
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2012

FAST NEURAL NETWORK ALGORITHM
FOR SOLVING CLASSIFICATION TASKS
Noor Albarakati
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2740

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51289774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2740?utm_source=scholarscompass.vcu.edu%2Fetd%2F2740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©
Noor M. Albarakati 2012

All Rights Reserved

FAST NEURAL NETWORK ALGORITHM FOR SOLVING
CLASSIFICATION TASKS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

By

Noor Mubarak Albarakati
Bachelor of Science, King Abdul-Aziz University, Saudi Arabia, 2005

Director: Dr. Vojislav Kecman
Associate Professor, Department of Computer Science

 Committee Members
Dr. Vojislav Kecman
Dr. Kayvan Najarian
Dr. Rosalyn Hobson

Virginia Commonwealth University
Richmond, Virginia

April, 2012

ii

Dedication

This thesis is dedicated first to my parents: my dear father “May you rest in peace dear

father” and my dear mother. Thank you my mother for your endless love, unconditional support

and encouragement.

I owe my deepest gratitude to my dear siblings for their love, affection and moral

support, and especially my sister Nahla and my brother Noseir, who have been kind, taking care

and very patient with me in those tough times I went through, encouraging and creatively

boosting my energy to its maximum.

I would like also to thank my best friend Mahsa Zahary, who was always willing to raise

my morale and give me best suggestions. I never felt lonely working in my lab when she was

around. “You will be fine” her favorite sentence to calm my stress down. Best thankful is going

to Reyhaneh Mogharabnia, who was always making splendid short visits to my lab.

iii

Acknowledgment

This thesis would not have been possible to exist without having a full supervising,

encouragement, guidance and supporting from the initial step of how to do a research until the

final step of documenting it into a thesis format unless I have all of these from Dr. Vojislav

Kecman, associate professor in Computer Science department. He really helped me to fully

understand the thesis subject, directed me during all my experiment, and taught me the research

methodologies and how to write them down academically. I am really glad to have the

opportunity to work under Dr. Vojislav Kecman supervision.

I am so thankful for all those people who helped me while I was working in this thesis.

At first, I would like to show my gratitude to Robert Strack, who was always readily agreed to

help me whenever I faced a problem. I am also very gratitude to the entirely patient Michael Paul

Pfaffenberger for grammatically correcting my thesis.

I would like also to acknowledge my job back home, Yanbu University College, and

Saudi Arabian Cultural Mission, for their academic and financial support.

iv

Table of Contents

List of Tables …………………………………………………………………………….…...…………. vii

List of Figures …………………………………………………………………………………..…...….. viii

Abbreviations ………………………………………………………………………………………….… ix

Abstract ……………………………………………………………………………………………...….... x

1 AN INTRODUCTION TO NEURAL NETWORKS ... 1

1.1 Introduction ... 1

1.2 Artificial Neural Network ... 2

1.3 Architectures of Neural Network .. 2

1.4 Learning Methods ... 3

1.4.1 Supervised Learning ... 3

1.4.2 Unsupervised Learning ... 4

1.4.3 Reinforcement Learning ... 4

1.5 Applications of Supervised Learning in NN ... 4

1.6 Perceptron ... 5

1.6.1 Perceptron Learning Algorithm .. 6

1.7 Multilayer Perceptron (MLP) .. 8

1.8 Activation Functions ... 9

1.8.1 Threshold Activation Functions .. 9

1.8.2 Linear Activation Functions .. 10

1.8.3 Nonlinear Activation Functions .. 10

1.8.3.1 Unipolar Logistic (Sigmoidal) Function ... 10

1.8.3.2 Bipolar Sigmoidal Function (Hyperbolic Tangent Function) ... 10

1.9 Learning and Generalization ... 10

1.9.1 Over-Fitting and Under-Fitting Phenomena ... 11

1.9.2 Bias and Variance Dilemma ... 11

1.9.3 Controlling Generalization Errors ... 12

1.9.3.1 Cross Validation .. 12

v

1.10 Problem Statement and Previous Work .. 14

2 OVERVIEW OF THE EXPERIMENT .. 15

2.1 Introduction ... 15

2.2 Experimental Overview .. 15

2.3 Contents of Experimental Chapters .. 17

3 EXPERIMENTAL PROCEDURES OF DEVELOPING FAST NN ALGORITHM 18

3.1 Least Mean Squares Algorithm (LMS) ... 18

3.2 Adapting Learning Rate and the Momentum Term .. 22

3.3 Error Back-Propagation Algorithm (EBP) .. 23

3.4 Fast Neural Network Algorithm ... 28

3.4.1 Batch Learning Technique .. 28

3.4.2 Batch EBP Algorithm ... 29

3.4.3 Summary of the Fast Neural Network Algorithm ... 32

3.4.4 Issues to be Considered ... 34

3.4.4.1 Labeling Desired Output ... 34

3.4.4.2 Initializing Weights ... 35

3.4.4.3 Using a Single Neuron in the OL of One Model/K OL Neurons Structure for Two-Class Data
Sets .. 35

3.5 Experimental Data Sets ... 36

3.5.1 General Information .. 36

3.5.2 Preprocessing .. 37

3.5.2.1 Scaling Raw Data .. 37

3.5.2.2 Shuffling the Scaled Data Set ... 37

4 EXPERIMENTAL NEURAL NETWORK STRUCTURES .. 38

4.1 The Differences between Neural Network Structures .. 38

4.1.1 One Model/K Output Layer Neurons Structure .. 39

4.1.2 K Separate Models/One Output Layer Neuron Structure .. 39

4.1.3 K Joint Models/One Output Layer Neuron ... 40

4.2 Simulated Example ... 40

4.2.1 One Model/K OL Neurons .. 40

vi

4.2.2 K Separate Models/One OL Neuron ... 41

4.2.3 K Joint Models/One OL Neuron ... 42

5 EXPERIMENTAL RESULTS AND DISCUSSION .. 45

5.1 Controlling the Experimental Environment .. 45

5.2 Comparison of Three Different MLP Structures .. 47

5.2.1 Comparison of Three Different MLP Structures in Term of Accuracy 47

5.2.2 Comparison of Three Different MLP Structures in Terms of Structure Size 51

5.2.3 Comparison of Three Different MLP Structures in Term of Time Consumption 53

5.3 Using a Neuron in the OL of One Model/K OL Neurons Structure for Two-Class Data Sets ... 55

6 CONCLUSIONS ... 56

6.1 The Conclusion ... 56

6.2 Future Works .. 57

vii

List of Tables

3.1 Experimental Data Set Information …………………………………………………. 36

5.1 Experimental Fixed Parameters ……………………………………………………... 45

5.2 Experimental Variable Parameters ………………………………………………….. 46

5.3 Accuracy of Three MLP Structures …………………………………………………. 48

5.4 Number of HL Neurons of Three MLP Structures ………………………………….. 52

5.5 The Accuracy of Using One or Two OL Neurons in Vote Data Set ………………... 55

viii

List of Figures

1.1 A Single Perceptron …………………………………………………………………. 5

1.2 Multilayer Perceptron of One Hidden Layer and One Output Layer ……………….. 9

1.3 The Trade-off between Bias and Variance ………………………………………….. 12

1.4 Cross Validation Procedure …………………………………………………………. 13

3.1 A HL Neuron J has a Connection with an OL Neuron K in Details ………………… 25

4.1 One Model/K OL Neurons Structure ………………………………………………... 41

4.2 K Separate Models/One OL Neuron Structure ……………………………………… 43

4.3 K Joint Models/One OL Neuron Structure ………………………………………….. 44

5.1 The Scores of Ranking Three Different MLP Structures …………………………… 49

5.2 The Accuracy of Different MLP Structures of Eleven Data Sets …………………… 49

5.3 The Accuracy of Different MLP Structures of Eleven Data Sets …………………… 50

5.4 The Structure Size of Three MLP Structures for Eleven Data Sets ………………… 53

5.5 Training time of Different MLP Structures of Eleven Data Sets……………………. 54

ix

Abbreviations

ANN Artificial Neural Network

ART Adaptive Resonance Theory

EBP Error Back Propagation

FNN Feedforward Neural Network

HL Hidden Layer

IL Input Layer

LMS Least Mean Square

MLP Multilayer Perceptrons

MSE Mean Square Error

NN Neural Network

OL Output Layer

OvA One-versus-All

RBFN Radial Basis Function Network

RNN Recurrent Neural Network

SLP Single Layer Perceptron

SOM Self-Organizing Map

SVM Support Vector Machine

Abstract

FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS

By Noor M. Albarakati, BS.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Major Director: Dr. Vojislav Kecman,
Associate Professor, Department of Computer Science

Classification is one-out-of several applications in the neural network (NN) world.

Multilayer perceptron (MLP) is the common neural network architecture which is used for

classification tasks. It is famous for its error back propagation (EBP) algorithm, which opened

the new way for solving classification problems given a set of empirical data. In the thesis, we

performed experiments by using three different NN structures in order to find the best MLP

neural network structure for performing the nonlinear classification of multiclass data sets. A

developed learning algorithm used here is the batch EBP algorithm which uses all the data as a

single batch while updating the NN weights. The batch EBP speeds up training significantly and

this is also why the title of the thesis is dubbed 'fast NN …'. In the batch EBP, and when in the

output layer a linear neurons are used, one implements the pseudo-inverse algorithm to calculate

the output layer weights. In this way one always finds the local minimum of a cost function for a

given hidden layer weights. Three different MLP neural network structures have been

investigated while solving classification problems having K classes: one model/K output layer

neurons, K separate models/One output layer neuron, and K joint models/One output layer

neuron. The extensive series of experiments performed within the thesis proved that the best

structure for solving multiclass classification problems is a K joint models/One output layer

neuron structure.

1

1 An Introduction to Neural Networks

1.1 Introduction

Machine learning is a significant part of almost all research and developments today.

Gaining knowledge from empirical data is the core of machine learning. The knowledge is

achieved by changing either a structure or parameters of a model or both in order to improve its

expected performance on future data [3]. These changes have been performed to accomplish one

of artificial intelligence tasks which can be learning, decision making, prediction, recognition,

diagnosis, planning, control, …, etc. Recently, different approaches are used to learn from data

such as support vector machine (SVM), decision tree, clustering, Bayesian networks, genetic

programming, and artificial neural network. This thesis will discuss learning from experimental

data by using artificial neural network. In particular, it will develop a fast neural network

algorithm and it will test several neural network structures in order to find what the best

approach for multiclass classification problems is.

2

1.2 Artificial Neural Network

Artificial neural network (ANN), or often it called neural network, is a parallel

computational model that takes its structure and function from biological neural networks. A

neuron is the main artificial node in the NN. It processes the summation of inputs by using

activation function to generate an output. An activation function could be linear or nonlinear. All

neurons are connected peer-to-peer to each other by weights wi. The output of a nonlinear neuron

is given by

 𝑜 = 𝑓(𝑢) = 𝑓(∑ 𝑤𝑖 𝑥𝑖 + 𝑏𝑛
𝑖=1) = 𝑓(𝒘𝑇𝒙 + 𝑏) (1.1)

where, u is an input to the neuron and o is its output, f(u) is an known dependency, mapping or

function, between input and output, 𝑥𝒊 is the 𝑖th input, 𝑤𝒊 is the i-th weight, n is the total number

of inputs, and b is a threshold or a bias.

1.3 Architectures of Neural Network

Neural network can basically be divided into feedforward neural network, and recurrent

neural network.

Feedforward neural network (FNN) architecture consists of a finite number of layers

which contain a finite number of neurons in a feedforward manner. There is neither no feedback

connection in the whole network, nor a connection between neurons in a single layer. The layers

are connected by network weights. Number of neurons in a single layer has to be sufficient to

solve the problem, and number of layers has to be minimal as much as possible to reduce the

problem solving time. FNN are classified into fully connected layered FNN or partially

connected layered FNN. When each neuron connects to every feedforward neurons in the

3

network, it is considered as a fully connected layered FNN. Otherwise, FNN will be considered

to be a partial one. Multilayer Perceptrons (MLP) and Radial Basis Function Network (RBFN)

are the most fully connected layered FNN could be used in NN.

In recurrent neural network (RNN), there is at least one feedback connection, and that

make this type of network a dynamic NN. Hopfield model and the Boltzmann machine are the

most popular RNN.

1.4 Learning Methods

Neural network has to learn its parameters, such as weights by using training data (learning

process) in order to predict, or to estimate, the correct output for any new input (generalization

process). Learning methods are mostly classified into supervised, unsupervised and

reinforcement learning.

1.4.1 Supervised Learning

Supervised learning is basically about having the data set as pairs of input and desired

output (x, d). Error-correction rule is a learning technique which is used in supervised learning

algorithms to do a direct comparison between desired output d and actual network output o for a

given input x in order to minimize the errors values between them (e = d - o). During training

phase, network weights have been adjusted by feeding the errors back to the network. Usually,

mean square error approach (MSE) is used as a cost function [3]. Two neural network

applications that apply supervised learning algorithms are the classification and regression.

Solving multiclass classification problems by using MLP neural network which is one of

supervised learning algorithms is the central part of this thesis.

4

1.4.2 Unsupervised Learning

In an unsupervised learning, there is no desired output in training data in which

consequently there are no errors counted to direct learning process. Unsupervised learning

method relies on finding the relations and correlations among the input features to figure out the

hidden structure of unlabeled data. The self-organizing map (SOM) and adaptive resonance

theory (ART) are two instances of neural network models that use unsupervised learning

algorithms.

1.4.3 Reinforcement Learning

Reinforcement is a type of supervised learning; however, it has less detailed information

of the output available. It depends upon evaluative signals from learning environment to direct

the learning.

Both the unsupervised learning and the reinforcement one are beyond the scope of this

study.

1.5 Applications of Supervised Learning in NN

Neural network has been borne by the end of 1940s, and it has been started to solve

complex problems in science and engineering fields by 1980s decade [5]. Thus, different

applications appeared in the neural network world such as modeling and identification of

systems, pattern recognition, signal processing, optimization, controlling and classification. Most

useful applications of neural network that implemented supervised learning methods are

classification and function approximation (regression).

5

Classification is a statistical application which is solely based on assigning discrete input

data to a number of discrete classes or categories by approximating the underlying function that

classified the data set. Both MLP and RBFN architectures are mostly used in classification tasks.

Most algorithms that solve classification problems currently are MLP neural network, support

vector machines, k-nearest neighbors, Gaussian mixture model, Gaussian, naive Bayes, decision

tree and RBF classifiers.

Function approximation is another statistical application which is based on finding

numerical mapping between input and desired output. Regression is one example of function

approximation which generates the continuous approximation of the underlying function

between input and output.

1.6 Perceptron

A neuron which has a linear combiner followed by a hard limiter is called a perceptron.

The perceptron is used to classify the two classes of autonomously input patterns were linearly

separable. Figure 1.1 illustrates the perceptron graphically [4].

Figure 1.1: A Single Perceptron

…
 …

𝑏 = 𝑥0 = +1

𝑥1

𝑥𝑖

𝑥𝑛

Linear Combiner

𝑜

Hard Limiter

u
-1

+1 o

𝑓(𝑢)

𝑢

𝑤0
𝑤1

𝑤𝐼

…

𝑤𝑖

6

The linear combiner is an operation of summing n+1 weighted inputs to produces u, which

is mathematically represented by equation (1.2)

𝑢 = ∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0 = 𝑤0 𝑥0 + 𝑤1 𝑥1 + … + 𝑤𝑛 𝑥𝑛 = 𝒘𝑇 𝒙 (1.2)

where x0 is a bias which is fixed to one, and w0 is its corresponding weight that are used in

order to shift the decision boundary (or separation line) of a classifier away from the origin.

The Hard limiter produces an output o which is either +1 if the hard limiter’s input u is

positive, or -1 if u is negative. Equation 1.3 describes the operation of hard limiter

mathematically

𝑜 = 𝑓(𝑢) = 𝑠𝑖𝑔𝑛(𝑢) = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0) = �+1 𝑓𝑜𝑟 𝑢 ≥ 0

−1 𝑓𝑜𝑟 𝑢 < 0
� (1.3)

where sign(.) stands for the signum function (known also as the Heaviside function) [5].

1.6.1 Perceptron Learning Algorithm

Perceptron learning algorithm is an iterative algorithm which depends upon the error-

correction rule to adjust the network weights w proportional to the error e = d – o between the

desired output d and the actual perceptron output o of a given random chosen data pair (x, d), in

such a way that the errors will be reduced to zero.

 To describe the perceptron model mathematically, let us define the following column

vectors

𝐱 = [+1, 𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 (1.4)

𝐰 = [𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑛]𝑇, (1.5)

7

where the input vector x has n features or dimensions, and the vector w is its corresponding

weights. Notice that throughout this entire thesis, both x and w will be augmented vectors by +1

and w0 respectively. Thus, by given a set of P training data pairs, assumes that a randomly

chosen labeled input pair (xp, dp) at time p is applied to the perceptron to classify it into two

distinct classes: class-1 or class-2, and the vector of weights wp is randomly initiated, and

consequently, the linear combiner of the perceptron results the weighted sum of inputs up which

is defined by equation 1.2. According to figure 1.1, a resultant value up of the linear combiner is

applied to the hard limiter f(up) to classify the input xp to either class-1 if the op value is equal or

greater than zero, or to class-2 if it is less than zero by using a signum function (equation 1.3).

Moreover, the decision boundary or separation line, which is estimated by the classifier to

separate two linear separable classes, is defined by a resultant value up when it is equal to zero as

follows

 𝑢 = ∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0 = 𝐰𝑇𝐱 = 0 (1.6)

According to error-correction rule, the perceptron learning algorithm iteratively changes the

network weights proportionally to the error ep = dp - op, and a new adaptive weights wp+1, which

is the sum of weights wp and its correction weights ∆wp, will be calculated as following

𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 + 𝜂 𝑒𝑝 𝒙𝑝 = 𝒘𝑝 + 𝜂 �𝑑𝑝 − 𝑜𝑝� 𝒙𝑝 (1.7)

where η is a learning rate that controls the learning process by specifying the magnitude of the

correction weights ∆wp, however, it does not determine the direction of weights changes. After

that, a next randomly data pair (xp+1, dp+1) at time p+1 is chosen from training data, and the

whole perceptron learning algorithm strategy is repeated by using the new adaptive weights wp+1.

8

By performing the previous procedure on training data for p = 1, 2, 3, …, P, the adaption of

network weights will be stopped when ep = 0 for all data pairs.

A single perceptron is considered as one node (neuron) in NN, and it is used in a single

layer perceptron (SLP) network to linearly classify multiclass data sets. However, for nonlinearly

multiclass classification problems, multilayer perceptron neural network is used.

1.7 Multilayer Perceptron (MLP)

The architecture of multilayer perceptron consists of fully connected layers of neurons

between input and output. Typically, it consists of one or multiple hidden layers and one output

layer. Each layer empirically has to apply the same activation functions. Last node in each layer

is a threshold or a bias which is fixed to one. As what has already mentioned, weights in the

network are used to connect neurons between layers. Figure 1.2 illustrates a MLP model that has

an input layer (IL), a single hidden layer (HL) and an output layer (OL). A given training data

(x, d), which has input x of n features, is applied to MLP. Hidden layer that has J neurons is

connected to the nodes of input layer by V weights, however, W weights is used to connect K

neurons of OL with J neurons of HL.

9

Figure 1.2: Multilayer Perceptron of One Hidden Layer and One Output Layer

1.8 Activation Functions

The most important ability of neural network is transforming the activation level of

summing the weighted inputs of a neuron into an output by using an activation function. Usually,

it maps the real numbers of inputs into either an interval (-1, +1) or (0, +1). The activation

functions used in NN are classified into threshold, linear and nonlinear activation functions. In

MLP, hidden layer has nonlinear activation functions. However, output layer has both linear and

nonlinear activation functions.

1.8.1 Threshold Activation Functions

Threshold activation function is a hard limited activation function. A signum function is an

example of threshold function that always gives −1 or +1 output value. Threshold functions are

useful for binary classification that classifies the inputs into two groups by using a winner-takes-

all approach.

Output Layer

OL’s Weights (W) HL’s Weights (V)

Hidden Layer Inputs Layer

…

𝑜1
uo1

o1

uok

ok 𝑜𝑘

uo2

o2 𝑜2
𝒘𝒌𝓳 = 𝒘𝟐𝟏

𝒗𝓳𝒊

…

𝑦𝒿

𝑦1

𝑢𝒿

𝑦𝒿

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …

10

1.8.2 Linear Activation Functions

Linear activation function of a neuron gives an output which is equal to its linear

combiner u. By applying the pseudo-inverse algorithm in the OL of MLP, as an instance, the

linear activation function is used to give the local minimum of a cost function E for a given HL

weights V.

1.8.3 Nonlinear Activation Functions

Nonlinear activation functions are used in both HL and OL to iteratively update network

weights, and thus solve complex nonlinear problems. The most useful nonlinear activation

functions in MLP that has S-shaped are unipolar logistic function and bipolar sigmoidal function.

1.8.3.1 Unipolar Logistic (Sigmoidal) Function

Logistic sigmoidal function is a unipolar function that is applied in a neuron gives an

output value y within a range of [0, +1] for any input u. It mathematically produces y as follows

𝑦 = 𝑓(𝑢) = 1
1+ 𝑒− 𝑢 (1.8)

1.8.3.2 Bipolar Sigmoidal Function (Hyperbolic Tangent Function)

Hyperbolic tangent function gives an output value y within the range [-1, +1] for a given

input u that is applied to a neuron. Equation (1.9) formulates the hyperbolic tangent function

𝑦 = 𝑓(𝑢) = 2
1+ 𝑒− 𝑢 − 1 (1.9)

1.9 Learning and Generalization

Repeatedly, learning from a given data set is used to identify either the model’s parameters

of an approximated underlying function, or the model’s structure. After a learning process is

11

completed and a model is obtained, the model has a generalization ability to predict or estimate

the accurate output of a new input. Neural networks mainly have two phenomena that affect

respectively on learning and/or generalization which are over-fitting and under-fitting.

1.9.1 Over-Fitting and Under-Fitting Phenomena

The most significant two problems affect on learning and generalization of neural networks

which are under-fitting, and over-fitting (or over-trained), respectively [5]. Over-fitting

phenomenon occurs when the neural network has trained the noisy or imprecise data during the

learning phase. Thus, the model could achieve 100% accuracy for classify a given data set;

however, it will not have a strong generalization ability of new input data. Empirically, data sets

usually have a certain level of noise. Therefore, when the neural network has to learn from

training data, it should stop learning in such criteria that the generalization ability is superior. On

the other hand, under-fitting problem is about being far away from the actual underlying function

of a given data set. Generally, those two problems identify the bias and variance dilemma.

1.9.2 Bias and Variance Dilemma

Overall generalization errors come from two terms: bias and variance. Bias occurs when

the network tries to fit all data points including the noises. In contrary, variance problem

addresses the smoothness of an approximated model in comparison with the actual underlying

function that generated the training data. The over-fitting problem in training data has occurred

when the model has small bias and large variance. Under-fitting phenomenon has been caused by

a model which has a large bias and a small variance. Always there is a trade-off between bias

and variance. Figure 1.3 shows the optimal area of the trade-off between bias and variance [5].

12

Figure 1.3: The Trade-off between Bias and Variance

1.9.3 Controlling Generalization Errors

The optimal trade-off area between bias and variance on a model (figure 1.3) that reduces

the generalization errors will give an effective and an efficient model for learning and

generalization processes on a given data set. The most useful method that controls the

generalization errors is a cross validation approach which is used to estimate how accurately the

model performs in unseen data.

1.9.3.1 Cross Validation

Cross validation is a stopping criterion that controls learning process to implement a model

that has good generalization process. It is a statistical method that divides the overall data set

randomly into two sets: training set and testing (or validation) set. The majority of the data goes

to the training set. K-fold cross validation technique is the most popular technique has been used

Bias Variance

Area of Optimal Parameters

Design Parameters: # of HL Neurons and/or
 # of Learning Steps

Cross Validation Curve of
Total Error

TEST SET PERFORMANCE
E

13

which splits the data into k-folds in such a way that (k-1) folds are used in training to build a

model, and the last fold left is held-out for testing or validation. For a particular iteration in k-

fold cross validation method, each data point should be existed once in either training or testing

sets. To apply k-fold cross validation, all data set must initially be shuffled and all classes must

be presented in the training set. Moreover, after training phase is completed, the obtained model

uses test set to see how the approximated model behaves on unseen data (validation). As a result,

cross validation technique helps the approximated model to give good generalization ability on

future data. Recently, 10-fold cross validation is the popular form used in data mining and

machine learning fields [4]. Figure (1.4) graphically demonstrates an example of 3-fold cross

validation technique.

Fold-1 Fold-2 Fold-3 A Data set is divided almost equally into 3 folds

 Training sets used to model a classifier

 Testing set used to evaluate the classifier

Evaluation Modeling

testing training training

Error = ∑ error3
𝑖=1 (i)

error (1)

training testing training

 error (2)

 training training testing

 error (3)

Figure 1.4: Cross Validation Procedure

14

Cross validation technique has been used during implementing the model to achieve one of the

following two reasons:

 Enhancing the generalization ability of a model to accurately predict the future data.

 Comparing the performance of two or more learning algorithms by using a double cross

validation approach to find out the best one for a given data set.

1.10 Problem Statement and Previous Work

The goal of this research is to identify the best MLP model for multiclass classification

tasks by constructing different structures of MLP, applying a fast error back propagation (EBP)

algorithm on all structures, and then comparing their performances in term of accuracy and time

consumption.

Previous work was about designing and implementing an EBP learning algorithm for

solving multiclass classification problems by using MLP neural network. Here, the fast EBP

based on a batch version of the EBP algorithm is designed and used to learn iteratively the

weights of hidden and output layers. Three activation functions are implemented in both hidden

and output layers. A significant speed up can be achieved when OL neurons are linear by using

pseudo-inverse algorithm for calculation of the output layers weights wkj [5]. The EBP

implemented can also use the momentum term in updating the weights which usually speeds up

the learning.

15

2 Overview of the Experiment

2.1 Introduction

The ultimate goal of this study is to find which structure of MLP NN is the best for

performing the nonlinear classification of multiclass datasets. In order to perform this task, a fast

EBP algorithm is developed and tested on eleven data sets in terms of accuracy and CPU time

needed during the training i.e., learning phase. The basic description of the EBP algorithm is

given in chapter 3, while the three different structures for solving multiclass problems are

presented in chapter 4.

2.2 Experimental Overview

In the first phase of the experiment, the fast EBP algorithm is developed and implemented

for training nonlinearly separable data sets in MLP models. During the learning, 10-fold cross

validation was applied and the scaled and shuffled data have been used in order to enhance the

ability of generalization on future, previously unseen, data. Activation function of hidden layer

16

can be either logistic sigmoidal function or a hyperbolic tangent. Here, the latter was used. In the

output layer linear activation function was used, which enables the use of the pseudo-inverse for

calculation of the OL weights.

Two types of parameters were used in the algorithm: fixed parameters and variable

parameters. Fixed parameters are constant during all the experiment. They contain values of

momentum term, the range of randomly initiating HL weights, and number of cross validation

folds used in training phase. They also determine the learning approach of OL weights to be

either direct estimation by using pseudo-inverse method, or iterative adjustment by using EBP

algorithm. On the other hand, variable parameters, which are the core of the first phase of this

study, are the number of neurons in a hidden layer (J), learning rate (η) and number of training

iterations (iterations). The 10-fold cross validation over the variable parameters gives us their

best values for a given data set.

The fast neural network algorithm, which is developed in the first phase, was used in the

second phase of experiment by applying it for three different MLP structures: One Model/K

output layer neurons, K separate models/One output layer neuron, and K joint models/One

output layer neuron. All three different structures that applied fast neural network algorithm for

solving nonlinear multiclass classification problems are described in more detail in chapter 4.

The experimental training time and accuracies were computed as well as the structure size

for all three MLP structures, and the results of MLP structures that applied fast neural network

algorithm for multiclass classification task are deeply discussed in experimental results and

discussion chapter.

17

2.3 Contents of Experimental Chapters

Experimental chapters are organized as follows: chapter 3 describes in more detail the first

experimental phase which is a developing the fast neural network algorithm as well as the

experimental data sets. Second part of the experiment will be explained in chapter 4 by

describing all MLP structures that are used in the experiment, and then stating experiment

simulation examples of three MLP structures. Finally, the experimental results and discussions

are deeply clarified in chapter 5.

18

3 Experimental Procedures of Developing Fast NN Algorithm

Since MLP is the most popular neural network structure for classification tasks [5], the

developed fast neural network algorithm is based on error back-propagation (EBP) which includes

the least mean square (LMS) algorithm as a linear adaptive-filtering algorithm. The main goal of

the first phase of this study is to find the best variable parameters of a MLP model that applies the

fast neural network algorithm to classify a given multiclass data set. The following sections have

full descriptions of all experimental algorithms are applied.

3.1 Least Mean Squares Algorithm (LMS)

Least mean square algorithm (known also as delta learning rule), is an adaptive learning

algorithm which iteratively adapts the network’s weights by minimizing the cost function E rather

than computing the misclassified patterns1. Precisely, it is an adaptive linear gradient-descent

algorithm that is used to successively adjust weights ∆w by taking step size η proportionally to a

1 The presentation of EBP follows [4] and [5].

19

direction of steepest descent of E, which is the opposite direction of a gradient vector ∇𝐸(𝐰) of

the cost function E. For that reason, gradient-descent optimization method is applied to steeply

converge to a local minimum of the cost function surface. By using the step size η (learning rate)

in the LMS algorithm, it is noticeable when η is small, the smooth and accurate LMS performance

is achieved. However, the rate of convergence to the local minimum is slow. Equation (3.1)

defines the adaption of network weights w by using LMS learning rule when the pair p is given to

the network.

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸�𝒘𝑝� = 𝒘𝑝 − 𝜂 �𝜕𝐸
𝜕𝒘
�
𝑝
 (3.1)

Learning the model parameter (weights) by LMS algorithm is in an on-line mode in which

the network weights are updated after each pair (pattern) of the training data that has been trained.

Thus, it is pattern- based and not epoch-based, which the latter is dependent on the entire epoch

(all patterns of training data) to be processed before doing any update. So for brevity in the

following sections, the subscript p will be skipped.

During a one epoch, a training data pair (x, d) is taken randomly from the training data and

applied to a neuron that has an activation function f(u). Fortunately, the weighted inputs u of the

neuron which is given by equation 1.2 can be written by using the matrix form as follows

𝑢 = 𝒘𝑇 𝒙 (3.2)

By applying the activation function on u, the output of the neuron is given by

 𝑜 = 𝑓(𝑢) = 𝑓(𝒘𝑇 𝒙) (3.3)

20

To determine the error magnitude of weights w for a particular pattern (x, d), a direct comparison

between the desired output d and the neuron output o will be computed

𝑒 = 𝑑 − 𝑜 = 𝑑 − (𝒘𝑇 𝒙) (3.4)

This error will be used to control the adaption of weights of the neuron in such a sense of

minimizing the cost function E of overall network weights. The sum of error squares is taken as a

cost function which has to be gradually minimized during the training phase, thus the derivation of

the learning procedure ∇𝐸(𝒘) has only to be made through deterministic argument [5]. In addition,

by using the sum of error squares, the continuously nonlinear differentiable cost function E of

weights vector w will geometrically be a quadratic hyper-surface [4]. Equation (3.5) defines the

cost function E

𝐸 = 1
2

 𝑒2 = 𝐸(𝒘) (3.5)

The differentiation of cost function E with respect to vector w gives the gradient vector ∇𝐸(𝒘).

Thus, the chain rule of the differentiation is given by

 𝛻𝐸(𝒘) = 𝜕𝐸
𝜕𝑢

 𝜕𝑢
𝜕𝒘

 (3.6)

where the term 𝜕𝐸
𝜕𝑢

 is called the error signal δ, which measures how much the error is changing in

response to the change of the inputs of neuron u, and the term 𝜕𝑢
𝜕𝒘

 measures the influence of the

vector weights w when that particular input u is calculated. By applying the chain rule again on

equation (3.6), we get

 ∇𝐸(𝒘) = 𝜕𝐸
𝜕𝑒

 𝜕𝑒
𝜕𝑜

 𝜕𝑜
𝜕𝑢

 𝜕𝑢
𝜕𝒘

 (3.7)

21

We get (𝜕𝐸
𝜕𝑒

) by differentiating both sides of equation (3.5) with respect to e

 𝜕𝐸
𝜕𝑒

= 𝑒 (3.8)

In addition, (𝜕𝑒
𝜕𝑜

) can be found by differentiating both sides of equation (3.4) with respect to o as

follows

 𝜕𝑒
𝜕𝑜

= −1 (3.9)

The term (𝜕𝑜
𝜕𝑢

) can be found by differentiating both sides of equation (3.3) with respect to u

 𝜕𝑜
𝜕𝑢

= 𝑓′(𝑢) (3.10)

Lastly, (𝜕𝑢
𝜕𝒘

) is gained by differentiating both sides of equation (3.2) with respect to w

 𝜕𝑢
𝜕𝒘

= 𝒙 (3.11)

Therefore, by replacing the equivalent terms of equation (3.7) each by equations (3.8), (3.9),

(3.10) and (3.11), the first partial derivative of cost function E with respect to weights vector w is

 ∇𝐸(𝒘) = − 𝑒 𝑓′(𝑢) 𝒙 (3.12)

As a result, LMS or the delta learning rule when the pattern p is presented in network can be

written as

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸(𝒘𝑝) = 𝒘𝑝 + 𝜂 𝑒𝑝 𝑓′�𝑢𝑝� 𝒙𝑝 (3.13)

22

Since LMS is applied in EBP algorithm, which is the most popular algorithm for multiclass

classification problems, it is better to specify the error signal term δ for the OL in the formula of

LMS algorithm, where the error signal is given by

 𝛿 = 𝑒 𝑓′(𝑢) = (𝑑 − 𝑜) 𝑓′(𝑢) (3.14)

Therefore, equation (3.13) can be rewritten by using error signal term δ as follow

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 + 𝜂 𝛿𝑝 𝒙𝑝 (3.15)

Recall that LMS is in on-line mode, therefore for the pattern p, the equation (3.13) can be

written in terms of each vector component wj,p of the weights vector wp

 𝑤𝑗,𝑝+1 = 𝑤𝑗,𝑝 + 𝜂�𝑑𝑝 − 𝑜𝑝� 𝑓′�𝑢𝑝� 𝑥𝑗,𝑝 = 𝑤𝑗,𝑝 + 𝜂 𝛿𝑝 𝑥𝑗,𝑝 (3.16)

For the linear activation function which can be applied in OL neurons of MLP models, the

derivation of activation function is equal to one f’(u) = 1, consequently, the error signal δ is equal

to the individual error e as follows

 𝛿 = 𝑒 𝑓′(𝑢) = 𝑒 = 𝑑 − 𝑜 (3.17)

Therefore, LMS learning algorithm for linear neuron is given by

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 + 𝜂 �𝑑𝑝 − 𝑜𝑝� 𝒙𝑝 = 𝒘𝑝 + 𝜂 𝑒𝑝 𝒙𝑝 (3.18)

3.2 Adapting Learning Rate and the Momentum Term

Unfortunately, choosing an optimal learning rate on EBP of MLP is dependent upon trial-

and-error technique. It is affected in addition by the number of learning steps. In other words,

having a small learning rate could smooth the convergence but it needs large number of iteration

23

steps during learning process. However, the large learning rate could escape the local minimum of

cost function. Table 5.2 lists the values of learning rate η that are used in the experiment.

To speed up the convergence to the minimum of the cost function in EBP algorithm, the

momentum term is used [5]. It reaches the minimal by using small number of iterations during

learning process. The following equation gives the adaptive weights for a pattern p in terms of

using the gradient vector 𝛻𝐸�𝒘𝑝� of the cost function E, and the momentum term ηm.

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸�𝒘𝑝� + 𝜂𝑚[𝒘𝑝 − 𝒘𝑝−1] (3.19)

where [wp – wp-1] = ∆wp-1.

Therefore, the adaption of weights 𝒘𝑝+1 by using the momentum term is given by

 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸�𝒘𝑝� + 𝜂𝑚[− 𝜂 ∇𝐸�𝒘𝑝−1�] (3. 20)

3.3 Error Back-Propagation Algorithm (EBP)

Error back-propagation algorithm is an adaptive learning algorithm which applies the LMS

algorithm to learn network weights. It is basically defined as such: after training a given data set

and the network weights are gained, the calculated errors are propagated backward into the

network to adapt its weights. In order to apply EBP algorithm on MLP, an activation function

especially in HL should be differentiable. Therefore, the common differentiable activation

functions in use with MLP are hyperbolic tangent function and logistic sigmoidal function [5]. EBP

learning procedure divides into two phases: first phase is forward-pass computations through the

MLP network, i.e. from the left side of the network to the right side, and secondly is the

backward-pass computation phase which is in the opposite direction of the first phase.

24

 Training process by MLP over a given data set is the main task of the first phase. For an

on-line mode, a random training pattern (x, d) propagates through the MLP, layer-by-layer in a

neuron-by-neuron basis, until it reaches the end of network with a resultant output o. Every neuron

in the MLP has two computational roles: first role is about applying an activation function f(u) on

the weighted inputs u in order to produce the neuron’s output o, which is described in detail in the

LMS algorithm (section 3.1). The second computational role of a neuron, which is necessary for

backward-pass phase, is to estimate the error signal term δ which is a gradient vector of the cost

function E with respects to weights vector w which effectively weighted the values of the inputs u

in a particular neuron. The error signal term δ is a significant term in the back propagation

formula. Thus, calculating the error signal δ is dependent on the state of a neuron in HL or OL, as

follows:

1. If the neuron is in OL, the equation (3.14) is used to calculate the error signal δ, which is

equal to the product of the associated derivative f’(u) of a particular neuron and its

corresponding associated error e.

2. If the neuron is in HL, the calculation of error signal term δ is equal to the product of the

associated derivative f’(u) of a particular neuron, and the sum of weighted error signals δs

of all successive neurons that are connected to that neuron (equation 3.31).

From the LMS algorithm we have a full explanation of how the error signal δ in the OL is

calculated. In this section we will merely explain the calculation of the error signal δ in the HL.

Recall that by applying EBP algorithm in on-line mode, the second phase of the algorithm has

focused exclusively on adapting the network weights 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 of every pattern p in the

training data by finding all its correction weight component ∆wkj of a particular weight wkj that

25

connects a node j with a node k in the MLP network. Delta rule is used to find the correction

weight ∆wkj as follows

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) × (𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙) × (𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑜𝑛)[4]

 ∆𝑤𝑘𝑗 = 𝜂 𝛿𝑘 𝑦𝑗 (3.21)

Equation (3.15) is a correction weights vector of a neuron which is located in the OL. It is

noticeable in the LMS algorithm that the inputs vector of a neuron is denoted by x, however, in

EBP algorithm which is applied in MLP neural network, for the OL neurons we will represent the

inputs vector by y. Otherwise, all equations symbols remain the same (see equation 3.33). The HL

is different than the OL in computing its errors. Since in an OL neuron, the desired output d of

input x accurately measures the errors by equation (3.4); however, in a HL neuron, all succeeding

neurons have the common responsibilities to calculate the error of the HL neuron. A HL neuron j

is depicted in figure (3.1) which shows a left-side connection from node (or neuron) i to neuron j

by weight vji, and a right-side connection from HL neuron j to an OL neuron k by weight wkj [4].

Figure 3.1: A HL Neuron j has a Connection with an OL Neuron k in Details

Neuron j Neuron k

𝒘𝒌𝒋

𝒇𝒋�𝒖𝒋�

𝒖𝒋

𝒚𝒋

 …

 …

+1

𝒗𝒋𝒊

𝑣𝑗0 = 𝑏𝑗

 …

 …

𝒚𝒊

 𝑦0 = +1

𝒅𝒌

𝒆𝒌

𝒖𝒌

𝒇𝒌(𝒖𝒌)

𝒚𝒌

26

Therefore, to understand the calculation of error signal δ in the HL by using EBP, let us

consider a given pattern (x, d), where x is an input vector and d is its desired output, and the

pattern is propagated through a fully connected MLP network, layer by layer in a neuron-by-

neuron fashion until it reaches the HL neuron j which has a differentiable activation function fj(u).

The error signal δ of the HL neuron j is given by

 𝛿𝑗 = − 𝜕𝐸
𝜕𝑦𝑗

 𝜕𝑦𝑗
𝜕𝑢𝑗

= − 𝜕𝐸
𝜕𝑦𝑗

 𝑓′𝑗�𝑢𝑗� (3.22)

As it is depicted in figure (3.1), a neuron k, which is one of the OL neurons, affects the cost

function E by

 𝐸 = 1
2

 ∑ 𝑒𝑘2𝑘 (3.23)

The partial derivative of 𝜕𝐸
𝜕𝑦𝑗

 is defined by the differentiate equation (3.23) with respect to the

input 𝑦𝑗 of neuron k

 𝜕𝐸
𝜕𝑦𝑗

= ∑ 𝑒𝑘 𝜕𝑒𝑘
𝜕𝑦𝑗𝑘 (3.24)

By using the calculus chain rules in equation (3.24), we get

 𝜕𝐸
𝜕𝑦𝑗

= ∑ 𝑒𝑘 𝜕𝑒𝑘
𝜕𝑢𝑘𝑘 𝜕𝑢𝑘

𝜕𝑦𝑗
 (3.25)

Since the error of neuron k in the OL is the difference between a desired output dk and neuron

output yk as follows

 𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘 = 𝑑𝑘 − 𝑓𝑘(𝑢𝑘) (3.26)

27

Thus, the first partial derivative 𝜕𝑒𝑘
𝜕𝑢𝑘

 of the error of neuron k with respect to its weighted inputs is

given by

 𝜕𝑒𝑘
𝜕𝑢𝑘

= − 𝑓′𝑘(𝑢𝑘) (3.27)

Whereas the weighted input uk of neuron k is given by

𝑢𝑘 = ∑ 𝑤𝑘𝑗 𝑦𝑗
𝐽
𝑗=0 (3.28)

where J is a total number of inputs as well as the bias that applies to the neuron k. By

differentiating equation (3.28) with respect to yj, we get

 𝜕𝑢𝑘
𝜕𝑦𝑗

= 𝑤𝑘𝑗 (3.29)

Thus, by replacing the equivalent terms of (3.27) and (3.29) into the equation (3.25), we get

𝜕𝐸
𝜕𝑦𝑗

= − ∑ 𝑒𝑘 𝑓′𝑘(𝑢𝑘) 𝑤𝑘𝑗 𝑘 = − ∑ 𝛿𝑘 𝑤𝑘𝑗𝑘 (3.30)

where the error signal δk for the OL neuron K is defined as equation (3.14) in terms of its

associated error and weights. As a result, the error signal δj formula of a neuron j which is located

in the HL is given by using equation (3.30) in (3.22) as follows

 𝛿𝑗 = 𝑓′𝑗�𝑢𝑗� ∑ 𝛿𝑘 𝑤𝑘𝑗𝑘 (3.31)

As a result, EBP algorithm that updates the network weights V and W are given respectively as

𝑣𝑗𝑖 = 𝑣𝑗𝑖 + ∆𝑣𝑗𝑖 = 𝑣𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑖 = 𝑣𝑗𝑖 + 𝜂𝑓′𝒿�𝑢𝒿�𝑥𝑖 ∑ 𝛿𝑘𝑤𝑘𝒿𝐾
𝑘=1 , j=1,…,J-1, i=1, …,P. (3.32)

𝑤𝑘𝑗 = 𝑤𝑘𝑗 + ∆𝑤𝑘𝑗 = 𝑤𝑘𝑗 + 𝜂𝛿𝑘𝑦𝑗 = 𝜂(𝑑𝑘 − 𝑜𝑘)𝑓′𝑘(𝑢𝑘)𝑦𝑗, k=1,…,K, j=1,…,J (3.33)

28

The EBP algorithm which adapts network weights typically is in an on-line mode. Our fast

neural network algorithm essentially is about using EBP algorithm in an off-line (or batch) mode,

which is explained in section 3.4.2 in detail.

3.4 Fast Neural Network Algorithm

Fast neural network algorithm is an EBP batch learning algorithm which is trained in a MLP

network of one HL and one OL. At first, batch learning technique is defined in section 3.4.1.

Then, it is followed by describing a batch EBP algorithm. In section 3.4.3, the fast neural network

algorithm which implicitly has the batch EBP is given in detail.

3.4.1 Batch Learning Technique

All supervised learning algorithms depend on error-correction rule to improve a system’s

performance. In MLP models, the errors which are gained from a model define the cost function of

estimated network weights, which is depicted on the space as a multidimensional error-

performance surface by using the network weights as its coordinates. Error- performance surface

of the average of overall training instances is the accurate one. Thus, the improvement of

performance over time has to successively move down toward a minimum point of the error

surface. To achieve this goal, an instantaneous gradient vector of the error surface is estimated.

Therefore, estimating the gradient will improve the system in the direction of steepest descent of

the error surface.

Any adjustment of the network weights represents a new point in the error surface. In a

batch learning procedure, the adjustment of weights is performed after all training data are

presented, which is considered as one epoch of training. Therefore, the error is defined as the

29

average error of total number of instances in a training data set. In other words, the experiment

goes through an epoch-by-epoch learning basis to adjust the network weights. Recall that the

adaption of network weights is only to achieve the goal of minimizing the cost function by

estimating its gradient accurately. Thus, the accurate estimation of the gradient vector of a cost

function by using batch learning procedure can rapidly converge to the minimum value of the cost

function.

During the experiment of this thesis, batch learning was used by applying a 10-fold cross

validation technique over a training data set, in such a way that any adjustment on the next epoch

weights was performed within 9-training-folds (or chunks) of an iteration of the cross validation

process. A batch EBP algorithm is described below.

3.4.2 Batch EBP Algorithm

The batch version of the EBP algorithm implemented in the thesis is divided into two

phases: feedforward phase and back-propagation phase. A training data X, which has P patterns

for K classes, is given by

X = {xp, dp, p=1, … , P}, (3.34)

where xp is an input vector of a pattern p that has n features (or dimensions)

x = [+1 x1 x2 … xn]T (3.35)

and dp is a vector of its associated labeled desired output

d = [d1 d2 … dK]T (3.36)

Feedforward Phase

For J neurons in the HL, the (P, J) dimensional input matrix u is calculated

 𝒖 = 𝑿 𝑽 (3.37)

30

where X is the (P, n+1) training data matrix, and V is a (n+1, J) dimensional matrix of the HL

weights. Two differentiable activation functions are used in the algorithm: hyperbolic tangent

function and logistic sigmoidal function. A (P, J) dimensional matrix y is the output of the

hyperbolic tangent activation function in HL

 𝐲 = 2/(1 + exp(−𝐮)) – 1 (3.38)

The derivative needed in equation (3.31) for calculating the error signals of the HL is given by

 𝒚′ = 0.5 �1 – 𝒚2� (3.39)

Notice that a vector of zeros is in the last column of the matrix y’ which is the derivative of the

fixed bias term. For a sigmoidal activation function the equivalent equations are

 𝒚 = 1/(1 + 𝑒𝑥𝑝(−𝒖)) (3.40)

 𝒚′ = 𝒚 (1 − 𝒚) (3.41)

The hidden layer is augmented with a bias, and so the matrix yb of size (P, J+1), which its last

vector is ones 𝒚𝑏 = [𝒚 𝟏], is the inputs matrix to the OL. Thus, if the OL neurons are linear,

then the OL weights W with (J+1, K) dimensions is directly calculated by using pseudo-inverse

algorithm

 𝑾 = 𝒚𝑏∗ 𝒅 (3.42)

where 𝒚𝑏∗ is a pseudo-inverse of 𝒚𝑏. Subsequently, a (P, K) uo matrix of inputs to the OL is

calculated by

 𝒖𝑜 = 𝒚𝒃 𝑾 (3.43)

Since, OL neurons are linear, the output of OL neurons o = uo, and a (P, K) dimensional matrix of

ones is its derivative as follows

 𝒐′ = 𝟏 (3.44)

31

In addition, when OL neurons are nonlinear, the OL weights W must be learned iteratively by

using a batch EBP algorithm. Now, a (P, K) dimensional matrix o is the output of applying the

hyperbolic tangent function in the OL, and a matrix o’ with size (P, K) is its derivatives

 𝒐 = 2/(1 + 𝑒𝑥𝑝(−𝒖𝒐)) – 1 (3.45)

 𝒐′ = 0.5 �1 – 𝒐2� (3.46)

For sigmoidal activation function, the outputs o and its derivatives o’ are given by

 𝒐 = 1/(1 + 𝑒𝑥𝑝(−𝒖𝒐)) (3.47)

 𝒐′ = 𝒐 (1 − 𝒐) (3.48)

The network errors (a matrix of (P, K) dimensions) is defined as a difference between the labeled

desired output d and the network output o

 𝒆𝒓𝒓𝒐𝒓𝒔 = 𝒅 − 𝒐 (3.49)

Back-propagation Phase

Error signals in equations (3.14) and (3.31) for the OL and HL are calculated as a (P, K)

dimensional matrix deltaO and a (P, J+1) dimensional matrix deltaY respectively

 𝒅𝒆𝒍𝒕𝒂𝑶 = 𝒆𝒓𝒓𝒐𝒓𝒔 𝒐′ (3.50)

Similarly, the delta signal matrix deltaY for a hidden layer is calculated as a product of derivative

output matrix, weights and deltaO matrix. To iteratively update the network weights V and W by

using batch EBP, the delta rule is used to find the correction weights of every weight matrices.

The correction weights are defined by equation (3.21), which is the product matrix of the inputs of

a layer and its associated error signals multiplied by a scalar of chosen learning rate η. The product

matrix of the HL and OL are given by gradV and gradW, respectively. The product matrix

gradV which has (n+1, J) dimensions is calculated as

32

 𝒈𝒓𝒂𝒅𝑽 = 𝑿𝑻 𝒅𝒆𝒍𝒕𝒂𝒀 (3.51)

For the OL, gradW is a product matrix of size (J+1, K)

 𝒈𝒓𝒂𝒅𝑾 = 𝒚𝒃𝑻 𝒅𝒆𝒍𝒕𝒂𝑶 (3.52)

To speed up the learning process, momentum scalar ηm was used. Thus, to update the weights by

using the momentum term (equation 3.20), the previous batch gradV and gradW are saved

respectively into gradV_old and gradW_old in order to use them during the adaption of network

weights. Therefore, the network weights V and W are adapted by using the delta rule and

momentum term as follows

 𝑽 = 𝑽 + 𝜂 𝒈𝒓𝒂𝒅𝑽 + 𝜂𝑚 𝜂 𝒈𝒓𝒂𝒅𝑽_𝒐𝒍𝒅 (3.53)

 𝑾 = 𝑾 + 𝜂 𝒈𝒓𝒂𝒅𝑾 + 𝜂𝑚 𝜂 𝒈𝒓𝒂𝒅𝑾_𝒐𝒍𝒅 (3.54)

where the product of (η gradV) is the correction weights of V, and (η gradW) as well is the

correction weights of W. Last terms, (ηm η gradV_old) and (ηm η gradW_old), respectively

describe using the momentum terms for updating both V and W weights.

3.4.3 Summary of the Fast Neural Network Algorithm

The NN code developed within the thesis implements the fast NN algorithm within the k-fold

cross validation (k-fold CV) loops. Here, in designing the best NN we have to find three best

variable parameters of the NN - first one being a number of hidden layer neurons, second one is

the best learning rate η and the last variable parameter that must be determined within the k-fold

CV loops is the number of iterations. This is why the code developed has three major outer loops

within which there is k loops for executing the k-fold CV as follows:

33

Step 1. Define three vectors for the three variable parameters: a vector of number of HL

neurons J0, a vector of learning rates η0, and a vector of number of learning steps

iterations0.

Step 2. For first outer loop, pick J (a number of HL neurons) from the vector J0

Step 3. Initialize V and W weights as (n+1, J) dimensional matrix and (J+1, K)

dimensional matrix, respectively. Note that a fixed parameter kw is used to initialize V in

the range [-kw, +kw].

Step 4. Pick the learning rate η from the vector η0 to perform second nested loop, and then

for third inner loop pick the iterations number iterations from the vector iterations0

Step 5. Reset the i_error to zero, which is a scalar of the model’s errors that are calculated

after using a particular combination of variable parameters (J, η , and iterations)

Step 6. For particular variable parameters, 10-fold cross validation is applied over the

scaled and shuffled training data, in such a way that within each iteration of cross

validation process the V and W weights are resets to the initial, and the gradV and gradW

matrices, which are respectively as same size as V and W, are rest to zeros.

Step 7. For each iteration of the 10-fold cross validation:

a. Apply the batch EBP algorithm by using learning rate η on the training folds and

iterations (number of times) to estimate V and W weights.

b. Evaluate the estimated model, V and W, by training the model over a testing fold to

calculate its errors in the i_error scalar.

c. Accumulate the calculated errors of 10-fold in the i_error scalar.

34

Step 8. Calculate a percentage of the accumulated errors i_error over all training data P,

and then save the percent errors of a particular variable parameters in a three dimensional

array i_Errors as follows:

i_Errors (J, η, iterations) = 100 * i_error / P

Step 9. Repeat the three nested loops for all values of J0, η0 and iterations0 by going to step

2, and save their percent errors in the array i_Errors

Step 10. Find the minimum percent errors of entire i_Errors array, and consequently extract

its associated indices (variable parameters) that represent the best J, best η, and best

iterations for classification of a particular data set.

Step 11. Build a classification model by using the best variable parameters (best J, best η,

and best iterations) on all training data P to estimate the weights V and W.

Step 12. Validate the classifier model on all training data P of a particular data set by

calculating its percent errors. Accuracy can be calculated by subtracting the best percent

error from one.

3.4.4 Issues to be Considered

3.4.4.1 Labeling Desired Output

A multiclass NN classifier classifies a given multiclass data set into K classes. Typically, a

standard binary classifier using linear or hyperbolic tangent activation functions needs the desired

output to be labeled either as (-1, +1). If the sigmoidal activation function is used the labeling is

35

(0, +1). Thus, the output vector for K = 3 classes labeled as 𝑑0 = [2 1 3 …] should be

relabeled as a matrix of three vectors. Each vector identifies one class as follows:

𝒅 = �

−1 +1 −1
+1 −1 −1
−1 −1 +1

…

� .

3.4.4.2 Initializing Weights

Practically, initializing weights by using small absolute random values is sufficient for

having a good convergence to the underlying classified function [5]. In the experiment, we used kw

parameter, which is fixed to (0.1), to identify and initiate at random the small absolute values of

the hidden layer weights. Bad initial weights may have an effect on learning by getting stuck at

such a local minimum, or by having slow convergence to the optimal weights. Empirically,

initializing weights by using small values and then increasing them speeds up the learning process

in MLP more than starting with maximum values of weights and then the decreasing. It iteratively

adjusts a model to the optimal one by starting with almost flat weights and then reshaping it

according to the inputs data and number of iterations that have been used.

3.4.4.3 Using a Single Neuron in the OL of One Model/K OL Neurons Structure for Two-

Class Data Sets

Our empirical evidence shows that using one neuron in the output layer of a two-class data

set gives almost the same accuracy in comparison with using two neurons in the output layer. It

takes, however, less time for training the model. Therefore, in our structure of a one model and K

neurons in the output layer, we use only one OL neuron and not two. Section 5.3 discusses the

results of using one OL neuron instead of two.

36

3.5 Experimental Data Sets

3.5.1 General Information

Eleven real data sets were involved in the experiment, which gathered from two different

sources: the UCI machine learning repository and benchmarks of Reinhardt and Hubbard [1][2].

First nine data sets are taken from the UCI, and the last two data sets are the benchmarking data

which were constructed by Reinhardt and Hubbard for protein sub-cellular localization. The

number of features in both of the Reinhardt and Hubbard data sets typically is 20-dimensional

amino acid composition for protein sub-cellular localization classification. Table 3.1 summarizes

information about the eleven experimental data sets.

Table 3.1: Experimental Data Set Information
Data set # Instances # Features # Classes

Iris 150 4 3
Glass 214 9 6
Vote 232 16 2*
Wine 178 13 3
Teach 151 5 3
Sonar 208 60 2*
Cancer 198 32 2*
Dermatology 366 33 6
Heart 297 13 5
Prokaryotic 997 20 3
Eukaryotic 2427 20 4

37

3.5.2 Preprocessing

3.5.2.1 Scaling Raw Data

Scaling the raw data sets is a fundamental task in many technical analyses. It assists the

development of neural network in effective and efficient ways. Basically, it is used to remove any

outliers by spreading out the distribution of data normally into a zero mean and a unit variance, in

such a way that the mean and standard deviation for the inputs data are associated with each

particular input.

3.5.2.2 Shuffling the Scaled Data Set

In cross validation technique, the data set has to be shuffled. Hence, the reliability in a

model’s performance is increased by using a large number of estimations on different (shuffled)

training data. K-fold cross validation technique establishes only K numbers of estimated models,

thus, shuffling the data set and then estimating K models to come up with overall average accuracy

of final estimated model will give a model with good generalization ability for future data.

38

4 Experimental Neural Network Structures

4.1 The Differences between Neural Network Structures

For a given data set that has K classes, three different MLP structures were used in the

experiment: one model/K output layer neurons, K separate models/One output layer neuron, and

K joint models/One output layer neuron. A model in this experiment refers to a fully connected

MLP neural network that has an input layer, a hidden layer and an output layer. The difference

between three structures is the number of models used in a structure. For one model/K OL

neurons structure, there is one model used that has K neurons in its OL. However, for K separate

models/One OL neuron and K joint models/One OL neuron, there are K models with one neuron

in its OL used in a structure. Moreover, K models have another difference in their training

approach of 10-fold cross validation over a given data set, in which it could be either training

jointly all K models (joint models/one OL neuron), or training separately the 10-fold cross

validation on each model alone (separate models/one OL neuron). The three different structures

are described below in detail.

39

4.1.1 One Model/K Output Layer Neurons Structure

This structure contains one model that has K neurons in its OL. Note that during the

training the complete matrix d given in section 3.4.4.1 is given as the desired NN output in batch

learning. The number of neurons in the HL is subjected to the fast neural network algorithm.

Precisely, the best variable parameters, number of HL neurons, learning rate and learning

iterations (J, η, iterations), characterize the model after 10-fold cross-validation on a given data

set. For two-class data sets, empirically using one neuron in the OL (K = 1) of a model

sufficiently gives almost the same accurate results as using two neurons in the OL (K = 2),

however, it requires less learning time. The experimental results for two-class training data that

used one neuron in OL are presented in chapter 5.

4.1.2 K Separate Models/One Output Layer Neuron Structure

K models each having one neuron in its OL, are separately constructed to build a MLP

structure. Now, during the training the kth model is given the kth column of the matrix d given in

section 3.4.41 as the desired output vector. Each model is trained separately by using the training

data of a particular class of K classes; in such a way that each model received its own

characteristics, best variable parameters, after separately training the 10-fold cross validation

over the training data of its associated class. Therefore, each model may be characterized by

different values of best variable parameters, i.e. different number of HL neurons, different values

of learning rates, and different number of iterations during learning phase.

40

4.1.3 K Joint Models/One Output Layer Neuron

This structure is exactly same as the second structure except the learning approach, in

which all models are jointly trained across 10-fold cross validation over its own associated class,

and thereby they are characterized by the same best variable parameters; i.e. same number of

neurons in hidden layer, same learning rates, and same number of iterations.

4.2 Simulated Example

To better understand the three different MLP structures and the differences between them,

let us simulate the experiment by assuming a scaled and shuffled training data that has three

classes K = 3 is provided to each structure. The training data consists of a matrix X that has P

patterns and its labeled desired output d. 10-fold cross validation was applied on training data

while using the fast neural network algorithm.

4.2.1 One Model/K OL Neurons

One MLP model that has K = 3 neurons in OL is depicted by figure (4.1). The trained

model, which applied the fast neural network algorithm, estimates the best variable parameters

(J, η, iterations) that classify the training data. For graphical representation, J = 2 is chosen as

number of neurons in the HL. By denoting V as HL weights and W is the OL weights, the

training data is propagated through the network layer by layer until it reaches the OL by three

output values, o1, o2, and o3. All the dimensions of the matrices involved are given in a

presentation of the fast batch algorithm in section 3.4.2. The max operation is performed to those

three values to apply the winner-takes-all approach that classifies pattern x to a winner class.

41

Figure 4.1: One Model/K OL Neurons Structure

4.2.2 K Separate Models/One OL Neuron

K models each having one neuron in their OL, were trained separately on the training

data in such a way that each model was using a matrix of inputs X and its associated vector of

labeled desired outputs d. As it is noticeable in figure (4.2), there are three different models

extracted as follows: the first model is associated with the first class of the training data and it

estimated two neurons in the HL J = 2 as being the best number of neurons to separate the first

class data from the other classes. The second model is associated with the second class and it has

found that the best number of HL neurons is J = 4. Similarly, and this is shown in the figure, the

best number of HL neurons for the third model J = 3. 10-fold cross validation technique that is

applied implicitly in the fast neural network was used separately for each model alone. After

training phase is finished, each model produces an output o1. Therefore, three outputs come out

from three models: o1, o2, and o3.Thus, by using winner-takes-all technique, the max operation is

used in such a way that the input patterns given in X are classified possibly to the correct class.

𝑦1

𝑦2

M
A

X

𝑜

𝑜1
uo1

o1

uo2

o2

uo3

o3

𝑜2

𝑜3

𝒘𝒌𝓳 = 𝒘𝟐𝟏

𝒗𝟐𝒊

u2

y2

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …

𝒙

Output Layer

OL’s Weights (W) HL’s Weights (V)

Hidden Layer Inputs Layer

42

4.2.3 K Joint Models/One OL Neuron

K joint models/One OL neuron has the same model structures as K separate models/One

OL neuron; however, the learning is changed here. Figure (4.3) depicts the K joint models/One

OL neuron structure. Each single models is associated with a specific class, but they are jointly

(simultaneously) trained on the whole input X by using a 10-fold cross validation technique

which is implicit in the fast neural network algorithm to produce an output of each model as o1,

o2, and o3. Therefore, after the training each NN will have same number of HL neurons (here we

have shown 2 HL neuron as being the best (J = 2) for all the models. As described before, a

winner-takes-all technique is used for classification by using max operator.

43

Figure 4.2: K Separate Models/One OL Neuron Structure

Output Layer

OL’s Weights (W) HL’s Weights (V)

Hidden Layer Inputs Layer

M
A

X

𝑜

 𝑜1

 𝑜2

 𝑜3

𝑜1
uo1

o1 𝒘𝒌𝓳 = 𝒘𝟏𝟏

𝑦2

𝑦1

𝒗𝟐𝒊

u2

y2

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …

𝒙

Model-1

𝒙
𝑜1

uo1

o1

𝒗𝟒𝒊

𝑦3

𝑦2

u3

y3

u1

y1

𝑦0 = +1

u2

y2

u4

y4

𝑦1

𝑦4

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛
…

 …

𝒘𝒌𝓳 = 𝒘𝟏𝟐

Model-2

𝒙

𝑦3
u3

y3

u1

y1

𝑦0 = +1

u2

y2

𝑦1

𝑦2

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …

𝑣3𝑖

𝑜1
uo1

o1

𝑤𝑘𝒿 = 𝑤12

Model-3

44

Figure 4.3: K Joint Models/One OL Neuron Structure

Output Layer

OL’s Weights (W) HL’s Weights (V)

Hidden Layer Inputs Layer

𝒙

𝑜3

M
A

X

𝑜
𝑜2

𝑜1

𝑜1

uo1

o1 𝑤𝑘𝒿 = 𝑤11

𝑦1

𝑦2

u2

y2

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …
 𝑣2𝑖

Model-1

𝑜1
uo1

o1 𝑤𝑘𝒿 = 𝑤11

𝑦1

𝑦2

u2

y2

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …
 𝑣2𝑖

Model-2

𝑜1
uo1

o1 𝑤𝑘𝒿 = 𝑤11

𝑦1

𝑦2

u2

y2

u1

y1

𝑦0 = +1

𝑥1

𝑥0 = +1

𝑥𝑖

𝑥𝑛

…

 …
 𝑣2𝑖

Model-3

45

5 Experimental Results and Discussion

5.1 Controlling the Experimental Environment

The fast neural network algorithm is applied for three different MLP structures: one

model/K OL neurons, K separate models/One OL neuron, and K joint models/One OL neuron, to

solve nonlinear multiclass classification tasks. Hyperbolic tangent activation function was

applied in the HL for all three structures, and linear activation function was applied in their

output OL. Linear activation function in the OL indicates that the W weights were directly

computed by using pseudo-inverse method that always finds the local minimum of a cost

function for a given HL weights V. Fixed parameters (table 5.1), and variable parameters (table

5.2) were also constant during the experiment.

Table 5.1: Experimental Fixed Parameters
Parameters Values

ηm 0.75
kw 0.1

W-direct 1
K-fold 10

Validation 1

46

Table 5.1 involves the values of experimental fixed parameters that were used during all of

the experiment. The momentum term was used to speed up the convergence to the minimum of a

cost function. Therefore, the value ηm = 0.75 was perfect for convergence purposes. The value kw

= 0.1 is used to initiate the HL weights V in the small range [-0.1, +0.1]. The parameter W-direct

indicates that the weights W of the OL were calculated directly by using the pseudo-inverse

method. K-fold parameter specifies that 10-fold cross validation was used during the training

process. The last parameter, Validation, shows the number of validation parts after the training

process is finished. Using Validation = 1 means that all patterns (or instances) of a given data set

have been used during validation phase.

Moreover, experimental results are obtained by using the variable parameters listed in

table 5.2, which were constant for all experimental data sets that trained in all three MLP

structures. The purpose behind making the variable parameters constant during training phase of

all three MLP structures is to control the experimental environments which could affect the

accuracy and/or time consumption. The variable parameters are number of neurons in the HL J,

learning rate η, and number of iterations during training phase iterations. As a first step in the

experiment, the network weights V and W were initiated at random, thus, by using seed =1, V

and W always have the same initiation matrices during all experiments.

Table 5.2: Experimental Variable Parameters
Variable Parameters Values

J [2:2:24]
η [0.0000001, 0.00001, 0.0001, 0.001, 0.004, 0.005, 0.025, 0.010]

iterations [100, 250, 400, 550, 700, 1000]
Seed 1

47

5.2 Comparison of Three Different MLP Structures

In term of accuracy, experimental results show that K joint models/One OL neuron is the

overall best MLP structure that applied the fast neural network algorithm to solve multiclass

classification tasks. However, it has the largest structure, meaning the biggest number of neurons

in the HL, and thus its training CPU time was the longest. The following subsections will discuss

the results in terms of accuracy, structure size and the CPU time consumption.

5.2.1 Comparison of Three Different MLP Structures in Term of Accuracy

Table 5.3 summarizes the experimental accuracy values and the overall averages of

applying the fast neural network algorithm on three different MLP structures for eleven data sets

(described in section 3.5). For every data set, each accuracy value appeared is an average

accuracy of overall data set that is obtained after training all patterns on the best found variable

parameters (J, η, and iterations). The best chosen variable parameters are based on finding the

minimum averaged error of unseen testing data for all 10-fold cross validation parts. A bold

value in each data set shows the best MLP structure in its averaged accuracy among others. The

star (*) symbol indicates that the obtained averaged accuracy is for two-class data sets. Averages

on last row of table 5.2 emphasize which its associated MLP structure is the best on overall

accuracy of eleven data sets.

48

Table 5.3: Accuracy of Three MLP Structures

Data Sets One Model / K
OL Neurons

K Separate
Models/One OL

Neuron

K Joint
Models/One OL

Neuron

Iris 98.67 99.33 98.00

Glass 92.99 88.32 94.39

Vote 96.98 96.98 97.41*

Wine 100.00 100.00 100.00

Teach 90.73 80.79 85.43

Sonar 100.00 100.00 100.00*

Cancer 90.40 90.40 91.41*

Dermatology 98.91 98.36 98.36

Heart 66.67 62.96 71.38

Prokaryotic 97.39 97.49 97.49

Eukaryotic 82.04 90.52 90.52

Average 92.25 91.38 93.13

Experimental results on table 5.3 for eleven data sets show that the overall averaged

accuracy of K joint models/One OL neuron structure is better than one model/K OL neurons, and

then the one model/K OL neurons structure is better than K separate models/One OL neuron.

Two data sets (Wine, and Sonar) gained 100% accuracy for all three MLP structures. Thus, by

eliminating them, the number of data sets decreased from eleven to nine. Ranking technique was

used in order to give a score to every structure and then evaluate them fairly. The K joint

models/One OL neuron has the best score of 50. In this scoring system, the higher the value the

better the structure is. Figure 5.1 graphically represent the scores of ranking three different MLP

structures.

49

Figure 5.1: The Scores of Ranking Three Different MLP Structures

The following graph depicts the accuracy of different MLP structures that is listed in table 5.3.

Figure 5.2: The Accuracy of Different MLP Structures of Eleven Data Sets

One Model/K OL Neurons K Separate Models/One OL Neuron K Joint Models/One OL Neuron
0

10

20

30

40

50

60

R
an

ki
ng

 s
co

re

Ranking of three multiclass structures

50

Three averaged accuracy plots are depicted in figure 5.2 for eleven data sets. The red

curve represents the average accuracy of one model/K OL neurons structure, the blue is the

average accuracy line of K separate models/One OL neuron structure, and finally the average

accuracy curve of K joint models/One OL neuron structure is depicted by the olive color. As it is

shown in figure 5.2, all three structures have the same average accuracies on the two data sets

Wine and Sonar at 100%. It also confirmed that the best average accuracy curve is the K joint

models/One OL neuron, since its curve is the upper among other curves. Furthermore, the curve

of one model/K OL neurons obviously is located between other two curves. Finally, the K

separate models/One OL neuron almost has the lowest averaged accuracy among other structures

which is shown by its curve that almost always fell under all other curves. Despite having the

lowest average accuracy, this structure achieved the highest accuracy for the Iris data set.

Another representation of experimental results is in figure 5.3 which shows the averaged

accuracy of three MLP structures, one model/K OL neurons, K separate models/One OL neuron,

and K joint models/One OL neuron that are depicted in red, blue, and olive columns respectively.

Figure 5.3: The Accuracy of Different MLP Structures of Eleven Data Sets

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Ac
cu

ra
cy

 in
 %

Data Sets

One Model/K OL Neurons K Separate Models/One OL Neuron K Joint Models/One OL Neuron

51

By almost eliminating the similar averaged accuracy among three structures, which are 6

data sets, Iris, Vote, Wine, Sonar, Cancer, Dermatology, and Prokaryotic, the other 4 data sets,

Glass, Teach, Heart, and Eukaryotic, have a clear diversity in their averaged accuracy between

three MLP structures. Consequently, it is obvious that K joint models/One OL neuron structure is

the best structure in term of accuracy in 3 out of 4 data sets. The reason why the K joint

models/One OL neuron performs the best on average is possibly coming from the famous

theorem in optimization that 'Sum of Optima, Is Not Optimal'. Applied to our structures, it

basically says that only by optimizing all the sub-models jointly leads to their best overall

performance. In machine learning, the K joint models/One OL neuron structure is usually named

a One-versus-All (OvA) model.

5.2.2 Comparison of Three Different MLP Structures in Terms of Structure Size

Table 5.4 shows the MLP structure size in terms of number of neurons in the HL. The

small size is desirable. The bold value shows the smallest size of a MLP structure among others.

It is obvious from the averaged size of all eleven data sets that the one model/K OL neurons

structure always has the smallest structure, then it is followed by K separate models/One OL

neuron and at last, K joint models/One OL neuron structure has the biggest averaged size.

52

Table 5.4: Number of HL Neurons of Three MLP Structures

Table 5.4 is also represented graphically in figure 5.4. The red column represents one

model/K OL neurons structure which has always the smallest size among other structures for 10

data sets out of 11. The K joint models/One OL neuron structure which is depicted as olive

column has the biggest averaged size. K separate models/One OL neuron structure (depicted as

blue) is between other two structures, but it is almost close in its size to the K joint models/One

OL neuron structure than one model/K OL neurons structure.

Data Sets One Model / K
OL Neurons

K Separate
Models/One
OL Neuron

K Joint
Models/One
OL Neuron

Iris 20 26 12

Glass 12 40 96

Vote 14 28 16

Wine 14 22 54

Teach 22 52 54

Sonar 24 48 36

Cancer 2 4 4

Dermatology 18 74 144

Heart 4 10 60

Prokaryotic 22 54 42

Eukaryotic 24 84 96

Average 16 40 56

53

Figure 5.4: The Structure Size of Three MLP Structures for Eleven Data Sets

5.2.3 Comparison of Three Different MLP Structures in Term of Time Consumption

The experiment additionally discusses the experimental CPU training time in hours for all

three MLP structures which is depicted in figure 5.5. A red curve represents experimental

training time of one model/K OL neurons. A blue curve and an olive curve represent the

experimental training time for K separate models/One OL neuron and K joint models/One OL

neuron respectively.

0

20

40

60

80

100

120

140

160

of

 H
L

N
eu

ro
ns

 (J
)

Data Sets

One Model/K OL Neurons K Separate Models/One OL Neuron K Joint Models/One OL Neuron

54

Figure 5.5: Training time of Different MLP Structures of Eleven Data Sets

For eleven data sets, figure 5.5 shows that the longest learning time is for K joint

models/One OL neuron structure. One model/K OL neurons is the fastest MLP structure in its

learning training time. Between previous structures, K separate models/One OL neuron is in the

middle, but its training time is closer to K joint models/One OL neuron structure than one

model/K OL neurons structure. The main reason for the difference between the two structures of

Ks (jointly and separately) models and one model structure is due to the need to build K models,

and then to spend time for training each model alone. This difference becomes huge when a large

number of instances in a training set are considered, such as the last data set (Eukaryotic). In

addition, the K joint models/One OL neuron structure has the biggest structural size in terms of

number of HL neurons, and thus the training time needed for learning the structure was the

longest one. Moreover, recall that for two-class data sets, we have used one neuron in OL of one

model/K OL neurons structure and this required less time during the training phase of the

55

experiment. The following section demonstrates the accuracy and the training time results for

two-class data sets that are trained in one model/K OL neurons.

5.3 Using a Neuron in the OL of One Model/K OL Neurons Structure for Two-

Class Data Sets

Empirically, for two-class data sets, using one neuron in OL of one-model/K neurons

structure gives almost the same results as using two OL neurons, however, it took less training

time. The following results are for a data set, Vote, which is a two-class data set that used in the

experiment. By using one model/K OL neurons structure, the following table 5.5 shows the

accuracy and learning training time in hour of using one or two OL neurons in the two-class data

set, Vote.

Table 5.5: The Accuracy of Using One or Two OL Neurons in Vote Data Set

It is obvious from table 5.5 that by applying fast neural network algorithm in the one

model/K OL neurons structure, the accuracy for using a single neuron in the OL of two-class data

set (Vote) is exactly the same as using two neurons. However, an OL neuron took less training

time in hours (1.25) than using two OL neurons which is slightly bigger than the first one (1.28).

Performance Measurement Using One OL
Neuron

Using Two OL
Neurons

Accuracy 96.98 96.98

Training Time 1.25 1.28

56

6 Conclusions

6.1 The Conclusion

The thesis develops a fast batch EBP algorithm which uses the pseudo-inverse method to

calculate its output weights when linear neuron(s) is (are) in the output layer. The algorithm is

used within the three different MLP structures in order to find the best structure that solves the

nonlinear multiclass classification problems for 11 benchmarking datasets. The three different

MLP structure are one model/K OL neurons, K separate models/One OL neuron and K joint

models/One OL neuron.

The K joint models/One OL neuron, with a hyperbolic tangent as its HL activation

function and the linear OL activation function, was the best in terms of accuracy among three

structures. However, it is the biggest in the size which results in the biggest training time. The

model accuracy is more significant than the elapsed learning time and the structure size, because

the data sets used fall into the category of small to middle size datasets. Thus, one can say that

for such datasets the best choice of the NN structure is the NN having K joint models and each of

57

them having one OL linear neuron. However, if one wants to model bigger datasets (say with

more than 10,000 patterns) the best choice may well be the single model with K OL neurons

because its accuracy is very close to the K joint models/One OL neuron structure but it needs a

significantly smaller training time and it is of a much smaller size, meaning it will be faster in an

on-line prediction (applications).

6.2 Future Works

There are several possible extensions of the work done here. First, it may be interesting to

compare the accuracies obtained on the 11 datasets used here to the accuracies provided by other

machine learning approaches such as support vector machines, adaptive local hyperplanes, k-

nearest neighbors, decision trees and others. Next, the suitability of the developed fast EBP

algorithm for huge data sets should be investigated and compared to the others models accuracies

and training speed. One interesting line of the research may also be to develop a parallel version

of the existing code and see its performance in terms of the speed of the training. Finally, the

research done here may possibly and the most likely continue in developing of a semi-batch

algorithm for handling large and ultra-large datasets (say when there are more than 1 million

samples). This may well be the most valuable extension of the work done here because NN are

not being used for such datasets as of today.

58

References

[1] A. Reinhardt, T. Hubbard, Using neural networks for prediction of the subcellular

location of proteins, Nucl. Acids Res. 26 (1998) 2230–2236.

 [2] Asuncion, A., Newman, D. J., “UCI ML Repository”,

[http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA, University of California,

School of Information and Computer Science, 2007.

 [3] Du, K L, Du, & Swamy. (2006). Neural networks in a softcomputing framework.

Springer-Verlag.

[4] Haykin, S S. (2009). Neural networks and learning machines.

 [5] Kecman, V. (2001). Learning and soft computing. Cambridge Mass. [u.a.]: MIT Press.

	Virginia Commonwealth University
	VCU Scholars Compass
	2012

	FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS
	Noor Albarakati
	Downloaded from

	1 An Introduction to Neural Networks
	1.1 Introduction
	1.2 Artificial Neural Network
	1.3 Architectures of Neural Network
	1.4 Learning Methods
	1
	1.1
	1.2
	1.3
	1.1
	1.2
	1.3
	1.4
	1.4.1 Supervised Learning
	1.4.2 Unsupervised Learning
	1.4.3 Reinforcement Learning

	1.5 Applications of Supervised Learning in NN
	1.6 Perceptron
	1.4
	1.5
	1.6
	1.6.1 Perceptron Learning Algorithm
	1.7 Multilayer Perceptron (MLP)
	1.8 Activation Functions
	1.7
	1.8
	1.8.1 Threshold Activation Functions
	1.8.2 Linear Activation Functions
	1.8.3 Nonlinear Activation Functions
	1.8.3.1 Unipolar Logistic (Sigmoidal) Function
	1.8.3.2 Bipolar Sigmoidal Function (Hyperbolic Tangent Function)
	1.9 Learning and Generalization
	1.9
	1.9.1 Over-Fitting and Under-Fitting Phenomena
	1.9.2 Bias and Variance Dilemma
	1.9.3 Controlling Generalization Errors
	1.9.3.1 Cross Validation
	1.10 Problem Statement and Previous Work

	2 Overview of the Experiment
	2
	2.1 Introduction
	2.2 Experimental Overview
	2.3 Contents of Experimental Chapters

	3 Experimental Procedures of Developing Fast NN Algorithm
	3
	3.1 Least Mean Squares Algorithm (LMS)
	3.2 Adapting Learning Rate and the Momentum Term
	3.3 Error Back-Propagation Algorithm (EBP)
	3.4 Fast Neural Network Algorithm
	3.4.1 Batch Learning Technique
	3.4.2 Batch EBP Algorithm
	3.4.3 Summary of the Fast Neural Network Algorithm
	3.4.4 Issues to be Considered
	1
	2
	3
	3.1
	3.2
	3.3
	3.4
	3.4.1
	3.4.2
	3.4.3
	3.4.4
	3.4.4.1 Labeling Desired Output
	3.4.4.2 Initializing Weights
	3.4.4.3 Using a Single Neuron in the OL of One Model/K OL Neurons Structure for Two-Class Data Sets
	3.5 Experimental Data Sets
	3
	3.1
	3.2
	3.3
	3.4
	3.5
	4
	5
	6
	6.1
	6.2
	6.3
	6.4
	6.5
	6.6
	3.5.1 General Information
	3.5.2 Preprocessing
	3.5.2.1 Scaling Raw Data
	3.5.2.2 Shuffling the Scaled Data Set

	4 Experimental Neural Network Structures
	3
	4
	2
	3
	4
	4.1 The Differences between Neural Network Structures
	4.1.1 One Model/K Output Layer Neurons Structure
	4.1.2 K Separate Models/One Output Layer Neuron Structure
	4.1.3 K Joint Models/One Output Layer Neuron

	4.2 Simulated Example
	4
	4.1
	4.2
	7
	7.1
	7.2
	4.2.1 One Model/K OL Neurons
	4.2.2 K Separate Models/One OL Neuron
	4.2.3 K Joint Models/One OL Neuron

	5 Experimental Results and Discussion
	5
	8
	8.1
	5
	5.1 Controlling the Experimental Environment
	8.2
	5.1
	5.2 Comparison of Three Different MLP Structures
	5.2.1 Comparison of Three Different MLP Structures in Term of Accuracy
	5.2.2 Comparison of Three Different MLP Structures in Terms of Structure Size
	5.2.3 Comparison of Three Different MLP Structures in Term of Time Consumption

	5.3 Using a Neuron in the OL of One Model/K OL Neurons Structure for Two-Class Data Sets

	6 Conclusions
	4
	5
	6
	6
	6.1 The Conclusion
	6.1
	6.2 Future Works

