  SPECIFIC AIMS TO ADDRESS THE ABOVE HYPOTHESES:

2.B.1. SPECIFIC AIM 1.

A systematic review of FQ biomedical literature will allow identification of FQs
demonstrating sufficient PK information to further evaluate their disposition mechanisms —

i) Systematic review: to compile and calculate the PK parameters from clinical literature
focusing on ‘healthy human adult’ population for the FQs and assess their ‘renal
elimination” component; estimate the PK parameter: renal tubular clearance (CLen tup).

i) To conduct a statistical analysis of the PK parameters and evaluate for the existence of a
trend explaining differences in the in vivo PK profiles of the FQs.

iii) From the above analysis, identify the net renal elimination processes responsible for the
excretion of the FQs.

iv) To compile and analyze the physicochemical properties of the FQs and identify suitable
physicochemical characteristics suggestive of interaction with members of the organic

anion/cation/zwitterion transporter family (SLC22).

2.B.2. SPECIFIC AIM 2.

To test the hypothesis that members of the organic anion/cation/zwitterion (SLC22)

transporter family impact the observed CL e, wp for identified FQs —

i) Literature has suggested that organic anion (OATs: hOAT1/mOatl, hOAT3/mOat3) and
organic cation (OCTs: hOCT1, hOCT2 and hOCT3) transporters of the SLC22 family are
localized on the basolateral membrane of RPTC. Initial preliminary studies using stably

transfected cell lines, will be conducted for selected FQs identified in the systematic review,
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to detect any significant interactions of these agents with the transporters. Further, transporter
based kinetic experiments will be conducted to examine inhibition constants (K; values) or
half maximal inhibition concentrations (ICsp values) of FQs for these transporters. These
studies will involve an investigation of the role of these basolateral transporters in renal

uptake of FQs from blood to RPTC, i.e., the first step to renal elimination of the FQs.

il) Among the SLC transporters, hOAT4 is known to be localized on the apical membrane of
RPTC. FQs identified in the systematic review will be tested in preliminary studies using
stably transfected cell lines, to investigate any significant interaction with this transporter.
This will be followed by conducting kinetic experiments to investigate the inhibition
potencies of any strong inhibitors. These studies will aim to identify hOAT4 as a potential
reabsorptive transporter for the FQs in the RPTC, i.e. mediator for the FQs to enter the RPTC

back from the urinary space.

As a summary, for each transporter, the following transport studies will be conducted with stably

transfected cell lines, using FQs as inhibitors:

a) Preliminary screening study of the FQs identified from Specific Aim 1 to detect any
significant drug transporter interactions.

b) To determine the linearity of transport (time course), and conduct concentration-
dependency studies to estimate the K, of prototypical substrates for individual
transporters, and ICs, values for the FQs demonstrating significant inhibition in
preliminary inhibition studies.

c) To assess the mode of inhibition (competitive/non-competitive/uncompetitive) for the

FQs, followed by determination of their inhibition constants (K; value).
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2.B.3. SPECIFIC AIM 3.

To study the impact of OATs and OCTs towards the observed in vivo renal clearance for
the studied dataset of FQs:
The ratios of the ‘unbound Cax/ICsp (0r K;j)’ for the individual FQs will be calculated for each
transporter (OAT and OCT) according to the recommendation in the FDA’s recent drug-drug
interactions (DDI) guidance for assessing transporter impact in clinically relevant DDI with FQs

will be further analyzed.
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CHAPTER 3

QUANTITATIVE PHARMACOKINETIC SYSTEMATIC REVIEW OF
FLUOROQUINOLONES ADMINISTERED IN HUMANS

Drawn from manuscript published in Expert Opin Drug Metab Toxicol. May 2012; 8(5): 553-69

3.A SYSTEMATIC REVIEW OF FLUOROQUINOLONES

The FQ antimicrobials possess very similar structural scaffolds and physicochemical
characteristics; yet, they exhibit a wide range of pharmacokinetic (PK) properties. Historical
clinical PK literature and recent in vitro disposition studies have implicated the involvement of
active transport mechanisms in renal handling of FQs, which accounts for one of the primary
elimination pathways of these antibiotics (see Chapter 1). Therefore, the intent of this systematic
review was to compile published human in vivo PK properties for FQs and to assess any
relationships between pertinent, biologically relevant systemic PK variables and possible renal
active transport mechanisms.

The analysis involved initial identification and review of FQ-related biomedical literature,
which was then refined to articles pertaining to PK and urinary excretion studies in healthy
human subjects. Once the studies were identified, they were carefully examined according to the

inclusion criteria set-up for the analysis (as described ahead). These encompassed studies
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specifically focused on healthy adult human subjects (between 18-60 years of age) within the
normal weight range, i.e., depending on their body mass index wherever specified. The study did
not set specific inclusion criteria for gender of the subjects. The patients were evaluated for
overall good health before the study on the basis of medical history, physical examination, and
laboratory evaluation procedures. In some FQ studies including different patient treatment-
groups, (e.g., healthy volunteer groups along with groups of patients suffering from renal or
hepatic impairment, or specific bacterial infections), only data from the healthy volunteers was
considered after a careful assessment of their age, weight and organ functioning. Specifically, in
some studies where the kidney function of the volunteers was assessed by measuring creatinine
clearance, only the PK data of groups showing creatinine clearance > 80 ml/min was considered
for the analysis. The patients were required to be non-smokers and non-alcoholics (these
conditions were assumed whenever not mentioned in the studies).

This review for FQs preferably included PK studies with intravenous (IV) route of
administration (Table 3.2). For some of the FQs where the 1V studies were not available, oral
studies were considered for the analysis. However, in these oral studies, only apparent systemic
volume of distribution and systemic/total clearance values were available, which were influenced
by individual bioavailabilities (Fora) Of the FQs, and hence were not compiled. Essentially only
single-dose studies were considered for this analysis. Linear PK was the main assumption for
interpretation of all compiled PK parameters for the identified FQs. To assess this assumption for
the identified FQs, repeated dose escalation and multiple dose studies were compiled, and the
‘PK metrics’, namely, average concentrations achieved at steady state (C*,), maximum and
minimum concentrations on the concentration-time curve (Cmax) and (Cnin), and area under the

concentration-time curve from zero time-point to infinity (AUC.: usually calculated by
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trapezoidal rule in the studies), were analyzed for dose-related change (7, 31, 40, 43, 49, 51, 56,
176, 191, 192, 196). In these studies, the concentrations, (i.€., C*ae, Cmax, Cmin) and the AUC,,
were found to increase dose-proportionally, while, the volume of distribution at steady state
(Vdss) essentially remained constant with increase in dose. These observations thus confirmed
that FQs would follow linear PK in the clinically administered doses, and thus linear PK was
assumed for further calculations of PK parameters, discussed ahead in this chapter (134). In all
the studies, the urine as well as blood sampling schedules were critically evaluated to optimize
the urinary excretion and concentration-time curves for further PK analysis (the extrapolated

AUC from the last sample point to infinity was usually not more than 20 % of the total AUC.,).

The final database for all the FQs encompassed representative compounds from the second
(n=9), third (n=4), and fourth (n=5) generations. Systemic pharmacokinetic properties were
compiled for both intravenous and oral studies of the FQs. Pharmacokinetic variables included
total body clearance (CLy), renal clearance (CLen), non-renal clearance (CLnonren, Which was
obtained for FQs with available intravenous data only), Vdss, terminal half-life (t1,2) and fraction
excreted unchanged in urine (f;) (Table 3.1 and 3.2). When not provided in the original
references, CLe, was calculated by: CLr, = U./AUC,, (U, amount excreted in urine from zero
to infinity) (Table 3.1 and 3.2). If the studies did not report body weight (BW) corrected PK
parameters, then the parameters were corrected for BW using mean BW of the subjects in the
study. In cases where BW was not mentioned, a BW of 70 kg was assumed (41). The fraction
unbound in plasma (f,) was obtained from in vitro protein binding studies conducted using
human plasma (Table 3.2) (64, 145, 161, 208). The plasma-protein-binding-corrected
pharmacokinetic variables, namely unbound volume of distribution (Vds") and unbound total

(CLyt"), nonrenal (CLnonren”) and renal (CLyen") clearances, were further calculated using f, (Table
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3.1 and 3.2). Finally, a new term - defined as ‘net renal tubular clearance’ (CLyenwp) - Was
calculated by: CLyen b = CLren” — glomerular filtration rate (GFR, assumed to be 1.6 ml/min/kg);
a negative value indicates net tubular reabsorption, while a positive value indicates net tubular
secretion. This CLn wp Variable, quantifying the contribution of renal tubular reabsorption and/or
secretion, was used to categorize the FQs examined in this study (n=18) into three groups
according to their differences in renal tubular handling (Figure 3.1, Tables 3.1, 3.2 and 3.4).
Group 1 represents those FQs undergoing net tubular reabsorption (defined as CLyenwp < -1
ml/min/kg), Group 2 includes FQs identified as having little or no net tubular transport (defined
as -1 < CLenwp < 1 ml/min/kg), and Group 3 contains the FQs exhibiting net tubular secretion
(defined as CLenwb > 1 ml/min/kg) (Table 3.1 and 3.4).

Relevant physicochemical properties (Tables 3.5 and 3.6), such as molecular weight,
hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), number of rotatable bonds
(nRot), molar volume, logarithmic value of the FQ distribution coefficient (log D), pK, and
percent ionization were obtained for all the FQs (except Antofloxacin, as physicochemical data
was unavailable through the software) using SciFinder Scholar (2010) and ACD/PhysChem

Suite (Advanced Chemistry Development, Inc.).
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Table 3.1. Calculated pharmacokinetic properties for the fluoroquinolones

PK property Formula

Vdg" Vdgs / f,

Cluot' Cliot / fy

ClLen U./AUC.,

fe CLen*100/ Cluot

CLl’eﬂu CI—ren/ fu

CI—nonren CLIOI - CLren

CI—nonrenu CI—nonren/ fu or CLtOtu - CI—renu

CLyen b CLren” — Glomerular filtration rate (assumed to be 1.6 ml/min/kg)

CLrenwb < -1 = Net tubular reabsorption (Group 1)
CLyenwb> -1, but <1 = No net tubular transport (Group 2)
CLenwb> 1 = Net tubular secretion (Group 3)

Vds": unbound volume of distribution at steady-state; Vds: volume of distribution at steady-
state; CLy: unbound total clearance; CL: total clearance; CL,en: renal clearance; U,.: amount
excreted in urine from zero to infinity; AUC.,: area under the concentration-time curve from zero

to infinity; fe:

fraction of parent drug excreted unchanged in urine expressed as %; CLen":

unbound renal clearance; CLnonren: NONrenal clearance; CLonen-: Unbound nonrenal clearance;
CLenwb: Net renal tubular clearance
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3.B PHARMACOKINETIC PROPERTIES OF FLUOROQUINOLONES:

The newer generations of FQs exhibit wider systemic distribution characteristics and longer
duration of action as compared to the older compounds (11, 29, 159, 208). This may partially be
a consequence of increased plasma protein binding, resulting in decreased elimination. For
example, the fourth-generation FQ, trovafloxacin, shows plasma protein binding of
approximately 76% (f, = 24%) and an elimination/terminal half-life (t;,) of 11.2 hours, while the
second-generation FQ, ciprofloxacin, has plasma protein binding of only 40% (f, = 60%) and a
correspondingly shorter ty, of 4.2 hours (Table 3.2). However, as discussed below, differences in
renal excretion mechanisms (CLrenwp) are likely more important for their duration of action
(Table 3.2 and 3.4, Figure 3.1).

The newer FQs also exhibit increased tissue penetration, allowing them to reach higher
intracellular concentrations (159, 208). Systemically, this translates into significantly greater FQ
levels in target organs such as the intestine, kidney, liver, lungs and prostate than in the plasma
(68, 76, 147, 148). Bone stands out as a tissue in which FQ permeability is generally poor (44).
FQ levels in secretions are inconsistent, with most FQs reaching concentrations in saliva, pleural
fluid, and bronchial epithelial lining fluid that are above that measured in serum, but exhibiting
considerable variation in sweat, tears, and blister fluids (29, 141, 147, 159). Terminal half-lives
in the individual fluid secretions also vary, with ty;,; in the saliva being shorter than in plasma,
while it was similar to plasma in bronchial secretions, and slightly longer in sweat, tears, and
blister fluids (29, 141, 147, 159). With the exception of meningococcal infections, FQ
permeation of the cerebrospinal fluid is extremely limited (48).

Not surprisingly, urine and biliary FQ concentrations often greatly exceed those in plasma as

a consequence of the excretory functions of the kidney and liver. Indeed, for many FQs, their
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unchanged urinary levels are considerably higher than their minimum inhibitory concentrations
for most urinary pathogens, explaining their therapeutic success in the treatment of urinary tract
infections (121, 141, 149, 161, 193). Similarly, for those FQs which undergo extensive intestinal
secretion or hepatic metabolism, the unchanged drug and metabolite concentrations in feces are
high, rendering them effective in the treatment of many gastrointestinal infections (68, 141, 147).
Thus, in instances where the FQs are excreted primarily unchanged by the kidneys (e.g.,
ofloxacin, levofloxacin), renal clearance is an essential component of their total body clearance
(Table 3.2). On the other hand, in situations where FQs are removed to a large extent by hepatic
elimination (e.g., moxifloxacin, rufloxacin), nonrenal clearance is an important determinant of

their pharmacokinetics (Table 3.2).
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Table 3.2. Compiled pharmacokinetic parameters from the systematic review for n=18 fluoroquinolones

t1/2 fu Vdssu fe c:I—tot C:I—totu c:I—ren CI—renu CI—nonrenu CLren,tub GI’OUP Refs.
IV studies (hr) (%) (L/kg) (%) (ml/min/kg)

Ciprofloxacin 42 60 3.9 50 103 17.0 5.1 8.4 8.6 6.80 3 (27, 64, 97, 199)
Ofloxacin 6.6 70 -- 80 3.7 5.7 3.0 4.6 1.1 3.00 3 (99)
Enoxacin 43 60 3.3 56 51 8.6 2.9 4.8 3.8 3.17 3 (111)
Gatifloxacin 113 60 3.0 80 2.5 4.2 2.0 3.4 0.9 1.79 3 (43)
Moxifloxacin ~ 14.2 45 4.5 20 2.5 54 0.6 1.3 4.1 -0.30 2 (145, 156, 158)
Lomefloxacin 6.4 85 2.2 56 3.3 5.6 1.9 2.2 34 0.59 2 (53, 160, 200)
Levofloxacin 71 69 1.7 62 2.1 3.5 1.3 1.9 1.6 0.28 2 (17, 19)
Fleroxacin 13.0 77 1.8 66 1.4 24 0.9 1.2 1.1 -0.39 2 (161)
Trovafloxacin 112 24 54 11 1.4 6.0 0.2 0.7 5.3 -0.92 2 (176, 192)
Antofloxacin 20.3 83 4.6 58 2.1 2.5 1.2 1.5 1.1 -0.12 2 (194)
Oral studies

Gemifloxacin 71 35 3.3 9.5 7.94 3 1,2
Norfloxacin 43 80 7.5 9.4 7.80 3 (30)
Amifloxacin 3.6 50 1.7 3.3 1.70 3 (21)
Temafloxacin 7.7 74 1.8 24 0.81 2 (50)
Grepafloxacin  12.2 72 0.5 0.7 -0.91 2 (31)
Rufloxacin 349 40 0.2 0.6 -1.01 1 (89, 131)
Sparfloxacin 20 55 0.3 0.5 -1.13 1 (37,112)
Pefloxacin 86 75 0.4 0.5 -1.10 1 (114)

t2: half-life in hr; f,: fraction of unbound drug expressed as %; Vds': unbound volume of distribution at steady-state; CL: total
clearance; fo: fraction of parent drug excreted unchanged in urine expressed as %; CLy: unbound total clearance; CLe,": unbound
renal clearance; CLnonren : Unbound nonrenal clearance; CLyenwp: Net renal tubular clearance, calculated as CLyen" - glomerular filtration
rate (GFR assumed to be 1.6 ml/min/kg); Groups 1, 2 and 3 were assigned as defined in Table 3.4. For oral studies, true Vdss", CLyo,
and f. could not be obtained because only apparent values, which were influenced by the individual bioavailabilities (Foral), were
available. Since in most instances CLponren Was calculated as CLi — CLyen", this value was also excluded from the oral studies
dataset. For parameter estimates obtained from the systematic review, the values reported are the average of mean values; therefore,
standard deviations have not been reported (Refer to Appendix I). (Adapted from manuscript published in Expert Opin Drug Metab
Toxicol. May 2012; 8(5): 553-69).
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Evaluating the pharmacokinetic properties in the final database (n=18) reveals the fraction
unbound in plasma (f,) showed a limited, 3.5-fold difference (Table 3.3) amongst the FQs;
overall, plasma protein binding was low. Both Vds" and CLy" were fairly uniform, indicating
that the systemic distribution and overall elimination — after correction for plasma protein
binding — varied only moderately across FQs (Table 3.3). Generally, each FQ showed at least
some extravascular/intracellular distribution [Vds" >> plasma (0.04 L/kg) and total body water
volume (0.6 L/kg)], and their clearances were lower than hepatic blood flow (20 ml/min/kg), but
exceeded GFR for some. Most notably, their CL," values showed a wide distribution with a 20-
fold difference among the compounds, illustrating that - despite being similarly distributed
throughout the body - other factors (e.g., ionization state, renal drug transporters, see section 3.C)
significantly influence their renal handling. Determination of the renal tubular clearance
(CLtenwb) provides further insight as to which tubular handling process (e.g., net secretion vs. net
reabsorption) plays the greatest role in renal elimination of each individual FQ, which further
allows classification into FQs in Groups 1, 2 and 3 (Figure 1.2 and 3.1, Table 3.2 and 3.4). For
these FQ groups, there were no substantial differences between CLponren , Vdss and fy, suggesting
particular molecular properties/specific transporter interactions may account for differences in
renal handling, but may not affect other PK properties (Table 3.3). Most importantly, it was
found that the mean plasma half-lives (ti2) showed significant differences between the three
groups (Table 3.4): The ty, of Group 1 was significantly longer as compared to Group 3 (p <
0.01), with the FQs in Group 1 showing a 3 to 4-fold higher ty,, than those in Group 3, and ~2-
fold higher ty, than the FQs in Group 2 (Table 3.4). Values for Group 1 and Group 2, as well as
Group 2 and Group 3 did not differ significantly. This suggests that the differences in renal

tubular handling between the various FQs may be the major reason for their differences in
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systemic half-life, i.e., the role/contribution of renal tubular drug transporters may be the main
determinant for the duration of action for FQs.

The renal tubular clearance differences of FQs between Group 1 and Group 3 (Table 3.4)
may be explained by significant interactions of FQs with renal tubular drug transporters: FQs in
Group 1, wherein CLe" is less than GFR, are likely to predominantly/efficiently interact with
apically expressed transporters that mediate their (net) tubular reabsorption (Figure 1.2). Of
course, interactions with basolateral and apical transporters in the blood to urine (secretory)
direction in the RPTC, prior to being offset/overcome by the reabsorptive flux, are likely to
occur as well. On the other hand, FQs in Group 3, wherein CLe," exceeds GFR, are expected to
be substrates for basolateral and apical transporters and to exhibit a substantial blood to urine
secretory flux, i.e., net tubular secretion. Thus, the marked dispersion of CLen" and CLyen b
values among FQs could be attributed to carrier-mediated mechanisms existing in RPTC. Such
transporter interactions should be critically evaluated, as this may also be one explanation for
some reported in vivo drug-drug interactions, e.g., decreased clearance of FQs co-administered
with cimetidine or probenecid (see Chapter 1, Section 1.C). Such interactions could significantly

affect FQ disposition kinetics and hence alter their efficacy and/or toxicity profiles.
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Table 3.3. Summary of systemic pharmacokinetic and physicochemical properties of
fluoroquinolones in the systematic review

Mean Range Fold difference
Pharmacokinetic property
Vdss" (L/kg) 3.4 1.7-5.4 3.1
fu (%) 57 24-85 3.5
CLiot (ml/min/kg) 6.6 2.4-17.0 7.1
CLyen (mI/min/kg) 1.9 0.2-7.5 46.2
CLren" (ml/min/kg) 3.1 0.5-9.5 20.2
CLnonren” (Ml/min/kg) 3.1 0.8-8.6 10.1
Physicochemical property
Molecular weight (Da) 369.6 319-462 1.4
Molar volume (cm®) 254.3 203-300 1.5
Log D (pH =7.4) -0.2 -1.1-1.1 --

Vds": Unbound volume of distribution at steady-state; f,: Fraction of unbound drug in plasma;
CLtt": Unbound total body clearance; CLren: Renal clearance; CLre": Unbound renal clearance;
CLnonren = Unbound nonrenal clearance: Da: Daltons; Log D: Logarithmic value of distribution
co-efficient. (Adapted from manuscript published in Expert Opin Drug Metab Toxicol. May
2012; 8(5): 553-69)
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Table 3.4. Characteristics used to define the groups as reported in Table 3.2 and Figure 3.1
based on renal tubular handling and associated plasma half-lives

CLren, tub Net renal handling process Group tip
(ml/min/kg) (hr)
Negative (< -1) net tubular reabsorption 1 21.2 £13.1 (n=3)
>-land <1 little/no net tubular transport 2 11.5 + 4.6 (n=8)
Positive (> 1) net tubular secretion 3 59+ 2.7 (n=7)

CLrenwb: estimated net renal tubular clearance; ty,: half-life in plasma (reported as mean +
standard deviation). (Adapted from manuscript published in Expert Opin Drug Metab Toxicol.
May 2012; 8(5): 553-69)
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Net Tubular Reabsorption Net Tubular Secretion

———— I,

Sparfloxacin -1.13
Pefloxacin  -1.10
Rufloxacin -1.02 I

Trovafloxacin -0.92
Grepafloxacin -0.91

Group 1

Fleroxacin
Antofloxacin
Levofloxacin

Lomefloxacin
Temafloxacin
Moxifloxacin
Amifloxacin
Gatifloxacin
Enoxacin
Ofloxacin
Ciprofloxacin
Norfloxacin
Gemifloxacin

-2 -1 0 1 2 3 4 5 6 7 3 9

Renal tubular clearance [CL,., 3] (ml/min/kg)

Figure 3.1. Categorization of fluoroquinolones based on renal tubular clearance (CL ren tub)

FQs were separated into three groups based upon their CLnw, Obtained from the
pharmacokinetic systematic review. FQs were assigned to groups according to the criteria listed
in Table 3.4. (Adapted from manuscript published in Expert Opin Drug Metab Toxicol. May
2012; 8(5): 553-69)
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3. C. PHYSICOCHEMICAL PROPERTIES OF FLUOROQUINOLONES

As FQs have evolved through successive generations of drug discovery, their molecular
structures have been modified to some extent. Molecular size, molecular weight, LogD, pKa,,
molar volume, number of hydrogen bond donors, number of hydrogen bond acceptors, number
of rotatable bonds, and microspecies (ionization) profiles at physiological pHs were estimated
for individual FQs (Tables 3.3 and 3.4). The values reported herein were restricted to those
eighteen FQs for which sufficient data were obtained in the systematic review to estimate
unbound renal clearance (CLye,") and renal tubular clearance (CLenwp) (See Table 3.2). No
significant trends were detected on comparing the hydrogen bond donors, hydrogen bond
acceptors, number of rotatable bonds, LogD (at pH 7.4), molecular weights, or molar volumes
across the three groups (Refer Appendix Il and Table 3.3). LogD values (at pH 7.4) for the FQs
were predominantly low, indicating their largely hydrophilic nature. FQs in the final database
had similar structural scaffoldings with two pKj, values, an acidic pK, between 5.19 and 6.44 and
a basic pK, between 6.30 and 10.63 (Table 3.3; notably, the software was unable to accurately
predict acidic pK, values for fleroxacin, lomefloxacin, norfloxacin and pefloxacin). The close
proximity of the two pK, values dictates that these FQs exist predominantly as zwitterions in the
physiological pH range due to the dissociation of a carboxyl group at the 3-position of the
quinolone ring and the protonation of the piperizinyl ring nitrogen (Figure 1.1) (9, 29).
However, Table 3.5 suggests that ionization profiles demonstrate considerable differences
between FQs in their proportion of anionic (A), cationic (C), neutral (N) and zwitterionic (2)
species at physiologically relevant pH values. For example, gemifloxacin is predicted to exist
completely as a zwitterion at the blood pH of 7.4, while rufloxacin would show a minor

zwitterionic component (17%) and be primarily anionic (82%), and ciprofloxacin would be
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predominantly zwitterionic (82%), with co-existing cationic (10%) and anionic (7%)
microspecies. However, at the urinary pH of 6.3 it is predicted that gemifloxacin will exhibit
both zwitterionic (82%) and cationic (18%) microspecies, rufloxacin will become primarily a
zwitterion (67%) with some anionic (21%) and cationic (5%) microspecies, and ciprofloxacin
will be largely cationic (60%) with some zwitterionic (39%), but no anionic species. In general,
for the FQs listed in Table 3.5, zwitterionic and anionic species are most prevalent at pH 7.4,
whereas at pH 6.3 zwitterionic and cationic species dominate. Regardless, as FQs exist as
charged molecules in blood and urine, their absorption, distribution, and elimination are likely to
be influenced by active transport mechanisms in addition to passive diffusion and glomerular
filtration.

Prulifloxacin was specially included into the dataset for analysis of physicochemical
properties of FQs (Tables 3.5 and 3.6), as it is the only prodrug FQ, which is currently marketed
(alatrofloxacin, the prodrug of trovafloxacin was withdrawn due to hepatotoxicity) (81, 122).
This prodrug is absorbed mainly from the upper small intestine, followed by hepatic first-pass
metabolism by an a-esterase (paraoxonase) to being converted into the active FQ: ulifloxacin
(12, 81). Hence, it was of interest to study the in vitro OCT-FQ interactions, potentially
mediating prulifloxacin’s GI absorption and hepatic metabolism for conversion into its active
metabolite, ulifloxacin. This analysis predicted prulifloxacin to exist predominantly as an anion
at the pH values of 7.4 (95%A, 3%Z) and 6.3 (55%A, 6%C, 23%N, 17%Z) (Table 3.6). Due to
absence of in vivo studies matching our inclusion criteria for this FQ prodrug (detected as
ulifloxacin in vivo), as well as due to unavailability of the active metabolite ulifloxacin for in
vitro studies, no analysis has been demonstrated for ulifloxacin. However, the prodrug was

pursued further for in vitro testing (See Chapters 4 and 5).
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The information summarized in Tables 3.2-3.5 and Figure 3.1 may allow prioritization of in
vitro studies designed to identify the active transporters that contribute to the renal tubular
secretion and/or reabsorption of FQs: For example, at blood pH, sparfloxacin exists almost
completely as zwitterionic (80%) and cationic moieties (11%), with only a small anionic
component (8%). Furthermore, the pharmacokinetic literature indicates that co-administration of
probenecid does not inhibit its renal clearance (143). Taken together, this suggests that a
basolateral OCT pathway (e.g., OCT1, OCT2 and/or OCT3) mediates its accumulation in human
RPTCs from the blood and its subsequent efflux into the urine (perhaps via an OCTN or MATE)
(Figure 1.2). However, at urinary pH, sparfloxacin exists as cationic (63%) and zwitterionic
moieties (36%), with no anionic species. Coupled with the lack of inhibition by co-administered
probenecid, this suggests an unidentified apical organic cation uptake transporter mediates its
tubular reabsorption (95, 143). Similarly, moxifloxacin, whose renal handling is unaffected by
probenecid (157) and has ionization profiles of 93%Z, 7%A, 0%C at pH 7.4 and 51%Z, 0%A,
49%C at pH 6.3, may cross the basolateral membranes of human RPTCs via OCT1, OCT2
and/or OCT3 and exit across the apical membrane via any one or all of the identified efflux
transporters (Figure 1.2). On the other hand, for compounds predominately anionic in the blood
such as fleroxacin (86%A, 13%Z, 0%C at pH 7.4) and levofloxacin (62%A, 37%Z, 0%C at
pH7.4), whose renal excretion is known to be inhibited by co-administration of probenecid (38,
81, 142), basolateral RPTC uptake is likely mediated by OAT1 and/or OAT3, followed by apical
ATP Binding Cassette transporter mediated efflux. Hence these structural parameters and
ionization profiles of FQs, may potentially aid in prediction of renal transport mechanisms likely

to mediate the in vivo renal disposition of these antimicrobials (See section 1.C).
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Table 3.5. Physicochemical properties of the fluoroquinolones in the systematic review

MW Log D HBD HBA nRot Molar Volume pK, (acidic) pK, (basic)

Drug: (Da) (pH =7.4) (cmd)

Amifloxacin 334 -0.7 2 7 3 231.7 6.2+0.4 74+04
Ciprofloxacin 331 -0.3 2 6 3 226.8 6.4+04 8.7+0.1
Enoxacin 320 -0.6 2 7 3 230.7 6.0+0.7 8.2+0.1
Fleroxacin 321 -0.3 1 6 4 262.1 - 72204
Gatifloxacin 375 -0.2 2 7 4 270.8 6.4+05 8.7+0.4
Gemifloxacin 389 -0.7 3 9 6 236.3 6.0+0.7 9.2+0.3
Grepafloxacin 359 0.6 2 6 3 263.0 6.4+£05 8.7x+04
Levofloxacin 361 -0.4 1 7 2 244.0 52+04 74+04
Lomefloxacin 351 0.04 2 6 3 261.6 - 86+04
Moxifloxacin 401 0.3 2 7 4 285.0 6.4+05 106 +0.2
Norfloxacin 319 -0.7 2 6 3 237.4 - 8.7+0.1
Ofloxacin 361 -0.4 1 7 2 244.0 52+0.4 74+04
Pefloxacin 333 -0.2 1 6 3 252.5 --* 74+04
Rufloxacin 363 -0.3 1 6 2 234.9 52+0.2 731204
Sparfloxacin 392 0.8 4 7 4 273.2 6.4+0.5 8.6+0.6
Temafloxacin 417 -0.9 2 6 3 292.5 6.0+04 8.7+04
Trovafloxacin 416 -1.1 3 7 4 258.3 5.8+0.7 7.9+0.2
Prulifloxacin 462 1.1 1 9 4 283.6 59+04 6.3+0.7

*The software was unable to accurately predict acidic pK, values for fleroxacin, lomefloxacin, norfloxacin and pefloxacin;

MW: molecular weight; Log D (pH = 7.4): logarithmic value for the distribution coefficient at pH 7.4; HBD: number of hydrogen
bond donors; HBA: number of hydrogen bond acceptors; nRot: number of rotatable bonds; pK, (acidic): most acidic pK; value; pKj
(basic): most basic pK, value. Antofloxacin was excluded in this analysis as physicochemical could not be obtained for this FQ by the
software. (Adapted from manuscript published in Expert Opin Drug Metab Toxicol. May 2012; 8(5): 553-69)
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Table 3.6. lonization profiles for fluoroquinolones in systemic (pH 7.4) and urinary (pH
6.3) compartments

lonization profile (%) at pH 6.3 lonization profile (%) at pH 7.4
Drug: A C N Z A C N Z
Amifloxacin 4 59 13 23 57 5 13 25
Ciprofloxacin 60 39 7 10 82
Enoxacin 20 78 14 84
Fleroxacin 30 7 3 60 86 13
Gatifloxacin 49 51 7 7 86
Gemifloxacin 18 82 97
Grepafloxacin 61 39 6 10 83
Levofloxacin 11 7 82 62 37
Lomefloxacin 13 86 10 88
Moxifloxacin 49 51 7 93
Norfloxacin 17 82 8 90
Ofloxacin 11 7 82 62 37
Pefloxacin 9 14 75 60 39
Prulifloxacin 55 6 23 17 95 3
Rufloxacin 25 5 67 82 17
Sparfloxacin 63 36 8 11 80
Trovafloxacin 6 14 80 47 52
Temafloxacin 41 59 7 5 88

Molecular microspecies: A (anionic), C (cationic), N (neutral), and Z (zwitterionic). Determined
using ACD/PhysChem Suite Version 12 (Advanced Chemistry Development, Inc).
*Antofloxacin was excluded in this analysis as physicochemical could not be obtained for this
FQ by the software. (Adapted from manuscript published in Expert Opin Drug Metab Toxicol.
May 2012; 8(5): 553-69)
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CHAPTER 4

HUMAN ORGANIC CATION TRANSPORTERS 1 (SLC22A1), 2 (SLC22A2), 3
(SLC22A3) AS DISPOSITION PATHWAYS FOR FLUROQUINOLONE
ANTIMICROBIALS

(draft of a manuscript submitted to the journal: Antimicrobial Agents and Chemotherapy)

4. A. INTRODUCTION

Through decades of clinical advancement, the quinolones, now known as fluorogquinolones
(FQ), have been widely popular as broad-spectrum antimicrobials, in human as well as
veterinary medicine (6, 66, 141). They are utilized for infections of the soft-tissue, skin, bone,
meninges, respiratory tract, gastrointestinal tract, and genitourinary tract (66). For example,
ciprofloxacin and ofloxacin undergo considerable hepatobiliary elimination resulting in high
concentrations in the feces and, hence, are preferentially indicated for treating gastrointestinal
infections (66, 68, 96). Whereas, e.g., ciprofloxacin, levofloxacin, norfloxacin, and ofloxacin, are
known to be renally eliminated as the ‘unchanged drug’, resulting in urinary concentrations of
parent drug that are much higher than their minimum inhibitory concentrations for most
infectious bacteria, thus rendering them as important antimicrobials for genitourinary tract

infections (9, 47).
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The development of newer FQs has enabled improved efficacy and therapeutic duration
of action. However, this pharmacological benefit of higher systemic and tissue concentrations
has resulted in a number of FQs demonstrating mild to severe toxicities, eventually leading to
withdrawal from the pharmaceutical market for some (98). Moreover, all currently marketed FQs
have been mandated by the FDA to carry labeled warnings associated with their use, due to side
effects like tendinitis (in 2008) and exacerbation of Myasthenia Gravis (in 2011). With the
existence of such broad toxicities associated with the use of FQs, there is an increased need to
elucidate the underlying biochemical mechanisms driving their overall kinetics and target organ
disposition. Such knowledge should aid a priori identification of potential drug-drug interactions,

as well as future drug design strategies.

Considering that renal excretion is one of the major elimination pathways for most FQs
after entering the systemic circulation (121, 126), investigations regarding the mechanisms
governing their flux across renal proximal tubule cells (RPTC), i.e., renal basolateral uptake
(removal from the blood into RPTC), apical efflux (from the RPTC into the urinary space), and
potential reabsorption (from the urinary space back into the RPTC), are warranted. Further, as
the basic structural scaffold of FQs has essentially remained unchanged (198), all FQs are
predicted to exist predominantly as ionized molecules in the physiological pH range; having co-
existent cationic, anionic, and electroneutral (zwitterionic and/or neutral) species (116). Due to
their mostly ionic nature, passive diffusion should account for a negligible component of their
movement across cell membranes, leaving active transport and facilitated diffusion mechanisms

likely to govern the overall kinetics of these agents in the body (116, 165).

Recently, we conducted a systematic review of clinical literature reporting in vivo
pharmacokinetic properties of FQs and correlated this data with available in vitro studies
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examining FQ interactions with transporters (116, 165). This allowed identification of a subset of
FQs (ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin,
norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin and sparfloxacin) with high potential
to interact with members of the SLC22 (organic cation/anion/zwitterion transporters) family,
which are known to be expressed in the RPTC and to mediate RPTC flux of such charged
species (116, 165). For example, a number of clinical studies have documented significant
changes in FQ (e.g., enoxacin, fleroxacin, and levofloxacin) pharmacokinetics upon concomitant
administration with cimetidine, a well-characterized substrate of human (h)OCT1 (SLC22A1)
and hOCT2 (SLC22A2), and inhibitor of hOCT3 (SLC22A3) (91, 172, 181). A significant
decrease in the renal (CLn) and total (CLyy) clearances (each ~13-28%) of the FQs was
observed, with an accompanying increase in the area under the concentration curve from zero
time-point to infinity (AUCo.inf) by ~28% for enoxacin and levofloxacin (42, 111, 149).
Similarly, co-administration of ciprofloxacin, levofloxacin, or ofloxacin with procainamide, a
class I antiarrhythmic agent and known inhibitor of the hOCTs, significantly reduced CL, and
increased AUC.is of procainamide and its metabolite, N-Acetylprocainamide (NAPA) in
patients (10, 58, 103, 104, 110, 202). Levofloxacin induced the greatest effect, decreasing the

CLen of procainamide by ~26% and of NAPA by ~20% (10).

In accordance with this ‘clinical footprint’ for hOCT involvement in renal FQ
disposition, recent in vitro studies using stably transfected cell lines have demonstrated inhibition
of hOCT2, a membrane potential sensitive facilitated diffusion carrier targeted to the basolateral
membrane of RPTC, by grepafloxacin (K;value = 10.4 uM), levofloxacin (ICso = 127 + 27 uM)
and moxifloxacin (72, 91, 125). However, potential FQ interactions with hOCT1 and hOCT3

have not been investigated. Thus, the objective of this work was to kinetically characterize the
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potency of interaction of the identified subset of FQs with hOCT1, hOCT2 and hOCT3 and then
apply this information to quantitatively assess the clinical relevance of any such interaction via

calculation of the drug-drug interaction index (unbound Cpax/1Cso or Kj).

4. B. MATERIALS AND METHODS

4.B.1. Chemicals and reagents

Unlabeled tetraethylammonium (TEA) bromide and 1-methyl-4-phenylpyridinium (MPP")
iodide were purchased from Sigma Aldrich (St. Louis, MO). Quinine monohydrochloride
dihydrate was purchased from Fisher Scientific (Waltham, MA). Ciprofloxacin hydrochloride,
norfloxacin and ofloxacin hydrochloride were purchased from MP Biomedicals (Solon, OH).
Enoxacin, fleroxacin, gatifloxacin, levofloxacin hydrochloride, lomefloxacin hydrochloride,
moxifloxacin hydrochloride, pefloxacin mesylate, prulifloxacin, rufloxacin hydrochloride, and
sparfloxacin were purchased from LKT Laboratories, Inc. (St. Paul, MN). Radiolabeled
[“C]TEA and [*HJMPP* were obtained from PerkinElmer (Waltham, MA). Dulbecco’s
Modified Eagle’s Medium with high glucose (DMEM) and Serum Supreme were purchased
from Fisher Scientific (Waltham, MA). Penicillin/streptomycin and G418 (geneticin) were
purchased from Invitrogen Life Technologies (Grand Island, NY) and VWR International

(Radnor, PA), respectively.
4.B.2. Cell line maintenance and transport assay

The human embryonic kidney (HEK293) cell lines stably-expressing hOCT1, hOCT2, or
hOCT3, and the corresponding empty vector transfected background control line (HEK293-EV),

were developed as described previously (54, 55). Cell lines were maintained in DMEM
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containing 10% Serum Supreme, 1% penicillin/streptomycin, and G418 (100 pg/ml) at 37°C

with 5% CO..

Accumulation assay protocols were adapted from our previously published methods (187,
195). Briefly, cells were seeded in 24-well tissue culture plates (250,000 cells/well) and grown in
the absence of antibiotics for 2 days under suitable cell culture conditions (37°C and 5% CO,).
On the day of the experiment, the culture medium was removed and cells were equilibrated for
10 min with transport buffer (Hank's balanced salt solution containing 10 mM HEPES, pH 7.4;
Sigma-Aldrich, Saint Louis, MO). Next, this transport buffer was removed and replaced with
500 pl of transport buffer containing either 1-30 pM unlabeled TEA with [YC]TEA (0.25
uCi/ml) added as tracer for hOCT1 and hOCT2, or 1-30 uM unlabeled MPP* with [H*]MPP*
(0.25 pCi/ml) added as tracer for hOCT3 in presence/absence of 0.1-2,000 pM FQs or 200 uM
quinine (as detailed in figure legends). Following incubation, buffer was removed and the cells
were immediately rinsed three times with excess ice-cold transport buffer, lysed in 200 pl of 1 M
NaOH, neutralized with 250 pl of 1 M HCI plus 200 pl of 0.1 M HEPES. Aliquots were assayed
for radioactivity by liquid scintillation counting and for total protein content using a Bradford
protein assay kit (BioRad, Hercules, CA). Uptake was reported as picomoles per milligram total
cell protein. All experiments were performed at least three times in triplicate (i.e., three

wells/treatment repeated at least three times).
4.B.3. Kinetic and statistical analyses

All data used in kinetic determinations were corrected for background accumulation in
HEK293-EV cells prior to analysis. Dose-response curves were analyzed by nonlinear regression

using GraphPad Prism® software version 5.04 (GraphPad, San Diego, CA). Prior to
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determination of inhibition constants (K; value), the Michaelis Menten constants (K, values) for
TEA and MPP* were validated with those previously published for hOCT1 and hOCT3 (91,
102). Further, the type of inhibition was evaluated using mixed model inhibition analysis (22).

This model uses the following equations to assess the mode of inhibition:

v 1+
App —
Vm.'f)? - 1+ ma>l< Képpz Km* I<Ii
1+
oK, and @K,
Y = \VAPP* X

max App
With the final equation being, K™ +X

where ‘Y’ is the substrate (in this case TEA/MPP") uptake rate observed, ‘X’ and ‘I’ are the
substrate and inhibitor (FQ) concentrations respectively, Vmax is the maximum transporter
velocity in absence of the inhibitor, Ky, value is the Michaelis-Menten constant of the substrate
and K; value is the inhibition constant generated from the experimental dataset. The type of
inhibition is defined by the ‘alpha value’ (o)) obtained. Inhibition is identified as competitive, if o
is a large number (o > 1), as non-competitive, if a = 1, or as uncompetitive, if a is small, but
greater than zero (0 < o < 1) (22). Subsequently, K; values for the FQs were calculated using the

appropriate model based upon the identified inhibition mechanism.

Data are reported as mean + S.E.M. Statistical significance was determined using one-
way analysis of variance (ANOVA) with Dunnett’s pairwise comparison post hoc test to

measure significant differences. The value for significance was set at 0.05.
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4. C. RESULTS

4.C.1. Characterization of fluoroquinolone interaction with human OCT1

TEA uptake in HEK293-hOCT1 cells (25.41 + 2.3 pmol/mg protein/15 min) was ~18 fold higher
than that measured in HEK293-EV cells (1.44 £ 0.18 pmol/mg protein/15 min), which exhibited
a consistent quinine-insensitive (data not shown) background accumulation of ~5-6% (Figure
4.1). Addition of 200 uM quinine (vs. 1 UM TEA) reduced TEA accumulation in the HEK293-
hOCT1 cells to the background level observed in HEK293-EV cells. In order to grossly identify
which, if any, of the FQs of interest exhibited inhibition of hOCT1 transport strong enough to
warrant further kinetic analysis (< ~60% inhibition), they were each independently tested at a
concentration of 1 mM (Figure 4.1). Under these conditions, enoxacin failed to produce
significant inhibition of hOCT1, while ciprofloxacin (~33%), fleroxacin (~20%), levofloxacin
(~38%), lomefloxacin (~43%), norfloxacin (~24%), ofloxacin (~38%), pefloxacin (~40%) and
rufloxacin (~47%) exhibited significant, but weak inhibition. Only gatifloxacin (~77%),
moxifloxacin (~85%), prulifloxacin (~75%), and sparfloxacin (~75%) produced inhibition
greater than 60% (level of inhibition established as the cut-off value under these preliminary test

conditions for further kinetic analysis).
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Figure 4.1. Inhibition of human OCT1-mediated transport by fluoroquinolones

Uptake of 1 pM [**C]TEA was measured for 15 min in HEK293 cells stably expressing hOCT1
(open bar) in presence of unlabeled FQs (1 mM) or quinine (200 uM), a prototypical hOCT
inhibitor, (black bars). The mock-vector transfected HEK293-EV cells served as a reference for
nonspecific background substrate accumulation (grey bar). Uptake is expressed as a percentage
of the positive control (HEK293-hOCT1). Values are expressed as mean + S.E.M. and
significant differences between HEK293-hOCT1 and treatments were analyzed using one-way
ANOVA analysis followed by Dunnet’s post hoc test (*** p<0.001).
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To identify the proper model(s) to utilize for determination of inhibition potencies (K;
values) for gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin on hOCT1, experiments
were conducted to identify the mode of inhibition produced by each compound. Previous work
found hOCT1-mediated TEA accumulation in HEK293 cells to be linear through at least 2 min
and reported a Michaelis-Menten constant (Ky,) value of 229 uM for TEA, and we obtained
similar results in our laboratory (55, 91). Based on these parameters we performed independent
saturation analysis experiments using an accumulation time of 1 min and a TEA concentration of
1 uM in the absence and presence of two concentrations of each FQ); gatifloxacin, moxifloxacin,
and prulifloxacin each at 200 uM and 500 puM and sparfloxacin at 150 pM and 350 uM. The
mode of inhibition was then identified by nonlinear regression analysis of background-corrected
data using the ‘mixed-model inhibition’ analysis in GraphPad Prism. The o values obtained were
all much greater than 1, indicating these four FQs are competitive inhibitors of hOCT1 (Table

4.1).

Finally, the strength of FQ inhibition on hOCT1 was quantitated (K; values) by
concentration-dependency studies (Figure 4.2). Inhibition of hOCT1-mediated TEA uptake by
increasing FQ concentrations (0.1 - 2,000 uM) was analyzed by nonlinear regression selecting
competitive inhibition. K; values were estimated as 250 + 18 uM for gatifloxacin, 161 + 19 uM
for moxifloxacin, 136 + 33 uM for prulifloxacin, and 94 £ 8 uM for sparfloxacin (Figure 4.2 and

Table 4.1).
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Figure 4.2. Determination of binding affinities (K; values) for gatifloxacin, moxifloxacin,
prulifloxacin and sparfloxacin on human OCT1

One minute [**C]TEA (1 uM) uptake was measured in the absence or presence of 0.1-2,000 pM
FQs in HEK293-hOCT1 cells. Uptake was corrected for non-specific background accumulation
in HEK293-EV cells and expressed as percent of control. Data are presented as mean + S.E.M.
The K; values were determined by non-linear regression selecting competitive mode in GraphPad
Prism. All experiments were conducted at least 3 times in triplicate and the graphs are single
representative experiments.
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4.C.2. Characterization of fluoroquinolone interactions with human OCT2

TEA uptake in HEK293-hOCT2 cells (136.58 + 1.74 pmol/mg protein/15 min) was ~60 fold
higher than that detected in HEK293-EV cells (2.24 = 0.37 pmol/mg protein/15 min = quinine-
insensitive (data not shown) background accumulation of ~1-2%) (Figure 4.3). Addition of 200
MM quinine (vs. 1 uM TEA) inhibited the TEA accumulation in HEK293-hOCT2 cells by ~80%.
As described above, we first sought to identify those FQs (1 mM) capable of producing strong
inhibition of hOCT2-mediated TEA (1 uM) uptake (Figure 4.3). In marked contrast to hOCT1,
none of the examined FQs significantly inhibited hOCT2 under these conditions. In fact,
enoxacin, norfloxacin, ofloxacin, pefloxacin, rufloxacin, and sparfloxacin appeared to stimulate
TEA uptake under these conditions (Figure 4.3). In the absence of inhibition, no further kinetic

analysis was performed.
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Figure 4.3. Effect of fluoroquinolones on human OCT2-mediated transport

Uptake of 1 uM [*C]TEA was measured for 15 min using HEK293 cells stably expressing
hOCT2 in absence (open bar) or presence of 1 mM unlabeled FQs or 200 uM quinine (black
bars). The mock-vector transfected HEK293-EV cells served as a reference for nonspecific
background substrate accumulation (grey bar). Uptake is shown as percent of control (HEK293-
hOCT2). Values are given as mean = S.E.M. and significant differences between HEK293-
hOCT2 and treatments were analyzed using one-way ANOVA analysis followed by Dunnet’s
post hoc test (*p<0.05, **p<0.01, and ***p<0.001).
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4.C.3. Characterization of fluoroquinolone interactions with human OCT3

To track hOCT3 transport activity, MPP* (1 uM) was used as substrate (Figure 4.4). MPP*
accumulation in HEK293-hOCT3 expressing cells (84.09 + 4.29 pmol/mg protein/15 min) was
~21 fold greater than that obtained in the control HEK293-EV cells (4.01 + 0.17 pmol/mg
protein/15 min). Accumulation of MPP™ in the HEK293-EV cells was insensitive to addition of
200 uM quinine (data not shown), however accumulation in the HEK293-hOCT3 cells in the
presence of quinine was dampened to a level similar to that measured in the control cells. Similar
to what was observed for hOCT2, none of the FQs (1 mM), with the exception of moxifloxacin
(~30%), inhibited hOCT3-mediated transport under test parameters (Figure 4.4). Again, apparent
stimulation of transport activity occurred in the presence of some FQs, namely fleroxacin,
levofloxacin, lomefloxacin, ofloxacin, and pefloxacin. Other than ofloxacin and pefloxacin each
being associated with increased substrate uptake by hOCT2 and hOCT3, no consistent pattern of

inhibition or stimulation was noted across transporters or substrates (Refer Appendix I11).
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Figure 4.4. Effect of fluoroquinolones on human OCT3-mediated transport

Uptake of 1 pM [*H]JMPP* was measured for 15 min in HEK293 cells stably expressing hOCT3
in absence (open bar) and presence of 1 mM unlabeled FQs or 200 puM quinine (black bars). The
mock-vector transfected HEK293-EV cells served as a reference for nonspecific background
substrate accumulation (grey bar). Uptake on was plotted as a percentage of the positive control
(HEK293-hOCT3). Values are expressed as mean + S.E.M. and significant differences between
HEK293-hOCT3 and treatments were analyzed using one-way ANOVA followed by Dunnet’s
post hoc test (**p<0.01 and ***p<0.001).
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Although the inhibition produced by moxifloxacin was somewhat weak, since it was the
only FQ to produce any significant inhibition of hOCT3 and it was one the strongest inhibitors of
hOCT1, we performed kinetic analysis of this compound on hOCT3 to allow for comparison.
Previous work reported hOCT3-mediated MPP* accumulation in HEK293 cells to be linear
through at least 2 min with a Ky, value of ~40-50 uM, and we confirmed similar results in our
laboratory (54, 91, 102). Nonlinear regression analysis (using ‘mixed-model inhibition’) of
background-corrected saturation data (accumulation time of 1 min with 1 pM MPP™) collected in
the absence and presence of moxifloxacin at 500 uM and 1,000 uM yielded an a value much
greater than 1, indicating competitive inhibition (Table 4.1). Subsequent dose-dependence
experiments using 0.1 - 2,000 uM moxifloxacin to inhibit MPP* uptake yielded a K; estimate of

1,598 £ 146 uM (Figure 4.5 and Table 4.1).
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Figure 4.5. Determination of the binding affinity (K; value) for moxifloxacin on human
OCT3

[*HJMPP* uptake was measured for 1 min in the absence or presence of 0.1-2,000 uM
moxifloxacin in HEK293-hOCT3 cells. Uptake was corrected for non-specific background
accumulation in HEK293-EV cells and expressed as percent of control. Data are presented as
mean = S.E.M. The K; value was determined by non-linear regression selecting competitive
mode in GraphPad Prism. The experiment was conducted 3 times in triplicate and the graph is a
single representative experiment.
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Table 4.1. Kinetic parameters, unbound Cpx, and calculated drug-drug interaction indices

for human OCT1 and OCTS3.

a value Ki Unbound Cpax Drug-drug References
(LM) (UM) Interaction (for unbound
Index Crmax)
hOCT1
Gatifloxacin  1.66 x 10 250 + 18 3.54-12.22 0.01-0.05 (43, 119)
(200-800 mg
IV dose)
Moxifloxacin 7.16 x 10®° 161 + 19 3.79 - 4.06 0.02-0.03 (156, 157)
(400 mg IV dose)
Prulifloxacin  2.62x 10° 136+ 33
Sparfloxacin  6.88x 10 94 +8 1.81-2.79 0.02-0.03 (112, 113)
(200-800 mg
oral dose)
hOCT3
Moxifloxacin  9.27 x 10'® 1,598 + 3.79 - 4.06 0.002-0.003 (156, 157)
146 (400 mg IV dose)

Ki: inhibition constant; Unbound Cpx: unbound maximum plasma concentration obtained from
human pharmacokinetic studies conducted in healthy adults (age: 18-45 y) after correction for
plasma protein binding (concentrations are expressed as a range for the different doses
administered); Drug-drug Interaction Index: calculated as unbound Cna/Ki; IV: intravenous; ---:
only the active metabolite of prulifloxacin, ulifloxacin, is detected in the systemic circulation.
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4. D. DISCUSSION

Fluoroquinolones are one of the most commonly prescribed and efficacious antimicrobials
for many infections. However, many of the newer broad-spectrum FQs are often not used as
primary therapeutics purportedly due to cost-effectiveness, concern about development of
bacterial resistance, risk to special populations, and a variety of mild-to-severe toxicities
observed in many patients (47, 70, 129, 206). Clearer understanding of the biochemical pathways
governing their kinetics in the body, drug interactions, and associated organ toxicities should aid
development of clinical strategies to circumvent these issues, as well as support discovery of
more efficacious FQs. As the clinical pharmacokinetics of FQs are known to be affected by
identified renal organic cation transport system inhibitors and substrates, and FQs are
predominantly zwitterionic in nature in the gastrointestinal environment and the systemic
circulation, they have been explored for potential interactions with organic cation/zwitterion
transport systems (116). Within the Amphiphilic Solute Carrier (SLC) superfamily, members of
the SLC22 (organic cation/anion/zwitterion transporters) and SLC47 (multidrug and toxin
extrusion transporters) families are known to transport organic cations, and have been
preliminarily examined with respect to FQ interaction (Figure 4.6). Inhibition of hOCT2
(SLC22A2), hOCTN1 (SLC22A4), and hOCTN2 (SLC22A5) by both levofloxacin and
grepafloxacin has been observed (62, 72, 125, 204). Ciprofloxacin and levofloxacin were
reported to inhibit hNMATEL1 (SLC47A1) and hMATE2K (SLC47A2), with ICsy values of
231+57.3uM and 38.2+11.8 uM, respectively, for hMATE1, and 98.7 +14.1 yM and
81.7 + 23.1 uM, respectively, for hMATE2K (175). Thus, members of these transporter families

may be important determinants of FQ disposition in vivo.

57



Human OCT1 (SLC22Al1), hOCT2, and hOCT3 (SLC22A3) are facilitated diffusion
carriers that mediate cellular uptake of substrates (91, 165). Human OCTN1 and hOCTN2 are
antiporters, with hOCTN1 mediating H*/organic cation or organic cation/organic cation
exchange, whereas hOCTN2 has been linked to carnitine uptake via carnitine/organic cation
exchange as well as organic cation/organic cation exchange (91, 165). Thus, they can mediate
cellular entry or exit, depending upon membrane localization and substrate gradients. In the
enterocyte (Figure 4.6), hOCT3, hOCTN1, and hOCTN2 are expressed in the apical/luminal
membrane and may mediate FQ absorption (91, 165). hOCT1 and hOCT2 are also found in
enterocytes, however, they are localized to the basolateral membrane and would therefore
mediate FQ uptake from the systemic circulation into the enterocyte. In hepatocytes (Figure 4.6),
hOCT1 and hOCT3 are known to be expressed in the basolateral/sinusoidal membrane and may
influence hepatic FQ influx (91, 165). Finally, in the RPTC (Figure 4.6), hOCT2 and hOCT3 are
basolateral and may participate in FQ accumulation from the blood, whereas, hOCTN1 and
hOCTN2 are targeted to the apical/brush border membrane and represent potential FQ efflux
and/or reabsorptive pathways (91, 165). Renal expression and targeting of hOCT1 remains
controversial, with conflicting localization reports in the literature, however, the rat Octl
ortholog has been immunolocalized to the basolateral membrane of RPTCs (80). For the SLC47
family, the transporter hMATE1 (SLC47A1) has been localized to the apical membrane of
hepatocytes and RPTCs, and hMATE2K (SLC47A2) is targeted to the apical membrane of
RPTCs, with potential roles in FQ entry into bile and/or urine (16, 91, 92, 127). Thus, a number
of transporters belonging to the SLC superfamily are known to be expressed in the intestine,
liver, and kidney and are poised to contribute to the absorption, distribution, and excretion of FQ

antimicrobials.
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The results reported herein suggest that, at least for the examined set of 13 FQs, only hOCT1,
and not hOCT2 or hOCTS3, is likely to be involved in FQ disposition (Figures 4.1, 4.3 and 4.4).
Thus, although there is high amino acid sequence homology between hOCT1, hOCT2, and
hOCT3 (~50-70%), there is a stark difference between FQ specificity of these transporter
paralogs (3, 165). The mode of inhibition and concentration-dependency experiments enabled
calculation of inhibition constants (K; values) for hOCT1, which indicated potential for FQ
inhibition of this transporter’s activity with a rough potency hierarchy of sparfloxacin >
prulifloxacin = moxifloxacin > gatifloxacin (Table 4.1). Human OCT1 expression in the
basolateral membranes of enterocytes, hepatocytes, and perhaps RPTC, indicates hOCT1-
mediated accumulation from the systemic circulation may play a role in the disposition of these
FQs (Figure 4.6 and Table 4.1). Moxifloxacin was found to be a relatively weak inhibitor of
hOCT3 with a K; value of ~1,600 uM. However, given a high luminal GI tract concentration of
moxifloxacin after oral dosing, hOCT3 may represent an important pathway for moxifloxacin
absorption due to its localization in the apical membrane of enterocytes and facilitated diffusion
mechanism of action. Further, hepatic metabolism accounts for ~80% of moxifloxacin
elimination (91, 145), and abundant hepatocyte expression of hOCT1 in the sinusoidal
membrane combined with the modest K; value of 161 puM, may indicate a role for hOCT1 in the
hepatic uptake of moxifloxacin from the systemic circulation, facilitating the metabolism and
elimination of this FQ. Also, in case of the prodrug prulifloxacin, a similar K; value of 136 uM
for hOCT1 coupled with high pre-systemic concentrations (following Gl absorption, >> K; value
for hOCT1), may suggest an important role of this OCT in mediating the first-pass metabolism
of this prodrug FQ to its active metabolite (ulifloxacin) (See Chapter 3, Section 3.C.) (12, 81).

Lack of interaction of prulifloxacin with hOCT3, suggests that the GI absorption of this prodrug
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may not be mediated by this transporter (Figure 4.4); on the other hand, hOCT1 may potentially
be involved in the uptake of prulifloxacin from the blood back into the enterocyte thus slowing
down its hepatic metabolism and resultant conversion to its active FQ (Figure 6, See Chapter 3,
Section 3.C). Nevertheless, these postulations are based on the assumption that the aforesaid FQs
are not only inhibitors for the OCTs, but are also being transported by these OCTs (substrates).
The complete lack of interaction of levofloxacin with hOCT2 (Figure 4.3) is in discrepancy with
a previously published study which found a relatively potent inhibition (ICso for hOCT2 = 127 +
27 pM) (125). However, the substrate used in the published study was creatinine, which has a
~9-10 fold lower affinity for hOCT2 as compared to TEA (K, for creatinine = 4,000 pM vs. Kp,
for TEA = 431 £ 87 uM), and the laboratory settings as well as the experimental design were
different (182, 183). Moreover, the results obtained herein concur with another study that found

no effect of 2.5 mM levofloxacin on hOCT2-mediated transport (182).

Recently, a quantitative method to assess the potential clinical relevance of such
transporter interactions, based on the Kkinetic parameters obtained through in vitro assays,
referred to as the drug-drug interaction index (DDl index), has been suggested

(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRequlatorylnformation/Guidances/u

cm292362.pdf) (73). The DDI index is defined as the ratio of the unbound maximal plasma
concentration (unbound Cyax) Of the drug divided by the in vitro K; or ICsy value determined for
a particular transporter. A value > 0.1 indicates potential for clinically relevant DDIs in instances
of co-administration/poly-pharmacy with other drugs identified as inhibitors or substrates of the
transporter in question. The implication for the pharmaceutical industry being that in vivo drug
interaction studies would have to be conducted prior to obtaining FDA approval

(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRequlatorylnformation/Guidances/u
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cm292362.pdf). Consequently, we compiled human in vivo pharmacokinetic and protein binding
studies for gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin, and calculated DDI
indices for hOCT1 and hOCT3 (Table 4.1). As indicated, all DDI index values were found to be
< 0.1 over prescribed dosing ranges, suggesting these interactions have low potential to result in
clinically relevant DDIs on hOCT1 or hOCT3. However, such individual transporter interactions
could be of considerable importance in situations where FQs would be ideally prescribed, e.g., in
acute exacerbation of chronic bronchitis, in patients with complicated urinary tract infections
(UTI), or trimethoprim-sulfamethoxazole resistance during the treatment of UTIs (47, 66). In
addition to such scenarios, FQ based interactions may gain importance where there exists an
inter-patient variability associated with enzymatic and/or transporter-based single nucleotide
polymorphisms (SNPs), affecting the kinetics and resultant pharmacodynamics of the interacting
drugs (10, 83, 108). For example, the levofloxacin-cimetidine interaction was suggested to be
clinically important in patients who were ‘slow acetylators’ (acetylation being an important
metabolic step in procainamide elimination), as renal elimination would become the primary

excretion pathway for procainamide in such a scenario (10).

Unexpectedly, some FQs produced significant stimulation of hOCT-mediated TEA/MPP”
uptake (Figures 4.3 and 4.4). However, this effect varied considerably among the hOCTs for
individual FQs with no readily identifiable pattern or association with FQ structural features. For
example, ofloxacin and pefloxacin significantly inhibited hOCT1, yet significantly stimulated
hOCT2- and hOCT3-mediated uptake (Figures 4.1, 4.3 and 4.4). In contrast, ciprofloxacin,
gatifloxacin, and prulifloxacin each inhibited hOCT1, but were without effect on hOCT2 or
hOCT3. Further, norfloxacin, rufloxacin, and sparfloxacin inhibited hOCT1, stimulated hOCT2

activity, but were without effect on hOCT3 activity; while fleroxacin, levofloxacin, and
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lomefloxacin inhibited hOCT1, were without effect on hOCT2 activity, but stimulated hOCT3.
Such sporadic transporter stimulation/inhibition by FQs has been previously reported in the
literature, e.g., ciprofloxacin caused stimulation of hOAT1, but inhibition of hOAT3 (187) and
sparfloxacin was described as a ‘borderline stimulator’ for MRP2 (130). In fact, such in vitro
stimulation of transporter activity actually has been observed for a variety of drug classes in
addition to FQs, including steroids, anticancer chemotherapeutics, and non-steroidal anti-
inflammatory drugs (87, 130, 187). It was postulated that such effects are due to interaction with
an allosteric binding site(s), causing a conformational change to the transport protein and
consequently modulating the kinetics of substrate molecules (87, 130). The stimulatory behavior
by some FQs observed herein for hOCT2 and hOCT3 is consistent with such an allosteric
binding mechanism. However, considering the varied response among the hOCTs (Figures 4.1,
4.3, and 4.4), the fact that several of these FQs were demonstrated to be competitive inhibitors of
hOCTL1 (Table 4.1), the high degree of sequence homology between hOCT1-3 (50-70%), and
their similar predicted membrane topologies, the location and make-up of such unique allosteric

binding sites remains unclear and requires much further investigation.

Finally, whether such stimulatory effects of FQs on hOCTs are observed in vivo is an
important novel question. In contrast to inhibitory DDIs, where victim drug pharmacokinetics are
characterized by decreased elimination and increased terminal half-life, such stimulatory DDIs
could result in increased elimination and shortened terminal half-life of victim drugs resulting in
marked loss of efficacy. For example, hOCT2 has recently been identified as a key mediator in
renal elimination of metformin, an important therapeutic in the treatment of type 2 diabetes (86,
109, 180). Thus, concomitant use of, e.g., ofloxacin, pefloxacin, or sparfloxacin, might stimulate

renal metformin elimination mediated by hOCT2, potentially reducing metformin’s efficacy and
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duration of action. If so, in situations where FQ therapy might be called for in a diabetic patient
on metformin therapy, use of ciprofloxacin might be a more prudent clinical strategy. Future in
vitro studies aimed at unraveling the mechanistic basis of such stimulatory effects of FQs on
hOCTs, and clinical studies designed to assess the potential impact of such effects in vivo, will

be important next steps.
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CHAPTER 5

EVALUATION OF ORGANIC ANION TRANSPORTERS 1 (SLC22A6), 3 (SLC22A8),
AND 4 (SLC22A11) AS POTENTIAL RENAL ELIMINATION PATHWAYS FOR

FLUOROQUINOLONE ANTIMICROBIALS

5. A. INTRODUCTION

Amongst the large array of antibacterial agents used in human and veterinary medicine,
FQs continue to be prescribed as potent broad-spectrum antibiotics (6, 66, 126). The
development of newer FQs has resulted in agents with wider systemic distribution
characteristics, longer durations of action and a resultant improvement in therapeutic efficacies
(116, 126, 159). Subsequently, FQs have been indicated for treatment of aerobic as well as
anaerobic bacterial infections, with therapeutic applications being governed by their in vivo
pharmacokinetics (PK) and tissue/fluid concentrations (66, 126). The newer FQs like
gemifloxacin and moxifloxacin, achieve higher concentrations in the respiratory tract tissues and
fluids, and hence are primarily indicated for treatment of infections like acute exacerbation of
chronic bronchitis, community acquired pneumonia and sinusitis (66, 88). While some of the
earlier FQ molecules like ciprofloxacin, levofloxacin, norfloxacin, and ofloxacin are known to be

excreted primarily as the unchanged drug in urine, with concentrations much higher than their
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minimum inhibitory concentrations for most pathogens; this has enabled their use in the
treatment of urinary tract infections (9, 47). However, owing to increasing concern associated
with development of bacterial resistance, special populations (pregnant women, geriatrics,
pediatrics), and variety of observed adverse events during therapy, FQs therapy has been limited

for most indications (47, 70, 129, 206).

With the development of newer FQs, there have been occurrences of mild-to-severe
adverse events associated with their use, e.g., convulsions and anxiety, torsades de pointes,
phototoxicity, tendinitis, hypoglycemia etc. (98). Such adverse events have eventually resulted in
withdrawal of many FQs from the worldwide pharmaceutical market (116). The existence of
such varied toxic events has made it essential to identify the biochemical mediators which would
govern the overall in vivo kinetics of FQs, and furthermore, aid in designing more efficient tools

in antimicrobial therapy.

FQs are small molecular weight (~400 Da) compounds, which predominantly exist as
charged, i.e., coexisting cationic, anionic, and zwitterionic species, throughout the physiological
pH range (116, 198). Due to this, it is more likely that in vivo PK of the FQs would be primarily
driven by active transport and facilitated diffusion mechanisms, while passive diffusion would
account for only a negligible component in their movement across membrane barriers (116, 165).
Earlier studies have demonstrated that FQs are well absorbed systemically following oral
administration, with moderate to excellent bioavailability (126). Subsequently, for most
systemically absorbed FQs, renal excretion is one of the primary pathways, along with hepatic
metabolism and minor biliary excretion (4, 116, 126). Although specific transport and metabolic
pathways mediating the nonrenal (hepatic metabolism and biliary excretion) elimination of FQs

have been identified, more studies have to be conducted to elucidate detailed mechanisms
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governing overall renal flux of these agents across the renal proximal tubule cells (RPTC) (4, 5,
26, 128). This would include basolateral uptake (from the circulation into RPTC), apical efflux
(from the RPTC into the urinary space) and/or potential reabsorption (from the urinary space
back into the RPTC), before being eliminated into the urine (4, 5, 26, 128). In fact, such
processes (net renal tubular secretion/reabsorption) have been predicted to occur for an identified
subset of FQs like ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin,
moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin and sparfloxacin,
based on a systematic review of their clinical PK literature conducted in healthy humans (116).
Furthermore, existence of charged species of the FQs at physiological pH has suggested the
potential for their transport by members of the Solute Carrier (SLC) family, which mediate
transport of charged (anionic/cationic/zwitterionic) species and are known to be expressed in the

RPTC (116, 165).

Early drug interaction studies conducted in humans have suggested involvement of
organic anion transporters (OATs: SLC22 family) in renal elimination of FQs (anionic species),
on concomitant administration of drugs like probenecid and furosemide (38, 42, 59, 75, 78, 95,
119, 142, 144, 149, 162, 197). These studies demonstrated a significant decrease in renal
clearance (CLr) (by ~25-60%) and in most cases, an increase in the terminal half-life and area
under the concentration curve from zero to infinity (AUC,) for ciprofloxacin, enoxacin,
fleroxacin, gatifloxacin, gemifloxacin, levofloxacin, and norfloxacin, in presence of probenecid,
a uricosuric agent and known inhibitor of OATs (38, 42, 75, 95, 119, 142, 144, 149, 197).
However, co-administration of probenecid did not affect the kinetics of sparfloxacin and
moxifloxacin, for which CL,, of the ‘parent drug’ accounts for a small fraction in their overall

clearance (high hepatic metabolism) (143, 157). For lomefloxacin and furosemide (a loop
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diuretic known to be transported by OATS) interaction, yet again, the CL,, was found to

decrease by ~33%, with ~12% increase in AUCg.12n (59, 162).

These clinical findings have been further characterized by in vitro experiments using stably
transfected cell lines expressing these transporters (116, 187). While earlier literature, as well as
our study (See Chapter 4) has demonstrated in vitro evidence for FQ handling by organic
cation/zwitterion transporter members (OCTs, OCTNs, MATESs) of the SLC superfamily, the
role of OATS in renal disposition of these antimicrobials is still relatively uninvestigated (116).
A recent study using stably transfected cell lines demonstrated ciprofloxacin to be a substrate for
mouse (m)Oat3 [Michaelis Menten constant (Ky,) value = 70 £ 6 uM], and not mOatl (187).
Moreover, knockout mice experiments using clinically relevant concentrations of ciprofloxacin
showed that the deletion of mOat3 resulted in in vivo kinetics mimicking those seen on co-
administration of probenecid with FQs in humans (187). Furthermore, concentration-dependent
studies using cell lines have demonstrated norfloxacin, ofloxacin, and gatifloxacin to be
moderate inhibitors of mOat3 with inhibition constants (K;) of 558 + 75 uM, 745 + 165 pM, and
941 + 232 pM, respectively (187). For hOATSs, only ciprofloxacin and gatifloxacin exhibited
moderate inhibition of hOAT3-mediated ES uptake, but no additional characterization has been
conducted for these FQ interactions. Thus, the objective of this work was to identify and
characterize the potency of interactions of a selected subset of FQs with mOatl, hOAT1, mQOat3,
hOAT3 and hOAT4; and to further quantitatively assess the impact of OATs on clinically

relevant FQ-drug interactions.
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5. B. MATERIALS AND METHODS

5.B.1 Chemicals and reagents

Unlabeled paraaminohippuric acid (PAH) and estrone-3-sulfate (ES) and probenecid were
purchased from Sigma Aldrich (St. Louis, MO). Ciprofloxacin hydrochloride, norfloxacin and
ofloxacin hydrochloride were purchased from MP Biomedicals (Solon, OH). Enoxacin,
fleroxacin, gatifloxacin, levofloxacin hydrochloride, lomefloxacin hydrochloride, moxifloxacin
hydrochloride, pefloxacin mesylate, prulifloxacin, rufloxacin hydrochloride, and sparfloxacin
were purchased from LKT Laboratories, Inc. (St. Paul, MN). Radiolabeled [°H]JPAH and [*H]ES
were obtained from PerkinElmer (Waltham, MA). Dulbecco’s Modified Eagle’s Medium
(DMEM)/F12 (1:1), DMEM with high glucose and Serum Supreme were purchased from Fisher
Scientific (Waltham, MA). Eagle’s minimum essential medium alpha modification (EMEM) was
purchased from Sigma Aldrich (St. Louis, MO). Penicillin/streptomycin and hygromycin B were
purchased from Invitrogen Life Technologies (Grand Island, NY). G418 (geneticin) was

purchased from VWR International (Radnor, PA).
5.B.2 Cell line maintenance and transport assay.

The human embryonic kidney 293 (HEK293) Flp-In and chinese hamster ovary (CHO) Flp-
In cell lines stably-expressing hOAT3 and mOatl respectively, along with the corresponding
empty vector transfected background control line (HEK293-EV and CHO Flp-In-EV
respectively) were developed as described previously (189). The CHO cell lines stably-
expressing hOAT1 along with the corresponding empty vector transfected background control
lines (CHO-EV), were developed as described previously (63). The CHO Flp-In cell lines stably-

expressing mOat3 along with the corresponding empty vector transfected background control

69



lines (CHO Flp-In-EV) were developed as described previously (188). The CHO-pro5 cell lines
stably-expressing hOAT4 along with the corresponding empty vector transfected background
control lines (CHOpro5-EV), were developed as described previously hOAT4 (207). The CHO
Flp-In and CHO cell lines were maintained in DMEM/F12 containing 10% Serum Supreme, and
1% penicillin/streptomycin, with hygromycin (125 pg/ml) and G418 (500 pg/ml) as the selection
antibiotics, respectively. The HEK293 Flp-In cell lines were maintained in DMEM with high
glucose containing 10% Serum Supreme, 1% penicillin/streptomycin and hygromycin (50
pg/ml). The CHO-pro5 cell lines were maintained in EMEM containing 10% Serum Supreme,
1% penicillin/streptomycin and G418 (500 pg/ml). All the cell lines were cultured at 37°C with

5% CO,.

Accumulation assay protocols were adapted from our previously published methods (187,
195). Briefly, cells were seeded in 24-well tissue culture plates (250,000 cells/well) and grown
without antibiotics for 2 days under suitable cell culture conditions (37°C and 5% CO,). On the
day of the transport study, culture medium was removed and cells were equilibrated for 10 min
with transport buffer (Hank's balanced salt solution containing 10 mM HEPES, pH 7.4; Sigma-
Aldrich, Saint Louis, MO). The transport buffer was then removed and replaced with 500 pl of
transport buffer containing either 1-30 uM ES with [*H]ES (0.25 uCi/ml) added in trace amounts
for mOat3, hOAT3 and hOAT4, or 1-30 uM PAH with [H*JPAH (0.25 uCi/ml) added in trace
amounts for mOatl and hOAT1, depending on the experiment, in presence/absence of 0.1-2,000
uM FQs or 1 mM probenecid (as detailed in figure legends). Following incubation for 1 or 15
min (as detailed in figure legends), the buffer was removed and the cells were instantly rinsed
three times with excess ice-cold transport buffer. This was followed by lysis in 200 ul of 1 M

NaOH, neutralization with 250 pl of 1 M HCI plus 200 pl of 0.1 M HEPES. The aliquots were
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then assayed for radioactivity by liquid scintillation counting, and cellular accumulation was
normalized for total protein content using a Bradford protein assay kit (BioRad, Hercules, CA).
Uptake was reported as picomoles per milligram total cell protein. All experiments were
performed at least three times in triplicate (i.e., three wells/treatment repeated at least three

times).
5.B.3 Kinetic and statistical analyses

Prior to analysis, all data used in kinetic determinations were corrected for background
accumulation in the corresponding empty vector control cells for each transporter-expressing cell
line. The inhibition dose-response curves were analyzed by nonlinear regression using GraphPad

Prism® software version 5.04 (GraphPad, San Diego, CA).

For the Kinetic studies to determine the half maximal inhibition concentration for the FQs
(ICsp), type of inhibition, and K; values, the accumulation time of 1 min and substrate
concentrations for ES and PAH (1-30 pM) were chosen based on previously determined
Michaelis-Menten constant values in the cell lines: Ky, value for ES in mQOat3 = 12.2 + 4.8 uM
and the K, value for PAH in hOAT1 = 15.4 uM (63, 187). Further, for the determination of K;
values, the type of inhibition was assessed using mixed model inhibition analysis as described
previously (See Chapter 4; 22). The type/mode of inhibition was defined by the ‘alpha value’ (a)
obtained. Inhibition is identified as competitive, if a is a large number (¢ > 1), as non-
competitive, if o = 1, or as uncompetitive, if a is small, but greater than zero (0 < a < 1) (See
Chapter 4; 22). Subsequently, K; values for the FQs were calculated using the appropriate model

based upon the identified inhibition mechanism.
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Data are reported as mean = S.E.M. Statistical significance was determined using one-way
analysis of variance (ANOVA) with Dunnett’s pairwise comparison post hoc test to measure
significant differences. The value for significance was set at 0.05.

5.C. RESULTS

5. C. 1. Interactions of fluoroquinolones with mouse Oat3

The ES uptake in CHO-mOat3 cells (46.3 = 4.9 pmol/mg protein/15 min) was ~15 fold higher
than that detected in CHO FlIp-In-EV cells (3.1 + 0.8 pmol/mg protein/15 min; Figure 5.1),
demonstrating a consistent probenecid-insensitive (data not shown) background accumulation of
~6%. In presence of 1 mM probenecid (vs. 1 uM ES) the ES accumulation in CHO-mOat3 cells
was reduced to the background level as observed in CHO Flp-In-EV cells. The FQs were tested
independently for interaction with mOat3 at the high concentrations of 1 mM, wherein all of
them exhibited a significant inhibition of mOat3 mediated uptake (Figure 5.1), while they
showed a similar degree of uptake in the CHO Flp-In-EV cells (data not shown). Thus, the CHO
Flp-In-EV cells represent a valid background correction method for the experiments. In order to
characterize the individual inhibition potencies of the FQs for mOat3, only those FQs identified
to produce strong inhibition (> 50%) of mOat3 mediated uptake were considered for further
kinetic analysis. The FQs producing > 50% inhibition were ciprofloxacin (~54%), enoxacin
(~53%), fleroxacin (~70%), gatifloxacin (~70%), levofloxacin (~70%), lomefloxacin (~70%),
moxifloxacin (~93%), ofloxacin (~50%), prulifloxacin (~85%) and sparfloxacin (~80%).
Relatively weak (< 50%), but significant inhibition was exhibited by norfloxacin (~40%),
pefloxacin (~44%) and rufloxacin (~44%). Previous kinetic studies have already characterized

the Kjvalues of ciprofloxacin, gatifloxacin, norfloxacin and ofloxacin for mOat3 (187).
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Figure 5.1. Inhibition of mouse Oat3-mediated transport by fluoroquinolones

Uptake of 1 pM [*H]ES was measured at room temperature for 15 min using CHO Flp-In
cells stably expressing mOat3 in presence of 1 mM unlabeled FQs (black bars). The inhibition by
probenecid (1 mM), a prototypical inhibitor of OATS, was utilized in the experiments as negative
control (black bar). The mock-vector transfected CHO Flp-In-EV cells served as a reference for
nonspecific background substrate accumulation (grey bar). Uptake on the X-axis is expressed as
a percentage of the positive control (open bar). Values are expressed as means + S.E.M. and the
significant differences are analyzed between the positive control treatment (with no inhibitor)
and treatments in presence of FQs and probenecid, using one-way ANOVA statistical analysis
followed by Dunnet’s post hoc test in GraphPad Prism® version 5.04 (*p<0.05, **p<0.01,
***n<0.001). All the experiments are conducted at least 3 times performed in triplicate and the
graphs are single representative experiments.
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Further experiments were conducted to identify the type of inhibition for mOat3 by the FQs,
enoxacin, fleroxacin, levofloxacin, lomefloxacin, moxifloxacin, prulifloxacin and sparfloxacin,
in order to identify the appropriate model for the determination of K; values. Previously mOat3-
mediated ES accumulation was found to be linear through at least 5 min with K, value of 12.2 +
4.8 UM, and similar results were replicated in our laboratory (187). Thereafter, the saturation
analysis was performed in the absence and the presence of two concentrations of the FQs: 200
and 450 pM enoxacin, 400 and 750 pM fleroxacin, 500 and 1000 puM levofloxacin, 350 and 750
MM lomefloxacin, 500 and 1000 uM moxifloxacin, 350 and 750 uM prulifloxacin, 250 and 500
MM sparfloxacin, using 1 min as accumulation time and ES concentration of 1 pM. Nonlinear
regression analysis was then conducted with background corrected data, and the type of
inhibition was identified for each FQ by using the ‘mixed-model inhibition’ analysis in
GraphPad Prism. The resultant a values obtained were all much greater than 1, indicating these

seven FQs are competitive inhibitors of mOat3 (Table 5.1).

Finally, concentration-dependency studies were conducted to quantify the strength of
inhibition of each FQ for mOat3 by determining the K; values (Figure 5.2, Table 5.1). The
inhibition of mOat3-mediated ES uptake was analyzed in the presence of increasing FQ
concentrations (0.1 - 2,000 uM) and K; values were determined by nonlinear regression,
selecting the competitive model for inhibition. The K; values for the different FQs were
estimated as follows: 396 + 14.6 uM for enoxacin, 817 + 31.3 uM for fleroxacin, 515 + 22.2 uM
for levofloxacin, 539 = 27.1 uM for lomefloxacin, 1356 + 114 uM for moxifloxacin, 299 + 35

MM for prulifloxacin and 206 = 11.6 pM for sparfloxacin (Figure 5.2 and Table 5.1).
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Figure 5.2. Determination of binding affinities (K;) for enoxacin, fleroxacin, levofloxacin,
lomefloxacin, moxifloxacin, prulifloxacin and sparfloxacin on mouse Oat3

[*H]ES uptake was measured for 1 min at 0 - 2000 uM for each FQ in CHO-mOat3 cells; Uptake
on the Y axis is expressed as a % of the positive control (in absence of inhibitor, normalized to
100%) and all points on the curves are expressed as means + S.E.M. The % inhibitions for all the
tested FQs were calculated after correcting for nonspecific accumulation in the empty-vector
transfected cells, i.e., in CHO Flp-In-EV cells. The type of inhibition was identified using
‘mixed model inhibition’ in GraphPad Prism® version 5.04 and K; values were determined from
non-linear regression (inhibition curves) model using competitive inhibition. The K, value for
[*H]JES ~12.2 uM in CHO-mOat3 cells was verified with earlier published literature (data not
shown), and was subsequently used to calculate K; values for the tested FQs. All the experiments
are conducted at least 3 times performed in triplicate and the graphs are single representative
experiments.
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Table 5.1. Kinetic parameters, unbound Cpx, and calculated drug-drug interaction indices

for mouse Oat3

o value Ki Unbound Crax  Drug-drug References
(uUM) (M) Interaction (unbound
Index Cmax)
Ciprofloxacin 198 + 39° 7.3-9.6 0.04 - 0.05 (187)
(0.1-0.2mg 1V)
Norfloxacin 558 + 75° 0.94 0.002 (117)
(1.3-1.6 mg oral)
Fleroxacin 1.6 x 10" 817 +31 ---C
Levofloxacin 53 x 10" 515 + 22 ---°
Lomefloxacin 4.6 x 107 539 + 27 ---C
Enoxacin 1.1 x 107 396 + 15 4.98 0.013 (117)
(1.3-1.6 mg oral)
Moxifloxacin 9.6 x 10" 1356 + 114 2.24 0.002 (145)
(0.27 mg oral)
Prulifloxacin 1.0 x 10% 299 + 35 -
Sparfloxacin 1.5 x 10% 205 + 12 0.35 0.002 (118)

(0.15 mg oral)

% Values are published results in (187); °: As only the metabolite levels are detected
systemically, the studies have not been included; °: In vivo studies in mice could not be obtained
for these FQs; a value: A constant value obtained using ‘mixed model inhibition’ analysis in
GraphPad Prism; K; value: Inhibition constant expressed as Mean + SEM; Unbound Cpax:
Unbound maximum plasma concentration obtained from preclinical pharmacokinetic studies in
mice, after correction for plasma protein binding. Drug-drug Interaction Index: calculated as
unbound Cpax/1Cs or K.
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5. C. 2. Interactions of fluoroquinolones with human OAT3

The ES uptake in HEK293 Flp-In-hOAT3 cells (7.94 + 0.24 pmol/mg protein/15 min) was
~4.8 fold higher than that detected in HEK293 Flp-In-EV cells (1.64 + 0.16 pmol/mg protein/15
min, probenecid-insensitive (data not shown) background accumulation of ~20%) (Figure 5.3).
In presence of 1 mM probenecid (vs. 1 uM ES) the ES accumulation was inhibited in HEK293-
hOAT3 cells by ~70%. As described above, the FQs were initially tested at the high
concentration of 1 mM to identify those capable of producing strong inhibition of hOAT3-
mediated ES (1 uM) uptake (Figure 5.3). At the test concentrations, the FQs demonstrated the
same effect (negligible transport) on the HEK293 Flp-In-EV cells (data not shown); thus these
cells represent valid background controls for these experiments. Ciprofloxacin was the only FQ
which significantly inhibited ES uptake mediated by mOat3 as well as hOAT3 (by ~40%), while
enoxacin, levofloxacin, moxifloxacin and prulifloxacin caused stimulation of ES uptake under
the experimental conditions (Figure 5.3). Due to absence of any strong significant inhibition (>
50%, as discussed above) of hOAT3-mediated ES uptake in presence of the FQs, no further

kinetic analysis was performed.
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Figure 5.3. Interactions of fluoroquinolones with human OAT3

Uptake of 1 pM [*H]ES was measured at room temperature for 15 min using HEK293 Flp-In
cells stably expressing hOAT3 in presence of 1 mM unlabeled FQs (black bars). Probenecid (1
mM), a prototypical inhibitor of OATSs, was used for the experiments as negative control (black
bar). The empty-vector transfected HEK293 Flp-In-EV cells served as a reference for
nonspecific background substrate accumulation (grey bar). Uptake on the X-axis is expressed as
a percentage of the positive control (open bar). Values are expressed as means = S.E.M. and the
significant differences were analyzed between the positive control treatment (with no inhibitor)
and treatments in presence of FQs and probenecid, using one-way ANOVA statistical analysis
followed by Dunnet’s post hoc test in GraphPad Prism® version 5.04 (*p<0.05, **p<0.01,
***p<0.001). All the experiments are conducted at least 3 times performed in triplicate and the
graphs are single representative experiments.
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5. C. 3. Interactions of fluoroquinolones with mouse Oatl

To study the mOatl transporter interaction, PAH (1 pM) was used as the prototypical
substrate (Figure 5.4). The accumulation of PAH in the CHO Flp-In mQOatl expressing cells
(35.5 £ 5.11 pmol/mg protein/15 min) was ~21 fold greater than that obtained in the control
CHO Flp-In-EV cells (2.2 = 0.3 pmol/mg protein/15 min). This PAH accumulation in the CHO
FIp-In-EV cells was found to be insensitive to the addition of 1 mM of probenecid (data not
shown), however accumulation in the CHO Flp-In mQatl cells in the presence of probenecid
was decreased to the level similar to that obtained in the CHO Flp-In-EV cells (Figure 5.4).
Unlike the observation in mOat3 expressing cells where all FQs at 1mM test concentrations,
exhibited significant inhibition of ES uptake, only rufloxacin (~45%) and sparfloxacin (~45%)
exhibited a significant inhibition of mOatl-mediated PAH uptake, among all the tested FQs
(Figure 5.4). Again, ciprofloxacin, levofloxacin, lomefloxacin and ofloxacin demonstrated an
apparent stimulation of the mOatl-mediated transport activity under these experimental
conditions (Figure 5.4). Hence, as none of the FQs produced strong significant inhibition of
mOatl-mediated PAH uptake (> 50%, as discussed above), no further kinetic analysis was

performed for this transporter.
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Figure 5.4. Effect of fluoroquinolones on mouse Oatl-mediated PAH transport

Uptake of 1 pM [*H]JPAH was measured at room temperature for 15 min using CHO Flp-In cells
stably expressing mOatl in presence of 1 mM unlabeled FQs (black bars). Probenecid (1 mM),
the prototypical inhibitor of OATS, was used as a negative control for the experiments (black
bar). The empty-vector transfected CHO Flp-In-EV cells served as a reference for nonspecific
background substrate accumulation (grey bar). Uptake on the X-axis is expressed as a percentage
of the positive control (open bar). Values are expressed as means + S.E.M. and the significant
differences have been analyzed between the positive control treatment (with no inhibitor) and
treatments in presence of FQs and probenecid, using one-way ANOVA statistical analysis
followed by Dunnet’s post hoc test in GraphPad Prism® version 5.04 (*p<0.05, **p<0.01,
***n<0.001). All the experiments are conducted at least 3 times performed in triplicate and the
graphs are single representative experiments.

80



5. C. 4. Interactions of fluoroquinolones with human OAT1

Similar to mOatl, PAH (1 uM) was used as substrate for hOAT1 (Figure 5.5). The
accumulation of PAH in the CHO-hOATL1 expressing cells (10.1 £ 0.92 pmol/mg protein/15
min) was ~5.6 fold greater than that obtained in the control CHO-EV cells (1.78 £ 0.11 pmol/mg
protein/15 min). The PAH accumulation in the CHO-EV cells was insensitive to the addition of 1
mM of probenecid (data not shown). In the presence of probenecid, the CHO-hOAT1 cell
accumulation was decreased to the level similar to that obtained in the control cells (Figure 5.5).
In these cell lines, rufloxacin (~90%), pefloxacin (~80%), fleroxacin (~70%), lomefloxacin
(~50%), ofloxacin (~50%) and sparfloxacin (~50%) exhibited a significant inhibition of hOAT1-
mediated PAH uptake (Figure 5.5). Ciprofloxacin, enoxacin, gatifloxacin, moxifloxacin and
norfloxacin again demonstrated an apparent stimulation of mOatl-mediated transport activity
under these experimental conditions. On comparing the species orthologs, it was observed that
sparfloxacin and rufloxacin were the only two FQs which inhibited PAH uptake, while
ciprofloxacin stimulated PAH uptake by mouse and human OATL1. Gatifloxacin, moxifloxacin

and prulifloxacin were not found to interact with hOAT1 or mOatl.
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Figure 5.5. Inhibition of human OAT1-mediated transport by fluoroquinolones

The uptake of 1 pM [*H]PAH was measured at room temperature for 15 min using CHO cells
stably expressing hOATL1 in presence of 1 mM unlabeled FQs (black bars). Probenecid (1 mM),
a prototypical inhibitor of OATS, was used for the experiments as negative control (black bar).
The empty-vector transfected CHO-EV cells served as reference for nonspecific background
substrate accumulation (grey bar). Uptake on the X-axis is expressed as a percentage of the
positive control (open bar). Values are expressed as means = S.E.M. and the significant
differences were analyzed between the positive control treatment (with no inhibitor) and
treatments in presence of FQs and probenecid, using one-way ANOVA statistical analysis
followed by Dunnet’s post hoc test in GraphPad Prism® version 5.04 (*p<0.05, **p<0.01,
***n<0.001). All the experiments are conducted at least 3 times performed in triplicate and the
graphs are single representative experiments.
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For the FQs demonstrating significant inhibition of >50%, further kinetic analysis was
conducted to quantify the strength of inhibition. The concentration-dependency studies were
conducted for hOAT1 with rufloxacin, pefloxacin and fleroxacin to determine the 1Cso values
(Figure 5.6, Table 5.2). The inhibition of hOAT1-mediated PAH uptake was analyzed in
presence of increasing FQ concentrations (0.1 - 2,000 pM) and ICs, values were determined by
nonlinear regression. Rufloxacin demonstrated stimulation of hOAT1-mediated PAH uptake at
all lower concentrations (0.1, 1, 10, 100, 250, 500 uM) except 1 and 2 mM (~80-90% inhibition,
similar to that seen above in Figure 5.6), and thus was not considered for further kinetic analysis
(data not shown). The 1Cs values for pefloxacin and fleroxacin were 2252 + 135 uM and 2228 +
84.3 uM respectively. As these FQs were found to be weak inhibitors of hOAT1, lomefloxacin,
ofloxacin and sparfloxacin showing only ~50% inhibition in the preliminary testing, were not

analyzed further.
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Figure 5.6. Determination of inhibition potencies (ICso) for fleroxacin and pefloxacin on
human OAT1

The uptake of [*H]JPAH was measured for 1 min at 0-2000 uM of fleroxacin and pefloxacin in
CHO-hOAT1 cells; Uptake on the Y axis is expressed as a % of the positive control (in absence
of inhibitor, normalized to 100%) and all points on the inhibition curves are expressed as means
+ S.E.M. The % inhibitions for all the tested FQs were calculated after correcting for
nonspecific accumulation in the empty-vector transfected cells, i.e., in CHO-EV cells.
The ICso values were determined from non-linear regression (inhibition curves) model using
GraphPad Prism® version 5.04. All the experiments are conducted at least 3 times performed in
triplicate and the graphs are single representative experiments.
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Table 5.2. Kinetic parameters, unbound Cpx, and calculated drug-drug interaction indices
for human OAT1

I1Cs Unbound Cax Drug-drug References
(UM) (uUM) Interaction Index (unbound Cpax)
Fleroxacin 2228 £ 84 6.8 0.003 (161)
(100 mg, 1V)
Pefloxacin 1819 + 144 8.6 0.005 (40, 114)

(400 mg, oral)

ICso value: Half maximal inhibitory concentration value of the FQ inhibitor for the transporter,
expressed as Mean £ SEM; Unbound Cpax: Unbound maximum plasma concentration obtained
from preclinical pharmacokinetic studies in healthy humans, after correction for plasma protein
binding. Drug-drug Interaction Index: calculated as unbound Cpma/ICso Or K;; IV: Intravenous

route of administration.
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5. C. 5. Interactions of fluoroquinolones with human OAT4

As hOAT4 is postulated to be a reabsorptive transporter localized to the apical membrane in
the RPTC, other than the intracellular pH conditions of the RPTC, it is exposed to a lower pH of
~6.3, assumed to be the urinary pH conditions. It was predicted from our previous systematic
review that some FQs could be potentially reabsorbed from the urinary space, back into the
RPTC. Hence their interactions with hOAT4 were tested at the physiological (pH = 7.4) as well

as urinary (pH = 6.3) pH conditions (Figure 5.7).

In order to study the interaction of FQs with hOAT4, the apically localized transporter in the
RPTC, ES (1 uM) was used as a substrate (Figure 5.7). The accumulation of ES (positive
controls at pH 7.4 and 6.3) in CHO-hOAT4 expressing cells (32.9 + 3.9 pmol/mg protein/15 min
at pH 7.4, 30.8 £ 2.5 pmol/mg protein/15 min at pH 6.3) was ~5.6 fold and ~3 fold greater than
that obtained in the control CHO-EV cells (5.9 + 0.3 pmol/mg protein/15 min at pH 7.4, 10 £ 3.6
pmol/mg protein/15 min at pH 6.3) at the pH conditions 7.4 and 6.3 respectively. This
background accumulation by the CHO-EV cells was found to be probenecid-insensitive (~18%)
(data not shown). In the presence of probenecid, the accumulation of ES in the CHO-hOAT4
cells was decreased by ~40%. At pH = 7.4, none of the FQs exhibited a significant inhibition of
hOAT4-mediated ES uptake (Figure 5.7). Also, as seen earlier with other OATS, some FQs like
moxifloxacin, pefloxacin and prulifloxacin demonstrated a significant stimulation of ES uptake
by hOAT4. At pH = 6.3, deemed to be more physiologically relevant for the working of hOAT4,
the ES uptake was found to increase by ~35% as compared to the ES uptake at pH = 7.4 (Figure
5.7). Moreover, at pH 6.3, in addition to moxifloxacin, pefloxacin and prulifloxacin (stimulated

ES uptake at pH 7.4), fleroxacin, ofloxacin and rufloxacin also demonstrated stimulation of
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hOAT4-mediated ES uptake. Due to absence of any strong inhibition of the hOAT4-mediated

uptake at this pH = 6.3 (> 50%, as discussed above), no further kinetic analysis was performed.

On comparing the FQ effect with hOAT4 at the two pH values (Figure 5.7, Panel C), it can
be seen that only the interaction of ciprofloxacin, ofloxacin, pefloxacin, and prulifloxacin were
not sensitive to changes in pH of the extracellular medium (no significant change in ES uptake
with pH change). All the other FQs significantly increased the hOAT4-mediated ES uptake at pH

6.3 versus 7.4 (Figure 5.7, Panel C).
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Figure 5.7. Influence of pH on the interaction of fluoroquinolones with human OAT4 -

mediated transport

The uptake of 1 pM [°H]ES was measured at room temperature and pH 6.3 (panel A), and pH
7.4 (Panel B) for 15 min using CHOpro5 cells stably expressing hOAT4 in presence of 1 mM
unlabeled FQs (black bars); Panel A: 1 uM [PH]ES solution at pH 7.4 was used as a control to
test the influence of pH change on hOAT4-mediated ES uptake in absence of any interacting
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compounds (dark grey bar); (Panel A, B): Probenecid (1 mM), a prototypical inhibitor of OATS,
was used for the experiments as negative control (black bar). The empty-vector transfected
CHOpro5-EV cells served as a reference for nonspecific background substrate accumulation
(grey bar). Panel C: Comparison of the effect on FQ interactions with hOAT4 with change in pH
conditions from 7.4 (open bars) to 6.3 (black bars).

Uptake on the X-axis is expressed as a percentage of the positive control (open bar). Values are
expressed as means = S.E.M. and the significant differences are analyzed between the positive
control treatment (with no inhibitor) and treatments with FQs/probenecid/ES (at pH 7.4), using
one-way ANOVA statistical analysis followed by Dunnet’s post hoc test in GraphPad Prism®
version 5.04 (*P<0.05, **P<0.01, ***P<0.001). All the experiments are conducted at least 3
times performed in triplicate and the graphs are single representative experiments;
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5. D. DISCUSSION:

Recently, due to the toxicities associated with FQs, there has been an increasing interest in
understanding the mechanisms governing their in vivo disposition Kkinetics. Consequently, the
FQs have been studied for interactions with different transporter families expressed in the body,
which could potentially mediate their in vivo absorption, distribution, and elimination, and even
be responsible for clinically significant drug interactions (116). However, additional studies
would need to be conducted to further elucidate such interactions of FQs with the SLC
transporters (116). We studied the FQ — OCT interactions in Chapter 4, where none of the FQs
demonstrated significant interactions with hOCT2; however, gatifloxacin, moxifloxacin,
prulifloxacin and sparfloxacin were found to be moderate inhibitors of hOCT1, and moxifloxacin
was the only FQ found to inhibit hOCT3. This study was designed to evaluate the role of OATSs
in the Kinetic disposition of the same selected subset of FQs (n=13), using stably transfected cell

lines expressing mouse and/or human OATS.

The renally expressed basolateral transporters, hOAT1 and hOAT3 investigated in this study
are known to function as organic anion/dicarboxylate exchangers using the outwardly directed
endogenous a-ketoglutarate gradient to drive uptake of anionic subtrates from systemic
circulation into the RPTC (115, 166, 169, 171). Hence, these OATs might represent a rate-
limiting step for uptake of FQs from the blood circulation (116). Previous work has already
characterized mQat3 interactions with ciprofloxacin, gatifloxacin, norfloxacin and ofloxacin, as
well as identified ciprofloxacin and gatifloxacin interactions with hOAT3 (187). This study thus
tested a larger dataset of FQs, identified from our earlier systemic review with the mouse as well
as human orthologs of OAT1 as well as hOAT4 (116). The kinetic characterization of the FQs as

inhibitors for mOat3, allowed an assessment of their inhibition potency for this transporter.
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Preliminary interaction studies conducted on mOat3 demonstrated significant inhibitory
interactions of all the tested FQs (Figure 5.1). The kinetically characterized FQs (demonstrating
> 50% inhibition in preliminary studies, Figure 5.1) were found to competitively inhibit mOat3,
with sparfloxacin showing the strongest inhibition, followed by prulifloxacin, enoxacin,
levofloxacin, lomefloxacin, fleroxacin and finally moxifloxacin (Figure 5.2 and Table 5.1). A
similar preliminary interaction study for hOAT3 using the same dataset of FQs, demonstrated a
substantial difference in the inhibition pattern as compared to mOat3, suggesting possible species
differences in FQ specificity (Figure 5.3). Ciprofloxacin was found to inhibit mOat3 (~54%) as
well as hOAT3 (~40%) — mediated ES uptake, which concurred with an earlier observation
(Figure 5.1 and 5.3; 187). However, gatifloxacin which previously demonstrated a moderate
hOAT3 interaction, showed no significant interaction in this study (Figure 5.3; 187). Such
species differences in FQ specificity for the OATs were also evident from the FQ interaction
studies with mOatl and hOAT1 (Figure 5.4 and 5.5). For example, fleroxacin and pefloxacin
were found to be weak inhibitors of hOAT1 with ICsy values of 2252 + 135 puM and 2228 + 84.3
MM, respectively, while they did not interact with mOatl (Figure 5.4, 5.5 and 5.6, Table 5.2).
The preliminary inhibition study for hOAT1-FQ interactions demonstrated lomefloxacin to
inhibit hOAT1-mediated PAH uptake by ~50% (Figure 5.6). This suggested that hOAT1 could
be the OAT mediating in vivo interactions of the loop diuretic, furosemide (also transported by
hOAT1) with lomefloxacin (mentioned above), causing decreased CL., and subsequent

increased AUC,, for this FQ, with no changes observed in furosemide PK (34, 59, 162).

In conjunction with the inhibition of OAT-mediated transport, stimulatory effects by some
FQs on hOAT3, mOatl and hOAT1-mediated substrate uptake were also observed (Figure 5.3,

5.4 and 5.5). Such stimulatory effects were found to be sporadic among the tested FQs and were
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transporter-specific, e.g., mOat3 demonstrated no stimulation of ES uptake in presence of 1 mM
FQs; while at the same concentrations, enoxacin, levofloxacin, moxifloxacin and prulifloxacin
stimulated hOAT3-mediated ES uptake (Figure 5.1 and 5.3). The stimulatory effect of
ciprofloxacin on m/hOAT1-mediated PAH uptake demonstrated in Figure 5.4 and 5.5, was also
observed in an earlier study (187). Moreover, when these FQs were tested with hOCTs in our
previous study (Chapter 4), the stimulatory/inhibitory behavior of the FQs also varied between
the individual hOCTs, exhibiting no consistent pattern (Appendix IlI). In addition a previous
study demonstrated sparfloxacin to be a ‘borderline stimulator’ for MRP2 (ABC transporter)
mediated transport (130). Such in vitro stimulation also has been observed for different drug
classes such as steroids, anticancer chemotherapeutics and non-steroidal anti-inflammatory
drugs, with transporters like OATP1B1 and 1B3 (SLC superfamily) and MRP2 (ABC
superfamily) (87, 130, 187). These studies have postulated the existence of transporter-specific
allosteric binding sites for such drug molecules which could stimulate the transporter-mediated
substrate (another drug or endogenous substrate) uptake, without the drug molecules being
transported themselves (Chapter 4; 87, 130). However, some FQs were confirmed to be
competitive inhibitors for mOat3 (Figure 5.2, Table 5.1) (187). Also, OATs exhibit considerable
amino-acid sequence identity between species (~78% between mOat3 and hOAT3, ~80%
between mOatl and hOAT1) and paralogs (~48% between mOat3 and mOatl, ~49% between
hOAT3 and hOAT1) (3). Hence such an allosteric binding site (if existing), would be very
unique for each OAT, and may demonstrate a narrow specificity across the class FQs (as only
some FQs showed stimulation with m/hOAT1, hOAT3). Overall, the preliminary OAT-FQ
interaction studies demonstrated that among the tested FQs, only ciprofloxacin exhibited

similarities in interaction with mouse and human species of OATS, i.e., significant stimulation
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effects of mOatl and hOAT1-mediated PAH uptake, and a significant inhibition of mOat3 and
hOAT3-mediated ES uptake. No consistent pattern of stimulation or inhibition was observed for
the other FQs (See Appendix IlI). In general, these studies suggest that in the mouse/human

RPTC, OAT/Oatl and 3 may be involved in the basolateral uptake of some FQs.

In addition to exploring the FQ interactions with the basolateral OATSs, i.e., OAT1 and 3,
additional analysis was performed to study potential FQ interactions with apically localized
hOAT4. Though studies have confirmed the apical localization of hOAT4 in human RPTC
(absent in rodents), its mechanism of action is unclear due to conflicting results indicating its
function as a facilitated diffusion carrier and an exchanger (15, 32, 57, 186). Thus it is still
unknown whether hOAT4 mediated exchange mechanism would cause the efflux of drugs from
the RPTCs into the urinary space, or whether it would result in the tubular reabsorption of
compounds (57, 186). More recent studies have demonstrated the pH-dependent increase in
substrate (ES) uptake by hOAT4, and have postulated one of the mechanisms to be facilitating
reabsorption of compounds by hydroxyl ion exchange (18, 57). Based on this postulated
mechanism of transport by hOAT4, and our previous systematic review indicating potential renal
tubular reabsorption of some FQs, we studied whether this transporter could mediate apical
reabsorption of the FQs. Due to its apical localization in the RPTC, hOAT4 is exposed to a lower
urinary pH of ~6.3. Furthermore, literature has suggested that FQ ionic species are sensitive to
pH change (116). Thus, in order to identify potential interactions under simulated physiological
pH conditions, the experiments were conducted at pH ~6.3. Additional experiments were
conducted at pH = 7.4 to compare the pH-sensitivity of these FQ-hOAT4 interactions. The
hOAT4-mediated ES uptake in absence of FQs at pH 6.3 (positive control) demonstrated

stimulation as compared to that at pH = 7.4 (Figure 5.7, Panel B), which was consistent with
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earlier findings (18, 57). If hOAT4 is considered to transport the FQs by a reabsorptive
mechanism, then at pH 6.3, the FQ uptake from the extracellular medium would consequently
decrease the intracellular [H*]ES accumulation. On the contrary, our study results demonstrated
stimulation of hOAT4-mediated ES uptake at this pH (on comparison with the positive control
treatment at pH =6.3) (Figure 5.7, Panel B and C), with the exception of ciprofloxacin, enoxacin,
pefloxacin and sparfloxacin, which demonstrated no significant change in ES uptake as a
function of pH (Figure 5.7, Panel C). These pH-sensitive stimulatory effects shown by hOAT4 in
presence of FQs could, yet again, be attributed to the potential allosteric binding mechanisms of
specific FQs with a unique site on hOAT4, similar to that observed with the basolateral OATSs

(explained above).

In addition to the OATs 1, 3 and 4 which have been identified in our study, other OAT
paralogs could potentially mediate FQ disposition in the body. For example, OAT2 is known to
be expressed in humans on the basolateral membrane in the RPTC and on the sinusoidal
membrane (assumption in literature based on animal immunolocalization studies) in hepatocytes
(16, 90, 186). Hence, OAT2 could be important for the basolateral uptake of FQs in the RPTC.
hURATL, an OAT known to mediate active reabsorption of urate from the urinary space, is also
known to be localized to the apical membrane in the RPTC (186). This renal OAT could be
potentially involved in the tubular reabsorption of some FQs, thus affecting their overall CL e,
and ty»s (Chapter 3). Along with OAT2 mentioned above, hOAT7, a human-specific OAT, is
also known to be specifically localized in the liver (sinusoidal membrane in hepatocytes) (186).
As some FQs undergo considerable hepatic metabolism along with renal elimination (e.g.,
sparfloxacin, moxifloxacin), hepatically expressed OATs (i.e., hOAT2 and/or hOAT7) could

potentially mediate their hepatic uptake and subsequent metabolism. Also, potentially due to
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higher ‘pre-systemic concentrations’ (before hepatic first-pass effect) attained by FQs following
gastrointestinal uptake, OAT2 or OAT7 - mediated hepatic DDIs could potentially occur with
concomitantly administered drugs/endogenous molecules which are substrates for these
transporters. However, it is essential to consider that the overall flux governing FQ disposition is
a ‘net’ process which is also dependent on individual contributions of other SLC transporter
members like OCTs, MATEs, OATPs, as well as the ABC transporters (4, 116). Thus any OAT-
FQ interactions would contribute as one of the components driving the overall FQ flux for each

organ (e.g., renal excretion or potential hepatic metabolism).

Following the identification and in vitro characterization of FQ interactions with OATSs, a
quantitative assessment was conducted to determine whether these OATs could potentially
mediate any clinically relevant FQ DDI on concomitant administration of other drugs which are
OAT substrates/inhibitors, for example, probenecid and furosemide (39, 42, 59, 75, 95, 149, 157,
187, 197). Based on the recent DDI qguidance drafted by the FDA

(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRequlatorylnformation/Guidances/u

cm292362.pdf), the ratio of unbound maximum concentration (unbound Cpa) to Kj or ICsg
values of the drugs (DDI index) (See Chapter 4; 73) were calculated for hOAT1 and mQOat3. A
DDl ratio > 0.1 is suggested to indicate that the transporter-mediated DDI would achieve clinical
relevance and additional in vivo DDI studies will have to be conducted with the co-administered
drugs before obtaining FDA approval (73). Thus, unbound Cnax Vvalues were calculated by
compiling the human (for hOAT1) and mouse (for mOat3) in vivo pharmacokinetic and protein
binding studies for each FQ as shown in Tables 5.1 and 5.2. Further, the DDI indices were
calculated for FQ interactions with hOAT1 and mOat3 (187). As can be seen from Table 5.1 and

5.2, all the DDI indices were < 0.1, indicating that interactions of these FQs with OATs may not
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result in clinically relevant DDIs. Nevertheless, this study has indeed identified an important
component for the pathway of renal elimination of this dataset of FQs. Such in vitro transport
studies would need to be conducted for the newer marketed FQs, as well as for those under

development, in order to design safer antimicrobials and reduce the occurrence of any new DDIs.

Although only some FQs demonstrated significant inhibition interactions with the human
OAT-mediated substrate transport, further consideration is needed for the unanticipated
stimulatory effects demonstrated by the other FQs (Figures 5.3, 5.4, 5.5 and 5.7). If such
observations are truly a result of allosteric binding mechanisms, then in such a scenario,
concomitant use of FQs with OAT substrates (victim drugs) could potentially cause increased
renal elimination (in case of hOATL1 and 3) or reabsorption (for hOAT4) of the interacting
substrates (victim drug), with no significant effect on the ‘OAT-mediated elimination’ of FQs.
This could subsequently affect the systemic concentrations of the ‘victim’ drugs, further
increasing/decreasing their efficacies (depending on the site of action) and/or causing potential
toxicities. For example, consider a drug like the loop diuretic — furosemide, known to be
transported by hOAT1 (ICso = 18 £ 1.1 uM), hOAT3 (IC5o = 7.3 = 0.81 uM), as well as hOAT4
(ICs0 = 44.5 + 2,53 uM) (34, 59, 184). In such a case, if a FQ causing stimulation of hOAT1,
e.g., ciprofloxacin (FQs with considerable renal elimination), is co-administered with
furosemide, it may result in increased renal basolateral uptake of furosemide due to
ciprofloxacin-mediated hOAT1 stimulation (See Figure 5.5). Similarly effect may be seen when
a FQ found to stimulate hOAT3 (e.g., levofloxacin) (Figure 5.3) is co-administered with
furosemide. Assuming that the apical efflux transporters like MRP4 and BCRP (known to
transport furosemide) (60) are uninhibited by the FQs in such a DDI scenario, this may result in

increased urinary concentrations of furosemide, further causing an enhanced natriuretic effect by
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this diuretic (34, 184). On the contrary, co-administration of a FQ like ofloxacin (stimulated
hOAT4, Figure 5.7, Panel B) with furosemide may increase the hOAT4-mediated reabsorption
of furosemide, further decreasing its natriuretic effect due to lower concentrations in the urine
(34, 59, 184). However, as the in vivo scenario includes multiple transporters (uptake and efflux)
mediating renal transport of furosemide as well as these FQs, such effects may be
counterbalanced during their transcellular flux, producing no “net” significant impact on
furosemide PK and resultant pharmacodynamic response. Although the clinical implications of
such stimulatory effects of FQs have not been assessed, these may have an important role
especially in multi-drug regimen interactions (poly-pharmacy) where due to inhibition of
multiple transporters by different drugs, such stimulation of substrate transport may exhibit

enhanced activity/toxic effects.
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CHAPTER 6

OVERALL CONCLUSIONS AND FUTURE DIRECTIONS

Due to their wide spectrum of antimicrobial activity, longer durations of action and
general availability, FQs rank among the most highly prescribed medications for the past thirty
years (9). As a class, FQs exhibit intestinal, hepatic, and renal elimination; with renal excretion
representing a major component in determining the systemic and urinary concentrations of many
of these agents. In the course of FQ development, there has been accumulating evidence
establishing a clear role for active transport mechanisms in their systemic disposition. However,
until recently, work aimed at identifying the specific transport mechanisms/transporters involved
in FQ kinetics has been limited. It now appears that multiple members from the ABC and SLC
transporter superfamilies play an active role in FQ disposition, not only in renal elimination, but
also in the overall flux of these zwitterionic molecules in the body. This information, in turn,
provides potential explanations, at the molecular level, for clinically observed drug-drug
interactions, organ-specific adverse effects, and inter-patient variability in FQ pharmacokinetics
and pharmacodynamics. As indicated by the results of our systematic review (discussed in
Chapter 3), for some FQs the renal handling appears to be the driving force behind the
differences in their duration of action and clinical dose frequency. This dissertation thus intended

to study the role of SLC22 transporter family members in the ‘net’ renal tubular
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secretion/reabsorption (i.e., CLenwp) Of a selected dataset of FQs (identified from the systematic
review discussed in Chapters 2 and 3). Further, the in vitro studies (Chapter 4 and 5)
characterizing the interactions between FQs and the OCTs and OATs (Figure 1.2), allowed an
assessment of the in vivo contribution of these transport proteins to the net renal elimination of
these antimicrobials, as well as identified transporters potentially influencing their overall
absorption, distribution, metabolism and elimination. These in vitro studies examining FQ-OCT
interactions (discussed in Chapter 4), demonstrated that hOCT1 and hOCTS3 are likely to mediate
the renal basolateral uptake of some FQs. Based on its localization, hOCT3 may be involved in
the intestinal and hepatic uptake of moxifloxacin (Figures 4.4 and 4.5, Table 4.1). Due to its
abundant expression in the liver (basolateral membrane), hOCT1 could mediate the hepatic
uptake of gatifloxacin, moxifloxacin, prulifloxacin and sparfloxacin, amongst others, for which a
preliminary interaction was detected (Figures 4.1, 4.2 and 4.6, Table 4.1). Also, as hOCT1 is
expressed on the basolateral membrane in the enterocytes (Figure 4.6), this transporter could also
potentially mediate the intestinal uptake of FQs from the ‘presystemic’ blood circulation (prior to
first-pass metabolism), further facilitating Gl efflux of these FQs by the apically localized ABC
transporters and reducing their bioavailability (4, 14, 23, 40, 52, 96, 148, 205). Moreover,
hOCT1 could potentially be a rate-limiting transporter for FQ prodrugs like prulifloxacin,
wherein its metabolic conversion (to active metabolite, ulifloxacin) would be an essential step to

elicit an in vivo therapeutic action (discussed in Chapter 4).

In the in vitro studies with renally expressed human and mouse orthologs of OATSs
(Chapter 5), some of the FQs moderately inhibited OAT-mediated transport activity. The studies
demonstrated that due to its abundant renal expression (basolateral membrane), hOAT1 may be

involved in the uptake of FQs like fleroxacin and pefloxacin from the systemic circulation
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(Figure 5.6, Table 5.2). However, in mice, renally expressed mOat3 was more likely to be
involved in the basolateral uptake of FQs like enoxacin, fleroxacin, levofloxacin, lomefloxacin,
moxifloxacin, prulifloxacin and sparfloxacin; with varying affinities (Figure 5.2, Table 5.1).
Transporters such as hOAT3 and mOatl demonstrated only moderate interactions with the FQs.
Some moderate OAT-mediated interactions (e.g., ciprofloxacin with hOAT3, lomefloxacin with
hOAT1) also further allowed identification of the transport pathways likely to mediate the
clinically observed DDIs (e.g., lomefloxacin with furosemide; ciprofloxacin with probenecid),
and thus indicated their involvement in the renal elimination of FQs (75, 95, 162). Additionally,
the studies with human and mouse orthologs of OATs demonstrated the existence of species
differences in selectivity and relative affinities of the FQs for OAT1 and OAT3 - mediated

transport (hnOAT1 versus mQOat3, hOAT1 versus mOatl).

In addition to the OATs encompassed by this dissertation, such FQs interactions have yet
to be studied for renally expressed hURAT1 (SLC22A12), which is known to be localized to the
apical membrane in the RPTC, and is involved in active tubular reabsorption of urate from the
urinary space (186). This transporter could potentially mediate the renal tubular reabsorption of
FQs, thus explaining the prolonged ty,s for some FQs. In addition, hOAT2 known to be
expressed in RPTC (basolateral membrane) and hepatocytes (sinusoidal membrane), as well as
hOAT7 (human-specific, hepatically expressed on sinusoidal membrane) could potentially

mediate the hepatic uptake of FQs, further affecting their metabolism and/or renal uptake.

Following identification of the significant inhibitory interactions of selected FQs with the
OCTs and OATs, DDI indices were calculated for hOCT1, hOCT3, hOAT1, and mOat3. This
DDI index analysis enabled a quantitative assessment of the potential of these SLC22

transporters to mediate clinically relevant DDIs for FQs, according to the FDA DDI draft
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guidance:

(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRequlatorylnformation/Guidances/u

cm292362.pdf) (discussed in Chapters 4 and 5, Table 4.1, 5.1 and 5.2). However, the DDI
indices suggested that these SLC22 transporters are not likely to be involved in causing clinically
relevant DDIs on co-administration of the tested FQs with other OAT/OCT substrates or
inhibitors. In addition, the impact of mOat3 on the renal elimination of some FQs (enoxacin,
norfloxacin, moxifloxacin, sparfloxacin) was assessed, by analyzing the relationship between
CLen" of FQs in mice (obtained from preclinical data) and their respective K; values for mOat3.
The results demonstrated no significant relationship (See Appendix 1V) (187). These
observations suggested that although the SLC22 transporters are potentially involved in the
systemic disposition of FQs, they may not be the rate-limiting step. This might be attributed to
the physiological interplay of different transporter gene families (ABC as well as SLC
transporters) that mediate the pathways governing overall FQ Kinetics, a result of which, being
no single transporter represents the rate-limiting step in their renal/hepatic elimination.
Assessments of clinical DDI indices lead to similar conclusion. For example, the clinical DDI
studies with concomitant administration of FQs and probenecid demonstrated only ~25-60%
decrease in CLen (42, 75, 95, 149). Probenecid has exhibited in vitro inhibition of OATs, OATPs
(rat Oatpl and 2), MDR1 (weak inhibition), and MRPs (MRP2, 4 and 5); and has been shown to
completely shut down in vitro OAT — mediated transport (~100% inhibition: Figure 5.1, 5.3) (25,
45, 77, 133, 163). These results may indicate that on concomitant administration of probenecid
and FQs, despite the inhibition anion transporters, FQ kinetics could be mediated by uninhibited
cation/zwitterion transporters such as OCTs, OCTNs and MATEs, known to interact with these

antimicrobials (116). Similar results were found with the cation/zwitterion SLC transporters
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upon FQs combination with cationic drugs like cimetidine (26, 42, 111, 146, 150). Under these
conditions, FQ kinetics might largely be mediated by the uninhibited anion and ABC efflux
transporters (116). These data indicate that the resultant PK endpoints obtained in our systematic
review (discussed in Chapter 3) might represent the ‘combined function’ of multiple transporters,
from a variety of gene families, expressed in several tissues. Such a ‘combined functioning’ of
transporters establishing the ultimate in vivo distribution profile of a given substrate, could be
tested by determining the effects of probenecid and cimetidine co-administration on the overall
kinetics of FQ disposition. However, clinical studies may not investigate such interactions,

considering the safety and toxicities associated with the FQs.

An unexpected observation in the in vitro studies (Chapters 4 and 5) was the stimulation
of OCT- and OAT - mediated transport by some FQs. Some previous studies also demonstrated
FQ stimulation of transport activity including sparfloxacin as a stimulator of MRP2 (ABC
transporter), ciprofloxacin causing stimulation of mOatl- and hOAT1- mediated PAH uptake
(130, 187). Such stimulatory mechanisms by FQs could have potentially significant clinical
manifestations by increasing the clearance (i.e., decreasing the t;) of the ‘victim’ (interacting)
drugs (Chapter 4 and 5). This observation may be of particular importance in cases where multi-
drug regimens are administered to patients. Future investigations could explore such stimulatory
mechanisms in vivo, for example, determining if co-administration of FQs and PAH increases
renal PAH clearance or co-administration of FQ and metformin (OCT substrate) accelerates
metformin clearance, and to explore if these mechanisms could in fact have any significant

clinical implications in multiple-drug interactions.
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These in vitro studies have only explored FQs as inhibitors for the SLC22 transporters,
leaving open the question of whether they are actual substrates. Thus, future studies should
assess whether cellular accumulation can be confirmed.

It would also be of interest to study the molecular-level binding characteristics of FQs
with the transport proteins. Quantitative structure-activity relationship (QSAR) and comparative
molecular field analysis (CoMFA) studies could aid in identifying the key factors influencing the
sporadic inhibition/stimulation mechanisms seen with the individual FQs, and allow the
prediction of any allosteric binding mechanisms of these agents with these transporters (24, 79,
94). Finally, although this study has functionally characterized that FQs are likely be moderate
inhibitors of the SLC22 transporters, the impact of various physiological (endogenous substrates
and xenobiotics, protein binding, pH conditions) and genetic (SLC22 single nucleotide
polymorphisms (SNPs)) factors could affect (increase/decrease) the ‘apparent’ affinities of these
agents for the transporters (71, 83, 180). Nevertheless, the existence of such transporter SNPs as
well as disease states in patient populations could potentially make such moderate FQ-transporter

interactions more clinically relevant.
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1. AMIFLOXACIN:

APPENDIX |

SUMMARY OF HUMAN PHARMACOKINETIC STUDIES FOR FLUOROQUINOLONES

Study | Population | BW Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg)
Plasma | Urine Plasma | Urine AUC Vdg CLot CLen
(mg*min/ | (L/kg) | (ml/min | (ml/min/kg)
ml) /kg)
Cook Healthy, n 62- 400, 0-12hrs | 0-24 HPLC | 0.10-5 0.5- Non- 1.34 - 99+ 14
JAet. | =48 males. | 102 oral hrs with pg/ml 100 compart-
al.(21) 18-46 yrs kg uv pg/ml mental
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2. ANTOFLOXACIN:

Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg) Plasma | Urine Plasma Urine AUC Vdg CLot CLen
(mg*min | (L/kg) | (ml/min | (ml/min/kg)
/ml) /kg)
WangJ | Healthy,n | 52- 400,1V | 0-96 hrs | 0-96 HPLC 37 40 Non- 3.23 3.72 2.1 1.22
et.al. | =12males. | 70 Infusion hrs with pg/ml pg/ml compart-
(194) 20-28 yrs over 120 uv mental
min
(Img/ml)
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3. CIPROFLOXACIN:

Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg)
Plasma | Urine Plasma Urine AUC Vdg CLot CLen
(mg*min | (L/kg) | (ml/min/ | (ml/min/
/ml) kg) kg)
Lettieri | Healthy,n | 73+ | 300 0or 400 | 0-24 hrs | 0-24 | HPLC | 0.025-5.0 | 0.025- Non- 0.52 (300 | 2.44 8.26 5.32 (300
JTet. | =12males. | 6.7 mg, IV hrs pg/ml 5.0 compart- mg) 0.68 (300 (300mg) | mg) 4.9
al.(97) 274+43 Infusion pg/mi mental and | (400 mg) | and 400 8.18 (400 mg)
yrs over 60 two mg) (400 mg)
min (200 Compart-
ml mental
volume)
Wingen | Healthy,n | 75+ | 100mg IV | 0-48 hrs | 0-48 | Micro- 0.01 0.05 Mammillary 0.1456 198+ 9.62 442 +
der W =6 males. 11 bolus hrs biolog- pg/ml pg/ml three 0.4 0.93 0.43
et. 29+ 9yrs (with ical compart-
al.(199) infusion assay mental open
pump and model
within 5 HPLC
min)
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Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg)
Plasma | Urine Plasma Urine AUC Vdg CLot CLen
(mg*min | (L/kg) | (ml/min/ | (ml/min/
/ml) kg) kg)
Hoffken | Healthy,n | 51- | 50 or 100 0-105 0-24 | Micro- 0.008 0.2 Open two 0.072 (50 - 18 (50 11.14 (50
Getal. | =12 Males | 80.5 mg IV min hrs biolog- | pg/ml pg/mi and three mg) 0.18 mg) mg) 8.78
(64) and infusion and 2- ical with K. | (HPLC) compart- (100 mg) 13.89 (100 mg)
Females, (with an 24 hrs Assay | pneumo mental (100 mg)
22-34 yrs infusion and niae and models
pump over HPLC 0.07
15 min) pg/ml
with B.
subtilis
DavisR | Healthy,n | 75.9 | 200 mg IV 0-45 0-48 | HPLC 0.02 0.01 Non- 0.383 225+ 7.02 4.57
et.al. | =12 Males, + infusion min hrs pug/ml pg/ml compart- 0.48
(27) 23-32 yrs 8.5 over 30 and 1- mental
min 24 hrs
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4. ENOXACIN:

Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg)
Plasma | Urine Plasma Urine AUC Vdg CLiot CLen
(mg*min | (L/kg) (ml/min/ | (ml/min/
/ml) kg) kg)
Misiak | Healthy,n | 56.4 | 400mg, | 0-48hrs | 0-48 HPLC | 0.1 pg/ml 3.0 Non- 1.056 2.0 5.14 2.86
PMet. | =10, Male - v hrs pg/ml compart-
al. and female, | 98.4 | Infusion mental
(111) 19 -52 yrs over 60
min
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5. FLEROXACIN:

Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg)
Plasma | Urine Plasma Urine AUC Vdg CLot CLen
(mg*min | (L/kg) (ml/min/ | (ml/min/
/ml) kg) kg)
Stuck | Healthy,n | 52— | 100 mg, 0-60 0-96 HPLC | 20 ng/ml 20 Non- 1.14 14+ 141+ 093+
AE et. =6, Male 74 v min and hrs ng/ml compart- 0.34 0.23 0.3
al. and female, Infusion | 2-72 hrs mental
(161) 25-58 yrs over 20
min
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GATIFLOXACIN:

Population | BW | Dose and LOQ PK PK Endpoints
(kg) Route Analysis
(mg)
Plasma AUC Vdg Clot
(mg*min/ | (L/kg) (ml/min/ | (ml/min/
ml) kg)
Healthy,n | 61-96 | 400 mg, Not mentioned Non- 1.72 15+0.2 2.62
=40 (8in v compart-
each study Infusion mental
group), over 60
Male and min
female, 18-
45 yrs
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7. GEMIFLOXACIN:

Study | Population | BW | Dose and Sampling Assay LOQ PK PK Endpoints
(kg) Route Schedule Analysis
(mg)
Plasma | Urine Plasma Urine AUC Vdg CLiot CLyen
(mg*min | (L/kg) (ml/min/ | (ml/min/
/ml) kg) kg)
Allen A | Healthy,n | 21- | 160 mg, | 0-48hrs | 0-24 | HPLC 0.01 1.0 pg/ml Non- 0.33 - - 2.1
et. al. =19 (n=4 41 oral hrs pa/ml compart-
(2) received mental
this dose),
Male, 18-
45 yrs
Allen A | Healthy, n - 320 mg, | 0-48 hrs | Pre- | HPLC 0.01 0.01 Non- 0.312 - - 4,53
et. al. =22, Male oral dose mg/ml mg/ml compart-
(8] and female, on mental
18-60 yrs Day 1
and
day 5
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8. GREPAFLOXACIN:

Study | Population | BW Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma Urine AUC Vdg CLot CLyen
(mg*min/ | (L/kg) | (mli/min | (ml/min/kg)
ml) /kg)
Efthym Healthy, 70- | 200, 400, | 0-72hrs | 0-72 | HPLC 0.00466 0.0046 Non- 0.31 - - 0.5 (200
iopoulo | male and 89 | 600, 800, hrs pug/ml 6 ng/ml | compart- (200mg), mg), 0.66
s,C.et | female,n= 1200 mental 0.68 (400 (400, 600,
al. (31) | 18,21-37 mg, oral mg), 1.18 800 mg),
yrs (600 mg), 0.83 (1200
1.66 (800 mg)
mg),
2.7(1200
mg)
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9. LEVOFLOXACIN:

Study | Population BW Dose Sampling Schedule | Assay LOQ PK PK Endpoints
(ka) and Analysis
Route
(mg) . .
Plasma Urine Plasma Urine AUC Vdg CLiot CLyen
(mg*min | (L/kg) (ml/min/ | (ml/min/
/ml) kg) kg)
Chow Healthy, - 750 0-72 hrs Not HPLC Not Not Two 4.04 1.51 2.66 -
AT. et male and mg, IV deter- men- deter- | Compart-
al. female, n = Infu- mined tioned mined mental
(19) 18 (n=4 sion (valida- using
with normal over tion linear
renal 1.5hrs range: disposi-
functions 0.125- tion
assessed), 13.75
26-54 yrs png/ml)
Chien Healthy, 944+ 500 0,051 8hrs HPLC Not Not Non- 3.32 0.94 1.66 1.01
SC et. male, n = 10.5 mg, IV | hr (during | prior to men- men- | compart-
al. 18 (10 for Infu- IVinf) | dosing, tioned tioned mental
@an V), 18-55 sion and 0.5- 0-48 (valida- | (valida-
(20-44 for with 60 hrs hrs tion tion
v infu- post- post- range: range:
levofloxaci sion treatment | dosing 0.082- 2-1132
n treatment) pump 10.5 pg/ml)
yrs over 60 pg/ml)
min
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LOMEFLOXACIN:

Study | Population | BW Dose Sampling Assay LOQ PK PK Endpoints
(kg) and Schedule Analysis
Route
(mg) . .
Plasma Urine Plasma Urine AUC Vdg CLiot CLyen
(mg*min/ | (L/kg) | (ml/min | (ml/min
ml) /kg) /kg)
Gros I. Healthy, 50-67 400 0-24 hrs | 0-24 hrs HPLC 0.05 2 pg/ml Open 2.22 - - 2.06
etal. | female,n= mg, oral pg/ml Two
(53) 6, 26-49 Compart-
yrs mental
model
Stone Healthy, 68-81 400 0-90 0—48 | Antibiotic 0.25 0.25 Open 1.93 - - 2.09
JWet. | male, n=86, mg, oral | minand hrs assay pa/ml pg/ml) Two
al. 24-42 yrs 2-25 (plate (plate (plate Compart-
(160) hrs diffusion | diffusion | diffusion mental
post- method) assay), assay) linear
dosing and HPLC | HPLC: < model
(serum 0.12
samples pg/ml
from 2
volunteers
)
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10. MOXIFLOXACIN:

Study | Population | BW Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg) . .
Plasma Urine Plasma Urine AUC Vdg CLot CLen
(mg*min | (L/kg) | (ml/min | (ml/min
/ml) /kg) /kg)
Siefert Healthy, 85 102 0-48 hrs - HPLC Not specified | - (radio- Non- 0.54 2+ 2.2 0.43
HM et. | male adults | (aver | mg, IV and radio- | for human active compart- 1.08
al. age) infu- active assay (0.005 | method mental
(145) sion scintilla- pa/ml for used)
over 30 tion animal
mins plasma
samples)
StassH | Healthyn= | 71- 400 0-1hr 0— HPLC 2.5 ug/ml 25 Non- 2.08 2.05+ 2.27 0.51
et. al. 12, male, 112 | mg, IV during 96 hrs pg/ml compart- 1.15
(158) 23-41 yrs infu- infusion, mental
sion and 1.5 -
over 1 96 hrs
hr post-
dosing
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11. NORFLOXACIN:

Study | Population | BW Dose Sampling Assay LOQ PK PK Endpoints
(kg) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma Urine AUC Vdg CLot CLen
(mg*min/ | (L/kg) | (ml/min | (ml/min
ml) 1Kkg) kg)
Eandi | Healthyn= | 54- 400 0-12hrs | 0-24 Liquid Not Not Non- 0.27 - - 7.47
M et. 12 (6 were | 72 mg, hrs chromat- mentioned men- | compart-
al. (30) | healthy), oral ography | (final range: tioned mental
male and 0.31-5.0 (final
female, 26- pag/ml) range:
31yrs 50 -600
Hg/ml)
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12. OFLOXACIN:

Stud | Population | BW | Dose Sampling Assay LOQ PK PK Endpoints
y (ka) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasm | Urine AUC Vdg CLiot CLyen
a (mg*min/ | (L/kg) | (ml/min/kg) | (ml/min/kg)
ml)
Lode | Healthyn=| 54- | 25,50, | 0-2hrs 0-72 Liquid Detect | Detect | Oral two 0.09 (25 - 4.3 (25 mg), | 3.7 (25 mg),
H et. 18, male 74 100, and at hrs chromato ion ion and three mg), 0.19 4.2 (50 mg), 3.42 (50
al. | and female, 200 3-72 hrs | post- -graphy | limits: | limits: | compart- (50 mg), 3.5 (100, mg), 2.8
(99) 25-46 yrs mg, IV post- dosing 20 200 mental 0.44 (100 200 mg) (100 mg),
infused | dosing po/ml | pg/ml model mg), 0.86 2.88 (200
during (200 mg) mg)
30 min
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13. PEFLOXACIN:

Study | Population | BW | Dose Sampling Assay LOQ PK PK Endpoints
(kg) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma | Urine AUC Vdg CLot CLen
(mg*min | (L/kg) | (ml/min/kg) | (ml/min/kg)
/ml)
Montay | Healthyn= | 54- 400 0-24 hrs | 0-72 Biolog- 0.1 Not Oral two 2.89 - - 0.19
Get.al. | 6,maleand | 75 mg, hrs ical, pg/mi men- and three
(114) female, 19- oral post- Fluori- | (Fluori- | tioned compart-
29 yrs dosing | metric | metric mental
assay assay) model
and
HPLC
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14. RUFLOXACIN:

Study Population BW | Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg) : .
Plasma | Urine Plasma | Urine AUC Vdg CLot CLyen
(mg*min/ | (L/kg) | (ml/min | (ml/min/kg)
ml) /kg)
Kisicki | Healthy n=40, | 54- 400 0-12hrs | 0-24 | HPLC 0.05 0.05 One 10.56 (400 - - 0.27 (400
JCet. | male, 19-29 yrs | 75 and hrs pg/ml | pg/ml compart- mg), 16.63 mg), 0.3
al. (89) 600 mental open | (600 mg) (600 mg)
mg, model
oral
Perry G Healthy n= 70 + 400 0-96 hrs | 0-96 | HPLC 0.5 0.3 two 9.24 - - 0.24
et. al. 24, male and 4 mg, hrs pg/mi pg/mi compart-
(131) female, n=6 oral mental open
assessed with model with
creatinine first order
clearance > 80 input and
ml/min/ 1.73 elimination
m?, 40 + 7 yrs
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15. SPARFLOXACIN:

Study Population BW Dose Sampling Assay LOQ PK PK Endpoints
(kg) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma | Urine AUC Vdg CLiot CLen
(mg*min/ | (L/kg) | (ml/min | (ml/min/kg)
ml) /kg)
Montay | Healthyn= | 70% 200, 0-120 | 0-120 | HPLC 15 250 Non- 1.13 (200 - - 0.27 (200
Get.al. | 12, male, 20- | 6.8 400, hrs hrs ng/ml | ng/ml compart- mg), 1.96 mg), 0.28
(113) 28 yrs 600 mental (400 mg), (400, 600
and model 2.75 (600 mg), 0.29
800 mg), 3.45 (800 mg)
mg, (800 mg)
oral
Fillastre | Healthy n= | 70+ 400 0-120 | 0-120 | HPLC 15 250 Non- 1.89 - - 0.3
JP et. Al. | 20, male and 11 mag, hrs hrs ng/ml ng/ml compart-
(36) female, n=6 oral mental
assessed with model
creatinine
clearance
between 75-
133 ml/min/
1.73m? 55 +
10 yrs
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16. TEMAFLOXACIN:

Study Population BW Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma | Urine AUC Vdg CLiot CLyen
(mg*min/ | (L/kg) | (ml/min | (ml/min/kg)
ml) /kg)

Grannem | Healthyn= | 60-89 | 100, | 0-60hrs | 0-60 | HPLC 0.01 0.01 Non- 0.45 (100 - - 1.76 (100
an RG 30, male, 19- 200, hrs pug/ml pg/ml compart- mg), 0.90 mg), 1.82
et. al. 28 yrs 400, mental (200 mg), (200 mg),

(51) 600 model and 1.78 (400 1.75 (400,
and one- mg), 2.97 1.33 (600
800 compart- (600 mg), mg), 1.75
mg, mental open | 3.52 (800 (800 mg)
oral model mg)
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17. TROVAFLOXACIN:

Study | Population | BW | Dose Sampling Assay LOQ PK PK Endpoints
(ka) and Schedule Analysis
Route
(mg) . .
Plasma | Urine Plasma | Urine AUC Vdg CLot CLen
(mg*min (L/kg) (ml/min/kg) | (ml/min/kg)
/ml)
Vincent | Healthyn= | 64- 30, 0-73hrs | 0-72 | HPLC 0.1 0.1 Non- ND (30 ND (30 | ND (30 mg), 0.19 (30
Jet. al. 16, male, 90.7 100, hrs pg/ml | pg/ml | compart- | mg), 0.98 | mg), 1.21 1.42 (100 mg), 0.16
(192) 18-42 yrs 200, mental | (100 mg), | £0.1 (100 | mg), 1.28 (100 mg),
300 model 1.87 (200 | mg), 1.3 (200 mg), 0.12 (200
mg, IV mg), 2.6 +0.23 1.62 (300 mg), 0.19
infu- (300 mg) (200 mg) (300 mg)
sion mg), 1.4
over 1 +0.23
hr (300 mg)
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APPENDIX 11

COMPARISON OF PHYSICOCHEMICAL PROPERTIES OF FLUOROQUINOLONES
ACROSS THE GROUPS SHOWING NET TUBULAR SECRETION (GROUP 3),

REABSORPTION (GROUP 1) AND NO NET TRANSPORT (GROUP 2)

FQs discussed in Chapter 3 were distributed into three Groups based on ‘net’ renal
tubular clearance (CLen tub):

1. Group 1 FQs: Pefloxacin, Rufloxacin, Sparfloxacin
(Net tubular reabsorption, CLen b < -1)

2. Group 2 FQs: Antofloxacin*(excluded in the analysis as physicochemical properties could
not be obtained by the ACD software), Fleroxacin, Grepafloxacin, Levofloxacin,
Lomefloxacin, Moxifloxacin, Temafloxacin, Trovafloxacin
(Little/No net transport, -1 < CLyentup < 1)

3. Group 3 FQs: Amifloxacin, Ciprofloxacin, Enoxacin, Gatifloxacin, Gemifloxacin,
Norfloxacin, Ofloxacin

(Net tubular secretion, CLyentwp > 1)
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Molecular Properties compared among the Groups of FQs: Molecular weight, Log D
(Logarithmic distribution coefficient) at pH 7.4, hydrogen bond donor (HBD), hydrogen bond
acceptor (HBA), number of rotatable bonds (nRot), molar volume. Software: ACD Labs

PhysChem Suite, Version 12. Statistical Analysis was conducted using JMP statistical software,

Version 9.0.2.
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1. Molecular Weight (MW):

420

410 -
400 -
390

380 —

©

Q 370 -

= 360 -
= 350
340 -
330 -
320 -
310 :

Grou

One-way ANOVA:

Summary of Fit:

Rsquare

Adj Rsquare

Root Mean Square Error
Mean of Response
Observations (FQs)

0.053
-0.082
34.139
361.608
17

Analysis of Variance:

Source DF

Sum of

Squares

Mean Square F Ratio Prob > F

Group 2
Error 14
C. Total 16

914.86
16316.15
17231.01

457.43 0.39 0.6826
1165.44

ANOVA indicates no significant difference among Group 1, 2 and 3 for MW.

Summary Statistics for MW of the 3 Groups:

Group Number Mean Std Error Lower 95%  Upper 95%
1 3 362.9 19.71 320.7 405.2
2 8 368.3 12.07 342.4 394.2
3 6 352.0 13.94 322.1 381.9
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2. LogDatpH7.4:

1

0.5

Log D (7.4 pH)

Grou

One-way ANOVA:

Summary of Fit:

Rsquare 0.167
Adj Rsquare 0.0480
Root Mean Square Error 0.495
Mean of Response -0.282
Observations (FQs) 17

Analysis of Variance:

Source DF Sum of Mean Square F Ratio Prob > F
Squares

Group 2 0.69 0.34 1.40 0.2782

Error 14 3.43 0.25

C. Total 16 4.12

ANOVA indicates no significant difference among Group 1, 2 and 3 for Log D at pH 7.4.

Summary Statistics for LogD of the 3 Groups:

Group  Number Mean Std Error Lower 95%  Upper 95%
1 3 0.1 0.29 -0.5 0.7
2 8 -0.3 0.18 -0.7 0.1
3 6 -0.5 0.20 -0.9 -0.04
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3. Hydrogen Bond Donor (HBD):

4.5
4
3.5
3 4
I
2 4
1 4
0-5 1T 2 ' 3
Grou
One-way ANOVA:
Summary of Fit:
Rsquare 0.0061
Adj Rsquare -0.135
Root Mean Square Error 0.881
Mean of Response 1.941
Observations (or Sum Wgts) 17
Analysis of Variance:
Source DF Sum of Mean Square F Ratio Prob > F
Squares
Group 2 0.07 0.033 0.043 0.9584
Error 14 10.88 0.78
C. Total 16 10.94

ANOVA indicates no significant difference among Group 1, 2 and 3 for HBD.

Summary Statistics for HBD of the 3 Groups:

Group Number Mean Std Error Lower 95%  Upper 95%
1 3 2.0 0.51 0.9 3.1
2 8 1.9 0.31 1.2 2.5
3 6 2.0 0.36 1.2 2.8
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4. Hyrdogen Bond Acceptors (HBA):

9.5
9 4
8.5
8 -

575 4
I

1A

6.5 - \

6 \W/
5.5

One-way ANOVA:

Summary of Fit:

Rsquare 0.254
Adj Rsquare 0.147
Root Mean Square Error 0.726
Mean of Response 6.647
Observations (FQs) 17

Analysis of Variance:

Source DF Sum of Mean Square F Ratio Prob > F
Squares

Group 2 2.507 1.254 2.380 0.1289

Error 14 7.375 0.527

C. Total 16 9.882

ANOVA indicates no significant difference among Group 1, 2 and 3 for HBA.

Summary Statistics for HBD of the 3 Groups:

Group Number Mean Std Error Lower 95%  Upper 95%
1 3 6.3 0.42 5.4 7.2
2 8 6.4 0.26 5.8 6.9
3 6 7.2 0.30 6.5 7.8
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5. Number of Rotatable Bonds (nRot):

6 —

5_

21 A

[

3_

2_

1! 2 ' 3
Grou

One-way ANOVA:

Summary of Fit:

Rsquare

Adj Rsquare

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.034

-0.104

1.035
3.294
17

Analysis of Variance:

Source DF Sum of Mean Square F Ratio Prob > F
Squares

Group 2 0.529 0.265 0.247 0.7844

Error 14 15.000 1.071

C. Total 16 15.529

ANOVA indicates no significant difference among Group 1, 2 and 3 for nRot.

Summary Statistics for nRot of the 3 Groups:

Group  Number Mean Std Error Lower 95%  Upper 95%
1 3 3.0 0.60 1.7 4.3
2 8 3.3 0.36 2.5 4.0
3 6 3.5 0.42 2.6 4.4
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6. Molar Volume:

Molar

Grou

One-way ANOVA:

Summary of Fit:

0.290
0.188
17.795
253.218
17

Rsquare

Adj Rsquare

Root Mean Square Error
Mean of Response
Observations (FQSs)

Analysis of Variance:

DF Sum of F Ratio Prob > F

Squares

Source Mean Square

1807.402 903.701 2.854 0.0913

316.671

Group 2
Error 14 4433.398
C. Total 16 6240.801

ANOVA indicates no significant difference among Group 1, 2 and 3 for Molar VVolume.

Summary Statistics for Molar Volume of the 3 Groups:

Group Number Mean Std Error Lower 95%  Upper 95%
1 3 253.543 10.274 231.51 275.58
2 8 262.988 6.292 249.49 276.48
3 6 240.030 7.265 224.45 255.61
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APPENDIX I

INTERACTIONS OF THE FLUOROQUINOLONES IN THE PRELMINARY
INTERACTION EXPERIMENTS WITH THE SOLUTE CARRIER 22

TRANSPORTERS: INHIBITION, STIMULATION, OR NO INTERACTION

hOCT1 hOCT2 hOCT3 mOatl hOAT1 mOat3 hOAT3 hOAT4  hOAT4
(pH 7.4) (pH 6.3)

Ciprofloxacin

Enoxacin

N
L
Fleroxacin
Gatifloxacin -
Levofloxacin
Lomefloxacin
Moxifloxacin

Norfloxacin

Ofloxacin

Pefloxacin

Prulifloxacin -

Rufloxacin

Sparfloxacin

Inhibition : Stimulation : No Interaction
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No consistent pattern of interaction was observed for any particular FQ, when tested with:
hOCT1, hOCT2, hOCT3, mOatl, hOAT1, mOat3, hOAT3, hOAT4 (treatment at pH 7.4 and
6.3). Individual interactions are represented in the Figure above.
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APPENDIX IV

ASSESSMENT OF THE CLINICAL RELEVANCE OF MOUSE ORGANIC ANION

TRANPORTER 3 IN THE RENAL ELIMINATION OF FLUOROQUINOLONES

Inhibition constant (K; values) were obtained for mOat3 with a selected subset of FQs (discussed
in Chapter 5 and (187)). The following FQs were studied further to examine whether mOat3
could potentially be a rate-limiting step in their in vivo elimination, suggesting possible species
difference in renal handling of FQs (as human OAT3 did not demonstrate significant in vitro

interactions with FQs in preliminary studies).
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Pharmacokinetic preclinical studies of FQs conducted in mice:

1. ENOXACIN:
FQ: Species, | Dose Sampling Assay LOQ PK PK Endpoints Kiin
Study BW and Schedule Analysis mOat3
Route (1M)
(mg) . m
Plasma | Urine Plasma AUC CLot CLen fu CLen
and/or (mg*min/ | (ml/min/ | (mI/min/kg) | e | (MI/min/
Urine ml) kg) kg)
Shinic Std- 50 0-8 hrs | 0-24 | Bioassay: 0.04 One- 0.45 - 65.6 72. 90.6 396 +
hi N et. DDY mg/kg hrs | thinlayer | pg/ml compart- 4 15
al. mice, (1.45 cup- mental (Chapt
(117) n=40 mg, method model er5)
(plasma | chose with
tests),9 | non E.coli;
(urine avera Protein
tests), ge) binding
26-32 ¢ study by
rapid
ultrafiltra
tion
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2. NORFLOXACIN:

FQ: Study | Species | Dose Sampling Assay LOQ PK PK Endpoints Kiin
, BW and Schedule Analysis mOat3
Route (LM)
(mg) | Plasma | Urine Plasma AUC CLot CLen f, CLen"
and/or (mg*min | (ml/min/ | (ml/min/ (%) (ml/min/
Urine /ml) kg) kg) kg)
Norfloxaci Std- 50 0-4 hrs | 0-24 | Bioassay: 0.04 One- 0.065 - 34.8 60.2 57.8 558 + 75
n: Shinichi DDY mg/kg hrs thin layer | pg/ml | compartme (187)
N et. al. mice, (1.45 cup- ntal model
(117) n=40 mg, method
(plasma | chose with
tests),9 | non E.coli;
(urine | averag Protein
tests), e) binding
26-32 ¢ study by
rapid
ultrafiltra
tion
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3. MOXIFLOXACIN:

FQ: Species, | Dose Sampling Assay LOQ PK PK Endpoints Kiin
Study BW and Schedule Analysis mOat3
Route (UM)
(mg) | Plasma | Urine Plasma AUC CLot CLen f, CLen"
and/or (mg*min/ | (ml/min/kg) | (mli/min/ | @ | (ml/min/
Urine ml) kg) kg)
Siefert Male 9.2 0-4 hrs - HPLC, 5.0 Non- 0.13 70.2 10.3 69 14.9 1356 +
HM et. NMRI | mg/kg, Urine pa/ml compart- 114
al. (145) | mice, v (and for mental (Chapter
n=3 per | dose plasma) | plasma 5)
time were
point, assay-
26-43 g, ed by
6 weeks scintill-
old ation
count-
ing;
Protein
binding
assay by
ultrafiltr
ation
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4. SPARFLOXACIN:

FQ: Species, | Dose Sampling Assay LOQ PK PK Endpoints K;in
Study BW and Schedule Analysis mOat3
Route (UM)
(mg) | Plasma | Urine Plasma AUC CLot CLen f, CLen"
and/or (mg*min | (ml/min/kg | (MI/min/kg) | © | (Ml/min/
Urine /ml) ) kg)
Siefert Male 5 0.25-8 | 0-48 Agar 0.01 One or 0.044 - 7.6 56 135 205+ 12
HMet. | Std-ddY | mg/kg, hrs hrs well pa/ml two-
al. (145) mice, v poole | diffu- compart- (Chapter 5)
n=5per | dose d for sion ment
time group | metho open
point, of 5 | dwith model
22-38 g, mice | E. coli
6 weeks Kp;
old Protein
bind-
ing
consid
ered
froma
prev-
ious
analy-
Sis
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From these mice preclinical studies, and the K; values determined from an earlier study in
Chapter 5, it was further studied if the increase/decrease in K; values (i.e., binding affinity) of FQ
inhibitors for mOat3 could potentially affect their CLye," (further affecting CLyenwp in mice).

Statistical Analysis was conducted using JMP statistical software, Version 9.0.2.

FQ ~K; values for mOat3 CLen from the studies in
(uUM) mice (ml/min/kg)
Enoxacin 396 90.6
Norfloxacin 558 57.8
Moxifloxacin 1356 14.9
Sparfloxacin 205 13.5

100
90 —
80 —
70 —
60 —
50 —
40 H
30 —
20
10

CLrenu mouse

T T T T T T
200 400 600 800 1000 1200 1400

Ki mOat3

——Linear

Linear Fit Equation: CLe," mouse = 63.168 - 0.0321*K; mQat3 (UM)
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Summary of Fit:

RSquare 0.215
RSquare Adj -0.178
Root Mean Square Error 40.267
Mean of Response 44275
Observations (FQs) 4

Analysis of Variance

Source DF Sum of Mean Square F Ratio
Squares

Model 1 886.49 886.49 0.5467

Error 2 3242.88 1621.44 Prob > F

C. Total 3 4129.37 0.5367

When this univariate relationship was assessed by the linear regression analysis, it demonstrated
that there was no significant linear relationship between the CL," in mice and the K; values of
the FQs for mOat3. This demonstrated that mOat3 may not be the rate-limiting transporter for
the overall renal clearance of these FQs. However, a larger dataset of FQ preclinical (mice)

studies and mOat3 K; values would be essential to build stronger conclusions.
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