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ABSTRACT 

 

   Brain Controlled Switch 

By Dimple Bhuta. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University, 2009 

 

Major Director:  Dr. Ding-Yu Fei 

Associate Professor, Department of Biomedical Engineering 

 

 

This study aims at designing and implementing a single channel stand-alone Brain-Controlled 

Switch (BCS) device, which records the electroencephalography (EEG) signals from the scalp 

using electrodes, amplifies it, eliminates interferences (associated with the EEG signals) and 

processes the EEG signals to extract and decode temporal signal features to determine user‟s 

intention of regulating an external switch.  

The design of our “brain-controlled switch” device is implemented using a bio-potential 

amplifier and a microcontroller. The bio-potential amplifier amplifies the EEG signals to a level 

sufficient for processing, eliminates interferences and ensures patient safety. The microcontroller 

(dsPIC30F4013) digitizes the amplified and conditioned analog EEG signals from the bio-

potential amplifier, extracts the desired signal features for decoding and prediction of user‟s 

intention and accordingly operates the external switch.  

http://en.wikipedia.org/wiki/Electroencephalography
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When the user concentrates on an external visual stimulus or performs externally triggered 

movement (hand movement or motor imagery movement), a reproducible pattern appears in 

user‟s EEG frequency bands. The analysis of these patterns is used to decode and predict user‟s 

intention to operate an external switch. To realize our “brain-controlled switch”, we explored 

two EEG sources: steady-state visually evoked potentials (SSVEP) and beta rebounds, which are 

patterns generated in the EEG frequency bands associated with focusing on an external visual 

stimulus or performing externally triggered movements.   

In case of SSVEP based brain controlled switch, a repetitive visual stimulus (LED flickering at a 

specified frequency) was used. When the user concentrates on the flickering LED, a dominant 

fundamental frequency (equivalent to the flickering frequency) appears in the spectral 

representation of the EEG signals recorded at occipital lobes. Our microcontroller implemented a 

digital band pass filter to extract the frequency band containing this fundamental frequency and 

continuously took an average of the amplitude power every predetermined time interval. 

Whenever the amplitude average power exceeded the preset power threshold the external switch 

was turned ON. A healthy subject participated in this study, and it took approximately 

3.14 ± 1.81 seconds of active concentration for the subject to turn ON the switch in real time 

with a false positive rate of 1.17%. 

In case of beta rebound based brain controlled switch, the subject was instructed to perform a 

brisk hand movement following an external synchronization signal. Our design focused on the 

post-movement beta rebound which occurs after the cessation of the movement to operate the 

external switch.  Our microcontroller in this case implemented a digital band pass filter to extract 

the beta band and continuously took an average of its amplitude power every predetermined time 

interval. Whenever the amplitude average power exceeded the preset power threshold the 
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external switch was turned ON. It took approximately 12.23 ± 7.39 seconds of active urging 

time by the subject to turn ON the switch in real time with a false positive rate of 9.33%.  

Thus we have designed a novel stand-alone BCS device which operates an external switch by 

decoding and predicting user‟s intentions. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Since the discovery of electroencephalography (EEG) by Hans Berger in 1929 [1], people have 

speculated that it could be used as muscle-independent communication and control channel 

(which doesn‟t use brain‟s regular pathways of peripheral nerves and muscles) between brain 

and external devices such as computers, wheelchairs or robotic arms. Hence it is termed as a 

brain-computer interface (BCI).  The target population of the BCI devices is “totally locked-in” 

patients: their mind is conscious and alert however they lose their ability to move and 

communicate due to the loss of their motor function. Hemorrhage of brain stem, stroke and 

tumors, encephalitis, and brain injuries localized in the ventral midbrain causes locked-in 

syndrome [2]. Also neuromuscular diseases such amyotrophic lateral sclerosis (ALS caused by 

progressive degeneration of central and peripheral motor neurons), multiple sclerosis and 

cerebral palsy causes total-locked in syndrome. In “total-locked in” condition, only 10% of the 

population live more than 10 years following diagnosis and more than 90% of the patients do not 

choose to prolong life by accepting ventilation due to the anticipated loss of the ability to 

communicate[3, 4]. In classic “locked-in” syndrome vertical eye movement as well as eye blinks 

remains intact, which could be used as a basic means of communication to answer questions, 

give simple commands, or even operate a word processing program. However in total “locked-in 

syndrome” even the eye muscles are paralyzed, hence an EEG based BCI device can provide 

basic communication capabilities to these patients with no muscle control, so that they could 
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express their wishes to caregivers or operate word processing programs and even control a 

robotic arm [5].  

A BCI system mainly consists of four parts: signal recording, processing, predication of the 

user‟s intention and controlling the external device. Current BCI researchers record signals for 

the BCIs from the scalp or utilize signals recorded from inside the brain using implanted 

electrodes, thus based on the recording site BCI can be divided into non-invasive or invasive 

BCIs respectively [6]. The signals recorded from non-invasive BCIs generally passes through a 

bio-potential amplifier which has high amplification ability, high common mode rejection ratio 

CMRR and circuit protection features; to obtain an appropriate EEG signal for processing. In the 

signal processing part, signal features in terms of amplitude and/or frequency power are 

extracted. The prediction part determines user‟s intention by analyzing the extracted signal 

features that the user encodes if he/she wants to perform a previously specified task. The 

extracted signal features are translated into real time commands to operate and control the 

external device.  

Based on the site of acquiring brain signals, the BCI systems can be divided into two types: 

(a) Invasive BCI: It provides neuronal signals of best quality as they are recorded from 

electrodes placed inside the brain.  Brain signals can be recorded from small samples of 

neurons in the single cortical areas, local field potentials (LPF) or large neurons from 

multiple cortical areas[7]. The signals obtained from the invasive BCI‟s are very specific 

to the movement (can produce position and velocity information of the movement), 

achieve high speed of communication and can be used to control devices with multiple 

degrees of freedom. The action potentials (neuronal spikes from multiple recording sites) 

and the LPF (local field potentials) recorded from electrodes inserted into the cortical 
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tissues were used to operate robotic arms which requires multiple degrees of freedom [8-

14].  However these methods are far from practical clinical applications as the electrodes 

can‟t be used for a long time, as implantation of the electrodes can further damage the 

brain tissue by central nervous system infection and also the conductivity of electrodes 

decreases over time as the body‟s immune response encapsulates the electrodes. Also 

most of these experiments have been carried out in non-human primates; hence there is a 

large gap in applying invasive BCI methods to the target population of “locked-in” 

patients. 

(b) Non-Invasive BCI: It is commonly known as EEG-based BCI system. EEG refers to the 

mean brain electrical activity arising from billions of neurons recorded non-invasively 

from the scalp (generally motor cortex or somatosensory cortex) [15].   A composite EEG 

signal comprises of different rhythms (frequencies bands) produced by distinct cortical 

areas. They are delta (< 4Hz present frontally in adults and in the posterior lobe in 

children associated with deep sleep or anesthesia), theta (4-8Hz), alpha (8–12 Hz 

predominant over occipital, parietal and posterior temporal regions, and are associated 

with relaxed focus or readiness), beta (13–30 Hz predominant over frontal and central 

lobes, and are associated with active concentration and alert thinking) and gamma (above 

30Hz dealing with mental representations).  The EEG based BCI systems tries to 

decipher its user‟s intention and decisions through measurements of the combined 

electrical activity of massive neuronal populations. Hence the quality of the signal 

recorded from EEG-based BCI system is poor (compared to invasive systems, as the EEG 

signals are contaminated with neural sources of noise (such as EEG features not used for 

communication) as well as non-neural artifacts (such as power line noise). It also lacks 
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specificity (information about the position and velocity information of the movement). 

However compared to invasive methods, it is robust over time, inexpensive, convenient 

to use and has low risk in implantation.  Several successful EEG based methods have 

been reported such P300 based letter selection system for 51yr old ALS patient with an 

accuracy of 83% over 2.5years[16] , mu rhythm based one-dimensional cursor control 

(up-down of the screen)[17, 18], self-regulated mu rhythm[19],slow cortical potentials 

based computer-aided spelling system[17, 18], motor imagery based brain controlled 

switch[20] and visual evoked potential (VEP)[21-24]. EEG based methods appear to be 

similar to conventional skills which no longer requires intense concentration once 

learned. Some BCI protocols ask that the user employs very specific motor imagery (e.g., 

imagery of right or left hand movement) or other mental tasks to produce the EEG 

features the system uses as control signals. Current EEG-based BCI systems have transfer 

rates between 5-25 bits/minutes [25, 26]. Although these transfer rates aren‟t sufficient 

for controlling neuro-prosthetic devices such as robotic arms, they try to offer some 

practical solutions (e.g. yes/no answer reply by switch control, one and two dimensional 

cursor control and wheel chair control) for “locked-in” patients in the near future. 

 

1.2 Objective: The objective of this study is to design a real world single channel BCS device. 

The design is based on the assumption that our target population of “locked-in” patients can still 

think about moving and the brain areas corresponding to the movement generate patterns that 

represent the expected value of reward. Our goal is to record these movement intentions, 

interpret them and use them as control signals to operate a simple ON/OFF switch.  
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Our device consists of an analog front end circuit (or a bio-potential amplifier) and the digital 

part. The analog part records the EEG signals from scalp electrodes, amplifies them to a level 

sufficient for signal processing, reduces the non-neural EEG signal artifacts, filters them to 

remove the dc offset and perform anti-aliasing. The digital part of our system is designed to 

convert analog EEG signals into digital signals for processing, extract the features of our interest 

from the overall available EEG features, eliminate interferences and implement a prediction 

algorithm to operate an external switch.  

To make our design compatible with the real world switch we have tried to implement a design 

which lets the user decide when to switch ON the external switch by performing a task. A couple 

of research groups have explored the self-paced or asynchronous EEG based BCI to differentiate 

between “Intentional Control” state (subject performs a task to indicate movement intention)” 

and “No Control state” (rest state)[27-29]. We have utilized the principle of “Intentional control” 

and “No control” state by providing system cues to realize an asynchronous BCS.  

We consider the following properties in developing a real world brain-controlled switch:  

(a) Self-paced: Incase of the real-world light switch, the switch is turned ON/OFF by the 

user only when he/she intends to do so by performing a movement task. Similarly in case 

of BCS, the users would pay attention to the system cues only when they want to turn the 

switch ON/OFF. Birch‟s group addressed that the users may perform a certain motor task 

only when they want to turn ON the switch also called as “Intentional Control state”, 

whereas the users may carry out normal thinking (any task such as relaxing, day 

dreaming or thinking about a problem) when the users does not wish to operate the 

switch also called as the “No control” or the rest state[28]. In our experiment, the subject 

was asked to perform a brisk hand movement in synchronization with an external visual 
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go-signal as well as asked to concentrate on an external visual stimulus in the “Intentional 

Control” state.  In the “NO control” states, the subject was asked to look away from the 

visual cue.    

(b) Minimal false positive rate (FPR): In case of the real world light switch, the switch 

stays OFF in the “No Control” state; our BCS should also avoid false triggering, that is 

activation of the switch in the “NO control” state. Birch‟s group suggested that 0% FPR 

is required in practical applications and they achieved FPR below 1% in their offline or 

pseudo-online optimization studies [30, 31]. We have also used FPR to evaluate our 

switch‟s performance. 

(c) Sensitivity: Real world switch allows its users multiple attempts until the switch is turned 

ON, since not all switches are sensitive enough that they can be turned ON in the single 

attempt. Also once activated the switch remains ON until the user intends to turn it OFF. 

This property is particularly important in case of a BCS as the EEG signal isn‟t strong 

enough and the EEG patterns associated with the goal signal (intension of movement) 

aren‟t consistent with time. In sensitivity measurement for switch‟s performance 

evaluation, switch performance is measured as the average of response time it takes to 

activate the switch in determined number of trials. 

External stimulus based operation: BCI technology was proposed to establish a non-

muscular communication and control channel between brain of “totally locked-in” 

patients and external devices. Two EEG based methods: beta-rebound and steady state 

visual potentials (SSVEP) were tested to extract the amplitude power feature of the EEG 

signal from a specific frequency band (beta band for event related potentials and narrow 

band including the frequency of the SSVEP signal). 
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(i) Beta rebound based method: Event-related potentials are electrical brain 

responses whose voltage amplitude increases (event-related synchronization or 

ERS) or decreases (event-related desynchronization or ERD) in a specific 

frequency band, in response to an externally triggered movement (hand 

movement or motor imagery task). These ERD/ERS patters are reproducible and 

are stable over time.  In the beta band, following an ERD that occurs shortly 

before and during the movement, ERS with very high amplitude oscillations 

appear within 1 second interval post movement which is also called as beta 

rebound[32]. A neural network learns to recognize the ERS/ERD patterns 

associated with specific movements (e.g. right-hand or left hand) and, eventually, 

the patterns associated with simply thinking about these movements. After the 

neural network is trained, the system can recognize the EEG patterns associated 

with specific movements with impressive accuracy and can thereby control 

movement of a cursor or other external device[33]. In our experiment we have 

chosen to work with beta rebound patterns generated in-response to cessation of 

movement after the brisk movement. The beta band rebound is used by our 

algorithm to control the switch.   

(ii) Steady State Visually Evoked Potentials (SSVEP) based method: They are 

“frequency coded signals” which can be recorded throughout the visual system.  

The fundamental frequency of the SSVEP is equal to the flashing or flickering 

frequency of the visual stimulus, thus the target the subject is gazing at can be 

identified by frequency analysis. The amplitude increase (associated with 

concentrating on visual stimuli) in the frequency band of the SSVEP can be used 
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to control brain-computer interfaces[34]. The frequency bandwidth in which the 

SSVEP signals are effectively observed is determined empirically to be 

approximately 6-24Hz[35]. The lower frequencies (6-8Hz) give high accuracy but 

slower speeds.  The stimulus frequency in alpha wave range (8-12Hz) has high 

background alpha band EEG interference, thus decreasing the accuracy of 

amplitude measurement. However the beta band (13-28Hz) contains the 

fundamental frequency component without any interference and has the highest 

amplitude detection associated with corresponding flickering frequencies; hence 

the beta band frequency of 13Hz was selected as flickering LED frequency to 

control the SSVEP based BCS. SSVEP BCIs are considered to be dependent BCI 

as they depend on muscular control of gaze direction for their operation. 
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CHAPTER 2 

METHODS 
 

 

A number of portable, battery operated medical instruments are used in hospitals worldwide due 

to the recent advances in technology [36].  Also the rapidly expanding field of neuro-prosthetics 

aims at interfacing artificial devices with the brain [37].  The aim of my project is to develop a 

one channel portable EEG system to control the light switch. Hence it is termed as a brain-

controlled switch. The circuit consists of two parts: an analog front-end circuit (bio-potential 

amplifier) and a digital circuit [38] show in Fig.1.  

 

Fig.1. Block Diagram of the Brain Controlled Switch Device. 

 

EEG signal amplitude is normally in the range of 0.5 to 100 microvolt‟s and it contains electrical 

and physiological artifacts hence it first passes through an analog part (also called the bio-
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potential amplifier) which amplifies and conditions the EEG signal to a level sufficient for 

processing. The analog signal is than converted into digital samples by the microcontroller, 

features of interest from the EEG signal are extracted using digital filters and a prediction 

algorithm is implemented in the microcontroller based on external stimulus based operation 

performed to determine user‟s intent and accordingly operate the switch. 

 

2.1 Hardware section:  

A bio-potential amplifier is used in this section. The EEG signal recorded non-invasively from 

the scalp is the input to the one channel bio-potential amplifier. The EEG signal obtained from 

the electrodes is only few microvolts range and it is contaminated with electrical and 

physiological artifacts (or interferences). The electrical interference arises from electromagnetic 

interference (EMI), RF (radio frequency interference), cable movements, broken wire contacts, 

too much electrode gel or dried gel and power line interference (50/60Hz noise) [39, 40]. 

Physiological sources of interference are motion artifacts, electromyography (EMG) or muscle 

noise, eye motion or eye blinks, skin-electrode interference and sometimes even the 

electrocardiography (ECG) or heartbeats. EEG signal acquisition is very important for any BCI 

system [41]. Thus the bio-potential amplifiers must have high amplification ability (to amplify 

the microvolt EEG signals for further processing), ability to eliminate electrical interferences, 

have high input impedance and provide electrical protection to the circuit against high voltage 

inputs such as defibrillation shocks. To achieve these features, the designed bio-potential 

amplifier consists of pre-amplifier, main amplifier with filters, driven-right leg circuit (DRL), 

protection and isolation circuit shown in Fig. 2. 
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Fig.2. Block Diagram of the Analog Section. 

 

The output signal from the bio-potential amplifier is the conditioned and amplified EEG signal is 

sent for digital signal processing to the dsPIC30F4013 microcontroller. The parts of the bio-

potential amplifier are discussed in detail in this section and the schematic diagram is shown in 

appendix A.   

 

2.1.1 Protection Circuit: Protection circuit protects against high input voltages, from 

electrostatic discharge, RF signals entering the system through electrode cables and accidental 

power supply contact. These large voltages can destroy the high impedance instrumentation 

amplifier, and the EEG circuitry[42].  

As shown in the appendix A, a pair of differential signals enters the protection circuit through 

capacitors (capacitors filters out high frequency input interference and RF interference, if high 

frequency interference occurs the capacitor shorts) and resistors limit the current. The clamping 

diodes enables the inputs to the operational amplifier to be limited to the supply voltage plus the 

diode forward junction voltage (5.7-0.0 volts with reference to AGND or 3.1 (2.5(VGND) +0.7) 
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to -3.1 with reference to Virtual ground). When the voltages are above this level, diodes act as 

open circuits pulling harmful currents to ground potential thus protecting the EEG circuit and the 

user. The resistors after the diodes limit the current to the Instrumentation amplifier. 

 

2.1.2 Pre-amplifier:  An instrumentation amplifier (IA) AD620 is used as the pre-amplifier. It is 

a low cost, high accuracy instrument with excellent CMRR (AD620 datasheet).The IA is the 

heart of the bio- potential amplifier as it provides high input impedance, high CMRR and 

amplification ability which is needed for the accurate measurement of the EEG signals.  

The high input impedance is required as it provides minimal loading to the signal being 

measured thus preventing signal distortion.  

Pair of differential signals from the protection circuit is an input to the IA. The IA relates these 

signals. This relation is performed based on the assumption that both the signals will contain 

common mode signal (interferences of the EEG signal). When the differential signal is 

referenced to op-amp output zero voltage, the unknown common-mode signal found in the input 

signals is eliminated and the output is a pure differential signal. This property of the IA is called 

as the CMRR. High CMRR is essential for a good quality instrumentation amplifier[43]. 

IA also amplifies the pure differential voltages (EEG signal) by a factor of 10. This amplification 

factor (or gain of IA) is calculated as follows. 
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Fig.3. Circuit Diagram of the Instrumentation Amplifier. 

 

Gain of the instrumentation amplifier is determined by RG  and is given by 

Gain  GIA =  
49.4KΩ

RG
+ 1 , 

We selected RG  = 2*(2.7k) = 5.4 kΩ and therefore 

GIA = 
49.4KΩ

5.4K
+ 1, 

GIA = 10.1 

AD620 also provides low power operation which is beneficial while using multiple independent 

EEG channels. 

 

2.1.3 Main amplifier: It provides the final amplification for the EEG signal and further helps to 

remove interferences by using a second order band pass filter. We are using two stages of first 

order band pass filter (passive high pass and active low pass) to realize a second order band pass 

filter (range 0.2-102.5 Hz), the design of which is shown in schematic A.  
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A passive high pass filter is used to remove DC voltage offsets and reduce the baseline drift[44]. 

It is a very essential part of the bio-amplifier as electrodes (made of gold, tin and silver) are 

polarizable accumulating electric charge on the surface of the electrode hence building up a large 

DC voltage offset which could saturate the amplifier (limit the voltage value up to 2.5V which 

doesn‟t contain any EEG).   A second order active low pass filter is used to prevent aliasing that 

would otherwise occur when the signal is converted to digital samples by the ADC in the digital 

part. For example according to the sampling theorem our sampling frequency fs  must be greater 

than twice of the highest frequency; i.e. fs ≥  2 × fmax  ≥  2 × 102.5 ≥ 205 Hz. It also 

attenuates the muscle signal interference (EMG noise (1-5000) range) and the remaining RF 

interference.  

The calculations of cut-off frequencies of the band pass filter and total gain of the pre-amplifier 

is shown below: 

 

Fig.4. Circuit Diagram of the First-order Band Pass Filter (Active low pass and passive 

high pass). 
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Passive high pass filter cut-off frequency: fc1 =  
1

2π∙R1∙ C1
 

Active low pass filter cut-off frequency: fc2 =  
1

2π∙R3∙ C2
 

Gain of the Band pass filter: G =  
V0

V i
=  

R3

R2
+ 1 

(i) For the first stage of the first order band pass filter:   

We have selected R1 = 1MΩ, R2 = 1KΩ+5KΩ (pot), R3 = 100KΩ, C1 = 1 F, C2= 

0.01uF 

fc11 =  
1

2π∙R1∙ C1
=

1

2π∙1MΩ∙1µF
=  0.159 = 0.2 Hz, where we have selected fc11 as the 

cut-off frequency for the first stage high pass filter 

fc12 =  
1

2π∙R3∙ C2
= 

1

2π∙100KΩ∙0.01µF
= 159.2 Hz, where we have selected fc12 as the cut-

off frequency for the first stage low pass filter 

G1 =  
V0

V i
=  

R3

R2
+ 1, where we have selected 

G1 as the gain of the first stage amplifier and R2 is a variable register (5KΩ pot and 

1K register), we have selected R21 = 1k and R22 = 5k  potentiometer , R2 =

R21 + R22 = 6KΩ max and 1KΩ(min) 

G1 =
R3

R21 +R22
+ 1  = 

100k

6k
+ 1  to 

100k

1k
+ 1 

= 17.7 to 100 

Hence G1min  = 17.7 to G1max  = 100 

(ii) For the second stage of the first order band pass filter:   

We have selected R1 = 1MΩ, R2 = 6.2K, R3 = 100KΩ, C1 = 1 F, C2= 0.01uF 

fc21 =  
1

2π∙R1∙ C1
=

1

2π∙1MΩ∙1µF
=  0.159 = 0.2 Hz, where we have selected fc21 as the 

cut-off frequency of the second stage high pass filter 
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fc22 =  
1

2π∙R3∙ C2
 = 

1

2π∙100KΩ∙0.01µF
= 159.2 Hz, where we have selected fc22 as the cut-

off frequency of the second stage low pass filter 

G2 =  
V0

V i
=  

R3

R2
+ 1, 

Where we have selected G2 as the gain of the second stage amplifier   

     =  
100k

6.2k
+ 1 

     = 17.1 

 

(iii) 2
nd

 order band pass filter: 

Hence the cut-off frequency fcH   for the passive 2
nd

 order high pass filter, which is 

composed of two identical 1
st
 order passive high pass filter with cut-off frequency, 

f11 =  f21 = 0.159 Hz is  

fcH  = 1.555 ×  f11 =  1.555 ×  0.159 = 0.247≅ 0.2Hz 

Hence the cut-off frequency fcL   for the active 2
nd

 order high pass filter with 

composed of two identical 2
nd

 order passive high pass filter with cut-off frequency 

f12 =  f22 = 159.2  is  

fc = 0.6434 ×  f12 =  0.6436 ×  159.2  = 102.461 ≅ 102.5 Hz 

Total Gain of the pre-amplifier GTMax = G1max  ×  G2 = 100 × 17.1290 = 1712.9 

    GTMin  = G1min  ×  G2 = 17.6667× 17.1290 = 302.6 

Thus we have designed a pre-amplifier with a variable gain and band pass filter with 

the cut-off frequencies range from 0.2-102.5Hz.  
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2.1.4 Total Gain of the Bio-potential amplifier: To amplify the EEG signal to the level 

sufficient for processing first the pre-amplifier with the gain of GIA  is used and then main 

amplifier which provides variable gain in the range of  GTMin  to GTMax    is used. 

Total amplification range provided to the EEG signal by the bio-potential amplifier is calculated 

as follows: 

Gmin  = GIA × GTMin = 3070.9 

Gmax  = G1 × GTMax = 17382.7 

The maximum and minimum amplification provided by the bio-potential amplifier to a 50µV 

sine wave is shown in the figure 5:  

 

Minimum amplitude:  

 

Maximum amplitude: 

 

Fig.5. Minimum and the maximum amplification provided by the bio-potential amplifier to 

a 50µ𝑽 signal generated from the calibrator and displayed on the oscilloscope. 
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2.1.5 Driven Right Leg (DRL) circuit: The common mode voltage is further minimized by the 

DRL circuit by attaching a third electrode to the patient which provides a low-impedance path 

between the patient and the instrumentation amplifier (IA). The DRL circuit reduces the effective 

electrode resistance and it only allows a safe amount of current to flow through the third 

electrode. 

The DRL senses the common mode signals found in the instrumentation amplifier are amplifies, 

inverts and feeds it back to the body via the third electrode.  It greatly reduces common mode 

interference as the signal when feedback to the instrumentation amplifier will cancel common 

mode noise between the right leg driver (is also called reference electrode) and the electrodes on 

the brain thus reducing the common-mode noise at the source[45].  

The DRL circuit also works as a good amplifier isolator as it introduces large impedance 

between body and ground achieved by selecting a large register and a small feedback capacitor 

thus ensuring patient safety. 

Thus we have designed a bio-potential amplifier with good amplification ability and high CMRR 

to eliminate interferences present with the EEG signal, which is suitable for our BCI system. 

 

2.1.6 Electrical Isolation: Optocoupler 6N138/ 6N139is introduced between the Max232 and 

personal computer (PC) in case of RS232 serial communication. Optocouplers are generally used 

to transfer data between two devices without making direct electrical connection (electrical 

isolation).  It basically blocks the passage of leakage current from the power line (50-60Hz). If 

the patient comes in contact with the 120V line, this barrier would prevent dangerous (even fatal) 

currents from following through the patient by grounding to the ground the microcontroller[46].  

It also allows higher transmission rates by reducing the voltage swings. 



  

19 

 

2.2 Digital Section:  

An amplified and conditioned EEG signal enters the digital part which is based on the 

microcontroller DsPIC30F4013. It consists of analog to digital (A/D) module that converts the 

EEG signal into a digital signal at the sampling rate of 250Hz. To extract the frequency bands 

associated with the SSVEP and beta rebound patterns, digital filtering is performed using the 

DSP engine in the DsPIC30F4013 microcontroller. A prediction algorithm was developed to 

decode user‟s intention (amplitude increase in both SSVEP and beta rebound based methods in 

response to active concentration by the user on an external visual stimulus and performance of a 

brisk hand movement (or imagination of the movement) respectively) by calculating average 

amplitude power and comparing it with preset power threshold every predetermined time 

interval. And if the average calculated power was greater than the power threshold the light 

switch was turned ON. The algorithm for the digital section is shown in Fig. 6. The digitized and 

processed EEG signal is relayed to the computer (Dell Vistro desktop), where it is displayed, 

analyzed and processed continuously using Matlab toolbox called brain computer interface to 

virtual reality or BCI2VR [47, 48]. To achieve the successful working of the digital part, we 

need to configure the A/D module, the timer module, the digital filtering module and the 

(UART) module (to interface the microcontroller with the computer, where the digitized EEG 

signal is display and analyzed using the BCI2VR software). The following section discusses the 

in detail configuration of each module and the algorithm to decode and prediction users intention 

which control an external switch. The schematic diagram of the digital section is shown in 

Appendix B. All the sections in the digital part are discussed with the aid of dsPIC30F family 

reference manual, dsPIC30F4013 data sheet and dsPIC Language Tools Libraries[49-51]. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Fww1.microchip.com%2Fdownloads%2Fen%2Fdevicedoc%2F51456b.pdf&ei=0GSjT5TbLYHagAewrJUd&usg=AFQjCNEOgtXhMz-QeBSGTopomFY3XMaHNQ
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Fig.6. Flow Chart of the Digital Section. 
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2.2.1 Interrupts and Timers: For our project we are using 16-bit Timer1 to generate an 

interrupt every 4 ms (which corresponds to the sampling rate of 250Hz) and a 32-bit Timer23 to 

carry out power calculations every preset interval. 

A microcontroller can serve several peripheral devices (such as the UART module, analog to 

digital converter (ADC) modules, external light emitting diodes(LEDs) etc. not all at the same 

time) without getting tied down, by using interrupts. An interrupt as the name suggests, is an 

external or internal event that interrupts the normal execution of central processing unit (CPU) 

and informs that the microcontroller that its device needs immediate service. Every interrupt has 

a program associated with it called the interrupt service routine (ISR) or interrupt handler. 

(a) When an Interrupt Occurs:  

Microcontroller finish‟s the current instruction it‟s executing and saves the address of 

the next instruction on the top of stack. It jumps to the interrupt vector table (group of 

fixed memory locations set aside to hold the addresses of ISRs). The interrupt vector 

table directs the microcontroller to the address of ISR. Microcontroller executes all the 

Instructions of the ISR. 

After the last instruction is executed, microcontroller returns to the place where it was 

interrupted and starts execution from that address.   

A DsPIC30F4013 microcontroller has up to 41 interrupt sources and 4 processor 

exceptions (traps).  DsPIC30F microcontrollers have seven priority levels which can be 

assigned to peripheral interrupt source by writing to the control bits in the appropriate 

interrupt priority Control register (IPCx, where x denotes the register number, x =1-11). 

With seven is the highest priority level and one is the lowest level. Assigning a priority 

level of „0‟ to an interrupt source is equivalent to disabling that interrupt. 
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(b) Sources/ Types of interrupts 

There are 41 sources of interrupts in the dsPIC30F. Following are some of the most 

widely used sources of interrupts in the dsPIC30F: 

1. There is an interrupt set aside for each of timers (Timer 1, 2, 3, 4 and 5). 

2. The ADC interrupts. 

3. Peripheral interrupts such as UART transmit and receive, serial peripheral interface 

(SPI), inter integrated circuit (I2C) etc. 

4. Five interrupts INT0-INT4 are used as external hardware interrupts. 

 

(c) To control the interrupt operation we need three bits corresponding to each interrupt they 

are: 

1. Interrupt Flag Status Registers (IFSx (where x denotes the register number, x = 0, 1, 

and 2)): When an interrupt is activated, the IFSx (interrupt flag) bit is raised. Thus it 

indicates that an interrupt event occurred.  

2. Interrupt Enable Control Registers (IECx (where x denotes the register number, x = 

0, 1, and 2)): It allows the programmer to enable (unmask) or disable (mask) 

corresponding interrupt.  

3. Interrupt Priority Control Registers (IPCx (where x denotes the register number, x = 

0-11)): Each user interrupt source can be assigned to one of eight priority levels. The 

IPC registers are used to set the interrupt priority level for each source of interrupt. 

The interrupt priority (IP) bit along with the interrupt flag (IF) and interrupt enable 

(IE) bits will complete all the flags needed to program the interrupt for the 

dsPIC30F. 
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INTCON1, INTCON2 registers control the functions of the global interrupts. 

INTCON1 register contains control and status flags for the processor trap sources. It 

also handles the interrupt nesting (for a multi-level priority system, any ISR in 

progress will be interrupted by another higher user assigned priority level source). 

Interrupt nesting can be disabled by setting the NSTDIS control bit of the INTCON1 

control register. If interrupt nesting is disabled, the user assigned interrupt priority 

levels are of no use and all the servicing interrupts will be set to the highest priority 

level(7).  User assigned interrupt priority levels will only be used to decide which of 

the simultaneously pending interrupts will be serviced next. INTCON2 register 

controls the external interrupts.   

Timer in simplified terms is a register, whose value keeps on increasing (or decreasing) on every 

clock pulse, till it reaches its maximum value and rolls over to generate an interrupt. Thus the 

timer is used to generate time delay independent of the CPU.  

For a timer with internal clock source, 1/ 4
th

 of the frequency of the crystal oscillator on the pins 

OSC1 and OSC2 of the microcontroller (system clock frequency (Fosc )/4) is fed into the timer, 

where system clock period (Tosc ) = (4/Fosc ). The internal clock of the CPU can be as fast as 120 

MHz which is too fast for the timer to operate; therefore a prescaler (P) could be used to decrease 

the frequency of the Timer.  

For example prescale value =1: P, the Timer increment Frequency = (Fosc /4)× (1/P). 

DsPIC30F4013 is equipped with five 16-bit timers (Timer1, Timer2, Timer 3, Timer 4 and 

Timer 5). Each module consists of the three readable/writeable registers:  

1. Timer register (TMRx (16-bit timer count registers, where x =1, 2, 3, 4, and 5)): It is a 

writable register which holds the start value from which the timer will start counting. 
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2. Period register (PRx, which is a 16-bit period register associated with the timer): It is a 

writable register which holds the final value of the count. TMRx increments on every 

instruction cycle until it reaches the value preloaded in the PRx register, and then it resets 

(starts counting from zero again). This register increases the execution speed of operation 

since timer value is checked in hardware rather than in software. 

3. Timer x control register (TxCON where x =1-5): It is a 16-bit control register associated 

with the timer. 

Timer overflow interrupt: An overflow occurs when a Timer has counted till its maximum 

value (or final value loaded in the PRx register). For example, when a 16-bit Timer 1 reaches its 

maximum count of 65535, the next clock cycle cause the timer to rolls over to 0 (or value loaded 

in the TMRx register) and start counting again, thus generating an overflow. An overflow can 

trigger an interrupt (set the Interrupt Flag Status bit (TxIF)) if the associating bits such as 

Interrupt Enable Control bit (TxIE) and Interrupt Priority Control bits (TxIP<2:0>) of the timer 

module are set.  

Steps to design Timer1 to interrupt every 4msec (or at a sampling rate of 250 Hz) are as 

follows: 

1. Configuration of Timer1: The Timer 1 control register (T1CON) is shown in Fig. 7.and 

the description of T1CON registers bits in discussed in Table 1. 
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Fig.7. Timer 1 control register. 

 

Table 1. Timer 1 control (T1CON) register bits description 

T1CON bit Description 

bit 15  TON: Timer On Control bit 

1 = Starts the timer 

0 = Stops the timer 

bit 14 Unimplemented: Read as „0‟ 

bit 13 TSIDL: Stop in Idle Mode bit (When the processor enters Idle mode, its system 

clock is functional but the CPU stops code execution) 

1 = Discontinue timer operation when device enters Idle mode 

0 = Continue timer operation in Idle mode 

bit 12-7 Unimplemented: Read as „0‟ 

bit 6 TGATE: Timer Gated Time Accumulation Enable bit, in this mode the internal 

timer register increments till the state of the T1CK (external clock) pin is high. 

T1IF interrupt flag will be set whenever the timer counts up to value preloaded in 

the PR1 register or the T1CK pin state is changed to low.    

1 = Gated time accumulation enabled 

0 = Gated time accumulation disabled 
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bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits, Timer1 has the following 

prescale option 

11 = 1:256 prescale value 

10 = 1:64 prescale value 

01 = 1:8 prescale value 

00 = 1:1 prescale value 

bit 3 Unimplemented: Read as „0‟ 

bit 2 TSYNC: Timer External Clock Input Synchronization Select bit, used specifically 

for external clock operation as a counter 

When TCS = 1: 

1 = Synchronize external clock input 

0 = Do not synchronize external clock input 

When TCS = 0: 

This bit is ignored. Read as „0‟. Timer1 uses the internal clock when TCS = 0. 

bit 1 TCS: Timer Clock Source Select bit, selects whether the clock for the instruction 

cycle will be from internal or external clock 

1 = External clock from pin TxCK 

0 = Internal clock (FOSC/4) 

bit 0 Unimplemented: Read as „0‟ 
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To Configure Timer1 Module for our application, we load the T1CON register with the 

following value: 

T1CON = 0xA030 or 0b1010000000110000; Start timer, use the internal clock (Fosc /4) 

and prescale the clock value to 256 

Hence the timer increment frequency in our case is: 

Crystal oscillator = 10MHz, PLL =8, Fosc  = 10MHz x 8=80MHz 

Instruction cycle frequency (FCY ) = (Fosc /4) = 20MHz,  

million instructions per second (MIPS) = 20; 

Timer increment frequency = (Fosc /4) × (1/Prescalar) = (20MHz × 1/256) = 78125Hz 

Or equivalently we can use the dsPIC peripheral library timer functions (with the 

inclusion of timer.h header) to configure the above register in the following way: 

OpenTimer1 (T1_ON & T1_GATE_OFF & T1_IDLE_STOP & 

   T1_PS_1_64 & T1_SYNC_EXT_OFF & 

 T1_SOURCE_INT, match_value); 

2. Load the value in the Timer1 period register PR1, if we know the amount of delay 

required we can calculate the values and load it into the PR1 register as follows: 

PR1 = Timer increment frequency x Amount of delay 

For example to generate a delay of 4 ms= 78125 x 4 ms= 312.5 = 0x0139 

Hence PR1 = 0x0139 or match_value = 0x0139. 

3. Load the start value in the TMR1 register. TMR1=0x0000 or WriteTimer1 (0x0000). 

4. Enable the Timer1 overflow interrupt, set the Interrupt priority and clear Timer1 interrupt 

flagIEC0bits.T1IE = 1, IFS0bits.T1IF=0, IPC0bits.T1IP<2:0> =110 (6) or we can use timer 

function ConfigIntTimer1 (T1_INT_PRIOR_6 & T1_INT_ON). 



  

28 

 

5. As soon as the timer counts up to the preloaded value of PR1, Timer1 overflows and the 

Timer1 interrupt flag bit is set (IFS0bits.T1IF=1). A microcontroller looks up the address in 

the interrupt vector table and executes the ISR associated with the Timer. Before exiting the 

ISR the Timer overflow flag bit needs to be cleared (IFS0bits.T1IF=0). Also before exiting 

the ISR we need to reload the initial count values in the Timer registers (in our case 

WriteTimer1(0x0000)). 

 

Steps to design Timer23 to calculate the power value every preset time interval is as 

follows: 

We are using 32-bit timer to provide4 sec synchronization signal (go-signal) via a LED (which 

remains ON for 3 sec and OFF for 1 sec) and to calculate the average amplitude power every 4 

second for beta rebound method. For SSVEP based method we use the 32-bit timer to calculate 

the average amplitude power used to regulate the switch every 0.5 second. The steps to design 

the timer to work in 32-bit mode are as follows: 

1. Configuration of a 32-bit timer module is formed by combining two 16-bit Timer2 and 

Timer3modules. When configured for 32-bit operation, control bits of Timer 2 (T2CON control 

register, PR2 period register and TMR2 register) control the operation of 32-bit timer (where 

T3CON of timer 3 has no effect). And for interrupt control, control bits of Timer3 register 

(IFS0bits.T3IF, IEC0bits.T3IE and IPC1bits.T3IP<2:0>) are used. The Timer 2 control register 

(T2CON) is shown in Fig.8. and the description of T2CON registers bits in discussed in Table 

2. 
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Fig.8. Timer 2 control register. 

 

Table 2: Timer 2 control (T2CON) register bits description 

T2CON bits Description 

bit 15 TON: Timer On bit 

When T32 = 1 (in 32-bit Timer mode): 

1 = Starts 32-bit TMRx:TMRy timer pair 

0 = Stops 32-bit TMRx:TMRy timer pair 

When T32 = 0 (in 16-bit Timer mode): 

1 = Starts 16-bit timer 

0 = Stops 16-bit timer 

bit 14 Unimplemented: Read as „0‟ 

bit 13 TSIDL: Stop in Idle Mode bit (same as Timer1) 

1 = Discontinue timer operation when device enters Idle mode 

0 = Continue timer operation in Idle mode 

bit 12-7 Unimplemented: Read as „0‟ 

bit 6 TGATE: Timer Gated Time Accumulation Enable bit (same as Timer1) 
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1 = Timer gated time accumulation enabled 

0 = Timer gated time accumulation disabled 

(TCS must be set to logic „0‟ when TGATE = 1) 

bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits 

11 = 1:256 prescale value 

10 = 1:64 prescale value 

01 = 1:8 prescale value 

00 = 1:1 prescale value 

bit 3 T32: 32-bit Timer Mode Select bits, determines whether the timer is operating in 

32-bit mode or 16-bit mode.   

1 = TMRx and TMRy form a 32-bit timer 

0 = TMRx and TMRy form separate 16-bit timer 

bit 2 Unimplemented: Read as „0‟ 

bit 1 TCS: Timer Clock Source Select bit 

1 = External clock from pin TxCK 

0 = Internal clock (FOSC/4) 

bit 0 Unimplemented: Read as „0‟ 

 

To Configure Timer2 Module for our application we have loaded the T2CON register with 

following value: 

T2CON = 0xA02A or 0b1010000000101010; Start timer, use the internal clock (Fosc /4) and 

prescale the clock value to 64 
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Hence the timer increment frequency in our case is: 

Crystal oscillator = 10MHz, PLL =8, Fosc  = 10MHz x 8=80MHz 

Fcy  = (Fosc /4) = 20MHz, MIPS = 20; 

Timer increment frequency = (Fosc /4) × (1/Prescalar) = (20MHz × 1/64) = 312500Hz 

Or equivalently we can use the dsPIC peripheral library Timer functions (with the inclusion of 

timer.h header) to configure the above register in the following way: 

OpenTimer23(T2_ON & T2_GATE_OFF & T2_IDLE_STOP & 

   T2_PS_1_64 & T2_32BIT_MODE_ON & 

   T2_SYNC_EXT_OFF & 

   T2_SOURCE_INT, match_value); 

2. Load the value in the period register of 32-bit timers, PR3 register holds the most 

significant word (MSWord) and PR2 register holds the least significant word (LSWord). 

The maximum value that can be loaded into the PR3:PR2 pair is 0xFFFFFFFF or 

4294967295. In this case we load in the max value (PR2 = 0xFFFF and PR3 =0xFFFF or 

match_value =0xFFFFFFFF)  

3. Load the start value in the TMR3:TMR2 register (similarly here TMR3 holds the MSWord 

and TMR2 holds the LSWord). To write, user must first write the MSWord data to the 

TMR3HLD register (used in the 32-bit operation, which will automatically transfer 

TMR3HLD contents into the TMR3 register) and then write the LSWord contents into 

TMR2 register.   

If we know the amount of delay required we can calculate the values and load it into the 

TMR register as follows: 

For example to generate a delay = Timer increment frequency x (Amount of delay) 
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3.1. For beta rebound based method: 

i. For the LED to be ON for3 second and to calculate power after every 4 sec, timer 

increment frequency is 312500 × 3 = 937500 

Timer32-bit start value = 4294967296 - 937500 = 4294029796 = 0xFFF1B1E4, 

which is loaded in the TMR3:TMR2 register as follows: 

TMR3HLD = 0xFFF1; 

TMR2 = 0xB1E4;  

Or WriteTimer23 (0xFFF8D8F2); using the dsPIC30F libraries 

ii. For the LED to be OFF for 1 second, timer increment frequency is 312500 × 1 =       

312500 

Timer 32-bit start value = 4294967296- 312500 = 4294654796 = 0xFFFB3B4C 

Similarly we load timer23 with this value as WriteTimer23 (0xFFFB3B4C) 

3.2. For the SSVEP based method: 

To calculation power after every 0.5 second we program an interrupt to generate every 

0.5 second, timer increment frequency is 312500 × 0.5 = 156250 

Timer 32-bit start value = 4294967296-156250 = 4294811046 = 0xFFFD9DA6 

Similarly we load timer23 with this value as WriteTimer23 (0xFFFD9DA6); 

4. Enable the Timer3 overflow interrupt, set the Interrupt priority and clear Timer3 interrupt 

flagIEC0bits.T3IE = 1, IFS0bits.T3IF =0, IPC1bits.T3IP<2:0> = 111 (priority 7) or we can 

use Timer function ConfigIntTimer23 (T3_INT_PRIOR_7 & T3_INT_ON); 

5. As soon as the timer counts up to the preloaded value of PR3:PR2 = 0xFFFFFFFF, 32-bit 

Timer overflows and interrupt flag bit of TMR3 is set (IFS0bits.T3IF=1). A microcontroller 

looks up the address in the interrupt vector table and executes the ISR associated with the 
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Timer3. Before exiting the ISR the Timer overflow flag bit needs to be cleared 

(IFS0bits.T3IF=0). Also before exiting the ISR we need to alternately reload the initial 

count values WriteTimer23 (0xFFF8D8F2) to get the delay of 1.5 second and 

WriteTimer23 (0xFFF4143F) to get the delay of 2.5second. 

 

2.2.2 Universal Asynchronous Receiver Transmitter (UART): We are using the UART 

module to interface our BCS device to the PC for offline processing, steps to interface the UART 

module with PC are discussed in Appendix F. UART is a full-duplex asynchronous system used 

for serial communication (data is sent one bit at a time) with peripheral devices (devices with a 

serial port such as personal computers, RS232 and RS-485 interfaces). DsPIC30F4013 has two 

UART modules (UxMODE) built-in making data transfers faster and cheaper. The rate of data 

transfer in serial data communication is stated in bits per second (bps). Another widely used 

terminology for bps is baud rate. The important features of UART module in dsPIC30F family is 

it uses standard non-return-to-zero(NZR) format (one start bit, eight or nine data bits, and one or 

two stop bits), parity options (for 8-bit data), built-in baud rate generator, error detection 

capabilities, separate transmit and receive interrupts and loopback mode for diagnostic support. 

RS232: RS232 is most widely used asynchronous serial communication protocol used in 

computers and digital systems. The DsPIC30F4013 has four pins that are used specifically for 

transferring and receiving data serially. These four pins are called U1ATX, U1ARX, U2TX and 

U2RX. These pins use TTL compatible logic levels (High (1) =+5 V and low (0)) = 0V), 

however in RS232 High (1) = 12V and LOW=+12V (this is done to increase the range and 

reliability of the data transfer). To facilitate the interface a line drive (voltage converter) needs to 

be used. MAX232 is a line drive used for this project. 
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MAX232: The MAX232 converts RS232 voltage levels to TTL voltage levels, and vice versa. 

Four capacitors are used for voltage conversions. MAX232 has two sets of line drivers for 

transferring and receiving data. The line drivers used for transmission (TX) pins are called T1 

and T2, while the line drivers for reception (RX) pins are designated as R1 and R2. In many 

applications only one of each is used. For example, T1 and R1 are used together for TX and RX 

pins of dsPIC30F4013 and second one is left unused. The circuit connections of the UART 

module in the dsPIC30F4013 microcontroller to the MAX232 and PC are shown in Appendix B. 

 

In dsPIC30F4013, Each UART module is equipped with a 9-bit wide FIFO transmit data buffer 

called UARTX transmit register (UxTXREG) which can hold up to 4 words. A UART module 

(UART1 or UART2) can only be enabled by setting the UART enable bit (UARTEN) and 

UTXEN bits of the UARTx Mode Register (UxMODE) and UARTX status and control Register 

(UxSTA, where x = 1 or 2) registers (where x corresponds to UART1 or UART2), along with 

configuring its TX and RX pins as output and input respectively).  However the actual 

transmission won‟t occur until the UxTXREG register is loaded with data and baud rate 

generator produces the baud rate. We are using UART2‟s transmit mode to display our digitized 

results on the PC. 

Steps to design UART2 module as a transmitter are as follows: 

1. Configure the UxTX and UxRX pins of the UxMODE (where x is 1 or 2) as inputs and 

outputs 

-UxRX is configured as input (For UART2, its TX and RX pins are multiplexed with port F 

hence we configure TRISFbits.TRISRF4=1).  

-TX is configured as output (For UART2, TRISFbits.TRISRF3 =0). 
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2. Configuring the Control Registers or setting up the UART 

2.1 The configuration of the UART mode control register is shown in figure 9 and the 

description of the bits are shown in table 3. 

 

 

Fig.9. UARTx Mode control (UxMode) register. 

Table 3: UARTx Mode control register bits description 

UxMODE 

bits 

Description 

bit 15 UARTEN: UART Enable bit 

1 = UART is enabled.  

0 = UART is disabled.  

bit 14 Unimplemented: Read as „0‟ 

bit 13 USIDL: bit determines whether the module will stop or continue normal 

operation in Idle mode  

1 = Discontinue operation when device enters Idle mode 

0 = Continue operation in Idle mode 

bit 12 Unimplemented: Read as „0‟ 

bit 11 Reserved: Write „0‟ to this location 
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bit 10 ALTIO: UART Alternate I/O Selection bit, the alternate UART pins are 

beneficial when the primary UART pins are shared by other peripherals.  

1 = UART communicates using UxATX and UxARX I/O pins 

0 = UART communicates using UxTX and UxRX I/O pin 

bit 9-8 Reserved: Write „0‟ to these locations 

bit 7 WAKE: Enable Wake-up on Start is used to wake the dsPIC from the sleep 

mode is only beneficial during the reception mode.  

1 = Wake-up enabled 

0 = Wake-up disabled 

bit 6 LPBACK: UART Loopback Mode Select bit 

1 = Enable Loopback mode, In this mode the UxRX pin is disconnected 

from the UART receive logic and connected internally to the UxTX pin. 

0 = Loopback mode is disabled 

bit 5 ABAUD: Auto Baud Enable bit is useful in the reception mode to determine 

the baud rates of the received characters 

1 = Input to Capture module from UxRX pin 

0 = Input to Capture module from ICx pin 

bit 4-3 Unimplemented: Read as „0‟ 

bit 2-1 PDSEL<1:0>: Parity and Data Selection bits are used to select the data 

length and parity used in the transmission 

11 = 9-bit data, no parity 

10 = 8-bit data, odd parity 

01 = 8-bit data, even parity 
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00 = 8-bit data, no parity 

bit 0 STSEL: Stop Selection bit determines the number of stop bits used during 

the data transmission 1 = 2 Stop bits, 0 = 1 Stop bit 

 

2.2 Configuration of the UARTx status and control register (UxSTA) is shown in Fig. 10.and the 

description of T1CON registers bits in discussed in Table 4. 

 

 

Fig.10. UARTx Status and control register. 

 

Table 4. UARTx Status and control register (UxSTA, where x=1 or 2) bits description 

UxSTA bits  Description 

bit 15 UTXISEL: Transmission Interrupt Mode Selection bit 

1 = Interrupt is generated when a word is transferred from Transmit buffer to 

the Transmit Shift register (UxTSR) and as result, the transmit buffer becomes 

empty. 

0 = Interrupt is generated when all four words are transferred from the 

Transmit buffer to the Transmit Shift register  

bit 14-12 Unimplemented: Read as „0‟ 
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bit 11 UTXBRK: Transmit Break bit drives the UxTX line to „0‟. This bit is set in 

software and runs for 13 baud clocks. This needs to be cleared in software 

where it generates a stop bit after which the transmitter can renew its activity 

1 = UxTX pin is driven low, regardless of transmitter state 

0 = UxTX pin operates normally 

bit 10 UTXEN: Transmit Enable bit, This bit finally enables the UART transmission 

and also sets the UxTXIF flag bit if UTXISEL = 0 

1 = UART transmitter enabled. 

0 = UART transmitter disabled, any pending transmission is aborted and buffer 

is reset.  

Note: The UTXEN bit should not be set until the UARTEN bit has been set. 

Otherwise, UART transmissions will not be enabled. 

bit 9 UTXBF: Transmit Buffer Full Status bit (Read Only), Each UART module is 

equipped with a 9-bit wide FIFO transmit data buffer which can hold up to 4 

words. UTXBF status bit is set if the buffer is full  

1 = Transmit buffer is full, no new data will be accepted in the FIFO buffer 

0 = Transmit buffer is not full, at least one more data word can be written 

bit 8 TRMT: Transmit Shift Register is Empty bit (Read Only) is used to check 

whether the last transmission has completed 

1 = Transmit shift register is empty and transmit buffer is empty  

0 = Transmit shift register is not empty, a transmission is in progress or queued 

in the transmit buffer 

bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit used for UART 
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Reception hence Don‟t Care(„00‟) 

bit 5 ADDEN: Address Character Detect (bit 8 of received data = 1) used for UART 

Reception hence Don‟t Care(„0‟)  

bit 4 RIDLE: Receiver Idle bit (Read Only) used for UART Reception hence Don‟t 

Care(„0‟) 

bit 3 PERR: Parity Error Status bit (Read Only) used for UART Reception hence 

Don‟t Care(„0‟)  

bit 2 FERR: Framing Error Status bit (Read Only) used for UART Reception hence 

Don‟t Care(„0‟) 

bit 1  OERR: Receive Buffer Overrun Error Status bit (Read/Clear Only) used for 

UART Reception hence Don‟t Care(„0‟) 

bit 0  URXDA: Receive Buffer Data Available bit (Read Only) used for UART 

Reception hence Don‟t Care(„0‟) 

 

2.3. Baud Rate Generator (BRG) is a 16-bit readable and writable register used to allow 

maximum flexibility in baud rate generation. 

Formula to Calculate Baud Rate is as follows:  

Baud Rate = 
FCY

(16∗(BRG +1))
 

Where, BRG  is a 16-bit value held in the BRG register (0-65535, Hence the maximum baud 

rate possible is 
Fcy

16
 and the minimum rate is 

Fcy

16×65536
  ), Fcy  is the instruction clock rate 

 

Calculation of UART2 Baud Rate with BRGH = 1 for Fcy of 20MHz (20 MIPS) and desired 

baud rate 115200 



  

40 

 

UxBRG = 
FCY

(16 × Baud  Rate ))
− 1 

    = 
20𝑀ℎ𝑧

(16 × 15200))
− 1  

     = 9.85 ≅ 10 

Hence U2BRG =10; 

Calculated Baud Rate =113636.36 

Error = 
((Calculated  Baud  Rate −Desired  Baud  Rate ))

(Desired  Baud  Rate )
 

     = 
((113636 .36−115200 ))

(115200 )
 

 = -1.2% 

For Fcy = 20MHz, (Fosc  = (10MHz x 8 (PLL))) other working baud rates are shown in Table 

5. 

Table 5 BRG values at different Baud Rates for a 20MHz crystal oscillator 

Baud Rate (bps) BRG value Error (%) 

9600 129 0.2 

19200 64 0.2 

57600 21 1.5 

115200 10 -1.2 

 

Configuration of the UART2 Module for our application: 

UART2 Mode Register, U2MODE = 0xC000 or 0b1010000000000000; to select the data 

format of 8-bits, no parity and one stop bit. 
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U2STA = 0x8500 or 0b1000010100000000; to finally enable the UART2 transmission, 

generate an interrupt when all four words are transferred from the Transmit buffer to the 

Transmit Shift register,  

U2BRG = 10 

Or equivalently we can use the dsPIC peripheral library to configure the above register in 

the following way: 

unsigned int U2MODEvalue, U2STA, Baud; 

U2MODEvalue = UART_EN & UART_IDLE_STOP &UART_DIS_WAKE 

&UART_DIS_LOOPBACK &UART_DIS_ABAUD & UART_NO_PAR_8BIT & 

UART_1STOPBIT; 

U2STAvalue = UART_INT_TX_BUF_EMPTY & UART_TX_PIN_NORMAL & 

UART_TX_ENABLE &      UART_INT_RX_3_4_FUL & UART_ADR_DETECT_DIS 

& UART_RX_OVERRUN_CLEAR; 

Baud =10 

OpenUART2 (U2MODEvalue, U2STAvalue, Baud); 

3.  Monitor the TRMT bit of the U2STA (or UxSTA) register to make sure last transmission has 

completed (or the UART is not transmitting) and is ready for next byte. We use while( 

BusyUART2()) function of the dsPIC peripheral library to achieve this, which is similar to 

checking if (U2STAbits.TMRT ==1). 

 

4. The character byte (255) to be transmitted serially is written into the U2TXREG register. 

Configuration of UARTx transmit register (UARTx) is shown in Fig.11. and the description 

of T1CON registers bits in discussed in Table 6. 
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Fig.11. UARTx transmit register (Write Only), where x =1 or 2. 

 

 

Table 6. UARTx transmit register bits description, where x = 1 or 2 

UARTx bits Description 

bit 15-9 Unimplemented: Read as „0‟ 

bit 8 UTX8: Data bit 8 of the Character to be Transmitted (in 9-bit mode) 

bit 7-0 UTX<7:0>: Data bits 7-0 of the Character to be Transmitted 

 

As state above UxTXREG is 9-bit FIF0 buffer which can store four words. The UxTXREG 

register is loaded with data in software (For example U2TXREG = 0x5A). The heart of the 

transmitter is the Transmit Shift register (UxTSR) its data from UxTXREG. This UxTSR at 

every shift clock (Baud rate bps) generated from the baud rate generator transmits each bit 

serially. Normally when transmission is first started, the UxTSR register is empty, so a 

transfer to the UxTXREG register will result in an immediate transfer to UxTSR. We have 

used WriteUART2 (0x5A); to achieve this. 
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5. To transfer the next character, go to step 3. 

 

2.2.3. Analog to Digital Converter (ADC): We are using the ADC module in the 

dsPIC30F4013 to convert analog EEG signals to digital signals for processing. Real world 

signals are analog (continuous) in nature. For example to measure every day physical quantity 

such as temperature, a temperature sensor is used to convert it into an electrical signal (voltage). 

But as our microcontroller is digital (discrete) in nature, we need ADC to translate the analog 

signals as digital numbers so that the microcontroller could read and process them.  

 

DsPIC30F4013 contains 12-bit Analog to digital converter (A/D) with 16 analog input channels 

(AN0-AN15, plus two analog inputs for external voltage reference connections (to set up voltage 

range other than 0-5V (that isVREF + and VREF − we can set up voltage range of 3.3 to 0.5V))) 

that can accurately measure voltages and convert it corresponding digital format. The whole 

system is based around a dsPIC30F microcontroller which is clocked at 80 MHz crystal (20MIPS 

(million instructions per sec) execution speed). The ADC module is based on Successive 

Approximation Register (SAR) architecture. A/D module has six 16-bit registers for its 

configuration and operation they are the ADCON1, ADCON2 and ADCON3 control registers, 

the ADCHS register to select the input pins to be connected to the S/H amplifiers, ADPCFG 

register to configure the analog input pins. The ADCSSL register to select inputs to be 

sequentially scanned.    

The 16 available analog inputs are connected to the Sample/Hold amplifier (or S/H channel) 

designated CH0 which samples the analog input pin voltage, via multiplexer, which is in turn 

connected to the conversion logic generating results. The S/H amplifier can scan all the 16 
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analog channels in one A/D operation if the Analog Input Scan Mode is enabled. Results of the 

ADC conversion is stored in a 16-word result buffer (RAM) designated ADCBUF0-

ADCBUF15. We are using an analog channel for the digitization of EEG. 

The most important factor in judging the performance of an ADC is its resolution; it specifies 

how accurately the ADC measures the analog input signals. Higher the resolution smaller is the 

step size. Therefore for an ADC with 12 bit resolution and the analog input range from 0-5 volts, 

the Step size can be calculated as follows: 

Step Size =
VRef

2n  where n is a ADC with n-bit resolution 

 

   =
5

4096
 = 1.22 mV approximately, thus the ADC can be measured accurately up to 1.22mV. 

The output voltage from the A/D conversion is calculated as follows: 

Dout =  
Vin

Step Size
 

Where Dout  =Digital output voltage (Decimal), Vin  = Analog input voltage. 

 

Working of the A/D Conversion module: Analog to digital conversion is performed by the A/D 

conversion module by carrying out the following operations. The A/D module‟s S/H amplifier is 

connected to the analog input pin to take a sample of the analog input and hold that sample for 

analysis. The total sampling time for the A/D is a function of the internal amplifier settling time 

and the holding capacitor charging time. For an accurate A/D converter the charge holding 

capacitor should be able to fully charge to the voltage level on the analog input pin which is also 

defined as A/D acquisition time equivalent to 1TAD  (defined as the A/D conversion time per bit). 

Microchip specifies for correct A/D conversions of dsPIC30F, minimumTAD time should be 



  

45 

 

around 667 nanoseconds. The sampling time is ended manually by clearing the SAMP control bit 

in the user software or automatically by triggering conversion source (which will terminate 

acquisition and start the analog to digital conversions). The A/D converter module is 

disconnected from the end of the analog input pin at the end of sample time. Conversion time is 

the time required for the A/D converter to convert the voltage held by the S/H amplifier. The 

A/D converter requires one A/D clock cycle (TAD) to convert each bit of the result. A total of 14 

TAD cycles are required to perform the complete conversion. 

A/D Conversion Clock TAD =  TCY  × (0.5 × (ADCS < 5: 0 > +1)) 

where ADCS <5:0> are bits of the ADCON3 register.  

When the conversion is complete, the result is loaded into ADCBUF buffer register and the S/H 

can be reconnected to the analog input pin. Also, the total conversion time is the sum of 

acquisition time and the A/D Conversion time which is equal to 15 TAD  for 12-bit A/D 

conversion. We use one channel (AN12) of 12-bit A/D converter, to digitize the analog EEG 

signal.  

Steps to design single Channel A/D module are as follows: 

1. The ADCON1, ADCON2 and ADCON3 registers control the operation of the A/D module 

information and the working of the registers is discussed below. 

 

1.1 Configuration of A/D control register 1 (ADCON1) is shown in Fig.11. and the 

description of T1CON registers bits in discussed in Table 7. 
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Fig.11. ADCON1: A/D Control Register 1. 

 

Table 7 A/D Control register 1 bits description 

ADCON1 bits Description 

bit 15 ADON: A/D Operating Mode bit will turn ON the A/D Conversion 

module. 

1 = A/D converter module is operating 

0 = A/D converter is off 

bit 14 Unimplemented: Read as „0‟ 

bit 13 ADSIDL: Stop in Idle Mode bit 

1 = A/D Module will stop in IDLE mode and abort all current 

conversions. When the device resumes normal operation partially 

completed conversions will be ignored 

0 = A/D module will continue normal operation in Idle mode. If an 

A/D interrupt occurs the devices will wake-up from the Idle mode 

and will resume its execution in the A/D ISR or from next 

instruction (after the instruction which placed the device in the Idle 

mode). 
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bit 12-10 Unimplemented: Read as „0‟ 

bit 9-8 FORM<1:0>: Data Output Format bits the output should be 

programmed in one of the following formats where s is the sign bit 

11 = Signed fractional (DOUT = sddd dddd dddd 0000) 

10 = Fractional (DOUT = dddd dddd dddd 0000) 

01 = Signed integer (DOUT = ssss sddd dddd dddd),  

00 = Integer (DOUT = 0000 dddd dddd dddd) 

For example: 4096 in following formats 

Integer = 0000 1111 1111 1111 = 4095 

Signed Integer = 0000 0111 1111 1111 = 2047 

Fractional = 1111 1111 1111 0000 =  0.99975 (converter it to 

decimal and divided by 65536, 65520/65536 = 0.99975) 

Signed Fractional format = 0111 1111 1111 0000 =0.9995 (same 

process as above the result will be 0.499755859375, multiply it by 2 

as signed divides the result into half we get 0.99951171875) 

In dsPIC30F microcontrollers, digital filtering only accepts input in 

the signed format in order to convert it into unsigned integer format  

UnsignedintResult = (SignedFractionalResult>> 4) + 2048 ; shift the 

bits four times to match the integer format and add 2048 (since 

unsigned signed results are from 0-4096 and signed results are from 

-2047-2048)  

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits 

111 = The conversion trigger source depends on the SAMC bits of 



  

48 

 

the ADCON3 control register which selects the number of A/D 

clocks between the start of acquisition and start of conversion.  

110 = Reserved 

101 = Reserved 

100 = Reserved 

011 = Motor Control PWM interval ends sampling and starts 

conversion 

010 = General purpose Timer3 compare ends sampling and starts 

conversion 

001 = Active transition on INT0 pin ends sampling and starts 

conversion 

000 = Clearing SAMP bit ends sampling and starts conversion 

bit 4-3 Unimplemented: Read as „0‟ 

bit 2 ASAM: A/D Sample Auto-Start bit, Starting of sampling time of 

ADC input can be controlled automatically by hardware by setting 

the ASAM bit.  

1 = Sampling begins immediately after last conversion completes. 

SAMP bit is auto set 

0 = Sampling begins when SAMP bit set 

bit 1 SAMP: A/D Sample Enable bit starts the time for sampling and is 

controlled by software 

1 = At least one A/D sample/hold amplifier is sampling 

0 = A/D sample/hold amplifiers are holding 
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When ASAM = 0, writing „1‟ to this bit will start sampling. 

When SSRC = 000, writing „0‟ to this bit will end sampling and start 

conversion. 

bit 0 DONE: A/D Conversion Status bit is used to determine whether the 

A/D conversion is completed. 

1 = A/D conversion is done 

0 = A/D conversion is not done 

Clearing this bit will not affect any operation in progress. 

Cleared by software or start of a new conversion. 

 

For single channel A/D conversion we load ADCON1 with the following value, 

ADCON1 = 0x03E0 or 0b0000001111100000; SSRC bit =111 implies internal counter ends 

sampling and starts converting (TAD based conversion where conversion trigger source 

depends on the SAMC bits of the ADCON3) and result format as signed fraction since 

digital filtering in the dsPIC30F microcontrollers accepts filter input in the signed fraction 

format. 

 

1.2 Configuration of A/D Control Register 2 (ADCON2) shown in Fig.12.and the description of 

T1CON registers bits in discussed in Table 8. 
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Fig.12. ADCON2: A/D Control Register 2. 

 

Table 8: A/D Control register 2 bits description 

ADCON2 bits  Description 

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits are used to select the 

voltage reference for the A/D module. The upper A/D VREF H and the lower 

voltages A/D VREF L can be the internal reference voltages or Voltages at 

pins AN0 and AN1 respectively.   

Bits 15-13 A/D 𝐕𝐑𝐄𝐅𝐇 A/D 𝐕𝐑𝐄𝐅𝐋 

000 AVDD  A𝑉𝑠𝑠  

001 External 𝑉𝑅𝐸𝐹+  pin A𝑉𝑆𝑆  

010 A𝑉𝐷𝐷  External 𝑉𝑅𝐸𝐹−  pin 

011 External 𝑉𝑅𝐸𝐹+  pin External 𝑉𝑅𝐸𝐹−  pin 

1xx A𝑉𝐷𝐷  A𝑉𝑠𝑠  

 

bit 12 Reserved: User should write „0‟ to this location 

bit 11 Unimplemented: Read as „0‟ 

bit 10 CSCNA: Channel 0 S/H has a capability to scan through the selected vector 

inputs specified by the ADCSSL register by setting the CSCNA bit. When 
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CSCNA is set, the CH0SA<3:0> bits are ignored.  

1 = Scan inputs 

0 = Do not scan inputs 

bit 9-8 Unimplemented: Read as „0‟ 

bit 7 BUFS: Buffer Fill Status bit is used in conjunction with BUFM (if BUFM is 

set) 

1 = A/D converter is currently filling buffer 0x8-0xF, user should read data 

from 0x0-0x7 

0 = Situation is revered and the user should access data in 0x8-0xF 

bit 6 Unimplemented: Read as „0‟ 

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits 

1111 = Interrupts at the completion of conversion for each 16th 

sample/convert sequence 

1110 = Interrupts at the completion of conversion for each 15th 

sample/convert sequence 

..... 

0001 = Interrupts at the completion of conversion for each 2nd 

sample/convert sequence 

0000 = Interrupts at the completion of conversion for each sample/convert 

sequence 

bit 1 BUFM: Buffer Mode Select bit, In the Buffer fill mode 16-word result 

buffer ADCBUF is split into two8-word buffers ADCBUF (7-0) and 

ADCBUF (15-8). 
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1 = Buffer configured as two 8-word buffers ADCBUF (15...8), ADCBUF 

(7...0), here the two buffers will alternately receive the conversion results 

after each interrupt event. It has to be used when the processor cannot 

unload the buffer within the sample and conversion time 

0 = Buffer configured as one 16-word buffer ADCBUF(15...0), if the 

processor can quickly unload a full buffer within the time it takes to sample 

and convert one channel up to 16 conversions may be done per interrupt. 

bit 0 ALTS: Alternate Input Sample Mode Select bit 

1 = Causes the module to alternately sample between two sets (MUX A and 

MUX B) of inputs specified by the ADCHS register. On the first sample 

convert sequence MUX A inputs are selected for sampling and on the 

second sample and convert sequence MUX B inputs are selected for 

sampling. This pattern will repeat for subsequent sample conversion 

sequences.  

0 = Only sample input selected by MUX A 

 

For single channel A/D conversion ADCON2 value is,  

ADCON2 = 0x0000 or 0b0000000000000000; AVDD  and AVSS  are the voltage references, no 

scanning of multiple inputs (single channel), no buffer mode, no interrupts and only sample 

input selected by  MUX A (No alternate input sampling). 

1.3 Configuration of A/D control register 3 (ADCON3) is shown in figure 13 and the description 

of the bits is shown in table 9. 
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Fig.13. ADCON3: A/D Control Register 3. 

 

Table 9 A/D Control register 3 bits description 

ADCON3 bits Description 

bit 15-13 Unimplemented: Read as „0‟ 

bit 12-8 SAMC<4:0>: Auto Sample Time bits, When SSRC<2:0> = 111, the 

conversion trigger is under A/D clock control. The SAMC bits select the 

number of TAD clock cycles between the start of sampling and the start of 

conversion 

11111 = 31 TAD 

····· 

00001 = 1 TAD 

00000 = 0 TAD 

bit 7 ADRC: A/D Conversion Clock Source bit 

1 = A/D internal RC clock,  enables the A/D module to operate in sleep 

mode 

0 = Clock derived from system clock Tcy  

bit 6 Unimplemented: Read as „0‟ 
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bit 5-0 ADCS<5:0>: A/D Conversion Clock Select bits 

111111 = TCY/2 • (ADCS<5:0> + 1) = 32 • TCY 

······ 

000001 = TCY/2 • (ADCS<5:0> + 1) = TCY 

000000 = TCY/2 • (ADCS<5:0> + 1) = TCY/2 

 

A/D Conversion Clock Calculation 

A/D Conversion requires 14 TAD  

A/D Conversion Clock TAD =  TCY  × (0.5 × (ADCS < 5: 0 > +1)) 

FCY  = (Fosc/4) = 20MHz, 

TCY  = 50nsec 

Minimum TAD  = 667nsec for correct A/D conversions 

ADCS<5:0> = 2 ∙  
TAD

TCY
− 1 

 

             = 2 ∙
667 nsec

50 nsec
− 1 

 

                     = 25.68 ≅ 26 (To be on a safer side we took it to be 27) 

Actual TAD  = 
TCY

2
× (ADCS < 5: 0 > +1) 

   

                    = 
50nsec

2
× (27 + 1) or 14 TCY  

      = 700nsec  

Hence, ADCS < 5: 0 > = 0b11011, 14 TCY  or 27 
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Acquisition Time > 667nsec or TAD = 700nsec  

For TAD  based conversion, to select the number of TAD clock cycles between the start of 

sampling and the start of conversion 

SAMC<4:0> = 00010, 2Tad is the conversion trigger source (time between the start of 

sampling and the start of conversion). 

For single channel A/D conversion the value of ADCON3 is, 

ADCON3 = 0x021B or 0b0000001000011011; //sample time =2Tad, Tad =internal 14Tcy 

and A/D conversion clock derived fromTCY . 

 

1.4 A/D Input Select Register (ADCHS): S/H amplifiers are connected to analog input pins via 

the analog input multiplexer. The ADCHS register selects the input pins to be connected to the 

S/H amplifiers and also controls the input multiplexer by allowing two different analog input 

multiplexer configurations (MUXA and MUXB) to be available, by programming the CH0NA & 

CH0SA <3:0> and CH0NB & CH0SB<3:0> bits corresponding to MUXA and MUXB 

respectively. The multiplexer of each A/D converter can optionally switch between the MUX A 

and MUX B configurations between conversions by setting the ALTS bit in the ADCON2 

register. 

The Sample-and-Hold Amplifier has analog multiplexers on both its inverting and non-inverting 

terminal to select analog input (and its corresponding reference voltage AVSS or AN1 (external 

reference voltageVREF −)) to be sampled. The ADCHS bits perform the same operation for MUX 

A (CH0SA<3:0> determine the Analog input channel and CH0NB selects the reference) and 

MUX B (similar for Mux B). Configuration of A/D Input Select Register (ADCHS) is shown in 

figure 14 and the description of the bits is shown in table 10. 
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Fig.14. ADCHS: A/D Input Select Register. 

 

Table 10 A/D Input select register bits description 

ADCHS bits Description 

bit 15-13 Unimplemented: Read as „0‟ 

bit 12 CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit 

1 = Channel 0 negative input is AN1 

0 = Channel 0 negative input is VREF- 

bit 11-8 CH0SB<11:8>: Channel 0 Positive Input Select for MUX B Multiplexer Setting 

bit 

1111 = Channel 0 positive input is AN15 

1110 = Channel 0 positive input is AN14 

1101 = Channel 0 positive input is AN13 

····· 

0001 = Channel 0 positive input is AN1 

0000 = Channel 0 positive input is AN0 

bit 7-5 Unimplemented: Read as „0‟ 

bit 4 CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 
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1 = Channel 0 negative input is AN1 

0 = Channel 0 negative input is VREF- 

bit 3-0 CH0SA<3:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting 

bit 

1111 = Channel 0 positive input is AN15 

1110 = Channel 0 positive input is AN14 

1101 = Channel 0 positive input is AN13 

····· 

0001 = Channel 0 positive input is AN1 

0000 = Channel 0 positive input is AN0 

 

For single channel A/D conversion  

ADCHS = 0x000C; //Connect RB12/AN12 as CH0 input and negative input to the MUX A is 

VREF- 

 

1.5 A/D Port Configuration Register (ADPCFG) configures analog input channels for the A/D 

converter module which samples the pin voltage. Configuration of A/D port configuration 

register (ADPCFG) is shown in figure 15 and the description of the bits is shown in table 11. 

 

Fig.15. ADPCFG: A/D Port Configuration Register 
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Table 11 A/D port configuration register bits description 

ADPCFG bits Description 

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits 

1 =  Respective PCFG pins are configured as Digital inputs/outputs and the 

input to the analog  multiplexer is connected to AVSS 

0 = Respective PCFG pins are configured as Analog Inputs (At reset all the 

pins multiplexed with AN channels are configured as analog inputs), To 

properly work as analog inputs there corresponding TRIS bits need to be set.   

 

For single channel A/D converter: 

ADPCFG = 0xEFFF, all PORTB = Digital, RB12 = analog; 

 

1.6  ADCSSL: A/D Input Scan Select Register 

ADCSSL register specifies the inputs to be sequentially scanned. Each bit in the register 

corresponds to the analog input for examples bit 0 (CSSL0) corresponds to AN0. Scanning 

begins from lower to the higher number inputs, for example if we want to scan channels AN1, 

AN3, AN12, AN5 consecutively, the scanning will take place in the following order AN1, AN3, 

AN5 and AN12. After every interrupt this order will be followed.   Configuration of A/D Input 

Scan Select register (ADCSSL) is shown in figure 16 and the description of the bits is shown in 

table 12. 
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Fig.16. ADCSSL: A/D Input Scan Select Register 

 

Table 12: A/D Input Scan Select register bits description 

ADCSSL bit Description 

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits 

1 = Select ANx for input scan 

0 = Skip ANx for input scan 

 

For single channel A/D converter: 

ADCSSL = 0x0000, no scanning 

2. We start the conversion by setting the SAMP bit in the ADCON1 register 

(ADCON1bits.SAMP =1). When SSRC<2:0> = 111, the conversion trigger is under A/D 

clock control. By configuring the SAMC bits we wait for 2TAD clock cycles between the 

start of sampling and the start of conversion. 

 

3. Wait for A/D conversion to complete by checking the DONE Bit in the ADCON1 control 

register. We use while (! ADCON1bits.DONE) to check whether the conversion is 

completed. 
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4. Read the result from registers ADCBUF register. We read the result of the A/D 

conversion from the 16-bit ADCBUF0 buffer register. 

5. For next conversion go to Step 2.  

 

2.2.4 Digital Filters: We are using digital filters to extract our frequency band of interest. We 

have designed analog filters in the hardware section they don‟t guarantee a prolonged good 

signal due to aging and external interferences. Once the analog filter parameters are set in the 

hardware circuit they are difficult to change and also the design on higher order analog filters is 

very complex. To overcome the above problems we use digital filtering (in addition to analog 

filters) in our software. Digital filters are basically signal conditioners; i.e. they transmit or reject 

a frequency range of the original input signal. Digital filter takes digital input from ADC 

performs mathematical manipulation using digital delays, multiplier and adders to realize a 

digital filter with far superior level of performance easily (digital filters can implement very high 

order filters just by simple addition and multiplication).  

There are two main types of digital filters they are Finite Impulse Response (FIR) and Infinite 

Impulse Response (IIR) filters. 

In the FIR filters the output of the filter depends only on previous inputs (FIR filters contain only 

zeros). To implement FIR filter in a PIC microcontroller only a filtering function of the FIR filter 

equation needs to be added. 

The Basic FIR filter equation is given below 

y n =  h0  ∙ x n + h1  ∙ x n − 1 + h2  ∙ x n − 2 +. . +hN−1  ∙ x(n − (N − 1)) 

which can be represented as: 
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y n =  hk  ∙ x(n − k)

k=N−1

k=0

 

where y n is the output of the digital filter at sampling instant n 

x(n)is the input of the digital filter at sampling instant n 

 x(n − 1)is the input of the digital filter at sampling instant n − 1, or more generally 

 x(n − k)is the input of the digital filter at sampling instant n − k 

h0 , h1 …  hN−1, are the filter coefficients (constants) specific for the particular   

N, is the length of the Digital FIR filter 

M = N − 1, is the order of the digital filter   

Thus the FIR filter simply produces a weighted average of its N recent input samples. 

The longer the filter (more coefficients) the more finely its response can be tuned but the 

computational load for implementing such a filter increases rapidly and may limit the length of 

the filter if a relatively high sampling frequency needs to be realized  

 

In case of IIR filters, the output of the IIR filters depends on both previous inputs and outputs 

(IIR filters consist of zeros and poles). 

The Basic IIR filter equation is given below 

y n =  b0  ∙ x n + b1  ∙ x n − 1 + b2  ∙ x n − 2 +. . +bN−1  ∙ x n −  N − 1  − a1  ∙

 y n − 1 −a2 y n − 2 −. . −bM  ∙ y(n − M). 

 

which can be represented as: 

y n =  bk  ∙ x(n − k)

k=N−1

k=0

−   ak  ∙ y(n − k)

k=M

k=1
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where y n is the output of the digital filter at sampling instant n 

         y n − 1 , y n − 2 , . . . y n − M , are M old filter outputs 

x(n)is the input of the digital filter at sampling instant n 

x n − 1 , x n − 2 , . . . , x(n − N + 1), are N − 1 old filter inputs 

b0 , b1 …  bN−1 and a0, a1 …  aM  are two sets of IIR filter coefficients   

Coefficients a0, a1 …  aMmultiply old filter outputs that are fed back into the digital filter, so 

those coefficients are also sometimes called „feedback filter coefficients‟. Coefficients 

b0 , b1 …  bN−1are known as „feedforward filter coefficients‟. 

Advantages of FIR filters over IIR  

1. FIR‟s are linear phase filters (that is, they delay the input signal but don‟t distort its 

phase)and are stable. However IIR have no particular phase relationship and are unstable. 

2. FIR have much better delay characteristic than IIR and much simpler to implement. On  

most microcontrollers, the FIR calculation can be done by looping a single instruction.  

3. FIR filters require less number of multiplications and additions for the filter 

implementation as compared to IIR. 

4. Computation speed of FIR is faster than that of IIR. 

Disadvantages of FIR over IIR 

1. Compared to IIR filters, they require more memory and/or calculation to achieve a given  

filter response characteristic. 

 

DsPIC30F4013‟s CPU has a DSP Engine capable of executing Digital FIR and IIR filters with 

great efficiency and reliability.  Microchip provides dsPIC Language Tools Libraries with 

functions to perform digital filtering alongside other DSP, peripheral and math functions. DSP 
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library is written in assembly to increase the execution speed and most of its operations are 

computed using fractional arithmetic to take advantage of the DSP instruction set and 

architecture and maintain accuracy. As discussed in the ADC section signed fractional format is 

represented as  “sddd dddd dddd 0000” where s is the signed bit and other 15 are the fractional 

bits (also referred to as “1.15” data format). The input to the digital filter can be in any format 

(signed/unsigned integer or unsigned fractional), as the DSP engine in the microcontroller 

automatically converts data into the correct (signed fractional) format.  However the output from 

the digital filter will be in signed fractional format and needs to be converted by the user into the 

desired format. Microchip also provides digital filter design tool (dsPIC FD) to generate 

coefficients for desired digital filter response (the Filter Design for dsPIC™ DSC Digital Filter 

Design and Analysis System manual discusses in detail the usage of the dsPIC FD software) and 

a filter routine depending on the filter type (FIR, IIR Transpose, IIR Canonic  or IIR Canonic 

Extended Precision).  

Note: The filter coefficients generated by the dsPIC FD (can be stored as a filename.s file 

(assembly file)) and its associated filter routine should be added in the MPLAB project.     

 

DsPIC30F4013‟s digital filtering is mainly used here to isolate the beta-band (13-28 Hz) and 

(12-14Hz) and 12-14 Hz band (SSVEP of 13Hz signal) for further processing. It also eliminates 

the other remaining artifacts from the hardware section (such as 60Hz power line interference, 

EMG artifacts which overlap with upper and middle parts of the EEG frequency range and eye 

artifacts (eye blinks) which are predominant in 1-2Hz of EEG frequency range).  
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We have used FIR Kaiser Window design (gain =1, hence 0-5V represented as 0-4096(12-bit 

ADC)) to realize our band pass filters of 13-28Hz and 12-14Hz for beta band and SSVEP 

respectively. 

Steps to Configure the Digital Filtering module are as follows: 

1. Using the dsPIC FD tool from Microchip we realized our band-pass filters and generated 

the filter coefficients. 

2. We saved our coefficients in the X data space. 

3. The 12-bit signed fractional result of the A/D conversion was the input value to the FIR 

filter function, which performs the filtering and outputs the filtered result. FIR ( 

intnumSamps, fractional* dstSamps,    fractional* srcSamps,    FIRStruct* filter) 

Where numSamps = 1 (for single sample filtering), 

dstSamps is the pointer to the output value, 

srcSamps is the pointer to the input value, 

FIRStruct is the pointer to the filter coefficients and its associated routine. 

4. The filtered output value (in the signed fractional format) was converted to unsigned 

integer format by right shifting the output value and adding 2049. 

5. To get the filtered output of the next A/D result, go to step 3. 

2.2.5 Power Calculation 

Average Power: 

A FIFO (first-in first-out) buffer of N (preset based on the method you are using) bytes is used to 

store the results (voltage amplitude) from the digital filtering. The average power of which is 

calculated as follows. 

Pavg =  
1

N
 ×   abs (V[i])

N

i=0
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2.2.6 Experimental paradigm:  

EEG signal from a healthy subject was recorded using 4 tin surfaces electrodes (C3 (for beta-

rebound based method), OZ (for SSVEP based method), FZ and FZA) attached on an elastic cap 

(Electro-Cap International, Inc., Eaton, OH, U.S.A.) according to the international 10-20 

system[52].  A subject was asked to still comfortably and avoided any motion during the 

experiment. 

A subject performed five sessions of experiment for each method (that is Beta-rebound based 

method and SSVEP based method). The first session was based on adjusting the power threshold 

value for the subject. In the remaining session‟s real time analysis of the brain-controlled switch 

device was performed. The second session the false positive rate of the BCI switch (the number 

of times the switch turns ON in the “No control state”) was recorded by the investigator. In the 

next three sessions, the subject was asked to successfully turn on an external switch 10 times per 

session hence we tested the sensitivity of the brain-controlled switch. 

 

2.2.6.1 Beta-Rebound Based Prediction algorithm: A brisk hand movement (or imagination of 

the movement) is followed by an increase in amplitude oscillations in the beta band which is also 

termed as beta rebound. In this method, we focused on the amplitude increase in the beta band 

associated with the intention of movement to control our external switch.  

Considering that subject might be easily fatigued from the sustained active mental task, the 

subject were able to alternate between a short active task (“Intentional Control” state) and 

relaxation (“No control state”) in the event-related design so that the required period of sustained 

attention could be greatly reduced which is shown in Fig. 17. 



  

66 

 

 

Fig.17. Prediction Algorithm based on Beta Rebound Based Method  

 

From fig.17 it is seen that when the experiment began the subject was provided with an external 

synchronization signal of 4 seconds (led „ON‟ and led „OFF‟). The entire time interval of 4 

seconds constituted one trial. Every 4 seconds, LED ON indicated a cue to perform brisk hand 

movement (or motor imagery based movement). The data for estimation of amplitude power was 

acquired from the interval of 3 seconds (or “Intentional control” state) where the data length was 

of 1 second (250 bytes, as the beta rebound is assumed to last for about 1 seconds). Every 4 

seconds, average amplitude power was calculated using this 1 second of data. This calculated 

average amplitude power was compared with the preset power threshold. If the average 

amplitude power was greater than the power threshold than the external switch was turned ON. 

Offline analysis: First session in this experiment was conducted to determine the power threshold 

for the subject. This session began from „No control‟ state, where the subject was instructed to 

avoid either physical (or imagined hand movement, basically the subject wasn‟t attentive to the 

switch in this case). This digitized data was recorded by using the BCI2VR toolbox. Next, the 
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subject was asked to perform a brisk hand movement in synchronization with external sync 

signal (“Intentional control” state). This data was also recorded. We calculated the offline 

average power between the “Intentional control” state and the “No control” state. And based on 

this comparison, power threshold value was loaded in our microcontroller. 

Performance evaluation: Real time analysis of our Brain-controlled switch device based on the 

beta-rebound method was performed. A total of four sessions were performed here. In the first 

session the subject‟s “No control state” operation was monitored by the investigator for 3 

minutes. In the „No control state‟, the subject was instructed to carry out normal thinking and the 

investigator noted the number of false positive detections (that is, the number of times the led 

turned ON in the “No Control” state) made. In the next three sessions, the subject was asked to 

successfully turn ON the external switch 10 times. These sessions tested the sensitivity of our 

device. Here the investigator recorded the time it took to successfully turn ON the external 

switch each time.    

 

2.2.6.2 SSVEP based prediction algorithm:: In this method, when the user concentrates on the 

flickering LED, a dominant fundamental frequency (equivalent to the flickering frequency) 

appears in the spectral representation of the EEG signals recorded at occipital lobes (location 

OZ).  Here, we focus on the amplitude increase in the band containing the fundamentally 

frequency which is used to control the external switch.  

In this experiment, when the user decides to operate the external switch he/she focuses his/her 

attention onto the LED flashing at 13Hz which is placed at a distance of 1 meter in front of the 

subject this marks the “Intentional Control” state.  In the “No control state” the subject looks 

away from the flashing LED. Every 0.5 seconds, our microcontroller calculates the average 
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amplitude power of the data recorded in the previous 0.8 seconds as shown in Fig. 18. The 

obtained average amplitude power was compared with the preset power threshold. If the average 

amplitude power was greater than the power threshold the external switch is turned ON. 

 

Fig.18. Prediction Algorithm Based on SSVEP Based Method   

 

Offline analysis: Similar to beta rebound based method, the first session in this experiment was 

conducted to determine the power threshold for the subject. This session began from „No 

control‟ state, where the subject was instructed to look away from the flashing LED. This 

digitized data was recorded by using the BCI2VR toolbox. Next, the subject was asked to 

concentrate on the flashing LED (“Intentional control” state). This data was also recorded. We 

calculated the offline average power between the “Intentional control” state and the “No control” 

state. And based on this comparison, power threshold value was loaded in our microcontroller. 

Performance evaluation: Real time analysis of our Brain-controlled switch device based on the 

SSVEP method was performed. A total of four sessions were performed here. In the first session 

the subject‟s “No control state” operation was monitored by the investigator for 3 minutes. In the 

„No control state‟, the subject was instructed look away from the LED and the investigator noted 

the number of false positive detections (that is, the number of times the led turned ON in the “No 

Control” state) made. In the next three sessions, the subject was asked to successfully turn ON 
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the external switch 10 times. These sessions tested the sensitivity of our device. Here the 

investigator recorded the time it took to successfully turn ON the external switch each time. 

    

2.2.7 Algorithms for the design 

Algorithm for beta-rebound based method:  

1. Every 4msec (sampling rate of 250Hz) from the Timer1. 

i. The amplified EEG signal from the hardware section is converted into a digital signal 

by the A/D Converter. 

ii. This signal is filtered to obtain a band-pass signal of 13-28Hz (beta band for the beta-

rebound based calculations). 

iii.  And the output of the digitized filtered signal is stored in the buffer V [250 Bytes]. 

2. Timer 23 is used here to provide an external synchronization signal (3 second ON and 1 

second OFF). The ON period indicates the “Intentional Control” state and the OFF period 

indicates the “No Control” state.  Every 4 seconds, average power of the buffer V [250 

bytes, 1 second of data] is calculated. The average amplitude power is compared to the 

preset power threshold (Power at rest). If the average power is greater than the power 

threshold than the LED is turned ON.   

 

Algorithm for SSVEP based method:  

1. Every 4msec (sampling rate of 250Hz) from the Timer1. 

i. The amplified EEG signal from the hardware section is converted into a digital signal 

by the A/D Converter. 

ii. This signal is filtered to obtain a SSVEP band of 12-14Hz containing the 13Hz 

SSVEP fundamental frequency. 
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iii.  And the output of the digitized filtered signal is stored in the buffer V[200 Bytes]. 

2. Timer 23 is used here to calculate the power of the buffer V [200 bytes] every 0.5 second. 

The average power is compared to the power threshold, and if the average power is greater 

than the threshold the LED is turned ON.   
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CHAPTER 3 

RESULTS 

3.1 BCS device’s signal recording module’s evaluation: First the brain controlled switch 

device was used to capture the ECG signal using three electrodes connected to the right wrist, 

left wrist and right leg of the subject. A successful QRS ECG signal was measured. 

Before every experiment, calibration of the Brain-controlled switch system was performed. The 

basic task of the calibrator was to set overall sensitivity of the Brain-controlled interface system. 

That is, to establish a known and fixed correspondence between the EEG signals appearing at the 

inputs and outputs (numbers) that would emerge from the A/D converters of dsPIC30F4013 at 

the computer interface. EEG Calibrator (Modina Bio-Engineering Version 1.3 2) was used. It is a 

sine wave generator that can produce 1 to 64Hz sine waves of known, fixed amplitude (50µV, 20 

µV and 2000 µV). We used the calibrator to generate a 50 µV sine wave at 20Hz which was used 

to test our BCS system. The output from the brain controlled switch was adjusted to set the offset 

to 0 and the gain to unity. 

Subject preparation: As mentioned earlier an EEG signal from a healthy subject was recorded 

using 4 tin surfaces electrodes (C3 (for beta rebound based method), OZ (for the SSVEP based 

method), FZ (reference) and FZA (DRL)) attached on an elastic cap (Electro-Cap International, 

Inc., Eaton, OH, U.S.A.) according to the international 10-20 system[52].  Skin artifacts were 

reduced using skin cleansing solution to wet and clean the skin surface to remove debris, oils, 

and damaged or dead epidermal cells and electrode gel was applied to maintain a high-quality 

interface between the electrode metal and the skin. 
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Bio-potential amplifier Evaluation: Initially a pure and amplified EEG signal was recorded from 

the BCS device (using just the bio-potential amplifier and the A/D conversion module) at a 

sampling rate of 250Hz and displayed on the computer screen of the BCI2VR toolbox using the 

UART2 module. This is shown in Fig. 19:  

 

Fig.19. Pure EEG Signal Measured from the Scalp. 

 

The digitized EEG signal was recorded with ± 0.2 % error by the A/D conversion module. EOG 

signal induced by the eye-movement and eye blinks was predominant source of artifact at frontal 

recording sites existing in the 1-8Hz frequency bands. In our device as we filtered out the 

frequency bands associated with EOG signal, hence it didn‟t affect our system performance and 

our subject weren‟t asked to intentionally reduce eye-movements and blinks.  

It was also seen that without the DRL unit of the bio-potential amplifier, our brain-controlled 

switch device measurement was saturated which is shown in Fig. 20.  
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Fig.20. EG Signal Saturation Without the DRL Circuit. 

 

3.2 BCS device’s feature extraction module evaluation: our device aimed to extract the 

frequency bands of 13-28Hz and 12-14Hz for the beta rebound based method and the SSVEP 

based method with the fundamental frequency of 13 Hz respectively. From bode plot responses 

shown in Fig.21 and Fig.22, we can see that our device was successful in extracting the desired 

bands of interests with a unity gain. 
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Fig.21. Bode Plot of the Beta Band (13-28Hz) Filter for the Beta-rebound Based 

Method, FIR Kaiser Window Design with taps =64. 

 

 

Fig.22. Bode Plot of the Band Pass (12-14Hz) Filter for SSVEP Signal of13Hz, FIR 

Kaiser Window Design with taps =125. 
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3.3 BCS performance: Beta-rebound based method and SSVEP based method are stimulus 

based designs as both rely on the user to produce a specific mental task in response to a specific 

stimulus. The mental task is thus time-locked to the stimulus. We performed a multi-session 

study, based on each method to test the reliability and robustness of the brain-controlled switch 

performance during long-time operation. 

3.3.1. BCS performance based on beta-rebound method:  In this method, the stimulus is a 

synchronization signal from the LED of interval 4 sec (3 seconds ON and 1 sec OFF). Every 4 

seconds, when the synchronization  LED is turn ON  (go-signal provided) the user should 

perform a brisk hand movement if he/she indents to turn ON the external switch, the beta 

rebound complex resulting from this movement is time locked to the stimulus. 

In the experiment based on this method, a subject participated in a five session study, while the 

subject was operating the switch the computer made detections after every 4 seconds to 

determine whether the subject intended to switch ON the LED. 

The first session was conducted to calculate the power threshold of the subject. This session 

began with recording of the „No control‟ state of the subject. Next the subject was asked to 

perform a brisk hand movement in synchronization with the go signal provided in „Intentional 

control‟ state and the data was recorded. The ERD/ ERS (beta-rebound) complex generated from 

this session is shown in Fig 23.  
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Fig.23. Offline Analysis of the Session Based on Beta-rebound Based Prediction Algorithm 

A very ERD/ERS complex was seen in the beta band of the subject. An offline analysis was 

performed where the average offline amplitude power spectrum of „Intentional‟ and „No control‟ 

state for 2.3 minutes of data  was calculated based on our beta-rebound based prediction 

algorithm and is amplitude power spectra is  shown in Fig. 24. 
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Fig.24. Offline Analysis Amplitude Power Spectra for the “Intentional Control” and “No 

Control” State 

From the analysis of the Fig.24, power threshold value was set to 50 as it had more number of 

true detections (that is in the “Intentional Control” state the number of times the switch is turned 

ON when the user performs a brisk hand movement every 4 seconds) and lesser false positive 

detections (number of times the switch turns ON in the “No-control” state). 

False positives: In the next session, an investigator monitored the external LED for the „No 

Control‟ state of the subject and noted the number of times the LED turned ON in 3 minutes. The 

switch was activated 4 times in this session. That is, there were about 1.3 false detections out of 
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15 predictions during the “No control state for a single session” and the FPR was the percentage 

of false detections made from the total detections during the no control state. Thus the false 

positive rate was 9.9%.  

Sensitivity: In the next three sessions, the subject was asked to successfully turn ON the external 

switch 10 times by performing a brisk hand movement in synchronization with the external sync 

signal “Intentional control” state. Here the investigator recorded the time it took to successfully 

turn ON the external switch each time. The average response time required by the subject to turn 

ON switch successfully per session is shown in table: 

Table 12: Performance of the switch based on beta-rebound method in three sessions 

No. of session Mean (seconds) Standard deviation (seconds) 

Session 1 12.62 5.3167 

Session 2 11.65 8.3559 

Session 3 12.51 8.8097 

Total 12.23 7.39843 

 

Thus in the intentional control stage overall urging time to activate the switch for the subject was 

about 12.23± 7.39 seconds. Thus per minute the switch was turned on 5 times correctly per 

minute. 

 

3.3.2 BCS performance based on SSVEP method:  In this method, the stimulus is a flashing 

or flickering LED of 13Hz frequency. When the user intents to switch ON the external LED 

he/she should concentrate on the flashing LED, thus this method is time-locked with the 

stimulus.  
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In the experiment based on this method, a subject participated in a five session study, while the 

subject was operating the switch the computer made detections after every 0.5 seconds to 

determine whether the subject intended to switch ON the LED. 

The first session was conducted to calculate the power threshold of the subject. This session 

began with recording of the „No control‟ state of the subject where the subject looked away from 

the flashing LED. Next the subject was asked to concentrate on the flashing LED and the data 

was recorded “Intentional control” state. The offline analysis of the session based on SSVEP 

based prediction algorithm is shown in Fig. 25 which clearly shows an increase in amplitude in 

the “Intentional control state” when compared to the “No Control” state. 

 

 

Fig. 25. Offline Analysis of the Session Based on SSVEP Based Prediction Algorithm. 
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The amplitude average power was calculated offline based-on the SSVEP based prediction 

algorithm which is shown in the Fig.26. 

 

Fig.24. Offline Analysis of the Amplitude Power Spectrum for the “Intentional Control” 

and “No Control” State Based on the SSVEP Method. 

From the analysis of the above figure, power threshold value was set to 60 as it provided 

maximum true detections and minimum false positives rates.  

False positives: In the next session, an investigator monitored the external LED for the „No 

Control‟ state of the subject and noted the number of times the LED turned ON in 5 minutes. The 

switch was activated 7 times in this session. That is, there were about 1.4 false detections out of 

120 predictions during the “No control state for a single session” and the FPR was the percentage 
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of false detections made from the total detections during the no control state. Hence the false 

positive rate of 1.17%.  

Sensitivity: In the next three sessions, the subject was asked to successfully turn ON the external 

switch 10 times by concentration on the flashing LED “Intentional control” state. Here the 

investigator recorded the time it took to successfully turn ON the external switch each time. The 

average response time required by the subject to turn ON switch successfully per session is 

shown in table 13. 

Table 13: Performance of the switch based on SSVEP based method in three sessions 

No. of trails Mean (seconds) Standard Deviation (seconds) 

Session 1 2.62 0.7204 

Session 2 3.02 0.9217 

Session 3 3.79 1.9123 

Total  3.14 1.3442  

 

Thus in the intentional control stage overall urging time to activate the switch for the subject was 

about 3.14 ± 1.3442 seconds. Thus overall the switch activates 19 times per minute in the 

“Intentional control” state.  

Therefore, this method provides a potential means to distinguish between “Intentional Control” 

and “No control” state.  
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Chapter 4 

 
DISCUSSION AND FUTURE WORK 

 

4.1 Discussion 

The performance a simple real-world ON/OFF switch is mainly determined by the sensitivity 

(how difficult it is to activate the switch), and the specificity (switch is activated only when we 

intend to activate it). There is always a tradeoff between sensitivity and specificity. For example 

we can design the system with low sensitivity so that the users need to exert more effort to 

activate the switch thereby increasing the specificity (that is decreasing the possibility of miss 

operation). Also in case of real-world switch the hand operation is very reliable. To design a 

brain controlled switch with similar reliability is challenging because the brain signals have a 

very low signal to noise ratio.  We have tried to design a brain controlled switch equivalent to the 

real world low sensitivity switch, which allows the user to activate the switch only when they 

intend to do so by introducing the “Intentional control” state phenomenon. 

In this study we have designed and implemented a “stand-alone BCS device”, which could be 

used as a tool to evaluate the performance of the device based on ERS (beta rebound) feature 

associated with human‟s natural motor control (movement or motor imagery) as well as SSVEP 

elicited in human‟s brain in response to active concentration on the visual stimulus flashing at a 

certain frequency. Both ERS and SSVEP are physiological processes. However we found a great 

variability in the ERS patterns for our subject. This variance in ERS caused a high false positive 

rate (number of times the switch is activated without user‟s intentions) of 9.3 %. In order to 

improve the FPR and the sensitivity (average response time required to activate the switch), we 



  

83 

 

suggest to implement a multichannel EEG system with advance signal processing methods for 

feature extraction and classification. We would also suggest implementing the difference 

between ERS and ERDs in the “No control” and “intentional control” state as prediction feature 

rather than just using ERS, to improve accuracy of the system.  In case of SSVEP based design, 

we achieved an acceptable false positive rate of 1.1% with an average response time 3.1±1.3 

seconds for the subject. However the subject complained of fatigue and annoyance caused by 

concentrating on the LED for a prolonged time interval. We suggest substituting our visual 

stimulus (flashing LED) by Graphic Stimulus or pattern reversal methods and then test system‟s 

performance.   

In both beta rebound and SSVEP based methods the power threshold was set manually, thus 

optimization of power threshold should also be considered. We also suggest including more 

number of normal and target subjects for experiments to better evaluate the performance of our 

BCS device. We expect that the proposed brain-controlled switch device can serve as a plausible 

real-world switch that allows its users to operate it, by only using their mind. 

Applications of the Current Brain-Controlled Switch system: 

1. Locked-in patients could answer Yes/No questions using this device (LED ON equivalent 

to Yes and LED OFF to No).  

2. By replacing the LED with the buzzer, bed ridden patients could notify their nurses that 

they require attention.  

3. Also this device could be used in conjunction with software that displays an alphabet on 

screen every four milliseconds. If user intents to select the alphabet he/she should perform 

motor imagery task that lights the LED (or the microcontroller could transfer data (of user 

intent to select the alphabet) to the computer.  
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4. One dimensional (right and left cursor movement) cursor control using ERS of the left and 

right motor areas corresponding right and left motor imagery hand movement. Two 

dimensional cursor control to use ERS and ERD‟s of the left and right motor areas 

corresponding right and left motor imagery hand movement to move the cursor (right/left 

corresponding to the ERS) and (up/down corresponding to the ERDs))[53] . 

 

4.2 Future Work 

There are significant improvements that can be made to Brain controlled switch design, in order 

to improve its performance. Some ideas are summarized below: 

1. EEG calibration and Impedance match should be implemented to enable a completely 

stand-alone Brain controlled switch. Rather than using an external calibrator to calibrate the 

device before each experiment, we can design a calibrator in our microcontroller which can 

internally produces a 50µV sine wave at frequencies 20Hz for beta-rebound or 13Hz for 

SSVEP based method. And a push button can be used to initiate calibration. Any disturbance 

between electrode and the scalp (such as electrode movement or sweat reaction with metal)can 

alter the electrode impedance[54], which can interfere with the EEG signal and alter its 

amplitude. Impedance between each electrode should be a low as possible. Our microcontroller 

could monitor the electrode impedances throughout the experiment if any change occurs it can 

display on the LCD. 

2. The EEG data from the 12-bit A/D channel was measured with 99.5 % accuracy. It didn‟t 

seem to affect the EEG data much. We suggest to implement the system using 16-bit (AD7680) 

or 24-bit (AD7764) analog to digital converters which are ideal for high speed data acquisition 

of analog signals to ensure very accurate EEG measurements. 



  

85 

 

3. Rather than connecting the RS232 module to the computer for EEG data processing. An 

attempt should be made to look into XBee module (which can be directly connected to the 

UART ports RX and TX of the dsPIC microcontroller).  It seems to be a convenient alternative 

for the user in terms of mobility.  

4. For beta-band rebounds relying on visual stimulus (LED ON for attempt to perform a 

motor task) poses a problem in the advance stages of locked-in syndrome, as eye muscle 

paralysis occurs which causes visual impairment[55]. Thus this system can‟t be beneficial for 

the locked-in users with visual impairment. An alternative to visual stimulus is auditory 

stimulus (LED ON and OFF in the system can be replaced by “Da” sound (perform motor 

imagery task) and “Di” sound (no-control/rest state)), it could be tested and its results 

compared. 

5. A self-powered EEG system could be developed from the body heat using Micro energy 

scavengers (also called thermoelectric generators which convert thermal energy to electric 

energy)[56, 57].   
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APPENDIX A: ANALOG SECTION 
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APPENDIX B: DIGITAL SECTION 
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APPENDIX C: POWER SUPPLY SECTION 
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APPENDIX D: BASICS OF A COMPUTER SYSTEM 

Components of a computer 

A basic computer is built up of hardware and software which are discussed as follow:   

Hardware: Computer Hardware consists of the physical components of the computer. Hardware 

of the computer consists of I/O, memory and CPU 

Input/ Output (I/O) devices (or peripheral devices) are the means by which computer 

communicates with other computers or users.  

Memory stores information (instructions (programs) and data) temporarily or permanently as 

bytes (8-bit data) or words (16-bit data). RAM and FLASH are most widely used memory 

storage devices. 

RAM (Random access memory) is called volatile memory, since as soon as the power is turned 

off the data it‟s working with is lost; therefore it is used for temporary storage of information. 

ROM (Read only memory) is called volatile memory, since it holds information     even in the 

absence of power. Hence it is used for the permanent storage of essential programs information 

needed for proper functioning of computer. Data of ROM can only be read. 

EEPROM (Electrically erasable programmable read-only memory): is a type of non-volatile 

memory which can be reprogrammed (it requires erasing the memory locations before 

reprogramming it by programmer). Here like RAM the contents of EEPROM can be changed 

during an operation however like ROM contents of EEPROM are permanently. 

Flash memory is another non-volatile memory that can be erased and reprogrammed up to or 

more than 100,000(PIC18F2525 data sheet)times (practically unlimited), devices with Flash 

memory are ideal for initial phase of design. Flash memory is faster than EEPROM, since data in 
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EEPROM needs to be erased and reprogrammed one byte at a time where as Flash can erase and 

reprogram bytes of data at a time.  

CPU is called the brain of a computer system as it controls all the components of the computer 

system. CPU at least consists of registers (are used for storage of data/address during execution 

of instructions thus fast program execution), Arithmetic logic unit (ALU) (is used to perform 

logical and numerical computations) and Control Unit (fetching, decoding and monitoring the 

execution of instructions).  

Microprocessor is CPU packaged in a single integrated circuit (a chip). Microprocessors are 

referred as n-bit (where n= 4, 8, 16, 32, 64) microprocessors depending on the number of bits it 

processes in one operation. In order for it to work as a computer system it needs to access 

external memory, external I/O and other peripherals. Therefore these systems are more 

expensive, bulkier, have higher power consumption and slower execution speeds  

For example: ARM processor, Intel 

 

Microcontroller is single integrated circuit (a chip) built with CPU, RAM, ROM, I/O ports and 

other peripherals (such as timers, adc, usart etc). Hence it‟s suitable for applications where less 

space, low cost and lower power consumption is needed.  

For example: five major 8-bit microcontrollers are PIC from Microchip    Technology, Intel‟s 

8051, Atmel‟s AVR, Freescale semiconductor 68HC08/68HC11 and Ziglog Z8. 

Criteria of choosing Microcontroller:  

Meets the computational needs of task at hand efficiently and cost effectively. 

Availability of software and hardware development tools such as emulators, debuggers, 

compilers, stimulators etc. 
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Number of bits for Microcontroller (8-bit, 16-bit, 32-bit, 64-bit), the number of bits the 

Microprocessor can manipulate in one operation. More the number of bits, faster is the execution 

speed. 

Pin count(number of I/O Pin available or number of I/O ports available); if you want to interface 

more peripheral devices you need more I/O pins (Microcontrollers range for 16 pins to 100 pins).    

Memory size, amount of RAM, ROM and EEPROM in the microcontroller 

Maximum frequencies, faster the clock speed, faster is the program execution  

For example, for a 20 MHz crystal Tosc = 50ns an instruction is executed every 50 nanoseconds. 

Maximum frequencies for microcontrollers range from few KHz to hundreds of MHz selection 

of frequency depends on the application. 

Ease of upgrade, an application written in 8-bit PIC18F2525, works in PIC18F4560 as well as 

dsPIC30F families just with few changes and also the wide availability. 

Software gives a set of programs (instructions) to the CPU to perform specific task/s. Program is 

stored in the computer memory as binary numbers called machine instructions. Also CPU works 

only with binary numbers, therefore all programs need to be converted into machine instructions 

for execution. 

Thus programming, debugging and maintaining (user who didn‟t write the machine instructions 

will have difficulty in reading it) in machine is extremely difficult and prone to errors.  

Hence Assembly was developed, which provided mnemonics (codes and abbreviations easy to 

remember, for machine code instructions, which made execution faster and less troublesome. 

Programs here are converted into machine code by assembler. Assembly language is also called 

low-level language and here the programmer needs to have a thorough knowledge of the internal 

structure of CPU. Today users can program MCU‟s through high-level Languages such as 
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BASIC, C, C++ and JAVA without worrying about internal architecture of the CPU, thus 

programs here are easy to write and debug making programming easier. Programs in high-level 

languages are converted into machine instructions using compilers. One of the drawbacks of 

using high-level languages coding in requires much more machine instructions than assembly 

languages. Hence programs which time-critical are still written in assembly.  
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APPENDIX E: dsPIC30F4013 MICROCONTROLLERS: (DATA SHEET) 

We have used dsPIC30F4013 (F stands for Flash ROM memory) for our project because of the 

wide variety, availability and easy upgrade of Microchip PIC microcontroller (you can select the 

PIC microcontroller according to you specification with Microcontroller Product Selector (MPS) 

tool), excellent free development tools provided by Microchip such as MPSIM, MPLAB,  

compiler (MC30) etc, efficient execution speed (up to 30MIPS) and peripheral features such as a 

12-bit A/D converter, SPI, I2C and UART.   You can either program PIC microcontrollers using 

low-level (assembly) or a high level language (C). We have used c language for coding and C30 

compiler. 

The pin diagram for the dsPIC30F4013 controller is shown below: 

 

I/O:  Input devices such as keyboards, mouse etc. provides digital information to the 

microprocessor and the output devices such as LED, LCD etc. receive digital information from 

the microprocessor. These devices are interfaced to the microprocessor using the I/O ports. 

DsPIC30F4013 includes five bidirectional I/O ports; they are PORTA, PORTB, PORTC, 

PORTD and PORTF. Pins of each PORT can be either configured individually or together as 
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digital inputs or digital outputs. All pins are multiplexed meaning they can be setup by writing 

instructions to perform one or more functions of other peripheral devices. When configured to 

operate with the peripheral such as A analog to digital converter, a pin cannot be used as a 

general input or output pin. Also at reset all the port pins are programmed as inputs. 

Each port has three 8-bit SFRs associated with it they are designated as 

TRISx register (data direction register, where x stands for Ports A, B, C, D and F), sets up a port 

as input or output. Setting a bit to 1 configures a pin as Input and Clearing a bit to 0 configure the 

corresponding pin as an output (Notice that 0 stands for out and 1 for in. this is easy to remember 

because O and  0 look alike the same way that I looks like 1).  

For example:  

To set up an entire port as input or output 

TRISx =0b0000000, 

Example: set PORTA as output port we write to TRISA register as follows: 

TRISA =0b00000000; 

To setup an pin of a port as output or input; 

TRISxbits.TRIScy=1; where x = PORT A, B or C and y = Pin number (0-7) 

Example: Set Port A pin 6 as output 

TRISAbits.TRISA6 =1. 

 

PORTx register (reads the levels on the pins of the device), is used to read the input of the actual 

voltage level applied to the pin from the configured PORTs. PORT register requires the PORT to 

be configured as input by using the TRIS register. 

For example: Suppose we have a switch on pin 0 of PORTA which is configured as input, than if  
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We read from PORTA when the switch is pressed we get 

PORTA= 0b00000000; 

PORTAbits.RA0 =0; 

Or we get the following when we read from PORTA when the switch is released. 

PORTA= 0b00000001; 

PORTAbits.RA0 =1; 

 

LAT register (output latch), it is the output latch onto which values are written. And this register 

is independent of the configuration of the TRIS register.  

For example: If a result of a particular program when correct switches ON an LED on pin 3 of 

PORTC 

Than LATC= 0b00000100; //Pin 3 is high 

Or     LATCbits.LATC3 =1; 

Mirochip support staff recommends to use PORTx for reading data in and LATx for writing data 

out - especially when using single bits for I/O.  
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APPENDIX F: UART PACKETS INTERFACING WITH HYPERTERMINAL, 

MATLAB AND BCI2VR 

Testing of the dsPIC30F4013 transmission module can be done in the following ways:  

Communication with the PC using HyperTerminal 

1. To launch HyperTerminal 

Start       Program       Accessories        Communication 

2. When the HyperTerminal's is launched Connection Description window appears, to set up the 

program enter in name for this communications session. 

3. A HyperTerminal's Connect to screen window appears, choose the serial (com) port you are 

using from the Connect Using field. Click OK.  

4. Next HyperTerminal‟s COM1 (port you have selected) Properties window appears. Select 

values for the fields according to your configuration. For example for our UART packets 

configuration, the values in the following fields would be: 

Bits per second: 115200 (baud rate of the computer), Data bits: 8, Parity bits: none, Stop bits: 1  

Flow control: none  

5. Check the ASCII setup from HyperTerminal:  

 From the File menu, select Properties.  

 In the Properties screen, select the Settings tab 

 In the Emulation field, select "ANSI."  

 Click on the ASCII Setup button. 

 In the ASCII Setup screen uncheck all the boxes. 

 Click OK in the ASCII Setup screen.  
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 Click OK again the Properties screen.  

6.. If the PIC MCU transmit program is running, the string sent to the PC by the console program 

should be displayed in the HyperTerminal window. 

 

Communication with the PC using Matlab 

In the matlab command prompt type the following: 

1.  s = serial(„com7‟);  constructs a serial port object associated with  port, PORT you are using . 

If PORT does not exist or is in use you will not be able to connect the serial port object to the 

device. For example use cannot Interface USART packets with Matlab and HyperTerminal at the 

same time.  

2. set(s, „BaudRate‟, 115200); set the baud rate of the interface (replace it with the baud rate you 

are using). 

3. fopen(s); connects the serial port object to the serial port.: 

4. get(s); returns the information of the packets (such as packet order, number of bytes available). 

5. fread(s);  reads and displays the data. 

6. fclose(s); disconnect the serial port object from the serial port in other words closes the 

connection. 

 

Communication with the PC using BCI2VRMatlab Toolbox 

1. In the BCI2VR GUI interface, select Data Acquisition 

2. File-> load set-up file -> (C: SharedFolder->BCI2VR_Toolbox->setup_files-

>rs232_EBLAmp_btv_daq_settings.m) -> Open.  

3. Run calibration (the green button) and record. 
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