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Antipsychotic medications are used to treat schizophrenia.  The present study used the 

drug discrimination paradigm to measure the subjective effects of the atypical antipsychotic 

amisulpride and to examine the underlying neuropharmacological mechanisms responsible for 

the discriminative stimulus property of the drug.  Male C57BL/6 mice were trained to 

discriminate 10 mg/kg (-)S amisulpride from vehicle in a two-lever drug discrimination task.  A 

dose effect curve for (-)S amisulpride yielded an ED50 = 1.77 mg/kg 95% CI [1.28, 2.45 mg/kg]. 

Substitution testing was conducted for the isomer (+)R amisulpride, racemic (±)SR amisulpride, 

the atypical antipsychotics clozapine, aripiprazole and the typical antipsychotic haloperidol.  

There was partial substitution for (+)R amisulpride, and full substitution for (±)SR amisulpride 

with a significant rightward shift in the dose effect curves.  Clozapine, aripiprazole, and 

haloperidol failed to fully substitute with significant rate suppression at the higher doses.  These 

results demonstrated that (-)S amisulpride has a unique discriminative stimulus that differs from 

other antipsychotic drugs. 
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Establishing the Discriminative Stimulus Properties of the Atypical  
Antipsychotic Amisulpride in C57BL/6 Mice 

 
 
Synopsis of Antipsychotic Drugs in the Treatment of Schizophrenia 
 
 The development of antipsychotic drugs in the 1950s for treating schizophrenia was a 

monumental milestone in the care of individuals afflicted with this devastating mental illness.  

The early drugs, known as the first generation or typical antipsychotics such as chloropromazine 

and haloperidol, proved effective in treating some of the symptoms of the disorder but were not 

without their drawbacks, primarily severe extrapyramidal motor side effects (EPS).  Additionally 

the typical antipsychotics proved ineffective in treating negative symptoms of the disorder and a 

segment of individuals with schizophrenia who proved to be treatment-resistant (J. Kane, G, J, 

H, & 1988; Meltzer, 1991).  Spurred by the hope of more effective antipsychotic medications 

with less unwanted side effects, researchers developed a second generation of antipsychotic 

drugs known as atypical antipsychotics such as clozapine, risperidone, and olanzapine.  

Clozapine introduced in 1971, is known as the prototypical atypical antipsychotic medication, 

and proved effective in treating a range of symptoms of schizophrenia without triggering EPS.  

However, clozapine was not without its problems as it was associated with a high incidence of 

agranulocytosis in certain populations leading to it being withdrawn from the marketplace in 

1975 and reintroduced in 1989 when it was approved, with special guidelines, for treatment-

resistant individuals (Meltzer, 1997).  Pharmacological research continued the development of 

improved medications such as amisulpride, bought to market in the 1990s.   Amisulpride is the 

focus of this thesis.  It is hoped that a fuller comprehension and analysis of the 

pharmacodynamic properties of these antipsychotic medications will yield still more improved 



 

2 
 

medications, and continue to elucidate the myriad of factors contributing to this very serious 

mental disorder. 

Schizophrenia 

Schizophrenia is a devastating mental disorder that entails major disruptions of 

perception, cognition, emotion, and behavior, and is difficult to explain from an etiological and 

pathophysiological perspective.  The consequences for the individual and society are tragic as 

most patients suffer from a lifetime of psychiatric disability, periodic hospitalizations, poor 

social adjustment and disrupted family relationships.  The overall U.S. cost of schizophrenia in 

2002 was estimated at $62.7 billion (Wu et al., 2005), and recent studies of the prevalence of 

schizophrenia indicate that approximately 0 .07 % of the global population suffers from it (Saha, 

Chant, Welham, & McGrath, 2005).  Sadly, schizophrenia has an early onset striking people in 

late adolescence and the early 20s.   Schizophrenia is indiscriminate affecting both male and 

females and cuts across all economic, social and cultural borders.  It is a difficult disorder to 

endure, with 4.9% of schizophrenics committing suicide during their lifetime, usually near 

illness onset (Palmer, Pankratz, & Bostwick, 2005). The etiology of schizophrenia is complicated 

and a number of factors have been implicated.  Some studies link schizophrenia with genetic 

factors (Sullivan, 2005).  However, genetic components are not the only factors in the 

development of schizophrenia, as monozygotic twins have a concordance rate of 50% for 

schizophrenia implying that other environmental or organic factors play a significant role as well 

(Owen, Craddock, & O'Donovan, 2005). 

The nineteenth century saw modern psychiatry progress from merely observing 

symptoms to defining symptom clusters as part of an illness associated with an illness group, and 

patterns of recovery.  In 1896 Emil Kraepelin used the term “dementia praecox” (early dementia) 
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for individuals with symptoms we now associate with schizophrenia (Nicholi, 1988).  Kraepelin 

separated what he called early dementia (striking people in the late teens and early twenties) and 

classical dementia which manifested itself later in one’s life.  Kraepelin was the first to develop a 

list of symptoms commonly associated with the disorder.  In 1911, Swiss psychiatrist Eugen 

Bleuler coined the term “schizophrenia” from the Greek meaning split-mind (Tsuang, Faraone, 

& Green, 1999).  He sought to differentiate the disorder from later onset dementia and noticed 

differences between the two in onset, duration and possible remission/recovery.  Bleuler also 

distinguished between “positive” and “negative” symptoms of the disorder. 

Symptoms.   Broadly speaking, schizophrenia is characterized by symptoms affecting 

five basic areas: disorganized thinking, inappropriate emotional responses, bizarre motor 

behaviors, hallucinations and language disturbances.  These areas are further refined into two 

main categories, either positive or negative symptoms (Crow, 1980).   Positive symptoms refer to 

manifestations in which the patient produces behaviors that are outside the usual behavioral 

repertoire of human beings.  That is, the individual expresses behaviors that should not be there, 

such as auditory hallucinations (hearing voices), delusional thoughts (being persecuted) or 

rambling and incoherent speech (word salad) and disconnected or disorganized thinking.  The 

individual may also exhibit bizarre motor behaviors such as tracing imaginary patterns in the air 

with his hands or moving his hands or arms in a random pattern.  

Disorganized thinking.  The signature cognitive symptom of the disorder is disorganized 

thinking.  Thoughts may be loosely connected, appear in random order, and bear little 

association to relevant situations.  The individual may be incapable of expressing thoughts in 

coherent and meaningful language.  Disorganized thinking is commonly seen in the form of 

delusions which come in many forms and distinguishing among them can be a challenge 
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(Spitzer, 1990).  Delusions are false beliefs not amenable to change by reason or experience even 

though the person is in a clear state of consciousness (Tsuang et al., 1999).  Individuals might 

also exhibit delusions of grandeur, for example thinking one is Napoleon or grandiose delusions, 

thinking one to be omnipotent or all-knowing.  Delusions can also manifest themselves in the 

form of control, such as thinking others are controlling one’s thoughts, or that the individual can 

control others’ thoughts. 

Cognitive Impairments.  Closely related to the symptom of disorganized thinking are 

other cognitive impairments.  Traditionally the loss of cognitive ability has been framed as a 

negative symptom.  Due to its unique characteristics it is now seen as a separate category of 

symptoms.  Most schizophrenics have some degree of cognitive deficiency (Meltzer, Thompson, 

Lee, & Ranjan, 1996).  These include: disorganized thoughts, difficulty concentrating and or 

following instructions, difficulty completing tasks, memory problems, impairments in delayed 

recall, coordinating visual and motor skills, distractibility, and impairments in delayed 

recognition, perceptual skills, and compromised intellectual skills and ability (Keefe, 2007).  The 

degree of cognitive impairment is important as it is a major predictor of the individual’s 

functional outcome (Green, Kern, Braff, & Mintz, 2000).  The more severe the cognitive deficit, 

the more difficult it is to treat the patient, and the less favorable is the outcome.  The National 

Institute of Mental Health established the MATRICSTM initiative (Measurement and Treatment 

Research to Improve Cognition in Schizophrenia) to clarify for researchers how the issue of 

cognitive deficits should be approached (Green et al., 2004).  Hopefully, initiatives such as these 

will be an impetus for research toward the development of novel therapeutic agents tailored for 

cognitive deficits.  Until cognitive deficits are clearly defined from other symptoms of the 

disorder, the burden falls on pharmaceutical companies to empirically demonstrate the efficacy 
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of a drug promoted for the treatment of schizophrenia, or failing that, delineate which symptoms 

a promised treatment will and will not provide therapeutic relief (Laughren & Levin, 2006). 

As a point of emphasis, there is a growing trend among researchers and clinicians to 

broaden the diagnostic criteria for schizophrenia to include cognitive dysfunction as a critical 

component of the disorder.  The current version of the Diagnostic and Statistical Manual of 

Mental Disorders (4th ed., text rev.; DSM-IV-TR; American Psychiatric Association, 2000) does 

not identify cognitive dysfunction among its criteria for schizophrenia.  While mention is made 

of disorganized thinking (e.g. thought disorders such as delusions and loose associations), 

disorganized thinking is not operationally defined in the DSM-IV-TR.  Andreasen et. al. make a 

cogent argument that cognitive abnormalities are the “hallmark” of schizophrenia and have been 

overlooked by researchers and clinicians alike (Andreasen et al., 1996).  This cognitive 

dysfunction is manifest chiefly as difficulty in processing information, formulating responses, 

retrieving information, and reacting quickly as well as an inability in expressing responses with 

facility in words or emotions.  Andreasen refers to these difficulties as a kind of cognitive 

“dysmetria” or an inability to coordinate mental functions in a well-modulated and fine-tuned 

manner.  Her research suggests impairments among prefrontal-thalamic-cerebellar circuitry as 

primarily responsible for such deficits.  Such research suggests that schizophrenia ought not to 

be viewed as a single disease involving one area of the brain.  Instead, it should be viewed as a 

disease of complex circuits involving a whole host of brain regions.  Another challenge is clearly 

delineating among and between the myriad of cognitive functions and processes which become 

dysfunctional in schizophrenia.  Such a collection would include impairments in: problem 

solving, working memory (McKenna, 1991), verbal memory (Heinrichs & Awad, 1993)  

attention (Field, 1997), visual-spatial and motor skills, planning, executive functions 
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(Weinberger, Berman, & Zec, 1986) parallel processing and many more neuropsychological 

tasks and abilities (Gallhofer, Bauer, Lis, Krieger, & Gruppe, 1996; Saykin et al., 1994).  So 

profound and prevalent are cognitive deficits in schizophrenia that some researchers propose 

cognitive impairments are at the very core of the disorder and that any model of or diagnostic 

criteria for schizophrenia is woefully insufficient if cognitive impairments are not addressed as 

central to the disorder (Elvevåg & Goldberg, 2000). 

Disorganized behavior.  Disorganized behavior is another prominent characteristic of 

schizophrenia.  Disorganized behaviors are those that are not in accord with the usual, customary 

socially acceptable repertoire of behaviors and do not express clear intent and purpose. An 

example of such behavior is a motor disturbance known as catatonic behavior.  At one extreme, 

catatonic excitation, this may consist of episodes of uncontrolled, agitated, and disorganized 

behavior, pacing around a ward aimlessly.  It can appear repetitive, stereotypical, hyperactive, 

destructive and even violent.  The schizophrenic patient may exhibit mannerisms, habitual 

movements that usually involve a single body part such as, grimaces, tics, moving lips, 

soundlessly, fidgeting with fingers, or hand wringing.  At the opposite extreme, catatonic stupor 

may be expressed as a complete absence of motor actions, akinesia, such as sitting rigid and 

motionless in a chair for hours on end, unresponsive to external stimuli. 

Negative symptoms.  While positive symptoms are characteristic tell-tale signs of the 

disorder, negative symptoms are no less troublesome and difficult to treat.  Negative symptoms 

affect cognitive, affective, and motor behaviors in the direction of decreased expressiveness and 

responsiveness.  They include the following: avolition (lack of initiative), blunt, flat or restricted 

affect (emotionally void), anhedonia (lack of pleasure), alogia (absence or poverty of speech), 

poor eye contact, decreased spontaneous movements, and diminished emotional responsiveness 
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as seen in the muted ability to feel intimacy or closeness with others.  The extreme example of 

negative symptoms is the catatonic stupor, a total lack of movement and verbal behavior.  The 

person may appear poorly groomed, unable to persist at a task, and withdrawn from social 

activities.  The social behavior in schizophrenic patients indicates that the disorder results in a 

marked loss of the basic behavioral components necessary for effective social interaction (Curran 

& Monti, 1982).  Traditionally, negative symptoms have proven to be more difficult to treat than 

positive symptoms (Möller, 1998). 

Each person with schizophrenia displays a unique combination of symptoms.  Indeed, 

only a few of the symptoms need be present for a diagnosis of schizophrenia to be made.  The 

DSM-IV-TR outlines several categories (subtypes) of schizophrenics such as, paranoid, 

catatonic, undifferentiated, residual and disorganized.  The presence of specific symptoms and 

the continuum of positive or negative symptoms will vary with each individual. 

Pharmacological Treatments for Schizophrenia 

            Throughout history, the treatment of individuals with schizophrenia and related disorders 

has been nothing short of shameful, ineffective and, in many cases, inhumane.  Those afflicted 

with the disorder were subjected to a wide range of treatments such as beatings, isolation, 

bloodletting, crude medical procedures, exorcism,  and generally confined to prisons or asylums 

known for their dehumanizing conditions (Alexander & Selesnick, 1966).  The French physician 

Philippe Pinel (1745-1826) became the first advocate for the development of more humane 

treatment of mental patients.    He advocated a medical model of mental illness based on his 

belief in an organic cause for mental illness (Philippe, 1804). Pinel was one of the early founders 

of psychiatry through his work at Bicêtre Hospital, Paris, and is remembered as the “father of 

psychiatry.”  Yet, even with care for the mentally ill generally improving, most suffering from 
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schizophrenia were still confined to institutional care with little in the way of hope for treating 

the disorder.  By 1955, more than half a million psychotic patients in the United States found 

themselves confined to mental institutions (Julien, Advokat, & Comaty, 2010).  Early and mid-

twentieth century treatments pursued what was seen at the time as a more advanced medically 

based treatment regimen.  They included treatments such as C02 inhalation (Lovenhart, Lorenz, 

& R.M., 1929), injections of apomorphine or the barbiturate sodium amytal (Thorner, 1935), 

comas induced by insulin (Sakel, 1937),  convulsive treatment induced by injections of camphor 

and metrazol (von Meduna, 1935), and electroconvulsive shock (Cerletti, 1938; Shorter & Healy, 

2007).  One could argue that these treatments could be considered the prelude to the first 

pharmacological treatments for schizophrenia.  

First generation typical antipsychotic medications.  The history of specific 

pharmacological treatments for schizophrenia began in the 1940s with the French surgeon Henri 

Laborit  (Hamilton & Timmons, 1994).   Suspecting that the patient’s own fears about the 

dangers of surgery were a major attributing factor to many of the deaths associated with surgery, 

Laborit experimented with various drugs to lessen such fears.  Conventional sedatives, which 

merely blocked the autonomic nervous system, seemed not to be that effective in fear 

suppression.  His search led him to experiment with the more recently developed antihistamine 

compounds, promethazine and pethidine that were combined as part of a presurgical cocktail and 

proved to be very effective (Laborit H & R., 1952). When administered prior to surgery, his 

patients were calm, minimally sedated, and the incidence of deaths due to surgical trauma greatly 

reduced.  This calm, detached and sedated state would come to be known as a “neuroleptic” state 

and would, in short time, become associated with schizophrenia mirroring prominent 

schizophrenic behaviors such as emotional flatness, apathy, and a loss of initiative.  Drugs 
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treating this state would be known as “neuroleptics” and what are now known as first-generation 

(typical) antipsychotic drugs  (Julien et al., 2010).  These drugs were derived from a class of 

drugs known as phenothiazines and would become the first category of antipsychotic agents.  As 

often happens in the history of pharmacological agents, proving effective in one area results in 

the drug being refined and used in other areas.  On December 11, 1950, chemist Paul 

Charpentier, working for the French pharmaceutical company Laboratoires Rhône-Poulenc, 

produced a series of compounds and synthesized RP4560 or chlorpromazine (Charpentier P & 

Jacob R, 1952).  Chlorpromazine was adopted for use in psychiatric clinics and while it was not 

effective in the treatment of other disorders such as depression, it had dramatic effects in 

reducing some major symptoms of schizophrenia.  It became available for the treatment of 

schizophrenia in 1953 under the European trade name Largactil®.  The drug’s profound effect in 

the treatment of schizophrenia led to its expanded use throughout Europe and North America.  It 

was approved for use in the United States in 1955, marketed under the trade name Thorazine®, 

and sparked what has come to be known as the drug revolution in psychiatry (Lopez-Munoz et 

al., 2005). 

 The chief benefit of chlorpromazine rested not in its promise as a cure for schizophrenia 

but in its power to reduce some of the more debilitating symptoms of the disorder.  Many 

patients were able to engage in many day-to-day activities, their disorganized thinking improved, 

hallucinations abated and they no longer exhibited bizarre motor behaviors.  Patients were freed 

from straightjackets and hundreds of thousands released from institutional care into the 

community in a movement known as deinstitutionalization (Fuller, 1997).  The impact of 

chlorpromazine for the treatment of mental health was somewhat analogous to the effect of 

penicillin for bacterial diseases.  Mental patients could now be put on a medication which would, 
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by and large, manage many of the major symptoms of a devastating disorder that seemed 

untreatable for hundreds of years and led to the beginning of behavioral pharmacology 

(Thompson, 1997). 

Soon, other medications were developed and marketed in the late 1950s and 1960s.  This 

class of neuroleptics was the butyrophenones developed in Belgium in the mid-1960s. They 

included haloperidol, benperidol, droperidol, loxapine and molindone (Julien et al., 2010).  All of 

these typical neuroleptics shared similar mechanisms of action in reducing dopamine activity in 

the brain, chiefly as antagonists at dopamine D2 or D2 like receptors (Meltzer, 1991).   

 While dopamine antagonism has proven essential to the therapeutic effects of the typical 

medications, it is also responsible for the undesirable extrapyramidal motor side effects and is 

deficient in its ability to treat the negative symptoms of schizophrenia. The extrapyramidal 

system is a neural network that is part of the motor system responsible for involuntary reflexes 

and movement, and modulation of movement (i.e. coordination) mainly found in the reticular 

formation of the pons and medulla, and target neurons in the spinal cord involved in reflexes, 

locomotion, complex movements, and postural control. These tracts are modulated by various 

parts of the central nervous system, including the nigrostriatal pathway, basal ganglia, 

cerebellum, the vestibular nuclei, and different sensory areas of the cerebral cortex. These 

regulatory components are constituents of the extrapyramidal system, serving mainly to 

modulate motor activity without directly innervating motor neurons (Purves et al., 2001).  

Extrapyramidal effects can be devastating and in some cases, permanent.  They include: 

Parkinsonian like tremors, rigidity, involuntary tics, facial grimaces, tardive dyskinesia, 

involuntary movements and body restlessness known as akathesia (Jeste & Caliguiri, 1993).  As 

these side effects accompanied normal therapeutic doses for the drugs, they were thought to be 
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regrettable, but an unavoidable part of necessary treatment (van Rossum, 1966).  Yet, the risk of 

extrapyramidal effects and the inability of this first-generation of neuroleptics to alleviate the 

negative symptoms of schizophrenia gave rise to the development of a second-generation of 

drugs termed atypical antipsychotic drugs.  Pharmacological developments made it possible to 

produce medications for the disorder with the same or greater therapeutic efficacy without the 

unwanted extrapyramidal effects (Julien et al., 2010).   

While the discovery and development of the first-generation antipsychotics profoundly 

advanced the treatment of schizophrenia, shortcomings associated with their use were evident 

and became increasingly unacceptable to both patients and physicians.  Many patients proved to 

be treatment-resistant to the drugs.  Additionally, these drugs were not effective in treating the 

negative symptoms of the disorder, despite improving positive symptoms.  Finally, many 

patients were unable to tolerate the side effects of the antipsychotics.  These serious drawbacks 

spurred the pharmaceutical industry to develop the second-generation “atypical” antipsychotic 

drugs. 

Second generation atypical antipsychotic medications.   The second-generation 

antipsychotics were introduced into the United States with clozapine in 1989, followed by 

risperidone  (1994), olanzapine (1996), sertindole (withdrawn from U.S. markets in 1998, but 

available in certain European countries)  and quetiapine (1997), ziprasidone (2001), aripiprazole 

(2002), paliperidone (2006), iloperidone (2009) and asenapine (2009).  Amisulpride (Solian®) is 

available in Australia and Europe but not in the United States (Julien et al., 2010).  As the first 

atypical antipsychotic, clozapine demonstrated its superiority to first-generation antipsychotics.  

Clozapine (Clozaril®) was developed by the European pharmaceutical company Wander 

Pharmaceutical Company, later acquired by Novartis in 1958.  It is viewed as the prototypical 
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atypical antipsychotic medication and remains, today, as the “gold standard” medication for 

treatment resistant patients.  (Hippius, 1999).  It was the first drug to demonstrate success in 

treating both positive and negative symptoms of schizophrenia (Meltzer, 1994).  Additionally, it 

did not cause extrapyramidal motor side effects, a major drawback to first generation typical 

antipsychotics (Arnt & Skarsfeldt, 1998; Ellenbroek, 1993a; J. M. Kane, Honigfeld, Singer, & 

Meltzer, 1988).  Further, clozapine was not linked to tardive dyskinesia, a significant handicap 

for the typical antipsychotic medications such as haloperidol (Meltzer & Luchins, 1984).  

Clozapine’s initial success suffered a serious blow in 1975 when it was linked to agranulocytosis 

during a clinical trial in Finland in which several patients died (Anderman & Griffith, 1977; 

Idnpn-Heikkil, Alhava, & Olkinuora, 1975; Lahdelma & Appleberg, 2012).  Subsequently the 

drug was pulled from the market and reintroduced in the U.S. in 1989 with the restrictions that it 

carry a “Black Box Warning” and that the drug be used only for treatment-resistant patients with 

required mandatory and regular white blood cell tests (Volavka et al., 2002).   Treatment-

resistant is defined as a patient who has not shown beneficial effects from a typical or atypical 

antipsychotic medications (Chakos, Lieberman, Hoffman, Bradford, & Sheitman, 2001; J. Kane 

et al., 1988).  Due to the medical risks associated with agranulocytosis, fear of litigation, 

expenses related to blood cell tests clozapine is today relegated to a very proscribed and limited 

segment of the population suffering from schizophrenia.   

These concerns fueled the research to continue developing other atypical antipsychotics 

without the negatives associated with clozapine.  Additionally, second-generation antipsychotics 

continued to show promise in treating the negative symptoms of schizophrenia.  While they were 

associated with fewer Parkinson like symptoms, they had unique side-effects, produced in some 

individuals, such as weight gain, a propensity to produce glucose intolerance (diabetes), 
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elevation in blood lipids, and cardiac electrographic abnormalities.  These are collectively known 

as metabolic syndromes.  As the second-generation antipsychotics grew in use, so did their “off 

label” use for conditions such as depression, bipolar disorder, dysthymia, dementia, autism 

spectrum disorders, anxiety disorders, borderline personality disorder, and anger, aggression, and 

various behavioral control disorders.  New terms such as mood stabilizers and neuromodulators 

are often used for their expanded use in other psychiatric conditions (Crystal, Olfson, Huang, 

Pincus, & Gerhard, 2009). 

  This work will now profile two prominent drugs used for schizophrenia, haloperidol  

(Haldol ®), a first-generation typical antipsychotic and amisulpride (Solian®, Sulpitac®, Amitrex® 

or Soltus®) a second-generation atypical antipsychotic.  As these two drugs serve as the 

comparative agents in this drug discrimination study, further elaboration on them is warranted. 

Haloperidol 

 History.  Discovered by Paul Janssen in 1958, Haloperidol was developed by the 

Belgian company Janssen Pharmaceutica and bought to clinical trials that same year  (Granger & 

Albu, 2005).  It was approved by the U.S. Food and Drug Administration (FDA) on April 12, 

1967 marketed in the U.S.A and other countries under the brand name Haldol® by McNeil 

Laboratories.  It was developed as an offshoot of research with meperidine (pethidine [Demerol]) 

with the hope of finding a more potent analgesic.  Janssen’s molecule, R1625,  was tested by 

psychiatrists  in a large psychiatric hospital in Liège, Belgium, on individuals with severe 

psychotic symptoms and the results were dramatic and very effective in controlling agitated 

states and managing hallucinations, both key hallmarks of schizophrenia (Healy, 2002).  Janssen 

gave his new drug to physicians and investigators from many different countries including 

France, Switzerland, Portugal, Denmark, Sweden, Finland, Turkey, Germany and the United 
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States.  Reports from these varied sources all reported the same positive results with the drug in 

treating schizophrenia.   Haloperidol’s behavioral pharmacological profile, specifically as a D1,  

D2 and  5-HT2 antagonist, it was similar to that of chlorpromazine, and research on the drug 

progressed rapidly (Lehmann & Ban, 1997).  It was found that a single dose of 1 to 5 mg  

delivered intravenously, could control motor agitation (Divry, Bobon, & Collard, 1958).  At the 

first International Congress on Haloperidol, September 5, 1959, Janssen proposed a 

pharmacodynamic profile for haloperidol’s effects.  Specifically, it would reduce delusional 

psychosis, mania, and acute and chronic paranoid psychosis at doses from 2 to 3 mg a day 

(Janssen, 1995).  The pharmacodynamic effects of the drug are that it produces sedation and 

indifference to external stimuli, while also reducing initiative, anxiety, and activity.  It also is 

effective in reducing delusions and hallucinations (Julien et al., 2010). 

Pharmacokinetic properties.  The pharmacokinetic properties of haloperidol decanoate 

in humans are that it reaches peak plasma concentrations in about 6 days (after intramuscular 

injection) with a half-life of approximately 3 weeks.  Via intravenous administration, the 

bioavailability is 100% with rapid onset of action seen within seconds, while oral administration 

yields a 60-70% bioavailability.   The duration of action is 4-6 hours with plasma levels of 4 to 

25 micrograms per liter for therapeutic action.  Plasma levels are used to calculate dose 

adjustments and check compliance especially for long-term use.  Concentrations in brain tissue is 

20 fold that of body levels (Kornhuber et al., 1999). Haloperidol is slowly eliminated from brain 

tissue, which may account for the slow disappearance of side-effects when haloperidol 

medication is stopped (Kornhuber, Wiltfang, Riederer, & Bleich, 2006).  Elimination of the drug 

is accomplished primarily via enzymes in a metabolic pathway in the liver (Gorrod & Fang, 

1993).  Table 1 illustrates salient pharmacokinetic properties of haloperidol and amisulpride. 
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Table 1  
 
Pharmacokinetic properties of haloperidol and amisulpride in human studies. 
 

 

 Haloperidol Route Dose 
 

t1/2 
(h) 

CL 
(L/h) 

F 
(%) 

Cheng et al. 
 (1987)1 

IV 
PO 

1.5-5.0 mg 
2.0-5.0 mg 

18.8 ± 4.7 
18.1 ± 4.5 

33 ±7.8 100 
60 ± 18 

Forsman & Ohman  
(1976)2 

IV 
PO 

10 mg 
10mg 

14.1 ± 3.2 
24.1 ± 8.9 

NR 100 
60 ± 11 

Holley et al. 
(1983)3 

IV 
PO 

0.125/kga 

0.503/kg 
26.2 ± 8.0 
14.5 ± 3.2 

49.2 ± 12 100 
65 ± 14 

Magliozzi & 
Hollister  
(1985)4 

IV 
PO 

0.125/kg 
0.500/kg 

15.1 ± 2.5 
17.5 ± 8.7 

NR 100 
64 ± 23 

Kudo & Ishizaki 
(1999)5 

IV 
PO 

5-10 mg/day 
6-5 mg/day 

14.1-26.2 
NR 

23.61 
14.89 

100 
60-70 

 
Amisulpride  
Caukell et.al. 
(1996)6 

PO 50 mg 12.1 NR 47 

Nobel & Benfield 
(1999)7 

IV 
PO 

50 mg 
50 mg 

NR 
12 

32.8 
NR 

NR 
≈50 

Rosenzweig et.al. 
(2002)8 

PO 50 mg 1.3±0.1 31.2-41.6 48-51 

Sparshatt et.al. 
(2009)9 

PO 50 mg 12 NR 48 

 
a = mean weight 70.0 ± 7.0 kg 
Abbreviations:  IV = intravenous; PO = oral; t1/2 = elimination half life; CL = clearance; 
 F = bioavailability; NR = not reported 
 
1 (Cheng et al., 1987) 
2 (Forsman & Ohman, 1976) 
3 (Holley, Magliozzi, Stanski, Lombrozo, & Hollister, 1983) 
4 (Magliozzi & Hollister, 1985) 
5 (Kudo & Ishizaki, 1999)       
6 (Coukell, Spencer, & Benfield, 1996) 
7 (Nobel & Benfield, 1999) 
8 (Rosenzweig et al., 2002) 
9 (Sparshatt, Taylor, Patel, & Kapur, 2009) 
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Pharmacodynamic properties.  Haloperidol belongs to a chemical class of drugs called 

the butyrophenones. The pharmacodynamic property of this class of drugs (similar to that of 

phenothiazines) arises from its biochemical and physiological effect of  competitively blocking 

dopamine D2 receptors in the mesolimbic and nigrostriatal pathways (I Creese, Burt, & Snyder, 

1976).   Indeed, the clinical potencies of antipsychotic drugs correlate positively with their 

affinity for D2 receptors (Philip Seeman & Kapur, 2001).   It was Arvid Carlsson, Nobel prize 

winning (2000) Swedish scientist who first promoted the dopamine hypothesis of schizophrenia 

(Carlsson & Lindquist, 1963).  Seeman proposed five lines of evidence that support the 

dopamine receptor basis for schizophrenia  (Philip Seeman, 1987).  First, the clinical potencies 

of all antipsychotic drugs correlate directly with their ability to block D2 receptors.  Second, 

brain dopamine receptors are consistently occupied at 60% to 80% at therapeutic doses of 

antipsychotics.  Third, the D2 receptor densities are elevated in schizophrenia patients when 

measured with radioactive N- methylspiperone.  Fourth, while D1 receptors modulate activity of 

the D2 receptor, such as the D2  role in inhibiting intracellular adenylyl cyclase activity (Missale, 

Nash, Robinson, Jaber, & Caron, 1998) , this influence is profoundly reduced or missing in 

postmortem tissue from psychotic individuals.  Fifth, levels of dopamine in the extracellular 

synaptic space are high in schizophrenic patients (Philip Seeman & Kapur, 2001).  Radioligand 

binding assays clearly demonstrate the binding affinity of neuroleptic drugs at D 2  receptor and 

other studies demonstrate they are antagonist at these receptors (I. Creese, Burt, & Snyder, 1978; 

Farde et al., 1992; Nord & Farde, 2011).  Unfortunately this antagonism at D2 receptors is 

responsible for unwanted motor side effects such as Parkinson like symptoms and other 

extrapyramidal symptoms.  It has a rapid onset, especially when given by injection with a 

bioavailability of 100%.  Recommended doses of oral administration range from 2 to 5 mg a day 
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with the upper threshold of therapeutic level as that amount that would begin to trigger 

extrapyramidal symptoms (DaSilva, Hould, & Zipursky, 1996).  The presence of extrapyramidal 

effects in 50% to 90% of patients and more severe motor disturbances such as tardive dyskinesia 

(15% to 20%) continued to be a source of contention with haloperidol as a treatment as with 

other typical antipsychotics.  The most serious side effect, tardive dyskinesia,  was seen to be the 

“Achilles heel of early antipsychotics” (Healy, 2002) .  Additionally, there were inherent 

therapeutic limitations to these medications.  Some 30% to 50% of chronic schizophrenics 

remained unresponsive or only partially responsive to treatment.  The typical antipsychotic drugs 

also failed to treat negative symptoms effectively and did just as poorly in treating neurocognitve 

deficits (Strauss & Carpenter, 1977).  These concerns would help fuel the search for the second-

generation atypical antipsychotic drugs, such as amisulpride. 

 Receptor binding profile.  Haloperidol shows high affinity toward striatal dopamine 

receptors.  Autoradiography studies demonstrate that haloperidol recognizes all human dopamine 

receptor subtypes, especially at D2, D3 and D4.   Haloperidol also exhibits high affinity for α1A 

and α1B adrenoceptors.  Haloperidol shows weak affinity at 5-HT1A, stronger affinity for 5-HT2A 

and moderate affinity at 5-HT1B  (Schoemaker et al., 1997) .  As mentioned earlier, it is the 

blockade of dopamine receptors that is believed to account for haloperidol’s therapeutic efficacy 

for positive symptoms as well as the unwanted extrapyramidal side effects.  Haloperidol’s action 

at other receptors appears negligible at normal human doses.    See Table 2 for the receptor 

binding profile of haloperidol in comparison to the atypical antipsychotic amisulpride. 
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Table 2   
 

       Dissociation Rate Constants (Ki, nM) for tested drugs at selected neurotransmitter receptor subtypes. 
 
 

Receptor 
 

5-HT1A 5-HT1B 5-HT2A 5-HT2B 5-HT6 5-HT7 D1 D2 D3 D4 D5 

Haloperidol 79307 1652 787 14208 36661 3781 831 21 2.99 151 1471 

Amisulpride NSB5 1,7444 20005 134 41544 11.504 NSB4,5 1.36 2.46 23694 NSB4 
Clozapine 7707 3981 127 7.158 171 181 1891 699 4799 391 2351 

Aripiprazole 5.61 8331 13.33,10* 0.3610 57010 10.310 1173.51,10* 3.310 5.3510* 5141 21331,10* 
 
 

Receptor 
 

α1A α1B α2A H1 M1 M5 

Haloperidol 121 81 11301 30021 NSB1 6571 
Amisulpride NSB4 NSB4 11144 NSB4 NSB4 NSB4 

Clozapine 1.61 71 1421 21 141 291 

Aripiprazole 25.710 34.810 74.310 25.110 678010 233010 

 
5-HT = serotonin receptors; D = dopamine receptors; M = cholinergic muscarinic receptors; α = noradrenergic alpha receptors, H = histamine 
receptors; Ki = equilibrium dissociation constant of the competitive inhibitor; NSB = no significant binding (>10,000 nM); * = average for binding 
 

1 Ki determinations were generously provided by the National institute of Mental Health’s Psychoactive Drug Screening Program (PDSP), Contract 
#HHSN-271-2008-00025-C (NIMH PDSP).  The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel 
Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP web site 
http://pdsp.med.unc.edu/. Human cloned and PDSP Certified unless otherwise indicated; original reference is indicated if not PDSP certified data. 

 
2 (Schotte et al., 1996), human cloned 
3 NIMH PDSP (Roth, 2011) rat cloned     
4 (Abbas et al., 2009) human cloned 
5 (Schoemaker et al., 1997) rat cerebral cortex 
6 (Sokoloff, Giros, Martres, Bouthenet, & Schwartz, 1990) human clone 
7 (Bymaster et al, 1996) rat cortex 
8 (Wainscott et al., 1998) human cloned 
9 (Sokoloff et al., 1992) human cloned 
10 (Shapiro et al., 2003) human cloned; rat clone for 5-HT2A

http://pdsp.med.unc.edu/�


 

19 
 

Amisulpride 

      The impetus for discovering the second-generation atypical antipsychotic drugs was the 

need for a new class of medications that alleviated the positive and negative symptoms of 

schizophrenia without causing debilitating extrapyramidal motor effects.   It was well established 

that clinically effective drugs share D2 dopamine receptor antagonist properties (P. Seeman, 

1992).  As well, receptor occupancy of 50% - 60% of central nervous system D2 dopamine 

receptors is necessary to elicit antipsychotic activity, whereas higher receptor occupancy 

amounts of 70% - 80% are responsible for extrapyramidal effects (Farde et al., 1992).  The 

current version of the dopamine hypothesis proposes that antipsychotic effects are linked to 

activity at limbic dopamine receptors, and antagonism of dopamine receptors in the striatum is 

responsible for extrapyramidal effects.  The mesolimbic pathway is important for memory and 

motivating behaviors. Antipsychotic drugs which blockade this pathway reduce the intense 

emotions associated with schizophrenia.  Antipsychotics blocking the mesocortical dopamine 

pathway reduce symptoms such as hallucinations, disordered thinking and delirium. 

Antipsychotics that blockade the nigrostriatal dopamine pathway are linked to extrapyramidal 

motor side effects. Thus, a compound possessing selectivity for limbic and mesocortical 

structures while exerting minimal antagonism on nigrostriatal receptors may function as an 

antipsychotic drug with fewer propensities for adverse motor effects (Perrault, Depoortere, 

Morel, Sanger, & Scatton, 1997).  Such a hypothesis was validated by the clinical efficacy of a 

compound known as sulpiride that preferentially blocked limbic dopamine receptors (Zivkovic, 

Guidotti, Revuelta, & Costa, 1975).              

  History.  The historical roots of sulpiride date from 1958 with the French company 

Delagrange.  Sulpiride was developed from a range of medicinal compounds, belonging to the 
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chemical class of benzamides, such as metoclopramide used to treat gut disturbances.  

Metoclopramide is a D2 receptor antagonist and a mixed 5-HT3 receptor antagonist/ 5-HT4 

receptor partial agonist (Donnerer, 2003).  Paul Deniker noticed that some patients in the clinic 

who were taking metoclopramide exhibited neuroleptic-like extrapyramidal side effect.  

Although these effects were rare, Deniker speculated (correctly) that metoclopramide might be a 

neuroleptic.  From this, Delagrange synthesized a range of benzamides and chose sulpiride for 

antipsychotic testing.  The results on psychotic patients demonstrated clearly that sulpiride had 

obvious antipsychotic effects and was less likely to produce extrapyramidal effects, nor did it 

lead to tardive dyskinesia.  Additionally, it was effective in treating depression and anxiety.  The 

first clinical data on sulpiride’s effectiveness in treating neurotic and dysthymia symptoms was 

presented in Paris in 1968 at the Académie française.   During the 1970s  it was widely used in 

both France and Japan (Healy, 2002). 

Atypicality.  Research on D2 receptor subtypes expanded avenues for therapeutic agents 

possessing more selective antidopaminergic properties that have affinity for limbic localization 

of the D3 or D4 receptors versus the more widespread distribution of the D2 receptors as seen with 

haloperidol.  Paul Janssen was the first to pursue and announced, in 1984, the development of a 

drug that simultaneously blocked D2 and 5HT2 receptors issuing in a new class of compounds 

called butyropheonines.  From this class would come risperidone, which had the desired property 

of blocking both serotonin and dopamine receptors.  This was the first post-clozapine drug of the 

serotonin-dopamine antagonists to be developed.  This serotonin-dopamine antagonistic effect 

became the molecular basis for what we now call “atypicality” (Healy, 2002).  Atypicality would 

become the catch phrase for any of the newer drugs designed for schizophrenia that differed 

from haloperidol and its propensity for causing unwanted extrapyramidal effects.  The mystery, 
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both then and now, is explaining how these atypical medications did not produce the neuroleptic 

effects (catalepsy, extrapyramidal motor side effects, etc.) when they clearly are D2/D3 

antagonists, a hallmark mechanism of typical antipsychotics known to cause the very same 

unwanted side effects.  In fact, sulpiride, at the time of its development, was the purest D2 

receptor antagonist yet it produced very few extrapyramidal effects (Healy, 1996).  The question 

remained what accounts for sulpiride’s profoundly diminished extrapyramidal effects?  From 

research on sulpiride, the drug amisulpride would be developed. 

Receptor binding profile.  Amisulpride [(± amino-4-N-(1-ethyl-2 pyrrolidinyl) 

methylsulphonyl-5-methoxy-2-benzamide)] is a substituted benzamide derivative that has a 

range of effects on dopaminergic and serotonergic transmission. Figure 1 illustrates the chemical 

structure and data of amisulpride, in its two isomer forms and racemic mixture; all were utilized 

in this study. 

 

 

 

Figure I.  Chemical Structure of amisulpride 
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Amisulpride was designed to be used as an atypical antipsychotic medication.  It is a 

dopamine antagonist with high selectivity for dopamine D2 and D3 receptors as well as 

antagonistic action at serotonin 5-HT2B/5-HT7.   In high doses, it exhibits dopaminergic blocking 

activity similar to that of typical antipsychotic medication, whereas in low doses it appears to 

increase dopaminergic transmission.  It was introduced by the French pharmaceutical company 

Sanofi-Aventis in the mid-90s and sold as Solian®, Sulpitac®, Amitrex® or Soltus®.  Merger 

acquisitions of Sanofi-Aventis delayed amisulpride’s introduction and marketing in the United 

States and the company decided not to pursue market in the United States where numerous 

atypical medications where already in place.  As a result, amisulpride is not approved by the 

Food and Drug Administration (FDA) for use in the United States, but it is used in Europe 

(France, Germany, Italy, Switzerland, Russia, United Kingdom, etc.) and Australia to treat 

psychoses and schizophrenia.  While it is mainly used to treat schizophrenia it is also used, off 

label, to treat depression and dysthymia.   As an antipsychotic drug, it shows clinical efficacy for 

both positive and negative symptoms of schizophrenia at high or low doses with a low incidence 

of extrapyramidal side effects (Delcker, Schoon, Oczkowski, & Gaertner, 1990).  It has been 

shown that the drug is a relatively selective dopamine receptor antagonist with high and similar 

affinities for D2 and D3 receptor subtypes (Sokoloff et al., 1990).  Meltzer (1989) believes that 

one measure of atypicality is that the ratio binding to 5-HT2  receptors relative to D2 receptors is  

≥ 1.2 (Meltzer, 1989).  Amisulpride fits this criterion, as its ratio of pKi values of 5-HT2/D2 is 29.  

Table 2 presents the known binding profile of amisulpride.  

 Theories of atypicality.  Questions continue today in the discussion as to why atypical 

antipsychotic medications, given their binding profile at D2/D3, do not produce extrapyramidal 
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side effects.  Two prevalent theories seek to explain this phenomenon.  Meltzer  (1989) suggested 

in that the ratio of serotonin to dopamine receptor occupancy provides the answer.  Meltzer 

proposed that atypical antipsychotics can be distinguished from typical antipsychotics on the 

basis of lower D2 and higher 5-HT2 receptor binding affinities and that this ratio be  ≥  1.12.  He 

holds that this information would be useful in drug screening assays (Meltzer, 1989).  An 

alternative theory is the “fast-off” theory of atypical antipsychotic action proposed by Kapur and 

Seeman  (Kapur & Seeman, 2001).  This theory proposes that atypicals have low affinities for 

the dopamine D2 receptor, and are loosely bound to, and rapidly released from D2 receptors.  

Critical to this theory is the idea that the atypical antipsychotics bind more loosely to D2 

receptors than dopamine itself, while typical antipsychotics bind more tightly than dopamine 

(Philip Seeman, 2002) .  Seeman believes this “quick release” from dopamine receptors is the 

distinguishing characteristic separating atypical antipsychotics from typical antipsychotics and 

account for the decreased extrapyramidal side effects, as well as explaining the therapeutic 

effects of the atypicals.  Whether the serotonin/dopamine ratio theory or the “fast-off” theory 

better accounts for the enhanced therapeutic value of the atypicals over the typicals is a question 

that will continue into the future and fuel additional research.  The answer to the question may 

also be a clue in explaining any potential differences found in the discriminative cue properties 

of atypical antipsychotics (e.g. amisulpride) versus typical antipsychotics (e.g. haloperidol).  

Nevertheless, a more complete explanation clarifying why atypicals are more effective than 

typical antipsychotic medication requires further study, with particular focus on the role of 

genetic variations and interactions with other neurotransmitters involved in schizophrenia (da 

Silva Alves, Figee, Amelsvoort, Veltman, & de Haan, 2008). 
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            Pharmacokinetic properties.  The pharmacokinetic properties of a drug address how the 

drug is handled by the body relative to indices measuring drug absorption, distribution, 

termination of drug action, time course of the drug distribution, elimination, half-life, tolerance 

and dependence.  Table 1 details the pharmacokinetic properties of amisulpride.   Amisulpride 

has been shown to be well tolerated (Widlöcher, Allilaire, Guérard des Lauriers, & Lecrubier, 

1990).   In studies done with human volunteers, at doses of 50 mg daily prescribed for 

dysthymia, the following pharmacokinetic properties have been found.   The drug has an oral 

bioavailability of ≈ 50%.  Peak plasma concentrations occur at 1 and 3 hours after oral 

administration, the second peak being the larger of the two.  The absorption of amisulpride is 

significantly reduced by ingestion of a high carbohydrate, mainly fluid meal, but is not affected 

by a meal high in fat.  Protein binding of amisulpride is minimal and the volume of distribution 

is large (Nobel & Benfield, 1999).  The total body clearance is 32.8 hours with renal clearance at 

18.7 hours.  The terminal elimination half-life is 12 hours  with 51 – 71% eliminated in feces and 

24 – 47% in urine (Bianchetti, Canal, & Rosenzweig, 1995; Dufour & Desanti, 1988).    

 Pharmacodynamic properties.  The pharmacodynamic properties of a drug account for 

the biochemical and physiological effects of the drug on the body, particularly at receptor sites.  

This underscoring the basic principle of pharmacology that any behavioral effects induced by a 

drug follow from the drug’s interaction with receptors (Julien et al., 2010).  Amisulpride’s 

mechanism of action is that it binds selectively to dopamine D2 and D3 receptors in the limbic 

system.  It is unique in that it is selective, at low doses, for presynaptic autoreceptors that control 

dopaminergic transmission (Coukell et al., 1996).  Amisulpride also preferentially interacts with 

limbic dopamine D2-like receptors.  The drug does not recognize D1, D4  or D5 receptors, and at 

low doses ( ≤10 mg/kg) in vivo (rodents) it preferentially blocks presynaptic D2 and D3 
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dopamine autoreceptors, thereby facilitating both dopamine release and dopaminergic 

neurotransmission for limbic rather than striatal receptors (Schoemaker et al., 1977).   Higher 

doses block postsynaptic receptors, thus inhibiting dopaminergic hyperactivity. Clinical trials 

and in vivo studies have demonstrated that amisulpride has potent  5-HT7 antagonistic effects, 

making it useful in depression treatment, specifically dysthymia (Abbas et al., 2009).  

Amisulpride has been shown to be effective in treating the positive symptom of schizophrenia as 

other typical medications (e.g. haloperidol).  However, amisulpride is significantly more 

efficacious in reducing negative symptoms compared to typical antipsychotic drugs. (Möller, 

2000).   Thus it can be considered for use as a first line treatment for acute and chronic 

schizophrenia (albeit, its use is restricted geographically).   Table 3 summarizes the 

pharmacodynamic properties of amisulpride. 

 

 

  



 

26 
 

 

Table 3. 
 
 Summary of the pharmacodynamic profile of amisulpride. 
 
 
Selectivity for dopamine D2 and D3 receptors 
In vitro: high affinity for human dopamine D2 and D3 receptors (Ki ≈3nmol/L) 
No affinity for D1 and D4 or D5 receptors 
Affinity for 5-HT2B,  and 5-HT7  but no significant affinity for other serotonin receptor types and 
none for histamine H1, muscarinic or α-adrenergic receptors 
Ex vivo: higher affinity for D3 than for D2 receptors (selectivity ratio = 2) 
 
Selectivity for limbic structures 
Preferential blockade of dopamine agonist-induced hypermotility vs stereotypies, lack of 
induction of extrapyramidal motor side effects. 
 
Selectivity for presynaptic D2 and D3 autoreceptors at low doses 
Preferential blockade of apomorphine-induces yawning and hypomotility; potentiation of the 
incentive value of food in a place preference paradigm 
 
Endocrine effects in humans 
Mean prolactin level increased from 7.89 (predose baseline) to 36.96 mg/L 5 hours after 
administration of a single dose of amisulpride 50mg in 21 healthy volunteers; after a further 3 
days of amisulpride administration (50mg twice daily), predose and postdose (5 hours) prolactin 
levels on day 5 were 41.77 and 47.23 mg/L 
Endocrine adverse events during amisulpride treatment for dysthymia suggest at least some 
dopamine receptor antagonism at low dosages 
 
Ki = binding constant 
 

Note.  Adapted from (Nobel & Benfield, 1999) 
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Drug Discrimination as a Behavioral Assay 

Drug discrimination is a valuable behavioral assay for studying the in vivo pharmacology 

of drugs.  As a tool, it involves studying the interoceptive effects of a training drug as a stimulus 

cue for performing a specific behavioral response (Solinas, Panlilio, Justinova, Yasar, & 

Goldberg, 2006).  In its most basic form the drug discrimination  assay is a behavioral procedure 

whereby an organism must recognize a particular drug state, choose a correct response, and 

receive reinforcement (Young, 2009).  Drug discrimination techniques have been used to study a 

wide variety of drugs from therapeutic agents to drugs of abuse.   In a typical study, an animal 

such as a mouse is trained via Pavlovian and operant (Skinnerian) principles of learning to 

associate an interior, subjective state with a particular behavioral response such as lever pressing.  

The subjects learn to discriminate the internal stimuli associated with a particular drug (called a 

training drug) from those stimuli of a vehicle state (non-drug agent such as saline).  After 

training in a drug discrimination paradigm, the subjects can recognize the specific interoceptive 

cues of different drugs.  The drugs themselves serve as discriminative stimuli, which is useful in 

studying the pharmacological profile of the drug (Harris & Balster, 1971; Overton, 1966).  After 

the animal has learned to discriminate the training drug from vehicle, testing can proceed on 

different doses of the training drug (generalization testing) followed by the introduction of novel 

agents for the purpose of substitution testing.  Substitution testing yields valuable information as 

to the receptor binding profile of drugs.  Drugs in the same pharmacological class tend to 

substitute for each other.  For example, in animals trained to discriminate dihydroetorphine, will 

substitute and elicit similar behavioral responses to heroin and morphine (Beardsley & L.S, 

1997).    If a novel drug does not substitute for a training drug, this suggests that the underlying 

pharmacological mechanisms are dissimilar.  As well, drug discrimination is a valuable tool for 
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assessing a wide variety of factors related to drugs such as: gender, genetic strains, 

pharmacological history, genetic manipulations (knockout subjects) and other neurobiological 

factors that can influence the interoceptive property of a chemical agent.  Research suggests that 

there is strong commonality between the discriminative effects of drugs in animals and that of 

humans (Kamien, Bickel, Hughes, Higgins, & Smith, 1993).   

Drug Discrimination and Antipsychotic Drugs 

Drug discrimination plays a unique role in the investigation of the biochemical, 

neurological, and pharmacological properties of antipsychotic medications.  It is quite useful as a 

behavioral assay in the preclinical development of these medications (Goudie & Smith, 1999; 

Porter & Prus, 2009).  Drug discrimination contributes to our understanding of the 

pharmacological mechanisms that mediate the discriminative stimulus properties between and 

within antipsychotics and provides a method of analysis for charting the stimulus effects of 

various doses of a particular drug.  Additionally, it provides an assay to measure the extent to 

which a drug generalizes to various doses of itself, and the degree to which a novel drug may 

substitute for a training drug,  There is a wide assortment of preclinical behavioral tests used in 

screening drugs in the development of antipsychotic medications (Arnt & Skarsfeldt, 1998; 

Ellenbroek, 1993b; Geyer & Ellenbroek, 2003).  Drug discrimination is unique in that it 

measures the interoceptive effects of a training drug as a stimulus cue for performing a specific 

behavioral response.  As a behavioral assay and paradigm, it has been used for many years to aid 

in classifying drugs, identifying the underlying pharmacological mechanisms mediating the 

stimulus properties of a drug, and providing information on the role of genetics in drug response  

(Arnt & Skarsfeldt, 1998; Goudie & Smith, 1999; Porter & Prus, 2009). 
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Procedural variables are an important component in drug discrimination.  Some 

procedures may vary depending on the design of the study, such as:  the route of injection (e.g., 

subcutaneous, intraperitoneal), the pre-injection time (typically 30 to 60 minutes), the 

reinforcement schedule (fixed ratio 30 or 10 reinforcement schedules), and the reinforcers, most 

likely food (pellets, a liquid, such as water or sweetened milk). Despite these procedural 

differences, results from drug discrimination studies tend to be remarkably consistent within the 

same drug class (Porter & Prus, 2009).  Major differences that are found across studies are often 

directly related to the dose of the training drug and the species utilized. 

  History.   A brief historical sketch of early drug discrimination with antipsychotic drugs 

studies follows.  The first drug discrimination study of antipsychotics was done in 1962 when 

Stewart trained rats to discriminate 4.0 mg/kg (i.p.) chlorpromazine from saline in a shock-

avoidance task using a three-compartment test chamber (Stewart, 1962).  Substitution tests 

revealed that the phenothiazines acepromazine, perphenazine, and prothipendyl fully substituted 

for chlorpromazine, but that the phenothiazines prochlorperazine and the tricyclic antidepressant 

imipramine did not substitute.  The study found a dose-dependent curve generalization curve for 

chlorpromazine with appropriate responding ranging from 28.9% (2.0 mg/kg chlorpromazine) to 

a maximum of 94.3% at the 4.0 mg/kg training dose.  In 1966 Overton tried, unsuccessfully, to 

establish discrimination with a 5.0 mg/kg (i.p.) dose of chlorpromazine in a T-maze (shock 

avoidance) procedure.  He reported that no discrimination could be established (Overton, 1966).   

Other early drug discrimination studies followed testing chlorpromazine with a two-lever operant 

conditioning procedure  (Harris & Balster, 1971).  

 In 1974 the first drug discrimination study on chlorpromazine in a two-lever operant task 

with rats as subjects was conducted by Barry et al. (1974); a study that also included the first 
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testing of the discriminative stimulus properties metabolites, in this case metabolites of  

chloropromazine: 3,7-dihydroxy-CPZ, 7,8-dihydroxy-CPZ and 7-hydroxy-CPZ.  Barry et al. 

were able to train rats to discriminate chloropromazine (1mg/kg) from saline.  Substitution 

testing using chlorpromazine (2mg/kg) as the training dose, showed that of the three metabolites, 

only 7-hydroxy-CPZ elicited similar behavioral responses to the drug. 

Colpaert et al., in 1976, were the first to test haloperidol as the training drug in a two-

lever operant discrimination (food reward).  Rats were trained to discriminate 0.02 mg/kg (s.c.) 

haloperidol from saline.  The authors reported that this was a difficult task requiring over 80 

training sessions (Colpaert, Niemegeers, & Janssen, 1976).  The first drug discrimination study 

with the atypical antipsychotic clozapine with rats was conducted by Goas and Boston in 1978. 

Substitution testing showed that haloperidol, clozapine, and the muscarinic antagonist 

benztropine mesylate produced full substitution for chlorpromazine; however, in the clozapine-

trained rats, none of the tested drugs (chlorpromazine, haloperidol, chlordiazepoxide and 

atropine) substituted for clozapine (Goas & Boston, 1978).  Utilizing a T-maze, Overton in 1982 

found that clozapine (20 mg/kg, i.p.) and haloperidol (2.5 mg/kg, i.p.) could be established as 

training drugs; however, no drug discrimination could be established with the antipsychotic 

drugs chlorpromazine, fluphenazine, haloperidol, or thioridazine (Overton, 1982). 

       In the years following these early studies, a growing body of research has been published 

on the discriminative stimulus properties of other antipsychotic drugs.  Continued research is 

revealing more information about the pharmacological mechanisms that underlie the 

discriminative stimulus properties of antipsychotic drugs.  Much of the drug discrimination 

research has centered on the drug clozapine, a dibenzodiazepine, which continues to be the “gold 

standard” and “prototypical” atypical antipsychotic medication against which all antipsychotic 
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drugs are compared.  The binding profile of clozapine shows that it binds with a low affinity to 

dopamine D2 receptors but has a high affinity for D1 receptors.  Clozapine demonstrates high 

binding affinity for many other neurotransmitter receptors including dopaminergic D4, 

serotonergic 5-HT2A/2C, 5-HT6,5-HT7, cholinergic M1,  M2, M3, M4, adrenergic α1,  α2, and 

histaminergic H1 receptors (Arnt & Skarsfeldt, 1998; Bymaster et al., 1996; Richelson, 1999; 

Schotte et al., 1996).  In contrast to clozapine’s antagonistic activity at the aforementioned 

receptors, clozapine displays a weak partial agonist activity at M1 receptors (Davies, Compton-

Toth, Hufeisen, H.Y., & Roth, 2004) and agonistic activity at M4 and 5-HT1A receptors(Arnt & 

Skarsfeldt, 1998; Newman-Tancredi et al., 2005; Zeng, Le, & Richelson, 1997).  Such agonistic 

properties of clozapine may explain  some of the unique therapeutic properties of the drug 

(Porter & Prus, 2009).  Many believe that agonistic activity at 5-HT1A receptors contributes to 

the treatment of negative and cognitive symptoms, mood enhancement, and the reduction of 

extrapyramidal motor side effects (Millan, 2000).  Nielsen contends that muscarinic cholinergic 

antagonism (in rats) is key to clozapine’s discriminative stimulus properties (Nielsen, 1988) a 

finding reinforced by Kelley and Porter (Kelley & Porter, 1997) and other studies (Goudie, 

Smith, Taylor, Taylor, & Tricklebank, 1998).  Nicotinic cholinergic receptors also have not been 

shown to be important in the discriminative stimulus properties of clozapine (Prus, Philibin, 

Pehrson, & Porter, 2006; Villanueva, Arezo, & Rosecrans, 1992).  Clozapine’s lower affinity for 

dopamine receptors suggests that the drug’s antagonistic effect at these receptors does not seem 

to be significant as a mediating factor for clozapine’s discriminative stimulus properties.  Quite 

the opposite, antagonism of D2 receptors is thought to inhibit the ability of some antipsychotic 

drugs to substitute for clozapine (Carey & Bergman, 1997; Cole, Field, Sumnall, & Goudie, 

2007).  The evidence is clear that clozapine, as do other atypical antipsychotic drugs, has a 
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diverse and multifaceted binding profile and a compound discriminative stimulus that is not fully 

understood (Goudie & Smith, 1999; Porter & Prus, 2009). 

      Currently, three other clinical atypical antipsychotic drugs have been utilized as the 

training drug in drug discrimination studies:  olanzapine, quetiapine, and ziprasidone.  Each of 

these compounds exhibit a greater affinity for 5-HT2A receptors over D2 receptors;  however, like 

clozapine, they have diverse binding profiles for other receptors as well (Schotte et al., 1996).  

Olanzapine (a thienobenzodiazepine derivative) has a receptor-binding profile resembling 

clozapine, but has a much higher affinity for D1 and D2 dopamine receptors.  Ziprasidone has a 

higher affinity for 5-HT1A and 5-HT7 receptors.  All three of these drugs have strong affinities for 

α1-adrenoceptors, while only olanzapine exhibits a strong affinity for muscarinic receptors 

(Millan, 2000; Richelson, 1999; Schotte et al., 1996). 

       

Rationale 
 

Amisulpride is an atypical antipsychotic medication developed in the 1990s.   It has a 

unique binding and clinical profile, possessing a high affinity for dopamine D2 and D3 receptors, 

serotonin 5-HT2B, and 5-HT7 with a preferential activity in the limbic region of the brain.  It has a 

dual dopamine antagonistic effect.  At high doses it blocks postsynaptic D2 / D3 receptors and at 

low doses it selectively blocks D2 / D3 presynaptic autoreceptors amplifying dopaminergic 

transmission (Coukell et al., 1996; Cudennec, Fage, Benavides, & Scatton, 1997; Schoemaker et 

al., 1997).  Amisulpride is chiral and has two isomers: (+)R and (-)S amisulpride.  The racemic 

form, (+/-)SR Amisulpride, is a 50/50 mixture of the two enantiomers. (-)S amisulpride is the 

more active enantiomer insofar as its ability to bind to dopamine D2 and D3 receptors is twice as 

potent as the racemic form and 20 to 40 times more potent than  (+)R amisulpride in displacing 
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radioligands from dopamine D2 and D3 receptors (Castelli, Mocci, Sanna, Gessa, & Pani, 2001). 

There is ample evidence showing its efficacy in treating both positive and negative symptoms 

and the value of its clinical use in the treatment of schizophrenia (Möller, 2000).  It is generally 

well tolerated with the  incidence of extrapyramidal motor symptoms (especially for low doses) 

similar to that of placebo (Nobel & Benfield, 1999). By comparison, the antipsychotic drug 

haloperidol is also a dopamine antagonist at D1 receptors and selective antagonism with high 

affinity for the dopamine D2 and D3 receptors producing extrapyramidal motor side effects.  

What accounts for this discrepancy?  Is it that amisulpride is much more selective at D2 and D3 

receptors?  Is it related to the speed with which atypicals bind to and release from receptors  

(Kapur & Seeman, 2001)?  It is the ratio of dopamine-serotonin receptor activity (Meltzer, 

1989)?   Is it the action of amisulpride at autoreceptors or the particular dopamine pathway in the 

brain affected?  This is a riddle yet to be solved. 

Drug discrimination is a powerful in vivo assay for determining the subjective effects of 

drugs and for studying the in vivo receptor mechanisms that mediate a drug’s discriminative 

stimulus and perhaps therapeutic effects. The drug discrimination procedure used in the present 

study allows a direct comparison between the atypical antipsychotic amisulpride and the typical 

antipsychotic haloperidol.  

  The present study used the drug discrimination paradigm as a behavioral assay to 

examine the ability of male C57BL/6 mice to discriminate the atypical antipsychotic drug                

(-)S amisulpride from vehicle.  C57BL/6 mice were chosen for this study as they have been 

demonstrated to be an excellent model for preclinical studies of medications used for 

schizophrenia (Laurent & Podhorna, 2004; Powell, Zhou, & Geyer, 2009; Xu, Yang, 

McConomy, Browning, & Li, 2009).  To date, there are no published drug discrimination studies 
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of amisulpride as the training drug with mice or rats.  As such, this research is an original 

preclinical study in the effort to investigate the discriminative stimulus properties of amisulpride.  

There are four objectives of this study:  First, to establish (-)S amisulpride, the active 

enantiomeric form of amisulpride, as a discriminative stimulus in a standard two-lever drug 

discrimination procedure in C57BL/6 mice; Second, to determine if (-)S amisulpride and 

haloperidol share similar discriminative stimulus properties; Third, to test the enantiomer (+)R 

amisulpride and (+/-) SR racemic amisulpride to see if they share discriminative stimuli 

properties with (-)S amisulpride.  Fourth, to test the atypical antipsychotic drugs, clozapine and 

aripiprazole to see if they share discriminative stimuli properties with (-)S amisulpride in 

substitution tests.  The major goal of the present study was to determine whether                          

(-)S amisulpride, the pharmacologically more salient optical isomer of the atypical antipsychotic   

(+/-)SR amisulpride, could serve as a discriminative stimulus in mice and to evaluate the effects 

of various chemical and pharmacologically (typical and atypical antipsychotics) related drugs. 

 

Methods 

 

Subjects  

Twenty-eight experimentally naïve, adult male C57/BL6  inbred mice (20-25g) obtained 

from Harlan Laboratories (Indianapolis, IN) were housed individually in clear plastic cages (18 

X 29 X 13 cm) with slotted plastic fitted tops and wood chip bedding (sanichips, Teklad, 

Madison, WI).  Mice were transported daily (5-7 days per week) from the vivarium (12 hour 

light-dark cycle, lights on at 6 a.m.) to the laboratory where experimental training and testing 

sessions occurred. The vivarium temperature remained between 22 and 24 degrees Celsius. After 

one week of acclimation, the subjects were food deprived to 85-90% of their free feeding body 
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weights and were maintained on a food restricted diet of standard rodent chow (Harlan Teklad 

Lab Diets, Teklad LM-485). Water was available ad libitum in the home cages. The Guide for 

Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National 

Academy Press, 1996) was followed and the Institutional Animal Care and Use Committee at 

Virginia Commonwealth University (VCU) approved the procedures that were used in the 

present study (IACUC Protocol AM10284). 

 

Drugs  

  
S(-)-Amisulpride hydrochloride salt (gift from Drug Discovery Program, Georgetown 

University, Washington, D.C.), haloperidol (Sigma Chemical Co., St. Louis, Mo.), clozapine 

(gift from Novartis, East Hanover, N.J.), aripiprazole (National Institute of Mental Health 

Chemical Synthesis and Drug Supply Program), were dissolved in distilled water with and a 

small quantity (approximately two drops per 50 ml) of 85% lactic acid.  Sodium hydroxide was 

used as a buffer to insure a pH level of approximately 7.0.   (+/-)SR racemic amisulpride free 

base (gift from Drug Discovery Program, Georgetown University, Washington, D.C.), and the 

enantiomer (+)R amisulpride (gift from Drug Discovery Program, Georgetown University, 

Washington, D.C.) were in free base form and dissolved in distilled water.    Doses for (-)S 

amisulpride  refer to the salt (HCI) form of the drug.   Doses for the (+/-) SR racemic 

amisulpride, (+)R amisulpride, clozapine, aripiprazole and haloperidol refer to the freebase form 

of the drugs.  Vehicle consisted of 2 drops of lactic acid per 50 ml DH20 and then buffered with 

sodium hydroxide for the salt form of the drugs. Vehicle for (+/-) RS amisulpride and (+)R 

amisulpride was distilled water.   All drugs and vehicle were administered subcutaneously (s.c.) 

at a volume of 10 ml/kg with a 60 minute pre-session injection time for amisulpride drugs 
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(Perrault et al., 1997) and a 30 minute pre-session injection time for haloperidol (McElroy, 

Stimmel, & O'Donnell, 1989), clozapine and aripiprazole (Philibin et al., 2009). 

 

Apparatus  

Testing was conducted in six standard computer-interfaced operant conditioning 

chambers (Model ENV-307A, Med Associates Inc., St. Albans, VT) each containing two 

retractable levers in the left and right positions (8 cm apart) on the front panel of the operant 

chamber. The levers extended 0.8 cm into the chamber and were positioned 2.5 cm above a grid 

floor constructed of parallel stainless steel rods. Centered between them was a recessed food 

trough into which a liquid dipper delivered 0.02 ml of sweetened-milk (by volume: 150 ml 

powdered milk, 150 ml sugar, and 500 ml water). The inner test chambers consisted of a 15 cm L 

X 11.5 cm D X 17.5 cm H area surrounded by an aluminum framed box with a single Plexiglas 

side door. Test chambers were housed in sound attenuating chambers equipped with ventilation 

fans. MED-PC software (Version 4.2, Med Associates Inc.) was used to control the operant 

sessions and record data. 

Training Procedures 

Phase I: Autoshaping.  The mice consisted of two cohort groups, 15 mice in cohort 

group I and 13 mice in cohort group II.  Cohort I mice were trained to lever press using a 

combination of Pavlovian and instrumental conditioning.  Pavlovian conditioning is a form of 

associative learning in which one stimulus, the conditioned stimulus, comes to signal the 

occurrence of a second stimulus, the unconditioned stimulus.  Pavlovian conditioning was first 

developed by the Nobel Prize (1905) winning physiologist Ivan Petrovich Pavlov (1849-1936).   

It a traditional learning paradigm used extensively in laboratory research (Domjan, 2005).  
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Operant conditioning is a form of learning in which the behavior of an organism is modified by 

its consequences.  First developed and termed instrumental conditioning by Edward L. 

Thorndike (1874–1949) it was reformulated and refined as operant conditioning by B.F. Skinner 

(1904–1990).  Operant conditioning is widely used in preclinical studies of schizophrenia 

(Gainetdinov, Mohn, & Caron, 2001). 

The mice were put into the operant chambers for a period of 2 hours per session with one 

lever extended.  On a variable-time schedule of 45 seconds (range 4 seconds to 132 seconds), a 

tone and light over the lever came on for a period of 6 seconds.  If the animals pressed the lever 

during this 6 second tone/light period, a contingent reinforcer was delivered and the tone and 

light were turned off.  If the animal did not press the lever, the tone and light turned off at the 

end of the 6 second tone/light period and a reinforcer was delivered.  If lever press responses 

were made at any time other than during the 6 second interval, they were recorded as non-

contingent responses and a reinforcer was not delivered.  The reinforcer consisted of a single 

presentation of sweetened milk delivered by raising the dipper cup and holding in the up position 

for 4 seconds before being retracted.   This Pavlovian condition continued for approximately 7 

sessions (days).   Due to low response rates, the Pavlovian aspect of the training was dropped; 

that is, no longer would a reinforcer be paired simply with the tone and light.   The animal now 

had to produce an operant behavioral response of lever pressing, during the 6 second period, in 

order to obtain the sweetened milk reinforcer.  Light and tone were presented similarly to 

Pavlovian/Instrumental conditioning; however, if the mice did not lever press during the 6 

second light/tone presentation no reinforcer was given. This Instrumental conditioning was 

continued until all animals had two consecutive days of 50 contingent reinforcers per 2 hour 

period.  In an average of 7.3 days (range of 14 days) of instrumental training, all animals reached 
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50 contingent reinforcers. 

      Autoshaping for the 14 animals in cohort II initially utilized a nose poke response.  The 

first day combined Pavlovian and Instrumental conditioning.   During nose poke training, no 

lever was presented. A tone and light came on for 6 seconds on a 45 second variable time 

schedule (range 4 seconds to 132 seconds).   If the mice stuck their noses into the dipper well 

during this period a reinforcer was delivered.  If they did not nose-poke, a reinforcer was 

delivered at the end of the 6 second period.    Days 2-5 were Instrumental conditioning.  A light 

and tone came on (for a 6 second period) and if the animal nose poked a reinforcer was 

delivered.  If the mice nose-poked at any other time no reinforcer was delivered and it was 

recorded as a non-contingent response.  Days 6-9 were extinction testing.  The light and tone 

were presented (for a 6 second period of time) on the variable time 45 second schedule.  If the 

mice nose poked during this 6 second period, a reinforcer was delivered but the response was 

recorded as a contingent response.  Responses made at any other time also were not reinforced 

and were recorded as non-contingent responses.  Data collected during this nose poke training 

were designed to observe how both contingent and non-contingent responses increased over the 

4 days of Instrumental training, how the responses decreased during extinction training and how 

cohort II’s nose-poke response rates compared to cohort I’s lever pressing response rates.  Upon 

completion of autoshaping, training was suspended for 4 days, and then the autoshaping 

procedure was repeated and was identical to the nose-poke autoshaping except a lever press 

response was required instead of a nose-poke response. 

Phase II: single-lever training.  Single-lever training began upon completion of 

autoshaping training. A single lever (the vehicle-paired lever) was extended inside the chamber. 

Each subject was placed in the operant chamber for a 15 minute session and trained to press the 
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levers for 0.02 ml of sweetened milk on a fixed ratio one (FR1) schedule of reinforcement, in 

which the reinforcer was delivered after every lever press (dipper was available for 3 sec.). 

Subjects were trained to lever press on a single lever (i.e. the vehicle-paired lever) until drug 

administration began. The position of the drug-associated lever (left vs. right) was 

counterbalanced between each group of subjects to control for olfactory cues (Extance & 

Goudie, 1981).  The value of the FR was gradually increased over the next 7-8 sessions until 

FR10 was obtained. After response rates were consistently higher than 10 responses per minute, 

two-lever drug discrimination training began. 

Phase III: Drug discrimination acquisition training.  Fourteen of the mice were 

randomly selected to be in the present study for drug discrimination training with amisulpride 

(the other 14 mice were used in another study).  The mice then began single-lever training 

(errorless training).  Subjects were injected daily with vehicle 60 minutes prior to each training 

session. The vehicle-associated lever was extended in the test chamber and responding was 

reinforced according to the FR 10 schedule.  This vehicle training continued for 25 sessions 

(days).  After response rates were consistently above 10 responses per minute (RPM), the mice 

were administered 10 mg/kg (-)S amisulpride injections 60 minutes prior to training sessions and 

were only presented with the (-)S amisulpride-associated lever (opposite of the vehicle-

associated lever). Once response rates stabilized at over 10 responses per minute, two-lever drug 

discrimination training began. During two-lever training sessions both levers were extended into 

the operant chamber. The subjects were administered amisulpride and vehicle injections 

according to a double alternation sequence (i.e., DDVVDDVV). On days when the drug was 

administered, only responding on the drug-associated lever was reinforced. On days when 

vehicle was administered, only responding on the vehicle associated lever was reinforced. 
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Responses on the incorrect lever reset the ratio requirement on the correct lever to 10.  Subjects 

received two-lever drug discrimination training until the training criteria were passed during 5 of 

6 consecutive sessions.  

Drug discrimination training criteria.  Successful discrimination training was 

evaluated and assessed according to three criteria: (1) the first completed fixed ratio (FFR) of the 

FR10 schedule was executed on the appropriate lever, (2) 80% or greater of total responses made 

during the session occurred on the appropriate lever, and (3) response rate for the session was 

equal to or exceeded 10 RPM. Control tests with vehicle and amisulpride were administered and 

had to be passed prior to generalization testing with all drugs. During control test sessions, 

responses on both levers were reinforced according to the FR10 schedule and the FR requirement 

was reset when switching between levers occurred. The three training criteria also had to be met 

during the two consecutive training sessions immediately prior to all test sessions.  

Phase IV: drug discrimination.   Once the two lever discrimination training criteria 

were passed, both vehicle and amisulpride or control tests had to be completed prior to 

generalization testing.  Generalization testing occurred with a minimum of 2 training days 

between drug tests and the mice were required to pass both a vehicle and amisulpride  training 

session in the two training sessions prior to generalization testing to assure that the test subject 

was under stimulus control. After successful completion of vehicle and amisulpride control tests, 

an (-)S amisulpride generalization dose effect curve was determined (0.1563 – 40 mg/kg for 10.0  

mg/kg training dose.  Next, the substitution testing with the typical antipsychotic drug 

haloperidol was conducted. Then, (+)R amisulpride and racemic (+/-)RS amisulpride, clozapine 

and aripiprazole were tested to determine if they would substitute for (-)S amisulpride. 

Operational definitions of dependent variables.  One measure of stimulus control was 
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the first fixed ratio (FFR).  This was defined as the subject’s first set of 10 continuous and 

uninterrupted responses on either of the two levers.  If a subject begins responding on one lever, 

and then switched to the opposite lever without completing 10 consecutive responses on the 

initial lever, the counter was reset to 0 and did not record a first fixed ratio until 10 uninterrupted 

responses were completed on one lever.   Another measure of behavior was the percent of drug 

lever responding (%DLR).  This was calculated by counting the number of responses on the 

appropriate drug lever in a 15 minute session and dividing the quotient by the total number of 

responses made on both levers, then multiplying that number by 100 to convert the decimal to a 

percentage. Test drugs that achieve response percentages at 80% or higher were considered full 

substitution.  Response rate was calculated as responses per minute (RPM) for each 15 minute 

session. 

 Data analysis.  ED50 values [with 95% confidence intervals] were calculated for %DLR 

data using the least squares method of linear regression with the linear portion of the dose effect 

curve. For all test drugs that fully substituted for (-)S amisulpride, ED50 values were calculated.  

Full substitution equaled 80% or greater drug-appropriate lever responding; partial substitution 

equaled ≥ 60 to < 80 %DLR.  Repeated-measures analysis of variance (ANOVA) comparing 

responses per minute were calculated for each drug (GB-STAT software; Dynamic 

Microsystems, Inc., Silver Spring, MD.).  Significant ANOVAS were followed by Dunnett’s 

post hoc tests (p < 0.05).   
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Results 

 

(-)S amisulpride Acquisition    

 The results of the acquisition training for the mice successfully trained to discriminate 10 

mg/kg (-)S amisulpride from vehicle are shown in Figure  2.  Thirteen of the fourteen mice 

reached training criteria in an average of 43.5 sessions (SEM ±4.4) with a range of 11-74 

sessions.  One mouse failed to acquire the (-)S amisulpride discriminative cue and was removed 

from the study. 

 

(-)S amisulpride Generalization Curve 

 Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) 

for the (-)S amisulpride generalization curve (10 mg/kg training dose) are shown in Figure 3.  

Generalization testing yielded an ED50 = 1.77 mg/kg 95% CI [1.28, 2.45 mg/kg].  Full 

generalization to the (-)S amisulpride discriminative cue was attained at 5.0 mg/kg                       

( 87.2% DLR), 10.0 mg/kg (96.31% DLR) , 20.0 mg/kg ( 90.5% DLR) and 40.0 mg/kg  (94.05% 

DLR). A one-way repeated measures ANOVA revealed that was a significant effect of doses on 

response rate, F(9,90) = 3.37, p < .05.  However, a Dunnett’s post hoc test failed to reveal any 

significant differences between any of the drug doses and vehicle. 
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Figure 2.  (-)S amisulpride Acquisition Discrimination 

Acquisition of two-lever discrimination is shown for the 10 mg/kg (-)S amisulpride (AMI) 

training dose.  Mean percentage drug lever responses (± SEM) are presented separately for drug 

injections (closed circles) and vehicle (VEH) injections (open circles).  The dashed line at 80% 

indicates drug-appropriate responding and the dashed line at 20% indicates vehicle-appropriate 

responding.  As the mice met the training criteria, they were removed from the curves. The 

numbers in parenthesis indicate the number of remaining mice who had not yet met acquisition 

criteria. 

 



 

44 
 

(-)S Amisulpride
(n=11)

0

20

40

60

80

100

0

20

40

60

AMI 10.0.3125 .625 1.25 2.5 5.0VEH 20.0 40.0

% Drug  Lever
RPM

ED50= 1.77 mg/kg

 Dose (mg/kg)

%
D

ru
g 

Le
ve

r R
es

po
nd

in
g R

esponses Per M
inute

 

 

Figure 3.  (-)S amisulpride Generalization Dose Effect Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the atypical antipsychotic (-)S amisulpride enantiomer generalization curve (10 mg/kg 

(-)S amisulpride training dose) in a two-lever drug discrimination procedure.  The dashed line at 

80% indicates drug-appropriate responding indicating full generalization to the training drug.  

Prior to generalization testing, control test sessions were conducted with both (-)S amisulpride 

(10mg/kg) and vehicle.  For response rate data, significant differences from vehicle are indicated 

by asterisks (* p < 0.05, ** p < 0.01, *** p <0.001). 
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(-)S amisulpride Time Course 

Time course data shown in Figure 4 demonstrated that the 10 mg/kg training dose of (-)S 

amisulpride produced full responding on the drug-paired lever only at the 60 minute s.c. injection 

time point (average drug lever responding = 95.06%).  Partial substitution was seen at 30 

minutes post s.c. injection time point (average drug lever responding dropped to 70.28%).  A 

one-way repeated measures ANOVA for drug-lever responding was significant, F(6,30) = 10.80, 

p < .001.  A Dunnett’s multiple comparison post hoc test was used to determine which time 

points were significantly different from the training pre-injection time (60 minutes).  Compared 

to the 60 minute time point, 0 minutes (p < .001), 15 minutes (p  < .001), 120 minutes (p.<.05),  

240 minutes (p < .01) and 480 minutes (p. < .001) produced significantly less drug-lever 

responding.  The 30 minute and 60 minute time points were not significantly different (p > .05).  

A one-way repeated measures ANOVA for rates of responding showed there was a significant 

effect of pre-injection time, F(7,35) = 3.20, p < .01.   A Dunnett’s post hoc test was used to 

determine which response rates were significantly different from vehicle rates of responding.  

The Dunnett’s post hoc test revealed that response rates at the 15 minute pre-injection time was 

significantly increased as compared to vehicle response rates (p < .01). 
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Figure 4.  (-)S amisulpride Time Course 

Time course data are shown for 0, 15, 30, 60, 120, 240 and 480 minute pre-session s.c. injection 

times for the 10 mg/kg training dose of (-)S amisulpride.  For percent drug lever responding, 

significant differences from the pre-session injection time (60 min) are indicated by asterisks (*p 

< .05, ** p < .01, *** p < .001).  For responses per minute, significant differences are from the 

vehicle control. 
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Haloperidol Substitution 

The typical antipsychotic haloperidol did not substitute for (-)S amisulpride, as shown in 

Figure 5, at any of the tested doses (.0078 - .10 mg/kg).  Maximum %DLR was seen at .10 

mg/kg dose (45.42% DLR).  Response rates at the dose .10 mg/kg dose was significantly 

suppressed, F(9, 63) = 6.12, p < .01. 
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Figure 5.  Haloperidol Substitution Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the typical antipsychotic haloperidol substitution curve.  All other details are the same 

as Figure 2.  
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Clozapine Substitution 

 The atypical antipsychotic clozapine did not fully substitute for (-)S amisulpride at any of 

the tested doses (Figure 6).  There was partial substitution at 3.54 mg/kg (64.73% DLR).  

Response rates were significantly suppressed at 3.54 mg/kg F(4,36) = 7.36, p < .001.  Three 

mice were tested at 5.0 mg/kg clozapine but response rates were completely suppressed, so no 

other mice were tested at this dose.  
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Figure 6.  Clozapine Substitution Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the atypical antipsychotic clozapine substitution curve.  All other details are the same 

as Figure 2.  
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Aripiprazole Substitution 

 The atypical antipsychotic aripiprazole did not substitute for (-)S amisulpride at any of 

the tested doses (Figure 7).  Response rates were significantly suppressed at the highest dose of  

0.625 mg/kg,  F (5, 45) = 7.23, p < .001. 
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Figure 7.  Aripiprazole Substitution Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the atypical antipsychotic aripiprazole substitution curve.  All other details are the 

same as Figure 3.  
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(+)R amisulpride Substitution 

 The isomer (+)R amisulpride produced high partial substitution at 80.0 mg/kg (75% 

DLR), see Figure 8.  Substitution testing revealed an ED50 22.36 mg/kg 95% CI [6.37, 78.49 

mg/kg].  (+)R amisulpride did not produce any rate suppression at the tested doses. 
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Figure 8.  (+)R amisulpride Substitution Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the isomer (+)R amisulpride substitution curve .  All other details are the same as 

Figure 3.  
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Racemic (+/-)SR amisulpride Substitution  

 The atypical antipsychotic racemic (+/-)SR amisulpride (Figure 9) produced full 

substitution at 20.0 mg/kg (93.57% DLR), 40 mg/kg (82.50% DLR), and 80 mg/kg (85.71% 

DLR).  Partial substitution was found at 5.0 mg/kg (60.03 %DLR) and 10 mg/kg (70.92% DLR).  

Generalization testing revealed an ED50 = 4.78 mg/kg CI [3.37, 6.80 mg/kg].  There were no 

significant changes in response rates. 
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Figure 9.  (+/-)SR amisulpride Substitution Curve 

Mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) are 

shown for the atypical antipsychotic racemic (+/-)SR amisulpride substitution curve.  All other 

details are the same as Figure 3.  
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Discussion 

Amisulpride as a discriminative stimulus.  The results of the present study demonstrated that 

the atypical antipsychotic amisulpride can exert reliable discriminative stimulus control in male 

C57BL/6 mice at doses that do not significantly suppress rates of responding.  This finding is 

original as, to date; there are no published studies on the discriminative properties of amisulpride 

with any species.  This study utilized the drug discrimination paradigm as a behavioral assay to 

examine the discriminative stimulus properties of (-)S amisulpride and compared it to the 

enantiomer  (+)R amisulpride and the  (+/-)SR racemic mixture.  Further, the study compared the 

stimulus properties of the atypical antipsychotic amisulpride to the typical antipsychotic 

haloperidol, as well as to the atypical antipsychotics clozapine, and aripiprazole. 

 This study utilized the (-)S amisulpride isomer as the training drug as it has been shown 

that this enantiomer is twice as potent at D2 and D3 dopaminergic receptors as the racemic 

mixture and 20 to 40 times more potent than (+)R amisulpride isomer (Castelli et al., 2001).  The 

affinity of amisulpride for the D2 and D3 receptors is suggested as a critical factor for its 

therapeutic efficacy in treating both the positive and negative symptoms of schizophrenia with 

fewer propensities than typical antipsychotics to induce extrapyramidal motor side effects. 

 Acquisition of discrimination with (-)S amisulpride was established with thirteen mice in 

a mean of 43.5 days ( SEM ± 4.4) with a range of 11-74 days.  While there are no other drug 

discrimination studies utilizing (-)S amisulpride with any species, a comparison can be made to 

studies of related atypical antipsychotic drugs such as clozapine.   Philibin et.al. (2005) trained 

17 C57BL/6 mice to discriminate 2.5 mg/kg dose of clozapine from vehicle in an average of 35.6 

sessions (SEM±2.84; range = 15-52 sessions) (Philibin, Prus, Pehrson, & Porter, 2005).  Thus, 

establishing the (-)S amisulpride discriminative cue in C57BL/6 mice took slightly longer than 
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establishing clozapine as a discriminative cue.  This small difference might be due to the fact that 

clozapine has a more diverse binding profile including 5-HT, muscarinic, histaminergic, and 

adrenergic receptors (Schotte et al., 1996) as compared to amisulpride, which is highly selective 

for dopaminergic D2/D3, serotonin 5-HT2B/5-HT7 receptors (Coukell et al., 1996; Cudennec et 

al., 1997; Schoemaker et al., 1997).  Additionally, the difference in acquisition rates between 

amisulpride and clozapine might be due to the training dose and pre-injection times for each 

drug.  Clozapine, as a discriminative stimulus, has a history of optimal dose and pre-injection 

time for a wide variety of species including rats (e.g. Goas and Boston 1978; Wiley and Porter 

1992), monkeys (Carey and Bergman 1997), pigeons (Hoenicke et al. 1992), squirrel monkeys 

(Carey and Bergman 1997) and mice (Philibin et al 2005).  In the absence of established drug 

discrimination studies with amisulpride, the present study selected a training dose (10 mg/kg) 

and pre-injection time (60 minutes) based on other research done to investigating the 

pharmacological profile of amisulpride in mice and rats in other behavioral tests (Perrault et al., 

1997).  The acquisition rates found in the present study might be shorter had we used a dose 

higher than 10 mg/kg as the training dose, as we found full substitution to occur at both 20 

mg/kg (90.5%DRL) and 40 mg/kg( 94.5%DRL) doses with no rate suppression. 

 Comparison of curves.  A comparison of the generalization curves for the three isomeric 

forms of amisulpride tested yielded interesting information regarding percent drug lever 

responding and respective ED50 values (see Table 4). The (-)S amisulpride isomer at the training 

dose of 10 mg/kg yielded an ED50 = 1.77 mg/kg 95% CI [1.28, 2.45] with full substitution 

attained at doses 5.0 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg.  The  (+/-) SR racemic 

amisulpride yielded an ED50 = 4.78 mg/kg 95% CI[3.37, 6.80] with partial substitution at 5 

mg/kg, 10 mg/kg and full substitution at 20 mg/kg, 40 mg/kg and 80 mg/kg.  The (+)R 
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amisulpride isomer had an         ED50 = 22.36 mg/kg 95% CI [6.37, 78.49] with only partial 

substitution at the highest dose 80 mg/kg.    As seen in Table 4, all three ED50 values are 

significantly different from each other with a distinctive rightward shift (see Figure 10) in the 

dose-effect curve for these forms of amisulpride tested. This rightward shift is most likely due to 

differences in binding for each form of amisulpride as it has been demonstrated that the (-)S 

amisulpride isomer is twice as potent as the racemic form and 20 to 40 times more potent than 

the (+)R enantiomer in displacing radioligands from dopamine D2 and D3 receptors (Castelli et 

al., 2001).  However, since the potent dopamine D2/D3 antagonist haloperidol did not substitute 

for (-)S amisulpride (see Figure 4), this suggests that affinity for D2/D3 receptors is not 

responsible for this difference.  Information about the potency of the racemic and isomer forms 

of amisulpride at serotonin 5-HT-2B and 5-HT-7 receptors is not currently available, but it may be 

possible that differences at these receptors might account for the difference in ED50 values. 

Table 4. 

 

Comparison of ED50 values for three forms of amisulpride based on free base weights of the 

drugs. 

 

Drug Form ED50  Value 95 % Confidence Interval 

(-)S amisulpride*  ED50 = 1.54  mg/kg  1.11 - 2.13 mg/kg 

(+/-) RS amisulpride  ED50 = 4.78 mg/kg  3.37 - 6.80 mg/kg 

(+)R amisulpride ED50 = 22.36 mg/kg 6.37 - 78.49 mg/kg 

 
*This study tested (-)S amisulpride in its hydrochloride (HCl) form which yielded an ED50 = 1.77 
mg/kg 95% CI [1.28, 2.45]  but used the free base form of racemic (+/-) RS amisulpride and (+)R 
amisulpride.  This table shows the adjusted dosage of (-)S amisulpride HCl to the free base. 
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Amisulpride Dose Effect  Curves for
 (-)S and (+)R isomers and racemate
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Figure 10. 

The % drug lever responding data for racemic amisulpride and its isomers are redrawn on a log 

base 10 scale with least squares regression lines to illustrate the significant (p < 0.05) rightward 

shift in the dose-effect curves. 

 

Amisulpride time course. Time course data (see Figure 4) demonstrated that the          

10 mg/kg training dose of (-)S amisulpride produced partial substitution at 30 minutes (70.28% 

DLR) and full substitution at 60 minutes (95.06%  DLR) with a significant decline in %DLR at 0 

minutes (3.20%DLR), 15 minutes (16.38% DLR), 120 minutes (46.46% DLR), 240 minutes 

(30.97% DLR), and 480 minutes (1.70% DLR). The finding that full substitution was achieved 

only at the 60 minute time point is consistent with existing research utilizing the same post 

injection time period to achieve maximum behavioral effects in mice and rats (Manzaneque & 

Navarro, 1999; Perrault et al., 1997; Scatton, Perrault, & D.J, 1994) and measures of prolactin 
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levels in rats (Marchese et al., 2002).  The steepness of the curve in this study for full 

substitution may be due to the absorption rates, and/or the slower elimination rates, although 

specific half-life rates for amisulpride in C57BL/6 mice have not been established.  The 

elimination rate appears consistent with expected normal half-life elimination.   If a 90 minute 

injection time had been tested, this may have resulted in partial substitution based on the rate of 

elimination in the last three time periods: 120 minutes (46.46 % DLR), 240 minutes (30.97 % 

DLR) and 480 minutes (1.70 % DLR).  As well, time course for full substitution effect may be 

drug and species dependent.  For example, a drug discrimination study in which C57BL/6 mice 

were trained to discriminate 2.5 mg/kg clozapine from vehicle yielded a time course in which 

full substitution (≥80% DLR) was achieved at 15-30 minutes after s.c. injection and maintained 

full substitution at both 30-45 minute and 60-75 minute period (Philibin et al., 2005).   

Haloperidol substitution.  The present study demonstrated that the typical antipsychotic 

haloperidol did not substitute for (-)S amisulpride at any of the tested doses (0.0078 - .10 mg/kg) 

and response rates at 0.10 mg/kg dose were significantly suppressed.  Haloperidol has proven to 

be a burdensome and difficult drug to establish as a discriminative stimulus.  Colpaert et al 

(1976) was successful in training 4 rats to discriminate 0.02 mg/kg (s.c.) of haloperidol from 

saline in a two-lever drug discrimination paradigm.  This proved to be an onerous task requiring 

over 80 training session with no substitution testing.  McElroy et al (1989) trained rats (N=9) to 

discriminate 0.05 mg/kg (i.p.) from vehicle and was successful in demonstrating that 

chloropromazine substituted for haloperidol (McElroy et al., 1989).  While haloperidol has been 

utilized in drug discrimination studies with drugs such as amphetamine (Haenlein, Caul, & 

Barrett, 1985) and nicotine (Barrett, Caul, & Smith, 2004) there are no studies in which 

haloperidol has substituted for any atypical antipsychotic drug.  Thus, it is not surprising that the 
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present study found that haloperidol did not substitute for amisulpride.  This suggests that the 

difference in binding profiles between amisulpride and haloperidol most likely accounts for the 

failure of haloperidol to substitute for amisulpride.  Haloperidol has strong binding affinity at 

dopaminergic D2, D3, D4 and at adrenergic α1A and α1B receptors while (-)S amisulpride binds 

selectively to dopaminergic D2, D3 and to serotonin 5-HT2B and 5-HT7 receptors.  This suggests 

that the discriminative cue for (-)S amisulpride may be due to its activity at serotonin 5-HT2B and 

5-HT7 receptors or that amisulpride’s binding ratio of dopamine to serotonin receptors is 

implicated as to why haloperidol did not substitute for amisulpride. This dopamine/serotonin 

ratio is also suggested as a reason why atypical antipsychotics are more effective and better 

tolerated than typical antipsychotics (Meltzer & Massey, 2011), although the ratio for 

amisulpride is greater binding to dopamine than serotonin, which is the opposite of what Meltzer 

had proposed for “atypicality”.  Another clue as to why haloperidol did not substitute for (-)S 

amisulpride may be to the “fast-off-D2” theory.   As a typical antipsychotic, haloperidol binds 

more tightly to D2 than endogenous dopamine itself whereas amisulpride (and clozapine) 

dissociate from dopaminergic receptors rapidly in less than 60 seconds.  Clinical brain imaging 

findings demonstrate that haloperidol remains bound to D2  receptors for as long as 24 hours 

(Philip Seeman, 2002).  Perhaps amisulpride’s quick dissociation from D2 receptors explain why 

haloperidol did not substitute. 

Clozapine and aripiprazole substitution.  The present study found that neither of the 

two atypical antipsychotics tested, clozapine and aripiprazole, fully substituted for 10 mg/kg      

(-)S amisulpride.  Clozapine possesses a complex cue, which appears responsible for its 

discriminative stimulus properties (Goudie et al., 1998; Porter, Varvel, Vann, Philibin, & Wise, 

2000).  Clozapine does not have as strong an affinity for D2 /D3 receptors as does amisulpride.  
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As well, clozapine is antagonist at multiple receptors:  serotonin 5-HT2A, 5-HT2B, 5-HT6, 5-HT7, 

adrenergic α1A, α1B, histaminic H1 and muscarinic M1 and M2.  Amisulpride shares antagonism 

with clozapine only at 5-HT2B, and 5-HT7 receptors.   These differences may explain why 

clozapine failed to substitute at any of the tested doses (0.0625 mg/kg – 3.54 mg/kg) and only 

partially substituted at the highest dose 3.54 mg/kg.  Aripiprazole also failed to substitute at any 

dose tested (.039 mg/kg - .625 mg/kg).  This may be due to the unique and robust binding profile 

of aripiprazole as a partial agonist at D2/ D4 receptors and its affinity for and intrinsic efficacy at, 

the 5-HT1A, 5-HT2A, 5-HT2B,5-HT7  as well as α1A, α2B adrenergic and H1 histamine receptors  

(Shapiro et al., 2003).  Aripiprazole possesses a binding profile quite different from amisulpride 

which may explain why aripiprazole failed to substitute at all for amisulpride. 

Future studies.  Future studies using mice in amisulpride drug discrimination will test 

selective ligands for generalization or their ability to block the amisulpride discriminative 

stimulus in order to determine the underlying pharmacological basis of its cue. There are a 

number of selective ligands we might test.  The selective ligands BW723C86, a 5-HT2B agonist, 

and the 5-HT2B antagonist RS127445 would provide important data on the role of the 5-HT2B 

receptor as the discriminative stimulus for amisulpride.  Testing the selective ligands LP44, a     

5-HT7 agonist and the 5-HT7 antagonist SB258719 would yield data on the role of the 5-HT7 

receptor as the discriminative stimulus for amisulpride.  Testing the selective ligands 

pramiprexole, a D3 agonist and SB277011, a D3 antagonist would provide information on the 

role of the D3 receptor, and sulpiride, a D2 antagonist or quinpirole, a D2 agonist would help to 

clarify the role of the D2 receptor.  

 Additionally, future tests could utilize knockout mice (KO) in an effort to determine 

genetic influences on various receptors suspected in the discriminative stimulus cue of 
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amisulpride.  Although the use of transgenic or knockout mice in drug discrimination studies is 

relatively new, there is published research involving cocaine and D4  receptors (Chausmer et al., 

2002), LSD and serotonin transporters (Krall, Richards, R.A., & Winter, 2008), ethanol and 

serotonin 5-HT3 receptors (Shelton, Dukat, & Allan, 2004), and nicotine α 7 receptors 

(Stolerman, Chamberlain, Bizarro, Fernandes, & Schalkwyk, 2004).  In light of the findings of 

this present study, it would be interesting to utilize a knock out mouse with an inactivated gene 

for serotonin 5-HT2B or 5-HT7 receptors; key receptors this study suggested relevant to 

amisulpride’s discriminative stimulus cue of amisulpride.   

Conclusion. The use of amisulpride drug discrimination in the present study provided 

important information about the differences between typical and atypical antipsychotic drugs as 

well as difference among various atypical drugs.  Amisulpride has demonstrated that it has very 

unique (and robust) discriminative stimulus properties, which may or may not be related to its 

ability to treat positive and negative symptoms of schizophrenia without initiating 

extrapyramidal side effects.  The exact pharmacological properties that are the basis for the 

discriminative stimulus properties of amisulpride remain to be determined and relating the 

discriminative cue properties of amisulpride to its therapeutic efficacy also has yet to be 

determined.  This study provides evidence that (-)S amisulpride can serve as a discriminative 

stimulus for mice.  The (-)S amisulpride is dose-dependent, time-dependent and stereoselective. 
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APPENDICES 

 
 
 

 
 
 
Figure 1: Amisulpride enantiomers S and R, and its racemate (rac). The most active isomer S 
was tested as a hydrochloride salt. 
 
 
 
 
 

 
 

Figure 2: Chemical structures of the two dopaminergic benzamides amisulpride and sulpiride. 
 

 
 
 

 
 

Figure 3: First generation (typical) antipsychotic agents haloperidol and chlorpromazine. 
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Figure 4: Second generation (atypical) antipsychotic agents clozapine and aripiprazole. 
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