
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2012

CONTRIBUTIONS TO K-MEANS
CLUSTERING AND REGRESSION VIA
CLASSIFICATION ALGORITHMS
Raied Salman
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2738

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51289769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2738?utm_source=scholarscompass.vcu.edu%2Fetd%2F2738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Raied Salman 2012

All Rights Reserved

CONTRIBUTIONS TO K-MEANS CLUSTERING AND REGRESSION VIA

CLASSIFICATION ALGORITHMS

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University

by

RAIED SALMAN

Ph.D., Brunel University (United Kingdom), 1989

M.Sc., University of Technology (Iraq), 1978

B.Sc., University of Technology (Iraq), 1976

Dip.Tch., Auckland University (New Zealand), 1996

Director: VOJISLAV KECMAN

ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE

Virginia Commonwealth University

Richmond, Virginia

April, 2012

ii

Table of Contents
Page

List of Tables ... iv

List of Figures ..v

Chapter

1 1INTRODUCTION ...4

2 BACKGROUND, RELATED WORK AND CONTRIBUTIONS7

2.1 Background ...7

2.2 Clustering: basic concepts ...13

 2.2.1 DBSCAN clustering ...15

2.3 Regression as classification ...16

2.4 Contributions of the dissertation ...19

3 CLUSTERING USING THE 2-STAGE K-MEANS ALGORITHM, K-

MEANS
2
 ALGORITHM ...21

3.1 History of k-means algorithm ..21

3.2 Clustering with k-means
2
 algorithm: basic concepts22

3.3 Validation of k-means
2
 algorithm ..25

3.4 Numerical examples ..31

 3.4.1 Real datasets analysis ...38

3.5 Speed up analysis ..41

iii

3.6 Speed of computation of k-means and k-means
2
 algorithms for large da-

tasets ..46

3.7 Center convergence ...48

3.8 Conclusions ...50

4 REGRESSION AS CLASSIFICATION ...52

4.1 Regression by classification using support vector machines52

 4.1.1Preliminaries and definitions of SVM ... 55

4.2 Transforming regression into classification ..57

4.3 Regression data sets and the results ..65

4.4 Conclusions ...79

5 CONCLUSIONS AND FUTURE WORK ..80

References ..83

iv

List of Tables

Table 3.1: Distribution of points and centers during the fast and the slow stages of clus-

tering ..37

Table 3.2: Speed up of the k-means
2

for twelve real datasets with different sizes...38

Table 3.3: k-means
2

vs. k-means

algorithms speed up for different both stopping criterion

and fraction of data used in the fast stage... ...44

Table 4.1 (a): Percentage errors and CPU times for 12 data sets obtained by SVM classi-

fiers and an SVM regressor (bold indicates better result) ..66

Table 4.1 (b): Best parameters (C, σ and the level of a Discretization) as well as the size

and sources of 12 data sets obtained by SVM classifiers and an SVM regressor71

v

List of Figures

Figure 2.1: The proposed k-means
2
 algorithm approach schematic diagram shown for 1

centers movement. ...10

Figure 2.2: Schematic Diagram of normal k-means algorithm. ...14

Figure 2.3: The run time complexity trends of a DBSCAN algorithm without indexing is

 and with it is ..16

Figure 3.1: Graphical description of the k-means
2
 algorithm. ...24

Figure 3.2: Differences (

) between the cluster center and the fast stage

cluster center in dependence of the size of the data fraction used in the first stage30

Figure 3.3: The movements of the first coordinate of one center during fast and slow

stages of k-means
2
 algorithm. ..32

Figure 3.4: The movements of the second coordinate of one center during fast and slow

stages of k-means
2
 algorithm. ..33

Figure 3.5: The centers movements for the three clusters during the fast stage.34

Figure 3.6: Movements of the first cluster centers during the fast (square) and slow (cir-

cle) stages. ..35

Figure 3.7: Movements of the second cluster centers during the fast (square) and slow

(circle) stages. ..36

Figure 3.8: Movements of the third cluster centers during the fast (square) and slow (cir-

cle) stages. ..36

vi

Figure 3.9: Speed up versus percentage of the data used during the fast stage of k-means
2

algorithm ..39

Figure 3.10: Average speed up versus datasets using k-mean
2
 algorithm40

Figure 3.11: Average speed up versus percentage of the data used in the fast stage of k-

mean
2
 algorithm ...41

Figure 3.12: Comparison of the computational times between the k-means and the k-

means
2
 algorithms for 32 bit and 64 bit computers. ..43

Figure 3.13: k-means
2

vs. k-means

algorithms speed up for different both stopping criteri-

on and fraction of data used in the fast stage. ..45

Figure 3.14: The CPU times for normal k-means and the k-means
2
 algorithms for huge

datasets. ..46

Figure 3.15: Speed up of k-means
2
 / k-means algorithms. ...47

Figure 3.16: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means algorithm. ...49

Figure 3.17: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means
2
 algorithm - fast stage (blue), slow stage

(red). ...50

Figure 4.1: Graphical representations of the two splitting methods, fixed ε-tube and vary-

ing sizes of ε-tube ...55

vii

Figure 4.2: Class assignments in a regression task with equal ε-tube (hyperbolic func-

tion). ...59

Figure 4.3: Class assignments in a regression task with equal ε-tube (sine function)60

Figure 4.4: Class assignments in a regression task with varying ε-tube.62

Figure 4.5: Class assignments in a regression task with k-means algorithm (sine wave) .63

Figure 4.6: Class assignments in a regression task with k-means algorithm (hyper)64

Figure 4.7: The mean error and mean squared errors of the 12 datasets69

Figure 4.8: Average errors of 12 datasets based on 4 models ...70

Figure 4.9: Output values and sorted output values for regression problems (spikey)......74

Figure 4.10: Output values and sorted output values for regression problems (smooth) ..76

Abstract

CONTRIBUTIONS TO K-MEANS CLUSTERING AND REGRESSION VIA

CLASSIFICATION ALGORITHMS

By Raied Salman, Ph.D.

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2012

Major Director: Vojislav Kecman
Associate Professor, Department of Computer Science

The dissertation deals with clustering algorithms and transforming regression prob-

lems into classification problems. The main contributions of the dissertation are twofold;

first, to improve (speed up) the clustering algorithms and second, to develop a strict learn-

ing environment for solving regression problems as classification tasks by using support

vector machines (SVMs). An extension to the most popular unsupervised clustering meth-

od, k-means algorithm, is proposed, dubbed k-means
2

(k-means squared) algorithm, appli-

cable to ultra large datasets. The main idea is based on using a small portion of the dataset

in the first stage of the clustering. Thus, the centers of such a smaller dataset are computed

much faster than if computing the centers based on the whole dataset. These final centers

of the first stage are naturally much closer to the locations of the final centers rendering a

2

great reduction in the total computational cost. For large datasets the speed up in computa-

tion exhibited a trend which is shown to be high and rising with the increase in the size of

the dataset. The total transient time for the fast stage was found to depend largely on the

portion of the dataset selected in the stage. For medium size datasets it has been shown that

an 8-10% portion of data used in the fast stage is a reasonable choice. The centers of the 8-

10% samples computed during the fast stage may oscillate towards the final centers' posi-

tions of the fast stage along the centers' movement path. The slow stage will start with the

final centers of the fast phase and the paths of the centers in the second stage will be much

shorter than the ones of a classic k-means algorithm. Additionally, the oscillations of the

slow stage centers' trajectories along the path to the final centers' positions are also greatly

minimized.

In the second part of the dissertation, a novel approach of posing a solution of re-

gression problems as the multiclass classification tasks within the common framework of

kernel machines is proposed. Based on such an approach both the nonlinear (NL) regres-

sion problems and NL multiclass classification tasks will be solved as multiclass classifica-

tion problems by using SVMs. The accuracy of an approximating classification (hy-

per)Surface (averaged over several benchmarking data sets used in this study) to the data

points over a given high-dimensional input space created by a nonlinear multiclass classi-

fier is slightly superior to the solution obtained by regression (hyper)Surface. In terms of

the CPU time needed for training (i.e. for tuning the hyperparameters of the models), the

nonlinear SVM classifier also shows significant advantages. Here, the comparisons be-

tween the solutions obtained by an SVM solving given regression problem as a classic

3

SVM regressor and as the SVM classifier have been performed. In order to transform a

regression problem into a classification task, four possible discretizations of a continuous

output (target) vector y are introduced and compared. A very strict double (nested) cross-

validation technique has been used for measuring the performances of regression and mul-

ticlass classification SVMs. In order to carry out fair comparisons, SVMs are used for

solving both tasks - regression and multiclass classification. The readily available and most

popular benchmarking SVM tool, LibSVM, was used in all experiments. The results in

solving twelve benchmarking regression tasks shown here will present SVM regression

and classification algorithms as strongly competing models where each approach shows

merits for a specific class of high-dimensional function approximation problems.

4

CHAPTER 1: INTRODUCTION

Because of the sheer amount and complexity of the information available, for ex-

ample from, weather data, geophysical data, drug testing data, health care imaging infor-

mation systems, atomic particle accelerator detector data, www pages, e-commerce data,

…, etc, nowadays, engineers and scientists rely heavily on computers to process and ana-

lyze data. This is why Machine Learning (ML) has become an emerging topic of research

that has been employed by an increasing number of disciplines to automate complex deci-

sion-making and problem-solving tasks. This is because the goal of ML is to extract

knowledge from experimental data and to use computers for complex decision-making. In

other words, decision rules are extracted automatically from data by utilizing the speed and

the robustness of the machines. Machine learning techniques can be divided into three ma-

jor groups based on the types of problems they can solve, namely, supervised, semi-

supervised and unsupervised learning.

The supervised learning algorithm attempts to learn the input-output relationship

(dependency or function) by using a training data set con-

sisting of pairs , where the inputs are m-dimensional vec-

tors and the labels (or system responses) are discrete (e.g., Boolean) for classi-

fication problems and continuous values for regression tasks. Support Vector Ma-

chines (SVMs) and Artificial Neural Network (ANN) are two of the most popular tech-

niques in this area.

5

 One of the dissertation contributions will be in introducing and presenting how the

regression problems can be transformed into the multi-class classification tasks. This will

obviously include some kind of discretization in order to get class labels. Each regression

problem can be considered the classification one having as many classes as there are dif-

ferent yi values in the output vector y. At the same time it is easy to see that a classification

task with too many classes and very little data in each class (mostly one datapoint only) is

a very ill-posed problem. In order to overcome such a learning setting, the next obvious

step is to group several datapoints having close values into the same class. Here, we will

present a few methods describing how the discretization step can be done and evaluate

their performances within a strict experimental environment of a double (nested) k-fold

crossvalidation. The modeling tool for both regression and multiclass classification class

will be SVMs because they have shown excellent results in real world applications.

 The second big group of standard learning algorithms is the so-called unsupervised

algorithms when there are only raw data without the yi attached (i.e., there is a

’no-teacher’ typically provided by labels in supervised learning). There are many methods

used in unsupervised machine learning areas. The most popular (most standard) algorithms

are various clustering techniques, (principal or independent) component analysis routines

and association rules. The dissertation's largest section is devoted to clustering methods. In

fact, one of the contributions of the work done here will be in speeding up k-means cluster-

ing algorithm by dividing it into two parts; namely into first (fast) stage which uses just a

fraction of data for finding initial cluster centers, and in the second (slow and final) stage

in which all the data points are used for fine tuning the terminal clusters' centers' positions.

6

 The dissertation will be arranged as follows; chapter 2 introduces backgrounds

about the clustering, classification theory and the contribution of the dissertation. Chapter

3 describes, in detail, the proposed method of the 2-stage, k-means
2

algorithm with a few

examples to demonstrate the validity of the proposed method. Chapter 4 explains the pro-

posed solution of regression problems as multiclass classification tasks within the common

framework of kernel machines. The last chapter draws conclusions on the proposed meth-

ods and gives suggestions for future work.

7

CHAPTER 2: BACKGROUND, RELATED WORK AND CONTRIBU-

TIONS

2.1 Background

Machine learning (ML) techniques are used for solving various problems in con-

temporary science, medicine, finance, engineering and many other areas. There is almost

no field of human activities untouched by ML tools (a.k.a. neural networks, support vector

machines, data mining, and/or knowledge discovery, etc). ML tools are aimed at solving

classic statistical tasks i.e. clustering (grouping), classification (pattern recognition) and

regression (function approximation). Clustering in any data set can be achieved by mini-

mizing the intra-cluster dissimilarity and maximizing the inter-cluster dissimilarity.

A comprehensive clustering techniques review carried out by [Jain, Murty and

Flynn, 1999] suggested that all clustering techniques are based on hierarchal, partitional

and taxonomy approaches. They further subdivided the clustering techniques into the fol-

lowing aspects:

1-Agglomerative vs. divisive

2- Monothetic vs. polythetic

3- Hard vs. fuzzy

4- Deterministic vs. stochastic

5- Incremental vs. non-incremental

The k-means algorithm, which belongs to partitional clustering, is used in clustering meth-

od for small datasets; see [McQueen, 1967] for example.

However, the high computational cost of applying the k-means algorithm for large and ul-

tra-large data sets (> 1 million and 100 million data respectively) is unavoidable. There-

8

fore the ability to analyze these datasets in a reasonable amount of time and at a reasonable

cost has not kept pace with newer techniques. Until a way is found to unlock these da-

tasets, the information they contain shall continue to be wasted.

The available methods of clustering that handle large datasets mainly use the vec-

tor-space, such as k-medoids rather than distance-space algorithms, such as k-means algo-

rithm. CLARA algorithm has been suggested by [Kaufman and Rousseeuw, 1990] for

tackling large datasets. They suggested the use of part of the data to then populate the re-

sults for all the data. However, the CLARA method has produced unreliable results since

the sample of the datasets does not necessarily reflect the whole dataset and some clusters

may be missed entirely. An improvement to the CLARA algorithm, developed by [Ng and

Han, 1994], is based on the use of random neighbor samples dubbed as CLARANS. Unfor-

tunately, CLARANS works only for small datasets. Another method, suggested by [Cut-

ting, Karger, Pedersen and Tukey, 1992], uses clustering by means of Fractionization and

Refractionization. Their idea was to split the data into manageable subsets (called frac-

tions) and then apply the hierarchical method to each fraction. The resultant clusters from

these fractions are then clustered into groups by the same clustering method. In es-

sence it is an iterative approach. The number of groups, to be estimated must be supplied

in advance. The major problem in this method is the formation of the meta-observations

(sample data to form the clusters). A different approach, called BIRCH, was proposed by

[Zhang, Ramakrishnan and Livny, 1996] and divides the data into sub-clusters, known as

"cluster-features". The BIRCH method depends on building trees and sub-trees until the

memory is full. This approach fills the memory too fast to be usable, especially for large

9

datasets. An approach based on distance-space was suggested by [Ganti et.al, 1999], appli-

cable mainly to clustering huge datasets. The algorithms that were developed are referred

to as BUBBLE and BUBBLE-FM (improved version) and they basically scan over the da-

tabase once and use the vector operations to calculate the distance between two points in

the space. These algorithms are, in principle, extensions of the BIRCH method proposed

early 1996. Both algorithms essentially use the tree and sub-tree to generate or form the

clusters. All the previous methods (BUBBLE, BUBBLE-FM, and BIRCH) suffer from one

main problem- filling the memory of a computer quite quickly when the data is large. The

DBSCAN [Ester, et al., 1996] clustering method, on the other hand, is used for clustering

data without the requirements of a priori number of clusters. This is different than the nor-

mal k-means algorithm, which requires an estimate of the number of clusters before the

starting of the algorithm. A more detailed description of DBSCAN is shown in the coming

section of 2.2.1.

The most standard and popular approach to clustering is known as the k-means

algorithm. It starts by arbitrarily selecting starting centers at the outset and computes the

first set of dynamic centers. (The adjective dynamic is used to denote the changing i.e.,

moving character of centers' positions during the clustering). These dynamic centers are

used as the starting centers for the next dynamic centers. The process repeats over the

whole dataset until the final centers are found. The distances between the consecutive

dynamic centers will diminish with each iteration. Obviously, this approach will lead to a

computationally prohibitive cost when the dataset is relatively large.

10

 A faster algorithm than the k-means algorithm, utilizing two stage clustering, is

proposed [Salman et al., a, b, 2011]. This method divides the k-means algorithm into two

stages: the first one is the fast stage, which uses a small part of the data selected at random,

satisfying Theorem 1 in section 3.2, and the second stage uses the whole data set and is

called the slow stage. In the slow stage the whole dataset will be used but within less

iteration steps than is needed in a classic one stage k-means algorithm clustering

algorithms. The main drive of the proposed method is to move the dynamic centers closer

to the final location using part of the dataset rather than the whole dataset.

Figure 2.1: The proposed k-means
2
 algorithm approach schematic diagram shown for one

center movement

Fast stage

Slow stage

Initial center

Final center

11

An illustration of the movement of the centers is depicted in Figure 2.1. It can be

observed that the fast stage starts the computation from an arbitrarily selected initial center

 using only a portion of the dataset. This will lead to the next (dynamic) centers,

. The final center of the fast stage,

 , is used as the starting

center for the slow stage. In contrast the slow stage will use the whole dataset to compute

the new dynamic centers,

iteratively until it terminates at the final

center,
. It is clear that the distances between the dynamic centers in the fast stage are

generally longer than the positions changes between the dynamic centers during the slow

stage. Moreover, the time and cost of computation for the transitions in the fast stage is

much lower than the cost of computation in the shorter transition spaces within the slow

stage due to the size of the dataset used. Obviously, the number of iterations in the slow

stage are reduced due to the action of the slow stage which effectively moves the

arbitrarily selected initial center closer to its final position. The overall cost of computation

is expected to be much lower than the cost of computation attributed to the k-means

algorithm. Consequently, the proposed approach will be able to accommodate much larger

data sets with faster results at an even lower overall cost of computation.

The second part of the dissertation proposes solving regression problems as classi-

fication ones, a novel approach of solving regression tasks as multiclass classification ones

within the common framework of kernel machines. Recently, in [Kecman and Yang 2009],

it has been shown how one can solve regression problems by posing them as the multiclass

classification tasks. The multiclass classifier used in that paper is the Adaptive Local

12

Hyperplane (ALH) introduced in [Yang and Kecman 2008]. The choice of the ALH was

natural because [Yang and Kecman 2008] showed its very good results on eleven standard

benchmarking classification data sets, outperforming seven other machine learning tools

including KNN classifier, SVMs and K-local hyperplane (linear manifold) distance nearest

neighbor (HKNN) algorithm. The results presented in [Kecman and Yang 2009] were a big

encouragement and provided strong motivation for exploring the method of transforming

regression problems into the classification ones within a much stricter experimental ap-

proach.

A strict comparison of a nonlinear (NL) regressor and an NL multiclass classifier is

investigated and an approach to solving the regression problems is proposed.

As for the model comparison environment, the double (nested) cross-validation was im-

plemented. Note that all results presented in [Kecman and Yang 2009] have been obtained

by using a standard single (10-fold) cross-validation. This was a fair approach for validat-

ing whether the idea of transforming regression problems into classification tasks is feasi-

ble at all. However, such an approach is not quite valid for comparing different models be-

cause in a single cross-validation all the data points available are used for both hyper-

parameter determination and accuracy estimation. While such a procedure is good for es-

timating the hyperparameters of a single model it does not produce a true estimate of the

accuracy of the given data set. If the main goal is to compare different ML models on the

same data sets and under the same conditions, double cross-validation must be used [Yang

and Kecman 2010]. The results in solving the twelve benchmarking regression tasks shown

here present SVM regression and classification algorithms as strongly competing models

13

where each approach shows merits for a specific class of high-dimensional function ap-

proximation problems. In this dissertation we have developed algorithms strictly based on

SVM’s for solving regression problem as classification within the double cross validation

experimental environment. Hence, all the results obtained do not depend upon different

modeling tools and they show the true properties of the algorithms analyzed.

2.2 Clustering: basic concepts

Clustering is the process of partitioning a collection of objects into groups, called

clusters, such that “similar” objects fall into the same group. Similarity between objects is

captured by a distance function.

Definitions and Notations:

Assume that is a finite set of n points and d is the dimension of the data (features,

attributes). The number of clusters is k which is an integer >1 since we consider that the

data cover more than one cluster. The clustering procedure is to find

 groups in which the data is divided into the k clusters without assigning one

point into two or more clusters. Every cluster has one center such that all centers

are defined by .

The following conditions are satisfied for the k-means algorithm:

 (2.1)

 (2.2)

 (2.3)

Measuring similarity (distance) has to be used in order to decide on the belonging of the

point or the vector to any one cluster . There are many similarity measures which can be

used. The one that will be used in this dissertation is a modification of the Euclidean dis-

14

tance. The square root part of the equation has been removed to gain some speed up during

the distance calculations. The role of the square root is a scaling factor to the distance

which has no effect in our case. Thus the Modified Euclidean distance is given by:

 (2.4)

 (2.5)

The basic k-means algorithm is shown below in pseudo code format as well as in graphical

format as depicted in Figure 2.2:

1. Create centroids to initialize the algorithm.

2. Assign each of the data to its closest centroid.

3. Update the centroids of the clusters composed of the recently assigned data.

4. If there is change of at least one centroid go to step 2, otherwise stop.

Figure 2.2: Schematic diagram of normal k-means algorithm

15

2.2.1 DBSCAN clustering

DBSCAN [Ester, et al., 1996] is the density-based spatial clustering of applications with

noise, which is defined as:

Point q is directly density-reachable from a point p if it is not farther away than a given

distance ε, and if p is surrounded by sufficiently many points such that one may consid-

er p and q a part of a cluster. q is density-reachable from p if there is a sequence

 of points with and where each is directly density-reachable

from .

 One of the main advantages of DBSCAN is that we don't need to know the number

of clusters in the data a priori, as opposed to k-means. DBSCAN can also find non-linearly

separable clusters. The disadvantage of DBSCAN, on the other hand, is that it cannot clus-

ter data sets well with large differences in densities.

 The complexity of DBSCAN depends on an indexing structure which, when used,

makes the overall run time complexity where is the number of data

points. Without the use of an accelerating index structure, the run time complexity is

 . The distance matrix of size is often materialized to avoid distance

recomputations. This, however, also needs memory. Figure 2.3 shows the running

time complexity comparison of and for the DBSCAN algorithm:

16

Figure 2.3: The run time complexity trends of a DBSCAN algorithm without indexing is

 and with it is

Thus the DBSCAN is differ from the normal k-means algorithm because its time

complexity is quadratic while for the k-means it is linear (see section 3.1) in terms of a

number of data points. Another difference is that the k-means algorithm requires an esti-

mate of the number of clusters before the starting of the algorithm.

2.3 Regression as classification

A novel approach of solving regression problems as the multiclass classification

tasks within the common framework of kernel machines is proposed. It has been shown in

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000
Complexity of DBSCAN

n

T
(n

)

 n2

 n*log(n)

 n
 log(n)

n2

n*log(n)

n

log(n)

17

[Kecman and Yang 2009], how one can solve regression problems posing them as the mul-

ticlass classification tasks. Good results of a multiclass approach averaged over twelve

benchmarking regression data sets have been presented. The multiclass classifier used in

that paper was the Adaptive Local Hyperplane (ALH) introduced in [Yang and Kecman

2008]. The choice of the ALH was natural because in [Yang and Kecman 2008], it showed

extremely good results on eleven standard benchmarking classification data sets, outper-

forming seven other machine learning tools including KNN classifier, SVMs and K-local

hyperplane (linear manifold) distance nearest neighbor (HKNN) algorithm. The results

presented in [Kecman and Yang 2009] were a big encouragement and provided a strong

motivation for exploring the approach of transforming regression problems into the classi-

fication ones within a much stricter experimental approach.

The topic here is to investigate the very characteristics of the proposed approach

and to do a strict comparison of a nonlinear (NL) regressor and an NL multiclass classifier

in solving regression problems. In order to do fair comparisons, SVMs are used for solving

both tasks - regression and multiclass classification. The easily available and most popular

benchmarking SVM tool, LibSVM [Hsu and Lin, 2002], was used in all experiments.

As for the model comparison environment, the double (nested) cross-validation was

implemented. Note that all results presented in [Kecman and Yang 2009] have been ob-

tained by using a standard single (10-fold) cross-validation. This was a fair approach for

validating whether the idea of transforming regression problems into the classification

tasks is feasible at all. However, such an approach is not quite valid for comparing differ-

ent models because in a single cross-validation all the data points available are used for

18

both hyper-parameter determination and accuracy estimation. While such a procedure is

good for estimating the hyperparameters of a single model it does not produce a true esti-

mate of the accuracy on the given data set. If the main goal is to compare different ML

models on the same data sets and under same conditions, double cross-validation must be

used [Yang and Kecman 2010].

Double cross-validation is a very rigorous scheme for assessing a model’s perfor-

mance [Yang and Kecman 2010]. Here, we evaluate the generalization performance of the

SVM regressor and SVM multiclass classifiers by using the double cross-validation proce-

dure. The double cross-validation procedure is structured as the two loop algorithm. In the

outer loop, the data set is separated into J1 roughly equal-sized parts (here, J1 = 10). Each

part is held out in turn as the test set, and the remaining 9 parts are used as the training set.

In the inner loop, J2-fold cross-validation is performed over the training set only to deter-

mine the best values of hyper-parameters (here, J2 = 10). The best model obtained in the

inner-loop is then applied on the test set. The double cross-validation procedure ensures

that the class labels of the test data won’t be seen when tuning the hyper-parameters, which

is consistent with the real-world scenario. Obviously such a rigorous procedure is done in

many runs. In our case here, for the Gaussian kernel SVMs and when solving a regression

problem which has three hyperparameters (penalty parameter C, shape parameter γ, and the

size of ε tube), the number of iteration runs increases very quickly as follows: suppose we

want to select the best parameter out of 5 predefined ones for each hyperparameter of a

SVM regressor. This amounts to 10 x 10 x 5 x 5 x 5 = 12,500 runs over the data set. All in

the field of ML may well be aware that giving only 5 values for the hyperparameters is

19

usually a scarce approach. In practice, much bigger sets of values for each hyperparameter

are typically used in order to find the best one, and this then leads to the significant train-

ing time. In this dissertation, the training times for SVM regressors and SVM multiclass

classifiers are also compared.

The results in solving twelve benchmarking regression tasks shown here will pre-

sent SVM regression and classification algorithms as strongly competing models where

each approach shows merits for a specific class of high-dimensional function approxima-

tion problems.

2.4 Contributions of the dissertation

The dissertation has two major contributions. First, it introduces an improvement

(speed up) to the k-means algorithm clustering algorithm and second, it develops an ap-

proach of solving regression problems as multiclass classification tasks by using SVMs

within the double cross-validation experiment.

k-means algorithm is considered one of the most popular algorithms for clustering unsu-

pervised data. Since the k-means algorithm depends mainly on distance calculation be-

tween all data points and the centers, the cost will be high when the size of the dataset is

big (> 100,000 or 1 million points i.e., samples). The dissertation presents and develops a

two stage algorithm, named k-means
2
 algorithm, with the aim of reducing the time and

memory costs of distance computation for huge datasets. The first stage is a fast calcula-

tion on a small portion of the dataset whereby the objective is to generate the centers for

the following intensive and consequently slow final distance calculation process. The two

stages, the initial fast stage and the final slow stage are, in essence, creating the trajectories

20

of the dynamic intermediate centers in a d-dimensional feature space. The cost of the cen-

ters' calculation in the fast stage (due to the smaller size of the portion of the dataset used)

is much lower then if all the data had been used. Using all the data is in fact what the slow

stage is doing while computing the exact terminal locations of the centers. However, be-

cause the slow stage starts from the clusters' centers obtained in the first (fast) phase the

cost of the centers calculation in the slow stage will also be reduced [Salman and Kecman,

2011] and [Salman et al., a, b 2011]. In the dissertation, we present a speeding up of k-

means clustering due to novel (algorithmic) approach. In [Li, Salman, Test, Strack and

Kecman, 2011] and [Li, Salman, Test, Strack and Kecman, 2012] it was shown how one

can handle large datasets by using novel hardware advancements (e.g. GPU based calcula-

tions).

The second contribution is in developing an experimental environment for compar-

isons of various SVMs models in solving regression tasks in two different manners- first as

the classic SVMs regressors and second as the SVMs multiclass classifiers [Salman and

Kecman, 2012]. In order to transform a regression problem into a classification task sever-

al discretization methods have been introduced and experimented with. The two best per-

forming discretizations of a continuous output (target) vector y (fixed and varying ε-tube)

are presented and compared. The k-means discretizations are also presented. A very strict

double (nested) cross-validation technique has been used for measuring performances of

regression and multiclass classification SVMs. The novel approach and experimental re-

sults obtained for twelve benchmarking regression data sets warrant both further theoreti-

cal investigations and broad application in practice.

21

 CHAPTER 3: CLUSTERING USING THE 2-STAGE K-MEANS AL-

GORITHM, K-MEANS
2

The previous chapter introduced the concept of the k-means
2
 algorithm for the clus-

tering problem and the regression problem solving into multi class classification. This

chapter will give a fuller account of the two contributions in this dissertation.

3.1 History of k-means

algorithm

To our knowledge very little has been reported on the running time required for the

 -means algorithm to achieve its goals, [Arthur and Vassilvitskii, 2006]. By means of a

seed center selection scheme based on specific probabilities they reduced the worst-case

running time scenario as superpolynomial by improving the lower bound from

to , where represents the number of points in the dataset. [Hodgson, 1988] has de-

veloped another method to reduce the number of iterations but it was not as fine-tuned as

[Arthur and Vassilvitskii, 2006]. On the other hand, [Pakhira, 2009] has proven that the

number of iterations required by k-means algorithm is much less than the number of points.

Moreover, [Har-Peled and Sadri, 2005] were unable to bound the running time of k-means

algorithm, but they proved that for every reclassified point one iteration is required. The

time complexity of k-means is where is the number of input patterns is the

number of clusters, and is the number of iterations.

[Pakhira, 2009] worked on modifying the k-means algorithm to avoid the empty

clusters. Pakhira moved the center of every cluster into new locations to ensure that there

22

will be no empty clusters. The comparison between the modified k-means algorithm and

the original k-means algorithm shows that the number of iterations is higher with the modi-

fied k-means algorithm method. In the case of the numerical examples which produce emp-

ty clusters, the proposed method of Pakhira cannot be compared with any other method

since there is no modified k-means algorithm available that avoids the empty clusters (clus-

ter with no label). [Bradley and Fayyad, 1998] developed a procedure in which the centers

have to pass a refinement stage to generate good starting points. [Wu, 2008] used genet-

ically guided k-means algorithm where the possibility of empty clusters will be treated in

the mutation stage. Another method of center initializing based on values of attributes of

the dataset is proposed by [Khan and Ahmed, 2004]. The latter proposed a method that

creates a complex procedure which is computationally expensive.

[Elkan, 2003] developed a method to avoid unnecessary distance calculations by

applying the triangle inequality in two different ways, and by keeping track of lower and

upper bounds for distances between points and centers. This method is effective when the

dimension is more than 1000 and also when the clusters are more than 20. They claimed

that their method is many times faster than normal k-means algorithm method. In their

method the number of distance calculations is instead of where is the number of

points.

The next section will present the basic concepts and algorithm of the proposed k-means
2

algorithm.

3.2 Clustering with k-means
2
 algorithm: basic concepts

The concept of the k-means
2

algorithm in this dissertation is based on minimizing

the huge computational effort normally incurred with the application of the k-means algo-

23

rithm. The problem with the k-means algorithm is that it carries out the distance computa-

tion based on the full dataset. The choice of the initial seeds or starting centers is usually

arbitrary. This suggests that if the arbitrary locations are steered towards the final locations

by some means with less computational effort then the final tuning of the locations can be

carried out with much less computational effort. With our concept we utilize only a small

portion of the full dataset in order to steer the arbitrary locations closer to the true final lo-

cations of the assumed clusters of the selected portion at a much faster speed of computa-

tion. Obviously, the speed advantage referred to is due to the difference in the size of the

data used in the computation. We refer to this as the fast stage. Achieving better loca-

tions from this stage for the centers of the clusters within the small data portion will pro-

vide a closer distance to the actual final locations. The stopping criterion of the fast stage is

naturally determined when the fast stages reach the centers of the small portion of the da-

taset. In reality, the final locations are actually nearer to the true locations of the centers of

the clusters of the whole dataset. The second (final) stage is referred to as the slow stage. A

graphical description of the k-means
2
 algorithm is depicted in Figure 3.1 while the algo-

rithm itself is presented underneath, [Salman et al., a&b, 2011]. It can be seen that the k-

means algorithm is repeated twice in the k-means
2
 algorithm, however with a different

number of data points used in the two stages.

24

Figure 3.1: Graphical description of the k-means
2
 algorithm

Algorithm 1: A 2-stage k-means
2
 algorithm clustering

Input: , , , , ; where are stopping criteria for both stages (fast and slow)

Output: with clusters

__

 of

Select from randomly

Fast Stage

Use

While

 For

 For

 Calculate the distance

25

 End for

 Find minimum of

 Assign the cluster number to point

 Calculate the mean of the clusters

 End for

End while

Slow Stage

Use the whole dataset

While

 For

 For

 Calculate the distance

 End for

 Find minimum of

 Assign the cluster number to point

 Calculate the mean of the clusters

 End for

End while

Algorithm 3.1.

The following section will give an account of the theoretical validation of the proposed

two stage k-means
2
 algorithm.

3.3 Validation of k-means
2
 algorithm

Lemma 2.1, [Kanungo et al., 2002], describes the calculation of the movement of the cen-

ters of the k-means algorithm. Since our approach is effectively a two round running of the

26

k-means algorithm, albeit with a different size of data, it is required to modify the above

Lemma in order to accommodate the two stages. The movements of the centers in the fast

stage will be presented in Lemma1.

Preliminaries:

Assume , let denote the squared Euclidean distance between these points,

then:

 (3.1)

where denotes the dot product of vectors and .

Also assume that , then the summation of the distances from all points of the set

to any point is:

 (3.2)

Let be the squared Euclidean distance between the points of the subset and the

center .

Lemma 1 can be summarized as follows:

The summation of the distances from all points in the fast-stage of k-means
2
 algo-

rithm to any point is equivalent to the summation of the distances of all points in the fast-

stage of k-means
2
 algorithm to the centroids of these points plus the product of the number

of points in the fast-stage and the summation of the distances between the centroids and

any other point.

Lemma 1 Let be a subset of set points in let be the centroids of Then, for

any

27

Proof: Expand :

(3.3)

 (3.4)

(3.5)

 (3.6)

 (3.7)

This is true if the center of is the zero vector.

The movements of the centers in the slow stage are presented in Lemma 2.

Lemma 2 can be summarized as follows:

The summation of the distances from all points in the slow-stage of k-means
2
 algo-

rithm to the centroids of the fast-stage is equivalent to the summation of the distances of

all points in the slow-stage of k-means
2
 algorithm to the centroids of these points plus the

product of the number of points in the slow-stage and the summation of the distances be-

tween the centroids of the fast-stage and the centroids of the slow-stage.

Lemma 2 Let be a set of points in let be the centers of Then, for

Proof: Expand :

 (3.8)

 (3.9)

28

(3.10)

(3.11)

 (3.12)

This is true if the center of is then is the zero vector.

Using the upper derivations of Lemma 2, Theorem 1 below can be summarized as

follows:

The centers of the subset of the data will approach the centers of the whole dataset if the

subset has the same number of clusters as the number of clusters in all data.

Theorem 1

Let be a dataset with a set of clusters represented by the vector hav-

ing centers represented by the vector and let be a proper subset of

the dataset with the condition that its cluster vector is also with the vec-

tor

 representing their centers. Then the subsequent applications of the k-

means algorithm on would shift the centers

 until they approach

 . Therefore if then the subsequent applications of the k-means algo-

rithm on would shift the centers

 until they coincide with

 , or

Proof:

We assume that the whole data set is of size n and is its subset with size ,

where f is an integer representing the number of data in the fast stage. Additionally, the

29

condition that all clusters exist in must be satisfied, in other words

there is no empty cluster. This means that

 if .

However, if then

This completes the proof.

Continuing from the above Theorem, we can present the following corollary.

Corollary

The centers

 produced at the last iteration of the k-means by the fast

stage can be used as the seeds for . Therefore, there is no loss of generality since the cen-

ters produced from the fast stage

 are located on the path of conver-

gence of the centers for each cluster.

Then the final iteration of the k-means would shift

 such that they coin-

cide with . This concludes the proof of the corollary.

Figure 3.2 demonstrates how the distance between the center obtained from all the

data and the center calculated from the fraction of data
 changes depending upon the

size of the fraction of original data set used in the fast phase (a toy dataset is used in Figure

3.2). When less than 10% of the dataset is used in the first stage, and since the condition of

existence of the same clusters in the subset is not fulfilled, the error index represented by

the y-axis (

) exhibits large values. As the size of the data sets used in the

first stage increases, the difference (error) between and
 asymptotically approaches

zero.

30

Figure 3.2: Differences (

) between the cluster center (for center 1) and

the fast stage cluster center are dependent on the size of the data fraction used in the first

stage

As mentioned before, the worst-case running time of k-means algorithm is a

superpolynomial with a lower bound of iterations, where represents the number

of points in the dataset. Thus, the lower bound of the number of iterations for a classic k-

means algorithm working with all n data points will be much higher than the lower bound

of the fast stage in the worst case scenario, which is because nf << n. Note that the

second, slow stage, works with n data points again but not under the worst case scenario

because the final centers of the k clusters are 'very' close to their terminal locations. On the

other hand, as Figure 3.2 indicates, using a very small fraction of the data in the fast stage

(as mentioned above below 10%) makes the slow stage fall back into the worst case sce-

0 100 200 300 400 500 600 700 800 900 1000
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
The average difference of the mean of a cluster for the whole data and the mean of cluster for the fast stage

C
1f
 (

S
1f
)

 -
 C

1
 (

S
1
)

Data

31

nario. In this case and the k-means
2
 algorithm will need more

iterations that the k-means method. A general case of a distribution-free k-means cluster-

ing proving the complexity in a non worst case scenario is extremely difficult. However,

there is a result in (Arthur and Vassilvitskii, 2006) which states that "Given data points

chosen from independent normal distributions with variance s
2
 and with dimension

 , k-means algorithm will execute in polynomial time with high probabil-

ity". The experimental results that follow for the distribution-free k-means clustering show

excellent agreement with the claim made for normally distributed data.

The following section will give selected numerical examples to highlight the advantages of

the proposed k-means
2
 algorithm.

3.4 Numerical examples

To investigate the suitability of the proposed method we run the simulation for many

different parameters. The parameters which have to be adjusted to get the best speed up

values are: the data size, the dimension of the data, the number of clusters, the stopping

criteria of the first clustering stage, the stopping criteria for the second clustering stage and

the percentage of the data used for the 2-stage clustering. Another important consideration

is the use of the same program for running the normal k-means clustering and the 2-stage

clustering. The same seeds used for the fast stage in the case of the k-means
2
 algorithm

were used for the k-means algorithm. Furthermore, the same computer has been used for

running all simulations to avoid discrepancy in computer performance. The computer used

was Alienware with an i7 CPU and 6 GB of RAM. Two examples are shown below. The

32

first one points to the general characteristics of the two stage k-means algorithm in which

the fast stage is much more dynamic than the second stage. Figures 3.3 and 3.4 show the

changes of two coordinates of two-dimensional centers separately, which are just the rep-

resentatives for all the coordinates of d-dimensional data points.

Example 1: A dataset of 800 samples and 2-dimension (3 clusters) is used. The following

figures show the movement of one of the centers in the two stage clustering.

Figure 3.3: The movements of the first coordinate of one center during fast and

slow stages of k-means
2
 algorithm.

33

Figure 3.4: The movements of the second coordinate of one center during fast and slow

stages of k-means
2
 algorithm.

It is very clear from Figures 3.3 and 3.4 that the movement of the red line (the change of

the center's first coordinate during the slow stage) is very smooth compared with the fast

stage coordinate movements. The initial value of the red curve (slow stage movement) is

the same as the terminal value of the blue (fast) curve. The number of iterations is higher

than necessary purely for clarification purposes.

34

Moreover, as can be seen from the above graph, the coordinates have not changed

much during the slow stage. This means that the second (slow) stage requires less itera-

tions. Figure 3.5 shows the well known movements of the centers for all three clusters in

the same dataset during the fast stage. It can be seen that the movements of the three clus-

ters' centers (shown as colored squares, red, yellow and green) are volatile and they heavily

depend on the random choice of the initial center seeds (shown as colored circles).

Figure 3.5: The centers movements for the three clusters during the fast stage.

35

The figures 3.6, 3.7 and 3.8 depict the excursions of the three clusters' centers in greater

detail using different center seeds than in Figure 3.5 just in order to show the differences in

the centers movement during the fast and slow stages. The fast stage centers are symbol-

ized with squares while the slow stage centers are symbolized with circle shapes. It can be

seen that the size of the steps during the fast stage are much bigger than the ones during the

slow stage.

Figure 3.6: Movements of the first cluster centers during the fast (squares) and slow

(circles) stages.

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

First Cluster Center Movement, 2-Stages Clustering

x
1

x
2

Cluster 1, Fast Stage

Cluster 1, Slow Stage

36

Figure 3.7: Movements of the second cluster centers during the fast (squares) and slow

(circles) stages.

Figure 3.8: Movements of the third cluster centers during the fast (squares) and slow (cir-

cles) stages

37

As can be seen from the above diagrams, the centers usually make much bigger spatial dis-

placements during the fast stage, which is expected to happen in a short time because just a

fraction of data points is used in the fast stage. The number of iteration steps during the

slow stage is much smaller than the number of iteration steps during the fast stage. The

slow phase movements of the centers are also smaller with respect to the fast stage ones.

Example 2

Table 3.1 gives an example of a distribution of points and centers during the fast and slow

stages of clustering in tabular form for a real dataset (iris) of two clusters.

Table 3.1: Distribution of points and centers during the fast and the slow stages of cluster-

ing (iris)

Iter Points in

No. Clusters

C1 8 4 4 4.867 3.267 1.567 30,38,44

53,58,64

69,72,86

88,93,113

114,138,145

C1 4.867 3.267 1.567 4.867 3.267 1.567 30,38,44

53,58,64

69,72,86

88,93,113

114,138,145

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1-50,58

61,82,94

99

51-57,59-60

62-81,83,93

95-98,

100-150

1.956

C2 6.409 2.942 5.1 6.409 2.942 5.1

2.942 5.1

4

C1 5.083 3.205 1.956 5.083 3.205

1.897 5.083 3.205 1.956

C2 6.396 2.933 5.071 6.409

1.897

C2 6.323 2.901 4.987 6.396 2.933 5.071

2.901 4.987

2

C1 5.015 3.318 1.636 5.06 3.226

5.015 3.318 1.636

150

C2 6.16 2.85 4.68 6.323

Slow

1

C1 4.867 3.267 1.567

3

C1 5.06 3.226

2
C2 6.16 2.85 4.68 6.16 2.85 4.68

Fast

1

15

C2 4 4 4 6.16 2.85 4.68

Stages Clusters Old Centers Coordinates New Centers Coordinates Points

38

Note that in Table 3.1 the fast stage uses only 10% of the whole dataset. The initial centers

of the slow stage are the same as the terminal centers reached by the fast stage, and they

are shown in different colors. To show that the proposed method of the k-means
2
 clustering

has the same speed up for the real datasets as for the toy ones, twelve datasets taken from

the machine learning repositories sites were used as shown in the next section.

3.4.1 Real datasets analysis

For the verification of the k-means
2
 algorithm, a range of real data sets with differ-

ent portions of the data selected for the fast stage of the algorithm have been used as shown

in the following table:

Table 3.2: Speed up of the k-means
2
 algorithm for twelve real datasets with different sizes

Twelve different real datasets have been used and shown in Table 3.2 with different sizes,

demonstrating the success of the k-means
2
 algorithm. The range of the number of points in

Datasets optdigits satimage usps pendigits reuters letter adult w3a shuttle web mnist ijcnn1

Points 5,620 6,435 9,298 10,992 11,069 20,000 48,842 49,749 58,000 64,700 70,000 141,691

Classes 10 6 10 10 2 26 2 2 7 2 10 2

Dimensions 64 36 25 16 8315 16 123 300 7 300 780 22

% Data portion

 Data

portion

average

1 1.1581 1.1226 1.4879 1.4565 1.2847 1.1957 2.5204 1.4309 1.4746 1.6446 1.225 1.8592 1.488

2 1.1047 1.0675 1.0209 1.5644 1.444 1.2251 2.0893 1.4547 1.5111 1.712 1.1172 2.1865 1.458

3 1.2861 1.3971 1.18 1.2237 1.3542 1.2988 2.4677 1.7631 1.8638 1.7229 1.6599 2.0942 1.609

4 1.3517 1.3553 1.2829 1.2962 1.1304 1.2225 1.9305 1.6973 1.6104 2.0788 1.6282 2.0977 1.557

5 1.5508 1.7986 1.6947 1.4512 1.5092 1.2006 2.3747 1.9858 1.8249 1.9726 1.762 2.4674 1.799

6 1.1658 1.936 1.5365 1.6757 2.0174 1.2326 2.6972 2.1093 1.2961 1.9964 1.1256 2.3228 1.759

7 1.3833 1.7182 1.4242 1.3561 2.0206 1.3693 2.2295 2.1643 2.2255 2.0637 1.7479 2.3057 1.834

8 1.5418 1.6612 1.2283 1.954 2.6366 1.2323 2.3065 2.0174 1.4138 2.321 1.7997 2.2425 1.863

9 1.2878 1.8202 1.5817 1.5237 2.6128 1.2285 2.4513 2.2109 1.648 2.1975 1.801 2.3281 1.891

10 1.4509 1.6682 1.3311 1.6182 2.0486 1.204 1.8321 2.0464 1.633 2.2008 1.4204 1.9062 1.697

20 1.4412 1.4152 1.3062 1.4822 1.6809 1.1922 1.6422 2.1255 1.5742 1.9713 1.5983 1.8021 1.603

30 1.576 1.6876 1.3967 1.5699 2.0091 1.2417 1.5861 1.7143 1.5622 1.6853 1.4175 1.606 1.588

40 1.7409 1.3368 1.7523 1.517 1.6285 1.1543 1.1942 1.5787 1.2016 1.7111 1.4792 1.5893 1.490

50 1.4018 1.2267 1.5538 1.5061 1.4166 1.1934 1.1209 1.4957 1.0407 1.3833 1.2414 1.3588 1.328

60 1.2684 1.0495 1.1311 1.229 1.6847 1.129 1.0928 1.3232 1.1452 1.3612 1.8012 1.2398 1.288

70 1.3315 1.1919 1.1733 1.1123 1.0947 1.2016 0.9328 1.242 1.0421 1.1856 1.265 1.2941 1.172

Speed up average 1.378 1.466 1.380 1.471 1.723 1.220 1.904 1.772 1.504 1.826 1.506 1.919

Speed Up for 20 runs (X)

39

the datasets is from 5k to 140k, while the range of the number of classes is from 2 to 26.

On the other hand, the dimensions of the datasets range from 7 to 8315. Different portions

of the datasets were used in the first stage of the clustering ranges from 1% to 70%. 20

runs were chosen from the k-means
2
 algorithm and an average of these runs was recorded.

At the end of all runs of all portions of the datasets one average was calculated. Two types

of averages have been reported in Table 3.2; the first is the speed up average for each da-

taset (last column) and the second is the data portion average for each dataset (last row). It

is clear that the speed up averages increases with the increase of the size of the dataset.

However, the data portion averages follow a distinct pattern which starts from low averag-

es, increases for the 8-10% data portion, and decreases with higher percentages. Two main

graphs were developed from the above table as shown below:

The following graph shows the speed up of all 12 datasets with percentage of the

portion of the data used:

Figure 3.9: Speed up versus percentage of the data used during the fast stage of k-means

2

algorithm

0 10 20 30 40 50 60 70
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Percentage of Data in The First Stage %

S
p

e
e

d
 u

p

Speed Up With 2-Stage Clustering for Various Datasets

ijcnn1

mnist

web

shuttle

w3a

adult

letter

reuters

pendigits

usps

satimage

optdigits

40

It is clear that the use of less than 8-10% of the data in the k-means
2
 algorithm produces

better speed ups. This trend of speed up is applicable for all datasets used regardless of the

size, dimension and number of clusters.

The following, Figure 3.10, however, shows the increase of the speed up due to the

increase of the data size. The blue line shows the linear estimate of the increase in the

speed up.

Figure 3.10: Average speed up versus datasets using k-mean

2
 algorithm

The following graph, Figure 3.11 shows the average speed up with the percentage of the

data used. It is clear that 8-9% is the best estimate of the portion of the data used for the

first stage of k-means
2
 algorithm.

0 5 10 15

x 10
4

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Data sets

A
v
e
ra

g
e
 s

p
e
e
d
 u

p

Average speed up vs. data sets

Actual speed up

Linear estimate

41

Figure 3.11: Average speed up versus percentage of the data used in the fast stage of k-

mean
2
 algorithm

3.5 Speed up analysis

This section will demonstrate the difference in the computational time exerted by

the two methods, the k-means and the proposed modified version, the k-means
2
, in moving

from the same set of center seeds to the final set of centers with different stopping criterion

and different operating systems. Two different computers with the same CPU speed were

used, one running under a 32bit Operating System and the second running under a 64bit

Operating System. The operating system will reflect the speed of the computation of the

0 1 2 3 4 5 6 7
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Percentage of data used in the first stage %

Average speed up vs. pecrentage of data used in the first stage

A
v
e
ra

g
e
 s

p
e
e
d
 u

p
 o

v
e
r

a
ll

d
a
ta

 s
e
ts

42

computer, in which case the 64-bit machine is a faster computer. The results, as depicted in

Figure 3.9, show that regardless of the Operating System used the modified k-means algo-

rithm has demonstrated a speed up at all ranges of the stopping criterion. The data used for

the fast stage clustering is only randomly selected data. The dataset used in this exam-

ple is “Synthetic”, picked up from UCI [Frank and Asuncion, 2010] consisting of

samples in 10 dimensions and 4 clusters. The speed of the modified k-means
2
 algorithm is

almost twice the speed of normal k-means algorithm and it can be attributed to the fact that

the k-means
2
 clustering uses much less data points during the fast clustering stage leading

to much less computational effort in the first stage of the process. The speed up is very

clear in the high accuracy range when . The stopping criterion, , is defined by

), i.e. as the difference in the distance between the final center and

the preceding one. Depending on the accuracy requirements the range of the metric, , is

to be determined by the user. In this example the range of is selected between 10
-1

and

10
-10

 as shown in the Figure 3.12.

43

Figure 3.12: Comparison of the computational times between the k-means and the k-

means
2
 algorithms for 32 bit and 64 bit computers.

The speed of the normal k-means algorithm is shown in blue while the speed of the

k-means
2
 algorithm is shown in red. For example, the CPU time taken for the k-means al-

gorithm when is is 1100sec for 64bit OS and 3100sec for 32bit OS while the time

for the k-means
2
 is 400sec and 2250 sec respectively. This particular value of gives an

advantage greater than 275% in favor of the k-means
2

on a 64 bit machine.

44

Next, we discuss the speed up achieved by using k-means
2
 algorithm for the same

100,000 10-dimensional data points that should be split into 4 clusters. The speed up of the

k-means
2
 algorithm compared with the normal k-means algorithm varies according to the

stopping criterion used (i.e., required accuracy) as shown in Table 3.3 and Figure 3.13.

Table 3.3: k-means
2

vs. k-means

algorithms speed up for different stopping criterion and

fraction of data used in the fast stage

Speed up of k-means
2

for different stopping criterion

 Percentage of the total data for the fast stage

 Stopping 10% 15% 20% 30% 40%

 1.9 1.8 1.8 1.7 1.5

 3.8 3.5 3.4 3 2.5

 4.7 8.9 3.1 7 4.3

 0.9 1.7 1.1 3 8.5

 2.9 1.6 2.2 2.1 2.4

 2 1.9 2.6 2.3 2.4

 2 1.4 2.4 2.3 1.6

 2 1.4 2.4 2.3 1.6

 2 1.4 2.4 2.3 1.6

 2 1.4 2.4 2.3 1.6

A graphical representation of Table 3.3 is depicted in Figure 3.13.

45

Figure 3.13: k-means
2

vs. k-means

algorithms speed up for different both stopping criterion

and fraction of data used in the fast stage

For lower ranges of accuracy to , the speed up of computation changes

between 1 and 9 times. The speed up is reduced for higher accuracy, e.g., for from

to , it is restricted to the range of (). However, the range of the random data

selected to achieve the fast clustering (computation) actually fluctuates quite rapidly. It can

be observed that the optimal range of sample data used in the fast stage of clustering falls

between 10% - 20%. In the normal situation a choice of good accuracy range, e.g., (

to) will provide a speed up advantage up to 2.5, as shown in Table 3.3 and Figure

3.13.

The following section will give an account of the performance of the k-means
2
 al-

gorithm for large datasets.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

Speed up of k-mean
2
 / k-mean

S
p

e
e
d

 u
p

Stopping Criteria 10
-k

hello

10%

15%

20%

30%
40%

hello

10%

15%

20%

30%
40%

46

3.6 Speed of computation of k-means and k-means
2
 algorithms for large datasets

In this section we will deal with large toy datasets in order to find out the behavior

of the two algorithms. Again the same machine will be used for a range of datasets 100k,

200k, 300k, 400k, 500k, 600k, 700k, 800k, 900k, 1M, 2M, 3M, 4M, 5M, and 6M with 12-

dimensions and 4 clusters, where M stands for a million. We maintained the same value of

the stopping criterion, i.e. . In this case the portion of the data used in the first stage is

reduced much further down to 0.1%. The results are shown in Figure 3.14.

Figure 3.14: The CPU times for normal k-means and the k-means
2
 algorithms for huge da-

tasets.

The blue dotted line in Figure 3.14 refers to the normal k-means clustering method

while the red dashed line refers to the k-means
2
 algorithm. Obviously, the CPU time dif-

ference between the two algorithms largely favors the k-means
2
 and the time advantage in

fact increases at an almost exponential rate. For example, the CPU time required for the

10
5

10
6

10
7

0

200

400

600

800

1000

1200

1400
Speed up of k-mean

2
 and k-mean

T
im

e
 (

s
e

c
.)

Data

k-means
2

k-means

47

normal k-means clustering using the 6M dataset is almost 1250 seconds, while the time for

the 2-stage method is only 450 seconds, giving about a 3 times faster performance of k-

means
2
 . At the same time, for a 1M dataset size, the speed up of a k-means

2
 algorithm is

still significant but slightly smaller - k-means
2
 is 2 times faster than k-means. Such reduc-

tion in CPU time consumed for calculation is very useful and cost effective in larger da-

tasets.

The trend in the speed up advantage is clearly shown in Figure 3.15 and demon-

strates a steady increase upward.

Figure 3.15: Speed up of k-means
2
 / k-means algorithms

Hardware limitations particularly in the availability of a more powerful computer prevent-

ed us from testing the method for data larger than 6M points. This could be a subject for

future work.

Analysis of the center convergence is presented and shown in the next section.

10
5

10
6

10
7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Speed up of k-mean
2
 / k-mean

T
im

e
 (

s
e
c
.)

Data

48

3.7 Center convergence

In this section we will analyze performances of a classic k-means and a novel k-

means
2
 algorithm by showing the dynamic changes of differences between the cluster cen-

ter during the iterations and the final cluster center (a mean of the cluster obtained).

To avoid having to guess the proper number of clusters, the classification datasets were

chosen instead of clustering datasets. In this case we assume that we know the number of

clusters as a priori knowledge to avoid spending time on finding the proper number of

clusters while we are concentrating on proofing the advantages of using k-means
2
 in speed-

ing up the algorithm process.

Here we are using a dataset chosen at UCI, [Alcock and Manolopoulos, 1999]. The dataset

is “Synthetic Control Chart Time Series” with 600 points, 60-dimesion and 6 clusters. We

only show the changes of a distance in a single coordinate for both k-means and k-means
2

algorithms. The results for the k-means algorithm are shown in Figure 3.16 while the re-

sults of running the k-means
2
 are shown in Figure 3.17.

The movement measured as the difference between the mean of the cluster and the

centers is shown for the k-means algorithm for over 300 iterations. As expected, the differ-

ence is seen to fluctuate rather rapidly initially and gradually dies away.

49

Figure 3.16: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means algorithm

As for the k-means
2
 algorithm, the stopping criterion for the fast stage was selected

to be and for the slow stage, double precision was chosen as , which is the same

as for the normal k-means method. The two stages of the k-means
2
 algorithm are shown in

two different colors for clarity. The blue represents the fast stage convergence while the

red represents the slow stage one. It is important to remember that the blue color represents

the changes for just a portion of the dataset (i.e. 10%), while the red one displays the

changes of the differences between the mean and centers obtained by using all the data.

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Convergence of Centers / Normal K-Means , Dataset =synthetic ,=1e-009

Iterations

||
M

e
a

n
 -

 C
e

n
te

r|
|

50

Because the fast stage uses a small portion of data, the CPU time needed for the blue curve

to converge is much smaller than the time needed for the same portion of the trajectory in

Figure 3.16. Furthermore, the terminal center reached by the fast stage (blue) is actually

the seed for the slow stage (red) which is in this way much closer to the final cluster mean

and thus needs less iterations to reach it.

Figure 3.17: Dynamic changes of differences between the cluster center during the itera-

tions and the final cluster center for the k-means
2
 algorithm - fast stage (blue), slow stage

(red)

3.8 Conclusions

Because the k-means algorithm makes use of the full dataset in order to carry out its

clustering action, the computational power is expected to rise exponentially with the in-

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Convergence of Centers / Modified K-Means , Dataset =synthetic ,
f
=1e-009 ,

s
=1e-009

Iterations

||
M

e
a

n
 -

 C
e

n
te

r|
|

Fast Stage

Slow Stage

51

crease in dataset size (large and ultra large datasets). The present proposal targets the prob-

lem of moving the seeds towards the final cluster's centers destination with as much data as

possible. Therefore, the use of a portion of the data may solve the problem. However, one

condition has to be satisfied before the reduction in the dataset can be justified. The condi-

tion is that the portion of the data selected must ensure the existence of the same clusters,

as shown in Theorem 1. Hence, the new proposal can be seen as a two stage k-means algo-

rithm.

 Admittedly, the longer the distance between the seeds and the cluster’s centers the

more iteration is required. For the k-means algorithm it will require the use of the full da-

taset in order to move the seeds towards the actual centers of the clusters whereas it only

requires a small portion of the dataset in the k-means
2
 algorithm in order to carry out this

movement. Hence, a great computational expense reduction can be achieved with this

modification.

The effect of the cluster's locations and the dataset's sizes are analyzed and dis-

cussed. The normal k-means clustering method requires a longer time to achieve the clus-

tering compared with the 2-stage method for large datasets (more than 1Million points).

52

CHAPTER 4: REGRESSION AS CLASSIFICATION

4.1 Regression by classification using support vector machines

 Here, we further develop the novel approaches to the solution of regression prob-

lems by transforming them into multiclass-classification tasks. Such an approach can be

solved in two steps. The first is to find a proper discretization criterion. This involves find-

ing out which discretization method is the most appropriate for transforming a regression

into a multi-class classification.. The second step is mainly the selection of a proper classi-

fication method. Hence, the whole process would entail the discretization of the output var-

iables yi into the discrete labels and selection of one of the available classifications tech-

niques such as rule-based, decision-trees, neural network or SVM to perform the classifica-

tion. Classification by decision-tree for high dimensional data does not work properly due

to the memory limitation as well as due to the high computational cost. However, decision-

tree may work satisfactorily for data having less than 20 features.

 A few early attempts to solve the regression problem as the multiclass classification

tasks by using the rule-based decision and decision trees have been presented by [Weiss

and Indurkhya, 1995] and [Torgo and Gama, 1996].

The latter, [Torgo and Gama, 1996], presented a methodology that enables the use of exist-

ent classification inductive learning systems on problems of regression. This goal was

achieved by transforming regression problems into classification problems. They have per-

formed an extensive empirical evaluation using two decision tree classifiers, C4.5 and

CN2, on four real world domains.

53

The research of [Torgo and Gama, 1996] has two phases. The first part is to provide three

different discretizations methods as follows:

1- Equally probable intervals (EP); to create N intervals with the same number of data

2- Equal width intervals (EW); to create N intervals with the same range

3- K-means clustering (KM); to create N intervals that minimize the sum of distances

of each element to the center of the cluster. It starts with an EP approximation but

then it tries to move the elements to their nearest centers.

 The second part is to enable the use of these methodologies with other classifica-

tion systems. As to the first goal, they were able to prove (through empirical evaluation on

four real datasets) that two of their proposed discretizations methodologies outperformed

the method used in the work of [Weiss and Indurkhya, 1993]. These experiments also re-

vealed that the best methodology is dependent on both the regression domain as well as on

the classification system used, thus providing strong evidence for the search-based

discretizations method. With respect to the second goal they have used their methodologies

with two decision tree classifiers, CN2 and C4.5.

 The problem in the three methods mentioned above is the a priori knowledge of the

number of intervals. By calculating the means of an iterative search approach, [Torgo and

Gama, 1996] claimed that they had overcome the problem. Furthermore, they developed

two ways to modify the three splitting methods mentioned above based on estimated pre-

dictive accuracy results. The first is called ‘Varying the number of intervals’ (VIN). This

method is based on trying several values of the number of intervals with the current split-

ting strategy followed by incrementing the number of intervals by constant value. The se-

54

cond method is called ‘Selective specialization of individual classes’ (SIC). The basic idea

of this method is to improve the previously tried set of intervals. They start with any given

number of intervals and during the CV-evaluation they calculate the error estimates of each

individual discrete class. Then, they look for the individual error estimate. The median of

these errors is calculated and any error above the median is specialized.

 However, no comparison to any other methods was provided in order to evaluate

the proposed methods. They also did not show the accuracy which can actually be

achieved by their approach but they do claim that their methods are superior to the others.

They did not provide any comparison of the results whereby relative merits cannot be

highlighted either.

 Here, a novel framework of solving regression problem into multiclass classifica-

tion using Support Vector Machines (SVMs) is proposed. The obvious and direct way of

transforming the regression problem into the classification task is to perform the

discretizations of the target vector y by a fixed ε-tube size into a set of N classes. The prob-

lem in the fixed ε-tube discretizations is that it may lead to the empty classes. A slightly

better form of discretizations is achieved by specifying the minimal size of the ε-tube. If in

such a minimal tube there are no entries, the size of the tube is doubled. Obviously, this

leads to the varying sizes of the tubes for different classes but it improves the accuracy by

avoiding grouping too many data in the flat part of the regression (hyper) surface. The fol-

lowing graphical representation, Figure 4.1, shows the difference between the two pro-

posed discretization methods for 16 data points and 5 classes in the case of a varying epsi-

lon tube populated by at least one sample in the class (class boundaries are shown by

55

dashed red line). At the same time, discretization by a fixed epsilon tube leads to 5 classes

but with class 4 being empty (class boundaries are shown by solid blue line).

Figure 4.1: Graphical representations of the two splitting methods, fixed ε-tube and varying

sizes of ε-tube

4.1.1 Preliminaries and definitions of SVM

Support Vector Machines are based on the concept of decision planes that define

decision boundaries. A decision plane is one that separates between a set of objects having

different class memberships. Support Vector Machine (SVM) performs classification tasks

by constructing hyperplanes in a multidimensional space that separates cases of different

class labels. SVM supports both regression and classification tasks and can handle multiple

continuous and categorical variables. To construct an optimal hyperplane, SVM employs

an iterative training algorithm, which is used to minimize the error function.

5 10 15

0

0.2

0.4

0.6

0.8

1

x

y

Samples - continuous true values

5 10 15

0

0.2

0.4

0.6

0.8

1
5

4

3

2
2 2

1 1
1

1 1 1 1 1 1 1

x

y

Samples - class labels after discretization

56

The learning problem setting for SVMs is as follows [Huang, Kecman and

Kopriva, 2005]: there is some unknown and nonlinear dependency (mapping, function)

 between some high-dimensional input vector x and the scalar output y (or the

vector output y as in the case of multiclass SVMs). There is no information about the un-

derlying joint probability functions here. Thus, one must perform distribution-free learn-

ing. The only information available is a training data set

 , where stands for the number of training data pairs and is therefore equal to the

size of the training data set . Often, is denoted as (i.e.,), where stands for a

desired (target) value. Hence, SVMs belong to the supervised learning techniques. The

basic model for the error function of SVM is:

 (4.1)

Where is a SVMs’ loss function (Closeness to data), is a VC dimension, and (Ca-

pacity of a machine) is a function bounding the capacity of the learning machine. In classi-

fication problems, is typically the 0-1 loss function, and in regression problems is

the so-called Vapnik’s –insensitivity loss (error) function:

(4.2)

where is the radius of a tube within which the regression function must lie, after the suc-

cessful learning. (Note that for = 0, the interpolation of training data will be performed)

and is the weight vector subject to training.

57

4.2 Transforming regression into classification

 Regression problems are defined as follows: l instances (samples, measurements)

with d input features are given as the input points or vectors

 each is associated with known output value yi, and yi

1 . The dif-

ference in respect to the classification problems is that the output values are real numbers

now. However, this setting can also be looked at as the classification problem where each

yi is treated as the ‘class label’. Hence, each regression problem is a multiclass classifica-

tion problem with maximally l classes. Relabeling continuous yi values into the classes is

readily done after sorting yi and then just orderly assigning the labels. However, this obvi-

ously leads to several undesired consequences, the most important one being that we don't

want to model the noise always present in data and we would like to control the variance of

the model. In order to filter the noise out, as well as to reduce the variance of the model,

the output vector y is approximated by the SVM regressor after defining the so-called ‘ε-

insensitivity zone’ (a.k.a. ε-tube).

 The 'weights' of the SVM model are usually obtained by finding the dual variables

(α in classification, and both α and α
*
 in regression) first. More precisely, the SVM models

are defined as:

1

() (,)
SVN

i i
i

f w k b


 x x x (4.3)

where, in classification:

i i iw y (4.4)

and in regression:

58

i i iw    (4.5)

While the two final models look alike, the corresponding dual Lagrangian (QP) problems

to be solved for α-s are fairly different;

in classification:

d

1 1 1

1
() (,)

2

l l l

i i j i j i j

i i j

L y y K 
  

  α x x ,

 s.t. 0 , 1, ,i C i l   and

1

0
l

i i

i

y


 ,

(4.6)

and in regression:

d

1 1 1 1

1
() () ()() (,)

2

l l l l

i i i i i i i j j i j

i i i j

L y K           

   

         x x ,

s.t. *0 ,0 , 1, ,i iC C i l      and  *

1

0
l

i i

i

 


 

(4.7)

The fundamental difference in solving the QP problems (4.6) and (4.7) is in the size of the

corresponding Hessian matrix H. In classification, H is an (l, l) matrix, while in regression

it is a (2l, 2l) one. Hence, it's of a double size and inherently nonsingular.

Here, we will attempt something else. The regression problems will be transformed into

the multiclass classification tasks by a discretization.

 There are several ways in which the discretization can be performed. The obvious

and direct way of transforming the regression problem into the classification task is to per-

form the discretization of the target vector y by a fixed ε-tube size into a set of N classes

(as already mentioned above). The size of the ε-insensitivity zone controls the accuracy of

the approximation and this step is similar to defining the ε-tube in the SVMs for a regres-

59

sion. However, unlike in the SVMs regression problem defined by (4.7), the SVM classifi-

er (obtained after the discretization) solves the multiclass classification task posed, as in

(4.6). Figure 4.2 shows the simple example; a one-dimensional noisy hyperbolic function

(left) and the class label of each training sample after using ε = 0.0931 i.e., after the dis-

cretization of y into N = 10 classes (right). The solid curve shown in both graphs is a

noiseless function. Dashed lines in the right hand graph show class boundaries and the

mean value of each class is shown as a solid line (the mean value of class 2 is explicitly

pointed at with a text).

Figure 4.2: Class assignments in a regression task with equal ε-tube (hyperbolic function)

5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Samples - continuous true values

5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1 10

6

3
4

5

3 3

2
3 3 3

2 2

4

1

4

3
3

1

2

x

y
Samples - class labels after discretization

Mean value of class 2

60

Figure 4.3 shows the simple toy example; a one-dimensional noisy sine function (left) and

the class label of each training sample after using i.e., after the discretization of

 into classes (right). Solid line shown is a noiseless sine function.

Figure 4.3: Class assignments in a regression task with equal ε-tube (sine function)

 The procedure for transforming the continuous values of the response (output) vec-

tor y into the set of labels is the same for any high-dimensional 1d  mapping. The

1 1  regression example shown in Figure 4.3 is used for simplicity of visualization on-

ly. After the discretization, a vector of N classes’ mean values is saved. In the example

above this vector, µ = [0.0592 0.1608 0.2624 0.3640 0.4656 0.5672 0.6689

0.7705 0.8721 0.9737]
T
.

 The SVM multiclass classification produces the vector yp containing the predicted

class labels which are then replaced with the mean values of each class. This works as fol-

-2 0 2

-1

-0.5

0

0.5

1

x

y

Samples - continuous true values

-2 0 2

-1

-0.5

0

0.5

1

5

4

33

111

1
11

1

12

2

4
5

6

7

8

8

10
10101010

10

99

7
8

7

6

x

y

Samples - class labels after discretization

Mean value of class 2

61

lows in Figure 4.3; suppose that the ALH classifier would predict the belongings of the 8

data points to be yp = [4 3 3 3 2 1 1 1]
T
. These labels would then be translated into the

following 8 final approximated values of the noisy data points ya = [0.3640 0.2624 0.2624

0.2624 0.1608 0.0592 0.0592 0.0592]
T
.

 Note that a discretization into N classes with an equal ε-tube over the whole range

leads to empty classes. Here, classes 5, 7, 8 and 9 don't have any data points. In other

words, later, a reassigning of predicted class labels as the continuous values will lead to

higher accuracies in the flat portions of the function. Finer discretization increases the ac-

curacy but it may also result in an over-fitting behavior of the model. The right level of a

discretization (i.e., the best number of classes N, or the best size of the ε-tube) should be

determined by cross-validation. The same is valid for the penalty parameter C, and the

shape parameter γ (if Gaussian kernel is used which is the case here). Hence, there are

three hyper-parameters in the SVM multiclass classification which should be determined

by cross-validation. Recall that in SVM regression the same three hyper-parameters must

be tuned, but the size of the Hessian H is doubled.

 A slightly better method of discretization is achieved by specifying the minimal

size of the ε-tube. For a given minimal ε-tube, during the discretization, care is taken such

that in each class there is at least one training data point. The right minimal size of the ε-

tube should also be determined by the cross-validation. Obviously, this leads to the varying

sizes of the tubes for different classes but it improves the accuracy by avoiding grouping

too many data in the flat part of the regression (hyper)Surface. The results of the second

type of discretization are shown in Figure 4.4.

62

 The third possible way to do the discretization of continuous values is to divide

them by the so-called equal-frequency discretization. This is done by dividing the output

vector y value range into a number of intervals (classes) so that (approximately) the same

number of training data points are in each interval (class). For example, if one chooses to

perform the discretization into N = 10 classes, each interval will contain about 10% of the

training data. However, such a discretization didn't lead to good results and it is no longer

considered here.

Figure 4.4: Class assignments in a regression task with varying ε-tube

Once the approximation ya to a test vector y is calculated, the relative percentage error of

the approximation is calculated by using the following expression,

5 10 15

0

0.2

0.4

0.6

0.8

1

x

y

Samples - continuous true values

5 10 15

0

0.2

0.4

0.6

0.8

1
6

5

4

4

3
2

3

1

2

12
2

11111
111

1
11

1
1

1

x

y

Samples - class labels after discretization

Mean value of class 5

63

2

2

100
a

e



y y

y
 (4.8)

The fourth possible method of discretization of yi values is to use the k-means algorithm to

divide them according to the center of clusters of the data. In this method we try to build N

intervals that minimize the sum of the distances of each point of a cluster to the centroid of

the cluster. The suggested number of clusters is the number of discretization intervals. The

two popular examples used in this case were the sine and the hyperbolic functions, as

shown in Figure 4.5 and Figure 4.6, respectively.

Figure 4.5: Class assignments in a regression task with k-means algorithm (sine wave)

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

x

y

Samples - continuous true values

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

2

22

11

4

1

4

44

1
1

1

2

2

2

3

2

33

33
3

33
3

3
3

3

2

2

Samples - class labels after discretization

x

y

Mean value of class 3

64

Figure 4.6: Class assignments in a regression task with k-means algorithm (hyper)

Note that in the use of k-means algorithm for the class assignment, each class is surround-

ing the centroid of its cluster.

The CAIM (class-attribute interdependence maximization) by [Kurgan and Cios, 2004] is

aimed at a discretizations of a continuous data based on a top-down method, and it is popu-

lar for its reduced complexity. CAIM has also been investigated in this work as another

method of discretization. The CAIM algorithm is designed to work with supervised data

only and its functioning can be summarized as follows: assume that we have a mixed-

mode data set consisting of M examples, and that each example belongs to only one of the

S classes. F denotes continuous attributes. Then, there exists a discretization scheme D on

F, which discretizes the continuous domain of attribute F into n discrete intervals bounded

5 10 15

0

0.2

0.4

0.6

0.8

1

x

y

Samples - continuous true values

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

2

4

4 4

1

1 1
1

3

1

1

3

4

3 3

3

Samples - class labels after discretization

x

y

Measn value of class 4Mean value of class 4

65

by pairs of numbers (boundary points). Unfortunately, CAIM has not been good in discre-

tizing a data coming from the regression problem (as described in section 4.2), where we

have l instances (samples, measurements) with d input features given as the input points or

vectors
 and a corresponding output value yi

1 .

4.3 Regression data sets and the results

 In order to show the performance of the proposed approach in solving regression

tasks, twelve benchmarking regression data sets are selected for the study (Some prelimi-

nary results on the 12 datasets have been given in [Salman and Kecman, 2012]). They are

Boston housing data [Asuncion and Newman 2007] and [Harrison and Rubinfeld 1978];

prototask (comp-active) data base [Delve 2008]; concrete compressive strength [Asuncion

and Newman 2007] and [Yeh 1998]; servo data and wine data [Asuncion and Newman

2007]. The remaining data sets; Machine CPU, Pyrimidines, MPG, Diabetes, PhD, Abalo-

ne, Triazines are taken from the following sources: UCI (University of California) [Asun-

cion and Newman 2007], Liaad, and Princeton websites [Uci, 2012], [Liaad, 2012] and

[Princeton, 2012].

 In the tables and graphs below the comparisons between the SVM classifier solving

regression problems (by using three ways of discretization) and an SVM regressor are done

for twelve data sets. The details of all twelve data sets can be found in the references given

and the simulation results are shown in Table 4.1 (a) and (b).

66

Table 4.1 (a): Percentage errors and CPU times for 12 data sets obtained by SVM classifi-

ers and an SVM regressor (bold indicates better result)

The basic characteristics of the data sets used, as described in Table 4.1 (b), are as

follows: Boston housing is a collection of 506 samples with 12-dimensional input vectors,

67

the prototask data set contains 8192 instances with 21-dimensional input vectors, concrete

compressive strength data consists of 1030 samples with 8-dimensional inputs, the servo

data set contains only 167 samples with 4-dimensional feature vectors, and the wine data is

a collection of 1599 12-dimensional feature vectors. Note that the wine data's outputs are

integer values corresponding to 6 types of wine but in the references, the wine data set is

treated as the regression problem. The CPU (machine CPU) data set contains 209 samples

with 6-dimensions only. The Pyrimidines data set contains 74 samples with 27-dimensions

only. The MPG data set contains 398 samples with 7-dimensions only. The Diabetes data

set contains 43 samples with 2-dimensions only. Note that the Diabetes data was taken

from the Liaad website. The PhD data set contains 73 samples with 4-dimensions only,

taken from the Princeton website. The Abalone data set contains 4177 samples with 8-

dimensions only. The Triazines data set contains 186 samples with 60-dimensions only.

 Here we have compared the performances of four SVM models, all of which use

Gaussian kernels - three models are solving regression problems as multiclass classifica-

tion tasks and one model is a standard SVM regressor. The three SVM classifiers differ

only in the way the discretization (described above) has been carried out.

 There are several things to point out in Table 4.1. First and foremost, one should

note that there are two groups of regression problems (based on the behavior of output vec-

tor y) which are dubbed here as 'spiky' and 'smooth' datasets. One can see that in approxi-

mating spiky regression problems, the SVM classifiers have slightly outperformed the

SVM regressor. It is opposite for modeling smooth regression problems. Below, the dis-

cussion and presentation of a smoothness of vector y will be presented and commented.

68

Furthermore, out of three classifiers, the SVM classifier with the varying ε-tube has shown

the best overall performance averaged over all twelve data sets. As for the CPU time need-

ed to finish the training, SVM classifiers have shown better performances as well. This is

particularly obvious for the largest data set prototask, when the SVM regressor needed

four days to finish the training. Generally, once the data set goes over several thousands of

training samples the training speed-up of the SVM classifiers becomes obvious. Note that

all the results have been obtained within the double (nested) cross-validation experimental

procedures, guaranteeing the most objective results and the true performance range on the

future data samples. Also note that the LibSVM software has been used and the same

number of hyperparameters has been tested in all the simulations; (C = {5 … 10
4
 }, σ =

{10
-4

 … 1}, N = {3 … 100}, ε = {0.001 to 0.6} of max(y)).

Below, there are two graphical presentations of the results given in Table 4.1 in or-

der to see them better. The results are shown as the error bar graphs in Figure 4.7 and as

the 3-dimensional bar graphs in Figure 4.8. SVM Classifier with varying epsilon results are

shown as the red curve and SVM Regressor results as the blue one in Figure 4.7.

69

Figure 4.7: The mean error and mean squared errors of the 12 datasets

The figure above shows both the mean errors and the standard errors for the twelve da-

tasets used in our validation. It is just a graphical representation of Table 4.1 in which one

can see again that for the first 5 (spiky) datasets solving a regression problem as the classi-

fication one is better than solving it as the regression problem. Another way of presenting

Table 4.1 (b) is shown in Figure 4.8

Triazines Abalone PhD Diabetes Wine MPG Concrete Prototask Pyramid CPU Boston HousingServo
0

5

10

15

20

25

30

Dataset

E
r
r
o
r

a

n
d

S

t
a

n
d
a

r
d

D

e
v
ia

t
io

n

B

a
r

Errorbar Graph for Classifier and Regressor

SVM Classifier with Varying Epsilon

SVM Regressor

70

Figure 4.8: Average errors of 12 datasets based on 4 models

The best parameters (C, σ and the level of a Discretization) used to obtain the SVM classi-

fiers and SVM regressor are shown in Table 4.1 (b).

71

Table 4.1 (b): Best parameters (C, σ and the level of a Discretization) as well as the size

and sources of 12 data sets obtained by SVM classifiers and an SVM regressor

There is one more intriguing and noticeable matter raised by the results in Table

4.1. Namely, both the SVM classifiers and the SVM regressor are competing tightly for the

72

primacy in solving the regression problems used here by showing distinctly different per-

formances in terms of the accuracy for the two types of the function approximation prob-

lems. SVM classifiers show better results for the prototask, CPU, Pyrimidines and servo

data and slightly better accuracy than the SVM regressor for the Boston housing data (ac-

tually accuracies are almost equal). The SVM regressor displays better performance for the

concrete, MPG, Wine, Diabetes, PhD, Abalone and Triazines data set. Some explanations

and hints about these results are related to the very nature of the regression problems and

they may be obtained by looking at the target values yi and their distributions as shown in

Figures 4.9 and Figures 4.10 respectively.

 It seems that the SVM regressor suits better regression problems where the target

values are 'uniformly’ or 'smoothly' distributed over the range as shown in Figure 4.10,

while in the problems prototask, CPU, Pyrimidines, Boston and servo, where the SVM

classifiers show clear advantages, the output vector y shows a very 'spiky' behavior, see

Figure 4.9, primarily covering the upper part of the range (prototask) or the lower one

(servo) and making irregular spikes to the lower values (prototask) i.e., higher ones (ser-

vo). Sorted output values yi for the same regression data are shown in the right side of the

graphs of Figure 4.9 and Figure 4.10.

 The 'spiky' functions (prototask and servo) resemble the Poissonian, or exponential,

distribution, in which a great deal of target values yi will after the discretization fall into a

small number of not-well-balanced classes. The experimental results show that when faced

with the 'spiky' nature of the regression problems, a discretization and multi-class classifi-

cation through the use of SVMs will most likely lead to a better function approximation.

73

The output and sorted output for all datasets are shown in Figures 4.9 and 4.10: (blue

'spiky', red, 'smooth'):

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

Prototask data

y

Number of data
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

10

20

30

40

50

60

70

80

90

100

Prototask data

y
-s

o
rt

e
d

Number of data

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

Servo data

y

Number of data
0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

Servo data

y
-s

o
rt

e
d

Number of data

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

50

Boston Housing data

Number of data

y

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

50

Boston Housing data

Number of data

y
-s

o
rt

e
d

74

Figure 4.9: Output values and sorted output values for regression problems (spikey)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

CPU data

y

Number of data
0 50 100 150 200 250

0

200

400

600

800

1000

1200

CPU data

y
-s

o
rt

e
d

Number of data

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pyrimidines data

Number of data

y

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pyrimidines data

Number of data

y
-s

o
rt

e
d

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

Concrete data

Number of data

y

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

Concrete data

Number of data

y-
so

rt
e
d

75

0 200 400 600 800 1000 1200 1400 1600
4

6

8

10

12

14

16

Wine data

Number of data

y

0 200 400 600 800 1000 1200 1400 1600
4

6

8

10

12

14

16

Wine data

Number of data

y
-s

o
rt

e
d

0 50 100 150 200 250 300 350 400
5

10

15

20

25

30

35

40

45

50

MPG data

y

Number of data
0 50 100 150 200 250 300 350 400

5

10

15

20

25

30

35

40

45

50

MPG data

y
-s

o
rt

e
d

Number of data

0 5 10 15 20 25 30 35 40 45
3

3.5

4

4.5

5

5.5

6

6.5

7

Diabetes data

y

Number of data
0 5 10 15 20 25 30 35 40 45

3

3.5

4

4.5

5

5.5

6

6.5

7

Diabetes data

y
-s

o
rt

e
d

Number of data

76

Figure 4.10: Output values and sorted output values for regression problems (smooth)

The results of the Servo, Boston, CPU, Pyrimidines and Prototask datasets show the spiky

behavior of the output. The other datasets show the smooth behavior of the outputs. The

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

PhD data

Number of data

y

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

PhD data

Number of data

y
-s

o
rt

e
d

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

Abalone data

y

Number of data
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

5

10

15

20

25

30

Abalone data

y
-s

o
rt

e
d

Number of data

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Triazines data

Number of data

y

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Triazines data

Number of data

y
-s

o
rt

e
d

77

use of the SVM classifier with varying ε-tube produced good results for the spiky datasets

over other classifiers. On the other hand, the use of the SVM regressor produced good re-

sults using the smooth datasets comparing with other SVMs. The SVM classifier with k-

means discretization produced better results with the Triazines data set comparing with the

varying -tube and the SVM regressor as shown in Fig 4.10.

 There is one more challenging problem (actually a set of questions and some hints

regarding the theoretical properties of the novel approach in solving regression problems)

that arose by the results obtained, which is beyond the scope of this dissertation. Basically,

it concerns the theory of bounds for both the multi-class classification and regression prob-

lems. (The next remarks follow strictly

[Steinwart 2011]). First, there is a basic question

which arises naturally from the results obtained and it is whether, in general, the bounds on

classification are tighter than the ones on regression. (If so, in addition to showing better

experimental results, one may get strong theoretical support for using a classification ap-

proach when solving regression tasks). One may also be interested in some other theory-

based questions, such as whether it is easier to prove classification bounds or regression

ones.

 Some possible hints to the answers are as follows [Steinwart 2011]: The very

bounds we are talking about here usually refer to comparing the empirical error of our de-

cision function with its true error. (The other types of bounds used are usually called oracle

inequalities). Since the function classes in regression are typically somewhat larger by the

nature of the loss function, bounds in regression are often worse. However, there are some

exceptions, such as when the best predictor is in the hypothesis class and the loss is suffi-

78

ciently convex (e.g. square loss). In this case, regression bounds may be better. Note how-

ever that for general regression data sets it may be highly unlikely to get the predictor in

the hypothesis class.

 As for the easiness of proving the bounds, one thing is certain - good bounds are

always hard to prove, independent of whether they are for classification or regression.

Thus, one may state the arguments quite differently and compare combinatorial bounds (in

classification) vs. continuous ones (in regression). If the sharpness is not of primary inter-

est, then generic off-the-shelf bounds are typically straight-forward to apply, and the only

tricky part is the used complexity measure (VC-dimension, covering numbers,

Rademacher averages, ...). A somewhat unifying approach that can be implemented is the

McDiarmid inequality, which is based (after symmetrization) on Rademacher averages.

The latter can be bounded by several concepts such as VC dimension or covering numbers.

In the future, while answering some of the questions raised here, some techniques along

the lines of those described above can be found in the book on density estimation [Devroye

and Lugosi 2001]. As for the bounds in the multi-class classification problems (which is

the problem to solve after discretization of the continuous output values yi), multiclass

classification also requires a loss function, and in most cases the above techniques should

work. This is most likely the reason why nobody looked deeper into that question until

now. The issue of the bounds will be a matter of further theoretical investigation of the ap-

proach for solving regression problems as the classification tasks presented in this disserta-

tion; and their solutions will shed lights on the questions of whether to solve regression

problems as regression or as multiclass classification tasks

79

4.4 Conclusions

 This work shows how regression problems, after discretization, can be solved as

multiclass classification ones. SVM classifier and regressor are the modeling tools here.

Four slightly different methods of discretizations are introduced and compared. On aver-

age, the SVM classifier with varying ε-tube shows the best results. In addition to being bet-

ter regressors (although the differences in accuracy are not too big), the SVM classifiers

are also superior in terms of CPU times needed for training SVM. This is particularly pro-

nounced when the number of training data surpasses several thousand samples. In such

cases, one should rely on solving regression problems as multiclass classification tasks.

Based on the tendency of bounds in regression to be often worse than the ones in classifi-

cation, the proposed approach of solving regression problems as classification ones is quite

attractive from a theoretical point of view as well. This may well be one of the most im-

portant explorations in the future. The model comparisons have been done by implement-

ing double (nested) cross-validation i.e., resampling, structured as the two loop algorithm,

which is a very rigorous scheme for assessing models' performances. In such an experi-

mental environment, not all the data points available are used for both hyper-parameter de-

termination and accuracy estimation simultaneously. On the contrary, data for the

hyperparameter selection are strictly separated from the data for the accuracy estimation,

making this double cross-validation the only objective environment for the fair compari-

sons of different models. Thus, if the main goal is to compare different ML models on the

same data sets and under the same conditions, double cross-validation must be used, as

was done here.

80

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

The concept of the k-means
2
 algorithm in this dissertation is based on minimizing

the huge computational effort normally incurred with the application of the classical k-

means algorithm. The problem with the k-means algorithm is that it carries out the distance

computation between consecutive centers based on the full dataset. The choice of the initial

seeds or starting centers is usually arbitrary. This means that if the arbitrary locations are

somehow steered towards the final locations with less computational effort, then the final

tuning of the locations can be carried out with much less computational effort. This disser-

tation focuses on minimizing the computational effort in moving the seeds as close as pos-

sible towards the centers of the associated clusters using only a small portion of the full

dataset. The goal was accomplished by repeating the k-means steps twice using two differ-

ent sizes of data, hence the name "k-means
2
 algorithm". The first part of the computation is

carried out by selecting a small portion of the original dataset, transitioning the centers at a

much faster rate towards the final center locations. The k-means algorithm, in contrast, us-

es the whole dataset throughout the computation process. By virtue of the fast speed of

computation of the first stage, it is referred to as the fast phase. The condition imposed on

this stage is that the portion of data selected must ensure the existence of the same number

of clusters already present within the whole dataset. After the fast stage converges to the

final centers achievable in this phase, the second stage takes over starting from the fast

centers' final positions and uses the whole data set in the second, final, stage . It is clear

that in the second stage the movement of the centers will be at a much slower pace simply

81

because the whole data set is used, requiring a great amount of computational effort. This

is why the stage is referred to as the slow stage. The number of steps in the two stages dif-

fer in that the fast stage will undergo more iterations but at a faster rate than the slow stage,

which moves at a slower rate but with fewer steps and at a higher resolution. The choice of

the portion of the dataset in the fast stage depends largely on the size of the dataset itself. It

is reasonable to assume that large and ultra large data sets, for example, will provide suffi-

cient data with very small portions for the fast stage to be able to move the arbitrarily cho-

sen initial seeds well inside the clusters, while smaller datasets may not be able to provide

sufficient data for the fast stage to move the seeds appropriately inside the clusters. How-

ever, for small data sets there may not be a need to do the clustering in two stages anyway.

The role of the slow stage is actually to fine-tune the final locations of the centers.

 The second goal of this dissertation is to solve a regression problem using mul-

ticlass classification and to design the experimental environment for rigorous comparisons

of kernel models acting as both regressors and multiclass classifiers on the same data sets.

The transformation of regression into classification requires discretizing the regression

output vector y into several classes. Then a multiclass classification will be performed in

order to produce a model. The results obtained after transforming regression problems into

classification tasks are encouraging in terms of both the final accuracy that the models can

achieve and the CPU time needed for the training. For the twelve benchmarking data sets

selected for the study, two groups of regression problems arose: 'spikey' and 'smooth' ac-

cording to the output vector behavior. The SVM classifier with the varying ε-tube has

shown the best performance over the 'spikey' data sets. The SVM regressor, on the other

82

hand, has performed better over the 'smooth' datasets. As for the CPU time needed to finish

the training, SVM classifiers have shown better performances as well.

 The implementation of the k-means
2
 algorithm on a single machine is limited to the

size of the RAM and to the CPU speed. For example, if the size of the dataset is 20G then

the k-means method will take few days to complete the task. Therefore it is imperative to

apply the k-means
2
 method on a grid of parallel computers. This will take two lines of fu-

ture work. One suggestion for future work is the use of Hadoop (the free framework on

multi-computers). The second suggestion is the use of one or multiple GPUs.

 Possibly the most valuable extension of this work might and would be in the field of

developing theoretical insights about the bounds for both the multi-class classification and

regression problems. This research should give an answer to the question whether, in gen-

eral, the bounds on classification are tighter than the ones on regression. Such a work may

then shed more light on the experimental results obtained in this dissertation.

83

REFERENCES

[Alcock and Manolopoulos, 1999]

R. J. Alcock and Y. Manolopoulos, “Time-Series Similarity Queries Employing a Feature-

Based Approach,” 7th Hellenic Conference on Informatics. August 27-29. Ioannina,

Greece 1999.

[Arthur and Vassilvitskii, 2006]

Arhter, D. and Vassilvitskii, S.: “How Slow is the kMeans Method?”, SCG’06, Sedona,

Arizona, USA. (2006).

[Asuncion and Newman 2007]

A. Asuncion, D. J. Newman, “UCI ML Repository”,

[http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA, University of Califor-

nia, School of Information and Computer Science, 2007.

[Bradley and Fayyad, 1998]

Bradley, P. S. and Fayyad, U. M.: “Refining Initial Points for Kmeans Clustering”, Tech-

nical Report of Microsoft Research Center, Redmond, California, USA, (1998).

[Cutting, Karger, Pedersen and Tukey, 1992]

Cutting, D., Karger, D., Pedersen, J. and Tukey, J., ‘Scatter/gather: A cluster-based ap-

proach to browsing large document collections’, In Proceedings of the Fifteenth Annual

International ACM SIGIR Conference on Research and Development in Information Re-

trieval. Copenhagen, Denmark (Eds N. Belkin, P. Ingwersen and A. Pejtersen), pp. 318-

329, 1992, ACM Press.

[Delve 2008]

Delve, Data for Evaluating Learning in Valid Experiments,

[http://www.cs.toronto.edu/~delve], The University of Toronto, Toronto, Canada, 2008

84

[Devroye and Lugosi 2001]

L. Devroye, G. Lugosi, Combinatorial Methods in Density Estimation, Springer-Verlag,

208 p., 2001

[Elkan, 2003]

Elkan, C.: “Using the Triangle Inequality to Accelerate K –Means”. Proceedings of the

Twentieth International Conference on Machine Learning (ICML-2003), Washington DC,

(2003).

[Ester, et al., 1996]

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu (1996-). "A density-based al-

gorithm for discovering clusters in large spatial databases with noise". In Evangelos

Simoudis, Jiawei Han, Usama M. Fayyad. Proceedings of the Second International, Con-

ference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231.

ISBN 1-57735-004-9.

[Frank and Asuncion, 2010]

Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information

and Computer Science.

[Ganti et al, 1999]

Ganti, V.; Ramakrishnan, R.; Gehrke, J.; Powell, A.; French, J.; , "Clustering large datasets

in arbitrary metric spaces," Data Engineering, 1999. Proceedings., 15th International Con-

ference on , vol., no., pp.502-511, 23-26 Mar 1999

[Har-Peled and Sadri, 2005]

Har-Peled, S. and Sadri, B.: “How fast is the k-means method?”, Algorithmica, 41(3):185–

202, (2005).

[Harrison and Rubinfeld 1978]

D. Harrison, D. L. Rubinfeld, “Hedonic prices and the demand for clean air”, J. Environ.

Economics & Management, vol.5, pp. 81-102, 1978.

85

[Hodgson, 1988]

Hodgson, M. E.: “Reducing computational requirements of the minimum-distance classifi-

er”, Remote Sensing of Environments. 25, 117–128, (1988).

[Hsu and Lin, 2002]

Hsu, C.-W. and Lin, C.-J. (2002), “A simple decomposition method for support vector ma-

chines”, Machine Learning 46(1-3), 291–314.

[Huang, Kecman and Kopriva, 2005]

Te-Ming Huang, Vojislav Kecman, Ivica Kopriva, ‘Kernel Based Algorithms for Mining

Huge Data Sets’, November 22, 2005, Springer

[Jain, Murty and Flynn, 1999]

Jain, A. K., Murty, M. N. and Flynn, P. J., 'Data Clustering: A Review', ACM Computing

Surveys, Vol. 31, No. 3, September 1999

[Kanungo et al., 2002]

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A

local search approximation algorithm for k-means clustering. In Proc. 18
th

 Annu. ACM

Sympos. Comput. Geom., pages 10-18, 2002.

[Kaufman and Rousseeuw, 1990]

L. Kaufman and P. J. Rousseeuw, ‘Finding Groups in Data: An Introduction to Cluster

Analysis’, John Wiley & Sons, Inc., New York, NY, 1990

[Khan and Ahmed, 2004]

Khan, S. S. and Ahmed, A.: “Cluster center initialization for Kmeans algorithm. Pattern

Recognition” Letters, vol. 25, no. 11, pp. 1293-1302, (2004).

[Kecman and Yang 2009]

V. Kecman , T. Yang, Adaptive Local Hyperplane for Regression Tasks, Proc. of IJCNN

2009, IEEE International Joint Conference on Neural Networks, pp. 1566 – 1570, June 14

– 19, Atlanta, GA, USA, 2009

86

[Kurgan and Cios, 2004]

L. Kurgan, K.J. Cios, CAIM discretization algorithm, IEEE Transactions on Knowledge

and Data Engineering 16 (2) (2004) 145–153.

[Liaad, 2012]

Retrieved Feb 11, 2012, from http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

[Li, Salman, Test, Strack and Kecman, 2011]

Li Q., Salman R., Test E., Strack R., Kecman V., Parallel Multi-task Cross Validation for

Support Vector Machine Using GPU, Journal of Parallel and Distributed Computing,

Elsevier, DOI: 10.1016/j.jpdc.2012.02.011, to appear, 2012

[Li, Salman, Test, Strack and Kecman, 2012]

Li Q., Salman R., Test E., Strack R., Kecman V., GPUSVM: A Comprehensive CUDA

Based Support Vector Machine Package, Cent. Eur. J. Comp. Sci., Vol.1, No.1, pp. 1-22,

2011

[McQueen, 1967]

J. B. McQueen, “Some methods of classification and analysis in multivariate

observations,” in Proc. Of fifth Barkley symposium on mathematical statistics and

probability, pp. 281 - 297, 1967.

[Ng and Han, 1994]

R. Ng and J. Han, ‘Efficient and Effective Clustering Methods for Spatial Data Mining’,

Proceedings of International Conference on Very Large Data Bases, Santiago, Chile, Sept.

1994, pp.144−155.

[Pakhira, 2009]

Pakhira, Malay K.: “A Modified k-means Algorithm to Avoid Empty Clusters”. Interna-

tional Journal of Recent Trends in Engineering, Vol. 1, No. 1, May (2009).

[Princeton, 2012]

Retrieved Feb 11, 2012, from http://data.princeton.edu/wws509/datasets/#phd.

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html
http://data.princeton.edu/wws509/datasets/#phd

87

[Quinlan, 1993]

Quinlan, J., 'Combining instance-based and model-based learning', International Confer-

ence on Machine Learning, 1993, pp. 236-243

[Salman et al., a-2011]

Salman R., Kecman V., Li Qi, Strack R. and Test E., “Two-Stage Clustering with k-means

Algorithm,” WIMO 2011 Conference, Ankara, Turky, June 2011.

[Salman and Kecman, 2011]

Salman R., Kecman V., “The Effect of Cluster Location and Dataset Size on 2-Stage k-

means Algorithm”, 10th IEEE workshop on Electronics, Control, Measurement and Sig-

nals 2011, June 1-3, 2011

[Salman et al., b-2011]

Salman R., Kecman V., Li Qi, Strack R. and Test E., ‘FAST K-MEANS

ALGORITHMCLUSTERING’, International Journal of Computer Networks & Communi-

cations (IJCNC) Vol.3, No.4, July 2011

[Salman and Kecman, 2012]

Raied Salman and Vojislav Kecman,'Regression as Classification', IEEE Southeast Con

2012 conference, Orlando Florida, March 2012

[Steinwart 2011]

I. Steinwart, Personal communication, 2011

[Uci, 2012]

Retrieved Jan 10, 2012, from http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

[Vapnik, 1995]

Vapnik, V. N. (1995). The Nature of Statistic Learning Theory, Springer-Verlag, New

York.

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

88

[Wu, 2008]

Wu, F. X.: “Genetic weighted k-means algorithm for clustering large-scale gene expression

data”. BMC Bioinformatics, vol. 9, (2008).

[Yang and Kecman 2008]

T. Yang, V. Kecman, “Adaptive Local Hyperplane Classification”, Neurocomputing, 71,

pp.3001-3004, 2008.

[Yang and Kecman 2010]

T. Yang and V. Kecman, Machine Learning by Adaptive Local Hyperplane Algorithm:

Theory and Applications, VDM-Verlag, Saarbrücken, Germany, 2010

[Yeh 1998]

I-C. Yeh, “Modeling of strength of high performance concrete using artificial neural net-

works”, Cement and Concrete Research, Vol. 28, No. 12, pp. 1797-1808, 1998.

[Zhang, Ramakrishnan and Livny, 1996]

Zhang, T., Ramakrishnan, R. and Livny, M., ‘BIRCH: An efficient data clustering method

for very large databases’, In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pp. 103-114. 1996, ACMPress.

89

Vitae

Raied Salman received his first Ph.D. from Brunel University (England / UK) in

Electrical Engineering/Control Engineering in 1989. He received a Bachelor's degree in

Electrical Engineering and a Master's degree in Systems Engineering from The University

of Technology (Baghdad / Iraq). He also received a Diploma in Teaching from Auckland

University (Auckland/ New Zealand), majoring in Information Technology. He received

his second Ph.D. in Computer Science, from Virginia Commonwealth University (Rich-

mond, Virginia, U.S.A.), in the area of data mining.

Dr Salman has many years of teaching experience in the Computer Science and In-

formation Technology fields. His research interests include Machine Learning, Data Min-

ing, Support Vector machines, Clustering, Classification, and Artificial Intelligent.

	Virginia Commonwealth University
	VCU Scholars Compass
	2012

	CONTRIBUTIONS TO K-MEANS CLUSTERING AND REGRESSION VIA CLASSIFICATION ALGORITHMS
	Raied Salman
	Downloaded from

	YOUR NAME HERE

