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The dissertation deals with clustering algorithms and transforming regression prob-

lems into classification problems. The main contributions of the dissertation are twofold; 

first, to improve (speed up) the clustering algorithms and second, to develop a strict learn-

ing environment for solving regression problems as classification tasks by using support 

vector machines (SVMs). An extension to the most popular unsupervised clustering meth-

od, k-means algorithm, is proposed, dubbed k-means
2 

(k-means squared) algorithm, appli-

cable to ultra large datasets. The main idea is based on using a small portion of the dataset 

in the first stage of the clustering. Thus, the centers of such a smaller dataset are computed 

much faster than if computing the centers based on the whole dataset. These final centers 

of the first stage are naturally much closer to the locations of the final centers rendering a 
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great reduction in the total computational cost. For large datasets the speed up in computa-

tion exhibited a trend which is shown to be high and rising with the increase in the size of 

the dataset.  The total transient time for the fast stage was found to depend largely on the 

portion of the dataset selected in the stage. For medium size datasets it has been shown that 

an 8-10% portion of data used in the fast stage is a reasonable choice. The centers of the 8-

10% samples computed during the fast stage may oscillate towards the final centers' posi-

tions of the fast stage along the centers' movement path. The slow stage will start with the 

final centers of the fast phase and the paths of the centers in the second stage will be much 

shorter than the ones of a classic k-means algorithm. Additionally, the oscillations of the 

slow stage centers' trajectories along the path to the final centers' positions are also greatly 

minimized.  

In the second part of the dissertation, a novel approach of posing a solution of re-

gression problems as the multiclass classification tasks within the common framework of 

kernel machines is proposed. Based on such an approach both the nonlinear (NL) regres-

sion problems and NL multiclass classification tasks will be solved as multiclass classifica-

tion problems by using SVMs. The accuracy of an approximating classification (hy-

per)Surface (averaged over several benchmarking data sets used in this study) to the data 

points over a given high-dimensional input space created by a nonlinear multiclass classi-

fier is slightly superior to the solution obtained by regression (hyper)Surface. In terms of 

the CPU time needed for training (i.e. for tuning the hyperparameters of the models), the 

nonlinear SVM classifier also shows significant advantages. Here, the comparisons be-

tween the solutions obtained by an SVM solving given regression problem as a classic 
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SVM regressor and as the SVM classifier have been performed. In order to transform a 

regression problem into a classification task, four possible discretizations of a continuous 

output (target) vector y are introduced and compared. A very strict double (nested) cross-

validation technique has been used for measuring the performances of regression and mul-

ticlass classification SVMs.  In order to carry out fair comparisons, SVMs are used for 

solving both tasks - regression and multiclass classification. The readily available and most 

popular benchmarking SVM tool, LibSVM, was used in all experiments. The results in 

solving twelve benchmarking regression tasks shown here will present SVM regression 

and classification algorithms as strongly competing models where each approach shows 

merits for a specific class of high-dimensional function approximation problems.   
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CHAPTER 1: INTRODUCTION 

 

Because of the sheer amount and complexity of the information available, for ex-

ample from, weather data, geophysical data, drug testing data, health care imaging infor-

mation systems, atomic particle accelerator detector data, www pages, e-commerce data, 

…, etc, nowadays, engineers and scientists rely heavily on computers to process and ana-

lyze data. This is why Machine Learning (ML) has become an emerging topic of research 

that has been employed by an increasing number of disciplines to automate complex deci-

sion-making and problem-solving tasks. This is because the goal of ML is to extract 

knowledge from experimental data and to use computers for complex decision-making. In 

other words, decision rules are extracted automatically from data by utilizing the speed and 

the robustness of the machines. Machine learning techniques can be divided into three ma-

jor groups based on the types of problems they can solve, namely, supervised, semi-

supervised and unsupervised learning. 

The supervised learning algorithm attempts to learn the input-output relationship 

(dependency or function)      by using a training data set                     con-

sisting of   pairs                          , where the inputs   are m-dimensional vec-

tors        and the labels (or system responses)   are discrete (e.g., Boolean) for classi-

fication problems and continuous values      for regression tasks. Support Vector Ma-

chines (SVMs) and Artificial Neural Network (ANN) are two of the most popular tech-

niques in this area. 
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 One of the dissertation contributions will be in introducing and presenting how the 

regression problems can be transformed into the multi-class classification tasks. This will 

obviously include some kind of discretization in order to get class labels. Each regression 

problem can be considered the classification one having as many classes as there are dif-

ferent yi values in the output vector y. At the same time it is easy to see that a classification 

task with too many classes and very little data in each class (mostly one datapoint only) is 

a very ill-posed problem. In order to overcome such a learning setting, the next obvious 

step is to group several datapoints having close values into the same class. Here, we will 

present a few methods describing how the discretization step can be done and evaluate 

their performances within a strict experimental environment of a double (nested) k-fold 

crossvalidation.  The modeling tool for both regression and multiclass classification class 

will be SVMs because they have shown excellent results in real world applications. 

 The second big group of standard learning algorithms is the so-called unsupervised 

algorithms when there are only raw data         without the yi  attached (i.e., there is a 

’no-teacher’ typically provided by labels in supervised learning). There are many methods 

used in unsupervised machine learning areas. The most popular (most standard) algorithms 

are various clustering techniques, (principal or independent) component analysis routines 

and association rules. The dissertation's largest section is devoted to clustering methods. In 

fact, one of the contributions of the work done here will be in speeding up k-means cluster-

ing algorithm by dividing it into two parts; namely into first (fast) stage which uses just a 

fraction of data for finding initial cluster centers, and in the second (slow and final) stage 

in which all the data points are used for fine tuning the terminal clusters' centers' positions. 
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 The dissertation will be arranged as follows; chapter 2 introduces backgrounds 

about the clustering, classification theory and the contribution of the dissertation. Chapter 

3 describes, in detail, the proposed method of the 2-stage, k-means
2 

algorithm with a few 

examples to demonstrate the validity of the proposed method. Chapter 4 explains the pro-

posed solution of regression problems as multiclass classification tasks within the common 

framework of kernel machines. The last chapter draws conclusions on the proposed meth-

ods and gives suggestions for future work. 
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CHAPTER 2: BACKGROUND, RELATED WORK AND CONTRIBU-

TIONS 

 

2.1 Background 

Machine learning (ML) techniques are used for solving various problems in con-

temporary science, medicine, finance, engineering and many other areas. There is almost 

no field of human activities untouched by ML tools (a.k.a. neural networks, support vector 

machines, data mining, and/or knowledge discovery, etc). ML tools are aimed at solving 

classic statistical tasks i.e. clustering (grouping), classification (pattern recognition) and 

regression (function approximation). Clustering in any data set can be achieved by mini-

mizing the intra-cluster dissimilarity and maximizing the inter-cluster dissimilarity.  

A comprehensive clustering techniques review carried out by [Jain, Murty and 

Flynn, 1999] suggested that all clustering techniques are based on hierarchal, partitional 

and taxonomy approaches. They further subdivided the clustering techniques into the fol-

lowing aspects: 

1-Agglomerative vs. divisive 

2- Monothetic vs. polythetic 

3- Hard vs. fuzzy 

4- Deterministic vs. stochastic  

5- Incremental vs. non-incremental 

The k-means algorithm, which belongs to partitional clustering, is used in clustering meth-

od for small datasets; see [McQueen, 1967] for example. 

However, the high computational cost of applying the k-means algorithm for large and ul-

tra-large data sets ( > 1 million and 100 million data respectively) is unavoidable. There-
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fore the ability to analyze these datasets in a reasonable amount of time and at a reasonable 

cost has not kept pace with newer techniques. Until a way is found to unlock these da-

tasets, the information they contain shall continue to be wasted. 

The available methods of clustering that handle large datasets mainly use the vec-

tor-space, such as k-medoids rather than distance-space algorithms, such as k-means algo-

rithm. CLARA algorithm has been suggested by [Kaufman and Rousseeuw, 1990] for 

tackling large datasets. They suggested the use of part of the data to then populate the re-

sults for all the data. However, the CLARA method has produced unreliable results since 

the sample of the datasets does not necessarily reflect the whole dataset and some clusters 

may be missed entirely. An improvement to the CLARA algorithm, developed by [Ng and 

Han, 1994], is based on the use of random neighbor samples dubbed as CLARANS. Unfor-

tunately, CLARANS works only for small datasets. Another method, suggested by [Cut-

ting, Karger, Pedersen and Tukey, 1992], uses clustering by means of Fractionization and 

Refractionization. Their idea was to split the data into manageable subsets (called frac-

tions) and then apply the hierarchical method to each fraction. The resultant clusters from 

these fractions are then clustered into       groups by the same clustering method. In es-

sence it is an iterative approach. The number of groups,   to be estimated must be supplied 

in advance. The major problem in this method is the formation of the meta-observations 

(sample data to form the clusters). A different approach, called BIRCH, was proposed by 

[Zhang, Ramakrishnan and Livny, 1996] and divides the data into sub-clusters, known as 

"cluster-features". The BIRCH method depends on building trees and sub-trees until the 

memory is full. This approach fills the memory too fast to be usable, especially for large 
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datasets. An approach based on distance-space was suggested by [Ganti et.al, 1999], appli-

cable mainly to clustering huge datasets. The algorithms that were developed are referred 

to as BUBBLE and BUBBLE-FM (improved version) and they basically scan over the da-

tabase once and use the vector operations to calculate the distance between two points in 

the space. These algorithms are, in principle, extensions of the BIRCH method proposed 

early 1996. Both algorithms essentially use the tree and sub-tree to generate or form the 

clusters. All the previous methods (BUBBLE, BUBBLE-FM, and BIRCH) suffer from one 

main problem- filling the memory of a computer quite quickly when the data is large. The 

DBSCAN [Ester, et al., 1996] clustering method, on the other hand, is used for clustering 

data without the requirements of a priori number of clusters. This is different than the nor-

mal k-means algorithm, which requires an estimate of the number of clusters before the 

starting of the algorithm. A more detailed description of DBSCAN is shown in the coming 

section of 2.2.1. 

The most standard and popular approach to clustering is known as the k-means 

algorithm. It starts by arbitrarily selecting starting centers at the outset and computes the 

first set of dynamic centers. (The adjective dynamic is used to denote the changing i.e., 

moving character of centers' positions during the clustering). These dynamic centers are 

used as the starting centers for the next dynamic centers. The process repeats over the 

whole dataset until the final centers are found. The distances between the consecutive 

dynamic centers will diminish with each iteration. Obviously, this approach will lead to a 

computationally prohibitive cost when the dataset is relatively large.   
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 A faster algorithm than the k-means algorithm, utilizing two stage clustering, is 

proposed [Salman et al., a, b, 2011]. This method divides the k-means algorithm into two 

stages: the first one is the fast stage, which uses a small part of the data selected at random, 

satisfying Theorem 1 in section 3.2, and the second stage uses the whole data set and is 

called the slow stage. In the slow stage the whole dataset will be used but within less 

iteration steps than is needed in a classic one stage k-means algorithm clustering 

algorithms. The main drive of the proposed method is to move the dynamic centers closer 

to the final location using part of the dataset rather than the whole dataset. 

 

Figure 2.1: The proposed k-means
2
 algorithm approach schematic diagram shown for one 

center movement 

Fast stage

Slow stage

Initial center

Final center



11 

 

An illustration of the movement of the centers is depicted in Figure 2.1. It can be 

observed that the fast stage starts the computation from an arbitrarily selected initial center 

   using only a portion of the dataset. This will lead to the next (dynamic) centers, 

   
    

            
. The final center of the fast stage,        

     , is used as the starting 

center for the slow stage. In contrast the slow stage will use the whole dataset to compute 

the new dynamic centers,     
    

            
iteratively until it terminates at the final 

center,        
. It is clear that the distances between the dynamic centers in the fast stage are 

generally longer than the positions changes between the dynamic centers during the slow 

stage. Moreover, the time and cost of computation for the transitions in the fast stage is 

much lower than the cost of computation in the shorter transition spaces within the slow 

stage due to the size of the dataset used. Obviously, the number of iterations in the slow 

stage are reduced due to the action of the slow stage which effectively moves the 

arbitrarily selected initial center closer to its final position. The overall cost of computation 

is expected to be much lower than the cost of computation attributed to the k-means 

algorithm. Consequently, the proposed approach will be able to accommodate much larger 

data sets with faster results at an even lower overall cost of computation.      

The second part of the dissertation proposes solving regression problems as classi-

fication ones, a novel approach of solving regression tasks as multiclass classification ones 

within the common framework of kernel machines. Recently, in [Kecman and Yang 2009], 

it has been shown how one can solve regression problems by posing them as the multiclass 

classification tasks. The multiclass classifier used in that paper is the Adaptive Local 



12 

 

Hyperplane (ALH) introduced in [Yang and Kecman 2008]. The choice of the ALH was 

natural because [Yang and Kecman 2008] showed its very good results on eleven standard 

benchmarking classification data sets, outperforming seven other machine learning tools 

including KNN classifier, SVMs and K-local hyperplane (linear manifold) distance nearest 

neighbor (HKNN) algorithm. The results presented in [Kecman and Yang 2009] were a big 

encouragement and provided strong motivation for exploring the method of transforming 

regression problems into the classification ones within a much stricter experimental ap-

proach.  

A strict comparison of a nonlinear (NL) regressor and an NL multiclass classifier is 

investigated and an approach to solving the regression problems is proposed.  

As for the model comparison environment, the double (nested) cross-validation was im-

plemented. Note that all results presented in [Kecman and Yang 2009] have been obtained 

by using a standard single (10-fold) cross-validation. This was a fair approach for validat-

ing whether the idea of transforming regression problems into classification tasks is feasi-

ble at all. However, such an approach is not quite valid for comparing different models be-

cause in a single cross-validation all the data points available are used for both hyper-

parameter determination and accuracy estimation. While such a procedure is good for es-

timating the hyperparameters of a single model it does not produce a true estimate of the 

accuracy of the given data set. If the main goal is to compare different ML models on the 

same data sets and under the same conditions, double cross-validation must be used [Yang 

and Kecman 2010]. The results in solving the twelve benchmarking regression tasks shown 

here present SVM regression and classification algorithms as strongly competing models 
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where each approach shows merits for a specific class of high-dimensional function ap-

proximation problems. In this dissertation we have developed algorithms strictly based on 

SVM’s for solving regression problem as classification within the double cross validation 

experimental environment. Hence, all the results obtained do not depend upon different 

modeling tools and they show the true properties of the algorithms analyzed. 

2.2 Clustering: basic concepts  

Clustering is the process of partitioning a collection of objects into groups, called 

clusters, such that “similar” objects fall into the same group. Similarity between objects is 

captured by a distance function. 

Definitions and Notations: 

Assume that        is a finite set of n points and d is the dimension of the data (features, 

attributes).  The number of clusters is k which is an integer >1 since we consider that the 

data cover more than one cluster. The clustering procedure is to find   

          groups in which the data is divided into the k clusters without assigning one 

point into two or more clusters. Every cluster has one center          such that all centers 

are defined by            . 

The following conditions are satisfied for the k-means algorithm: 

                (2.1) 

   

 

   

   (2.2) 

                        (2.3) 

Measuring similarity (distance) has to be used in order to decide on the belonging of the 

point or the vector to any one cluster    . There are many similarity measures which can be 

used. The one that will be used in this dissertation is a modification of the Euclidean dis-
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tance. The square root part of the equation has been removed to gain some speed up during 

the distance calculations. The role of the square root is a scaling factor to the distance 

which has no effect in our case. Thus the Modified Euclidean distance is given by: 

                       
 

 

   

 (2.4) 

                    (2.5) 

The basic k-means algorithm is shown below in pseudo code format as well as in graphical 

format as depicted in Figure 2.2: 

1. Create   centroids to initialize the algorithm. 

2. Assign each of the   data to its closest centroid. 

3. Update the centroids of the clusters composed of the recently assigned data. 

4. If there is change of at least one centroid go to step 2, otherwise stop. 

 

Figure 2.2: Schematic diagram of normal k-means algorithm 
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2.2.1 DBSCAN clustering  

DBSCAN [Ester, et al., 1996] is the density-based spatial clustering of applications with 

noise, which is defined as: 

Point q is directly density-reachable from a point p if it is not farther away than a given 

distance ε, and if p is surrounded by sufficiently many points such that one may consid-

er p and q a part of a cluster. q is density-reachable from p if there is a sequence 

        of points with      and       where each      is directly density-reachable 

from   . 

 One of the main advantages of DBSCAN is that we don't need to know the number 

of clusters in the data a priori, as opposed to k-means. DBSCAN can also find non-linearly 

separable clusters. The disadvantage of DBSCAN, on the other hand, is that it cannot clus-

ter data sets well with large differences in densities.  

 The complexity of DBSCAN depends on an indexing structure which, when used, 

makes the overall run time complexity                where   is the number of data 

points. Without the use of an accelerating index structure, the run time complexity is 

     . The distance matrix of size          is often materialized to avoid distance 

recomputations. This, however, also needs       memory. Figure 2.3 shows the running 

time complexity comparison of       and               for the DBSCAN algorithm: 
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Figure 2.3: The run time complexity trends of a DBSCAN algorithm without indexing is 

      and with it is               

Thus the DBSCAN is differ from the normal k-means algorithm because its time 

complexity is quadratic while for the k-means it is linear (see section 3.1) in terms of a 

number of data points. Another difference is that the k-means algorithm requires an esti-

mate of the number of clusters before the starting of the algorithm. 

 

2.3 Regression as classification  

A novel approach of solving regression problems as the multiclass classification 

tasks within the common framework of kernel machines is proposed. It has been shown in 
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[Kecman and Yang 2009], how one can solve regression problems posing them as the mul-

ticlass classification tasks. Good results of a multiclass approach averaged over twelve 

benchmarking regression data sets have been presented. The multiclass classifier used in 

that paper was the Adaptive Local Hyperplane (ALH) introduced in [Yang and Kecman 

2008]. The choice of the ALH was natural because in [Yang and Kecman 2008], it showed 

extremely good results on eleven standard benchmarking classification data sets, outper-

forming seven other machine learning tools including KNN classifier, SVMs and K-local 

hyperplane (linear manifold) distance nearest neighbor (HKNN) algorithm. The results 

presented in [Kecman and Yang 2009] were a big encouragement and provided a strong 

motivation for exploring the approach of transforming regression problems into the classi-

fication ones within a much stricter experimental approach.  

The topic here is to investigate the very characteristics of the proposed approach 

and to do a strict comparison of a nonlinear (NL) regressor and an NL multiclass classifier 

in solving regression problems. In order to do fair comparisons, SVMs are used for solving 

both tasks - regression and multiclass classification. The easily available and most popular 

benchmarking SVM tool, LibSVM [Hsu and Lin, 2002], was used in all experiments.  

As for the model comparison environment, the double (nested) cross-validation was 

implemented. Note that all results presented in [Kecman and Yang 2009] have been ob-

tained by using a standard single (10-fold) cross-validation. This was a fair approach for 

validating whether the idea of transforming regression problems into the classification 

tasks is feasible at all. However, such an approach is not quite valid for comparing differ-

ent models because in a single cross-validation all the data points available are used for 
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both hyper-parameter determination and accuracy estimation. While such a procedure is 

good for estimating the hyperparameters of a single model it does not produce a true esti-

mate of the accuracy on the given data set. If the main goal is to compare different ML 

models on the same data sets and under same conditions, double cross-validation must be 

used [Yang and Kecman 2010].  

Double cross-validation is a very rigorous scheme for assessing a model’s perfor-

mance [Yang and Kecman 2010]. Here, we evaluate the generalization performance of the 

SVM regressor and SVM multiclass classifiers by using the double cross-validation proce-

dure. The double cross-validation procedure is structured as the two loop algorithm. In the 

outer loop, the data set is separated into J1 roughly equal-sized parts (here, J1 = 10). Each 

part is held out in turn as the test set, and the remaining 9 parts are used as the training set. 

In the inner loop, J2-fold cross-validation is performed over the training set only to deter-

mine the best values of hyper-parameters (here, J2 = 10). The best model obtained in the 

inner-loop is then applied on the test set. The double cross-validation procedure ensures 

that the class labels of the test data won’t be seen when tuning the hyper-parameters, which 

is consistent with the real-world scenario. Obviously such a rigorous procedure is done in 

many runs. In our case here, for the Gaussian kernel SVMs and when solving a regression 

problem which has three hyperparameters (penalty parameter C, shape parameter γ, and the 

size of ε tube), the number of iteration runs increases very quickly as follows: suppose we 

want to select the best parameter out of 5 predefined ones for each hyperparameter of a 

SVM regressor. This amounts to 10 x 10 x 5 x 5 x 5 = 12,500 runs over the data set. All in 

the field of ML may well be aware that giving only 5 values for the hyperparameters is 
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usually a scarce approach. In practice, much bigger sets of values for each hyperparameter 

are typically used in order to find the best one, and this then leads to the significant train-

ing time. In this dissertation, the training times for SVM regressors and SVM multiclass 

classifiers are also compared.  

The results in solving twelve benchmarking regression tasks shown here will pre-

sent SVM regression and classification algorithms as strongly competing models where 

each approach shows merits for a specific class of high-dimensional function approxima-

tion problems. 

2.4 Contributions of the dissertation 

The dissertation has two major contributions. First, it introduces an improvement 

(speed up) to the k-means algorithm clustering algorithm and second, it develops an ap-

proach of solving regression problems as multiclass classification tasks by using SVMs 

within the double cross-validation experiment. 

k-means algorithm is considered one of the most popular algorithms for clustering unsu-

pervised data. Since the k-means algorithm depends mainly on distance calculation be-

tween all data points and the centers, the cost will be high when the size of the dataset is 

big (> 100,000 or 1 million points i.e., samples). The dissertation presents and develops a 

two stage algorithm, named k-means
2
 algorithm, with the aim of reducing the time and 

memory costs of distance computation for huge datasets. The first stage is a fast calcula-

tion on a small portion of the dataset whereby the objective is to generate the centers for 

the following intensive and consequently slow final distance calculation process. The two 

stages, the initial fast stage and the final slow stage are, in essence, creating the trajectories 
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of the dynamic intermediate centers in a d-dimensional feature space. The cost of the cen-

ters' calculation in the fast stage (due to the smaller size of the portion of the dataset used) 

is much lower then if all the data had been used. Using all the data is in fact what the slow 

stage is doing while computing the exact terminal locations of the centers.  However, be-

cause the slow stage starts from the clusters' centers obtained in the first (fast) phase the 

cost of the centers calculation in the slow stage will also be reduced [Salman and Kecman, 

2011] and [Salman et al., a, b 2011]. In the dissertation, we present a speeding up of k-

means clustering due to novel (algorithmic) approach. In [Li, Salman, Test, Strack and 

Kecman, 2011] and [Li, Salman, Test, Strack and Kecman, 2012] it was shown how one 

can handle large datasets by using novel hardware advancements (e.g. GPU based calcula-

tions). 

The second contribution is in developing an experimental environment for compar-

isons of various SVMs models in solving regression tasks in two different manners- first as 

the classic SVMs regressors and second as the SVMs multiclass classifiers [Salman and 

Kecman, 2012]. In order to transform a regression problem into a classification task sever-

al discretization methods have been introduced and experimented with. The two best per-

forming discretizations of a continuous output (target) vector y (fixed and varying ε-tube) 

are presented and compared. The k-means discretizations are also presented. A very strict 

double (nested) cross-validation technique has been used for measuring performances of 

regression and multiclass classification SVMs. The novel approach and experimental re-

sults obtained for twelve benchmarking regression data sets warrant both further theoreti-

cal investigations and broad application in practice.  
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 CHAPTER 3: CLUSTERING USING THE 2-STAGE K-MEANS AL-

GORITHM, K-MEANS
2
 

 

 

The previous chapter introduced the concept of the k-means
2
 algorithm for the clus-

tering problem and the regression problem solving into multi class classification. This 

chapter will give a fuller account of the two contributions in this dissertation. 

 

3.1   History of k-means
 
algorithm 

To our knowledge very little has been reported on the running time required for the 

 -means algorithm to achieve its goals, [Arthur and Vassilvitskii, 2006]. By means of a 

seed center selection scheme based on specific probabilities they reduced the worst-case 

running time scenario as superpolynomial by improving the lower bound from      

to       , where   represents the number of points in the dataset. [Hodgson, 1988] has de-

veloped another method to reduce the number of iterations but it was not as fine-tuned as 

[Arthur and Vassilvitskii, 2006]. On the other hand, [Pakhira, 2009] has proven that the 

number of iterations required by k-means algorithm is much less than the number of points. 

Moreover, [Har-Peled and Sadri, 2005] were unable to bound the running time of k-means 

algorithm, but they proved that for every reclassified point one iteration is required. The 

time complexity of k-means is         where   is the number of input patterns   is the 

number of clusters, and   is the number of iterations. 

[Pakhira, 2009] worked on modifying the k-means algorithm to avoid the empty 

clusters. Pakhira moved the center of every cluster into new locations to ensure that there 
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will be no empty clusters. The comparison between the modified k-means algorithm and 

the original k-means algorithm shows that the number of iterations is higher with the modi-

fied k-means algorithm method. In the case of the numerical examples which produce emp-

ty clusters, the proposed method of Pakhira cannot be compared with any other method 

since there is no modified k-means algorithm available that avoids the empty clusters (clus-

ter with no label). [Bradley and Fayyad, 1998] developed a procedure in which the centers 

have to pass a refinement stage to generate good starting points. [Wu, 2008] used genet-

ically guided k-means algorithm where the possibility of empty clusters will be treated in 

the mutation stage. Another method of center initializing based on values of attributes of 

the dataset is proposed by [Khan and Ahmed, 2004]. The latter proposed a method that 

creates a complex procedure which is computationally expensive. 

[Elkan, 2003] developed a method to avoid unnecessary distance calculations by 

applying the triangle inequality in two different ways, and by keeping track of lower and 

upper bounds for distances between points and centers. This method is effective when the 

dimension is more than 1000 and also when the clusters are more than 20. They claimed 

that their method is many times faster than normal k-means algorithm method. In their 

method the number of distance calculations is   instead of     where   is the number of 

points.  

The next section will present the basic concepts and algorithm of the proposed k-means
2
 

algorithm. 

3.2 Clustering with k-means
2
 algorithm: basic concepts 

The concept of the k-means
2 

algorithm in this dissertation is based on minimizing 

the huge computational effort normally incurred with the application of the k-means algo-
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rithm. The problem with the k-means algorithm is that it carries out the distance computa-

tion based on the full dataset. The choice of the initial seeds or starting centers is usually 

arbitrary. This suggests that if the arbitrary locations are steered towards the final locations 

by some means with less computational effort then the final tuning of the locations can be 

carried out with much less computational effort. With our concept we utilize only a small 

portion of the full dataset in order to steer the arbitrary locations closer to the true final lo-

cations of the assumed clusters of the selected portion at a much faster speed of computa-

tion. Obviously, the speed advantage referred to is due to the difference in the size of the 

data used in the computation.  We refer to this as the fast stage.   Achieving better loca-

tions from this stage for the centers of the clusters within the small data portion will pro-

vide a closer distance to the actual final locations. The stopping criterion of the fast stage is 

naturally determined when the fast stages reach the centers of the small portion of the da-

taset. In reality, the final locations are actually nearer to the true locations of the centers of 

the clusters of the whole dataset. The second (final) stage is referred to as the slow stage. A 

graphical description of the k-means
2
 algorithm is depicted in Figure 3.1 while the algo-

rithm itself is presented underneath, [Salman et al., a&b, 2011]. It can be seen that the k-

means algorithm is repeated twice in the k-means
2
 algorithm, however with a different 

number of data points used in the two stages.   
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Figure 3.1: Graphical description of the k-means
2
 algorithm 

Algorithm 1: A 2-stage k-means
2
 algorithm clustering 

Input:   ,  ,     ,   ,   ; where      are stopping criteria for both stages (fast and slow) 

Output:   with clusters 

________________________________________________________________________ 

        of    

Select    from    randomly 

Fast Stage 

Use    

While         

       For             

       For             

  Calculate the distance  
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       End for 

                      Find minimum of    

  Assign the cluster number to point    

 Calculate the mean of the clusters    

       End for 

End while 

Slow Stage 

Use the whole dataset     

While        

        For              

              For            

  Calculate the distance  

          
            

 
 

         
   

        End for 

                        Find minimum of    

    Assign the cluster number to point    

                        Calculate the mean of the clusters    

  End for 

End while 

 

Algorithm 3.1. 

The following section will give an account of the theoretical validation of the proposed 

two stage k-means
2
 algorithm. 

 

3.3   Validation of k-means
2
 algorithm 

Lemma 2.1, [Kanungo et al., 2002], describes the calculation of the movement of the cen-

ters of the k-means algorithm. Since our approach is effectively a two round running of the 
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k-means algorithm, albeit with a different size of data, it is required to modify the above 

Lemma in order to accommodate the two stages. The movements of the centers in the fast 

stage will be presented in Lemma1. 

 

Preliminaries: 

Assume        , let        denote the squared Euclidean distance between these points, 

then: 

                 
 

 

   

               (3.1) 

where     denotes the dot product of vectors   and  . 

Also assume that     , then the summation of the distances from all points of the set   

to any point   is: 

               

   

 (3.2) 

Let          be the squared Euclidean distance between the points of the subset    and the 

center   . 

Lemma 1 can be summarized as follows:  

The summation of the distances from all points in the fast-stage of k-means
2
 algo-

rithm to any point is equivalent to the summation of the distances of all points in the fast-

stage of k-means
2
 algorithm to the centroids of these points plus the product of the number 

of points in the fast-stage and the summation of the distances between the centroids and 

any other point. 

Lemma 1 Let    be a subset of set   points in     let    be the centroids of     Then, for 

any           
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Proof: Expand          : 

                    

    

                    

    

  

(3.3) 

                    

    

                       (3.4) 

 

                  

    

                                            

(3.5) 

                                 

    

      
                        (3.6) 

  

               
             (3.7) 

This is true if the center of    is                       the zero vector. 

The movements of the centers in the slow stage are presented in Lemma 2. 

Lemma 2 can be summarized as follows:  

The summation of the distances from all points in the slow-stage of k-means
2
 algo-

rithm to the centroids of the fast-stage is equivalent to the summation of the distances of 

all points in the slow-stage of k-means
2
 algorithm to the centroids of these points plus the 

product of the number of points in the slow-stage and the summation of the distances be-

tween the centroids of the fast-stage and the centroids of the slow-stage. 

Lemma 2 Let   be a set of points in     let   be the centers of    Then, for          

                               

Proof: Expand        : 

                 

   

                  

   

  (3.8) 

                 

   

                    (3.9) 
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(3.10) 

                            

   

                        

 

(3.11) 

                      (3.12) 

  

This is true if the center of   is   then           is the zero vector. 

 

Using the upper derivations of Lemma 2, Theorem 1 below can be summarized as 

follows:  

The centers of the subset of the data will approach the centers of the whole dataset if the 

subset has the same number of clusters as the number of clusters in all data. 

Theorem 1 

Let   be a dataset with a set of clusters represented by the vector                hav-

ing centers represented by the vector             and let      be a proper subset of 

the dataset with the condition that its cluster vector is also                with the vec-

tor       
 
     

 
  representing their centers. Then the subsequent applications of the k-

means algorithm on    would shift the centers       
 
     

 
  until they approach   

         . Therefore if        then the subsequent applications of the k-means algo-

rithm on    would shift the centers       
 
     

 
  until they coincide with 

            , or   
 
   

 
      

 
   

 
                   

Proof: 

We assume that the whole data set is   of size n and      is its subset with size      , 

where f is an integer representing the number of data in the fast stage. Additionally, the 
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condition that all clusters             exist in    must be satisfied, in other words 

there is no empty cluster. This means that        
 
           if      .  

However, if     then         
 
           

This completes the proof. 

Continuing from the above Theorem, we can present the following corollary. 

Corollary 

The centers   
 
   

 
      

 
   

 
  produced at the last iteration of the k-means by the fast 

stage can be used as the seeds for  . Therefore, there is no loss of generality since the cen-

ters produced from the fast stage   
 
   

 
      

 
   

 
  are located on the path of conver-

gence of the centers for each cluster.  

Then the final iteration of the k-means would shift    
 
   

 
      

 
   

 
  such that they coin-

cide with        . This concludes the proof of the corollary. 

Figure 3.2 demonstrates how the distance between the center obtained from all the 

data    and the center calculated from the fraction of data   
  changes depending upon the 

size of the fraction of original data set used in the fast phase (a toy dataset is used in Figure 

3.2). When less than 10% of the dataset is used in the first stage, and since the condition of 

existence of the same clusters in the subset is not fulfilled, the error index represented by 

the y-axis (  
 
   

 
        ) exhibits large values. As the size of the data sets used in the 

first stage increases, the difference (error) between    and   
  asymptotically approaches 

zero.   
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Figure 3.2: Differences (  
 
   

 
         ) between the cluster center (for center 1) and 

the fast stage cluster center are dependent on the size of the data fraction used in the first 

stage 

 

As mentioned before, the worst-case running time of k-means algorithm is a 

superpolynomial with a lower bound of         iterations, where   represents the number 

of points in the dataset.  Thus, the lower bound of the number of iterations for a classic k-

means algorithm working with all n data points will be much higher than the lower bound 

of the fast stage in the worst case scenario, which is          because nf << n. Note that the 

second, slow stage, works with n data points again but not under the worst case scenario 

because the final centers of the k clusters are 'very' close to their terminal locations. On the 

other hand, as Figure 3.2 indicates, using a very small fraction of the data in the fast stage 

(as mentioned above below 10%) makes the slow stage fall back into the worst case sce-
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nario. In this case                         and the k-means
2
 algorithm will need more 

iterations that the k-means method.  A general case of a distribution-free k-means cluster-

ing proving the complexity in a non worst case scenario is extremely difficult. However, 

there is a result in (Arthur and Vassilvitskii, 2006) which states that "Given data points 

chosen from independent normal distributions with variance s
2
 and with dimension 

              , k-means algorithm will execute in polynomial time with high probabil-

ity". The experimental results that follow for the distribution-free k-means clustering show 

excellent agreement with the claim made for normally distributed data. 

The following section will give selected numerical examples to highlight the advantages of 

the proposed k-means
2
 algorithm.

              
 

 

3.4 Numerical examples 

 

To investigate the suitability of the proposed method we run the simulation for many 

different parameters. The parameters which have to be adjusted to get the best speed up 

values are: the data size, the dimension of the data, the number of clusters, the stopping 

criteria of the first clustering stage, the stopping criteria for the second clustering stage and 

the percentage of the data used for the 2-stage clustering. Another important consideration 

is the use of the same program for running the normal k-means clustering and the 2-stage 

clustering. The same seeds used for the fast stage in the case of the k-means
2
 algorithm 

were used for the k-means algorithm. Furthermore, the same computer has been used for 

running all simulations to avoid discrepancy in computer performance. The computer used 

was Alienware with an i7 CPU and 6 GB of RAM. Two examples are shown below. The 
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first one points to the general characteristics of the two stage k-means algorithm in which 

the fast stage is much more dynamic than the second stage. Figures 3.3 and 3.4 show the 

changes of two coordinates of two-dimensional centers separately, which are just the rep-

resentatives for all the coordinates of d-dimensional data points. 

Example 1: A dataset of 800 samples and 2-dimension (3 clusters) is used. The following 

figures show the movement of one of the centers in the two stage clustering. 

 
 

Figure 3.3: The movements of the first coordinate of one center during fast and 

slow stages of k-means
2
 algorithm. 

 



33 

 

 

 

Figure 3.4: The movements of the second coordinate of one center during fast and slow 

stages of k-means
2
 algorithm. 

It is very clear from Figures 3.3 and 3.4 that the movement of the red line (the change of 

the center's first coordinate during the slow stage) is very smooth compared with the fast 

stage coordinate movements. The initial value of the red curve (slow stage movement) is 

the same as the terminal value of the blue (fast) curve. The number of iterations is higher 

than necessary purely for clarification purposes.  



34 

 

Moreover, as can be seen from the above graph, the coordinates have not changed 

much during the slow stage. This means that the second (slow) stage requires less itera-

tions. Figure 3.5 shows the well known movements of the centers for all three clusters in 

the same dataset during the fast stage.  It can be seen that the movements of the three clus-

ters' centers (shown as colored squares, red, yellow and green) are volatile and they heavily 

depend on the random choice of the initial center seeds (shown as colored circles). 

 

Figure 3.5: The centers movements for the three clusters during the fast stage. 
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The figures 3.6, 3.7 and 3.8 depict the excursions of the three clusters' centers in greater 

detail using different center seeds than in Figure 3.5 just in order to show the differences in 

the centers movement during the fast and slow stages. The fast stage centers are symbol-

ized with squares while the slow stage centers are symbolized with circle shapes. It can be 

seen that the size of the steps during the fast stage are much bigger than the ones during the 

slow stage.  

 

Figure 3.6: Movements of the first cluster centers during the fast (squares) and slow 

(circles) stages. 
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Figure 3.7: Movements of the second cluster centers during the fast (squares) and slow 

(circles) stages. 

 

 

Figure 3.8: Movements of the third cluster centers during the fast (squares) and slow (cir-

cles) stages 
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As can be seen from the above diagrams, the centers usually make much bigger spatial dis-

placements during the fast stage, which is expected to happen in a short time because just a 

fraction of data points is used in the fast stage. The number of iteration steps during the 

slow stage is much smaller than the number of iteration steps during the fast stage. The 

slow phase movements of the centers are also smaller with respect to the fast stage ones.  

Example 2 

Table 3.1 gives an example of a distribution of points and centers during the fast and slow 

stages of clustering in tabular form for a real dataset (iris) of two clusters.  

Table 3.1: Distribution of points and centers during the fast and the slow stages of cluster-

ing (iris) 

 

Iter Points in

No. Clusters

C1 8 4 4 4.867 3.267 1.567 30,38,44

53,58,64

69,72,86

88,93,113

114,138,145

C1 4.867 3.267 1.567 4.867 3.267 1.567 30,38,44

53,58,64

69,72,86

88,93,113

114,138,145

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1.956

C2 6.409 2.942 5.1 6.409 2.942 5.1

2.942 5.1

4

C1 5.083 3.205 1.956 5.083 3.205

1.897 5.083 3.205 1.956

C2 6.396 2.933 5.071 6.409

1.897

C2 6.323 2.901 4.987 6.396 2.933 5.071

2.901 4.987

2

C1 5.015 3.318 1.636 5.06 3.226

5.015 3.318 1.636

150

C2 6.16 2.85 4.68 6.323

Slow

1

C1 4.867 3.267 1.567

3

C1 5.06 3.226

2
C2 6.16 2.85 4.68 6.16 2.85 4.68

Fast

1

15

C2 4 4 4 6.16 2.85 4.68

Stages Clusters Old Centers Coordinates New Centers Coordinates Points
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Note that in Table 3.1 the fast stage uses only 10% of the whole dataset. The initial centers 

of the slow stage are the same as the terminal centers reached by the fast stage, and they 

are shown in different colors. To show that the proposed method of the k-means
2
 clustering 

has the same speed up for the real datasets as for the toy ones, twelve datasets taken from 

the machine learning repositories sites were used as shown in the next section. 

 

3.4.1 Real datasets analysis 

For the verification of the k-means
2
 algorithm, a range of real data sets with differ-

ent portions of the data selected for the fast stage of the algorithm have been used as shown 

in the following table:  

Table 3.2: Speed up of the k-means
2
 algorithm for twelve real datasets with different sizes 

 

 
 

Twelve different real datasets have been used and shown in Table 3.2 with different sizes, 

demonstrating the success of the k-means
2
 algorithm. The range of the number of points in 

Datasets optdigits satimage usps pendigits reuters letter adult w3a shuttle web mnist ijcnn1

# Points 5,620 6,435 9,298 10,992 11,069 20,000 48,842 49,749 58,000 64,700 70,000 141,691

# Classes 10 6 10 10 2 26 2 2 7 2 10 2

Dimensions 64 36 25 16 8315 16 123 300 7 300 780 22

%  Data portion

 Data 

portion 

average

1 1.1581 1.1226 1.4879 1.4565 1.2847 1.1957 2.5204 1.4309 1.4746 1.6446 1.225 1.8592 1.488

2 1.1047 1.0675 1.0209 1.5644 1.444 1.2251 2.0893 1.4547 1.5111 1.712 1.1172 2.1865 1.458

3 1.2861 1.3971 1.18 1.2237 1.3542 1.2988 2.4677 1.7631 1.8638 1.7229 1.6599 2.0942 1.609

4 1.3517 1.3553 1.2829 1.2962 1.1304 1.2225 1.9305 1.6973 1.6104 2.0788 1.6282 2.0977 1.557

5 1.5508 1.7986 1.6947 1.4512 1.5092 1.2006 2.3747 1.9858 1.8249 1.9726 1.762 2.4674 1.799

6 1.1658 1.936 1.5365 1.6757 2.0174 1.2326 2.6972 2.1093 1.2961 1.9964 1.1256 2.3228 1.759

7 1.3833 1.7182 1.4242 1.3561 2.0206 1.3693 2.2295 2.1643 2.2255 2.0637 1.7479 2.3057 1.834

8 1.5418 1.6612 1.2283 1.954 2.6366 1.2323 2.3065 2.0174 1.4138 2.321 1.7997 2.2425 1.863

9 1.2878 1.8202 1.5817 1.5237 2.6128 1.2285 2.4513 2.2109 1.648 2.1975 1.801 2.3281 1.891

10 1.4509 1.6682 1.3311 1.6182 2.0486 1.204 1.8321 2.0464 1.633 2.2008 1.4204 1.9062 1.697

20 1.4412 1.4152 1.3062 1.4822 1.6809 1.1922 1.6422 2.1255 1.5742 1.9713 1.5983 1.8021 1.603

30 1.576 1.6876 1.3967 1.5699 2.0091 1.2417 1.5861 1.7143 1.5622 1.6853 1.4175 1.606 1.588

40 1.7409 1.3368 1.7523 1.517 1.6285 1.1543 1.1942 1.5787 1.2016 1.7111 1.4792 1.5893 1.490

50 1.4018 1.2267 1.5538 1.5061 1.4166 1.1934 1.1209 1.4957 1.0407 1.3833 1.2414 1.3588 1.328

60 1.2684 1.0495 1.1311 1.229 1.6847 1.129 1.0928 1.3232 1.1452 1.3612 1.8012 1.2398 1.288

70 1.3315 1.1919 1.1733 1.1123 1.0947 1.2016 0.9328 1.242 1.0421 1.1856 1.265 1.2941 1.172

Speed up average 1.378 1.466 1.380 1.471 1.723 1.220 1.904 1.772 1.504 1.826 1.506 1.919

Speed Up for 20 runs (X)
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the datasets is from 5k to 140k, while the range of the number of classes is from 2 to 26. 

On the other hand, the dimensions of the datasets range from 7 to 8315. Different portions 

of the datasets were used in the first stage of the clustering ranges from 1% to 70%. 20 

runs were chosen from the k-means
2
 algorithm and an average of these runs was recorded. 

At the end of all runs of all portions of the datasets one average was calculated. Two types 

of averages have been reported in Table 3.2; the first is the speed up average for each da-

taset (last column) and the second is the data portion average for each dataset (last row). It 

is clear that the speed up averages increases with the increase of the size of the dataset. 

However, the data portion averages follow a distinct pattern which starts from low averag-

es, increases for the 8-10% data portion, and decreases with higher percentages. Two main 

graphs were developed from the above table as shown below: 

The following graph shows the speed up of all 12 datasets with percentage of the 

portion of the data used: 

  
Figure 3.9: Speed up versus percentage of the data used during the fast stage of k-means

2
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It is clear that the use of less than 8-10% of the data in the k-means
2
 algorithm produces 

better speed ups. This trend of speed up is applicable for all datasets used regardless of the 

size, dimension and number of clusters. 

The following, Figure 3.10, however, shows the increase of the speed up due to the 

increase of the data size. The blue line shows the linear estimate of the increase in the 

speed up. 

 
Figure 3.10: Average speed up versus datasets using k-mean

2
 algorithm 

 

The following graph, Figure 3.11 shows the average speed up with the percentage of the 

data used. It is clear that 8-9% is the best estimate of the portion of the data used for the 

first stage of k-means
2
 algorithm. 
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Figure 3.11: Average speed up versus percentage of the data used in the fast stage of k-

mean
2
 algorithm 
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computer, in which case the 64-bit machine is a faster computer. The results, as depicted in 

Figure 3.9, show that regardless of the Operating System used the modified k-means algo-

rithm has demonstrated a speed up at all ranges of the stopping criterion. The data used for 

the fast stage clustering is only     randomly selected data. The dataset used in this exam-

ple is “Synthetic”, picked up from UCI [Frank and Asuncion, 2010] consisting of         

samples in 10 dimensions and 4 clusters. The speed of the modified k-means
2
 algorithm is 

almost twice the speed of normal k-means algorithm and it can be attributed to the fact that 

the k-means
2
 clustering uses much less data points during the fast clustering stage leading 

to much less computational effort in the first stage of the process. The speed up is very 

clear in the high accuracy range when       . The stopping criterion,   , is defined by 

                   ), i.e. as the difference in the distance between the final center and 

the preceding one. Depending on the accuracy requirements the range of the metric,   , is 

to be determined by the user. In this example the range of   is selected between 10
-1 

and 

10
-10

 as shown in the Figure 3.12.  
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Figure 3.12: Comparison of the computational times between the k-means and the k-

means
2
 algorithms for 32 bit and 64 bit computers. 

 

The speed of the normal k-means algorithm is shown in blue while the speed of the 

k-means
2
 algorithm is shown in red. For example, the CPU time taken for the k-means al-

gorithm when   is      is 1100sec for 64bit OS and 3100sec for 32bit OS while the time 

for the k-means
2
 is 400sec and 2250 sec respectively. This particular value of   gives an 

advantage greater than 275% in favor of the k-means
2 

on a 64 bit machine. 
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Next, we discuss the speed up achieved by using k-means
2
 algorithm for the same 

100,000 10-dimensional data points that should be split into 4 clusters. The speed up of the 

k-means
2
 algorithm compared with the normal k-means algorithm varies according to the 

stopping criterion used (i.e., required accuracy) as shown in Table 3.3 and Figure 3.13.  

 

Table 3.3:  k-means
2 

vs. k-means
 
algorithms speed up for different stopping criterion and 

fraction of data used in the fast stage 

 

Speed up of k-means
2 

for different stopping criterion 

  Percentage of the total data for the fast stage 

 Stopping 10% 15% 20% 30% 40% 

 

     1.9 1.8 1.8 1.7 1.5 

     3.8 3.5 3.4 3 2.5 

     4.7 8.9 3.1 7 4.3 

     0.9 1.7 1.1 3 8.5 

     2.9 1.6 2.2 2.1 2.4 

     2 1.9 2.6 2.3 2.4 

     2 1.4 2.4 2.3 1.6 

     2 1.4 2.4 2.3 1.6 

     2 1.4 2.4 2.3 1.6 

      2 1.4 2.4 2.3 1.6 

 

A graphical representation of Table 3.3 is depicted in Figure 3.13. 
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Figure 3.13: k-means
2 

vs. k-means
 
algorithms speed up for different both stopping criterion 

and fraction of data used in the fast stage 

 

For lower ranges of accuracy      to     , the speed up of computation changes 

between 1 and 9 times. The speed up is reduced for higher accuracy, e.g., for   from      

to       , it is restricted to the range of (     ). However, the range of the random data 

selected to achieve the fast clustering (computation) actually fluctuates quite rapidly. It can 

be observed that the optimal range of sample data used in the fast stage of clustering falls 

between 10% - 20%. In the normal situation a choice of good accuracy range, e.g., (     

to      ) will provide a speed up advantage up to 2.5, as shown in Table 3.3 and Figure 

3.13.  

The following section will give an account of the performance of the k-means
2
 al-

gorithm for large datasets. 
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3.6 Speed of computation of k-means and k-means
2
 algorithms for large datasets 

In this section we will deal with large toy datasets in order to find out the behavior 

of the two algorithms. Again the same machine will be used for a range of datasets 100k, 

200k, 300k, 400k, 500k, 600k, 700k, 800k, 900k, 1M, 2M, 3M, 4M, 5M, and 6M with 12-

dimensions and 4 clusters, where M stands for a million. We maintained the same value of 

the stopping criterion, i.e.     . In this case the portion of the data used in the first stage is 

reduced much further down to 0.1%. The results are shown in Figure 3.14. 

 

Figure 3.14: The CPU times for normal k-means and the k-means
2
 algorithms for huge da-

tasets. 

 

The blue dotted line in Figure 3.14 refers to the normal k-means clustering method 

while the red dashed line refers to the k-means
2
 algorithm. Obviously, the CPU time dif-

ference between the two algorithms largely favors the k-means
2
 and the time advantage in 
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normal k-means clustering using the 6M dataset is almost 1250 seconds, while the time for 

the 2-stage method is only 450 seconds, giving about a 3 times faster performance of k-

means
2
 . At the same time, for a 1M dataset size, the speed up of a k-means

2
 algorithm is 

still significant but slightly smaller - k-means
2
 is 2 times faster than k-means. Such reduc-

tion in CPU time consumed for calculation is very useful and cost effective in larger da-

tasets. 

The trend in the speed up advantage is clearly shown in Figure 3.15 and demon-

strates a steady increase upward.  

 

Figure 3.15: Speed up of k-means
2
 / k-means algorithms 

Hardware limitations particularly in the availability of a more powerful computer prevent-

ed us from testing the method for data larger than 6M points. This could be a subject for 

future work. 

Analysis of the center convergence is presented and shown in the next section. 

 

10
5

10
6

10
7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Speed up of k-mean
2
 / k-mean

T
im

e
 (

s
e
c
.)

  

Data 



48 

 

3.7  Center convergence 

In this section we will analyze performances of a classic k-means and a novel k-

means
2
 algorithm by showing the dynamic changes of differences between the cluster cen-

ter during the iterations and the final cluster center (a mean of the cluster obtained).  

To avoid having to guess the proper number of clusters, the classification datasets were 

chosen instead of clustering datasets. In this case we assume that we know the number of 

clusters as a priori knowledge to avoid spending time on finding the proper number of 

clusters while we are concentrating on proofing the advantages of using k-means
2
 in speed-

ing up the algorithm process. 

Here we are using a dataset chosen at UCI, [Alcock and Manolopoulos, 1999]. The dataset 

is “Synthetic Control Chart Time Series” with 600 points, 60-dimesion and 6 clusters. We 

only show the changes of a distance in a single coordinate for both k-means and k-means
2
 

algorithms. The results for the k-means algorithm are shown in Figure 3.16 while the re-

sults of running the k-means
2
 are shown in Figure 3.17. 

The movement measured as the difference between the mean of the cluster and the 

centers is shown for the k-means algorithm for over 300 iterations. As expected, the differ-

ence is seen to fluctuate rather rapidly initially and gradually dies away.   
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Figure 3.16: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means algorithm 

 

As for the k-means
2
 algorithm, the stopping criterion for the fast stage was selected 

to be      and for the slow stage, double precision was chosen as     , which is the same 

as for the normal k-means method. The two stages of the k-means
2
 algorithm are shown in 

two different colors for clarity. The blue represents the fast stage convergence while the 

red represents the slow stage one. It is important to remember that the blue color represents 

the changes for just a portion of the dataset (i.e. 10%), while the red one displays the 

changes of the differences between the mean and centers obtained by using all the data. 
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Because the fast stage uses a small portion of data, the CPU time needed for the blue curve 

to converge is much smaller than the time needed for the same portion of the trajectory in 

Figure 3.16. Furthermore, the terminal center reached by the fast stage (blue) is actually 

the seed for the slow stage (red) which is in this way much closer to the final cluster mean 

and thus needs less iterations to reach it. 

 

Figure 3.17: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means
2
 algorithm - fast stage (blue), slow stage 

(red) 

3.8 Conclusions 

Because the k-means algorithm makes use of the full dataset in order to carry out its 
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crease in dataset size (large and ultra large datasets). The present proposal targets the prob-

lem of moving the seeds towards the final cluster's centers destination with as much data as 

possible. Therefore, the use of a portion of the data may solve the problem. However, one 

condition has to be satisfied before the reduction in the dataset can be justified. The condi-

tion is that the portion of the data selected must ensure the existence of the same clusters, 

as shown in Theorem 1. Hence, the new proposal can be seen as a two stage k-means algo-

rithm.  

  Admittedly, the longer the distance between the seeds and the cluster’s centers the 

more iteration is required. For the k-means algorithm it will require the use of the full da-

taset in order to move the seeds towards the actual centers of the clusters whereas it only 

requires a small portion of the dataset in the k-means
2
 algorithm in order to carry out this 

movement. Hence, a great computational expense reduction can be achieved with this 

modification. 

The effect of the cluster's locations and the dataset's sizes are analyzed and dis-

cussed. The normal k-means clustering method requires a longer time to achieve the clus-

tering compared with the 2-stage method for large datasets (more than 1Million points). 
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CHAPTER 4: REGRESSION AS CLASSIFICATION 

 

4.1 Regression by classification using support vector machines  

 Here, we further develop the novel approaches to the solution of regression prob-

lems by transforming them into multiclass-classification tasks. Such an approach can be 

solved in two steps. The first is to find a proper discretization criterion. This involves find-

ing out which discretization method is the most appropriate for transforming a regression 

into a multi-class classification.. The second step is mainly the selection of a proper classi-

fication method. Hence, the whole process would entail the discretization of the output var-

iables yi into the discrete labels and selection of one of the available classifications tech-

niques such as rule-based, decision-trees, neural network or SVM to perform the classifica-

tion. Classification by decision-tree for high dimensional data does not work properly due 

to the memory limitation as well as due to the high computational cost. However, decision-

tree may work satisfactorily for data having less than 20 features.  

 A few early attempts to solve the regression problem as the multiclass classification 

tasks by using the rule-based decision and decision trees have been presented by [Weiss 

and Indurkhya, 1995] and [Torgo and Gama, 1996]. 

The latter, [Torgo and Gama, 1996], presented a methodology that enables the use of exist-

ent classification inductive learning systems on problems of regression. This goal was 

achieved by transforming regression problems into classification problems. They have per-

formed an extensive empirical evaluation using two decision tree classifiers, C4.5 and 

CN2, on four real world domains. 
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The research of [Torgo and Gama, 1996] has two phases. The first part is to provide three 

different discretizations methods as follows: 

1- Equally probable intervals (EP); to create N intervals with the same number of data 

2- Equal width intervals (EW);  to create N intervals with the same range 

3- K-means clustering (KM); to create N intervals that minimize the sum of distances 

of each element to the center of the cluster. It starts with an EP approximation but 

then it tries to move the elements to their nearest centers. 

 The second part is to enable the use of these methodologies with other classifica-

tion systems. As to the first goal, they were able to prove (through empirical evaluation on 

four real datasets) that two of their proposed discretizations methodologies outperformed 

the method used in the work of [Weiss and Indurkhya, 1993]. These experiments also re-

vealed that the best methodology is dependent on both the regression domain as well as on 

the classification system used, thus providing strong evidence for the search-based 

discretizations method. With respect to the second goal they have used their methodologies 

with two decision tree classifiers, CN2 and C4.5.  

 The problem in the three methods mentioned above is the a priori knowledge of the 

number of intervals. By calculating the means of an iterative search approach, [Torgo and 

Gama, 1996] claimed that they had overcome the problem. Furthermore, they developed 

two ways to modify the three splitting methods mentioned above based on estimated pre-

dictive accuracy results. The first is called ‘Varying the number of intervals’ (VIN). This 

method is based on trying several values of the number of intervals with the current split-

ting strategy followed by incrementing the number of intervals by constant value. The se-
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cond method is called ‘Selective specialization of individual classes’ (SIC). The basic idea 

of this method is to improve the previously tried set of intervals. They start with any given 

number of intervals and during the CV-evaluation they calculate the error estimates of each 

individual discrete class. Then, they look for the individual error estimate. The median of 

these errors is calculated and any error above the median is specialized. 

 However, no comparison to any other methods was provided in order to evaluate 

the proposed methods. They also did not show the accuracy which can actually be 

achieved by their approach but they do claim that their methods are superior to the others. 

They did not provide any comparison of the results whereby relative merits cannot be 

highlighted either. 

  Here, a novel framework of solving regression problem into multiclass classifica-

tion using Support Vector Machines (SVMs) is proposed. The obvious and direct way of 

transforming the regression problem into the classification task is to perform the 

discretizations of the target vector y by a fixed ε-tube size into a set of N classes. The prob-

lem in the fixed ε-tube discretizations is that it may lead to the empty classes. A slightly 

better form of discretizations is achieved by specifying the minimal size of the ε-tube. If in 

such a minimal tube there are no entries, the size of the tube is doubled. Obviously, this 

leads to the varying sizes of the tubes for different classes but it improves the accuracy by 

avoiding grouping too many data in the flat part of the regression (hyper) surface. The fol-

lowing graphical representation, Figure 4.1, shows the difference between the two pro-

posed discretization methods for 16 data points and 5 classes in the case of a varying epsi-

lon tube populated by at least one sample in the class (class boundaries are shown by 
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dashed red line). At the same time, discretization by a fixed epsilon tube leads to 5 classes 

but with class 4 being empty (class boundaries are shown by solid blue line). 

 

Figure 4.1: Graphical representations of the two splitting methods, fixed ε-tube and varying 

sizes of ε-tube 

 

4.1.1 Preliminaries and definitions of SVM 

Support Vector Machines are based on the concept of decision planes that define 

decision boundaries. A decision plane is one that separates between a set of objects having 

different class memberships. Support Vector Machine (SVM) performs classification tasks 

by constructing hyperplanes in a multidimensional space that separates cases of different 

class labels. SVM supports both regression and classification tasks and can handle multiple 

continuous and categorical variables. To construct an optimal hyperplane, SVM employs 

an iterative training algorithm, which is used to minimize the error function. 
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The learning problem setting for SVMs is as follows [Huang, Kecman and 

Kopriva, 2005]: there is some unknown and nonlinear dependency (mapping, function) 

       between some high-dimensional input vector x and the scalar output y (or the 

vector output y as in the case of multiclass SVMs). There is no information about the un-

derlying joint probability functions here. Thus, one must perform distribution-free learn-

ing. The only information available is a training data set                       

      , where   stands for the number of training data pairs and is therefore equal to the 

size of the training data set  . Often,    is denoted as    (i.e.,   ), where      stands for a 

desired (target) value. Hence, SVMs belong to the supervised learning techniques. The 

basic model for the error function of SVM is: 

                        

 

   

 (4.1) 

Where     is a SVMs’ loss function (Closeness to data),   is a VC dimension, and   (Ca-

pacity of a machine) is a function bounding the capacity of the learning machine. In classi-

fication problems,      is typically the 0-1 loss function, and in regression problems     is 

the so-called Vapnik’s   –insensitivity loss (error) function: 

                    
                                                                            
                                                                   

  
(4.2) 

where   is the radius of a tube within which the regression function must lie, after the suc-

cessful learning. (Note that for   = 0, the interpolation of training data will be performed) 

and   is the weight vector subject to training. 
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4.2 Transforming regression into classification 

 Regression problems are defined as follows: l instances (samples, measurements) 

with d input features are given as the input points or vectors  

              
   each    is associated with known output value yi, and yi 

1 . The dif-

ference in respect to the classification problems is that the output values are real numbers 

now. However, this setting can also be looked at as the classification problem where each 

yi is treated as the ‘class label’. Hence, each regression problem is a multiclass classifica-

tion problem with maximally l classes. Relabeling continuous yi values into the classes is 

readily done after sorting yi and then just orderly assigning the labels. However, this obvi-

ously leads to several undesired consequences, the most important one being that we don't 

want to model the noise always present in data and we would like to control the variance of 

the model. In order to filter the noise out, as well as to reduce the variance of the model, 

the output vector y is approximated by the SVM regressor after defining the so-called ‘ε-

insensitivity zone’ (a.k.a. ε-tube).  

 The 'weights' of the SVM model are usually obtained by finding the dual variables 

(α in classification, and both α and α
*
 in regression) first. More precisely, the SVM models 

are defined as: 

1

( ) ( , )
SVN

i i
i

f w k b


 x x x  (4.3) 

where, in classification: 

i i iw y  (4.4) 

and in regression: 
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i i iw     (4.5) 

While the two final models look alike, the corresponding dual Lagrangian (QP) problems 

to be solved for α-s are fairly different; 

in classification: 

d

1 1 1

1
( ) ( , )

2

l l l

i i j i j i j

i i j

L y y K 
  

  α x x , 

 s.t. 0 , 1, ,i C i l   and 

 
1

0
l

i i

i

y


 , 

(4.6) 

and in regression: 

d

1 1 1 1

1
( ) ( ) ( )( ) ( , )

2

l l l l

i i i i i i i j j i j

i i i j

L y K           

   

         x x , 

s.t. *0 ,0 , 1, ,i iC C i l          and     *

1

0
l

i i

i

 


   

(4.7) 

The fundamental difference in solving the QP problems (4.6) and (4.7) is in the size of the 

corresponding Hessian matrix H. In classification, H is an (l, l) matrix, while in regression 

it is a (2l, 2l) one. Hence, it's of a double size and inherently nonsingular.  

Here, we will attempt something else. The regression problems will be transformed into 

the multiclass classification tasks by a discretization.  

 There are several ways in which the discretization can be performed. The obvious 

and direct way of transforming the regression problem into the classification task is to per-

form the discretization of the target vector y by a fixed ε-tube size into a set of N classes 

(as already mentioned above). The size of the ε-insensitivity zone controls the accuracy of 

the approximation and this step is similar to defining the ε-tube in the SVMs for a regres-
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sion. However, unlike in the SVMs regression problem defined by (4.7), the SVM classifi-

er (obtained after the discretization) solves the multiclass classification task posed, as in 

(4.6). Figure 4.2 shows the simple example; a one-dimensional noisy hyperbolic function 

(left) and the class label of each training sample after using ε = 0.0931 i.e., after the dis-

cretization of y into N = 10 classes (right). The solid curve shown in both graphs is a 

noiseless function. Dashed lines in the right hand graph show class boundaries and the 

mean value of each class is shown as a solid line (the mean value of class 2 is explicitly 

pointed at with a text). 

 

Figure 4.2: Class assignments in a regression task with equal ε-tube (hyperbolic function) 
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Figure 4.3 shows the simple toy example; a one-dimensional noisy sine function (left) and 

the class label of each training sample after using         i.e., after the discretization of 

  into      classes (right). Solid line shown is a noiseless sine function. 

 

Figure 4.3: Class assignments in a regression task with equal ε-tube (sine function) 

 The procedure for transforming the continuous values of the response (output) vec-

tor y into the set of labels is the same for any high-dimensional 1d   mapping. The 

1 1   regression example shown in Figure 4.3 is used for simplicity of visualization on-

ly. After the discretization, a vector of N classes’ mean values is saved. In the example 

above this vector, µ = [0.0592    0.1608    0.2624    0.3640    0.4656    0.5672    0.6689    

0.7705    0.8721    0.9737]
T
.  

 The SVM multiclass classification produces the vector yp containing the predicted 

class labels which are then replaced with the mean values of each class. This works as fol-

-2 0 2

-1

-0.5

0

0.5

1

x

y

Samples - continuous true values

-2 0 2

-1

-0.5

0

0.5

1

5

4

33

111

1
11

1

12

2

4
5

6

7

8

8

10
10101010

10

99

7
8

7

6

x

y

Samples - class labels after discretization

Mean value of class 2



61 

 

lows in Figure 4.3; suppose that the ALH classifier would predict the belongings of the 8 

data points to be yp = [4  3  3  3  2  1  1  1]
T
. These labels would then be translated into the 

following 8 final approximated values of the noisy data points ya = [0.3640  0.2624  0.2624  

0.2624  0.1608  0.0592  0.0592  0.0592]
T
. 

 Note that a discretization into N classes with an equal ε-tube over the whole range 

leads to empty classes. Here, classes 5, 7, 8 and 9 don't have any data points. In other 

words, later, a reassigning of predicted class labels as the continuous values will lead to 

higher accuracies in the flat portions of the function. Finer discretization increases the ac-

curacy but it may also result in an over-fitting behavior of the model. The right level of a 

discretization (i.e., the best number of classes N, or the best size of the ε-tube) should be 

determined by cross-validation. The same is valid for the penalty parameter C, and the 

shape parameter γ (if Gaussian kernel is used which is the case here). Hence, there are 

three hyper-parameters in the SVM multiclass classification which should be determined 

by cross-validation. Recall that in SVM regression the same three hyper-parameters must 

be tuned, but the size of the Hessian H is doubled. 

 A slightly better method of discretization is achieved by specifying the minimal 

size of the ε-tube. For a given minimal ε-tube, during the discretization, care is taken such 

that in each class there is at least one training data point. The right minimal size of the ε-

tube should also be determined by the cross-validation. Obviously, this leads to the varying 

sizes of the tubes for different classes but it improves the accuracy by avoiding grouping 

too many data in the flat part of the regression (hyper)Surface. The results of the second 

type of discretization are shown in Figure 4.4. 
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 The third possible way to do the discretization of continuous values is to divide 

them by the so-called equal-frequency discretization. This is done by dividing the output 

vector y value range into a number of intervals (classes) so that (approximately) the same 

number of training data points are in each interval (class). For example, if one chooses to 

perform the discretization into N = 10 classes, each interval will contain about 10% of the 

training data. However, such a discretization didn't lead to good results and it is no longer 

considered here. 

 

Figure 4.4:  Class assignments in a regression task with varying ε-tube 

Once the approximation ya to a test vector y is calculated, the relative percentage error of 

the approximation is calculated by using the following expression,  
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The fourth possible method of discretization of yi values is to use the k-means algorithm to 

divide them according to the center of clusters of the data. In this method we try to build N 

intervals that minimize the sum of the distances of each point of a cluster to the centroid of 

the cluster. The suggested number of clusters is the number of discretization intervals. The 

two popular examples used in this case were the sine and the hyperbolic functions, as 

shown in Figure 4.5 and Figure 4.6, respectively. 

 
Figure 4.5:  Class assignments in a regression task with k-means algorithm (sine wave) 
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Figure 4.6:  Class assignments in a regression task with k-means algorithm (hyper) 

Note that in the use of k-means algorithm for the class assignment, each class is surround-

ing the centroid of its cluster. 
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by pairs of numbers (boundary points). Unfortunately, CAIM has not been good in discre-

tizing a data coming from the regression problem (as described in section 4.2), where we 

have l instances (samples, measurements) with d input features given as the input points or 

vectors               
   and a corresponding output value yi 

1 .  

 

4.3 Regression data sets and the results 

 In order to show the performance of the proposed approach in solving regression 

tasks, twelve benchmarking regression data sets are selected for the study (Some prelimi-

nary results on the 12 datasets have been given in [Salman and Kecman, 2012]). They are 

Boston housing data [Asuncion and Newman 2007] and [Harrison and Rubinfeld 1978]; 

prototask (comp-active) data base [Delve 2008]; concrete compressive strength [Asuncion 

and Newman 2007] and [Yeh 1998]; servo data and wine data [Asuncion and Newman 

2007]. The remaining data sets; Machine CPU, Pyrimidines, MPG, Diabetes, PhD, Abalo-

ne, Triazines are taken from the following sources: UCI (University of California) [Asun-

cion and Newman 2007], Liaad, and Princeton websites [Uci, 2012], [Liaad, 2012] and 

[Princeton, 2012]. 

 In the tables and graphs below the comparisons between the SVM classifier solving 

regression problems (by using three ways of discretization) and an SVM regressor are done 

for twelve data sets. The details of all twelve data sets can be found in the references given 

and the simulation results are shown in Table 4.1 (a) and (b).  
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Table 4.1 (a): Percentage errors and CPU times for 12 data sets obtained by SVM classifi-

ers and an SVM regressor (bold indicates better result) 

 

 
 

 

The basic characteristics of the data sets used, as described in Table 4.1 (b), are as 

follows: Boston housing is a collection of 506 samples with 12-dimensional input vectors, 
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the prototask data set contains 8192 instances with 21-dimensional input vectors, concrete 

compressive strength data consists of 1030 samples with 8-dimensional inputs, the servo 

data set contains only 167 samples with 4-dimensional feature vectors, and the wine data is 

a collection of 1599 12-dimensional feature vectors. Note that the wine data's outputs are 

integer values corresponding to 6 types of wine but in the references, the wine data set is 

treated as the regression problem. The CPU (machine CPU) data set contains 209 samples 

with 6-dimensions only. The Pyrimidines data set contains 74 samples with 27-dimensions 

only. The MPG data set contains 398 samples with 7-dimensions only. The Diabetes data 

set contains 43 samples with 2-dimensions only. Note that the Diabetes data was taken 

from the Liaad website. The PhD data set contains 73 samples with 4-dimensions only, 

taken from the Princeton website. The Abalone data set contains 4177 samples with 8-

dimensions only. The Triazines data set contains 186 samples with 60-dimensions only. 

 Here we have compared the performances of four SVM models, all of which use 

Gaussian kernels - three models are solving regression problems as multiclass classifica-

tion tasks and one model is a standard SVM regressor. The three SVM classifiers differ 

only in the way the discretization (described above) has been carried out.    

 There are several things to point out in Table 4.1. First and foremost, one should 

note that there are two groups of regression problems (based on the behavior of output vec-

tor y) which are dubbed here  as 'spiky' and 'smooth' datasets. One can see that in approxi-

mating spiky regression problems, the SVM classifiers have slightly outperformed the 

SVM regressor. It is opposite for modeling smooth regression problems. Below, the dis-

cussion and presentation of a smoothness of vector y will be presented and commented. 
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Furthermore, out of three classifiers, the SVM classifier with the varying ε-tube has shown 

the best overall performance averaged over all twelve data sets. As for the CPU time need-

ed to finish the training, SVM classifiers have shown better performances as well. This is 

particularly obvious for the largest data set prototask, when the SVM regressor needed 

four days to finish the training. Generally, once the data set goes over several thousands of 

training samples the training speed-up of the SVM classifiers becomes obvious.  Note that 

all the results have been obtained within the double (nested) cross-validation experimental 

procedures, guaranteeing the most objective results and the true performance range on the 

future data samples. Also note that the LibSVM software has been used and the same 

number of hyperparameters has been tested in all the simulations; (C  = {5 … 10
4
 }, σ = 

{10
-4

 … 1}, N = {3 … 100}, ε = {0.001 to 0.6} of max(y)). 

Below, there are two graphical presentations of the results given in Table 4.1 in or-

der to see them better. The results are shown as the error bar graphs in Figure 4.7 and as 

the 3-dimensional bar graphs in Figure 4.8. SVM Classifier with varying epsilon results are 

shown as the red curve and SVM Regressor results as the blue one in Figure 4.7. 
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Figure 4.7: The mean error and mean squared errors of the 12 datasets 

The figure above shows both the mean errors and the standard errors for the twelve da-

tasets used in our validation. It is just a graphical representation of Table 4.1 in which one 

can see again that for the first 5 (spiky) datasets solving a regression problem as the classi-

fication one is better than solving it as the regression problem. Another way of presenting 

Table 4.1 (b) is shown in Figure 4.8 
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Figure 4.8: Average errors of 12 datasets based on 4 models 

The best parameters (C, σ and the level of a Discretization) used to obtain the SVM classi-

fiers and SVM regressor are shown in Table 4.1 (b). 
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Table 4.1 (b): Best parameters (C, σ and the level of a Discretization) as well as the size 

and sources of 12 data sets obtained by SVM classifiers and an SVM regressor  

 

 
  

There is one more intriguing and noticeable matter raised by the results in Table 

4.1. Namely, both the SVM classifiers and the SVM regressor are competing tightly for the 
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primacy in solving the regression problems used here by showing distinctly different per-

formances in terms of the accuracy for the two types of the function approximation prob-

lems. SVM classifiers show better results for the prototask, CPU, Pyrimidines and servo 

data and slightly better accuracy than the SVM regressor for the Boston housing data (ac-

tually accuracies are almost equal). The SVM regressor displays better performance for the 

concrete, MPG, Wine, Diabetes, PhD, Abalone and Triazines data set. Some explanations 

and hints about these results are related to the very nature of the regression problems and 

they may be obtained by looking at the target values yi and their distributions as shown in 

Figures 4.9 and Figures 4.10 respectively.  

 It seems that the SVM regressor suits better regression problems where the target 

values are 'uniformly’ or 'smoothly' distributed over the range as shown in Figure 4.10, 

while in the problems prototask, CPU, Pyrimidines, Boston and servo, where the SVM 

classifiers show clear advantages, the output vector y shows a very 'spiky' behavior, see 

Figure 4.9, primarily covering the upper part of the range (prototask) or the lower one 

(servo) and making irregular spikes to the lower values (prototask) i.e., higher ones (ser-

vo). Sorted output values yi for the same regression data are shown in the right side of the 

graphs of Figure 4.9 and Figure 4.10.  

 The 'spiky' functions (prototask and servo) resemble the Poissonian, or exponential, 

distribution, in which a great deal of target values yi will after the discretization fall into a 

small number of not-well-balanced classes. The experimental results show that when faced 

with the 'spiky' nature of the regression problems, a discretization and multi-class classifi-

cation through the use of SVMs will most likely lead to a better function approximation.  
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The output and sorted output for all datasets are shown in Figures 4.9 and 4.10: (blue 

'spiky', red, 'smooth'): 
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Figure 4.9:  Output values and sorted output values for regression problems (spikey) 
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Figure 4.10:  Output values and sorted output values for regression problems (smooth) 
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use of the SVM classifier with varying ε-tube produced good results for the spiky datasets 

over other classifiers. On the other hand, the use of the SVM regressor produced good re-

sults using the smooth datasets comparing with other SVMs. The SVM classifier with k-

means discretization produced better results with the Triazines data set comparing with the 

varying  -tube and the SVM regressor as shown in Fig 4.10. 

 There is one more challenging problem (actually a set of questions and some hints 

regarding the theoretical properties of the novel approach in solving regression problems) 

that arose by the results obtained, which is beyond the scope of this dissertation. Basically, 

it concerns the theory of bounds for both the multi-class classification and regression prob-

lems. (The next remarks follow strictly
 
[Steinwart 2011]). First, there is a basic question 

which arises naturally from the results obtained and it is whether, in general, the bounds on 

classification are tighter than the ones on regression. (If so, in addition to showing better 

experimental results, one may get strong theoretical support for using a classification ap-

proach when solving regression tasks). One may also be interested in some other theory-

based questions, such as whether it is easier to prove classification bounds or regression 

ones. 

 Some possible hints to the answers are as follows [Steinwart 2011]: The very 

bounds we are talking about here usually refer to comparing the empirical error of our de-

cision function with its true error. (The other types of bounds used are usually called oracle 

inequalities). Since the function classes in regression are typically somewhat larger by the 

nature of the loss function, bounds in regression are often worse. However, there are some 

exceptions, such as when the best predictor is in the hypothesis class and the loss is suffi-
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ciently convex (e.g. square loss). In this case, regression bounds may be better. Note how-

ever that for general regression data sets it may be highly unlikely to get the predictor in 

the hypothesis class.   

 As for the easiness of proving the bounds, one thing is certain - good bounds are 

always hard to prove, independent of whether they are for classification or regression. 

Thus, one may state the arguments quite differently and compare combinatorial bounds (in 

classification) vs. continuous ones (in regression). If the sharpness is not of primary inter-

est, then generic off-the-shelf bounds are typically straight-forward to apply, and the only 

tricky part is the used complexity measure (VC-dimension, covering numbers, 

Rademacher averages, ...). A somewhat unifying approach that can be implemented is the 

McDiarmid inequality, which is based (after symmetrization) on Rademacher averages. 

The latter can be bounded by several concepts such as VC dimension or covering numbers. 

In the future, while answering some of the questions raised here, some techniques along 

the lines of those described above can be found in the book on density estimation [Devroye 

and Lugosi 2001]. As for the bounds in the multi-class classification problems (which is 

the problem to solve after discretization of the continuous output values yi), multiclass 

classification also requires a loss function, and in most cases the above techniques should 

work. This is most likely the reason why nobody looked deeper into that question until 

now. The issue of the bounds will be a matter of further theoretical investigation of the ap-

proach for solving regression problems as the classification tasks presented in this disserta-

tion; and their solutions will shed lights on the questions of whether to solve regression 

problems as regression or as multiclass classification tasks 
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4.4 Conclusions 

 

 This work shows how regression problems, after discretization, can be solved as 

multiclass classification ones. SVM classifier and regressor are the modeling tools here. 

Four slightly different methods of discretizations are introduced and compared. On aver-

age, the SVM classifier with varying ε-tube shows the best results. In addition to being bet-

ter regressors (although the differences in accuracy are not too big), the SVM classifiers 

are also superior in terms of CPU times needed for training SVM. This is particularly pro-

nounced when the number of training data surpasses several thousand samples. In such 

cases, one should rely on solving regression problems as multiclass classification tasks. 

Based on the tendency of bounds in regression to be often worse than the ones in classifi-

cation, the proposed approach of solving regression problems as classification ones is quite 

attractive from a theoretical point of view as well. This may well be one of the most im-

portant explorations in the future. The model comparisons have been done by implement-

ing double (nested) cross-validation i.e., resampling, structured as the two loop algorithm, 

which is a very rigorous scheme for assessing models' performances. In such an experi-

mental environment, not all the data points available are used for both hyper-parameter de-

termination and accuracy estimation simultaneously. On the contrary, data for the 

hyperparameter selection are strictly separated from the data for the accuracy estimation, 

making this double cross-validation the only objective environment for the fair compari-

sons of different models. Thus, if the main goal is to compare different ML models on the 

same data sets and under the same conditions, double cross-validation must be used, as 

was done here. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

  

The concept of the k-means
2
 algorithm in this dissertation is based on minimizing 

the huge computational effort normally incurred with the application of the classical k-

means algorithm. The problem with the k-means algorithm is that it carries out the distance 

computation between consecutive centers based on the full dataset. The choice of the initial 

seeds or starting centers is usually arbitrary. This means that if the arbitrary locations are 

somehow steered towards the final locations with less computational effort, then the final 

tuning of the locations can be carried out with much less computational effort. This disser-

tation focuses on minimizing the computational effort in moving the seeds as close as pos-

sible towards the centers of the associated clusters using only a small portion of the full 

dataset. The goal was accomplished by repeating the k-means steps twice using two differ-

ent sizes of data, hence the name "k-means
2
 algorithm". The first part of the computation is 

carried out by selecting a small portion of the original dataset, transitioning the centers at a 

much faster rate towards the final center locations. The k-means algorithm, in contrast, us-

es the whole dataset throughout the computation process. By virtue of the fast speed of 

computation of the first stage, it is referred to as the fast phase. The condition imposed on 

this stage is that the portion of data selected must ensure the existence of the same number 

of clusters already present within the whole dataset. After the fast stage converges to the 

final centers achievable in this phase, the second stage takes over starting from the fast 

centers' final positions and uses the whole data set in the second, final, stage . It is clear 

that in the second stage the  movement of the centers will be at a much slower pace simply 
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because the whole data set is used, requiring  a great amount of computational effort. This 

is why the stage is referred to as the slow stage. The number of steps in the two stages dif-

fer in that the fast stage will undergo more iterations but at a faster rate than the slow stage, 

which moves at a slower rate but with fewer steps and at a higher resolution. The choice of 

the portion of the dataset in the fast stage depends largely on the size of the dataset itself. It 

is reasonable to assume that large and ultra large data sets, for example, will provide suffi-

cient data with very small portions for the fast stage to be able to move the arbitrarily cho-

sen initial seeds well inside the clusters, while smaller datasets may not be able to provide 

sufficient data for the fast stage to move the seeds appropriately inside the clusters. How-

ever, for small data sets there may not be a need to do the clustering in two stages anyway. 

The role of the slow stage is actually to fine-tune the final locations of the centers.  

 The second goal of this dissertation is to solve a regression problem using mul-

ticlass classification and to design the experimental environment for rigorous comparisons 

of kernel models acting as both regressors and multiclass classifiers on the same data sets. 

The transformation of regression into classification requires discretizing the regression 

output vector y into several classes. Then a multiclass classification will be performed in 

order to produce a model. The results obtained after transforming regression problems into 

classification tasks are encouraging in terms of both the final accuracy that the models can 

achieve and the CPU time needed for the training. For the twelve benchmarking data sets 

selected for the study, two groups of regression problems arose: 'spikey' and 'smooth' ac-

cording to the output vector behavior. The SVM classifier with the varying ε-tube has 

shown the best performance over the 'spikey' data sets. The SVM regressor, on the other 
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hand, has performed better over the 'smooth' datasets. As for the CPU time needed to finish 

the training, SVM classifiers have shown better performances as well. 

 The implementation of the k-means
2
 algorithm on a single machine is limited to the 

size of the RAM and to the CPU speed. For example, if the size of the dataset is 20G then 

the k-means method will take few days to complete the task. Therefore it is imperative to 

apply the k-means
2
 method on a grid of parallel computers. This will take two lines of fu-

ture work. One suggestion for future work is the use of Hadoop (the free framework on 

multi-computers). The second suggestion is the use of one or multiple GPUs.  

      Possibly the most valuable extension of this work might and would be in the field of 

developing theoretical insights about the bounds for both the multi-class classification and 

regression problems. This research should give an answer to the question whether, in gen-

eral, the bounds on classification are tighter than the ones on regression. Such a work may 

then shed more light on the experimental results obtained in this dissertation. 
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