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Abstract

TOTAL VARIATION BASED RESTORATION OF BILEVEL WAVEFORMS

By Rebecca Jane McCarter, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Director: Dr. Todd Wittman, Assistant Professor, Department of Mathematics and Applied
Mathematics.

A series of Total Variation based algorithms are presented for the restoration of bilevel

waveforms from observed signals. The proposed model is discussed analytically and

numerically via the gradient descent minimization of the TV energy. The application of

restoration of bilevel waveforms encoded within barcode images is presented. A super-

resolution technique is proposed as a reduction of dimensionality of the image data. The

result is a high resolution image from which the encoded bilevel waveform is restored.

Implementation of results is shown for synthetic and real images.
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Introduction

Binary signals are prevalent in digital systems and have a wide range of applications includ-

ing text, data communication packets, and barcodes. A signal is binary if it communicates

data by varying between values of zero and one.

Each binary signal can be expressed as a characteristic function of a measurable subset

S of the real numbers. That is, the signal takes a value of one on S and a value of zero

elsewhere. In this investigation, we will address binary signals as bilevel waveforms. A

bilevel waveform over the domain Ω is a function that varies between two possible values.

During the processes of data acquisition, communication, and storage, distortion (blur

and noise) is often introduced into the bilevel waveform, compromising the encoded data.

This presents a problematic situation in data communication and motivates a series of

interesting mathematical queries.

Distortion of the bilevel waveform u(x) will be considered to be the result of blur

distortion and additive noise. As in [10], distortion Tα,σ of the waveform due to blur can be

modeled by the convolution of the initial bi-level waveform with a Gaussian kernel Gσ of

amplitude α and standard deviation σ denoted by

Tα,σ : u(x)→ α ·Gσ ∗u(x)

for α > 0, and the Gaussian kernel
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Gσ (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
with α > 0

The incorporation of additive noise n(x) leads to the following hypothesized model for

the observed waveform:

f (x) = Tα,σ (u)+n(x)

In order to restore the bilevel waveform from the observed waveform f (x), it is necessary

to estimate the parameters of the Gaussian kernel. While an attempt to meaningfully

execute approximations of these parameters may lead to ill-posed problems for general

waveforms, Esedoglu showed that the unique structure of bilevel waveforms will allow

effective determination of parameters for small amounts of blur distortion [10].

The current investigation considers variational methods for the restoration of bilevel

waveforms from distorted observed signals. Variational methods for noise reduction were

first introduced in 1992 by Rudin, Osher, and Fatemi [14], [18]. These methods were

originally developed to address two-dimensional data sets such as image data. Since then,

there have been numerous extensions and proposed improvements to the methods suggested

by Rudin, Osher, and Fatemi. Several extensions include those described in [1], [5], [22],

[9], [23]. The detection of edges or discontinuities in the bilevel waveform is a necessary

aspect of restoration problems, because the discontinuities explicitly define the binary signal

encoded within the waveform. Mumford and Shah are well-known for early work on the

problem of edge detection [16]. Extensions of the problem of edge detection can be found

in [2], [3], [4]. Preservation of edges in restored waveforms is often compromised by

displacement of local extrema within the waveform that is induced by restoration algorithms
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developed to reduce blur [21]. This phenomenon is known as convolution distortion. As the

standard deviation of the convolution kernel approaches the minimum length of any segment

in the bilevel waveform, convolution distortion inhibits the detection of discontinuities in

the waveform. An algorithm to account for this issue is addressed by Joseph and Pavlidis

[13], [12]. A partially blind deconvolution approach has been shown to more systematically

address the problem of convolution distortion [8],[10].

In the present investigation we will discuss, both analytically and numerically, a series

of Total Variation (TV) based models for bilevel waveforms adapted from the algorithm

proposed by Rudin, Osher, and Fatemi [14]. The modified algorithm minimizes an energy

functional by gradient descent and is consequently described by an iterative technique.

Although we will discuss numerical implementation, our interest is not the speed but rather

the accuracy of the algorithm.

We will also investigate the application of this algorithm to barcode waveforms. Bar-

code waveforms will be extracted from a super-resolution of image data. This technique

incorporates data from the entire barcode image into a single waveform. Both synthetic

image and real image data are presented, and numerical techniques for addressing each case

are described.
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Restoration of a Bilevel Waveform

The current discussion will address several techniques for the restoration of a bilevel

waveform u(x) from an observed signal f (x). First, we discuss linear filters and identify

inadequacies in these methods. In order to detect and remove artifacts introduced into the

waveform by additive noise, it is necessary to consider values of the observed waveform

f (x) in a neighborhood about x0 for each x0 in the domain Ω . Reduction of noise artifacts

may be accomplished by the application of a mean filter. The value of the proposed restored

waveform at each value x0 is given by calculating the mean value of the observed waveform

u(x) across a neighborhood about x0. This is a method of linear smoothing.

Linear smoothing by the application of a mean filter will result in the reduction of

noise artifacts but may also introduce additional blur distortion near discontinuities in the

ideal bilevel waveform. Restoration attempts by application of a median filter may be less

sensitive to the effects of noise artifacts, but a median filter will fail to remove blur distortion.

Reduction of noise artifacts is evidenced qualitatively in the mean-filtered and median-

filtered waveforms. However, the blur distortion of the observed signal is not improved.

Techniques requiring differentiation of the observed waveform in order to calcultate the

extrema in the signal and identfy discontinuities in the bilevel waveform are sensitive to

noise. The noise artifacts often differ greatly from the nearby values of the waveform and

create false extrema. These false extrema are evident in the derivatives of the waveform

and lead to inaccurate restoration of the bilevel waveform by inappropriate identification of

discontinuities[10]. In the problem of restoring bilevel waveforms, inappropriate definition
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Figure 2.1: Restoration by application of mean and median filters.
From Top to Bottom: Ideal bilevel waveform. Observed distorted signal. Mean-Filtered

signal. Median-filtered signal.
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of local extrema corresponds to false identification of discontinuities in the binary signal

and consequent ineffectiveness of the restoration process.

The first waveform shown in Figure 2.1 displays the ideal bilevel waveform that has

been distorted by convolution with a Gaussian kernel and additive noise in the second

waveform, as described previously. Noise is evidenced in this waveform by the uneven

plateaus that were uniformly values of zero or one in the bilevel waveform. The angled

transitions between states within the waveform are the product of blur distortion. The third

waveform illustrates the effects of mean filtering. We can see that noise artifcats are reduced

in the mean-filtered waveform. The fourth wavefrom The reduction of noise artifacts is

not as effective in the fourth waveform. This can be seen easily by observing the values

of the waveform between x values of 105 and 140 in the mean-filtered waveform and the

median-filtered waveform. It is clear that the mean-filtered waveform is more smooth on this

interval than the median-filtered waveform. This corresponds to a more effective reduction

of noise by mean-filtering.

2.1 TV Energy Minimization

The values of an observed waveform f (x) can be defined as the energies for each of the x

values in the domain Ω . We will define an energy functional for the observed waveform f (x)

in order to minimize the first variation of the energy, or the first derivative of the assigned

functional, over Ω . The resulting waveform u(x) is the minimizer of the functional and the

proposed solution to the restoration problem. We will address three energy minimization

algorithms, TV minimization, TV minimization with a penalty function, and a Modica-

Mortola approximation to TV minimization.

In order to address the TV Energy minimization of an observed waveform f (x), we note

that the observed waveform can be viewed as a function of bounded variation (BV). That is,
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the total variation given by

TV [ f ] =
ˆ

Ω

|∇ f |

is finite, because f (x) ∈ [0,1], ∀x ∈ Ω ⊂ R . It is known that for any f ∈ BV (Ω), it

is possible to find a sequence of approximations ( fn) such that fn converges to u and
´
Ω

| f ′n| →
´
Ω

| f ′| as n becomes infinitely large [7]. Thus,
´
Ω

| f ′n− f ′| → 0 as n→ ∞.

We consider a technique for generating an approximation u(x) to a waveform from an

observed waveform f (x) based on a variational approach to image processing. We can

think of the values of the waveform over the domain Ω as the energy associated with each

x ∈Ω . In order to reduce the effects of noise and blur, we will assign an energy functional

to the waveform that expresses the energy at each x ∈Ω . Elimination of distortion within

the waveform can be accomplished by minimizing the first variation of energy, or the

first derivative of the energy functional. Using a first order optimization algorithm known

as gradient descent or method of steepest descent, we find the minimizer of the energy

functional over the domain of the waveform. In order to apply this algorithm, we assume

that the energy functional is defined and differentiable for all x ∈ Ω . Then, the function

decreases most rapidly in the direction of the negative gradient. Thus, the iterative method of

gradient descent steps in the direction of the negative of the gradient of the energy functional

for each iteration. The minimizer for the TV energy functional is the proposed solution to

the denoising problem.

An approximation u(x) : Ω → R to the original waveform can be recovered from the

observed signal f (x) by minimizing the TV energy proposed by Rudin, Osher, and Fatemi

[14]. The TV energy functional of a waveform can be expressed as
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E [u | f ] =
ˆ

Ω

|ux|dx+λ

ˆ

Ω

(u− f )2 dx

where the domain of integration Ω ⊂ R is the domain of the observed waveform and is

restricted to the real-line, λ ≥ 0 is a Lagrange multiplier, and u(x) : Ω → R. The energy is

written as a function of a guess for the improved signal u given the observed waveform f .

The first term gives the Total Variation of the current approximation and the second term is

a fidelity term, relating the approximation to the observed waveform. In practice, we take

the observed waveform f to be the initial guess for the restored waveform u. The minimizer

of this functional over the given domain is the proposed solution.

It is known that, for an observed waveform f ∈ L1 (Ω), the minimizer of the TV energy

in BV (Ω) exists and is unique [7].

Although we restrict the domain to the real line, it is straightforward to extend this

technique to higher dimensions.

We are interested in the minima of this functional, so we will consider the stationary

points. In order to determine the functions for which a given functional is stationary, we

evaluate the Euler- Lagrange equation for the functional. The Euler-Lagrange equation for a

functional E [u] = g(x,ux) is

∇E =− ∂

∂x
∂g
∂ux

+
∂g
∂u

In this case, our functional is

g(x,ux) = |ux|+λ (u− f )2

so we have

∇E =− ∂

∂x
sign(ux)+2λ (u− f )
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The sign function is discontinuous at ux = 0, so the Euler-Lagrange equation is numer-

ically unstable when u(x) is constant in x. For a binary signal u(x), ux = 0 for all x ∈ Ω

except those x at which the bilevel waveform is discontinuous. Thus, the Euler-Lagrange

equation for this functional cannot be differentiated with respect to x. We numerically

approximate the sign function. In order to construct a numerical approximation, we will use

the following continuous approximation for the sign function:

sign(ux)∼=
2
π

arctan
(ux

ε

)
for small positive values of the parameter ε . In application, it is necessary to maintain values

of ε sufficiently large to avoid numerical instability of the approximation as ε approaches

zero.

Therefore, we approximate the Euler-Lagrange equation by

∇E ∼=−
2
π

εuxx
(
ε

2 +u2
x
)−1−2λ (u− f )

which motivates the following approximation to the gradient descent of the TV energy

∂u
∂ t
∼=

2
π

εuxx
(
ε

2 +u2
x
)−1−2λ (u− f )

Numerically, the gradient descent is discretized by a forward Euler method as

un+1 = un +∆ t
[

2
π

εun
xx

(
ε

2 +(un
x)

2
)−1
−2λ (un− f )

]

where ∆ t is the time step, f is the observed waveform, and un is the nth iterate. The first

and second derivatives of u(x)with respect to x are calculated by finite difference schemes.

For applications requiring larger values of ∆ t, an implicit scheme would be faster than the

proposed method and stable.



10

The minimizer of this functional exists on a bounded domain, and a solution consequently

exists for the energy function described here. Esedoglu shows that for sufficiently large

values of λ , a generalized form of this technique is effective in recovering the original signal

u(x) [10].

Esedoglu also describes an approach for the reduction of blur in the observed waveform

[10]. In [10], Esedoglu presents an algorithm for partially blind deconvolution of barcode

signals. Although we focus mainly on the reduction of noise in the observed waveform in

the present investigation, the partially blind deconvolution approach to blur reduction taken

by Esedoglu should be considered when addressing the general restoration problem.

In order to account for blur in the observed waveform, we incorporate the Gaussian

Kernel Gσ of unknown amplitude α and standard deviation σ given by

Gσ (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, with σ > 0,

and introduce the following energy functional

E [u] =
ˆ

Ω

|ux|dx+λ

ˆ

Ω

(αGσ ∗u− f )2 dx+β

ˆ

Ω

u2 (1−u)2 dx

This energy functional follows the form of the TV energy proposed by Rudin, Osher, and

Fatemi [14]. However, noise reduction is incorporated into the functional by convolution of

the proposed solution u with the Gaussian kernel. The addition of the third term serves as a

penalty function, forcing the values of the recovered signal to approach zero and one. This

term is useful in the restoration of a binary-valued waveforms. In [10] Esedoglu shows that

for small amounts of blur, the proposed method is well-defined. Meaningful approximations

for the unknown parameters of the Gaussian kernel can be calculated systematically, and the

minimizer of this energy functional over the initial guess for the solution is an approximation



11

to the desired waveform [8].

Figure 2.2 illustrates the effects of applying TV energy minimization to a noisy observed

waveform. The first graph shows the ideal bilevel waveform. In the third graph, the TV

denoised waveform exhibits a reduction in noise artifacts. However, the discontinuities in

the bilevel waveform are represented by smooth curves and binary values are not obtained.

Additional improvements can be made to the resulting waveform in order to restore the

bilevel waveform.

2.2 TV Energy Minimization of a Bilevel Waveform

The TV energy minimization scheme discussed in the previous section can be modified

for the restoration of bilevel waveforms. Bilevel waveforms are unique in that they take

values of only zero and one. We adapt the general one-dimensional TV energy minimization

technique to the bilevel waveform restoration problem by adding a penalty term to the TV

energy function. This term forces the proposed restoration u(x) to take values of zero or

one. Addition of this term is unique to the problem being addressed, since values of the

ideal waveform are binary. Figure 2.2 gives a qualitative illustration of the improvement

achieved by addition of a penalty term. The third curve shows the results of TV minimization

denoising, and the fourth curve shows the effects of adding a penalty function to this method.

In the fourth curve, it is clear that the peaks of the waveform are flattened and forced towards

values of zero and one.

We will use the ’double-well function’ W (u) = u2 (1−u)2as the penalty term. The

function W (u) has minima at u = 0 and u = 1, so addition of this term will force values of

the waveform to approach 0 and 1. The TV energy is given by

E [u] =
ˆ

Ω

|∇u|+λ

ˆ

Ω

(u− f )2 +β

ˆ

Ω

W (u)
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Figure 2.2: Variational Methods
From top to bottom: Ideal bilevel waveform, observed waveform, TV denoised waveform,
TV denoised waveform with penalty function, Modica-Mortola approximation waveform.
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for strictly positive values of β .

Esedoglu shows in [10] that the with addition of the ’double-well’ function, the new

problem is well-posed. Minimizers over the domain of the observed waveform are proposed

restorations of the bilevel waveform.

The new Euler Lagrange equation is given by

∇E ∼=−
2
π

εuxx
(
ε

2 +u2
x
)−1

+2λ (u− f )+β
(
2u−6u2 +4u3)

The Euler-Lagrange equation is derived by the same process described before. We have

modified the energry functional of the previous section by the addition of the penalty term.

This new term does not contain x derivatives of u. Therefore, our new Euler-Lagrange

equation differs from the functional of the last section only by the addition of the of the u

derivative of the penalty function. Minimization by gradient descent implies that

∂u
∂ t
∼=

2
π

εxx
(
ε

2 +u2
x
)−1−2λ (u− f )−β

(
2u−6u2 +4u3)

and this equation is numerically discretized as

un+1 = un +∆ t
[

2
π

εun
xx

(
ε

2 +(un
x)

2
)−1
−2λ (un− f )−β

(
2un−6(un)2 +4(un)3

)]

2.3 Modica-Mortola Approximation

The restoration algorithms described previously can be approximated by considering the

minimizer of a related functional. We use the results of Modica and Mortola to describe

such an approximation. Minimization of the TV energy of the observed waveform f (x)

over the proposed restored waveform u(x) ,min
u(x)

E [u | f ] is approximated in previous sections

by substitution of the numerical approximation sign(ux)∼= 2
π

arctan
(ux

ε

)
.
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However, an exact calculation of the proposed restoration can be obtained by applying

the results of Modica and Mortola [15]. We write a functional Eδ for which the minimizer

is equal to the minimizer of the proposed TV energy functional

min
u(x)

E [u | f ] = min
u(x)

Eδ [u | f ]

Based on the results of Modica and Mortola, we consider the minimizer of following energy

over the entire waveform

Eδ [u | f ] =
ˆ

Ω

(
δ (ux)

2 +
1
δ

W (u)
)
+λ

ˆ

Ω

(u− f )2

for small positive values of the parameter δ , and W(u) = u2(1−u)2 is the penalty function

described in the previous section.

For a one-dimensional waveform, we consider the energy

Eδ [u | f ] =
ˆ

Ω⊂R

(
δ (ux)

2 +
1
δ

(
u2(1−u)2)+λ (u− f )2

)
dx

We will address the minimization of the proposed energy functional by gradient descent.

The Euler-Lagrange equation ∇Eδ for the energy functional Eδ is given by

∇Eδ =−2δuxx +
1
δ

(
2u−6u2 +4u3)+2λ (u− f )

and minimization by gradient descent gives

∂u
∂ t

= 2δuxx−
1
δ

(
2u−6u2 +4u3)−2λ (u− f )

This equation is numerically discretized as
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un+1 = un +∆ t
[

2δun
xx−

1
δ

(
2un− (6un)+(4un)3

)
−2λ (un− f )

]
This method incorporates the binary value constraint on the restored waveform by the

implementation of a penalty function. The method allows us to observe an exact calculation

of the gradient descent by application of the findings of Modica and Mortola, since we have

eliminated the numerical approximation of the sign function. It is known that this problem

has a unique solution and the minimizer is attained [10].

A qualitative comparison of the technique justified by the results of Modica and Mortola

can be seen in Figure 2.2. The Modica-Mortola algorithm shows a significant improvement

in the restoration of the binary values evident in the bilevel waveform.
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Super-Resolution of Bilevel Waveforms from Barcode Images

3.1 Barcode Images

There are a wide range of applications for the algorithms presented. In this discussion,

applications to barcodes are addressed. A super-resolution technique for barcode images is

presented and approached as a reduction of the dimensionality of the image.

Barcode images are a two-dimensional method for storage and communication of binary

data. They are composed of a series of alternating bars and spaces of varying width.

Information is encoded using the pattern and widths of individual bars and spaces. The

width of each bar is an integer multiple of the width of a unit bar contained within the

image. The unit bar provides a scale factor for decoding and a series of checks to ensure

that appropriate data is extracted from the image. The distribution of unit bars within each

barcode serves as a check for the proper decoding of the barcode image.

Encoded information is traditionally extracted using laser scanners to observe a one-

dimensional subset of the barcode image. We refer to the observed one-dimensional subset

as a scanline. A scanline is interpreted by decoding software, and the remainder of the

image is not used to recover the encoded information. In the event that an observed scanline

is corrupted, incomplete, or is unable to be decoded by decoding software, the scanner will

observe and consider another scanline. This approach to barcode decoding is effective in

industry because of the high-resolution signal obtained by using a laser scanner.

However, data acquisition techniques that obtain a two-dimensional image of the barcode

require imaging scanners that can simultaneously observe the information in the entire image
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Figure 3.1: Ideal barcode image.

such as digital cameras. While laser scanners acquire signals of higher resolution than digital

cameras, they are ineffective in two-dimensional imaging of barcodes. Decoding applications

on mobile devices such as smart phones present an interesting application for extraction

and decoding of bilevel waveforms from barcode image data. Limited resolution, distortion,

and additive noise associated with the acquisition and storage of image data using mobile

devices often prevents the effective extraction of a decodable waveform. Noise and blur

distortion in the barcode image of Figure ?? prevent decoding using a single scanline from

the image data and current decoding algorithms.

Barcode images u(x,y) that we consider are pixelated representations of an ideal barcode.

We address each ideal barcode as a two-dimensional array of binary data such that for all

pixels (x,y), the value stored in the array is an element of {0,1}. Figure 3.1 shows an ideal

barcode image in which each element of the array is binary valued. With the introduction of

distortion, noise, and blur, we will see that the values of the array become elements of the

closed interval [0,1]. Distortion compromises the integrity of the barcode image and may

prevent decoding. Figure 3.2 shows distortion of a pixelated barcode image. The image

clearly shows noise artifacts in the white spaces of a rotated barcode. Noise artifacts can be

identified by single pixels that are dramatically different in value than those surrounding

them. In the image, there are also pixels taking values other than black and white along the

edges of the bars. This is evidence of blur distortion.
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Figure 3.2: Blur and noise in pixelated barcode image.

3.2 Super-Resolution Schemes

In order to restore a binary sequence and the corresponding bilevel waveform, we will

consider a super-resolution of the image data. While traditional methods of barcode decoding

consider only a single scanline, a super-resolution scheme incorporates the information

contained in each of the scanlines to form a single waveform.

Super-resolution is a technique used frequently in medical imaging, satellite imaging,

and video applications to construct a single high-resolution (HR) image from a series of

low-resolution (LR) images [19]. Two successive processes are generally used to generate

the HR image. The first process involves the alignment of images, as it is likely that the data

contained in each image is not spatially aligned within the frame. Fusion of the images is

the second process. The images must be meaningfully combined to form a single HR image

[11].

We adapt the concept of super-resolution to a reduction in dimensionality of barcode

images. A two-dimensional barcode image can be expressed as an array of individual

scanlines. We align and fuse the individual scanlines to form a single HR waveform that

is representative of the entire LR barcode image. The waveforms extracted from barcode

images are one-dimensional data sets, so we eliminate the need for repeated sampling of the

image [6].
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Figure 3.3: Three degrees of freedom in barcode rotation. [24]

In addition to blur and noise, barcode images virtually always contain geometric sam-

pling distortion. When the picturing plane and the plane containing the original barcode are

not parallel, geometric sampling distortion will be evident in the acquired barcode image.

By exploiting the sampling distortion, geometry, and high contrast of barcode images, we

are able to compose schemes for super-resolution of image data to form a HR waveform.

We address three cases of sampling distortion (Figure 3.3).

We assume that the original barcode is printed on a planar surface and consider three

mechanisms of rotation relative to the picturing plane of the camera. The case of no rotation

is addressed as a trivial case. Virtually all barcode images exhibit geometric sampling

distortion. The yaw case is achieved when the distance between the plane containing the

original image and the camera lens is not horizontally uniform. The pitch case results from
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Figure 3.4: Synthetic no rotation barcode image
From top to bottom: No rotation barcode image and mean filtered projected waveform.

vertical displacement non-uniformity between the lens and image plane and occurs when the

top or bottom of the barcode is brought closer to the camera. The roll case refers to rotation

of the barcode image within the plane. For each case, we present a super-resolution scheme

for extracting a single HR waveform from all of the data contained in the barcode image.

3.2.1 Case 1: No Rotation and the Yaw Case

The case of no rotation is a trivial case. In practice, we expect to have barcode images with

either or both of pitch and roll distortion. We create a single waveform from the trivial

barcode image by projecting the data from each pixel of the barcode image onto a projection

axis t that is perpendicular to the bars of the barcode. Note that this construction produces

degenerate sampling of the image: the same point along the projection line represents each

pixel in the corresponding pixel column of the barcode image.

We alleviate this problem by applying a mean filter to the data in each pixel row of the

barcode image in order to calculate the corresponding value within our projected waveform.
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Figure 3.5: Pitch case projection schematic [24]

Figure 3.4 shows a barcode image and the corresponding waveform generated by applying a

mean filter to the image. In the no rotation case, the reduction of noise artifacts and local

obstruction or distortion of the barcode image can be restored by mean filtering of the array

columns.

We restore the bilevel waveform encoded in the barcode data by applying the techniques

discussed in the previous chapter with ∆ t = 1, since each value in the waveform represents

the mean of a column of pixelated values.

We address the yaw case in the same fashion. Since the distortion in the yaw case is only

of the relative widths of the bars within the barcode, we apply a mean filter to the acquired

barcode image and leave the interpretation of relative widths of bars to the decoder.
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3.2.2 Case 2: The Pitch Case

In the pitch case, the bars will not appear to be parallel in the barcode image. Based

on perspective geometry, the bars should converge to a focal point F = (xF ,yF) that we

extrapolate from the data contained in the barcode image. The location of the focal point

can be calculated by a least-squares method [24]. A schematic describing the projection

method is shown in figure 3.5. Each pixel in the barcode image u0 (x0,y0) is traced along

a vector connecting F to the point (x0,y0) and projected onto the projection axis t (Figure

3.5). The resulting HR waveform is u(t). This method for super-resolution by dimension

reduction is explained in depth in [24].

3.2.3 Case 3: The Roll Case

Image acquisition and storage in the roll case creates additional blur distortion, as the image

is discretized into pixels at an angle different than that of the orientation of the bars of the

barcode. The blur distortion and noise introduced by pixelating a barcode image is illustrated

in Figure 3.2. As in the case of no rotation and yaw, we will project the data contained in

each pixel to a point along a projection axis t that is perpendicular to the orientation of the

bars within the barcode.

Based on the work of Safran and Oktem, we assume that the angle of rotation within

the plane can be determined by an application of edge detection algorithms [20]. One such

algorithm is based on the Hough transform. The Hough transform is an image processing

technigue used to detect lines within an image. Detection of the lines along the edges of

bars in the barcode image enables the extraction of the rotation angle for real images.

We derive a super-resolution scheme to project each pixel value in the image array onto

a projection axis t. The projected data will compose a HR waveform. Figure 3.6 illustrates

the schematic used to derive the trigonometric projection of the data value corresponding to
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Figure 3.6: Roll case projection schematic.

each pixel within the image array to a point along the projection axis. For a pixel (x0,y0) in

the original image array, the corresponding ordered pair along the projection axis (x,y) is

given by:

x(x0,y0,θ) = x0 + sinθ cosθ (y0− x0 tanθ)

y(x0,y0,θ) = x0 cosθ sinθ − y0 sin2
θ

where θ is the angle of rotation within the picture plane.

The resulting waveform P(x) : X→ u0 (x0,y0) is expressed as a vector of x-coordinates X

along the projection axis t and the corresponding vector of pixel values u0 (x0,y0) projected

from the barcode image array u0.

Theorem. The roll case projection given by

x(x0,y0,θ) = x0 + sinθ cosθ (y0− x0 tanθ)

y(x0,y0,θ) = x0 cosθ sinθ − y0 sin2
θ
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yields degenerate sampling if and only if the tan(θ) is rational.

Proof. Assume that two pixels (x0,y0) and
(
x′0,y

′
0
)

map to the same x-coordinate along the

projection axis. Then x = x′ under the mapping x(x0,y0,θ) = x0+ sinθ cosθ(y0− x0 tanθ).

Equivalently, x0 + sinθ cosθ (y0− x0 tanθ) = x′0 + sinθ cosθ
(
y′0− x′0 tanθ

)
. By algebra

and trigonometric identities,

(
x0− x′0

)(
1− sin2

θ
)
=
(
y′0− y0

)
sinθ cosθ ⇒ sinθ cosθ

cos2 θ
= tan(θ) =

(
x0− x′0

)(
y′0− y0

)
Since the coordinates x0, y0, x′0 and y′0 are non-zero natural numbers, the tangent of the

angle of rotation θ must be rational in order for degenerate sampling to occur.

In the no rotation case, the x coordinates of the projected waveform were evenly spaced

along the projection axis. Each x in the projected waveform corresponded to one column

of pixels within the image array. However, the projected waveform in the current case

is determined by a trigonometric projection scheme. Consequently, the distance between

data points in the HR projected waveform is not constant. Although the waveform P(x) is

non-uniform spatially, in the absence of noise artifacts, it is possible to restore the bilevel

waveform encoded within the barcode directly.

In previous cases, we reduce the effects of noise artifacts by application of a mean

filter. In the roll case, our projection signal assigns a unique x-coordinate to each pixel

in the barcode image array in order to create the super-resolution projection waveform

P(x). Noise artifacts introduce dramatic increases in the gradient of the projected waveform

P(x). Consequently, variational methods may not distinguish between noise artifacts in the

projected waveform P(x) and discontinuities in the ideal bilevel waveform corresponding to

the edges of bars in the original barcode image.
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We consider several methods for the interpolation of a uniformly spaced super-resolution

waveform H (x0) from the projection waveform P(x) : X → u0 (x0,y0). Each value in the

new waveform H (x0) can be calculated by a Gaussian weighted average. For each x0 in

the interpolated uniformly-spaced projection signal H (x0), we calculate the value of H (x0)

by considering a weighted average of the points in a neighborhood about x0 in P(x). The

weights assigned to each data point in the neighborhood about x0 in P(x) are given by a

Gaussian distribution centered at the point x0. We select a uniform step size ∆x < 1 pixel and

assign new x-coordinates to the waveform H (x0) by x0 = n∆x where n = [max(X)−min(X)]
∆x .

We may also consdier a nearest neighbor interpolation to create a uniform signal. However,

a nearest-neighbor interpolation for H (x0) will not eliminate the effects of noise artifacts in

all cases.

The resulting spatially uniform interpolated waveform H (x0) is used to restore the

encoded bilevel waveform of the barcode by variational methods discussed in Chapter 2.
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Numerical Results

The TV energy minimization and Modica-Mortola discretized gradient descent schemes

were implemented using MATLAB©. We applied the numerical techniques described in the

previous chapter to a number of synthetic and real barcode images.

4.1 Synthetic No Rotation Case

Reduction of dimensionality in the case of no rotation does not produce a HR signal. The

case of no rotation is illustrated in Figure 4.1. The barcode image is distorted by the addition

of Gaussian noise, and a single scanline is not able to decode due to the presence of noise

artifacts in each scanline. The second plot in Figure 4.1 shows the waveform associated

with a single extracted scanline from the image. Comparing this to the bilevel waveform

encoded within the barcode, as shown in the first plot, it is evident that the presence of

noise within the image his distorted the scanline. The third plot shows the mean-filtered

waveform. The mean-filtered waveform contains the same amount of information present

in a single scanline. However, the mean-filter has reduced the effects of individual noise

artifacts throughout the image enough to restore the discontinuities within the original bilevel

waveform. The fourth waveform illustrates the effects of the TV denoising algorithm. The

peaks appear to be smooth, but the binary values of the bilevel waveform are not restored.

The addition of a penalty function forces values in this waveform towards zero and one,

as evidenced in the fifth plot. The sixth plot shows the restored waveform produced by

the Modica-Mortola scheme. The binary values and definition of discontinuities have been
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Figure 4.1: Synthetic Case 1: No rotation.
From top to bottom: Barcode image, encoded bilevel waveform, 17th scanline waveform,

mean filtered projection, TV denoised projection waveform, TV denoised projection
waveform with penalty function, Modica Mortola Waveform. (T = 20,δ = β = λ = 0.1)
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Figure 4.2: Synthetic Roll Case
From top to bottom: Single Scanline, HR Projected Waveform, Modica-Mortola Restored
Waveform(T = 5,δ = β = λ = 0.1), TV Restored Waveform (T = 20,δ = β = λ = 0.1)

restored. This is due to the fact that the Modica-Mortola approximation of the TV energy

defines a diffuse interface problem.

4.2 Synthetic Roll Case

Super-resolution by dimension reduction in the rotation case produces a HR projection

waveform. In Figure 4.2 a synthetic barcode image is presented. The synthetic rotation of the

barcode ten degrees introduced blur into the image. The first plot in Figure 4.2 illustrates the

waveform corresponding to a single scanline of the image data. Blur distortion is evidenced
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Figure 4.3: Data Density in Synthetic Roll Case
From top to bottom: Data distribution from single scanline, Data distribution from projected

waveform

by the curvilinear peaks of the waveform. The trigonometric scheme described previously

was applied to generate the projected HR waveform shown in the second plot.

Figure 4.3 shows the increased resolution of the projected waveform. The first plot shows

a section of the single scanline extracted from the rotated image. Each asterisk represents a

data point defining the waveform. The second figure shows a corresponding section of the

projected waveform. Again, each asterisk represents a data point defining the waveform. It

is evident that there are substantially more data points within the HR projected signal. The

increased resolution of the signal is a consequence of projecting all of the data contained

in the barcode image along a single axis and is beneficial in the elimination of distortion

within the image. We will see in later results that the constructon of a HR projected signal

may help to recover data that is lost in each scanline throughout the entire image.

The third plot in Figure 4.2 illustrates the waveform restored by the Modica-Mortola

scheme. Binary values are recovered and discontinuities are consistent with the encoded
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bilevel waveform. The fourth plot displays the results of the TV minimization with penalty

function scheme. Though noise artifacts have been reduced, blur is still evident in the

waveform and the penalty function has not effectively forced values of zero within the

waveform.

4.3 Real Rotation

A real rotation image and the corresponing waveforms are shown in Figure 4.4. The image

shown was photographed using the camera on a smartphone and cropped to analyze only

a portion of the image data. The first plot shows the waveform corresponding to a single

scanline. Both blur and substantial noise distortion are illustrated in the scanline waveform.

The high resolution projected signal shown in the second plot contains information from the

entire image. Consequently, the effects of noise evidenced in the single scanline have been

lessened. For example, inconsistencies in the heights of the peaks in the waveform are not

as great as those seen in the waveform representing the single scanline. In this case, both

the TV with penalty function scheme, in plot three, and the Modica-Mortola scheme, in plot

four, effectively recover each of the bars as well as the binary values of the waveform. The

lenth of the scanlines in both the Modica-Mortola and TV restorations is noteworthy. They

are on the order of 100 times the length of the single scanline waveform, and they contain

substantially more data than the single scanline. The HR waveform enabled by the presence

of roll distortion also enables the recovery of binary values by the TV scheme, a result that

was not seen for the no rotation case in which the development of a super-resolution signal

was not possible.
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Figure 4.4: Real Roll Case
From top to bottom: Single Scanline, HR Projected Waveform, Modica-Mortola Restored
Waveform(T = 5,δ = β = λ = 0.1), TV Restored Waveform (T = 20,δ = β = λ = 0.1)
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Figure 4.5: Locally Corrupted Barcode Image
From top to bottom: Corrupted barcode image, corrupted scanline waveform, mean filtered

waveform, Modica-Mortola restored waveform (T = 6,δ = β = λ = 0.1) .

4.4 Restoring Corrupted Images

The projection schemes and variational methods described in this paper are also useful for

restoring a bilevel waveform from a corrupted barcode image. We present two examples of

corrupted barcode images. The first has local corruption that affects only scanlines near the

center of the image. The second shows universal corruption of the image that will prevent

nearly all scanlines from decoding.

Figure 4.5 shows the first corrupted barcode image. The real image exhibits geometric

sampling distortion, but for the illustration we assume that there is no rotation of the barcode

within the plane of the image. An observed waveform is selected from the area of corruption.

In the observed waveform, four bars are lost around x = 600. The mean filtered waveform
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recovers these bars, and the Modica-Mortola algorithm restores the binary nature of the

missing bars. There are multiple corrupted scanlines within this image that are not decodable

by current decoding algorithms. However, without resampling of the image, the barcode can

be decoded by application of the projection and variational method even in the presence of

local corruption of the image data.

In practice, if a corrupted scanline is input into a decoding algorithm and fails to decode,

a new scanline must be selected and the process repeated. However, if the input is instead a

waveform created by the projection and restoration techniques described, the local corruption

will not prevent decoding. This application can be extended to barcode images with multiple

areas of local corruption and barcodes with universal corruption.

Figure 4.6 shows a barcode image with universal corruption. As in the previous example,

geometric sampling distortion is evident, but for the illustration we make the same assump-

tion of no rotation within the imaging plane. There is a line drawn through the barcode

image. Nearly every scanline contains corruption that prevents the individual scanline from

decoding. Three scanline waveforms are plotted in Figure 4.6 in order to show the effects

of corruption. Localized corruption within individual scanlines is evident when comparing

multiple scanlines extracted from the image. Scanline 15 is close to the top of the barcode

image and consequently has corruption in the signal near x = 2275. Scanline 215 is extracted

from the center of the image, and corruption can be seen near x = 1300. Scanline 415 is

representative of a row of data near the bottom of the barcode image, and corruption is

visible in the waveform near x = 700.

Applying a mean filter to the image shown in figure 4.6 and using the Modica-Mortola

restoration scheme, we are able to recover the bilevel waveform from the corrupted image

data. Figure 4.7 shows the mean filtered projection waveform and the Modica-Mortola

restoration waveform. Each of the bars in the original barcode are restored.
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Figure 4.6: Universally Corrupted Barcode Image
From top to bottom: Observed scanline 15. Observed Scanline 215. Observed Scanline 415.
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Figure 4.7: Restored Universally Corrupted Barcode Image
From top to bottom: Corrupted barcode image, mean filtered waveform, Modica-Mortola

restoration waveform. (T = 6,δ = β = λ = 0.1).
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Concluding Remarks

In this paper we have presented a series of modifications to well-known image processing

algorithms in order to develop a variational approach for the restoration of bilevel waveforms

from image data. We have adapted the concept of super-resolution of video in order to create

a single waveform from the data contained in an image and applied restoration schemes to

these waveforms for both synthetic and real initial data sets.

Many approaches to the super-resolution and restoration of bilevel waveforms have

been previously addressed. A computer vision based method is employed by Oktem and

Oktem [17]. Bailey created a phase image by Fourier Transforms in order to develop a super-

resolution signal [6]. Esedoglu addresses deconvolution of waveforms by systematically

estimating parameters [10].

This approach to bilevel waveform restoration is unique in that it extends the concept of

super-resolution to the barcode restoration problem geometrically. We incorporate all of the

data from an image when calculating the approximation of a single bilevel waveform. Our

approach is noteworthy in the context of the application that we have chosen to elaborate on

in this paper.

Our approach extends the concept of super-resolution of video to create a non-uniformly

spaced waveform that combines all of the information present in the entire image. This

waveform contains more information about the encoded binary sequence than we would be

able to extract from a single uniformly spaced row of the pixelated barcode image.

We have addressed several synthetic and real barcode images that are not decodable by
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current algorithms but are able to be decoded after the application of the methods described.

Further investigations may include sampling distortion generated from observing bar-

codes on various topological spaces, numerical improvements to the techniques considered

here, and other schemes for generating super-resolution signals.
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Appendix: MATLAB © Code

MATLAB © code used to implement the TV denoising scheme described in section 2.1.

1 function [u] = tv1(X, u0, epsilon, lambda)

2

3 % Total Variation (TV) Minimization

4 % Input: Original noisy waveform Y and x-coordinates X

5 % Output: TV denoised Waveform u

6

7 %Parameters

8 T = 20; %Stopping time

9 dt = 0.1; %Time step

10 a = 0.01; %Fudge factor to avoid division by zero

11

12 u0 = double(u0);

13 u = u0;

14 m = length(u);

15

16 u_x=[];

17 u_xx=[];

18

19 for t = 0:dt:T

20 %Calculate derivatives

21 u_x = u([2:m,m]) - u([1,1:m-1]);

22 u_xx = u([2:m,m]) - 2*u + u([1,1:m-1]);
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23

24 %TV term = Num/Den

25 Num = 2*(epsilon)*u_xx;

26 Den = (pi)*((epsilon).^2 + (u_x).^2)+a;

27

28 %Add to previous iteration of u.

29 u = u + dt*( Num./Den - 2*lambda*(u - u0));

30

31 end
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MATLAB © code used to implement the TV denoising scheme with penalty function

described in section 2.2.

1 function [u] = tv1dw(X, u0, epsilon, beta, lambda)

2

3 % Total Variation (TV) Minimization

4 % Input: Original noisy waveform u0, x-coordinates X, parameters ...

epsilon, beta, and lambda

5 % Output: TV denoised Waveform u with values forced towards zero ...

and one

6

7 %Parameters

8 T = 20; %Stopping time

9 dt = 0.1; %Time step

10 a = 0.01; %Fudge factor to avoid division by zero.

11

12 u0 = double(u0);

13 u = u0;

14 m = length(u);

15

16 u_x=[];

17 u_xx=[];

18

19 for t = 0:dt:T

20

21 u_x = u([2:m,m]) - u([1,1:m-1]);

22 u_xx = u([2:m,m]) - 2*u + u([1,1:m-1]);

23

24 %TV term = Num/Den

25 Num = 2*(epsilon)*u_xx;
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26 Den = (pi)*((epsilon).^2 + (u_x).^2)+a;

27

28 %Add to previous iteration of u.

29 u = u + dt*( Num./Den - 2*lambda*(u - ...

u0)-beta*(2*u-6*u.^2+4*u.^3));

30

31 end



45

MATLAB © code used to implement the Modica-Mortola scheme described in section

2.4.

1 function [u] = MM(X, u0, epsilon, beta, lambda)

2

3 % Total Variation (TV) Minimization

4 % Input: Original noisy waveform u0, x-coordinates X, parameters ...

epsilon, beta, and lambda

5 % Parameter lambda (Try lambda=0.1)

6 % Output: TV denoised Waveform u

7

8 %Parameters

9 T = 1; %Stopping time

10 dt = 0.1; %Time step

11 a = 0.01; %Fudge factor to avoid division by zero.

12

13 u0 = double(u0);

14 u = u0;

15 m = length(u);

16

17 u_x=[];

18 u_xx=[];

19

20 for t = 0:dt:T

21

22 u_x = u([2:m,m]) - u([1,1:m-1]);

23 u_xx = u([2:m,m]) - 2*u + u([1,1:m-1]);

24

25

26 u = u + dt*( 2*∆*u_xx - (1/epsilon)*(2*u - 6*u.^2 + 4*u.^3) -
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27 2*lambda*(u-u0));

28 end
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MATLAB © code used to implement the Projection scheme described in section 3.2.3.

1 function [ X, Y ] = projection( u0,theta )

2 %%Projects Roll Image onto a single ray of rotation to create a ...

%%one-dimensinal signal.

3 %%u0 is the original image

4 %%theta is the known angle of rotation

5

6 S=size(u0);

7

8 if size(S,2)>2

9 u0=rgb2gray(u0);

10 end

11

12 X = [ ];

13 Y = [ ];

14 u=double(u0);

15 [m,n]=size(u0);

16 theta = theta * pi /180;

17 for y0=1:m

18 for x0=1:n

19 X = [X, x0*sec(theta) + ( (m-y0)-x0*tan(theta))*sin(theta)];

20 Y = [Y , u(y0,x0)];

21 end

22 end

23

24 [X,ind] = sort(X);

25 Y=Y(ind);

26

27



48

28

29 subplot(121);imshow(u0);title('Barcode Image');

30 subplot(122);

31 plot(X,Y);

32 title('Composite Scan Signal');

33

34 end
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