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Classification is one-out-of several applications in the neural network (NN) world. 

Multilayer perceptron (MLP) is the common neural network architecture which is used for 

classification tasks. It is famous for its error back propagation (EBP) algorithm, which opened 

the new way for solving classification problems given a set of empirical data. In the thesis, we 

performed experiments by using three different NN structures in order to find the best MLP 

neural network structure for performing the nonlinear classification of multiclass data sets. A 

developed learning algorithm used here is the batch EBP algorithm which uses all the data as a 

single batch while updating the NN weights. The batch EBP speeds up training significantly and 

this is also why the title of the thesis is dubbed 'fast NN …'. In the batch EBP, and when in the 

output layer a linear neurons are used, one implements the pseudo-inverse algorithm to calculate 

the output layer weights. In this way one always finds the local minimum of a cost function for a 

given hidden layer weights. Three different MLP neural network structures have been 

investigated while solving classification problems having K classes: one model/K output layer 

neurons, K separate models/One output layer neuron, and K joint models/One output layer 

neuron. The extensive series of experiments performed within the thesis proved that the best 

structure for solving multiclass classification problems is a K joint models/One output layer 

neuron structure. 
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1 An Introduction to Neural Networks 

1.1 Introduction 

Machine learning is a significant part of almost all research and developments today. 

Gaining knowledge from empirical data is the core of machine learning. The knowledge is 

achieved by changing either a structure or parameters of a model or both in order to improve its 

expected performance on future data [3]. These changes have been performed to accomplish one 

of artificial intelligence tasks which can be learning, decision making, prediction, recognition, 

diagnosis, planning,  control, …, etc. Recently, different approaches are used to learn from data 

such as support vector machine (SVM), decision tree, clustering, Bayesian networks, genetic 

programming, and artificial neural network. This thesis will discuss learning from experimental 

data by using artificial neural network. In particular, it will develop a fast neural network 

algorithm and it will test several neural network structures in order to find what the best 

approach for multiclass classification problems is.  
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1.2 Artificial Neural Network 

Artificial neural network (ANN), or often it called neural network, is a parallel 

computational model that takes its structure and function from biological neural networks. A 

neuron is the main artificial node in the NN. It processes the summation of inputs by using 

activation function to generate an output. An activation function could be linear or nonlinear. All 

neurons are connected peer-to-peer to each other by weights wi. The output of a nonlinear neuron 

is given by   

 𝑜 = 𝑓(𝑢) = 𝑓(∑ 𝑤𝑖 𝑥𝑖 +  𝑏𝑛
𝑖=1 )  = 𝑓(𝒘𝑇𝒙 + 𝑏)       (1.1) 

where, u is an input to the neuron and o is its output,  f(u) is an known dependency, mapping or 

function, between input and output, 𝑥𝒊 is the 𝑖th input, 𝑤𝒊 is the i-th weight, n is the total number 

of inputs, and b is a threshold or a bias.  

1.3 Architectures of Neural Network 

Neural network can basically be divided into feedforward neural network, and recurrent 

neural network. 

Feedforward neural network (FNN) architecture consists of a finite number of layers 

which contain a finite number of neurons in a feedforward manner. There is neither no feedback 

connection in the whole network, nor a connection between neurons in a single layer. The layers 

are connected by network weights. Number of neurons in a single layer has to be sufficient to 

solve the problem, and number of layers has to be minimal as much as possible to reduce the 

problem solving time. FNN are classified into fully connected layered FNN or partially 

connected layered FNN. When each neuron connects to every feedforward neurons in the 
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network, it is considered as a fully connected layered FNN. Otherwise, FNN will be considered 

to be a partial one. Multilayer Perceptrons (MLP) and Radial Basis Function Network (RBFN) 

are the most fully connected layered FNN could be used in NN. 

In recurrent neural network (RNN), there is at least one feedback connection, and that 

make this type of network a dynamic NN. Hopfield model and the Boltzmann machine are the 

most popular RNN. 

1.4 Learning Methods 

Neural network has to learn its parameters, such as weights by using training data (learning 

process) in order to predict, or to estimate, the correct output for any new input (generalization 

process). Learning methods are mostly classified into supervised, unsupervised and 

reinforcement learning. 

1.4.1 Supervised Learning 

Supervised learning is basically about having the data set as pairs of input and desired 

output (x, d). Error-correction rule is a learning technique which is used in supervised learning 

algorithms to do a direct comparison between desired output d and actual network output o for a 

given input x in order to minimize the errors values between them (e = d - o). During training 

phase, network weights have been adjusted by feeding the errors back to the network. Usually, 

mean square error approach (MSE) is used as a cost function [3]. Two neural network 

applications that apply supervised learning algorithms are the classification and regression. 

Solving multiclass classification problems by using MLP neural network which is one of 

supervised learning algorithms is the central part of this thesis. 
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1.4.2 Unsupervised Learning 

In an unsupervised learning, there is no desired output in training data in which 

consequently there are no errors counted to direct learning process. Unsupervised learning 

method relies on finding the relations and correlations among the input features to figure out the 

hidden structure of unlabeled data. The self-organizing map (SOM) and adaptive resonance 

theory (ART) are two instances of neural network models that use unsupervised learning 

algorithms. 

1.4.3 Reinforcement Learning 

Reinforcement is a type of supervised learning; however, it has less detailed information 

of the output available. It depends upon evaluative signals from learning environment to direct 

the learning. 

Both the unsupervised learning and the reinforcement one are beyond the scope of this 

study.  

1.5 Applications of Supervised Learning in NN 

Neural network has been borne by the end of 1940s, and it has been started to solve 

complex problems in science and engineering fields by 1980s decade [5]. Thus, different 

applications appeared in the neural network world such as modeling and identification of 

systems, pattern recognition, signal processing, optimization, controlling and classification. Most 

useful applications of neural network that implemented supervised learning methods are 

classification and function approximation (regression).  
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Classification is a statistical application which is solely based on assigning discrete input 

data to a number of discrete classes or categories by approximating the underlying function that 

classified the data set. Both MLP and RBFN architectures are mostly used in classification tasks. 

Most algorithms that solve classification problems currently are MLP neural network, support 

vector machines, k-nearest neighbors, Gaussian mixture model, Gaussian, naive Bayes, decision 

tree and RBF classifiers. 

Function approximation is another statistical application which is based on finding 

numerical mapping between input and desired output. Regression is one example of function 

approximation which generates the continuous approximation of the underlying function 

between input and output.  

1.6 Perceptron  

A neuron which has a linear combiner followed by a hard limiter is called a perceptron. 

The perceptron is used to classify the two classes of autonomously input patterns were linearly 

separable. Figure 1.1 illustrates the perceptron graphically [4].  

 

 
Figure 1.1: A Single Perceptron 

…
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The linear combiner is an operation of summing n+1 weighted inputs to produces u, which 

is mathematically represented by equation (1.2) 

𝑢 =  ∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0  =  𝑤0 𝑥0 +  𝑤1 𝑥1 +  … +  𝑤𝑛 𝑥𝑛 =  𝒘𝑇 𝒙     (1.2) 

where x0 is a bias which is fixed to one, and w0 is its corresponding weight that are used in 

order to shift the decision boundary (or separation line) of a classifier away from the origin. 

The Hard limiter produces an output o which is either +1 if the hard limiter’s input u is 

positive, or  -1 if u is negative. Equation 1.3 describes the operation of hard limiter 

mathematically 

𝑜 = 𝑓(𝑢) =  𝑠𝑖𝑔𝑛(𝑢) = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0 ) =  �+1  𝑓𝑜𝑟 𝑢 ≥ 0

−1  𝑓𝑜𝑟 𝑢 < 0 
�    (1.3) 

where sign(.) stands for the signum function (known also as the Heaviside function) [5]. 

1.6.1 Perceptron Learning Algorithm  

Perceptron learning algorithm is an iterative algorithm which depends upon the error-

correction rule to adjust the network weights w proportional to the error e = d – o between the 

desired output d and the actual perceptron output o of a given random chosen data pair (x, d), in 

such a way that the errors will be reduced to zero. 

 To describe the perceptron model mathematically, let us define the following column 

vectors 

𝐱 =  [+1,  𝑥1, 𝑥2, … , 𝑥𝑛]𝑇          (1.4) 

𝐰 =  [ 𝑤0,  𝑤1, 𝑤2, … , 𝑤𝑛]𝑇,        (1.5) 
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where the input vector x has n features or dimensions, and the vector w is its corresponding 

weights. Notice that throughout this entire thesis, both x and w will be augmented vectors by +1 

and w0 respectively. Thus, by given a set of P training data pairs, assumes that a randomly 

chosen labeled input pair (xp, dp) at time p is applied to the perceptron to classify it into two 

distinct classes: class-1 or class-2, and the vector of weights wp is randomly initiated, and 

consequently, the linear combiner of the perceptron results the weighted sum of inputs up which 

is defined by equation 1.2. According to figure 1.1, a resultant value up of the linear combiner is 

applied to the hard limiter f(up) to classify the input xp to either class-1 if the op value is equal or 

greater than zero, or to class-2 if it is less than zero by using a signum function (equation 1.3). 

Moreover, the decision boundary or separation line, which is estimated by the classifier to 

separate two linear separable classes, is defined by a resultant value up when it is equal to zero as 

follows 

 𝑢 =  ∑ 𝑤𝑖 𝑥𝑖𝑛
𝑖=0 =  𝐰𝑇𝐱 = 0         (1.6) 

According to error-correction rule, the perceptron learning algorithm iteratively changes the 

network weights proportionally to the error ep = dp - op, and a new adaptive weights wp+1, which 

is the sum of weights wp and its correction weights ∆wp, will be calculated as following 

𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 =  𝒘𝑝 +  𝜂 𝑒𝑝 𝒙𝑝 =   𝒘𝑝 + 𝜂 �𝑑𝑝 −  𝑜𝑝� 𝒙𝑝     (1.7) 

where η is a learning rate that controls the learning process by specifying the magnitude of the 

correction weights ∆wp, however, it does not determine the direction of weights changes. After 

that, a next randomly data pair (xp+1, dp+1) at time p+1 is chosen from training data, and the 

whole perceptron learning algorithm strategy is repeated by using the new adaptive weights wp+1. 
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By performing the previous procedure on training data for p = 1, 2, 3, …, P, the adaption of 

network weights will be stopped when ep = 0 for all data pairs.  

A single perceptron is considered as one node (neuron) in NN, and it is used in a single 

layer perceptron (SLP) network to linearly classify multiclass data sets. However, for nonlinearly 

multiclass classification problems, multilayer perceptron neural network is used. 

1.7 Multilayer Perceptron (MLP) 

The architecture of multilayer perceptron consists of fully connected layers of neurons 

between input and output. Typically, it consists of one or multiple hidden layers and one output 

layer. Each layer empirically has to apply the same activation functions. Last node in each layer 

is a threshold or a bias which is fixed to one. As what has already mentioned, weights in the 

network are used to connect neurons between layers. Figure 1.2 illustrates a MLP model that has 

an input layer (IL), a single hidden layer (HL) and an output layer (OL). A given training data 

(x, d), which has input x of n features, is applied to MLP. Hidden layer that has J neurons is 

connected to the nodes of input layer by V weights, however, W weights is used to connect K 

neurons of OL with J neurons of HL.  
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Figure 1.2: Multilayer Perceptron of One Hidden Layer and One Output Layer 

 

1.8 Activation Functions 

The most important ability of neural network is transforming the activation level of 

summing the weighted inputs of a neuron into an output by using an activation function. Usually, 
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functions used in NN are classified into threshold, linear and nonlinear activation functions. In 

MLP, hidden layer has nonlinear activation functions. However, output layer has both linear and 

nonlinear activation functions. 

1.8.1 Threshold Activation Functions 

Threshold activation function is a hard limited activation function. A signum function is an 

example of threshold function that always gives −1 or +1 output value. Threshold functions are 

useful for binary classification that classifies the inputs into two groups by using a winner-takes-

all approach.  
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1.8.2 Linear Activation Functions 

Linear activation function of a neuron gives an output which is equal to its linear 

combiner u. By applying the pseudo-inverse algorithm in the OL of MLP, as an instance, the 

linear activation function is used to give the local minimum of a cost function E for a given HL 

weights V. 

1.8.3 Nonlinear Activation Functions 

Nonlinear activation functions are used in both HL and OL to iteratively update network 

weights, and thus solve complex nonlinear problems. The most useful nonlinear activation 

functions in MLP that has S-shaped are unipolar logistic function and bipolar sigmoidal function. 

1.8.3.1 Unipolar Logistic (Sigmoidal) Function 

Logistic sigmoidal function is a unipolar function that is applied in a neuron gives an 

output value y within a range of [0, +1] for any input u. It mathematically produces y as follows 

𝑦 =  𝑓(𝑢) =  1
1+ 𝑒− 𝑢           (1.8) 

1.8.3.2 Bipolar Sigmoidal Function (Hyperbolic Tangent Function) 

Hyperbolic tangent function gives an output value y within the range [-1, +1] for a given 

input u that is applied to a neuron. Equation (1.9) formulates the hyperbolic tangent function 

𝑦 = 𝑓(𝑢) =  2
1+ 𝑒− 𝑢 −  1         (1.9) 

1.9 Learning and Generalization 

Repeatedly, learning from a given data set is used to identify either the model’s parameters 

of an approximated underlying function, or the model’s structure. After a learning process is 
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completed and a model is obtained, the model has a generalization ability to predict or estimate 

the accurate output of a new input. Neural networks mainly have two phenomena that affect 

respectively on learning and/or generalization which are over-fitting and under-fitting. 

1.9.1 Over-Fitting and Under-Fitting Phenomena 

The most significant two problems affect on learning and generalization of neural networks 

which are under-fitting, and over-fitting (or over-trained), respectively [5]. Over-fitting 

phenomenon occurs when the neural network has trained the noisy or imprecise data during the 

learning phase. Thus, the model could achieve 100% accuracy for classify a given data set; 

however, it will not have a strong generalization ability of new input data. Empirically, data sets 

usually have a certain level of noise. Therefore, when the neural network has to learn from 

training data, it should stop learning in such criteria that the generalization ability is superior. On 

the other hand, under-fitting problem is about being far away from the actual underlying function 

of a given data set. Generally, those two problems identify the bias and variance dilemma.  

1.9.2 Bias and Variance Dilemma 

Overall generalization errors come from two terms: bias and variance. Bias occurs when 

the network tries to fit all data points including the noises. In contrary, variance problem 

addresses the smoothness of an approximated model in comparison with the actual underlying 

function that generated the training data. The over-fitting problem in training data has occurred 

when the model has small bias and large variance. Under-fitting phenomenon has been caused by 

a model which has a large bias and a small variance. Always there is a trade-off between bias 

and variance. Figure 1.3 shows the optimal area of the trade-off between bias and variance [5].  
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Figure 1.3: The Trade-off between Bias and Variance 

 

1.9.3 Controlling Generalization Errors 

The optimal trade-off area between bias and variance on a model (figure 1.3) that reduces 

the generalization errors will give an effective and an efficient model for learning and 

generalization processes on a given data set. The most useful method that controls the 

generalization errors is a cross validation approach which is used to estimate how accurately the 

model performs in unseen data. 

1.9.3.1 Cross Validation 

Cross validation is a stopping criterion that controls learning process to implement a model 

that has good generalization process. It is a statistical method that divides the overall data set 

randomly into two sets: training set and testing (or validation) set. The majority of the data goes 

to the training set. K-fold cross validation technique is the most popular technique has been used 
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which splits the data into k-folds in such a way that (k-1) folds are used in training to build a 

model, and the last fold left is held-out for testing or validation. For a particular iteration in k-

fold cross validation method, each data point should be existed once in either training or testing 

sets. To apply k-fold cross validation, all data set must initially be shuffled and all classes must 

be presented in the training set. Moreover, after training phase is completed, the obtained model 

uses test set to see how the approximated model behaves on unseen data (validation). As a result, 

cross validation technique helps the approximated model to give good generalization ability on 

future data. Recently, 10-fold cross validation is the popular form used in data mining and 

machine learning fields [4]. Figure (1.4) graphically demonstrates an example of 3-fold cross 

validation technique.  

 

Fold-1 Fold-2 Fold-3  A Data set is divided almost equally into 3 folds 

    
       Training sets used to model a classifier 

   
       Testing set used to evaluate the classifier 

Evaluation Modeling    

testing  training  training  

Error = ∑ error3
𝑖=1  (i) 

error (1)   
 

   
 

training   testing   training  

 error (2)  
 

   
 

 training  training testing    

  error (3)  
 

Figure 1.4: Cross Validation Procedure  
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Cross validation technique has been used during implementing the model to achieve one of the 

following two reasons:  

 Enhancing the generalization ability of a model to accurately predict the future data. 

 Comparing the performance of two or more learning algorithms by using a double cross 

validation approach to find out the best one for a given data set.  

1.10 Problem Statement and Previous Work 

The goal of this research is to identify the best MLP model for multiclass classification 

tasks by constructing different structures of MLP, applying a fast error back propagation (EBP) 

algorithm on all structures, and then comparing their performances in term of accuracy and time 

consumption.  

Previous work was about designing and implementing an EBP learning algorithm for 

solving multiclass classification problems by using MLP neural network. Here, the fast EBP 

based on a batch version of the EBP algorithm is designed and used to learn iteratively the 

weights of hidden and output layers. Three activation functions are implemented in both hidden 

and output layers. A significant speed up can be achieved when OL neurons are linear by using 

pseudo-inverse algorithm for calculation of the output layers weights wkj [5]. The EBP 

implemented can also use the momentum term in updating the weights which usually speeds up 

the learning. 
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2 Overview of the Experiment 

2.1 Introduction 

The ultimate goal of this study is to find which structure of MLP NN is the best for 

performing the nonlinear classification of multiclass datasets. In order to perform this task, a fast 

EBP algorithm is developed and tested on eleven data sets in terms of accuracy and CPU time 

needed during the training i.e., learning phase. The basic description of the EBP algorithm is 

given in chapter 3, while the three different structures for solving multiclass problems are 

presented in chapter 4.  

2.2 Experimental Overview 

In the first phase of the experiment, the fast EBP algorithm is developed and implemented 

for training nonlinearly separable data sets in MLP models. During the learning, 10-fold cross 

validation was applied and the scaled and shuffled data have been used in order to enhance the 

ability of generalization on future, previously unseen, data. Activation function of hidden layer 
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can be either logistic sigmoidal function or a hyperbolic tangent. Here, the latter was used. In the 

output layer linear activation function was used, which enables the use of the pseudo-inverse for 

calculation of the OL weights.  

Two types of parameters were used in the algorithm: fixed parameters and variable 

parameters. Fixed parameters are constant during all the experiment. They contain values of 

momentum term, the range of randomly initiating HL weights, and number of cross validation 

folds used in training phase. They also determine the learning approach of OL weights to be 

either direct estimation by using pseudo-inverse method, or iterative adjustment by using EBP 

algorithm. On the other hand, variable parameters, which are the core of the first phase of this 

study, are the number of neurons in a hidden layer (J), learning rate (η) and number of training 

iterations (iterations). The 10-fold cross validation over the variable parameters gives us their 

best values for a given data set. 

The fast neural network algorithm, which is developed in the first phase, was used in the 

second phase of experiment by applying it for three different MLP structures: One Model/K 

output layer neurons, K separate models/One output layer neuron, and K joint models/One 

output layer neuron. All three different structures that applied fast neural network algorithm for 

solving nonlinear multiclass classification problems are described in more detail in chapter 4.  

The experimental training time and accuracies were computed as well as the structure size 

for all three MLP structures, and the results of MLP structures that applied fast neural network 

algorithm for multiclass classification task are deeply discussed in experimental results and 

discussion chapter.  



 
 

17 
 

2.3 Contents of Experimental Chapters 

Experimental chapters are organized as follows: chapter 3 describes in more detail the first 

experimental phase which is a developing the fast neural network algorithm as well as the 

experimental data sets. Second part of the experiment will be explained in chapter 4 by 

describing all MLP structures that are used in the experiment, and then stating experiment 

simulation examples of three MLP structures. Finally, the experimental results and discussions 

are deeply clarified in chapter 5.
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3 Experimental Procedures of Developing Fast NN Algorithm 

Since MLP is the most popular neural network structure for classification tasks [5], the 

developed fast neural network algorithm is based on error back-propagation (EBP) which includes 

the least mean square (LMS) algorithm as a linear adaptive-filtering algorithm. The main goal of 

the first phase of this study is to find the best variable parameters of a MLP model that applies the 

fast neural network algorithm to classify a given multiclass data set. The following sections have 

full descriptions of all experimental algorithms are applied. 

3.1 Least Mean Squares Algorithm (LMS) 

Least mean square algorithm (known also as delta learning rule), is an adaptive learning 

algorithm which iteratively adapts the network’s weights by minimizing the cost function E rather 

than computing the misclassified patterns1. Precisely, it is an adaptive linear gradient-descent 

algorithm that is used to successively adjust weights ∆w by taking step size η proportionally to a 
                                                            
1 The presentation of EBP follows [4] and [5]. 
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direction of steepest descent of E, which is the opposite direction of a gradient vector ∇𝐸(𝐰) of 

the cost function E. For that reason, gradient-descent optimization method is applied to steeply 

converge to a local minimum of the cost function surface. By using the step size η (learning rate) 

in the LMS algorithm, it is noticeable when η is small, the smooth and accurate LMS performance 

is achieved. However, the rate of convergence to the local minimum is slow. Equation (3.1) 

defines the adaption of network weights w by using LMS learning rule when the pair p is given to 

the network.  

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂  ∇𝐸�𝒘𝑝� = 𝒘𝑝 − 𝜂 �𝜕𝐸
𝜕𝒘
�
𝑝
     (3.1) 

Learning the model parameter (weights) by LMS algorithm is in an on-line mode in which 

the network weights are updated after each pair (pattern) of the training data that has been trained. 

Thus, it is pattern- based and not epoch-based, which the latter is dependent on the entire epoch 

(all patterns of training data) to be processed before doing any update. So for brevity in the 

following sections, the subscript p will be skipped. 

During a one epoch, a training data pair (x, d) is taken randomly from the training data and 

applied to a neuron that has an activation function f(u). Fortunately, the weighted inputs u of the 

neuron which is given by equation 1.2 can be written by using the matrix form as follows 

𝑢 = 𝒘𝑇 𝒙          (3.2) 

By applying the activation function on u, the output of the neuron is given by 

 𝑜 = 𝑓(𝑢) = 𝑓(𝒘𝑇 𝒙)         (3.3) 
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To determine the error magnitude of weights w for a particular pattern (x, d), a direct comparison 

between the desired output d and the neuron output o will be computed 

𝑒 = 𝑑 − 𝑜 = 𝑑 − (𝒘𝑇 𝒙)           (3.4) 

This error will be used to control the adaption of weights of the neuron in such a sense of 

minimizing the cost function E of overall network weights. The sum of error squares is taken as a 

cost function which has to be gradually minimized during the training phase, thus the derivation of 

the learning procedure ∇𝐸(𝒘) has only to be made through deterministic argument [5]. In addition, 

by using the sum of error squares, the continuously nonlinear differentiable cost function E of 

weights vector w will geometrically be a quadratic hyper-surface [4]. Equation (3.5) defines the 

cost function E  

𝐸 =  1
2

 𝑒2 = 𝐸(𝒘)          (3.5) 

The differentiation of cost function E with respect to vector w gives the gradient vector ∇𝐸(𝒘). 

Thus, the chain rule of the differentiation is given by 

 𝛻𝐸(𝒘) = 𝜕𝐸
𝜕𝑢

 𝜕𝑢
𝜕𝒘

           (3.6) 

where the term 𝜕𝐸
𝜕𝑢

 is called the error signal δ, which measures how much the error is changing in 

response to the change of the inputs of neuron u, and the term 𝜕𝑢
𝜕𝒘

 measures the influence of the 

vector weights w when that particular input u is calculated. By applying the chain rule again on 

equation (3.6), we get 

 ∇𝐸(𝒘) = 𝜕𝐸
𝜕𝑒

 𝜕𝑒
𝜕𝑜

 𝜕𝑜
𝜕𝑢

 𝜕𝑢
𝜕𝒘

          (3.7) 
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We get (𝜕𝐸
𝜕𝑒

) by differentiating both sides of equation (3.5) with respect to e  

 𝜕𝐸
𝜕𝑒

=  𝑒            (3.8) 

In addition, (𝜕𝑒
𝜕𝑜

) can be found by differentiating both sides of equation (3.4) with respect to o as 

follows 

  𝜕𝑒
𝜕𝑜

=  −1             (3.9) 

The term (𝜕𝑜
𝜕𝑢

) can be found by differentiating both sides of equation (3.3) with respect to u 

  𝜕𝑜
𝜕𝑢

= 𝑓′(𝑢)             (3.10) 

Lastly, (𝜕𝑢
𝜕𝒘

) is gained by differentiating both sides of equation (3.2) with respect to w  

 𝜕𝑢
𝜕𝒘

= 𝒙            (3.11) 

Therefore, by replacing the equivalent terms of equation (3.7) each by equations (3.8), (3.9), 

(3.10) and (3.11), the first partial derivative of cost function E with respect to weights vector w is  

 ∇𝐸(𝒘) = − 𝑒 𝑓′(𝑢) 𝒙          (3.12) 

As a result, LMS or the delta learning rule when the pattern p is presented in network can be 

written as  

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸(𝒘𝑝) =  𝒘𝑝 + 𝜂 𝑒𝑝 𝑓′�𝑢𝑝� 𝒙𝑝    (3.13) 
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Since LMS is applied in EBP algorithm, which is the most popular algorithm for multiclass 

classification problems, it is better to specify the error signal term δ for the OL in the formula of 

LMS algorithm, where the error signal is given by  

 𝛿 =  𝑒 𝑓′(𝑢) =   (𝑑 − 𝑜) 𝑓′(𝑢)         (3.14) 

Therefore, equation (3.13) can be rewritten by using error signal term δ as follow 

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 + 𝜂 𝛿𝑝 𝒙𝑝       (3.15) 

Recall that LMS is in on-line mode, therefore for the pattern p, the equation (3.13) can be 

written in terms of each vector component wj,p of the weights vector wp   

 𝑤𝑗,𝑝+1 = 𝑤𝑗,𝑝 + 𝜂�𝑑𝑝 − 𝑜𝑝� 𝑓′�𝑢𝑝� 𝑥𝑗,𝑝 = 𝑤𝑗,𝑝 + 𝜂 𝛿𝑝 𝑥𝑗,𝑝     (3.16) 

For the linear activation function which can be applied in OL neurons of MLP models, the 

derivation of activation function is equal to one  f’(u) = 1, consequently, the error signal δ is equal 

to the individual error e as follows 

 𝛿 =  𝑒  𝑓′(𝑢) =  𝑒 = 𝑑 − 𝑜          (3.17) 

Therefore, LMS learning algorithm for linear neuron is given by 

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 + 𝜂 �𝑑𝑝 − 𝑜𝑝� 𝒙𝑝 = 𝒘𝑝 + 𝜂 𝑒𝑝 𝒙𝑝    (3.18) 

3.2 Adapting Learning Rate and the Momentum Term 

Unfortunately, choosing an optimal learning rate on EBP of MLP is dependent upon trial-

and-error technique. It is affected in addition by the number of learning steps. In other words, 

having a small learning rate could smooth the convergence but it needs large number of iteration 
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steps during learning process. However, the large learning rate could escape the local minimum of 

cost function. Table 5.2 lists the values of learning rate η that are used in the experiment.  

To speed up the convergence to the minimum of the cost function in EBP algorithm, the 

momentum term is used [5]. It reaches the minimal by using small number of iterations during 

learning process. The following equation gives the adaptive weights for a pattern p in terms of 

using the gradient vector 𝛻𝐸�𝒘𝑝� of the cost function E, and the momentum term ηm.  

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸�𝒘𝑝� + 𝜂𝑚[𝒘𝑝 − 𝒘𝑝−1]    (3.19) 

where [wp – wp-1] = ∆wp-1. 

Therefore, the adaption of weights 𝒘𝑝+1 by using the momentum term is given by  

 𝒘𝑝+1 =  𝒘𝑝 + ∆𝒘𝑝 = 𝒘𝑝 − 𝜂 ∇𝐸�𝒘𝑝� + 𝜂𝑚[− 𝜂  ∇𝐸�𝒘𝑝−1�]    (3. 20) 

3.3 Error Back-Propagation Algorithm (EBP) 

Error back-propagation algorithm is an adaptive learning algorithm which applies the LMS 

algorithm to learn network weights. It is basically defined as such: after training a given data set 

and the network weights are gained, the calculated errors are propagated backward into the 

network to adapt its weights. In order to apply EBP algorithm on MLP, an activation function 

especially in HL should be differentiable. Therefore, the common differentiable activation 

functions in use with MLP are hyperbolic tangent function and logistic sigmoidal function [5]. EBP 

learning procedure divides into two phases: first phase is forward-pass computations through the 

MLP network, i.e. from the left side of the network to the right side, and secondly is the 

backward-pass computation phase which is in the opposite direction of the first phase. 
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 Training process by MLP over a given data set is the main task of the first phase. For an 

on-line mode, a random training pattern (x, d) propagates through the MLP, layer-by-layer in a 

neuron-by-neuron basis, until it reaches the end of network with a resultant output o. Every neuron 

in the MLP has two computational roles: first role is about applying an activation function f(u) on 

the weighted inputs u in order to produce the neuron’s output o, which is described in detail in the 

LMS algorithm (section 3.1). The second computational role of a neuron, which is necessary for 

backward-pass phase, is to estimate the error signal term δ which is a gradient vector of the cost 

function E with respects to weights vector w which effectively weighted the values of the inputs u 

in a particular neuron. The error signal term δ is a significant term in the back propagation 

formula. Thus, calculating the error signal δ is dependent on the state of a neuron in HL or OL, as 

follows: 

1. If the neuron is in OL, the equation (3.14) is used to calculate the error signal δ, which is 

equal to the product of the associated derivative f’(u) of a particular neuron and its 

corresponding associated error e. 

2. If the neuron is in HL, the calculation of error signal term δ is equal to the product of the 

associated derivative f’(u) of a particular neuron, and the sum of weighted error signals δs 

of all successive neurons that are connected to that neuron (equation 3.31). 

From the LMS algorithm we have a full explanation of how the error signal δ in the OL is 

calculated. In this section we will merely explain the calculation of the error signal δ in the HL. 

Recall that by applying EBP algorithm in on-line mode, the second phase of the algorithm has 

focused exclusively on adapting the network weights 𝒘𝑝+1 = 𝒘𝑝 + ∆𝒘𝑝 of every pattern p in the 

training data by finding all its correction weight component ∆wkj of a particular weight wkj that 
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connects a node j with a node k in the MLP network. Delta rule is used to find the correction 

weight ∆wkj  as follows 

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) × (𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙) × (𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑜𝑛)[4] 

 ∆𝑤𝑘𝑗 = 𝜂 𝛿𝑘 𝑦𝑗           (3.21) 

Equation (3.15) is a correction weights vector of a neuron which is located in the OL. It is 

noticeable in the LMS algorithm that the inputs vector of a neuron is denoted by x, however, in 

EBP algorithm which is applied in MLP neural network, for the OL neurons we will represent the 

inputs vector by y. Otherwise, all equations symbols remain the same (see equation 3.33). The HL 

is different than the OL in computing its errors. Since in an OL neuron, the desired output d of 

input x accurately measures the errors by equation (3.4); however, in a HL neuron, all succeeding 

neurons have the common responsibilities to calculate the error of the HL neuron. A HL neuron  j 

is depicted in figure (3.1) which shows a left-side connection from node (or neuron) i to neuron  j 

by weight vji, and a right-side connection from HL neuron  j to an OL neuron k by weight wkj [4]. 

Figure 3.1: A HL Neuron j has a Connection with an OL Neuron k in Details  
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Therefore, to understand the calculation of error signal δ in the HL by using EBP, let us 

consider a given pattern (x, d), where x is an input vector and d is its desired output, and the 

pattern is propagated through a fully connected MLP network, layer by layer in a neuron-by-

neuron fashion until it reaches the HL neuron  j which has a differentiable activation function fj(u). 

The error signal δ of the HL neuron  j is given by 

  𝛿𝑗 = −  𝜕𝐸
𝜕𝑦𝑗

 𝜕𝑦𝑗
𝜕𝑢𝑗

=  −  𝜕𝐸
𝜕𝑦𝑗

  𝑓′𝑗�𝑢𝑗�        (3.22) 

As it is depicted in figure (3.1), a neuron k, which is one of the OL neurons, affects the cost 

function E by 

 𝐸 =  1
2

  ∑ 𝑒𝑘2𝑘           (3.23) 

The partial derivative of  𝜕𝐸
𝜕𝑦𝑗

  is defined by the differentiate equation (3.23) with respect to the 

input 𝑦𝑗 of neuron k  

 𝜕𝐸
𝜕𝑦𝑗

=  ∑ 𝑒𝑘  𝜕𝑒𝑘
𝜕𝑦𝑗𝑘            (3.24) 

By using the calculus chain rules in equation (3.24), we get 

 𝜕𝐸
𝜕𝑦𝑗

=  ∑ 𝑒𝑘  𝜕𝑒𝑘
𝜕𝑢𝑘𝑘   𝜕𝑢𝑘

𝜕𝑦𝑗
           (3.25) 

Since the error of neuron k in the OL is the difference between a desired output dk and neuron 

output yk as follows 

  𝑒𝑘 = 𝑑𝑘  −  𝑦𝑘  =  𝑑𝑘  −  𝑓𝑘(𝑢𝑘)         (3.26) 
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Thus, the first partial derivative  𝜕𝑒𝑘
𝜕𝑢𝑘

 of the error of neuron k with respect to its weighted inputs is 

given by 

  𝜕𝑒𝑘
𝜕𝑢𝑘

=  − 𝑓′𝑘(𝑢𝑘)           (3.27) 

Whereas the weighted input uk of neuron k is given by 

𝑢𝑘 =  ∑ 𝑤𝑘𝑗  𝑦𝑗
𝐽
𝑗=0           (3.28) 

where J is a total number of inputs as well as the bias that applies to the neuron k. By 

differentiating equation (3.28) with respect to yj, we get 

 𝜕𝑢𝑘
𝜕𝑦𝑗

=  𝑤𝑘𝑗             (3.29) 

Thus, by replacing the equivalent terms of (3.27) and (3.29) into the equation (3.25), we get 

𝜕𝐸
𝜕𝑦𝑗

=  −  ∑  𝑒𝑘 𝑓′𝑘(𝑢𝑘) 𝑤𝑘𝑗  𝑘 =  −  ∑ 𝛿𝑘 𝑤𝑘𝑗𝑘       (3.30) 

where the error signal δk for the OL neuron K is defined as equation (3.14) in terms of its 

associated error and weights. As a result, the error signal δj formula of a neuron  j which is located 

in the HL is given by using equation (3.30) in (3.22) as follows 

  𝛿𝑗 = 𝑓′𝑗�𝑢𝑗�   ∑ 𝛿𝑘 𝑤𝑘𝑗𝑘          (3.31) 

As a result, EBP algorithm that updates the network weights V and W are given respectively as  

𝑣𝑗𝑖 = 𝑣𝑗𝑖 + ∆𝑣𝑗𝑖 = 𝑣𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑖 = 𝑣𝑗𝑖 + 𝜂𝑓′𝒿�𝑢𝒿�𝑥𝑖  ∑ 𝛿𝑘𝑤𝑘𝒿𝐾
𝑘=1 ,    j=1,…,J-1,  i=1, …,P. (3.32) 

𝑤𝑘𝑗 = 𝑤𝑘𝑗 + ∆𝑤𝑘𝑗 = 𝑤𝑘𝑗 + 𝜂𝛿𝑘𝑦𝑗 = 𝜂(𝑑𝑘 − 𝑜𝑘)𝑓′𝑘(𝑢𝑘)𝑦𝑗,        k=1,…,K,      j=1,…,J  (3.33) 
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The EBP algorithm which adapts network weights typically is in an on-line mode. Our fast 

neural network algorithm essentially is about using EBP algorithm in an off-line (or batch) mode, 

which is explained in section 3.4.2 in detail. 

3.4 Fast Neural Network Algorithm 

Fast neural network algorithm is an EBP batch learning algorithm which is trained in a MLP 

network of one HL and one OL. At first, batch learning technique is defined in section 3.4.1. 

Then, it is followed by describing a batch EBP algorithm. In section 3.4.3, the fast neural network 

algorithm which implicitly has the batch EBP is given in detail.  

3.4.1 Batch Learning Technique  

All supervised learning algorithms depend on error-correction rule to improve a system’s 

performance. In MLP models, the errors which are gained from a model define the cost function of 

estimated network weights, which is depicted on the space as a multidimensional error-

performance surface by using the network weights as its coordinates. Error- performance surface 

of the average of overall training instances is the accurate one. Thus, the improvement of 

performance over time has to successively move down toward a minimum point of the error 

surface. To achieve this goal, an instantaneous gradient vector of the error surface is estimated. 

Therefore, estimating the gradient will improve the system in the direction of steepest descent of 

the error surface.  

Any adjustment of the network weights represents a new point in the error surface. In a 

batch learning procedure, the adjustment of weights is performed after all training data are 

presented, which is considered as one epoch of training. Therefore, the error is defined as the 
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average error of total number of instances in a training data set. In other words, the experiment 

goes through an epoch-by-epoch learning basis to adjust the network weights. Recall that the 

adaption of network weights is only to achieve the goal of minimizing the cost function by 

estimating its gradient accurately. Thus, the accurate estimation of the gradient vector of a cost 

function by using batch learning procedure can rapidly converge to the minimum value of the cost 

function.  

During the experiment of this thesis, batch learning was used by applying a 10-fold cross 

validation technique over a training data set, in such a way that any adjustment on the next epoch 

weights was performed within 9-training-folds (or chunks) of an iteration of the cross validation 

process. A batch EBP algorithm is described below. 

3.4.2 Batch EBP Algorithm 

The batch version of the EBP algorithm implemented in the thesis is divided into two 

phases: feedforward phase and back-propagation phase. A training data X, which has P patterns 

for K classes, is given by 

X = {xp, dp, p=1, … , P},         (3.34) 

where xp is an input vector of a pattern p that has n features (or dimensions)  

x = [+1    x1    x2    …    xn ]T          (3.35) 

and dp is a vector of its associated labeled desired output  

d = [d1    d2    …    dK]T         (3.36) 

Feedforward Phase  

For J neurons in the HL, the (P, J) dimensional input matrix u is calculated  

 𝒖 = 𝑿 𝑽           (3.37) 
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where X is the (P, n+1) training data matrix, and V is a (n+1, J) dimensional matrix of the HL 

weights. Two differentiable activation functions are used in the algorithm: hyperbolic tangent 

function and logistic sigmoidal function. A (P, J) dimensional matrix y is the output of the 

hyperbolic tangent activation function in HL  

 𝐲 =  2/(1 +  exp(−𝐮)) –  1        (3.38) 

The derivative needed in equation (3.31) for calculating the error signals of the HL is given by 

   𝒚′ = 0.5 �1 – 𝒚2�         (3.39) 

Notice that a vector of zeros is in the last column of the matrix y’ which is the derivative of the 

fixed bias term. For a sigmoidal activation function the equivalent equations are 

 𝒚 =  1/(1 +  𝑒𝑥𝑝(−𝒖))         (3.40) 

 𝒚′ = 𝒚 (1 −  𝒚)           (3.41) 

The hidden layer is augmented with a bias, and so the matrix yb of size (P, J+1), which its last 

vector is ones 𝒚𝑏  =  [𝒚    𝟏], is the inputs matrix to the OL. Thus, if the OL neurons are linear, 

then the OL weights W with (J+1, K) dimensions is directly calculated by using pseudo-inverse 

algorithm 

 𝑾 = 𝒚𝑏∗  𝒅            (3.42) 

where 𝒚𝑏∗  is a pseudo-inverse of  𝒚𝑏.  Subsequently, a (P, K) uo matrix of inputs to the OL is 

calculated by 

 𝒖𝑜  =  𝒚𝒃 𝑾            (3.43) 

Since, OL neurons are linear, the output of OL neurons o = uo, and a (P, K) dimensional matrix of 

ones is its derivative as follows 

 𝒐′ = 𝟏            (3.44) 
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In addition, when OL neurons are nonlinear, the OL weights W must be learned iteratively by 

using a batch EBP algorithm. Now, a (P, K) dimensional matrix o is the output of applying the 

hyperbolic tangent function in the OL, and a matrix o’ with size (P, K) is its derivatives 

 𝒐 =  2/(1 +  𝑒𝑥𝑝(−𝒖𝒐)) –  1         (3.45) 

   𝒐′ = 0.5  �1 – 𝒐2�          (3.46) 

For sigmoidal activation function, the outputs o and its derivatives o’ are given by 

 𝒐 =  1/(1 +  𝑒𝑥𝑝(−𝒖𝒐))         (3.47) 

 𝒐′ = 𝒐  (1 −  𝒐)           (3.48) 

The network errors (a matrix of (P, K) dimensions) is defined as a difference between the labeled 

desired output d and the network output o  

 𝒆𝒓𝒓𝒐𝒓𝒔 = 𝒅 − 𝒐           (3.49) 

 

Back-propagation Phase  

Error signals in equations (3.14) and (3.31) for the OL and HL are calculated as a (P, K) 

dimensional matrix deltaO and a (P, J+1) dimensional matrix deltaY respectively 

 𝒅𝒆𝒍𝒕𝒂𝑶 = 𝒆𝒓𝒓𝒐𝒓𝒔   𝒐′         (3.50) 

Similarly, the delta signal matrix deltaY for a hidden layer is calculated as a product of derivative 

output matrix, weights and deltaO matrix. To iteratively update the network weights V and W by 

using batch EBP, the delta rule is used to find the correction weights of every weight matrices. 

The correction weights are defined by equation (3.21), which is the product matrix of the inputs of 

a layer and its associated error signals multiplied by a scalar of chosen learning rate η. The product 

matrix of the HL and OL are given by gradV and gradW, respectively. The product matrix 

gradV which has (n+1, J) dimensions is calculated as  
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  𝒈𝒓𝒂𝒅𝑽 = 𝑿𝑻  𝒅𝒆𝒍𝒕𝒂𝒀          (3.51) 

For the OL, gradW is a product matrix of size (J+1, K)  

 𝒈𝒓𝒂𝒅𝑾 =  𝒚𝒃𝑻  𝒅𝒆𝒍𝒕𝒂𝑶          (3.52) 

To speed up the learning process, momentum scalar ηm was used. Thus, to update the weights by 

using the momentum term (equation 3.20), the previous batch gradV and gradW are saved 

respectively into gradV_old and gradW_old in order to use them during the adaption of network 

weights. Therefore, the network weights V and W are adapted by using the delta rule and 

momentum term as follows 

 𝑽 =  𝑽 + 𝜂  𝒈𝒓𝒂𝒅𝑽 +  𝜂𝑚  𝜂  𝒈𝒓𝒂𝒅𝑽_𝒐𝒍𝒅      (3.53) 

 𝑾 = 𝑾 + 𝜂  𝒈𝒓𝒂𝒅𝑾 +  𝜂𝑚  𝜂  𝒈𝒓𝒂𝒅𝑾_𝒐𝒍𝒅      (3.54) 

where the product of (η  gradV) is the correction weights of V, and (η  gradW) as well is the 

correction weights of W. Last terms, (ηm  η  gradV_old) and (ηm  η  gradW_old), respectively 

describe using the momentum terms for updating both V and W weights. 

3.4.3 Summary of the Fast Neural Network Algorithm  

The NN code developed within the thesis implements the fast NN algorithm within the k-fold 

cross validation (k-fold CV) loops. Here, in designing the best NN we have to find three best 

variable parameters of the NN - first one being a number of hidden layer neurons, second one is 

the best learning rate η and the last variable parameter that must be determined within the k-fold 

CV loops is the number of iterations. This is why the code developed has three major outer loops 

within which there is k loops for executing the k-fold CV as follows: 
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Step 1. Define three vectors for the three variable parameters: a vector of number of HL 

neurons J0, a vector of learning rates η0, and a vector of number of learning steps 

iterations0.  

Step 2. For first outer loop, pick J (a number of HL neurons) from the vector J0  

Step 3. Initialize V and W weights as (n+1, J) dimensional matrix and (J+1, K) 

dimensional matrix, respectively. Note that a fixed parameter kw is used to initialize V in 

the range [-kw, +kw]. 

Step 4. Pick the learning rate η from the vector η0 to perform second nested loop, and then 

for third inner loop pick the iterations number iterations from the vector iterations0  

Step 5. Reset the i_error to zero, which is a scalar of the model’s errors that are calculated 

after using a particular combination of variable parameters (J, η , and iterations)  

Step 6. For particular variable parameters, 10-fold cross validation is applied over the 

scaled and shuffled training data, in such a way that within each iteration of cross 

validation process the V and W weights are resets to the initial, and the gradV and gradW 

matrices, which are respectively as same size as V and W, are rest to zeros.  

Step 7. For each iteration of the 10-fold cross validation:  

a. Apply the batch EBP algorithm by using learning rate η on the training folds and 

iterations (number of times) to estimate V and W weights.  

b. Evaluate the estimated model, V and W, by training the model over a testing fold to 

calculate its errors in the i_error scalar.  

c. Accumulate the calculated errors of 10-fold in the i_error scalar. 
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Step 8. Calculate a percentage of the accumulated errors i_error over all training data P, 

and then save the percent errors of a particular variable parameters in a three dimensional 

array i_Errors as follows:  

i_Errors (J, η, iterations) = 100 * i_error  / P  

Step 9. Repeat the three nested loops for all values of J0, η0 and iterations0 by going to step 

2, and save their percent errors in the array i_Errors  

Step 10. Find the minimum percent errors of entire i_Errors array, and consequently extract 

its associated indices (variable parameters) that represent the best J, best η, and best 

iterations for classification of a particular data set. 

Step 11. Build a classification model by using the best variable parameters (best J, best η, 

and best iterations) on all training data P to estimate the weights V and W.   

Step 12. Validate the classifier model on all training data P of a particular data set by 

calculating its percent errors. Accuracy can be calculated by subtracting the best percent 

error from one. 

3.4.4 Issues to be Considered  

3.4.4.1 Labeling Desired Output 

A multiclass NN classifier classifies a given multiclass data set into K classes. Typically, a 

standard binary classifier using linear or hyperbolic tangent activation functions needs the desired 

output to be labeled either as (-1, +1). If the sigmoidal activation function is used the labeling is 
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(0, +1). Thus, the output vector for K = 3 classes labeled as  𝑑0 = [2 1 3    … ]  should be 

relabeled as a matrix of three vectors. Each vector identifies one class as follows: 

𝒅 =  �

−1 +1 −1
+1 −1 −1
−1 −1 +1

…

� . 

3.4.4.2 Initializing Weights 

Practically, initializing weights by using small absolute random values is sufficient for 

having a good convergence to the underlying classified function [5]. In the experiment, we used kw 

parameter, which is fixed to (0.1), to identify and initiate at random the small absolute values of 

the hidden layer weights. Bad initial weights may have an effect on learning by getting stuck at 

such a local minimum, or by having slow convergence to the optimal weights. Empirically, 

initializing weights by using small values and then increasing them speeds up the learning process 

in MLP more than starting with maximum values of weights and then the decreasing. It iteratively 

adjusts a model to the optimal one by starting with almost flat weights and then reshaping it 

according to the inputs data and number of iterations that have been used. 

3.4.4.3 Using a Single Neuron in the OL of One Model/K OL Neurons Structure for Two-

Class Data Sets 

Our empirical evidence shows that using one neuron in the output layer of a two-class data 

set gives almost the same accuracy in comparison with using two neurons in the output layer. It 

takes, however, less time for training the model. Therefore, in our structure of a one model and K 

neurons in the output layer, we use only one OL neuron and not two. Section 5.3 discusses the 

results of using one OL neuron instead of two.  
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3.5 Experimental Data Sets 

3.5.1 General Information  

Eleven real data sets were involved in the experiment, which gathered from two different 

sources: the UCI machine learning repository and benchmarks of Reinhardt and Hubbard [1][2].  

First nine data sets are taken from the UCI, and the last two data sets are the benchmarking data 

which were constructed by Reinhardt and Hubbard for protein sub-cellular localization. The 

number of features in both of the Reinhardt and Hubbard data sets typically is 20-dimensional 

amino acid composition for protein sub-cellular localization classification. Table 3.1 summarizes 

information about the eleven experimental data sets. 

 

Table 3.1: Experimental Data Set Information 
Data set # Instances # Features # Classes 

Iris 150 4 3 
Glass 214 9 6 
Vote 232 16 2* 
Wine 178 13 3 
Teach 151 5 3 
Sonar 208 60 2* 
Cancer 198 32 2* 
Dermatology 366 33 6 
Heart 297 13 5 
Prokaryotic 997 20 3 
Eukaryotic 2427 20 4 
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3.5.2 Preprocessing  

3.5.2.1    Scaling Raw Data 

Scaling the raw data sets is a fundamental task in many technical analyses. It assists the 

development of neural network in effective and efficient ways. Basically, it is used to remove any 

outliers by spreading out the distribution of data normally into a zero mean and a unit variance, in 

such a way that the mean and standard deviation for the inputs data are associated with each 

particular input. 

3.5.2.2     Shuffling the Scaled Data Set 

In cross validation technique, the data set has to be shuffled. Hence, the reliability in a 

model’s performance is increased by using a large number of estimations on different (shuffled) 

training data. K-fold cross validation technique establishes only K numbers of estimated models, 

thus, shuffling the data set and then estimating K models to come up with overall average accuracy 

of final estimated model will give a model with good generalization ability for future data. 
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4 Experimental Neural Network Structures  

4.1 The Differences between Neural Network Structures 

For a given data set that has K classes, three different MLP structures were used in the 

experiment: one model/K output layer neurons, K separate models/One output layer neuron, and 

K joint models/One output layer neuron. A model in this experiment refers to a fully connected 

MLP neural network that has an input layer, a hidden layer and an output layer. The difference 

between three structures is the number of models used in a structure. For one model/K OL 

neurons structure, there is one model used that has K neurons in its OL. However, for K separate 

models/One OL neuron and K joint models/One OL neuron, there are K models with one neuron 

in its OL used in a structure. Moreover, K models have another difference in their training 

approach of 10-fold cross validation over a given data set, in which it could be either training 

jointly all K models (joint models/one OL neuron), or training separately the 10-fold cross 

validation on each model alone (separate models/one OL neuron). The three different structures 

are described below in detail.  



 
 

39 
 

4.1.1 One Model/K Output Layer Neurons Structure  

This structure contains one model that has K neurons in its OL. Note that during the 

training the complete matrix d given in section 3.4.4.1 is given as the desired NN output in batch 

learning. The number of neurons in the HL is subjected to the fast neural network algorithm. 

Precisely, the best variable parameters, number of HL neurons, learning rate and learning 

iterations (J, η, iterations), characterize the model after 10-fold cross-validation on a given data 

set. For two-class data sets, empirically using one neuron in the OL (K = 1) of a model 

sufficiently gives almost the same accurate results as using two neurons in the OL (K = 2), 

however, it requires less learning time. The experimental results for two-class training data that 

used one neuron in OL are presented in chapter 5. 

4.1.2 K Separate Models/One Output Layer Neuron Structure 

K models each having one neuron in its OL, are separately constructed to build a MLP 

structure. Now, during the training the kth model is given the kth column of the matrix d given in 

section 3.4.41 as the desired output vector. Each model is trained separately by using the training 

data of a particular class of K classes; in such a way that each model received its own 

characteristics, best variable parameters, after separately training the 10-fold cross validation 

over the training data of its associated class. Therefore, each model may be characterized by 

different values of best variable parameters, i.e. different number of HL neurons, different values 

of learning rates, and different number of iterations during learning phase.  
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4.1.3 K Joint Models/One Output Layer Neuron 

This structure is exactly same as the second structure except the learning approach, in 

which all models are jointly trained across 10-fold cross validation over its own associated class, 

and thereby they are characterized by the same best variable parameters; i.e. same number of 

neurons in hidden layer, same learning rates, and same number of iterations. 

4.2 Simulated Example 

To better understand the three different MLP structures and the differences between them, 

let us simulate the experiment by assuming a scaled and shuffled training data that has three 

classes K = 3 is provided to each structure. The training data consists of a matrix X that has P 

patterns and its labeled desired output d. 10-fold cross validation was applied on training data 

while using the fast neural network algorithm.  

4.2.1 One Model/K OL Neurons 

One MLP model that has K = 3 neurons in OL is depicted by figure (4.1).  The trained 

model, which applied the fast neural network algorithm, estimates the best variable parameters 

(J, η, iterations) that classify the training data. For graphical representation, J = 2 is chosen as 

number of neurons in the HL. By denoting V as HL weights and W is the OL weights, the 

training data is propagated through the network layer by layer until it reaches the OL by three 

output values, o1, o2, and o3. All the dimensions of the matrices involved are given in a 

presentation of the fast batch algorithm in section 3.4.2. The max operation is performed to those 

three values to apply the winner-takes-all approach that classifies pattern x to a winner class.  
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Figure 4.1: One Model/K OL Neurons Structure 

4.2.2 K Separate Models/One OL Neuron 

K models each having one neuron in their OL, were trained separately on the training 

data in such a way that each model was using a matrix of inputs X and its associated vector of 

labeled desired outputs d. As it is noticeable in figure (4.2), there are three different models 

extracted as follows: the first model is associated with the first class of the training data and it 

estimated two neurons in the HL J = 2 as being the best number of neurons to separate the first 

class data from the other classes. The second model is associated with the second class and it has 

found that the best number of HL neurons is J = 4. Similarly, and this is shown in the figure, the 

best number of HL neurons for the third model J = 3. 10-fold cross validation technique that is 

applied implicitly in the fast neural network was used separately for each model alone. After 

training phase is finished, each model produces an output o1. Therefore, three outputs come out 

from three models: o1, o2, and o3.Thus, by using winner-takes-all technique, the max operation is 

used in such a way that the input patterns given in X are classified possibly to the correct class. 
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4.2.3 K Joint Models/One OL Neuron 

K joint models/One OL neuron has the same model structures as K separate models/One 

OL neuron; however, the learning is changed here. Figure (4.3) depicts the K joint models/One 

OL neuron structure. Each single models is associated with a specific class, but they are jointly 

(simultaneously) trained on the whole input X by using a 10-fold cross validation technique 

which is implicit in the fast neural network algorithm to produce an output of each model as o1, 

o2, and o3. Therefore, after the training each NN will have same number of HL neurons (here we 

have shown 2 HL neuron as being the best (J = 2) for all the models. As described before, a 

winner-takes-all technique is used for classification by using max operator.  
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Figure 4.2: K Separate Models/One OL Neuron Structure 
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Figure 4.3: K Joint Models/One OL Neuron Structure 
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5 Experimental Results and Discussion  

5.1 Controlling the Experimental Environment  

The fast neural network algorithm is applied for three different MLP structures: one 

model/K OL neurons, K separate models/One OL neuron, and K joint models/One OL neuron, to 

solve nonlinear multiclass classification tasks. Hyperbolic tangent activation function was 

applied in the HL for all three structures, and linear activation function was applied in their 

output OL. Linear activation function in the OL indicates that the W weights were directly 

computed by using pseudo-inverse method that always finds the local minimum of a cost 

function for a given HL weights V. Fixed parameters (table 5.1), and variable parameters (table 

5.2) were also constant during the experiment. 

Table 5.1: Experimental Fixed Parameters 
Parameters Values 

ηm 0.75 
kw 0.1 

W-direct 1 
K-fold 10 

Validation 1 
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Table 5.1 involves the values of experimental fixed parameters that were used during all of 

the experiment. The momentum term was used to speed up the convergence to the minimum of a 

cost function. Therefore, the value ηm = 0.75 was perfect for convergence purposes. The value kw 

= 0.1 is used to initiate the HL weights V in the small range [-0.1, +0.1]. The parameter W-direct 

indicates that the weights W of the OL were calculated directly by using the pseudo-inverse 

method. K-fold parameter specifies that 10-fold cross validation was used during the training 

process. The last parameter, Validation, shows the number of validation parts after the training 

process is finished. Using Validation = 1 means that all patterns (or instances) of a given data set 

have been used during validation phase.  

Moreover, experimental results are obtained by using the variable parameters listed in 

table 5.2, which were constant for all experimental data sets that trained in all three MLP 

structures. The purpose behind making the variable parameters constant during training phase of 

all three MLP structures is to control the experimental environments which could affect the 

accuracy and/or time consumption. The variable parameters are number of neurons in the HL J, 

learning rate η, and number of iterations during training phase iterations. As a first step in the 

experiment, the network weights V and W were initiated at random, thus, by using seed =1, V 

and W always have the same initiation matrices during all experiments. 

Table 5.2: Experimental Variable Parameters  
Variable Parameters Values 

J [2:2:24] 
η [0.0000001,  0.00001, 0.0001, 0.001, 0.004, 0.005, 0.025, 0.010] 

iterations [100, 250, 400, 550, 700, 1000] 
Seed 1 
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5.2 Comparison of Three Different MLP Structures 

In term of accuracy, experimental results show that K joint models/One OL neuron is the 

overall best MLP structure that applied the fast neural network algorithm to solve multiclass 

classification tasks. However, it has the largest structure, meaning the biggest number of neurons 

in the HL, and thus its training CPU time was the longest. The following subsections will discuss 

the results in terms of accuracy, structure size and the CPU time consumption. 

5.2.1 Comparison of Three Different MLP Structures in Term of Accuracy  

Table 5.3 summarizes the experimental accuracy values and the overall averages of 

applying the fast neural network algorithm on three different MLP structures for eleven data sets 

(described in section 3.5). For every data set, each accuracy value appeared is an average 

accuracy of overall data set that is obtained after training all patterns on the best found variable 

parameters (J, η, and iterations). The best chosen variable parameters are based on finding the 

minimum averaged error of unseen testing data for all 10-fold cross validation parts. A bold 

value in each data set shows the best MLP structure in its averaged accuracy among others. The 

star (*) symbol indicates that the obtained averaged accuracy is for two-class data sets. Averages 

on last row of table 5.2 emphasize which its associated MLP structure is the best on overall 

accuracy of eleven data sets.  
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Table 5.3: Accuracy of Three MLP Structures 

Data Sets One Model / K 
OL Neurons 

K Separate 
Models/One OL 

Neuron 

K Joint 
Models/One OL 

Neuron 

Iris 98.67 99.33 98.00 

Glass 92.99 88.32 94.39 

Vote 96.98 96.98 97.41* 

Wine 100.00 100.00 100.00 

Teach 90.73 80.79 85.43 

Sonar 100.00 100.00 100.00* 

Cancer 90.40 90.40 91.41* 

Dermatology 98.91 98.36 98.36 

Heart 66.67 62.96 71.38 

Prokaryotic 97.39 97.49 97.49 

Eukaryotic 82.04 90.52 90.52 

Average 92.25 91.38 93.13 

 

Experimental results on table 5.3 for eleven data sets show that the overall averaged 

accuracy of K joint models/One OL neuron structure is better than one model/K OL neurons, and 

then the one model/K OL neurons structure is better than K separate models/One OL neuron. 

Two data sets (Wine, and Sonar) gained 100% accuracy for all three MLP structures. Thus, by 

eliminating them, the number of data sets decreased from eleven to nine. Ranking technique was 

used in order to give a score to every structure and then evaluate them fairly. The K joint 

models/One OL neuron has the best score of 50. In this scoring system, the higher the value the 

better the structure is. Figure 5.1 graphically represent the scores of ranking three different MLP 

structures.  
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Figure 5.1: The Scores of Ranking Three Different MLP Structures 

The following graph depicts the accuracy of different MLP structures that is listed in table 5.3. 

 
Figure 5.2: The Accuracy of Different MLP Structures of Eleven Data Sets 
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Three averaged accuracy plots are depicted in figure 5.2 for eleven data sets. The red 

curve represents the average accuracy of one model/K OL neurons structure, the blue is the 

average accuracy line of K separate models/One OL neuron structure, and finally the average 

accuracy curve of K joint models/One OL neuron structure is depicted by the olive color. As it is 

shown in figure 5.2, all three structures have the same average accuracies on the two data sets 

Wine and Sonar at 100%. It also confirmed that the best average accuracy curve is the K joint 

models/One OL neuron, since its curve is the upper among other curves. Furthermore, the curve 

of one model/K OL neurons obviously is located between other two curves. Finally, the K 

separate models/One OL neuron almost has the lowest averaged accuracy among other structures 

which is shown by its curve that almost always fell under all other curves. Despite having the 

lowest average accuracy, this structure achieved the highest accuracy for the Iris data set.  

Another representation of experimental results is in figure 5.3 which shows the averaged 

accuracy of three MLP structures, one model/K OL neurons, K separate models/One OL neuron, 

and K joint models/One OL neuron that are depicted in red, blue, and olive columns respectively.   

 
Figure 5.3: The Accuracy of Different MLP Structures of Eleven Data Sets 
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By almost eliminating the similar averaged accuracy among three structures, which are 6 

data sets, Iris, Vote, Wine, Sonar, Cancer, Dermatology, and Prokaryotic, the other 4 data sets, 

Glass, Teach, Heart, and Eukaryotic, have a clear diversity in their averaged accuracy between 

three MLP structures. Consequently, it is obvious that K joint models/One OL neuron structure is 

the best structure in term of accuracy in 3 out of 4 data sets. The reason why the K joint 

models/One OL neuron performs the best on average is possibly coming from the famous 

theorem in optimization that  'Sum of Optima, Is Not Optimal'. Applied to our structures, it 

basically says that only by optimizing all the sub-models jointly leads to their best overall 

performance. In machine learning, the K joint models/One OL neuron structure is usually named 

a One-versus-All (OvA) model.  

5.2.2 Comparison of Three Different MLP Structures in Terms of Structure Size  

Table 5.4 shows the MLP structure size in terms of number of neurons in the HL. The 

small size is desirable. The bold value shows the smallest size of a MLP structure among others. 

It is obvious from the averaged size of all eleven data sets that the one model/K OL neurons 

structure always has the smallest structure, then it is followed by K separate models/One OL 

neuron and at last, K joint models/One OL neuron structure has the biggest averaged size. 
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Table 5.4: Number of HL Neurons of Three MLP Structures 
 

 

Table 5.4 is also represented graphically in figure 5.4. The red column represents one 

model/K OL neurons structure which has always the smallest size among other structures for 10 

data sets out of 11. The K joint models/One OL neuron structure which is depicted as olive 

column has the biggest averaged size. K separate models/One OL neuron structure (depicted as 

blue) is between other two structures, but it is almost close in its size to the K joint models/One 

OL neuron structure than one model/K OL neurons structure.  

Data Sets One Model / K 
OL Neurons 

K Separate 
Models/One 
OL Neuron 

K Joint 
Models/One 
OL Neuron 

Iris 20 26 12 

Glass 12 40 96 

Vote 14 28 16 

Wine 14 22 54 

Teach 22 52 54 

Sonar 24 48 36 

Cancer 2 4 4 

Dermatology 18 74 144 

Heart 4 10 60 

Prokaryotic 22 54 42 

Eukaryotic 24 84 96 

Average 16 40 56 
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Figure 5.4: The Structure Size of Three MLP Structures for Eleven Data Sets 

 

5.2.3 Comparison of Three Different MLP Structures in Term of Time Consumption  

The experiment additionally discusses the experimental CPU training time in hours for all 

three MLP structures which is depicted in figure 5.5. A red curve represents experimental 

training time of one model/K OL neurons. A blue curve and an olive curve represent the 

experimental training time for K separate models/One OL neuron and K joint models/One OL 

neuron respectively.  
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Figure 5.5: Training time of Different MLP Structures of Eleven Data Sets 

For eleven data sets, figure 5.5 shows that the longest learning time is for K joint 

models/One OL neuron structure. One model/K OL neurons is the fastest MLP structure in its 

learning training time. Between previous structures, K separate models/One OL neuron is in the 

middle, but its training time is closer to K joint models/One OL neuron structure than one 

model/K OL neurons structure. The main reason for the difference between the two structures of 

Ks (jointly and separately) models and one model structure is due to the need to build K models, 

and then to spend time for training each model alone. This difference becomes huge when a large 

number of instances in a training set are considered, such as the last data set (Eukaryotic). In 

addition, the K joint models/One OL neuron structure has the biggest structural size in terms of 

number of HL neurons, and thus the training time needed for learning the structure was the 

longest one. Moreover, recall that for two-class data sets, we have used one neuron in OL of one 

model/K OL neurons structure and this required less time during the training phase of the 
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experiment. The following section demonstrates the accuracy and the training time results for 

two-class data sets that are trained in one model/K OL neurons.   

5.3 Using a Neuron in the OL of One Model/K OL Neurons Structure for Two-

Class Data Sets 

Empirically, for two-class data sets, using one neuron in OL of one-model/K neurons 

structure gives almost the same results as using two OL neurons, however, it took less training 

time. The following results are for a data set, Vote, which is a two-class data set that used in the 

experiment. By using one model/K OL neurons structure, the following table 5.5 shows the 

accuracy and learning training time in hour of using one or two OL neurons in the two-class data 

set, Vote.  

Table 5.5: The Accuracy of Using One or Two OL Neurons in Vote Data Set 
 

 

It is obvious from table 5.5 that by applying fast neural network algorithm in the one 

model/K OL neurons structure, the accuracy for using a single neuron in the OL of two-class data 

set (Vote) is exactly the same as using two neurons. However, an OL neuron took less training 

time in hours (1.25) than using two OL neurons which is slightly bigger than the first one (1.28).  

Performance Measurement Using One OL 
Neuron 

Using Two OL 
Neurons 

Accuracy 96.98 96.98 

Training Time 1.25 1.28 
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6 Conclusions 

6.1 The Conclusion 

The thesis develops a fast batch EBP algorithm which uses the pseudo-inverse method to 

calculate its output weights when linear neuron(s) is (are) in the output layer. The algorithm is 

used within the three different MLP structures in order to find the best structure that solves the 

nonlinear multiclass classification problems for 11 benchmarking datasets. The three different 

MLP structure are one model/K OL neurons, K separate models/One OL neuron and K joint 

models/One OL neuron.  

The K joint models/One OL neuron, with a hyperbolic tangent as its HL activation 

function and the linear OL activation function, was the best in terms of accuracy among three 

structures. However, it is the biggest in the size which results in the biggest training time. The 

model accuracy is more significant than the elapsed learning time and the structure size, because 

the data sets used fall into the category of small to middle size datasets. Thus, one can say that 

for such datasets the best choice of the NN structure is the NN having K joint models and each of 
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them having one OL linear neuron. However, if one wants to model bigger datasets (say with 

more than 10,000 patterns) the best choice may well be the single model with K OL neurons 

because its accuracy is very close to the K joint models/One OL neuron structure but it needs a 

significantly smaller training time and it is of a much smaller size, meaning it will be faster in an 

on-line prediction (applications).  

6.2 Future Works 

There are several possible extensions of the work done here. First, it may be interesting to 

compare the accuracies obtained on the 11 datasets used here to the accuracies provided by other 

machine learning approaches such as support vector machines, adaptive local hyperplanes, k-

nearest neighbors, decision trees and others. Next, the suitability of the developed fast EBP 

algorithm for huge data sets should be investigated and compared to the others models accuracies 

and training speed. One interesting line of the research may also be to develop a parallel version 

of the existing code and see its performance in terms of the speed of the training. Finally, the 

research done here may possibly and the most likely continue in developing of a semi-batch 

algorithm for handling large and ultra-large datasets (say when there are more than 1 million 

samples). This may well be the most valuable extension of the work done here because NN are 

not being used for such datasets as of today.
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