
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2012

Quantitative Analysis of Multiple Charged Large
Molecules in Human or Rat Plasma Using Liquid
Chromatography Tandem Mass Spectrometry
Matthew Halquist
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Pharmacy and Pharmaceutical Sciences Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2702

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2702?utm_source=scholarscompass.vcu.edu%2Fetd%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Matthew S. Halquist, 2012 
All Rights Reserved



 

 
 

 

 

QUANTITATIVE ANALYSIS OF MULTIPLY CHARGED LARGE MOLECULES IN 

HUMAN OR RAT PLASMA USING LIQUID CHROMATOGRAPHY TANDEM MASS 

SPECTROMETRY 

 
A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 
 

By 
 

 
 

Matthew Sean Halquist 
Bachelor of Science, Biology Track, Virginia Commonwealth University 

Richmond, VA, 1998 
Minors in Forensics Science and Chemistry, Virginia Commonwealth University 

 
 

 
 
 
 
 

Director: H. Thomas Karnes, Ph.D. 
Professor, Department of Pharmaceutics 

 
 
 
 
 
 
 
 
 
 

Virginia Commonwealth University 
Richmond, Virginia 

April, 2012



 

ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This work is dedicated to my wife and children for their  
unconditional love, patience, and support. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

 
 

 

ACKNOWLEDGEMENTS 

 
First I would like to say many thanks to my advisor Dr. Tom Karnes for his constant 

support, advice, and scientific discussions over the years. Thank you for always settling my 
concerns and helping with everything. 

 
I also wish to express gratitude to all of my committee members for assistance and 

advice: Drs. Sarah Rutan, Michael Hindle, Don Farthing and Masahiro Sakagami. A special 
thank you to Dr. “Hiro” for all of his advice with pharmacokinetics. I appreciate the discussions 
and help with everything and making me take off my “hat”. 
 

A special thank you to Mrs. Keyetta Tate through the years for ordering and continuing 
support of all of the Bioanalytical Core Laboratory students. 

 
Thank you to the Bioanalytical Research Group, all other groups in the Pharmaceutics 

Department, and friends I have made while at VCU. Thank you to all of the Bioanalytical 
Research Group students, staff, and post-doctoral fellows who have endured many thinking out 
loud discussions by me: Marcela Araya, Yakun Chen, Kumar Shah, Omnia Ismaiel, Poonam 
Devaldia (and Renish), Morse Faria, John Miller, Angela Miller, and Brian Parris. Thank you to 
Dr. “Randy” James for his support, encouragement, and for leftover veggies from his garden. 

 
Again I have to thank my wife and children for enduring this long journey of a part-time 
graduate student, full time employee, father, and husband. I could not have done this without 
their support, patience, and encouragement. 
 
 
 
 
 
 
 

 
 

 

 

 

 



iv 
 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ................................................................................................... iii 

LIST OF TABLES........................................................................................................... .…..x 

LIST OF FIGURES ...............................................................................................................xii 

ABBREVIATIONS…………………………………………………………….…….............xv 

ABSTRACT………………………………………………………………………………….xviv 

CHAPTERS  

1. INTRODUCTION: QUANTITATIVE LIQUID CHROMATOGRAPHY TANDEM  

MASS SPECTROMETRY ANALYSIS OF MACROMOLECULES USING  

SIGNATURE PEPTIDES IN BIOLOGICAL FLUIDS……………………………….......1 

1.A INTRODUCTION……………………………………………………...……………..1 

1.A.1 SCOPE…………………………………………………………………………..7 

1.B SIGNATURE PEPTIDE SELECTION……………………………………………..7 

1.C PROTEIN PURIFICATION AND TRYPSIN DIGESTION..……………………10 

1.D PEPTIDE PURIFICATION……...………………….………………………………37 

1.E MULTIPLY CHARGED INTACT POLYPEPTIDE QUANTIFICATION……..44 

1.F INTERNAL STANDARD SELECTION AND QUANTITATIVE  

LC-MS/MS……………………………………………………………………………47 

1.G CONCLUSIONS…...…………………………………………………………………48 

2. DISSERTATION OBJECTIVES.......................................................................................51 



v 
 

3. QUANTIFICATION OF ALEFACEPT, AN IMMUNOSUPPRESSIVE FUSION 

PROTEIN IN HUMAN PLASMA USING A PROTEIN ANALOGUE INTERNAL 

STANDARD, TRYPSIN CLEAVED SIGNATURE PEPTIDES AND LIQUID 

CHROMATOGRAPHY TANDEM MASS SPECTROMETRY……………..……..…53 

 3.A   INTRODUCTION…………………………………………………………………...53 

3.B   EXPERIMENTAL…………………………………………………………………...57 

3.B.1. CHEMICALS AND REAGENTS……………………………………………...57 

3.B.2. MATERIALS AND EQUIPMENT…………………………………………….57 

3.B.3. INSTRUMENTS AND HPLC CONDITIONS………………………………...58 

3.B.4. MASS SPECTROMETER PARAMETERS…………………………………...60 

3.B.5. STOCK SOLUTION AND WORKING SOLUTION PREPARATION………61  

3.B.6. PREPARATION OF CALIBRATION STANDARDS AND QUALITY 

CONTROL SAMPLES IN HUMAN PLASMA………………………………………62 

3.B.7. SAMPLE PREPARATION……………………………………………………..63 

3.B.8. SELECTIVE PRECIPITATION (PARTIAL-PROTEIN PRECIPITATION 

EXTRACTION)………………………………………………………………………..64 

3.B.9 DIGESTION TIME STUDY…………………………………………………….65 

3.B.10 MATRIX EFFECTS EVALUATIONS AND RECOVERY…………………..66 

3.B.11 LINEARITY……………………………………………………………………67 

3.B.12 PRECISION AND ACCURACY……………………………………………...67 

3.B.13 SELECTIVITY…………………………………………………………………68 

3.B.14 STABILITY AND CARRYOVER…………………………………………….68 

3.C RESULTS AND DISCUSSION………………………………………………………69 



vi 
 

3.C.1 LC-MS/MS……………………………………………………………………….69 

3.C.2 SELECTIVE PRECIPITATION RESULTS (PARTIAL PROTEIN 

PRECIPITATION EXTRACTION)……………………………………………………73 

3.C.3 DIGESTION TIME………………………………………………………………77 

3.C.4 MATRIX EFFECTS RESULTS…………………………………………………79 

3.D METHOD VALIDATION…………………………………………………………….80 

3.D.1 LINEARITY AND LIMIT OF DETECTION…………………………………..80 

3.D.2. SELECTIVITY………………………………………………………………….82 

3.D.3 RECOVERY AND CARRYOVER……………………………………………..84 

3.D.4. PRECISION AND ACCURACY………………………………………………84 

3.D.5 STABILITY……………………………………………………………………...85 

3.E CONCLUSIONS……………………………………………………………………….85  

4.  DETERMINATION OF OXYNTOMODULIN, AN ANORECTIC POLYPEPTIDE, IN 

RAT PLASMA USING 2D-LC-MS/MS COUPLED WITH ION PAIR 

CHROMATOGRAPHY..........................................................................................................87 

4.A   INTRODUCTION……………………………………………………………………87 

4.B   EXPERIMENTAL……………………………………………………………………91 

4.B.1. CHEMICALS AND REAGENTS………………………………………………91 

4.B.2 MATERIALS AND EQUIPMENT………………………………………………92 

4.B.3 CHROMATOGRAPHY AND MASS SPECTROMETRY EQUIPMENT..........92 

4.B.4 CHARGE STATE DISTRIBUTION AND PRODUCT ION FORMATION 

STUDY OF OXYNTOMODULIN AND COMPARISON TO OTHER 

POLYPEPTIDES……………………………………………………………………….93 



vii 
 

4.B.5 OPTIMIZATION OF REVERSED PHASE ION PAIR 

CHROMATOGRAPHY………………………………………………………………..96 

4.B.6 GRADIENT METHOD FOR 2D-LC ANALYSIS OF OXYNTOMODULIN…97 

4.B.7 MASS SPECTROMETER PARAMETERS…………………………………….98 

4.B.8 STOCK SOLUTION AND WORKING SOLUTION PREPARATIONS……...99 

4.B.9 PREPARATION OF CALIBRATION STANDARDS AND QUALITY 

CONTROL SAMPLES IN RAT PLASMA……………………………………………100 

4.B.10 SAMPLE PREPARATION…………………………………………………….101 

4.C VALIDATION AND SAMPLE ANALYSIS………………………………………...101 

4.C.1 MATRIX EFFECTS EVALUATIONS AND RECOVERY……………………101 

4.C.2 LINEARITY……………………………………………………………………..102 

4.C.3 PRECISION AND ACCURACY………………………………………………..103 

4.C.4 SELECTIVITY…………………………………………………………………..103 

4.C.5 STABILITY EVALUATIONS AND CARRYOVER…………………………..104 

4.C.6 CROSS TECHNOLOGY VALIDATION OF OXM IMMUNOASSAY………104 

4.D RESULTS AND DISCUSSION………………………………………………………105 

4.D.1 MASS SPECTROMETRY OF OXYNTOMODULIN AND OTHER 

POLYPEPTIDES………………………………………………………………………105 

4.D.2 2D-LC-MS/MS USING REVERSED PHASE ION PAIR  

CHROMATOGRAPHY……………………………………………………………….113 

4.D.3 SAMPLE PREPARATION SELECTION AND OPTIMIZATION……………118 

4.D.4 VALIDATION RESULTS………………………………………………………119 

4.D.4a LINEARITY……………………………………………………………119 



viii 
 

4.D.4b SELECTIVITY…………………………………………………………122 

4.D.4c RECOVERY AND CARRYOVER……………………………………123 

4.D.4.d PRECISION AND ACCURACY……………………………………..124 

4.D.4e STABILITY AND INCURRED SAMPLE RE-ANALYSIS (ISR).......124 

  4.D.6 CROSS TECHNOLOGY IMMUNOASSAY VALIDATION  

RESULTS………………………………………………………………………125 

4.E. CONCLUSIONS………………………………………………………………………126 

5. DEMONSTRATING UTILITY OF LC-MS/MS: IN VIVO PHARMACOKINETICS OF 

OXYNTOMODULIN IN RATS FOLLOWING INTRAVENOUS AND PULMONARY 

ROUTES OF ADMINISTRATION………………………………………………................128 

5.A INTRODUCTION……………………………………………………………………..128 

5.B MATERIALS AND METHODS……………………………………………………...129 

5.B.1 MATERIALS…………………………………………………………………….129 

5.B.2 ANIMALS……………………………………………………………………….129 

5.B.3 IN VIVO ANIMAL STUDIES FOR OXM PHARMACOKINETICS 

FOLLOWING INTRAVENOUS INJECTION AND PULMONARY 

ADMINISTRATION……………………………………………………..……………130 

5.B.4 DETERMINATION OF OXM IN RAT PLASMA BY LC-MS/MS……………131 

5.B.5 PHARMACOKINETIC DATA ANALYSIS………………………………………132 

5.B.5.a NONCOMPARTMENTAL ANALYSIS……………………………………...132 

5.C RESULTS………………………………………………………………………………133 

5.C.1 NONCOMPARTMENTAL ANALYSIS OF OXM PLASMA PROFILES  

FOLLOWING INTRAVENOUS ADMINISTRATION………………………………133 



ix 
 

5.C.2 NONCOMPARTMENTAL ANALYSIS OF OXM PLASMA PROFILES 

FOLLOWING PULMONARY ADMINISTRATION…………………………………135 

5.D. DISCUSSION………………………………………………………………………….140 

5.D.1 PHARMACOKINETIC SUMMARY…………………………………………...140 

5.D.2 ANALYTICAL EFFECTS ON PHARMACOKINETICS OF 

OXYNTOMODULIN WITH DIFFERENT SPECIES………………………………...140 

5.D.3 COMPARISON OF OXYNTOMODULIN TO OTHER PEPTIDES FOLLOWING 

PULMONARY ADMINISTRATION IN RATS………………………………………143 

5.E. CONCLUSIONS………………………………………………………………………146 

6. SUMMARY AND OVERALL CONCLUSIONS………………………………………...147 

REFERENCES………………………………………………………………………………...154 

APPENDIX 1: CHARGE STATE DISTRIBUTION INTENSITY OF POLYPEPTIDES IN 

TWELVE SOLVENTS……..………………………………………………………………....169 

APPENDIX 2: NORMALIZED RAW DATA……..….………………………………….....182 

 
 

 
 
 
 

 

 

 

 

 

 



x 
 

LIST OF TABLES 

Table 1.1   Non-Antibody Based Quantitative Applications………………………………..12 

Table 1.2  Protein ImmunoPurification (Antibody-Based) Applications…………………..22 

Table 1.3  Peptide Immunoaffinity Applications…………………………………………...41 

Table 1.4  Recent Intact PolyPeptide Applications…………………………………………44 

Table 3.1  Selected Reaction Monitoring (SRM) Transitions and Selected Parameters……61 
 
Table 3.2  Multiple Source Matrix Effect Evaluation, with each human plasma lot analyzed  

n =3.…..………………………………………………………………………….80 
 
Table 3.3  Reverse predicted concentrations for alefacept calibration standards 

(ng/mL)…………………………………………………………….…………….81 
 
Table 3.4  Inter and Intra-assay Precision and Accuracy..………………………………….85 
 
Table 4.1  Twelve Solvent Mixtures used in charged state distribution evaluation of 

polypeptides……………………………………………………………………..94  
 
Table 4.2  Selected reaction monitoring (SRM) transitions and selected mass spectrometer 

parameters of OXM and OXMIL…………………………………………………99 
 
Table 4.3  Results of charge state distribution as a result of solvent mixtures following mass 

spectrometer optimization. Note that PTH, Leptin, and Myoglobin did not form 
product ions (NPIF) for any solvent at the concentration infused (5 µg/mL)……110 

 
Table 4.4  Reverse predicted concentrations for oxyntomodulin calibration standards 

(ng/mL).………………………………………………………………………...121 
 
Table 4.5  Inter and Intra-assay Precision and Accuracy………………………………….124 
 
Table 5.1  Noncompartmental pharmacokinetic parameters following intravenous bolus 

injection of oxyntomodulin at 0.05 mg/kg in rats (n=4)………………………..135 
 
Table 5.2  Noncompartmental pharmacokinetic parameters following pulmonary  

administration of oxyntomodulin at 0.05 mg/kg in rats (n=4)..………………..137 
 

Table 5.3  Noncompartmental pharmacokinetic parameters following pulmonary  
administration of oxyntomodulin at 0.5 mg/kg in rats (n=4)...…………………137 
 

Table 5.4  Pharmacokinetic parameters of oxyntomodulin in various species…………….144 
 



xi 
 

Table 5.5  Comparison of similar peptide physical characteristics that have employed 
pulmonary delivery in rats…….....……………………………………………..145 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



xii 
 

LIST OF FIGURES 
 
Figure 1.1  Example of an MRM transition (LFTGHPETLEK → ETLEK) of horse heart 

myoglobin signature peptide in a triple quadrupole mass spectrometer.  
Note: ESI+ is positive electrospray ionization, CEM = channel electron 
multiplier………………………………………………………………………...3    

 
Figure 1.2.  Hyphenated techniques are illustrated as a seven step process:  1) In Silico 

signature peptide prediction and modeling 2) In silico MRM peptide transition 
modeling coupled with real mass spectra 3) protein purification 4) enzymatic 
digestion 5) signature peptide purification 6) incorporation of an isotope labeled 
internal standard peptide or protein 7) quantitative LC-MS/MS using MRM 
transitions for signature peptide(s) and internal standard(s)……………………6 

 
Figure 3.1  Gradient conditions are plotted for mobile phases A, B, and C………………...59 
 
Figure 3.2  Schematic of the overall instrument set-up including column trapping  

Plumbing………………………………………………………………………...60 
 
Figure 3.3  Representative chromatograms of (A) blank human plasma monitoring alefacept 

SRM: 597→894, (B) blank human plasma monitoring myoglobin SRM: 
636→716, (C) extracted LLOQ (250 ng/mL) monitoring alefacept SRM: 
597→894, (D) myoglobin signature peptide internal standard monitoring SRM: 
636→716…….... ………………………………………………………………..72 

 
Figure 3.4  Alefacept (monitored SRM: 597→894) and myoglobin (monitored SRM: 

636→716) peak areas following a partial precipitation using pH 5.1 and 45˚C in 
deionized water. Data represent mean±SD, with samples n =3….……………...74 

 
Figure 3.5  Three-dimensional graph of Alefacept (monitored SRM: 597→894) peak area 

response versus pH (3.0. 4.7, and 5.1) and temperature (22, 37, 45, 65, and 95˚C). 
Data shown represent mean±SD with samples n =3.…...………………………..76 

 
Figure 3.6  Three-dimensional graph of human serum albumin (HSA), (monitored SRM: 

575→937) peak area response versus pH (3.0. 4.7, and 5.1) and temperature (22, 
37, 45, 65, and 95˚C). Data shown represent mean±SD with samples n =3.…….76 

 
Figure 3.7  Maximum response of target proteins (Alefacept and myoglobin) monitoring 

signature peptides and minimum response of background proteins 
(immunoglobulin-IgG, transferrin, and human serum albumin-HSA) with optimal 
precipitation conditions of pH 5.1 and 45˚C. Data shown represent mean±SD 
error bars generated from samples n =3 …………………………………………77 

 
 
 



xiii 
 

Figure 3.8  Incubation time for trypsin digestion results for LQC (600 ng/mL), MQC (2000 
ng/mL), HQC (8000 ng/mL), and internal standard (ISTD) signature peptide peak 
area response with standard deviation error bars. Data represent QC’s extracted n 
=3 and internal standard response with each respective digestion time 
point………………………………...….………………………………………...78 

 
Figure 3.9  Comparison of relative standard deviation of 4 hr and 20 hr incubation times for 

trypsin digestion for each quality control and internal standard 
response.…………………………………….……………………………………79 

 
Figure 3.10  (A) alefacept monitored signature peptide 1 (AMSP1: 597→652), (B) alefacept 

quantitative signature peptide (AQSP: 597→894), (C) alefacept monitored 
signature peptide 2 (AMSP2: 597→781), (D) myoglobin internal standard 
signature peptide (ISTD: 636→716).……………………………………………83 

 
Figure 4.1  Sample preparations PPE, SPE, 2DLC/SPE, and IAP considerations scaled 

  in order from least to most for cost, difficulty, and method development time…89 
 

Figure 4.2 Experimental schematic of charge state distribution experiment for polypeptides. 
Each peptide was diluted into  mixtures at 5 µg/mL, placed into a 1 mL syringe, 
and infused at 10 µL/minute coupled with mobile phase at a flow of 200 µL/min. 
with 80% 0.1% formic acid in acetonitrile (ACN) and  
0.1% formic acid (FA)…………………………………………………………...95 

 
Figure 4.3  Mass Spectrum illustrating charge state distribution of OXM in solvent 3  

(25:74:1 ACN:H2O:3-NBA)……………………………………………………107 
 

Figure 4.4  Product Ion spectrum for the OXM +8 charge state precursor ion (557 m/z)….112 
 
Figure 4.5  Assessment of pH adjustment to mobile phase containing 3-NBA versus mean 

peak area response of oxyntomodulin (monitored SRM: 636.9→666.9 m/z), with 
samples injected n =3 Data shown are mean±SD (with standard deviation error 
bars)..……………………………………………………………………………114 

 
Figure 4.6  OXM (monitored SRM: 636.9→666.9 m/z) mean peak area response versus 

percent 3-NBA (or mM) in the final sample solvent extract. Data shown are 
mean±SD (with standard deviation error 
bars)…………………………………………………………………………….115 

 
Figure 4.7  Representative chromatograms of the (A) lower limit of quantification of OXM (1 

ng/mL), monitoring SRM: 636.9→666.9 m/z , (B) OXMIL isotope labeled internal 
standard, monitoring 642.3→676.6 m/z (B), (C) rat sample dosed with OXM 
monitoring SRM: 636.9→666.9 m/z…………………………………………...117 

 



xiv 
 

Figure 4.8  Representative blank rat plasma chromatograms of  (A) OXM, monitoring SRM: 
636.9→666.9 m/z  and (B) OXMIL isotope labeled internal standard, monitoring 
642.3→676.6 m/z…………………………..…………………………………..118 

 
Figure 4.9  Post-column infusion profiles of oxyntomodulin (A) and phospholipids (B)…123 
 
Figure 5.1  Oxyntomodulin (OXM) concentration in plasma vs. time profile following 

intravenous bolus (IV bolus) injection at 0.05 mg/kg in individual rats with  
n =4……………………………………………………………………………..134 

 
Figure 5.2  Oxyntomodulin (OXM) concentrations in plasma vs. time profiles following 

intratracheal instillation (IT) at 0.05 mg/kg (Rats 2, 8, 9, and 10 ) and 0.50 mg/kg 
(Rats 1, 11, 12, and 13) in individual rats with n =4…………………………...136 
 

Figure 5.3  Oxyntomodulin (OXM) concentration in plasma vs. time profiles following 
intravenous bolus injection (IV) at 0.05 mg/kg (n =4), and intratracheal 
instillation (IT) at 0.05 mg/kg (n =4) and 0.50 mg/kg (n =4) in rats on A) linear 
and B) semi-log scales. The solid lines are plotted by linear interpolation. Note: 
Only two rats had results at 90 minutes for IV and IT dose (0.5 mg/kg) Data 
represent mean±SD……………………………………………………………..139 

  



xv 
 

ABBREVIATIONS 
2D   two-dimensional  

2D-LC  two-dimensional liquid chromatography 

3-NBA  3-nitrobenzyl alcohol 

Å   angstrom  

Ab   antibody 

ACN  acetonitrile 

ANOVA  analysis of variance 

APCI  atmospheric pressure chemical ionization 

BSA  bovine serum albumin 

CA  California 

CAD  collision activated dissociation 

CE  collision energy 

CEM  channel electron multiplier 

CXP  collision exit potential 

Da  Dalton(s) 

DIGE   Difference in gel electrophoresis  

DRAD  denaturation, reduction, alkylation, and digestion  

DP  declustering potential 

EP  entrance potential 

ESI+   positive electrospray 

FA  formic acid  

FDA   Food and Drug Administration 

GS1  gas one 



xvi 
 

GS2  gas two 

H2O  water 

HCl  hydrochloric acid 

HILIC   hydrophilic interaction chromatography 

HLB  hydrophilic lipophilic balanced 

HPLC  high performance liquid chromatography 

HQC  high quality control 

HRP  horse radish peroxidase 

IA  Iowa 

IF  infusion 

IGF-1  insulin growth factor 

IPA   isopropanol 

IT  intratracheal instillation 

IV  intravenous 

kDa   kilodalton  

LC-MS/MS  liquid chromatography tandem mass spectrometry 

LC-MS liquid chromatography mass spectrometry 

LLOQ  lower limit of quantification 

LQC  low quality control 

MA  Massachusetts 

MACsz most abundant charge state 

MAX  mixed mode anion exchange 

MCX  mixed mode cation exchange 



xvii 
 

MeOH  methanol 

MI  Michigan 

mM  millimolar 

MO  Missouri 

MP A  mobile phase A 

MP B  mobile phase B 

MP C  mobile phase C 

MQC  medium quality control 

MRM   multiple reaction monitoring 

MWCO molecular weight cut-off 

NPIF  no product ion formed 

OXM   oxyntomodulin 

PC-IDMS  protein cleavage isotope dilution mass spectrometry 

pI  isoelectric point 

PPE  protein precipitation extraction 

PTH  parathyroid hormone 

PYY1-36 Polypeptide tyrosine tyrosine 1-36 

PYY3-36 Polypeptide tyrosine tyrosine 3-36  

PTM   post-translational modification 

Q1  first quadrupole 

Q2  second quadrupole 

Q3  third quadrupole 

SI  subcutaneous injection 



xviii 
 

SPE  solid phase extraction  

SRM   single reaction monitoring 

STD  standard (calibration) 

TFA  trifluoroacetic acid 

TMB  3,3′,5,5′-tetramethylbenzidine 

UPLC  ultra pressure liquid chromatography 

WCX  weak cation exchange

 
 

 



 
 

 

 

ABSTRACT 

 

QUANTITATIVE ANALYSIS OF MULTIPLY CHARGED LARGE MOLECULES IN 
HUMAN OR RAT PLASMA USING LIQUID CHROMATOGRAPHY TANDEM MASS 
SPECTROMETRY 
 

By Matthew Sean Halquist, B.S. 
 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University 

 
Virginia Commonwealth University, 2012 

 
Major Director: H. Thomas Karnes, Ph.D. 

Professor 
Department of Pharmaceutics, School of Pharmacy 

 

 

 

Immunoassays have traditionally been employed for the determination of plasma 

concentration-time profiles for pharmacokinetic studies of therapeutic proteins and peptides.  

These ligand binding assays have high sensitivity but require significant time for antibody 

generation (1 to 2 years) for assay development. Despite high sensitivity, these assays suffer 

from cross-reactivity that can lead to inaccurate results. As an alternative to immunoassays, this 

dissertation was focused on the development and validation of assays that can be used for 

quantitative analysis of peptides or proteins in plasma using liquid chromatography tandem mass 

spectrometry (LC-MS/MS).



 
 

Two approaches were considered for measurement of proteins and peptides fortified in 

plasma. The first approach involved employing signature peptides as quantitative surrogates of a 

target protein. This approach is a multistep process that includes: computer simulated (in silico) 

peptide predictions, protein purification, proteolytic digestion, peptide purification, and 

ultimately mass spectrometry. Signature peptides were determined through in silico peptide 

predictions and iterative tuning processes to represent Amevive® (Alefacept), a therapeutic for 

psoriasis, for quantification in human plasma. Horse heart myoglobin was chosen as a protein 

analogue internal standard to compensate for errors associated with matrix effects and to track 

recovery throughout the entire sample pretreatment process.  Samples were prepared for analysis 

by selective precipitation of the target proteins with optimized pH and heat conditions followed 

by enzymatic digestion, dilution, and filtration. Combining selective precipitation and protein 

analogue internal standard lead to a method validated according to current FDA guidelines and 

achieved a linear range (250-10,000 ng/mL) suitable for monitoring the therapeutic levels of 

Alefacept (500 -6000 ng/mL) without the use of antibodies.   

A second approach exploited the mass spectrometric behavior of intact polypeptides. A 

polypeptide can exist in multiple charge states separated by mass to charge ratio (m/z). Herein, 

the charge state distribution and the formation of product ions to form selected reaction 

monitoring (SRM) transitions for intact polypeptide quantitative analysis was evaluated in 

plasma. Oxyntomodulin, a 37 amino acid anorectic peptide (4449 Da), was employed as a model 

for analysis in rat plasma. The +7 charge state form of OXM was used to form an SRM for 

quantitative analysis. Two-dimensional reversed phase ion pair chromatography, a modified 

solid phase extraction, and a multiply charged SRM of oxyntomodulin enabled a lower limit of 



 
 

quantification of 1 ng/mL. Following development of the LC-MS/MS method, a validation of 

this approach was performed according to FDA guidelines. 

Finally, to show further utility of LC-MS/MS, the validated oxyntomodulin method was 

used in a pharmacokinetic study with sprague-dawley rats. Rats were dosed with oxyntomodulin 

through intravenous or intratracheal instillation routes of administration. Plasma concentration-

time profiles were determined. Using these profiles, noncompartmental parameters were 

determined for each dose and routes of administration. 
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CHAPTER 1 
 
 
 

INTRODUCTION: QUANTITATIVE LIQUID CHROMATOGRAPHY TANDEM MASS 
SPECTROMETRY ANALYSIS OF MACROMOLECULES USING SIGNATURE 

PEPTIDES IN BIOLOGICAL FLUIDS 
 

Drawn from manuscript published in Biomed Chromatogr. 2011 Jan;25(1-2):47-58 
 

 

 

1.A INTRODUCTION 

The last two decades of proteomics investigations have fueled a need to transform 

qualitative research into quantitative analysis of macromolecules. Exploration of the human 

proteome has provided information about potential biomarkers and protein therapeutics and we 

are now in need of translation to quantitative measurement for these important proteins. 

Approximately 130 peptide or protein therapeutics have been approved by the Food and Drug 

Administration (FDA) (Leader et al., 2008). Continuing this trend will require quantitative 

methodologies that have been proven to be sensitive, selective, and reliable. Historically, 

immunoassays such as enzyme-linked immunosorbent assays (ELISA) have been employed for 

the quantitative determination of peptides and proteins in biological matrices. Unfortunately, the 

obstacles associated with this technique are significant. Method development time can exceed 1 

year for antibody screening and production, and costs range from $100,000 to $2,000,000 

(Whiteaker et al., 2007). Furthermore, the inability to produce multiple antibodies for selective 

recognition in sandwich immunoassays can result in falsely elevated results due to cross 

reactivity. This is particularly a problem in drug development due to drug metabolites which may 
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or may not be active but that resemble the target protein or peptide very closely structurally. The 

use of liquid chromatography tandem mass spectrometry (LC-MS/MS) has been established as 

the gold standard for small molecules and is gradually developing into an attractive alternative 

for large molecule quantification. The limited range of a triple quadrupole mass spectrometer 

typically requires proteolytic digestion of the target protein to be carried out followed by 

quantification of selected signature peptides. These signature peptides are employed as 

surrogates for the protein of interest for quantification purposes. Since Gerber et al coined the 

absolute quantification (AQUA) strategy in 2003(Gerber et al., 2003), employing signature 

peptides for protein quantification has grown significantly. A key advantage with this 

methodology over immunoassays, in addition to the selectivity advantage mentioned earlier, is 

the ability to more easily quantify multiple proteins, and therefore provide simultaneous 

biomarker screening. This technique uses the selectivity provided by a mass spectrometer 

through scanning multiple precursor ions and their product ions concurrently, which is known as 

multiple reaction monitoring (MRM). Figure 1 represents the overall process of multiple reaction 

monitoring of signature peptides in a triple quadrupole mass spectrometer using a horse heart 

myoglobin signature peptide as an example (peptide transition sequence: LFTGHPETLEK → 

ETLEK [+2/y6] or 636→716).
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Figure 1.1 Example of an MRM transition (LFTGHPETLEK → ETLEK) of horse heart myoglobin signature peptide in a triple 
quadrupole mass spectrometer. Note: ESI+ is positive electrospray ionization, CEM = channel electron multiplier.    
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In silico processes can predict the peptide sequence, charge state of the signature peptide, and 

product ions, which will be discussed in more detail later. Following optimization of tuning 

parameters for the ionization source and mass analyzer, samples are injected into the sample inlet 

to undergo ionization typically using positive electrospray ionization (ESI+). Following 

ionization, the myoglobin signature peptide will be mass filtered by scanning only for the 

precursor and product ions. The first quadrupole (Q1) mass filters the myoglobin precursor ion 

(LFTGHPETLEK, or 636). The second quadrupole (Q2), also known as the collision cell, 

focuses and transmits the ions while introducing a collision gas and energy (v) and therefore 

causing fragmentation of the precursor ion. The third quadrupole (Q3) serves to analyze the 

fragment ions generated in (Q2). Finally the ions which have been simultaneously scanned reach 

the detector, normally a channel electron multiplier, and computer data are generated.    

 Multiple reaction monitoring based measurements of proteins has emerged as a 

promising technology for biomarker validation and pharmacokinetic studies for biologics 

(protein therapeutics) in biological fluids. Most of these studies are performed with blood plasma 

as the matrix of choice because majority of proteins exist in plasma, and nearly all cells in the 

body communicate chemically through plasma (Anderson et al., 2004). The complexity of 

plasma, however,  which contains many proteins with a broad concentration range of 

approximately  ten orders of magnitude (Anderson et al., 2004), requires extensive purification. 

In order to achieve maximum sensitivity and selectivity, purification of the target protein and /or 

its signature peptides should be considered. Selection of signature peptides is the most critical 

process in order to obtain a unique peptide(s) to represent the target protein. Integration of these 

processes results in hyphenated techniques needed to ultimately quantify target proteins. There 

are actually seven critical steps associated with signature peptide based quantification of 
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proteins. These seven steps as illustrated in Figure 1.2 are: 1) In Silico signature peptide 

prediction and modeling 2) In silico MRM peptide transition modeling coupled with real mass 

spectra 3) protein purification 4) enzymatic digestion 5) signature peptide purification 6) 

incorporation of an isotope labeled internal standard peptide or protein 7) quantitative LC-MS-

MS using MRM transitions for signature peptide(s) and internal standard(s). 
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Figure 1.2. Hyphenated techniques are illustrated as a seven step process:  1) In Silico signature 
peptide prediction and modeling 2) In silico MRM peptide transition modeling 
coupled with real mass spectra 3) protein purification 4) enzymatic digestion 5) 
signature peptide purification 6) incorporation of an isotope labeled internal standard 
peptide or protein 7) quantitative LC-MS/MS using MRM transitions for signature 
peptide(s) and internal standard(s). 
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1.A.1 SCOPE 

The scope of this introduction will be related to current strategies to achieve maximum 

sensitivity and selectivity for the quantification of macromolecules using a variety of sample 

preparation techniques coupled to triple quadrupole mass spectrometers. Additionally, 

approaches such as protein cleavage isotope dilution mass spectrometry (PC-IDMS), 

immunoaffinity purification of proteins, and immunoaffinity purification of peptides will be 

discussed and representative applications that contain quantitative analysis will be shown.  

 

1.B SIGNATURE PEPTIDE SELECTION 

Selection of signature peptides has been thoroughly discussed previously (Kirkpatrick et 

al., 2005; Mallick et al., 2007; Picotti et al., 2008; Sherman et al., 2009a; 2009b) .Nonetheless, it 

is the most critical of the  steps in quantitative analysis of target proteins and it is necessary to 

provide an overview of the process. Multiple steps are necessary in order to use surrogate 

peptides for quantitative analysis of proteins. Initially, the selections of surrogate peptides are 

predicted through modeling and proteomic experimental data. Algorithmic steps produce 

theoretical cleaved peptides following an in silico digest. The serine endopeptidase trypsin is 

normally selected for enzymatic digestion due to its selective hydrolysis of peptide bonds only 

following the positively charged amino acid residues lysine or arginine (Evnin et al., 1990; Olsen 

et al., 2004). Signature peptides produced from trypsin digestion, undergo iterative processes to 

achieve a unique surrogate. The protein sequence or unique identifier for a sequence (accession 

number) is entered into software that simulates theoretical cleavage of the protein with trypsin. 

User defined criteria are considered prior to the in silico digestion. Tryptic peptides containing 

amino acid residues with potential post-translational modification (PTM) sites are avoided due to 
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a potential change in peptide mass that would affect reproducible quantification. Cysteine, 

methionine, and tryptophan are amino acid residues where oxidation can take place; therefore, 

reproducibly measuring peptides containing these amino acids may be difficult (Anderson, 

Anderson et al., 2004). Peptide Cutter is characterization software that predicts cleavage 

probability by proteases or chemicals for a given protein sequence. The sequences are entered 

into this site (http://www.expasy.org/peptide_cutter/) to help determine yield of signature 

peptides following enzymatic digestion. UniProt (http://www.uniprot.org/) and Ensembl genome 

browser (http:www.ensemble.org/) are databases that provide unique searching tools and data for 

polymorphisms and PTM’s for several proteins that assist in selection of signature peptides. 

Exploration of databases may also include sequence similarity searches in databases such as the 

Basic Local Alignment search Tool (BLAST- http://blast.ncbi.nlm.nih.gov/) which offers 

theoretical predictions of homologous sequences that prove to be common and not sufficient for 

a signature peptide. Obtaining unique peptides for quantification even with database results may 

still require more examination. For example, a signature peptide may misrepresent a protein 

containing isobaric masses leucine and isoleucine in a peptide sequence. The sequence 

evaluation results in BLAST may indicate a unique peptide; however, the mass-to-charge of the 

peptide(s) could be the same (Sherman et al., 2009a). Tandem mass spectrometry would 

compensate for this similarity in the precursor ion by having a different product ion, which will 

be a different mass-to-charge. In silico investigation should ideally produce at least one 

candidate signature peptide after careful investigations using amino acid residue criteria, PTM 

criteria, and sequence similarity searches.  Sherman et al. used computer simulations to achieve a 

unique ion signature in two proteomes, which revealed detection of at least one peptide in >99 

and >96% of the E. coli and human proteomes, respectively (Sherman et al., 2009b) 
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Subsequent to the in silico process, mass spectra are evaluated in order to maximize 

selectivity of MRM’s, optimize sensitivity, and avoid false peptide assignments. When tuning for 

signature peptides from a protein digest, this data will disclose the frequently missed cleavage 

sites from trypsin digestion (Picotti et al., 2008), but when present in spectra, the ion intensity is 

normally lower than the model predicted signature peptides. Therefore, mass spectrometer 

parameters are slowly ramped (i.e. declustering potential) to locate and avoid loss of peptides. 

Acquisition of signature peptides requires a significant amount of computational simulations 

coupled with analysis of actual mass spectra. Selection of MRM transitions is the next step in 

this process. The predecessor to MRM, single reaction monitoring (SRM), may not be 

compatible with signature peptide quantification given the high probability of homologous 

precursor ions and a lack of diagnostic fragment b and y ions (Sherman et al., 2009a) for an 

individual signature peptide. Fragmentation patterns of a peptide are based on primary sequence, 

internal energy, and charge state. The nomenclature originated by Roepstorff and Fohlman 

identified positively charged product ions on the N-terminus and C-terminus of the sequence as 

a, b, or c and x, y, or z ions, respectively (Roepstorff et al., 1984). These ions must carry at least 

one charge, and nomenclature depends upon the location of the fragment of the peptide 

sequence. Although, the most abundant product ions of signature peptides primarily determines 

MRM  selections, exploration and monitoring of more than one transition is needed to optimize 

selectivity for quantification. A recent multi-laboratory evaluation of signature peptide 

quantification of target proteins using MRM-based measurements has been published (Addona et 

al., 2009). In this study, Addona et al. advocate monitoring peptides at least three MRM 

transitions per analyte (target protein) to ensure assay specificity and observe any discrepancies 

related to interferences and matrix effects from digested plasma. Producing more than one MRM 
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transition, either from the same precursor or multiple precursor ions, is a significant challenge for 

quantitative analysis of macromolecules using signature peptides in biological fluids. Employing 

empirical processes in silico and multiple investigations of selectivity, matrix effects, and 

recovery will improve the probability of achieving a useful method.  

 

1.C PROTEIN PURIFICATION AND TRYPSIN DIGESTION 

Target protein purification prior to enzymatic digestion will likely be necessary to 

achieve sufficient quantification limits for biomarker validation and pharmacokinetic studies of 

therapeutic proteins in complex matrices such as plasma. Various purification strategies have 

been explored prior to enzymatic digestion but much of the current literature does not employ 

purification procedures for target proteins prior to digestion in biological fluids. Most studies 

employ a direct assay approach known as protein cleavage isotope dilution mass spectrometry 

(PC-IDMS). This methodology involves quantification based on the ratio of an isotope labeled 

peptide internal standard and the “natural” or un-labeled signature peptide(s) analyzed 

(Deleenheer et al., 1992), which will be discussed in detail with internal standard selection 

below. This direct assay approach produces signature peptides through DRAD (denaturation, 

reduction, alkylation, and digestion). Initially, target proteins fortified in biological fluids will 

undergo denaturation (i.e., chaotrope such as 6 M urea), followed by reduction with dithiothreitol 

(DTT) to prevent intramolecular and intermolecular disulfide bonds from forming between 

cysteine residues of proteins, alkylation with iodoacetic acid for modifying  sulfhydryl group 

(SH-groups or thiols) to prevent the re-formation of disulfide bonds  and finally a trypsin 

digestion before any purification is performed. Table 1.1 (Non-Antibody Based Quantitative 

Applications) offers a comprehensive list of these methods from the literature. Table 1.2 (Protein 
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ImmunoPurification (Antibody-Based) Applications) provides a list of methods that have 

specifically used molecular recognition (antibody-based methods) for purification of target 

proteins which will be discussed later in this section. 
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Table 1.1 Non-Antibody Based Quantitative Applications 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL or as 

reported) Sample preparation/comments Reference

Human 

growth 

hormone 

22.1 State 1 fmol/L (0.022 

ng/mL), but data only 

shown for 16 ng/mL 

Direct assay approach without multi-dimensional purification 

in human plasma (spike 16 µg/µL of HgH into plasma). 

(Wu et al., 

2002)

C-reactive 

protein 

(CRP) 

25.0  0.025 ng/mL* 1 mL serum: Selective removal of human serum albumin, 

immunoglobulin, haptoglobin using tandem affinity columns, 

followed by reduction and alkylation. Then samples 

underwent fractionation of serum by SEC, trypsin digestion, 

addition of synthetic internal standard. * Endogenous CRP is 

approximately 1 µg/mL; this LLOQ was determined based on 

an internal standard. 

(Kuhn et al., 

2004)
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Somatropin 22.0 500 ng/mL 10 µL plasma: Following DRAD, two-dimensional solid 

phase extraction using reversed phase (SPEC C18) and 

strong cation exchange (Waters Oasis MCX) SPE was 

perfomed for samples. 

(Yang et al., 

2007)

Growth hormones IGF-

1 and IGFBP-3 

17.0 

31.6 

4000 ng/mL 

2000 ng/mL 

100 µL serum: Direct assay approach without multi-

dimensional purification in human serum. 

(Kirsch et 

al., 2007)

alcohol dehydrogenase 

ADH1C1 

39.0 ~2.3 ng* 550 µL human liver sample: Direct assay approach 

without multi-dimensional purification. *Quantification 

was based on the heavy labeled ADH1CQ peak area 

versus concentration, not protein standardization. 

(Janecki et 

al., 2007)
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) 

(ng/mL or as 

reported) Sample preparation/comments Reference

Tenecteplase 58.7 2700 ng/mL 25 µL rat plasma: Direct assay approach without multi-

dimensional purification. 

(Buscher et 

al., 2007)

ceruloplasmin 122 200,000 ng/mL 3-mm punch dried blood spots: Following DRAD, digests 

were precipitated using cold acetonitrile and concentrated in 

0.1% formic acid. 

(Dewilde et 

al., 2008)

Therapeutic 

monoclonal antibody 

~125 5000 ng/mL 50 µL serum: Following DRAD, digests were cleaned up 

using strong cation exchange (Waters Oasis MCX) SPE. 

Pharmacokinetic and correlation data to enzyme linked 

immunosorbent assay (ELISA) are presented. 

(Heudi et 

al., 2008)
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

45 proteins in human 

plasma 

varies 15 to 25,919 

amol/L given for 

signature peptides* 

5 µL plasma. Following DRAD, signature peptide 

internal standards were added, and digests were cleaned 

up using Waters Oasis HLB reversed phase SPE*LLOQ 

and linearity was not based on proteins spiked into 

plasma. Trypsin digestion was performed first, then 

standardized for each protein. 

(Kuzyk et 

al., 2009) 

Urinary albumin ~65.0 3130 ng/mL (based 

on external 

calibration curve) 

Purified human serum albumin (HSA) was added to 

charcoal stripped urine for calibration. 15N-labeled HSA 

was added to calibrators, quality controls, and samples 

using 40 µL urine.  Direct assay approach without multi-

dimensional purification. 

(Seegmiller 

et al., 2009) 
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Prostate specific 

antigen 

28.7 4.5 ng/mL 100 µL serum: Following DRAD, samples were spiked 

with peptide internal standard and digested samples 

were cleaned up using Waters Oasis HLB reversed 

phase SPE. Employment of MRM cubed (MRM3) was 

used to improve sensitivity on a quadrupole linear ion 

trap QTRAP 5500. MRM3 involves the signature peptide 

is first scanned in Q1, and then fragmented in the 

collision cell (Q2). Fragment ions are then trapped in the 

linear ion trap, followed by excitation to perform a 

second fragmentation. These secondary fragment ions 

are scanned to the detector. 

(Fortin, et 

al., 2009)
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Table 1.1 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Pegylated-

interferon- 2a 

~60 3.6 ng/mL 200 µL serum: Following denaturation, reduction, and 

alkylation, samples were acidified and loaded onto SPEC C18 to 

perform SPE. After digestion, samples were cleaned-up using 

Waters Oasis MCX strong cation exchange SPE. 

(Yang et al., 

2009)

12 proteins 

evaluated 

multi-site 

reproducibility 

varies N/A-not intended 

for sensitivity 

evaluation 

Study 3 revealed an acceptable quantification procedure by 

spiking target proteins directly into plasma. Following DRAD, 

signature peptide stable isotope internal standards were added. 

Samples then underwent SPE prior to LC-MS/MS.  

(Addona et 

al., 2009)

C-reactive 

protein 

25.0 1000 ng/mL Direct assay approach without multi-dimensional purification. 

However, column trapping on a custom built C12 column was 

used prior to switching to analytical column. 

(Williams et 

al., 2009)
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) 

Sample preparation/comments Reference 

Recombinant growth 

hormone (rHGH) 

22.0 1.70 ng/mL* 500 µL serum (*external calibration used). Following 

DRAD, 2DLC was performed on digested samples 

(serum or calibration sample) using a reversed phase LC 

column in the first dimension, trapping, and then loading 

onto a strong cation exchange column in the second 

dimension. 

(Arsene et 

al., 2010) 

C-reactive protein 25.0 1000 ng/mL Direct assay approach without multi-dimensional 

purification. However, column trapping on a custom 

built C12 column was used prior to switching to 

analytical column. 

(Williams et 

al., 2009) 
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) 

Sample preparation/comments Reference 

Insulin-like growth 

factor (IGF-1) 

7.6 100 ng/mL (SPE 

method) 

125 ng/mL (PPE 

method) 

50 µL plasma.Bond Elut Plexa mixed mode SPE 

cartridges were employed to clean-up samples prior to 

DRAD or samples underwent a protein precipitation 

using acetonitrile, followed by LC-MS/MS 

(Barton et 

al., 2010) 

Recombinant growth 

hormone (rHGH) 

22.0 1.70 ng/mL* 500 µL serum (*external calibration used). Following 

DRAD, 2DLC was performed on digested samples 

(serum or calibration sample) using a reversed phase LC 

column in the first dimension, trapping, and then loading 

onto a strong cation exchange column in the second 

dimension. 

(Arsene et 

al., 2010) 
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Table 1.1 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) 

Sample preparation/comments Reference 

Therapeutic protein ~70 10 ng/mL 0.050 mL human plasma sample digested with lys-C 

overnight, then a strong cation exchange SPE was 

performed, followed by evaporation, reconstitution, and 

injection onto the UPLC-MS 

(Plumb et 

al., 2012) 

Pegylated Proteins (I, 

II, III, IV-propietary) 

11-52 

+40kDA 

PEG 

portion 

10 ng/mL A 0.050 mL monkey plasma aliquot was precipitated 

with 0.1% formic acid in IPA, the mixture was 

evaporated, and reconstituted with digestion buffer. 

Overnight trypsin digestion was performed, formic acid 

was added to stop the reaction, then sample was injected 

into the LC-MS/MS. 

(Wu et al., 

2011) 
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The intrinsic properties of proteins have been exploited for conventional purification 

prior to digestion with methods  such as  solid phase extraction (SPE), protein precipitation 

(PPE), size exclusion (SEC), ultrafiltration (UF), and liquid liquid extraction (LLE). All of these 

purification methods have some limitation such as throughput, selectivity, and ability to work 

with different molecular weights.  Properties such as isoelectric point (pI), hydrophobicity, net 

charge, molecular recognition, ionic strength, and molecular size have been examined, of which 

molecular recognition indicates the most potential because of its ability to quantify low 

nanogram per milliliter concentrations in plasma or serum according to examples in Table 1.2. 

Traditionally in proteomics investigations, proteins have been separated by two-dimensional 

(2D) gel electrophoresis prior to excision of a spot from the gel for enzymatic digestion. This 

process involves a pH gradient for separation based on isoelectric points, followed by a second 

dimension for separation of proteins based on molecular size. This approach has been successful 

in resolving at least six thousand proteins (Geng et al., 2000). Difference in gel electrophoresis 

(DIGE) is a more recent version of this technique which has expanded the dynamic range by 

using fluorescent dyes (Unlu et al., 1997; Van Den Bergh et al., 2004); however, this approach is 

employed for relative quantification.  Protein samples are prelabeled with different fluorescent 

dyes, run on the same gel, and detected by fluoresecence imaging (Unlu et al., 1997).  

Difficulties exist for these methodologies involving: manipulations of samples being slow and 

challenging, and poor quantitative reproducibility. Separation of certain proteins can also be 

difficult, including those that are in low abundance, acidic, basic, hydrophobic, very large, or 

very small (Fey et al., 2001; Geng et al., 2000). Additionally, dissolution of the excised spot is 

necessary to be compatible with electrospray ionization sources. 
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Table 1.2 Protein ImmunoPurification (Antibody-Based) Applications 

Target Protein(s)/ 

quantitative 

description 

~Molecular 

Weight (kDa)

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Coagulation factor V 

Adiponectin 

C-reactive protein 

Thyroxine binding 

globulin 

251.7 

26.4 

25.0 

46.3 

 

2316 ng/mL  

2904 ng/mL 

3015 ng/mL 

11,389 ng/mL 

Immunodepletion of 6 abundant proteins (MARS-

Aglient technologies). Followed by denaturation, 

reduction. Samples were then ultrafiltered with 5 

kDa cut-off ultrafiltration and reversed phase SPE 

was used to clean-up samples prior to LC-MS/MS. 

(Lin et al., 

2006)

Bovine serum 

albumin (BSA) 

~66 280 nmol/L 50 µL urine was injected into an immunoaffinity 

column with immobilized polyclonal antibodies 

against BSA. Samples were collected, digested, and 

cleaned using C18 SPE. 

(Hoos et al., 

2006)
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Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Aprotinin 

Leptin 

Myoglobin 

Myelin basic 

protein 

PSA 

6.4 

10 

17 

18 

30 

48 

33.4, 61.25 ng/mL 

23.8, 65.0 ng/mL 

31.7, 77.9 ng/mL 

35.1, 114.5 ng/mL 

46.1, 124.3 ng/mL 

17.2, 56.7 ng/mL 

Human IgG and chicken IgY immunodepletion (MARS hu7 

and IgY-12) columns were compared for quantitative 

analysis. LOQ data (first number in LOQ column is from 

IgY-12) was evaluated and only the smallest coefficient of 

variance (%CV) LLOQ’s are presented for each protein in 

the LOQ column of this table for the different depletion 

columns used. Proteins were spiked into a 100 µL of sample 

immunodepleted of abundant proteins using two different 

columns. Following depletion and DRAD, samples were 

further processed with Waters Oasis HLB reversed phase 

SPE. 

(Keshishian 

et al., 2007)
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Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

insulin ~5.7 0.050 ng/mL Immunoprecipitation was performed on 3 mL equine plasma, 

which was added to antibody coated magnetic beads 

(Dynabeads M-280 tosyl-activated-Invitrogen). The mixture 

was incubated overnight, beads were magnetically separated 

and supernatant discarded. Several washes, filtrations followed 

before elution of target proteins injected onto LC-MS/MS. 

(Ho et al., 

2008)

Human 

monoclonal 

antibody 

(HmAb) 

~150 2000 ng/mL 50 µL serum and internal standard were combined prior to 

albumin depletion using ProteoExtract albumin kit. Following 

depletion and DRAD, samples were loaded onto LC-MS/MS. 

Samples were retained on column during the first 10 minutes 

directly to waste prior to elution gradient. 

(Hagman et 

al., 2008)
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Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

N-terminal 

proBrain 

natriuretic 

peptide 

(NTproBNP) 

8.6 0.10 ng/mL Immunoprecipitation was performed on 100 µL sample and 

internal standard, which were added to Handee spin column 

(Pierce), diluted, and protein-A gel containing antibodies was 

added.  Samples were washed, digested, and separated with 

spin columns prior to LC-MS/MS. 

(Berna et 

al., 2008)

Erbitux 145.7 20 ng/mL 500 µL serum was immunoprecipitated using (Dynabeads M-

280 tosyl-activated-Invitrogen). The mixture was incubated , 

beads were magnetically separated and supernatant was 

denatured and digested followed by LC-MS/MS.  

(Dubois et 

al., 2008)
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Table 1.2 Continued 

Target 

Protein(s)/quant

itative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Multiple proteins 

evaluated 

11 to 84 2- 15 ng/mL 0.8-1.2 mL plasma samples were immunodepleted using 

LC10 column, which removes 12 high abundance 

proteins by capturing with IgY antibodies. Following 

DRAD, samples were fraction collected with strong 

cation exchange, and desalted with Waters HLB SPE 

prior to LC-MS/MS. 

(Keshishian et al., 

2007)

PSA 28.7 4 ng/mL 100 µL serum was immunodepleted of albumin 

followed by DRAD, and samples were subsequently 

cleaned with a mixed cation exchange extraction prior to 

LC-MS/MS. Additionally, sample data was correlated 

with ELISA for the first time for PSA patient serum. 

(Fortin, Salvador, 

Charrier, Lenz, 

Lacoux et al., 

2009)
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Table 1.2 Continued 

Target 

Protein(s)/quant

itative 

description 

~Molecular 

Weight (kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

C-reactive 

protein (CRP) 

25.0 1-point standard 

addition at 3000 ng 

CRP in a 500 µL reaction volume was affinity purified 

using CRP monoclonal antibodies conjugated to 

polystyrene magnetic beads for capture of target antigen. 

Eluted CRP samples were evaporated, denatured, and 

digested, then injected into LC-MS/MS. 

(Kilpatrick 

et al., 2009)

proGRP  ~13 0.20 ng/mL 125 µL serum was immunopurified using a 96-well plate 

coated with ProGRP mAb. Samples underwent DRAD, 

and then were subsequently cleaned using C18 SPE tips 

prior to injection into LC-MS/MS. 

(Winther et 

al., 2009)



28 
 

Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight (kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL or 

as reported) Sample preparation/comments Reference

PEGylated 

peptide (MK-

2662) 

47.5 2000 pmol/L (PPE) 

1000 pmol/L (IAP) 

 

PPE: a 0.2 mL aliquot was precipitated with 0.5 mL 

of 90:10 acetonitrile/methanol v/v, followed by 

evaporation, reconstitution, and enzymatic digestion 

with trypsin. 

IAP: 0.2 mL aliquot was combined with biotinylated 

antibodies bound to streptavidin coated magnetic 

beads in a suspension. The sample mixture was 

shaken for 2 h for complex to form, followed by 

washing beads, on-bead trypsin digestion, addition 

of formic acid to supernatant to quench reaction, 

and injection onto LC-MS/MS 

(Xu et al., 

2010)
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Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight (kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Carbonic 

Anhydrase II 

29.2 External 

calibration (27.3 

pmol/mL-1 

measured in 

patients) 

Immunoprecipitation was performed with 20 µL 

serum using antibodies immobilized on Protein G 

coated magnetic beads. Following bead washing, 

samples were denatured and digested prior to 

column trapping online LC-MS/MS. 

(Callipo et al., 

2010)

Parathyroid 

hormone (PTH) 

9.4 0.0309 ng/mL PTH from 1 mL (charcoal-stripped) serum was 

immunocaptured using polystyrene beads coated 

with murine monoclonal antibodies (Anti- 44-84 

recognition) in a 96-well plate. Following 

incubation and washing, samples were injected onto 

LC-MS/MS.  

(Kumar et al., 

2010)
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Table 1.2 Continued 

Target 

Protein(s)/ 

quantitative 

description 

~Molecular 

Weight (kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Therapeutic 

Monoclonal 

antibodies 

 4 IgG1 and 

4IgG2 mAb) 

~150 100 ng/mL A 0.200 mL sample was combined with magnetic 

streptavidin coated beads, which had an anti-human 

crystallizable fragment (anti-Fc) biotinylated 

antibodies bound to them. The sample mixture was 

then washed with surfactant in PBS, and eluted with 

0.2 mL of 50% methanol and 3% formic acid. The 

eluate was dried, reduced with DTT, alkylated with 

iodoacetamide, digested with trypsin, reaction was 

stopped with formic acid, and 0.010 mL was 

injected into LC-MS/MS 

(Li et al., 

2012)
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Precipitation of the target protein using organic solvents and/or salting out with 

ammonium sulfate has been explored (Jiang et al., 2004). Jiang et al. found that that using 

trichloroacetic acid, acetone, or ultrafiltration provided efficient desalting and sample 

concentration prior to 2D electrophoresis. This investigation was qualitative however and further 

evaluation is needed to determine the effectiveness of these techniques for quantitative 

applications. The potential exists to apply multiple fractionation steps involving precipitation and 

2D electrophoresis purification prior to digestion, but time and lack of efficiency could be the 

limiting factors. Precipitation of major serum proteins was also evaluated using an acetonitrile-

depletion strategy (Kay et al., 2008). In this study, the authors were able to characterize the 

presence of insulin-like growth factor (IGF-1) at 125 ng/mL in serum depleted of major 

background proteins after a protein precipitation with acetonitrile. However, more quantitative 

results are necessary to determine if this purification procedure can be useful for low abundance 

biomarkers or therapeutics. Precipitation with acetonitrile or alternative solvents is an efficient 

way for removal of proteins  less than 15 kDa (Ackermann et al., 2007). 

Molecular sieving has been exploited through the use of size exclusion chromatography 

(SEC) and ultrafiltration.  In this approach, a gel stationary phase such as polyacrylamide, 

dextran or agarose is used and the sample is filtered under low pressure for size exclusion. 

Lecchi et al. concluded that size exclusion chromatography provides a practical approach for 

multi-dimensional separation of proteins and should not be overlooked (Lecchi et al., 2003). 

However, protein extracts obtained from bacterial cultures grown in stable isotope enriched 

media were used for this evaluation, and the complexity of plasma samples may limit usefulness 

of these stationary phases, as biomarkers or therapeutics may be lost in partitioning. Over 3,000 

proteins have been successfully separated using a multi-dimensional approach including SEC in 
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human plasma (Pieper et al., 2003), but applying this technique to quantitative analysis was not 

presented.  Ultrafiltration is another molecular size-based pre-treatment step in purification of 

proteins in which hydrostatic pressure forces a liquid against a semipermeable membrane. 

Various membrane pore sizes are available to retain molecules 1 to 1,000 kDa, while water and 

low molecular weight solutes pass through the membrane. Aresta et al. employed a 30 kDa 

molecular weight cut-off filter as a pre-treatment prior to reverse phase solid phase extraction 

(Aresta et al., 2008) for the extraction of serum from breast cancer patient samples. Additionally, 

Greening et al. evaluated ultrafiltration for isolation of low molecular weight (< 25 kDa) 

components of the human plasma proteome (Greening et al., 2009). The two studies advocate 

ultrafiltration as a protein purification step, in spite of the lack of throughput. The optimal 

conditions in the Greening et al. study were 35 minutes of centrifugation for only 100 µL of 

sample.  

The hydrophobic and ionic properties of proteins have been exploited using solid phase 

extractions. Proteins have ionic and hydrophobic sites internally and on the surface. The ionic 

sites are provided by charged amino acids and by covalently attached modifying groups (i.e. 

carbohydrates and phosphate) (Simpson, 2004). The net charge of a protein is determined by the 

free -amino group of the N-terminal residue, the free  -carboxyl group of the C-terminal 

residue, side chain R-groups capable of ionization, and modifications that may be attached to the 

protein. Additionally, non-polar amino acids contribute to the hydrophobicity of the protein. 

These are predominantly on the interior folds of the protein and denaturing may be required to 

expose them. These intrinsic properties of proteins offer potential selective interactions with 

hydrophobic and ionic stationary phases for sample purification to reduce interferences and 

matrix effects prior to enzymatic digestion. Barton et al. compared an acetonitrile precipitation 
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method (Kay et al., 2008) to mixed-mode solid phase extraction (SPE) for protein purification 

prior to enzymatic digestion and quantitative analysis of insulin-like growth factor (Barton et al., 

2010) The SPE method showed pH-dependency to effectively remove abundant background 

proteins, whereas the acetonitrile precipitation removed albumin, but failed to recover the lower 

molecular weight protein studied. Proteins interact with hydrophobic surfaces by adsorption and 

use of hydrophobic interaction chromatography would require careful consideration of ionic 

strength, pH, and temperature for eluting proteins with non-denaturing conditions. Attempting to 

selectively elute target proteins is impractical off-line because gradient conditions are necessary 

to lower ionic strength for elution (Simpson, 2004), which would require multiple sample 

manipulations. Reversed-phase chromatography has been investigated for separation and 

fractionation of proteins under gradient conditions with a macroporous column (300 Å) 

(Martosella et al., 2005). This approach is sufficient for characterization of low abundance 

proteins; however, quantitative analysis would be inefficient because of the several fraction 

collection steps.   

Molecular recognition involves a selective interaction of the target protein and its 

antibody through multiple noncovalent interactions. Table 2 (Protein ImmunoPurification 

(Antibody-Based) Applications) offers representative methods for purification of proteins using 

antibody-antigen recognition. The two types of antibody-based purification strategies are 

immunodepletion of major abundant proteins or immunopurification of the target protein through 

antigen-antibody complex formation. Immunodepletion removes major abundant plasma proteins 

using antibodies against each protein. Twenty two abundant proteins represent approximately 

ninety-nine percent of total protein mass in human plasma (Anderson et al., 2002). Most of this 

total protein mass is albumin, which accounts for approximately 50% of protein mass in plasma 



34 
 

(Issaq et al., 2007). Understandably, removal of the most abundant proteins would be a 

reasonable approach for protein purification. Several papers have applied immunodepletion 

techniques as shown in Table 1.2 and recent reviews have compared depletion strategies 

(Bjorhall et al., 2005; Polaskova et al., 2010). In these studies, most of the focus has been 

centered on the efficiency of removal of abundant proteins using commercially available kits. 

However, more investigation is needed to evaluate the effectiveness of immmunodepletion for 

enrichment of target proteins, and ultimately improving sensitivity of signature peptide 

quantification.  Depletion kits can be purchased as spin columns or LC columns. Normally 

polyclonal anti-human antibodies (IgG) are employed for these kits; however, chicken derived 

immunoglobulin yolk (IgY) antibodies are also available, which have been known to provide less 

cross reactivity with mammalian proteins (Simpson, 2004). Agilent offers a multiple abundant 

removal column (MARS), which uses up to 14 immobilized polyclonal immunoglobulin’s 

(antibodies) to remove abundant background proteins. A two buffer system is applied to the 

column which captures the abundant antigens that bind to their specific antibodies. Proteoprep, 

Seppro, Qproteome, Vivapure, and Aurum are other depletion kits available that vary according 

to the number of abundant proteins removed, price, sample volume, and throughput capability. 

Kits can cost as much as $14,000 and only allow low sample volumes (~10 µL), and minimal 

usage (<200 samples). Other caveats that should be considered for immunodepletion are: loss of 

target protein bound to endogenous depleted proteins and the multiple dilutions involved may 

hinder sensitivity. The potential of immunodepletion is evident in Anderson et al.’s 2006 

publication, which demonstrated the ability to quantify 47 different proteins using signature 

peptides obtained from immunodepleted plasma (Anderson et al., 2006).  
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Immunopurification (immunoprecipitation) of target proteins allows for selective 

isolation with antibody capture of the target antigen. There are four main processes involved in 

immunoprecipitation, which typically include immobilization of antibodies, loading of antigen in 

a complex matrix for capture at physiological pH, washing non-specific components, and finally 

elution of target antigen. Immobilization of antibodies can be either direct or indirect, depending 

on the binding process (Guzman et al., 2005; Masseyeff, 1993).  Noncovalent binding of 

antibodies to solid supports (i.e., silica, plastics) occurs due to hydrophobic interactions between 

the surface and amino acid residues (Masseyeff, 1993), where antibodies will bind “directly” to 

the surface of the solid support or free amine groups and carbohydrate residues (Peoples et al., 

2008). However, direct adsorption of antibodies can result in random orientation and hinder 

binding activity (Jung et al., 2008; Lu et al., 1996; Peoples et al., 2008). The solid support or 

stationary phase system should be stable chemically, possess little non-specific binding, be 

mechanically stable, and provide sufficient surface area for molecular recognition to take place 

(Peoples et al., 2008). Superparamagnetic and agarose beads are normally employed as solid 

phase support material for immunoprecipitation.  Agarose beads are highly porous with high 

binding capacity potential (Jung et al., 2008); however, the drawback of these materials is that 

the antibody may not fully saturate the sponge-like character of the agarose bead, which will lead 

binding sites free to capture non-specific proteins (Ogert et al., 1992). An alternative bead 

system is monodisperse superparamagnetic beads, which consist of small, solid, uniform, and 

spherical shaped beads. Binding occurs on the outer solid surface of these beads. This may allow 

for faster binding kinetics due to surface only binding; however, the beads cannot compete with 

the polydisperse agarose beads (Ogert et al., 1992) in terms of binding capacity. During 

immobilization on any support system, optimal conditions exist when the Fab regions are 
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exposed and therefore fully active. Indirect immobilization of antibodies requires binding the 

antibody to a solid phase substrate through a ligand anchor or secondary molecule (Masseyeff, 

1993) such as binding to Fc receptors on bacterial cell wall proteins A or G, or recombinant 

protein A/G (Jung et al., 2008). The molecule biotin’s high affinity (Ka – 1015/M) for 

streptavidin provides another ligand anchor used to bind antibodies to solid phase supports. 

Whether antibodies are immobilized or not, loading of the antigen containing complex is optimal 

under physiological conditions. It should be noted that fast and efficient removal of unbound 

antibodies is essential prior to loading the antigen containing matrix to prevent residual complex 

formation  that will be washed away and reduce target protein yield (Masseyeff, 1993). Once 

loading and the association of the antigen-antibody complex has taken place, multiple washes are 

necessary to remove non-specific components of the biological matrix. Washing buffers 

(normally phosphate buffered saline) may contain detergents or inert proteins to reduce non-

specific binding (Masseyeff, 1993). Dissociating the antigen-antibody complex may require 

acidic elution, use of chaotropes, ionic strength adjustment, or other denaturants (Ogert et al., 

1992; Peoples et al., 2008). Optimization of the elution pH (normally 1-3) is necessary to 

minimize degradation and denaturation of the target protein (Nisnevitch et al., 2001; Ogert et al., 

1992; Peoples et al., 2008). Another consideration when performing immunoprecipitation is to 

avoid elution of the antibody, which will minimize unwanted background. Commercially 

available kits employ cross-linkers such as disuccinmidyl suberate (DSS) that covalently 

immobilize the antibody to the support by crosslinking with NHS esters that react with primary 

amines on the antibody to form stable amide bonds. Crosslinking will take place after capturing 

the antibody on a Protein A/G agarose resin (http://www.piercenet.com/products/), and this 

should allow for multiple uses of the immobilized antibody. Immunoprecipitation can offer 
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selective capture and release of target protein, which can be digested in a relatively “clean” 

matrix free of background proteins. The drawbacks associated with this technique include: the 

need for expensive antibodies and the fact that immobilization, capture, and elution 

optimizations can be laborious. There is also still the potential for capturing non-specific 

proteins. Table 1.2 provides examples of immunodepletion and immunoprecipitation methods 

that reach low ng/mL limits of quantification. 

 

1.D PEPTIDE PURIFICATION 

Proteolytic digestion of target proteins will further complicate the sample in terms of the 

number of peptides present by as much as 50 to 100 fold (Picotti et al., 2009). Consequently, 

there may be a need to continue purification processes at the peptide level of the sample. It is 

clearly evident in the methods presented in Table 1.2 that there has been minimal investigation 

into protein purification, and efforts have been focused on the purification of the signature 

peptides following digestion. Direct assay approaches have yielded LLOQ’s in the µg/mL range 

for some quantitative analyses of signature peptides (Anderson et al., 2006; Williams et al., 

2009), suggesting that that additional purification steps are needed to achieve limits of 

quantification below ng/mL. The intrinsic properties of signature peptides will differ and 

purifications will need to be optimized accordingly. Conventional SPE methods have shown the 

most promise in recent works, which have reached ng/mL limits in serum or plasma (Yang et al., 

2007; Yang, Z. et al., 2009). Somatropin, and its analogue internal standard bovine fetuin, were 

digested and subjected to a 2D solid phase extraction for purification of the signature peptides 

prior to LC-MS/MS analysis (Yang et al., 2007). The digested samples were loaded onto a 

reversed phase SPE cartridge (SPEC C18), washed, and the eluate was loaded into the second 
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dimension, a 96-well mixed mode strong cation exchange cartridge (Waters Oasis® MCX). The 

lower limit of quantification was 500 ng/mL, and analysis required no immunodepletion or 

immunoaffinity purification. Yang et al. also demonstrated SPE for protein purification followed 

by signature peptide purification to quantify pegylated-inteferon- 2a in human serum. In this 

study, serum samples fortified with pegylated-inteferon- 2a and its internal standard (somatropin) 

were denatured, reduced, and alkylated. Following alkylation, samples were pH adjusted prior to 

loading onto an equilibrated 96-well SPEC C18 plate. The eluate was dried and subsequently 

concentrated in a buffer, which was ultrafiltered and digested. Finally the digested samples were 

again extracted using a 96-well mixed mode strong cation exchange cartridge (Waters Oasis® 

MCX) to achieve an LLOQ of 3.6 ng/mL.  Keshishian et al. employed strong cation exchange 

SPE to purify signature peptides in order to achieve low (1-10 ng/mL) LLOQs for six proteins in 

plasma; however, plasma samples were immunodepleted prior to digestion (Keshishian et al., 

2007).  

An alternative to conventional peptide purification is the use of immunoaffinity 

purification with peptide antibodies. Anderson et al. have pioneered the use of this approach for 

candidate cardiovascular biomarkers by employing a technique his group has coined Stable 

Isotope Standards and Capture by Antipeptide Antibodies (SISCAPA) (Anderson et al., 2004). 

This technique makes use of antibodies against tryptic peptides along with stable isotope internal 

standards, which act to correct for ion suppression. In SISCAPA, antipeptide antibodies are 

synthesized by conjugation of peptides to protein carriers for immunization (Anderson et al., 

2004).  Whiteaker et al. demonstrated this technique by using α1-antichymotrypsin (AAC) and 

tumor necrosis factor alpha (TNFα) as model compounds. Their results demonstrated 

quantification of these biomarkers within the physiological range with acceptable precision 
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(<10%) and accuracy (<20%) (Whiteaker et al., 2007).  Their ability to capture tryptic peptides 

of AAC and TNFα with antibodies followed by elution allowed for more than a 500-fold 

increase in sensitivity. Table 1.3 presents SISCAPA applications, which reveal quantification of 

proteins using signature peptides at low ng/mL concentrations. 

Offline purification steps prior to LC-MS/MS analysis will improve the sensitivity and 

robustness of the analytical method. Online separation offers another means to reduce matrix 

effects, improve sensitivity, and provide selective methods for quantification. Most of the 

applications presented in Tables 1.1 to 1.3 employ one dimension reversed phase 

chromatography for separation of signature peptides prior to MS ionization. There are several 

applications that use 2DLC, column trapping, or switching (Desouza et al., 2008; Hagman et al., 

2008; Kay et al., 2008; Williams et al., 2009) which have been shown to minimize matrix effects 

associated with mass spectrometry and improve column life. Hydrophilic interaction 

chromatography (HILIC) for separation of signature peptides was first investigated by Alpert et 

al. (Alpert, 1990).  HILIC is similar to normal phase chromatography (NPLC), where a polar 

stationary phase is used but the non-aqueous mobile phase is replaced with a water miscible 

organic solvent and low water content is used. The interaction of the polar stationary phase 

occurs through analytes partitioning into a water-rich layer generated through chemisorption of 

the stationary phase (Alpert, 1990; Boutin et al., 1992; Yang, Y. et al., 2009). Yang et al. 

recently employed HILIC for the separation of digested peptides of cytochrome C and β-

lactoglobulin; however, the study was performed in buffered solutions and more investigation is 

needed with complex matrices. Several publications use nano-liquid chromatography coupled to 

a nano-electrospray, which can result in much greater sensitivity (1-2 orders of magnitude). 
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Separation mechanisms are similar to conventional 2DLC; however, the run times can be 

significantly longer (> 45 minutes).  
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Table 1.3 Peptide Immunoaffinity Applications 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) SISCAPA Sample preparation/comments Reference

Tumor necrosis factor 

alpha (TNF ) 

Antichymotrypsin 

(AAC) 

25.6 

 

47.6 

1 fmol (~1 pg) of 

peptide on column 

20 µL of serum was immunodepleted using the MARS 

column removal of six abundant proteins. SISCAPA 

was continued using magnetic beads coated with peptide 

antibodies to capture tryptic peptides of natural and 

isotope labeled peptides. Samples were loaded onto 

nano-LC for trapping and final elution to MS.  

(Whiteaker 

et al., 2007)

Thyroglobulin 304.7 2.6 ng/mL Following DRAD of 100 µL, signature peptides for 

thyroglobulin and internal standard peptide were 

captured using paramagnetic beads, washed, and 

injected into LC-MS/MS 

(Hoofnagle 

et al., 2008)
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Table 1.3 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) SISCAPA Sample preparation/comments Reference

TIMP1 23.1 0.8 ng/mL Serum was immunodepleted prior to SISCAPA 

technique for enrichment of peptides.Column trapping 

was used with nano-LC for separation. 

(Ahn et al., 

2009)

Troponin I 

Interleukin-33 

21.7 

30.7 

2.8 ng/mL 

1 ng/mL 

Following DRAD of plasma, samples were desalted 

with C18 Empore material and then signature peptides 

for both biomarkers and their respective internal 

standard peptides were captured using paramagnetic 

beads, washed, and injected into LC-MS/MS 

(Kuhn et al., 

2009)
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Table 1.3 Continued 

Target 

Protein(s)/quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) SISCAPA Sample preparation/comments Reference

Calumenin 

Disulfide isomerase 

Fibulin-2 

Hypoxia up-regulated 

Legumain 

L-plastin 

Osteopontin 

Plectin 

Tumor Protein D52 

37.2 

56.8 

126.6 

111.3 

49.4 

70.3 

35.4 

~500 

24.3 

 

1-166 ng/mL Automated use of Stable Isotope Standards with Capture 

by Antipeptide Antibodies (SISCAPA) to quantify 

multiple proteins in plasma. 

(Whiteaker 

et al., 2010)
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1.E MULTIPLY CHARGED INTACT POLYPEPTIDE QUANTIFICATION 

Low molecular weight proteins or polypeptides may be quantified without enzymatic 

digestion by reducing the mass to charge ratio sufficient for limited mass range tandem mass 

spectrometry. During electrospray ionization, proteins and polypeptides exist as intact ions with 

multiple charges separated by their mass to charge ratio (m/z) (Fenn et al., 1990). Therefore, it 

may be possible to reduce m/z within a limited range instrument (2800 m/z) for quantification of 

intact polypeptides and proteins in biological fluids. Manipulation of charge states through 

solvent additives such as glycerol or 3-nitrobenzyl alcohol during electrospray ionization has 

been shown to increase charge state and intensity, which will be beneficial for m/z reduction and 

improving detectability (Lavarone et al., 2001; Samalikova et al., 2005). However, reproducing 

multiple charge state precursor ions and the formation of reliable product ions can be affected by 

ion suppressors, instrument parameters, electrospray solvents, and the target protein’s (or 

polypeptide’s) primary structure and conformation (Krusemark et al., 2009; Lavarone et al., 

2001). Therefore, mass spectrometer parameters should be optimized by ramping analyte 

specific parameters such as declustering potential to minimize in-source fragmentation and 

collision energy voltage to obtain selective product ions. In addition, prior to electrospray 

ionization and tandem mass spectrometry, extracted samples should undergo extensive sample 

purification processes to minimize matrix effects.  

Purification and quantification of intact polypeptides (peptides greater than 1000 Daltons) 

has been discussed (Van Den Broek et al., 2008). Similar purification techniques are applied to 

intact polypeptides as compared to proteolytic peptides described in the previous section. Some 

examples of quantification of polypeptides are listed in Table 1.4 below.
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Table 1.4 Recent Intact Polypeptide Applications 

Target Peptide(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) 

(ng/mL or as 

reported) Sample preparation/comments Reference

bivalirudin 2.2 1.25 ng/mL A 0.2 mL aliquot of human plasma underwent PPE with 

methanol, evaporated with vacuum centrifugal concentrator, 

reconstituted in mobile phase, and injected onto LC-/MS/MS. 

The sample was diverted to waste the first 4 min. 

(Pan et al., 

2010)

bradykinin 1.1 10 ng/mL 1 mL of rat plasma was protein precipitated with 1% TFA, and 

the supernatant was loaded onto an SPE cartridge (STRATA 

X, Phenomenex), evaporated, reconstituted with water. 

(Baralla et 

al., 2011)

PEGylated Human 

Calcitonin gene 

peptide antagonist 

20 5 ng/mL A 0.1 mL monkey serum sample  was extracted with an HLB 

SPE µelution plate 

(Li et al., 

2011)
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Table 1.4 Continued 

Target 

Peptide(s)/ 

quantitative 

description 

~Molecular 

Weight 

(kDa) 

Limit of 

Quantification 

(LLOQ) (ng/mL 

or as reported) Sample preparation/comments Reference

Angiotensin-II 

Neurotensin 

5-leu-enkephalin 

Somastatin 

Bradykinin 

1.0 

1.7 

0.55 

1.6 

1.1 

13 ng/mL 

22.4 ng/mL 

3.85 ng/mL 

40.5 ng/mL 

7.75 ng/mL 

0.2 mL human plasma was precipitated with acetonitrile and 

formic acid, then filtered through a 10 kDa MWCO filter, 

evaporated, reconstituted in water, and injected onto LC-MS 

(SIM was used). 

(Fang et al., 

2012)

Peptides I, II, III, 

IV (proprietary) 

1.5 to 1.9 10 pmol/mL 0.1 mL mouse plasma was precipitated in a filter plate 

containing acetonitrile, extracts were evaporated, reconstituted, 

and injected onto LC-MS/MS.  

(Zhang et 

al., 2011)

Octreotide 1.0 0.025 ng/mL 0.2 mL human plasma was subjected to a weak cation exchange 

SPE µelution (WCX, Waters), followed by column trapping, 

and UPLC-MS/MS 

(Ismaiel et 

al., 2011)
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1.F INTERNAL STANDARD SELECTION AND QUANTITATIVE LC-MS/MS 

Current applications involving absolute quantification employ a synthetic stable isotopic 

peptide internal standard to quantify the “natural” or unlabeled signature peptide. The peak area 

ratios of signature peptide and internal standard are plotted against the theoretical concentration 

ratios of peptide and internal standard used for calibration. Isotopic peptide internal standards are 

produced by incorporating an isotope (normally 13C and 15N) on selected amino acid residues of 

the signature peptides chosen. These isotopes will provide a mass shift to distinguish the internal 

standard and its natural signature peptide by mass spectrometry, yet physiochemical properties 

(i.e., chromatography, ionization, fragmentation patterns) remain the same. Internal standards are 

introduced into the sample at a known concentration to compensate for matrix effects and track 

recovery if added before digestion. A peptide internal standard is limited however because it 

does not track recovery during the digestion of the protein. Addona et al. made a significant 

observation in a multisite assessment that revealed absolute quantification likely needs a labeled 

protein internal standard which is added at the start of sample processing (Addona et al., 2009). 

Use of a protein internal standard will allow for sufficient recovery tracking during the entire 

sample processing. However, synthesizing and purifying a labeled protein could be expensive 

and time consuming. Brun et al. investigated isotope labeled proteins for quantification of urine-

based biomarkers at the picomolar level (Brun et al., 2007). An alternative to isotopically labeled 

protein internal standard may be to employ a protein analogue internal standard. Yang et al. 

produced quantitative analysis of two different proteins in separate methods using protein 

analogue internal standards (Yang et al., 2007; Yang, Z. et al., 2009). Bovine fetuin and 

somatropin were protein analogue internal standards used for the quantification of somatropin 

and pegylated interferon- 2a, respectively. Finding appropriate analogue internal standards that 
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can track recovery and produce signature peptides with similar retention times for all 

therapeutics and biomarkers may be challenging however. A recent approach that may replace 

conventional labeled peptides is an extended isotope labeled peptide, also known as digestible 

internal standard (Plumb et al., 2012). These internal standards offer the same benefits as an 

isotope labeled signature peptide internal standard; however the extended amino acid residues, 

which are part of the protein sequence, will offer the ability to track digestion. Ultimately a 

labeled protein internal standard would be preferable. 

 

1.G CONCLUSIONS 

Quantitative analysis of macromolecules using signature peptides and hyphenated 

techniques with liquid chromatography tandem mass spectrometry presents an attractive 

approach that can ultimately lead to a new standard of practice for quantifying large molecules. 

The ability to quantify multiple proteins offers a unique advantage and multiplexing biomarker 

candidates will likely expedite the process. 

 While employment of this approach is very promising, it is clear that challenges exist. 

The lack of quantitative analytical validation data for many reported methods brings into 

question their actual usefulness for practical analysis. LC-MS/MS continues to be the primary 

choice for small molecule quantification in biological fluids. Well documented matrix effects 

involving ion suppression or enhancement with small molecule LC-MS/MS will also be an issue 

with proteins. Technology for reduction of matrix effects for small molecule has improved but 

most of these technologies are inadequate for proteins, especially when purifying at the protein 

level. Considering the concentration range of background protein concentrations and the 

difficulty involved with reproducibly digesting signature peptides, it will be challenging to 



49 
 

obtain precise and accurate data.  High throughput analysis is also a challenge, and reducing the 

rate limiting step of enzymatic digestion may be the answer. A significant caveat to this 

methodology is employment of a signature peptide that may result in false identification or lack 

selectivity for quantitative analysis. During small molecule method development and validation, 

various experiments are performed to evaluate selectivity, matrix effects, and recovery. The 

presence of endogenous levels of target protein versus background proteins in plasma 

necessitates similar experiments for determining selective signature peptides. Multiple lots of 

plasma should be evaluated for the presence of background that may interfere with the ability to 

quantify proteins in individual sources of plasma (Ismaiel et al., 2008). Matrix effects 

evaluations should be performed, and obtaining signature peptides will be an iterative process 

requiring significant observations in silico, database searching, and spectral data derived from 

samples in matrix to avoid these effects. 

  The currently obtainable lower limits of quantification for signature peptides liberated 

from proteins has hindered the replacement of traditional immunoassays although further 

research and improvements are expected. Technological advances for the purification of proteins 

and their liberated signature peptides will enable improvements in detectability. Use of online 

separations of background matrix components to further purify signature peptides has 

significantly improved quantification limits. Purification methods using antibodies at the protein 

and/or peptide level provides optimal isolation and purification of peptides and proteins 

ultimately reducing matrix effects and improving sensitivity. Technological advances in mass 

spectrometry such as the ability to perform MRM cubed  (MRM3) with a hybrid triple 

quadrupole-linear ion trap instrument have offered another solution to improving quantification 

limits (Fortin, Salvador, Charrier, Lenz, Bettsworth et al., 2009) as  shown in Table 1.1. This 
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technology allows for secondary fragmentation in the third quadrupole by trapping the product 

ions , which leads to a second generation product ion formed which is subsequently sent to the 

detector, further enhancing selectivity. Utilization of protein internal standards is beginning to 

become established and will ultimately allow for significant improvement in the tracking the 

recovery of target proteins which will lead to better precision and accuracy in protein 

quantification. It is likely that application of multiple processes will be necessary to obtain 

reliable methods at lower levels of quantification that are currently achieved using 

immunochemical methods.   
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CHAPTER 2 

 

DISSERTATION OBJECTIVES 

 

The first part of this dissertation research will involve investigating the quantification of a 

therapeutic protein using a signature peptide as a quantitative surrogate for the protein of interest 

in human plasma. Included with this objective will be creation of an analytical method without 

the need for antibody purification. An internal standard will be necessary for quantitative 

analysis to compensate for matrix effects and losses associated with digestion and/or sample 

purification. Therefore, a protein analogue internal standard will be employed for these purposes. 

The protein of interest and its analogue internal standard will have signature peptides determined 

by in silico processes. Proteolytic digestions of the therapeutic protein and its analogue internal 

standard will be used for optimization of mass spectrometer conditions for analysis in human 

plasma. Furthermore this analytical method will be validated according to current FDA 

Bioanalytical Guidance.   This method will aim to be suitable for monitoring therapeutic levels 

of the target protein. 

The second part of this dissertation will investigate quantification of an intact 

polypeptide. Polypeptides will be investigated to determine the formation of sensitive and 

selective product ions which can form selected reaction monitoring transitions. Solvents and 

different mass spectrometer parameters will be investigated to determine charge state distribution 



52 
 

of polypeptides. Multiple charge states of an intact polypeptide (oxyntomodulin) will be 

optimized and used for quantitative analysis in rat plasma. The method will be validated and 

used for rat samples in a pharmacokinetic study. 

The third part of this dissertation will aim to show utility of a liquid chromatography 

tandem mass spectrometry analytical method by applying that method to a pharmacokinetic 

study. Non-compartmental pharmacokinetic parameters will be generated from plasma 

concentration-time profiles. Parameters will be compared following intravenous and intratracheal 

instillation routes of administration of oxyntomodulin into rats. 
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CHAPTER 3 

 

QUANTIFICATION OF ALEFACEPT, AN IMMUNOSUPPRESSIVE FUSION 
PROTEIN IN HUMAN PLASMA USING A PROTEIN ANALOGUE INTERNAL 

STANDARD, TRYPSIN CLEAVED SIGNATURE PEPTIDES AND LIQUID 
CHROMATOGRAPHY TANDEM MASS SPECTROMETRY. 

Drawn from manuscript published in J Chromatogr B. 2011 Apr 1; 879(11-12):789-98 
 

3.A   INTRODUCTION 

  Autoimmune diseases rank third behind heart disease and cancer in the United States 

population and are the most common diseases in the world (Cooper et al., 2003). Psoriasis is 

one of these immune mediated diseases, which affects approximately 7.5 million Americans 

(Langley et al., 2005). It affects the skin and joints when the immune system conveys 

incorrect signals that accelerate the growth cycle of skin cells. Treatments include topical, 

phototherapy, traditional systemic and biological medications (biologics). Currently the 

biological medication of choice for treatment of psoriasis is injectable Alefacept, sold under 

the brand name Amevive. 

Alefacept is a dimeric immunosuppressive fusion protein that blocks the activation of T 

white blood cells, and results in a reduction in skin inflammation. Alefacept consists of fused 

extracellular CD2-binding portion of the human leukocyte function antigen-3 (LFA-3) linked 

to the Fc (hinge, CH2 and CH3 domains) portion of human IgG1(Vaishnaw et al., 2002). It is 

approximately 91 kilodaltons (kDa), with therapeutic levels between 500 to 6000 ng/mL 

(Ellis et al., 2001). 
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Pharmacokinetic studies of biologics such as Alefacept are currently performed with 

immunoassays that can be costly and may require time-consuming method development. 

Immunoassays also are often associated with selectivity problems related to cross reactivity 

in biological fluids that may result in imprecise data and/or falsely elevated results 

(Ackermann et al., 2007). It has been well established that liquid chromatography tandem 

mass spectrometry is the method of choice for small molecule clinical studies and has been 

gaining ground for large molecule quantification (Anderson et al., 2004; Parker et al., 2010). 

Use of signature peptides that act as surrogates for targeted protein quantification when 

coupled to liquid chromatography tandem mass spectrometry offers a potentially superior 

methodology for clinical studies and biomarker validation (Abbatiello et al., 2010). This 

approach requires proteolytic digestion to yield signature peptides that will ultimately be 

quantified using a triple quadrupole mass spectrometer with multiple reaction monitoring.  

Gerber et al. pioneered an absolute quantification (AQUA) strategy in 2003, which quantifies 

proteins using signature peptides and a synthetic, isotopically labeled peptide internal 

standard (Gerber et al., 2003a). Quantification with synthetic peptide internal standards has 

been carried out successfully, however the lack of tracking the enzymatic digestion is a 

potential source of error. Addona et al. performed a multi-laboratory assessment of 

quantification using synthetic peptide internal standards for three experimental designs 

(Addona et al., 2009). All laboratories yielded good precision and accuracy when synthetic 

internal standard peptides were incorporated into digested plasma. The imprecision proved 

significant however when synthetic peptide internal standards were added post-digestion for 

target proteins that were spiked into non-digested plasma. This indicates that a synthetic 

peptide internal standard may not sufficiently track digestion and therefore overall recovery. 
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Isotopically labeled internal standards can be added before digestion however, most 

published works have done this after digestion. Protein internal standards may be more 

suitable because they can be digested with the target protein and therefore track digestion 

recovery 

Several approaches have been investigated for purification of target proteins. 

Immunodepletion of the highly abundant proteins (HAP) in human plasma prior to enzymatic 

digestion is an effective method for reducing superfluous background in the matrix 

(Anderson et al., 2006; Keshishian et al., 2007; Kuhn et al., 2004; Lin et al., 2006; Whiteaker 

et al., 2007). The drawbacks associated with this technique include expensive kits, possible 

imprecision, minimal volume applied, and minimal column life (<200 samples) (Seam et al., 

2007).  Immunopurification of the target protein can also be accomplished and has also been 

shown to yield lower limits of detection (Berna et al., 2008; Dubois et al., 2008; Ho et al., 

2008; Kumar et al., 2010; Winther et al., 2009).  However, the requirement for antibodies for 

immunopurification makes this technique less desirable. Stable Isotope Standards and 

Capture by Antipeptide Antibodies (SISCAPA) is an approach which provides an alternative 

through employing anti-peptide antibodies to capture the signature peptide and reduce matrix 

effects (Anderson, Anderson et al., 2004). The SISCAPA approach has been shown to be 

effective in reaching low ng/mL levels in human plasma or serum (Ahn et al., 2009; 

Hoofnagle et al., 2008; Kuhn et al., 2009; Whiteaker et al., 2010; Whiteaker et al., 2007),  but 

production of antibodies for peptides is also time-consuming and costly. Other methods have 

employed two-dimensional solid phase extractions (Yang et al., 2007; Yang, Z. et al., 2009) 

for protein and/or signature peptide purification, which may require several optimizations. 

Yang et al. were able to reach low ng/mL concentrations (3.6 ng/mL LLOQ) for pegylated-
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interferon alpha ( 2a) using a monolithic C18 solid phase extraction for target protein 

enrichment and mixed mode cation exchange (Waters Oasis MCX) for digested sample 

clean-up prior to LC-MS/MS (Yang, Z. et al., 2009).   

Control of digestion and tracking of signature peptides is critical to ensure precise and 

accurate results. Protein internal standards offer tracking of the digestion step due to 

introduction at the beginning of sample preparation. Under ideal conditions where all 

preparation steps are stoichiometric, an isotopically labeled protein internal standard may be 

appropriate as demonstrated in previous studies (Brun et al., 2007; Heudi et al., 2008); 

however, synthesis time and expense may still be limitations. Protein analogue internal 

standards are good candidates for this process since they may have similar intrinsic 

properties (pI, hydrophobicity) as the target protein. Protein analogue internal standards 

undergo the same preparation steps as the target protein, and signature peptides are generated 

in a similar fashion for quantification. The key to making this work is to match similar 

retention times for the signature peptides representing the target protein and analogue internal 

standard, respectively. Retention time similarities will facilitate correction of matrix effects. 

Yang et al. have successfully employed a protein analogue internal standard to yield precise 

and accurate results at ng/mL concentrations in biological fluids (Yang et al., 2007; Yang, Z. 

et al., 2009). 

In the present work, our current method combines selective protein precipitation with use 

of a protein analogue internal standard (horse heart myoglobin) to quantify Alefacept in 

human plasma. 
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3.B   EXPERIMENTAL 

3.B.1. CHEMICALS AND REAGENTS 

Alefacept (Amevive) was purchased from Virginia Commonwealth University Medical 

Center Pharmacy. Horse heart myoglobin, sodium hydroxide, glacial acetic acid, hydrochloric 

acid, iodoacetamide, dithiothreitol, proteomics grade trypsin, and ammonium bicarbonate were 

obtained from Sigma Aldrich (St.Louis, MO, USA). Deionized water was obtained in-house 

using a Nanopure Diamond water system from Barnstead International (Dubuque, IA, USA).  

Methanol, isopropanol, acetonitrile were purchased from Burdick and Jackson (Muskegon, MI, 

USA). Acetic acid was procured from Curtin Matheson Scientific Inc. (Houston, TX, USA). 

Formic Acid was obtained from EMD Chemicals Inc. (Gibbstown, NJ, USA). K2EDTA Human 

plasma was obtained from BioChemed Services (Winchester, VA, USA). 

 

3.B.2. MATERIALS AND EQUIPMENT 

Plasma samples were aliquoted into 1.5 mL microcentrifuge tubes purchased from VWR 

International (Westchester, PA, USA). Samples were filtered using nanosep MF 0.2 µm filters 

from Pall Life Sciences (Ann Arbor, MI, USA).  All centrifugation was carried out using an 

Eppendorf 5804R centrifuge (Hamburg, Germany). All mixing was performed using a multi-tube 

vortex mixer from VWR International (Westchester, PA, USA). A syringe pump from Harvard 

Apparatus (Holliston, MA, USA) was used to infuse solutions for tuning optimization and post-

column infusion. 

 

 

 



58 
 

3.B.3. INSTRUMENTS AND HPLC CONDITIONS 

High Performance Liquid Chromatography (HPLC) separations were performed using 

the following equipment: Shimadzu system controller SCL-10A VP, pumps LC-10AD VP, 

solvent degasser DGU14A (Shimadzu, Kyoto, Japan). An HTS PAL autosampler from CTC 

Analytics (Zwingen, Switzerland) and a CH-30 column heater from Eppendorf (Westbury, NY, 

USA) were used. Column trapping was performed using a Phenomenex Security Guard column 

(Gemini C18, 4 X 2.0 mm) as the loading column and a Gemini C-18 column (100 mm x 2.0 mm 

I.D., 5.0 μm) as the elution column, both from Phenomenex (Torrance, CA, USA). Three 

Shimadzu pumps were operated with one controller to apply the gradient conditions.  Mobile 

phases from pumps A and C consisted of 0.1% Formic Acid and Mobile Phase B (0.1% formic 

acid in acetonitrile) was delivered from Pump B. The initial loading conditions used 100% 

aqueous mobile phase (0.1% formic acid) from pump C. Following a short loading time (0.5 

minutes), the diverter valve switched to position B and the gradient initiated.  Mobile phase A 

and B were coupled together with a mixer and the elution conditions started with 5% mobile 

phase B (0.1% formic acid in acetonitrile). During loading of the sample, the mobile phases were 

delivered at 0.5 mL/min to provide sufficient flow through the trapping column along with 

continuous flow into the mass spectrometer. The flow was reduced to 0.25 mL/min during 

elution onto the analytical column and the column temperature was maintained at 45 ˚C. 

Gradient conditions are plotted in Figure 3.1 for mobile phases A, B and C. 
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Figure 3.1 Gradient conditions are plotted for mobile phases A, B, and C. 
 

A 10-port Cheminert switching valve and a microelectric actuator obtained from Valco 

Instruments Co. Inc. (Houston, TX, USA) was used to perform on-line column trapping.  There 

were two autosampler rinses. The first rinse consisted of a cocktail of 

acetonitrile:methanol:isopropanol: water in the ratio of 40:20:20:20 and the second rinse was 1:1 

mobile phase A and B. The mass spectrometer was an API 4000Qtrap hybrid triple quadrupole/ 

linear ion trap from AB Sciex (Foster City, CA, USA) with Analyst 1.5 data acquisition 

software. The data analysis was performed using Quantitation Wizard processing software that 

accompanies Analyst. MRM pilot 2.0 (AB Sciex-Foster City, CA, USA) and was used to 

facilitate modeling of signature peptides. All nitrogen gas was generated from a Parker Hannifin 

(Haverhill, MA, USA) Tri-Gas Generator LC/MS 5000. Figure 3.2 represents an overall 

schematic diagram of the instrument including the plumbing for column trapping.
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Figure 3.2 Schematic of the overall instrument set-up including column trapping plumbing. 
 

3.B.4. MASS SPECTROMETER PARAMETERS 

The mass spectrometer was operated in the positive electrospray ionization (ESI) mode 

with selected reaction monitoring (SRM) of signature peptides for Alefacept and horse heart 

myoglobin. Potential signature peptides were obtained through in silico digestions using 

MRMPilot 2.0 and sequence homology evaluations were performed using the basic local 

alignment search tool (BLAST-http://blast.ncbi.nlm.nih.gov/Blast.cgi). Peptide Cutter 

(http://www.expasy.org/peptide_cutter/) was also used for predicting yield of signature peptides 

from an enzymatic digestion with trypsin. Signature peptides for Alefacept and myoglobin were 

optimized using multiple iterative processes of tuning, in silico predictions of cleaved peptides, 

SRM transitions, and collision energy voltages, and finally LC-MS/MS data collection. Tuning 

was performed two ways, direct infusion and LC-MS/MS injection by evaluation of the 

following scan types: Q1 full scan, precursor ion scan, product ion scan, and finally SRM to 

determine the final SRM(s) transitions that would represent Alefacept and myoglobin for 

signature peptide quantification. A 5 µg/mL solution of Alefacept and myoglobin prepared in 50 
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mM ammonium bicarbonate was digested with trypsin. This digested sample was used as a 

tuning solution for direct infusion at 10 µL/min tee’d with mobile phase at a flow rate of 0.20 

mL/min. Mobile phase A and B composition was varied to evaluate intensity changes during 

tuning optimization. The same solution was also injected with similar gradient conditions 

described in section 3.B.3 to determine the optimal conditions. The mass spectrometer 

parameters were tuned and optimized to achieve maximum sensitivity of selected signature 

peptides which resulted in the following parameters: source temperature 325 ˚C, ion spray 

voltage 5500 V, gas 1 (GS1) 38, gas 2 (GS2) 28, collision activated dissociation (CAD) was set 

on high, channel electron multiplier (CEM) 2200 V, declustering potential (DP) 109, entrance 

potential (EP) 15, and collision exit potential (CXP) set on 13. Alefacept and myoglobin 

signature peptides eluted at approximately 4.22 and 3.65 minutes, respectively. Table 3.1 

presents the SRM transitions, collision energies (CE), signature peptide information, and dwell 

times used during this study. 

Table 3.1 Selected Reaction Monitoring (SRM) Transitions and Selected Parameters 
 

Signature 
Peptide Q1 Q3 Signature Peptide Information  

Dwell 
(msec) 

Collision 
Energy 

(v)

AQSPa 597.4 894.5 VAELENSEFR→LENSEFR (+2/y7) 200 31
AMSP 1b 597.4 781.8 VAELENSEFR→ENSEFR (+2/y6) 200 31
AMSP 2c 597.4 652.4 VAELENSEFR→NSEFR (+2/y5) 300 31
Myoglobind 636.3 716.3 LFTGHPETLEK → ETLEK (+2/y6) 200 50

a Alefacept quantified signature peptide 
b Alefacept monitored signature peptide 1 
c Alefacept monitored signature peptide 2 
d Myoglobin signature peptide (analogue internal standard) 
 

3.B.5. STOCK SOLUTION AND WORKING SOLUTION PREPARATION  

The Amevive (Alefacept) vehicle was diluted with sterile water to yield a concentration 

of 7.5 mg/mL.  This stock solution was subsequently diluted with water to prepare an 
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intermediate working solution of 1 mg/mL. This working solution was then spiked in plasma to 

prepare the high standard (10,000 ng/mL) and high quality control (8000 ng/mL), which was 

then used to prepare the remaining calibration points and quality controls. Horse heart myoglobin 

was diluted in deionized water for the internal standard solution at a concentration of 1 mg/mL. 

Internal standard spiking solution was prepared fresh daily. Alefacept working solutions were 

prepared immediately prior to spiking into the plasma. 

 

3.B.6. PREPARATION OF CALIBRATION STANDARDS AND QUALITY CONTROL 

SAMPLES IN HUMAN PLASMA 

Pooled dipotassium EDTA human plasma from at least two donors was used to prepare 

the calibration standards and quality controls. A volume of 0.250 mL of the intermediate solution 

(1.0 mg/mL) of Alefacept was spiked into 25 mL plasma to obtain the high standard (10,000 

ng/mL). The high standard was spiked into 10 mL volumetric flasks to prepare the remaining 

seven  calibration standards (250, 500, 750, 1000, 2500, 5000, and 9000 ng/mL). A volume of 

0.200 mL of the intermediate solution (1.0 mg/mL) of Alefacept was spiked into 25 mL plasma 

to obtain the highest quality control (HQC = 8,000 ng/mL). The HQC standard was spiked into 

25 mL volumetric flasks to prepare the remaining quality control samples representing the lower 

limit of quantitation (LLOQ) QC, low QC (LQC), medium QC  (MQC) and high QC (HQC) 

quality controls, which were prepared at 250, 600, 2000, and 8000 ng/mL, respectively. A 

dilution control was prepared at 2.5 times the highest calibration standard (25,000 ng/mL), to 

evaluate dilution of samples within the calibration range. The dilution control was diluted 

fivefold with blank plasma to obtain a concentration within the calibration range (5000 ng/mL).  

Calibration standards (STDs) and quality control samples were freshly prepared for the first 
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analytical run to establish a day zero nominal value for storage stability studies. The calibration 

standards and QC samples were prepared in a similar fashion to contain less than or equal to 5% 

(v/v) of the intermediate solution in order to simulate real matrix samples as much as possible. 

The STDs and QC samples were divided into aliquots of 0.750 mL each, and stored at -20 ˚C 

until analysis.  

 

3.B.7. SAMPLE PREPARATION 

The sample preparation procedure involved a selective precipitation followed by 

reduction, alkylation, trypsin digestion, dilution, and filtration prior to LC-MS/MS analysis. Each 

STD, QC, or plasma blank were aliquotted (0.35 mL) into 1.5 mL microcentrifuge tubes and 

diluted to 0.500 mL with 50 mM ammonium bicarbonate. Twenty microliters of myoglobin 

internal standard spiking solution (solution = 1 mg/mL or 58.9 µM) was added into the tube 

followed by brief vortex mixing. The pH was then adjusted to 5.1 with 1.0 M acetic acid and 

samples were incubated at 45 °C for approximately 10 minutes. The supernatant from the 

samples was then chemically reduced with 0.040 mL of dithiotreitol (100 mM of DTT) and 

incubated for 10 minutes at 45 °C. Following reduction, samples were alkylated with 0.080 mL 

100 mM iodoacetamide and incubated for an additional twenty minutes in the dark. Samples 

were allowed to equilibrate to room temperature, and the pH was adjusted to 8.5 for optimal pH 

conditions for  trypsin digestion with an approximate enzyme to substrate ratio of 1:20 (w/w). 

Samples were digested overnight for approximately 16 hours at 37 °C. Digestion was stopped 

with 1 M acetic acid, followed by a dilution with 0.150 mL of 1:1 mobile phase A:mobile phase 

B. Samples were mixed thoroughly and filtered through 0.2 µm filters, pipet transferred to a 96-

well 2 mL plate, and injected into the LC-MS/MS using a 50 µL injection. 
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3.B.8. SELECTIVE PRECIPITATION (PARTIAL-PROTEIN PRECIPITATION 

EXTRACTION) 

One protein purification technique that exploits a protein’s solubility and stability is 

selective precipitation, also known as partial protein precipitation extraction. Employing pH 

adjustment coupled with heat incubation offers an effective method where the target protein will 

undergo minimal denaturation, and background proteins can be more completely denatured and 

precipitate (Simpson, 2004). This denaturation process implies destruction of the tertiary 

structure of a protein, with the formation of random polypeptide chains (Matulis, 1997). These 

chains tangle and aggregate, and to some extent, will form disulfide bonds (Matulis, 1997). 

Using temperature and pH adjustments concurrently, conditions may be created well away from 

the target protein’s isoelectric point (pI) to keep the target protein in solution (Lovrien et al., 

1997; Van Holde, 2006). The closer the pH is to the pI of the target protein, the more likely it 

will aggregate (Simpson, 2004). As temperature is increased, the hydrogen bonds of the protein 

are weakened (Lovrien et al., 1997) and the internal electrostatic forces are eliminated.  

The goal of this purification process is to maximize the recovery of target proteins and 

minimize the recovery of background proteins. Purification of target proteins will allow for a 

more efficient digestion and a reduction of matrix effects. Five different pH adjustments (pH 3.0, 

4.7, 5.1, 7.6, 9.0) were applied to plasma samples incubated at five varying temperatures (22, 37, 

45, 65, 95 °C) over the course of ten minutes. The two variables (pH and temperature) were 

evaluated together with all possible combinations. The isoelectric points of two of the most 

abundant background proteins were investigated along with the average isoelectric points (pI) of 

Alefacept and myoglobin. Albumin (pI = 4.7), IgG (pI = 7.2), and the average pI of Alefacept (pI 
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= 7.8) and myoglobin (pI = 7.2) were evaluated (average pI = 7.6). Adjustment of the pH to 5.1 

was also evaluated based on previous experimental results with myoglobin. A recent study by 

Saguer et al. indicated the secondary structure of serum albumin begins to unfold at pH 5, which 

leads to protein aggregation (Saguer, 2009). Employment of pH adjustments of 3.0 and 9.0 were 

evaluated to determine if pH adjustment well away from the pI is necessary to maintain the 

solubility of target proteins. Signature peptides were monitored for target and background 

proteins (albumin, IgG, transferrin) to evaluate the change in peak area response with pH 

adjustment and various temperature incubations.  A plasma sample was fortified with myoglobin 

and Alefacept at a concentration of 10 µg/mL and analyzed in triplicate for each condition. 

Background signature peptides were identified from in silico predictions, evaluations and 

literature sources (Anderson et al., 2006), and were optimized accordingly. The background 

signature peptides monitored were: albumin (575→937), IgG (839→262), and transferrin 

(815→693). 

 

3.B.9 DIGESTION TIME STUDY 

The trypsin incubation time was evaluated to determine if the digestion time could be 

reduced to improve throughput efficiency. The majority of the literature indicates overnight 

incubation times are needed; however, accelerated trypsin digestion by employment of 

microwave irradiation and convection has been successfully demonstrated by Lesur et al (Lesur 

et al., 2010); however, this was not available in our laboratory. A study was performed with 5 

incubation time points (0.08, 1, 2, 4, and 20 hours) to evaluate precision of quality control 

samples and the internal standard. Quality controls 1-3 were extracted in plasma as described 

above in triplicate with the different incubation periods for enzymatic digestion. Signature 
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peptides were monitored for Alefacept and myoglobin. The +1 and +2 charge states of the 

myoglobin signature peptide were monitored, but the intensity for other myoglobin peptides was 

not sufficient for quantification or for any of the other experiments such as the digestion time 

study. 

 

3.B.10 MATRIX EFFECTS EVALUATIONS AND RECOVERY 

Matrix effects were evaluated for potential ion suppression or enhancement of signature 

peptides along with monitoring of phospholipids as a surrogate for matrix effects (Little et al., 

2006). A post-column infusion study was performed similarly to previous methods (Bonfiglio et 

al., 1999; Shah et al., 2009). This experiment employed a sample that was extracted from 50 mM 

ammonium bicarbonate according to the sample preparation described previously as a clean 

matrix while injecting a blank plasma extracted sample as the matrix sample. The resulting 

profile was evaluated for any change in the ESI response of signature peptides for Alefacept and 

myoglobin. Phospholipids were monitored using the quasi-SRM transition 184→184 during this 

post-column infusion study as a likely candidate for suppression or enhancement of Alefacept 

and/or myoglobin signature peptides as suggested by previous phospholipid monitoring studies 

(Ismaiel et al., 2007; Little et al., 2006). A post-extraction addition study to evaluate absolute 

matrix effects was also assessed using a similar method  as suggested by Matuszewski et al 

(Matuszewski et al., 2003).  The experiment was performed by comparing the peak areas of 

processed blank plasma samples spiked with low, medium, and high concentrations of Alefacept 

(600, 2000 and 8000 ng/mL) in triplicate. Spiking was performed by diluting extracted blank 

plasma samples with a ratio of 1:1 with clean matrix extracted samples.  A dilution factor of two 
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was applied to the post-spike samples in order to compare the peak areas to the same non-diluted 

clean matrix extracted samples. 

 In addition to post-extraction addition investigations, a multiple donor source matrix 

evaluation was carried out as recommended previously (Ismaiel et al., 2008). Six different 

sources were fortified with Alefacept at the LQC level (600 ng/mL) and analyzed in triplicate. 

Concentrations were calculated from the calibration curves analyzed in the same run.  

 A relative recovery experiment was performed for Alefacept in human plasma. Signature 

peptide peak areas of plasma extracted and solvent (50 mM ammonium bicarbonate) extracted 

quality control samples were compared. All samples were analyzed in triplicate at three different 

concentrations (LQC, MQC, and HQC). Absolute recovery was not performed due to the lack of 

standard peptides to represent the target and internal standard signature peptides. 

 

3.B.11 LINEARITY 

Eight calibration standards were prepared by serial dilution at concentrations of 250, 500, 

750, 1000, 2500, 5000, 9000, and 10,000 ng/mL in dipotassium EDTA human plasma. All 

standards were analyzed in duplicate, and were calculated by using the Alefacept signature 

peptide and myoglobin signature peptide internal standard peak area ratios for each concentration 

level. Standard curves were constructed using linear regression and a 1/x2 weighing factor was 

employed for the determination of Alefacept concentrations. 

  

3.B.12 PRECISION AND ACCURACY 

Precision and accuracies were determined by analysis of quality control (QC) samples at 

three different concentrations and were analyzed in three separate runs. QC concentrations were 
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calculated from the calibration curves analyzed in the same run. Intra- and inter-assay precision 

and accuracy were determined by extracting LLOQ, low (LQC), medium (MQC), and high 

quality controls (HQC) in six replicates for intra-assay performance. A dilution control was also 

evaluated for intra-assay performance with six replicates. Quality controls were extracted in 

triplicate in two additional runs for a total of three analytical runs for inter-assay performance. 

 

3.B.13 SELECTIVITY  

Human plasma samples from six different sources were analyzed in duplicate to evaluate 

selectivity with regard to interferences. Each individual lot was extracted as described above 

(section 3.B.7) with and without the addition of the myoglobin internal standard. Selectivity 

requirements were that the peak areas co-eluting with Alefacept must be less than 20% of the 

peak area of the average of LLOQ samples of Alefacept for all six lots of blank plasma sources. 

Crosstalk interference was evaluated in pooled plasma requiring no more than 5% contribution 

from Alefacept to the myoglobin internal standard peak area. A high standard (10,000 ng/mL) 

was extracted absent of myoglobin in duplicate to evaluate the Alefacept contribution to the 

internal standard. The myoglobin internal standard contribution to Alefacept was evaluated in 

each run and in six different sources. 

 

3.B.14 STABILITY AND CARRYOVER 

The stability evaluations of stock solutions were minimized due to daily preparation. 

Following the first validation run with freshly prepared calibration standards and quality 

controls, STDs and QCs were frozen at -20°C and sub-aliquots were used each day for analysis. 

Long term storage stability was evaluated by using the day zero nominal value established by 
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extraction of freshly prepared low and high controls. Post-preparative stability (PPS) was 

performed to evaluate extracted samples stored in the autosampler beyond 24 hours at 5°C in the 

event of an instrument malfunction requiring re-injection of samples. PPS was assessed from re-

injection reproducibility after storage of quality control samples in the auto sampler for 48 hours.

 Carryover was assessed by injecting blank and/or extracted buffer samples immediately 

after each of the highest calibration standards (10,000 ng/mL) in an analytical run. The criterion 

for carryover in this experiment was the LQC must be accurate to within 15%. 

   

3.C RESULTS AND DISCUSSION 

Signature peptides for target protein quantification have been evaluated various ways. Here, 

we present an alternative technology by coupling selective precipitation with a protein internal 

standard for the quantitative analysis of our target protein, Alefacept. Use of controlled pH and 

temperature allowed for a reduction in the major background proteins and maintained the target 

protein. The myoglobin internal standard was critical in order to obtain precise and accurate 

results. This approach is a simple process and offers an alternative to isotope labeled proteins for 

internal standards and more complex purification processes such as immunoprecipitation. 

 

3.C.1 LC-MS/MS 

Signature peptides were identified using in silico predictions, direct infusion, and 

injection of solvent based samples to obtain the most intense signature peptides using positive 

electrospray ionization. Each precursor ion underwent extensive evaluation of gas pressures and 

voltages to obtain the most intense product ion peaks. Optimized collision energy voltages for 

product ions were comparable with the model generated recommendations made using 
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MRMpilot.  Optimization of the collision energies was critical in achieving maximum 

sensitivity. It was observed that changing collision energy +/- 10 units decreased intensity 

significantly. Additionally, injection of clean digested samples to evaluate potential product ions 

yielded greater intensity than direct infusion experiments. Injecting a clean digested sample 

through an analytical column while performing a gradient elution may reduce the background 

interferences associated with the components in an enzymatic digestion even though the samples 

were prepared in a clean matrix. This digested sample is unlike a synthetic signature peptide due 

to the presence of components like DTT, iodoacetamide, and trypsin which are necessary in 

order to obtain a signature peptide for LC-MS/MS optimization. The final signature peptides are 

presented in Table 3.1 as mentioned in section 3.B.4. 

 Chromatographic analysis of Alefacept and myoglobin signature peptides was 

investigated with various columns to resolve matrix peaks and ultimately produce similar 

retention times. An Ace C8, Aquasil C18, and a Phenomenex Gemini C18 were evaluated with a 

gradient of 0.1% formic acid and 0.1% formic acid in acetonitrile to achieve maximum 

sensitivity. The Phenomenex Gemini C18 provided the highest sensitivity, good peak shape, and 

closely related retention times for Alefacept and myoglobin signature peptides (3.6 versus 4.2 

minutes). The first attempt at a validation run the method resulted in complete loss of signal after 

39 injections; therefore, to improve ruggedness of the method, on-line column-trapping was 

employed. Similar analytical columns that were initially evaluated for separation of Alefacept 

and myoglobin were evaluated again for trapping (loading) and analytical (elution) columns; 

however, high back pressure and longer retention times lead to the investigation of using a 

Phenomenex security guard column as a trapping column. The Gemini C18 guard column 

allowed for a short elution time onto the analytical column, which resulted in a 12 minute run 
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time. Loading time (elution time off the trapping column) was evaluated for intensity and peak 

shape, and resulted in an optimized loading time of 0.5 minutes before the valve switch onto the 

analytical column. Introducing the on-line column trapping into the method improved the overall 

ruggedness. Following approximately 60 injections, the guard column was replaced; however, 

the same analytical column was used for the entire validation and has maintained performance 

for more than 400 injections. Examples of a blank chromatogram (A) and an LLOQ sample 

showing the Alefacept and myoglobin signature peptides (B, C), respectively are presented in 

Figure 3.3. 
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(A)  

 
(B)  

 
(C) 

 
(D) 

 
 
Figure 3.3 Representative chromatograms of (A) blank human plasma monitoring alefacept 

SRM: 597→894, (B) blank human plasma monitoring myoglobin SRM: 636→716, 
(C) extracted LLOQ (250 ng/mL) monitoring alefacept SRM: 597→894, (D) 
myoglobin signature peptide internal standard monitoring SRM: 636→716.  
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  3.C.2 SELECTIVE PRECIPITATION RESULTS (PARTIAL PROTEIN PRECIPITATION 

EXTRACTION) 

Conditions were created where the target protein would undergo minimal denaturation, 

and representative background proteins would be more completely denatured and precipitated 

(Simpson, 2004). Using elevated temperature and pH adjustment sequentially, conditions were 

obtained away from the target protein’s (alefacept and myoglobin) isoelectric points (pIs), in 

order to keep the target proteins soluble (Simpson, 2004). Charge repulsion between the charged 

random polypeptides in a protein keeps these peptides from aggregating however, the closer the 

pH is to the pI of the target protein, the more likely aggregation will occur (Simpson, 2004). The 

main goal was to use pH and temperature (which are generally not independent) to precipitate 

background proteins (mainly human serum albumin) and avoid precipitation of target proteins. 

As temperature is increased, the hydrogen bonds of the protein are weakened, and adjustment of 

the pH would be expected to reduce the internal electrostatic forces of the protein and open it up 

to complete denaturation (Lovrien et al., 1997; Simpson, 2004).  An initial study with myoglobin 

spike into human plasma revealed potential reduction in major background proteins when the pH 

was adjusted to 5.1 at a temperature of 45 °C. Therefore, as a control alongside more plasma 

experiments, myoglobin and alefacept were evaluated in deionized water adjusted to pH 5.1 and 

each temperature (22, 37, 45, 65, and 95˚C) was evaluated to determine if similar trends would 

occur in a clean matrix for the target proteins. This data are plotted in figure 3.4.  Data represent 

mean±SD, with water samples n =3. 
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Figure 3.4 Alefacept (monitored SRM: 597→894) and myoglobin (monitored SRM: 636→716) 

peak areas following a partial precipitation using pH 5.1 and 45˚C in deionized water. 
Data represent mean±SD, with samples n =3. 

 
 
The similar trends for myoglobin and Alefacept agreed with the original study carried out with 

myoglobin in plasma. This guided further investigation of these conditions with our target 

protein since Alefacept has a relatively similar pI to myoglobin (7.2 versus 7.8). As mentioned in 

section 3.B.8, six pH adjustments were evaluated with five different temperatures to attempt to 

denature background proteins and maintain target protein’s structure in the purification step.  

Optimal conditions were determined by assessing the most intense peak areas obtained for the 

target proteins along with a reduction in major background proteins. Adjusting the pH to 3 under 

the five different temperatures yielded negligible differences in peak area response for both 

alefacept and myoglobin signature peptides, and background protein signature peptides 

monitored showed negligible loss of response. Adjusting the pH to 7.6 or pH 9.0 resulted in loss 

of all signature peptide responses (including background signature peptides) below detection 

limits at temperatures of 22, 37, and 45 °C. Background protein and target signature peptide 
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responses appeared again at 65 and 95 °C temperature conditions at both pHs. The increase in 

signature peptide peak area response under these temperatures may be due to a concentration 

effect associated with increased aggregation; these samples yielded supernatant volumes 

approximately three fold less. The data was normalized to reflect the varying supernatant 

volumes. Alefacept data and human serum albumin are shown in three dimensional graphs 

(Figures 3.5 and 3.6) to illustrate the trends of peak area response under different pH and 

temperature conditions. Data shown represent mean±SD for plasma samples n =3. At pH 4.7 

(albumin pI) and 5.1, similar results in peak area responses for all temperature conditions were 

observed. Background protein signature peptides however were reduced more using the pH 

adjusted to 5.1. Under these conditions, IgG background was reduced 25% as compared to 37 

°C, and as much as a 10-fold reduction compared to 65 °C. However, denaturing at 65 °C with 

the pH adjusted to 5.1 did not result in acceptable target protein yields. The albumin peak area 

response indicated that the presence of albumin was reduced to more than three-fold less than 

that of the target protein responses at pH 5.1 and 45 °C. Data showing the peak area response 

differences of each protein at pH 5.1 and 45 °C are shown in Figure 3.7. Using these results, it 

was decided to adjust pH to 5.1 and denature at 45 °C as an initial purification step. Transferrin 

background was a lesser concern under any conditions since the peak area response was 

consistently lower than the target protein signature peptide response.  

 
 
 
.
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Figure 3.5 Three-dimensional graph of Alefacept (monitored SRM: 597→894) peak area 

response versus pH (3.0. 4.7, and 5.1) and temperature (22, 37, 45, 65, and 95˚C). 
Data shown represent mean±SD with samples n =3. 

 

 
Figure 3.6 Three-dimensional graph of human serum albumin (HSA), (monitored SRM: 

575→937) peak area response versus pH (3.0. 4.7, and 5.1) and temperature (22, 37, 
45, 65, and 95˚C). Data shown represent mean±SD with samples n =3. 
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Figure 3.7 Maximum response of target proteins (Alefacept and myoglobin) monitoring 

signature peptides and minimum response of background proteins (immunoglobulin-
IgG, transferrin, and human serum albumin-HSA) with optimal precipitation 
conditions of pH 5.1 and 45˚C. Data shown represent mean±SD error bars generated 
from samples n =3.   

 
3.C.3 DIGESTION TIME 

Figure 3.8 represents the results of the evaluation of trypsin digestion time at five 

different time points for triplicate analysis of controls (LQC, MQC, and HQC). The internal 

standard was also evaluated by averaging the peak area response obtained from the quality 

control samples for each incubation period. Analysis of variance was performed to determine if 

each time point was significantly different for quality controls and internal standard. This 

revealed the quality controls under these conditions are not equal and less incubation time 

yielded high variability. In order to further explain the results, the relative standard deviations 

(%RSD) were plotted in Figure 3.9. The comparison of %RSD revealed that the precision was 
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for the internal standard response. Consequently, the 20 hour incubation time for trypsin 

digestion was chosen to be more appropriate. 

 
Figure 3.8 Incubation time for trypsin digestion results for LQC (600 ng/mL), MQC (2000 

ng/mL), HQC (8000 ng/mL), and internal standard (ISTD) signature peptide peak 
area response with standard deviation error bars. Data represent QC’s extracted n =3 
and internal standard response with each respective digestion time point. 
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Figure 3.9 Comparison of relative standard deviation of 4 hr and 20 hr incubation times for 

trypsin digestion for each quality control and internal standard response. 
 

3.C.4 MATRIX EFFECTS RESULTS 

Ion profiles from the post-column infusion study revealed no clear suppression or 

enhancement at the retention times of myoglobin or Alefacept signature peptides. Phospholipids 

were monitored during the post-column infusion, which indicated their presence following 

extraction; however, all peaks were chromatographically resolved from Alefacept and myoglobin 

signature peptides. Even though phospholipids were present, ion profiles showed no suppression 

or enhancement as a result of phospholipids. In order to further evaluate matrix effects, a post-

extraction addition study was performed as described in section 3.B.11. The percent matrix effect 

was calculated as follows: Matrix effects = 100 × (post spike peak area -solvent extracted peak 

area)/solvent extracted peak area. The studies revealed the presence matrix effects with the 

percent matrix effects resulting in -50.8% for LQC, -73.3% for MQC, and -70.8% for HQC. A 

multiple source matrix effect study was also performed as discussed in section 3.B.11. The 

results were acceptable (± 15% for precision and accuracy) for all individual human plasma lots 

and are shown in Table 3.2. 
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Table 3.2 Multiple Source Matrix Effect Evaluation, with each human plasma lot analyzed n =3. 
 

  LOT 1 LOT 2 LOT 3 LOT 4 LOT 5 LOT 6
Average measured 
concentration (ng/mL) ± SD 

636.77 ± 
55.28

652.77 ± 
40.81

658.76 ± 
49.86  

687.00 ± 
93.36 

639.33 ± 
26.84 

650.77 ± 
40.55

%RSD 8.77 6.35 7.67 13.67 4.20 6.22
%DFN 6.11 8.88 9.88 14.50 6.66 8.44

 

3.D METHOD VALIDATION 

3.D.1 LINEARITY AND LIMIT OF DETECTION 

The peak area ratio of Alefacept to myoglobin internal standard signature peptides in human 

plasma was linear as a function of concentration over the range 250 to 10,000 ng/mL. The 

calibration curves yielded acceptable reverse calculated residuals ranging from -3.7% to 2.9%. 

Without use of the peak area ratios of analyte and internal standard signature peptides, 

calibration curves produced from absolute responses of Alefacept signature peptides versus 

actual concentration yielded reverse calculated residuals between -66% to 77%. Precision 

measured in terms of percent relative standard deviation ranged from 7.2% to 14.8%. The LLOQ 

for Alefacept was established at 250 ng/mL using the signature peptide approach. Data are 

presented Table 3.3. 
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Table 3.3 Reverse predicted concentrations for alefacept calibration standards (ng/mL) 
 

Alefacept Concentration (ng/mL)     

RUN Number 250.00 500.00 750.00 1000.00 2500.00 5000.00 9000.00 10000.00 r2

Run 1 222.24 577.14 670.99 766.97 2210.20 4850.90 9322.03 9450.76 0.990
294.54 430.22 752.00 988.89 2960.23 5970.43 9370.22 11200.03

Run 2 264.53 479.54 707.01 1140.01 2330.22 4820.33 10300.01 8500.32 0.998
248.37 470.23 795.20 839.22 2820.22 5480.33 7270.99 11500.01

Run 3 236.87 570.26 659.99 1090.00 2560.00 4650.43 9930.01 8770.22 0.998
252.32 508.02 747.44 990.44 2522.22 5100.23 8997.03 10102.01

Mean 253.15 505.90 722.11 969.26 2567.18 5145.44 9198.38 9920.56 0.995
StdDev 24.85 58.17 52.11 143.11 284.32 496.45 1053.48 1243.04 0.005
%RSD 9.81 11.50 7.22 14.76 11.07 9.65 11.45 12.53 0.47
%DFN 1.26 1.18 -3.72 -3.07 2.69 2.91 2.20 -0.79  
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Limit of detection (LOD) was determined by extracting three blank plasma samples and 

determining the peak to peak noise height at the elution time of alefacept signature peptide. 

Standard deviation of these samples was calculated and LOD calculation was performed by: 3 

times the standard deviation of the blank divided by the slope of the calibration curve. The LOD 

was 44 ng/mL and was assessed to determine if detectability could potentially be lower than the 

current immunoassay approach (80 ng/mL).  

 

3.D.2. SELECTIVITY 

The selectivity of the method was evaluated in six different lots of blank human plasma. 

No endogenous peaks at the retention time of alefacept or myoglobin signature peptide were 

observed for any of the lots. Figure 3.3(A) shows a blank plasma representative chromatogram. 

Signature peptide selectivity was monitored throughout the entire study with three different 

product ions for the signature precursor ion. The MRM transitions monitored were 597→652, 

597→894, and 597→781, which are depicted with the internal standard in Figure 3.6. No 

apparent interferences were present with any of the transitions and 597→894 was chosen as the 

quantitative signature peptide because of its greater intensity. The 636→716 transition was 

chosen for the myoglobin signature peptide. The +1 charge state of the myoglobin precursor ion 

(1272) was monitored but was not used due to its lower intensity than the +2 charged precursor 

ion (636). Figure 3.10 (A, B, C) shows raw chromatograms which are labeled according to Table 

3.1.  Analyte interference studies were also acceptable with no peaks detectable at the retention 

time of alefacept or myoglobin during these experiments. 
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(A)

 
(B)

 
(C)

 
D) 

 
Figure 3.10  (A) alefacept monitored signature peptide 1 (AMSP1: 597→652), (B) alefacept 

quantitative signature peptide (AQSP: 597→894), (C) alefacept monitored 
signature peptide 2 (AMSP2: 597→781), (D) myoglobin internal standard signature 
peptide (ISTD: 636→716). 
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3.D.3 RECOVERY AND CARRYOVER 

Relative recovery was performed to evaluate signature peptide recovery. Solvent 

extracted versus matrix extracted quality controls samples (LQC, MQC, and HQC) were 

analyzed in triplicate. Percent recovery was obtained by dividing the matrix extracted samples by 

the solvent extracted samples and multiplying by 100. The results revealed 33.5, 24.9, 25.0% 

recovery for the LQC, MQC, and HQCs, respectively. Carryover was evaluated and no response 

(below detection limits) was present at the retention times for alefacept or myoglobin signature 

peptides, and no biased versus LQC accuracy was observed. 

 

3.D.4. PRECISION AND ACCURACY 

The precision and accuracy data are summarized in Table 3.3. Inter and intra-day 

precision and accuracy were determined for the LLOQ QC, LQC, MQC and HQC samples.  The 

intra-run accuracy (% bias) was within ± 10.6% (maximum RSD of 11.2%) for all the 

concentrations including the LLOQ. Additionally, inter-run accuracy was within ±10.9% 

(maximum RSD of 16.2%) for all concentrations. The dilution quality control precision and 

accuracy were less than 10%, 6.3 and 5.7, respectively. The results indicate that the use of a 

signature peptide for alefacept with an analogue internal standard was both accurate and precise 

according to established acceptance criteria. 
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Table 3.3 Inter and Intra-assay Precision and Accuracy* 
  

 QC (ng/mL) 

Average measured 
concentration 
(ng/mL) ± SD

Inter-
assay 

% bias

Intra-
assay % 

bias

Intra-assay 
precision 
(%RSD) 

Inter-assay 
precision 
(%RSD)

LLOQ (250.00) 242.42 ± 39.35 -3.03 -10.00 10.33 16.29
LQC (600.00) 665.35 ± 80.51 10.98 6.94 9.70 12.10

MQC (2000.00) 2086.77 ± 242.15 4.33 10.68 11.20 11.60
HQC (8000.00) 8169.27 ± 1033.35 2.11 1.95 9.03 12.65

*QCs analyzed n =6 in 3 separate analytical runs 
 

3.D.5 STABILITY 

PPS was assessed from re-injection reproducibility after storage of quality control 

samples in the auto sampler for 48 hours at 5°C. Processed LQC, MQC, and HQC samples were 

stable and %bias was 10.1, 6.7, and 11.3%, respectively. Storage stability was evaluated in the 

final validation run by using the freshly prepared day zero nominal concentrations to quantify the 

frozen quality controls processed. Processed LQC and HQC samples were stable for 21 days at 

 -20°C and the %bias from day zero was 11.6 and 12.1%, respectively.  

 

3.E CONCLUSIONS  

Signature peptides employed as surrogates for target protein quantification is an attractive 

alternative to traditional immunoassays in biological fluids. Current methods for protein 

quantification by LC/MS have employed antibody-based purification through molecular 

recognition of target proteins and/or peptides in addition to immunodepletion of major 

background proteins (Berna et al., 2008; Ho et al., 2008; Kumar et al., 2010). Two dimensional  

solid phase extractions has been used to reach low ng/mL levels and achieve precise and accurate 

results without the use of antibodies(Yang, Z. et al., 2009). In this study, selective denaturation 

purification combined with the use of a carefully chosen protein analogue internal standard and 
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on-line extraction yielded precise and accurate results that meet FDA guidance acceptance 

criteria without the use of molecular recognition, immunodepletion, or off-line solid phase 

extraction. Internal standardization at the protein level was found to be necessary to compensate 

for matrix effects which hindered the ability to achieve precise and accurate data. Using 

Alefacept as a model therapeutic protein, the current  method was able to achieve quantification 

limits  necessary for evaluation of therapeutic levels (500-6000 ng/mL) without the need for 

multiple dilutions required in an ELISA assay that has a more limited range (80-900 ng/mL 

(Vaishnaw et al., 2002)). Employment of a more sensitive mass spectrometer may further lower 

quantification limits  to be comparable to  the enzyme-linked immunosorbent assay (ELISA) 

method (LLOQ = 80 ng/mL) (Vaishnaw et al., 2002). 
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CHAPTER 4 

DETERMINATION OF OXYNTOMODULIN, AN ANORECTIC POLYPEPTIDE, IN RAT 
PLASMA USING 2D-LC-MS/MS COUPLED WITH ION PAIR CHROMATOGRAPHY 

Drawn from article submitted to J. Chromatograph B.(April 2012) 
 

4.A   INTRODUCTION 

The prevalence of obesity is evident, as over one-third of adults in the United States are 

considered obese. At present, there are no effective pharmacotherapy’s to treat obesity and/or 

reduce its prevalence (CDC, 2011). In this context, however, recent studies have advocated that 

manipulation of the gut-brain axis for appetite control can be a physiologically natural means to 

reduce body weight. Gut-secreting anorectic polypeptides produced post-prandially in response 

to meal intake have received considerable attention as potential therapeutic drug entities for 

obesity (Wynne & Bloom, 2006). Oxyntomodulin (OXM) is one of such anorectic polypeptides, 

composed of 37-amino acids with a molecular weight of 4449 Daltons (Wynne & Bloom, 2006; 

Wynne, Park et al., 2006). In humans, its systemic blood levels under fasting condition are ~50 

pM (0.2 ng/mL), which are elevated to ~150 pM (0.7 ng/mL) within 60 min in response to meal 

intake [7, 8]. Central and peripheral injections of OXM have demonstrated significant food 

intake suppression and reduced body weight in rodents and humans (Dakin et al., 2001; Dakin et 

al., 2004; Dakin et al., 2002; Wynne & Bloom, 2006; Wynne, Park et al., 2006).  Nevertheless, 

OXM has also shown to be metabolized quite rapidly by dipeptidyl peptidase (DPP-IV) and 

neutral endopeptidase (NEP), apparently suffering from a short half-life in the systemic 

circulation and thus, short-lived pharmacological effects (Druce et al., 2009). 
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If OXM is to be developed as a therapeutic drug, one of the critical hurdles would be 

determination of OXM concentrations in biological matrices, to assess its pharmacokinetics 

following administration. Conventionally, highly sensitive immunoassays such as 

radioimmunoassay and enzyme-linked immunosorbent assays (ELISA) have been used for this 

purpose, even though their cross-reactivity to related molecules and time-consuming procedures 

are disadvantageous (Cohen et al., 2003).   These methods are used primarily because  liquid 

chromatography tandem mass spectrometry (LC-MS/MS) commonly used for small molecule 

drugs has not been considered suitable for quantification of large molecule drugs such as proteins 

and peptides until recently (Chang et al., 2005; Ismaiel et al., 2011; Pan et al., 2010; Xu et al., 

2010; Yang et al., 2007).  

 LC-MS/MS quantitative analysis of intact polypeptides traditionally involves four 

processes, which include: 1) sample pre-treatment, 2) chromatography, 3) ionization, and 4) 

detection for quantification (Van Den Broek et al., 2008). Sample pre-treatment from plasma has 

included protein precipitation (PPE), liquid-liquid extraction (LLE), solid phase extraction (one 

and two-dimensional SPE), immunoaffinity purification (IAP), and online extraction using two-

dimensional high-performance liquid chromatography (2D-LC), (Chang et al., 2005; Delinsky et 

al., 2004; Farthing et al., 2004; Ismaiel et al., 2011; Pan et al., 2010; Raffel et al., 1994; Van Den 

Broek et al., 2007, 2008; Yin et al., 2003). Each sample preparation has its advantages and 

disadvantages, with difficulty, method development time, and overall costs considered in method 

development as illustrated in Figure 4.1.  
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Figure 4.1 Sample preparations PPE, SPE, 2DLC/SPE, and IAP considerations scaled 

 in order from least to most for cost, difficulty, and method development time. 
 

Protein precipitation has been employed for peptide analysis previously; however, losses of 

target peptide in precipitate and/or insufficient reduction in matrix effects are significant 

disadvantages. Liquid liquid extraction has limitations for sample pretreatment since it is more 

suitable for nonpolar compounds, rather than peptides that have ionic functional groups (Van 

Den Broek et al., 2008). Solid phase extraction provides sufficient reduction in matrix effects 

and improved recovery compared to PPE; however, multiple steps can require lengthy 

optimization. Immunoaffinity purification (IAP) requires antibodies that can be expensive, 

require significant optimization, and may not be necessary. 

Two-dimensional liquid chromatography (2D-LC) has recently emerged because of its 

ability to provide separation of protein or peptide mixtures (Ismaiel et al., 2011; Liu et al., 2009; 

Van Den Broek et al., 2008). One-dimensional reversed phase chromatography may be sufficient 

for chromatographic separation; however, 2D-LC offers the additional dimension that may be 

used as an online sample purification to reduce matrix effects and improve sensitivity. Ionization 

of peptides may be accomplished using electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI), atmospheric pressure photoionization (APPI), or matrix-assisted 

laser desorption ionization (MALDI). However, positive electrospray ionization (ESI) has been 

well established as the method of choice for ionization of polar, large molecules such as peptides 
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(Hao et al., 2011). ESI enables multiply charged positive ions [M + nH]n+ to form, which is 

suitable for the ionization of polypeptides. Formation of a multiple charge state ion will reduce 

the mass to charge ratio (m/z), which may allow for a polypeptide to be analyzed with a mass 

spectrometer with limited mass range (~ 2800 m/z).  

Mass spectrometric detection of proteins and peptides has traditionally employed ion 

trap, time-of-flight (TOF), or hybrid quadrupole time-of-flight (Q-TOF) mass analyzers. These 

mass analyzers offer accurate mass measurements for the identification and relative 

quantification of proteins and peptides (Plumb et al., 2012). However, these mass analyzers lack 

the sensitivity necessary for absolute quantification of peptides due to their significantly lower 

duty cycle as compared to triple quadrupole mass spectrometers operating in selection reaction 

monitoring mode (Plumb et al., 2012). The duty cycle difference of 100% for tandem mass 

spectrometers versus 20% active for TOF type instruments can result in a 5 to 10-fold difference 

in sensitivity (Plumb et al., 2012). Van den Broek et al. revealed in a recent review that larger 

peptides (> 3200 Da) normally do not employ SRM (or multiple reaction monitoring: MRM) for 

quantification of peptides in biological fluids. It is understandable that the formation of MRM 

transitions for large peptides is challenging due to the potential to produce too many fragments 

from high collision energy, which yields lower sensitivity (Rogatsky et al., 2007).   

In this chapter, OXM determination in rat plasma by LC-MS/MS has been achieved, and 

the method has been validated using the FDA bioanalytical guidelines (FDA, 2001). This method 

was performed without enzymatic digestion to obtain signature peptides as described in chapter 

3. The method was unique in the employment of an optimized µelution anion exchange SPE, 

two-dimensional LC-MS/MS, and reversed phase ion pair chromatography. The method required 

100 µL of rat plasma to obtain a lower limit of quantification of 1 ng/mL and a chromatographic 
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run time of less than 10 minutes. A stable isotope-labeled internal standard was spiked into each 

sample.  Following validation, the method was used for determination of the pharmacokinetic 

profile of OXM in rats following intravenous injection. 

 

4.B   EXPERIMENTAL 

4.B.1. CHEMICALS AND REAGENTS 

Oxyntomodulin (OXM: molecular weight of 4449.9 g/mol) was purchased from Bachem 

Americas (Torrance, CA, USA). Isotope-labeled OXM (OXMIL) was synthesized by Open 

Biosystems, Inc. (Huntsville, AL, USA), replacing all arginines (R) at 17th, 18th, 31st and 33rd 

positions with heavy arginine isotopes. This labeling resulted in an average mass of 4491.0 

g/mol, which was approximately a +40 Da shift from native OXM.  DPP IV inhibitor was 

purchased from Millipore (St. Charles, MO, USA). Formic acid, trifluoroacetic acid (TFA), 3-

nitrobenzyl alcohol (3-NBA), sodium hydroxide, hydrochloric acid, bovine serum albumin 

(BSA), and ammonium hydroxide were obtained from Sigma-Aldrich (St.Louis, MO, USA). 

Polypeptides angiotension-1, obestatin, rat ghrelin, horse heart myoglobin, polypeptide YY 

(PYY1-36), insulin growth factor-1 (IGF-1), parathyroid hormone (PTH), and leptin were also 

purchased from Sigma-Aldrich (St.Louis, MO, USA). Polypeptide YY3-36 (PYY3-36) was 

purchased from Bachem Americas (Torrance, CA, USA). Deionized water was obtained in-

house using a Nanopure Diamond water system from Barnstead International (Dubuque, IA, 

USA).  Methanol, isopropanol, and acetonitrile were purchased from Burdick and Jackson 

(Muskegon, MI, USA). Sodium heparinized rat plasma was obtained from BioChemed Services 

(Winchester, VA, USA). All reagents were HPLC grade unless otherwise noted. 
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4.B.2 MATERIALS AND EQUIPMENT 

Heparinized rat plasma samples were aliquoted into 2 mL conical bottom 96-well plates 

(VWR International, Westchester, PA, USA).  Oasis® brand mixed-mode anion exchange 

(MAX) µelution plates (30 µm, 2mg/well; Waters Corporation, Milford, MA, USA) were used 

for solid phase extraction (SPE) of the samples using automated pipetting on a Quadra 96 Model 

320 Tomtec (Hamden, CT, USA). Centrifugation and mixing, respectively, were carried out 

using an Eppendorf 5804R centrifuge (Hamburg, Germany) and a multi-tube vortex mixer 

(VWR International or a Talboys Advanced Model 1000MP Microplate Shaker (Troemner: 

Thorofare, NJ, USA). A syringe pump from Harvard Apparatus (Holliston, MA, USA) was used 

to infuse OXM solutions for tuning optimization and post-column infusion studies. 

 

4.B.3 CHROMATOGRAPHY AND MASS SPECTROMETRY EQUIPMENT  

The first dimension (loading step) of 2D-LC was performed on a Waters Acquity 

UPLC®. The second dimension (eluting pump) used high performance liquid chromatography 

(HPLC) with the following equipment: Shimadzu system controller SCL-10A VP, two LC-10AD 

VP pumps, solvent degasser DGU14A (Shimadzu, Kyoto, Japan). A 10-port Cheminert 

switching valve and a microelectric actuator obtained from Valco Instruments Co. Inc. (Houston, 

TX, USA) was used to perform on-line column trapping. The mass spectrometer was an API 

4000Qtrap hybrid triple quadrupole/ linear ion trap from AB Sciex (Foster City, CA, USA) with 

Analyst 1.5 data acquisition software. The data analysis was performed using Quantitation 

Wizard processing software that accompanies Analyst. Bioanalyst software AB Sciex (Foster 

City, CA, USA) was used for peptide reconstruction to evaluate charge state distribution during 
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tuning optimization. All nitrogen gas was generated from a Parker Hannifin (Haverhill, MA, 

USA) Tri-Gas Generator LC/MS 5000. 

  

4.B.4 CHARGE STATE DISTRIBUTION AND PRODUCT ION FORMATION STUDY OF 

OXYNTOMODULIN AND COMPARISON TO OTHER POLYPEPTIDES 

Electrospray ionization is a soft ionization technique that has the capability of producing 

intact multiply charged ions from biomolecules (Fenn et al., 1990). The charged state distribution 

of an intact biomolecule will normally yield mass to charge ratios (m/z) between 500 and 3000 

Daltons depending on the zero charge mass (Iavarone et al., 2001). Having this range of m/z 

offers an advantage to quantification of large molecules using lower mass range mass analyzers 

(< 3000 Daltons) such as a triple quadrupole mass spectrometer. Part of this investigation was to 

evaluate the factors that may affect charge state distribution and product ion formation of OXM. 

Along with OXM, ten other polypeptides were evaluated to observe possible trends with charge 

state distribution and the formation of product ions. Polypeptides were chosen spanning a range 

of 1296 to 16,951 Daltons, which are listed in section 4.B.1. These polypeptides were chosen to 

represent a diverse group of peptides with a range of molecular weights that may be feasible to 

produce a m/z ratio fit for the mass spectrometer and yield product ions to form SRM transitions. 

Given that the sequence of OXM and the selected peptides contain basic amino acid residues, 

positive ions tend to be localized on these residues and they will most likely ionize better with 

positive polarity (Krusemark et al., 2009). It has been established that multiple factors can affect 

charge state distribution such as solvents, instrument parameters, primary structure and 

conformation of a protein (Krusemark et al., 2009). Solvents such as glycerol and 3-nitrobenzyl 

alcohol have been shown to increase charge state and improve fragmentation (Krusemark et al., 
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2009; Sze et al., 2002). Therefore, we investigated the charge state distribution of ten 

polypeptides, including oxyntomodulin to determine the feasibility for quantification of the intact 

biomolecule using a triple quadrupole mass spectrometer with these additives in mind. Our 

intention was to maximize the detectability of a particular charge state (m/z) and form product 

ions for selected reaction monitoring (SRM).  

The first part of this study was to determine the charge state distribution of polypeptides 

in various solvent mixtures and optimize precursor ions (intact ionized polypeptide without 

fragmentation). Different combinations of acetonitrile (ACN) or methanol (MeOH), water, 3-

nitrobenzyl alcohol (3-NBA), glycerol, and formic acid (FA) were prepared. Each solvent 

combination was used as a diluent for each polypeptide to prepare a final concentration of 

5µg/mL. The solvent (S1 to S12) ratios and their description are shown in Table 4.1. 

 

Table 4.1 Twelve Solvent Mixtures used in charged state distribution evaluation of polypeptides  

Solvents Description

S1 25:75 ACN:H2O
S2 25:75 MeOH:H2O
S3 25:74:1 ACN:H2O:3-NBA
S4 25:74:1 MeOH:H2O:3-NBA
S5 25:74:1 ACN:H2O:glycerol
S6 25:74:1 MeOH:H2O:glycerol
S7 25:74:1 ACN:H2O:formic acid
S8 25:74:1 MeOH:H2O:formic acid
S9 24:74:1:1 ACN:H2O:3-NBA:formic acid
S10 24:74:1:1 MeOH:H2O:3-NBA:formic acid
S11 24:74:1:1 ACN:H2O:glycerol:formic acid
S12 24:74:1:1 MeOH:H2O:glycerol:formic acid
Note: ACN = acetonitrile, MeOH = methanol, 3-NBA = 3-nitrobenzyl alcohol, H2O = deionized water 
 

The solvent mixture containing a polypeptide at 5 µg/mL was infused into the mass spectrometer 
at a flow rate of 10µL/minute. This experimental schematic is shown in Figure 4.2. 



95 
 

 
 
Figure 4.2 Experimental schematic of charge state distribution experiment for polypeptides. Each peptide was diluted into  mixtures 

at 5 µg/mL, placed into a 1 mL syringe, and infused at 10 µL/minute coupled with mobile phase at a flow of 200 µL/min. 
with 80% 0.1% formic acid in acetonitrile (ACN) and 0.1% formic acid (FA).
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Mobile phase was also tee’d into the infusion experiment at a flow rate of 0.200 mL/min with 

80% acetonitrile and 20% 0.1% formic acid. Infusion experiments were performed with and 

without mobile phase flow by evaluation of Q1 (1st quadrupole) MS scans (i.e. full scan). Each 

mixture underwent optimization of each instrument parameter, which included: ramping 

declustering potential and entrance potential, optimization of gases, source temperature, and 

turbo ion voltage. Following the observation of maximum Q1 full scan intensity, a peptide 

reconstruction was performed using Bioanalyst to determine the charge state distribution of the 

mass spectrum obtained. The list of ions reconstructed from the mass spectrum was evaluated for 

the presence of the polypeptide, and the charge state distribution was observed. Following 

optimization of precursor ions for each solvent, formation of product ions was determined for the 

minimum, maximum, and most intense charge state of each polypeptide. In product ion mode, 

instrument parameters were again ramped for optimal performance. Collision energy was ramped 

slowly from (0 to 150) due to the potential to generate multiple fragments with weak intensity 

that are from multiply charged biomolecules (Chen, 2010). As a final tuning optimization, 

selected reaction monitoring (SRM) transitions were evaluated for maximum intensity with 

optimal parameters applied for each solvent and respective charge state that formed product ions 

for each polypeptide (if applicable). 

 

4.B.5 OPTIMIZATION OF REVERSED PHASE ION PAIR CHROMATOGRAPHY  

Reversed phase chromatography was investigated with and without the presence of an ion 

pairing reagent by monitoring the SRM transition of oxyntomodulin for chromatographic 

performance (i.e., peak shape and intensity). It has been observed that incorporation of modifiers 

into reverse phase chromatography may improve sensitivity and resolution for intact proteins 
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(Valeja et al., 2010). Traditionally, 3-NBA (C7H7NO3), with a pKa of 13.82, has been used as a 

matrix for fast atom bombardment and matrix assisted laser desorption ionization (MALDI) 

(Cerveau, 1992; Chan, 1992). Following optimization of SRM transitions, it was observed that 

signal intensity improved more than an order of magnitude in the presence of 3-nitrobenzyl 

alcohol (3-NBA) in the solvent mixture. Therefore, 3-NBA was evaluated as a potential ion 

pairing agent to improve chromatography and enhance sensitivity. Initially, 3-NBA was added 

into the aqueous (mobile phase A) and organic mobile phase (mobile phase B) at seven molar 

concentrations (0.0, 1.3, 3.3, 6.5, 13.1, 32.7, 65.3 mM). A slow gradient (5% A over 1 minute, 

80% B from 1 to 5 minutes, hold for 1 minute at 80% B, and equilibrate column for 2 minutes 

again at 5% A) onto the eluting column described in the next section (4.B.6) was used to 

evaluate response and chromatographic performance. Following the evaluation of each molar 

concentration of 3-NBA, six pH adjustments (pH = 2.3, 4.7, 5.7, 6.4, 7, 10) to the mobile phase 

were evaluated.  

 

4.B.6 GRADIENT METHOD FOR 2D-LC ANALYSIS OF OXYNTOMODULIN 

Samples were injected (30 µL injection) with a Waters Acquity UPLC® integrated 

autosampler. In the first dimension of 2D-LC, the loading column was an ACE C8, 5 um, 2.1 x 

50 mm, 300 Å. (MacMod, Chadds Ford, PA, USA). The second dimension of 2D-LC used a 

Waters XBridge BEH300 C18 Column, 5 µm, 2.1 x 100 mm, 300 Å as the analytical (eluting 

column). Mobile phase A consisted of 0.1% (6.5 mM) 3-NBA (pH 4.7) v/v and mobile phase B 

consisted of 0.1% (6.5 mM) 3-NBA in acetonitrile v/v. The Acquity employed two washes: a 

weak wash consisted of 1:1 acetonitrile:water and the strong wash consisted of 80:20 

acetonitrile:water with 0.1% 3-NBA and 0.1% formic acid. In the first dimension, the samples 
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were loaded onto the ACE C8 column maintained at 50 ºC using a flow of 0.250 mL/min. and 

mobile phase composition of 95% A for 1 minute. After a 1 minute loading time, the diverter 

valve switched to position B and the gradient initiated.  Mobile phase A and B were combined 

together with a mixer and the elution conditions started with 5% mobile phase B (0.1% 3-NBA 

in acetonitrile) and increased to 90% B over 3.5 minutes. Isocratic conditions were held for two 

minutes at 90% B, followed by a quick switch (5.6 minutes) back to the original conditions of 

95% A. The columns were equilibrated for approximately 2.5 minutes for a total run time of 8 

minutes. During the elution step while the diverter valve was in position B from 5.6 to 7 minutes, 

the loading column was washed at a mobile phase composition of 50% A at a flow of 0.4 

mL/minute. Continuous flow was also permitted into the mass spectrometer with the eluting 

pumps. 

  

4.B.7 MASS SPECTROMETER PARAMETERS 

The mass spectrometer was operated in the positive electrospray ionization (ESI) mode 

with selected reaction monitoring (SRM) of OXM and its isotope labeled internal standard 

(OXMIL). Charge state distribution and evaluation of the most intense SRM transitions was 

finalized following the investigation discussed in section 4.B.4.  Tuning was performed on 

several potential SRM transitions and all parameters were re-evaluated such as gases, source 

temperature, declustering potential, collision energy, ion spray voltage, and collision exit 

potential.. A 2 µg/mL solution of OXM or its labeled internal standard was prepared in solvent 2 

(25:74:1 ACN:H2O:3-NBA) and was used as a tuning solution for direct infusion at 10 µL/min. 

tee’d with mobile phase at a flow rate of 0.20 mL/min using a composition of 80% Mobile phase 

B. The mass spectrometer parameters were tuned and optimized to achieve maximum sensitivity 
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for each SRM transition which resulted in the following parameters: source temperature 325 ˚C, 

ion spray voltage 5500 V, gas 1 (GS1) 66, gas 2 (GS2) 30, collision activated dissociation 

(CAD) was set on high, entrance potential (EP) was set to 9 V, collision exit potential (CXP) 16 

V, and channel electron multiplier (CEM) was set at 2500 V.  Oxyntomodulin and OXMIL eluted 

at approximately 3.95 and 3.91 minutes, respectively. SRM transitions, collision energies (CE), 

declustering potential (DP), and dwell times used during this study are shown in Table 4.2. Each 

peptide was given a name with its precursor ion charge state (M+nH)n+ in parentheses. Four 

OXM transitions (SRM’s) were monitored; however, only the 636.9→666.9 was used for 

quantification due to its sensitivity and selectivity. 

 
Table 4.2 Selected reaction monitoring (SRM) transitions and selected mass spectrometer 

parameters of OXM and OXMIL. 
 

Peptide Q1 Q3 DP (v)  
Collision 

Energy (v)
Dwell time 

(msec)

OXM (+7) 636.9 666.9 70 27 350

OXMIL  642.3 676.6 76 29 200

OXM (+8)m1 557.4 666.9 70 27 200

OXM (+8)m2 557.4 225.4 45 54 200

OXM (+7)m3 636.9 110.1 45 78 200
m1, m2, m3 = SRM’s used as monitoring transitions and not quantified 
 

4.B.8 STOCK SOLUTION AND WORKING SOLUTION PREPARATIONS  

OXM was diluted with 1% BSA in deionized water to prepare a stock solution at 0.5 

mg/mL.  This stock solution was subsequently diluted with 1% BSA to prepare working 

solutions. All solutions were subaliquotted and stored at -70 ºC. The working solutions were 

used to prepare fresh calibration standards and frozen quality controls. As OXMIL was provided 

at 5 pmol/µL in 5% acetonitrile (22.45 µg/mL) by Open Biosystems, 10 aliquots of 0.2 mL were 

prepared and stored at -70 ºC. OXMIL spiking solution was prepared fresh daily at 2.25 µg/mL 
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by diluting the 0.2 mL aliquots with 2 mL of 5% acetonitrile. All working solutions were 

prepared just before spiking into rat plasma. 

 

4.B.9 PREPARATION OF CALIBRATION STANDARDS AND QUALITY CONTROL 

SAMPLES IN RAT PLASMA 

Pooled sodium heparinized rat plasma from at least two donors was used to prepare the 

calibration standards and quality controls. A volume of 0.020 mL of each OXM intermediate 

solution (20, 40, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000 ng/mL) was spiked into  

0.4 mL of rat plasma for each calibration standard. A total of ten calibration standards were 

freshly prepared for each analytical run at concentrations of 1, 2, 5, 10, 25, 50, 100, 250, 500, 

and 1000 ng/mL. Quality controls were prepared in two different pools of rat plasma at the same 

concentrations. One pool was the same rat plasma used to prepare the calibration standards. The 

other plasma pool contained DPP-IV inhibitor at a concentration of 20 µL per milliliter of rat 

plasma. A volume of 0.4 mL of a 20,000 ng/mL OXM intermediate solution was spiked into 10 

mL of rat plasma in a volumetric flask to obtain the highest quality control (HQC = 800 ng/mL). 

A 10,000 ng/mL intermediate solution was spiked (0.060 mL) into a 10 mL volumetric flask and 

diluted to 10 mL with rat plasma to make a medium QC (MQC) at 60.0 ng/mL. A 1,000 ng/mL 

intermediate solution was used to prepare the lower limit of quantitation (LLOQ) QC and the 

low QC (LQC), by spiking 0.025 mL into a 10 mL volumetric flask for the LQC (2.5 ng/mL) and  

0.010 mL into a 10 mL volumetric flask to prepare the LLOQ (1.0 ng/mL). A dilution control 

was prepared at 5 times the highest calibration standard (5,000 ng/mL), to evaluate dilution of 

samples into the calibration range. The dilution control was prepared by performing a ten-fold 

dilution with blank rat plasma to obtain a concentration within the calibration range (50.0 
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ng/mL).  Quality control samples were freshly prepared for validation to determine the day zero 

nominal value for storage stability studies. QC samples were sub-aliquotted for daily use (0.250 

mL) into lobind polypropylene tubes (Eppendorf, Hauppauge, New York, USA) and stored at -

70ºC until analysis. 

 

4.B.10 SAMPLE PREPARATION 

All samples were thawed in an ice water bath and vortex mixed. A 100 µL sample of rat 

plasma was aliquotted into a 2 mL conical bottom 96-well plate, along with 100 µL of 4% 

phosphoric acid, and 20 µL of internal standard spiking solution (2.25 µg/mL). While samples 

mixed for 10 minutes, the MAX µelution was conditioned with 200 µL of methanol followed by 

200 µL of 4% phosphoric acid. Samples were centrifuged prior to loading, and then slowly 

loaded onto the SPE (2 x 110 µL) by increasing the vacuum pressure from 0 to 5 psi after each 

loading step. The SPE was then washed with 200 µL of 5% ammonium hydroxide and 200 µL 

5% acetonitrile. The plate was blotted dry and samples were eluted with 5% TFA in 75:25 

acetonitrile/water v/v (2 x 25 µL). Eluent was collected into a 1 mL 96-well plate (Waters 

Corp.). Finally, samples were diluted with 25 µL of 25:74:1 acetonitrile/water/3-NBA and mixed 

briefly. A 25 µL sample was injected onto the LC-MS/MS. 

 

4.C VALIDATION AND SAMPLE ANALYSIS 

4.C.1 MATRIX EFFECTS EVALUATIONS AND RECOVERY 

Post-column infusion studies, post-extraction addition, and evaluation for phospholipids 

as potential matrix effects were all evaluated. A post-column infusion study was performed by 

injecting an extracted blank rat plasma sample while infusing a 2 µg/mL oxyntomodulin solution 



102 
 

at 10 µL/min. The resulting profile was evaluated for chromatographic co-elution with OXM and 

changes in the ESI response of OXM that may indicate suppression or enhancement. During the 

post-column infusion study, phospholipids were monitored using the in source-SRM transition 

184→184 as suggested by Little et al (Little et al., 2006). As suggested by Matuszewski et al, a 

more quantitative approach to assessing matrix effects was carried out using a post-extraction 

addition study, where a percent matrix effects (%ME) is determined (Matuszewski et al., 2003).  

Unextracted “clean” samples were prepared as final extracted concentrations (3.33, 80.0, 1067 

ng/mL) from the LQC (2.5 ng/mL), MQC (60 ng/mL), and HQC (800 ng/mL) in the final sample 

solvent (75% of: 5% TFA in 75:25 acetonitrile/water /25% of: 25:74:1 acetonitrile/water/3-

NBA) and compared to post-spiked blank extracts with the same quality control concentrations. 

A percent matrix effect was determined using the following equation: %ME = ((peak area 

response of post-extracted sample/peak area response of clean sample) -1)*100. 

A relative recovery experiment was also performed for OXM in rat plasma, by 

comparison of pre- and post-spiked extracted quality control samples. QC’s were extracted n =6 

and percent recovery was calculated as follows: %recovery = (extracted mean peak are 

response/unextracted mean peak area response) x100. 

 

4.C.2 LINEARITY 

A total of ten calibration points were freshly prepared as described in section 4.B.9 in 

sodium heparin treated rat plasma. Each analytical run employed duplicate analyses of 

calibrators. Peak area ratios of OXM:OXMIL and each concentration level was used to construct 

the calibration curve. Calibration curves used linear regression with a 1/x2 weighing factor for 

the determination of OXM concentrations. 
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4.C.3 PRECISION AND ACCURACY 

Three quality controls were used to assess inter-day precision and accuracy, which were 

analyzed in at least three separate runs. QC concentrations were calculated from the calibration 

curves analyzed in the same run. Intra- and inter-assay precision and accuracy were determined 

by extracting LLOQ, low (LQC), medium (MQC), and high quality controls (HQC) in six 

replicates for intra-assay performance. Furthermore, a dilution control (DQC, 5000 ng/mL) was 

evaluated for intra-assay performance with six replicates. Quality controls were extracted in 

triplicate in five additional runs. 

 

4.C.4 SELECTIVITY  

Six individual rat plasma samples were used to assess selectivity. Each individual rat 

plasma sample was extracted in duplicate with and without the presence of internal standard as 

described in section 4.B.10. Acceptable selectivity was established by the fact that 

chromatographic peaks that co-elute with OXM were less than 20% of the peak area of the 

average LOQ samples. No more than 5% contribution from OXM to its isotope labeled internal 

standard signal was acceptable. This experiment was performed by extracting a double blank 

blank with no internal standard added as well as a high standard (1,000 ng/mL) without internal 

standard. 
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4.C.5 STABILITY EVALUATIONS AND CARRYOVER 

Stock solution stability was evaluated in a stress test. The stress test experiment was 

performed by comparison of a 0.5 mg/mL stock solution kept at -70ºC to an aliquot of the same 

stock solution that was left at room temperature for four hours. Both aliquots of the stock 

solution were diluted in the final extraction solvents described in section 4.B.10 and injected in 

triplicate. Average peak area responses of the diluted stock solutions were compared.  

The first validation run was used to determine day 0 nominal concentrations of quality controls 

for long term storage stability. Each QC was stored at -70ºC in sub-aliquots for daily use. 

Storage stability was determined by using the day zero nominal values established for the low 

and high QC’s. Following an appropriate storage time, low and high QC’s were analyzed and 

concentrations were determined with freshly prepared calibrators.  Post-preparative stability 

(PPS) was performed to determine an extended amount of time that extracted samples could be 

left in the refrigerated autosampler in the event that re-injection was necessary due to instrument 

malfunction. Carryover was assessed by injecting final extraction solvent samples immediately 

after the highest calibration standards (1,000 ng/mL) in an analytical run. 

  

4.C.6 CROSS TECHNOLOGY VALIDATION OF OXM IMMUNOASSAY 

 As part of this study, we also wanted to compare sample results using a peptide 

immunoassay versus our validated LC-MS/MS assay. A commercially available competitive 

immunoassay was used according to the manufacturer’s instructions for rat serum and plasma 

(Bachem Americas (Torrance, CA, USA). Briefly, the peptide enzyme immunoassay employed 

an antibody coated plate that was spiked with antiserum and incubated at room temperature for 

an hour. Standards and samples (in diluent) were then aliquotted into the wells and incubated for 
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another two hours. A biotinylated tracer was added and the plate was incubated overnight in the 

refrigerator. The plate was equilibrated to room temperature and washed five times with buffer 

using an automated plate washer. Streptavidin-horseradish peroxidase (HRP) was then added, 

and the plate was mixed for one hour. After another five plate washes, the substrate TMB 

(3,3′,5,5′-tetramethylbenzidine) was added and the plate was mixed for forty-five minutes. The 

reaction was terminated with 2 N hydrochloric acid (HCl) and the absorbance was read at 450 

nm within ten minutes. 

 

4.D RESULTS AND DISCUSSION 

In this study, we employed a modified solid phase extraction coupled with 2D-

LC/MS/MS to monitor a multiply charged peptide for quantitative analysis of OXM in rat 

plasma samples. The combination of these parameters allowed for a robust method to quantify 

OXM in rat plasma with a lower limit of quantification (LLOQ) at 1 ng/mL (Figure 4.7A). 

Optimization of solid phase extraction, multiply charged SRM, and two-dimensional reversed 

phase ion pair chromatography was necessary to meet the demands of quantifying this 

polypeptide. 

 

 

4.D.1 MASS SPECTROMETRY OF OXYNTOMODULIN AND OTHER POLYPEPTIDES 

 Charge state distribution and product ion formation were investigated using different 

solvents and eleven polypeptides as described in section 4.B.4. The objective was to achieve 

conditions that would reduce the predominate m/z to achieve a more suitable mass range and 

ultimately improve the intensity for this m/z for formation of SRM’s. Solvent effects proved to 
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play a role in charge state distribution and product ion formation for most polypeptides 

investigated. Lavarone et al. first observed this with cytochrome c using 3-NBA and glycerol to 

increase charge state and abundance (Lavarone et al., 2001). This increase in charge state may 

have been the result of using a low vapor pressure solvent, which could have determined  the 

electrospray droplet evaporation characteristics (Samalikova et al., 2005). Solvent additives such 

as 3-NBA have a high surface tension, which also may play a role in increased charge states and 

abundances (Krusemark et al., 2009).The solvent mixture (S2) which contained 25:74:1 

(ACN:H2O:3-NBA), improved intensity of the most abundant charge state of OXM by as much 

as one order of magnitude. The charge state (z) distribution for this solvent mixture consisted of 

a lowest charge state equal to +4, a highest charge state equal to +9, and the most abundant 

charge state equal to +8. This mass spectrum is labeled for each OXM charge state in Figure 4.3.  

Note that the spectrum shown in Figure 4.3 is from a form of OXM lacking part of the N-

terminus peptide bond (C-NH2), which is -28 daltons less, making the molecular weight 4421 

Daltons. This standard is no longer commercially available and the entire OXM structure (4449 

Da) was used for the remaining parts of this study, including the validation. 
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Figure 4.3 Mass Spectrum illustrating charge state distribution of OXM in solvent 3  

(25:74:1 ACN:H2O:3-NBA).  
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Depending on the polypeptide, the most abundant charge state was +3 to +16 for any solvent 

mixture. Therefore, it may be feasible to reduce m/z sufficient enough for polypeptides in the 

range evaluation, which was 1296 to 16,951 Daltons. The +6 or +8 charge state of OXM was the 

most abundant depending on the solvent; however, the lowest and highest charge also varied 

between each solvent and had an effect on the formation of reliable product ions. This solvent 

dependency on charge state distribution was similar with all polypeptides. These results are 

shown in Table 4.3, where the charge state distributions of polypeptide are highlighted. In 

addition, the intensity and charge state distribution as a result of solvent mixtures are shown for 

all eleven polypeptides in Appendix 1.  

Overall conclusions made from the charge state distribution, product ion formation, and 

solvent comparisons of the ten selected peptides were six-fold. 1) The average abundant charge 

state (z) of the polypeptides (mean±SD) was +8z±3.5 for any solvent mixture. 2) The median 

charge states of each polypeptide formed more product ions than any other charge states other 

than parathyroid hormone, leptin, and myoglobin. The median was evaluated for each 

polypeptide because there was a correlation with middle charge states (i.e. +7 and +8 for OXM) 

and the formation of product ions. It has been observed that charge state distribution for 

polypeptides is gaussian shaped (Strupat, 2005). Therefore, average and median charge states 

may be used as charge states that will most likely form product ions. 3) The relative intensity of 

the most abundant charge state of each polypeptide was compared in the presence of acetonitrile 

or methanol. Acetonitrile as a solvent additive showed slightly more intensity (~10%) than 

methanol for the polypeptides evaluated as shown in Appendix 1. This may be due to the slightly 

lower vapor pressure (9.73 versus 9.76 kPa), which can affect charge state intensity (Krusemark 

et al., 2009). 4) The presence of 3-NBA improved signal for most of the peptides, including two 
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orders of magnitude for PYY1-36. It was found to improve the OXM signal one order of 

magnitude, which lead to a 1 ng/mL LLOQ. 5) More charge states were present with 3-NBA 

and/or FA present in each solvent mixture; however, larger peptides (> 9400) did not form 

reliable fragment ions. The larger the polypeptide the fewer product ions were formed. 6) Similar 

abundant charge states and product ion formation were observed with the peptides ghrelin, 

PYY1-36, PYY3-36, and OXM. Coincidentally, these peptides have similar molecular weights 

(ranging from 3314 to 4449 Da) and similar isoelectric points (9.2 to 10.6). Using these similar 

peptide characteristics (i.e. molecular weight and isoelectric point) may help predict charge states 

of multiple peptides that can be used for the formation of SRM transitions.  
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Table 4.3 Results of charge state distribution as a result of solvent mixtures following mass spectrometer optimization. Note that PTH, 
Leptin, and Myoglobin did not form product ions (NPIF) for any solvent at the concentration infused (5 µg/mL). 

 

Polypeptide 

Molecular 
weight 

(Daltons)

Lowest and 
Highest 

Charge State

Most Abundant 
Charge State 

(MACSz)

Solvent 
Resulting in 

MACSz Most intense SRM

Angiotension-1 1296 +1, +4 +3 S9 433→110

Obestatin  2547 +2, +5 +3 S11 851→262

Ghrelin  3314 +3, +9 +8 S3 416→207

Glucagon  3483 +4, +6 +5 S11 698→1002

Polypeptide YY (PYY1-36) 4410 +4, +7 +7 S9 617→136

Polypeptide YY (PYY3-36) 4149 +3, +9 +7 S9 580→70

Oxyntomodulin (OXM) 4449 +4, +11 +8 S9 554→120

Insulin growth factor-1 (IGF-1) 7655 +5, +10 +7 S7 1094→1199

Parathyroid hormone (PTH) 9425 +8, +10 +9 S1 NPIF

Leptin  16,026 +10, +20 +15 S7 NPIF

Myoglobin  16,951 +11, +26 +11 S7 NPIF
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 The selected charge states evaluated for product ion formation from each polypeptide in each 

solvent were chosen because they represented the most abundant charge state precursor ions 

which yielded more product ions and ultimately lead to more useful SRM transitions. Solvents 2 

and 5 produced the most intense product ions to form SRMs using the +7 (636 m/z) and +8 (557 

m/z) charge states of oxyntomodulin. The immonium ion at 120 m/z was the most intense 

product ion for OXM. An immonium ion, represented by RCH=NH2+, with R indicating the 

amino acid side chain, has been used for quantification previously (Murao et al., 2007). 

However, it was not selective as a fragment for SRM transitions of OXM due to interferences 

present in plasma.  The product ion mass spectrum for OXM from the +8 charge state (557 m/z) 

shows the prevalence small ions, such as the immonium ion 120 m/z in figure 4.4. Each 

abundant product ion was evaluated as SRM transitions for OXM that would be the most 

sensitive and selective SRM. This investigation resulted in a transition of 636.9→666.9 m/z 

which was used for quantification purposes. Other SRM’s in Table 4.2 were monitored as 

qualification transitions.     
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Figure 4.4 Product Ion spectrum for the OXM +8 charge state precursor ion (557 m/z). 
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 4.D.2 2D-LC-MS/MS USING REVERSED PHASE ION PAIR CHROMATOGRAPHY 

Two-dimensional reversed phase chromatography is the standard of practice for 

quantification of peptides (Ismaiel et al., 2011; Van Den Broek et al., 2008). Use of column 

trapping allows for an additional sample purification online, which should reduce matrix effects 

and improve robustness. The results from the charge state distribution discussed in section 4.D.1 

lead us to use 3-NBA as a mobile phase additive (Valeja et al., 2010). The addition of 3-NBA 

allows provides for ion pairing with the zwitterionic peptide species in an equilibrium process.  

Peak shape, response, and reproducibility were investigated during the optimization of molar 

concentration of 3-NBA in the mobile phase. Consistent peak shape and the most intense 

response was produced with 0.1% (6.5 mM) 3-NBA in the mobile phase. The pH of the mobile 

phase can also play a role in ion pair chromatography; therefore, three molar concentrations (3.3, 

6.5, 65 mM) of 3-NBA were then evaluated for pH adjustment (pH 2.3, 4.7, 5.7, 6.4, 7, 10) as 

shown in Figure 4.5.  
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Figure 4.5 Assessment of pH adjustment to mobile phase containing 3-NBA versus mean peak 

area response of oxyntomodulin (monitored SRM: 636.9→666.9 m/z), with samples 
injected n =3 Data shown are mean±SD (with standard deviation error bars). 

 
 

The most intense and reproducible peak shape was generated using 6.5 mM 3-NBA with the pH 

adjusted to 4.7. During this study, various gradients were attempted with single and two-

dimensional reverse phase chromatography. The increase to 90% organic (0.1% 3-NBA in 

acetonitrile) provided ideal retention (tr = 3.93 minutes), good peak shape, and the highest peak 

area response. Part of this investigation also revealed that the presence of 3-NBA in the final 

sample extract must be optimized. Three different proportions of 3-NBA (0.05%: 3.3 mM, 0.1%: 

6.5 mM, 1.0%: 65 mM) were evaluated in the final sample diluent, which contained 25% 

acetonitrile. The thought was having more reagent (3-NBA) would help force the equilibrium to 

the ion pairing of the peptide and 3-NBA. The results show that the peak area response was more 

than 2.5 fold higher with more 3-NBA (1.0%: 65 mM) in the final sample extract as shown in 

Figure 4.6. It should be noted that 1.5% 3-NBA was prepared, but it was not fully soluble in the 

final sample mixture; therefore, no further 3-NBA concentrations were evaluated. 
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Figure 4.6 OXM (monitored SRM: 636.9→666.9 m/z) mean peak area response versus percent 

3-NBA (or mM) in the final sample solvent extract. Data shown are mean±SD (with 
standard deviation error bars). 

 

During chromatographic investigations, a single reversed phase C18 UPLC® column was 

originally used for oxyntomodulin with a gradient similar to that described in section 4.B.5.  

However, during sample extraction development, this column quickly (<200 injections) showed 

poor peak shape, high back pressure, and proved to be inefficient for quantification purposes. 

Our previous successes with column trapping lead us to investigate 2D-LC for chromatographic 

separation of OXM. Initially, C18 guard columns were attempted as the loading column to 

provide a short loading time as demonstrated previously (Halquist et al., 2011). The mobile 

phase optimization study of 3-NBA described in section 4.B.5 provided compelling evidence to 

continue use of the Waters XBridge BEH300 C18 for the analytical column. A Phenomenex 

Gemini C18 (4.0 x 2.0 mm) security guard, an Agilent ZORBAX 300SB-C3 Guard 5um, 2.1 x 

12.5mm, and a Waters Acquity HSS C18 VanGuard Pre-column, 1.8 µm, 2.1 x 5mm were 

evaluated as the loading column. All loading columns showed minimal retention of 
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oxyntomodulin, with the maximum retention time being 42 seconds. Therefore, it was decided to 

investigate a more traditional length (50 mm) column that may retain OXM long enough to 

remove unwanted matrix components prior to switching to the analytical column. A C8 and C18 

column (both 2.1 x 50 mm, 5 um, 300Å) were evaluated. It was concluded that the C8 provided 

better overall performance with consistent retention, and ruggedness after multiple injections. 

The combination of an ACE C8 column in the first dimension with a loading time of 1.5 

minutes, followed by a switching valve to change the direction of the mobile phase and initiate 

the gradient onto the analytical column (Waters XBridge BEH300 C18) was sufficient for 

methods validation. The loading and analytical column washes post-elution increased the 

longevity of the column, which allowed for more than 900 injections. Chromatographic 

examples are shown in Figure 4.7 (A, B, and C). Representative blank chromatograms are shown 

in Figure 4.8 (A and B). 
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A)  LLOQ (1 ng/mL) Oxyntomodulin 

 
B) Isotope Labeled Oxyntomodulin Internal Standard

 
C)  Rat sample dosed with Oxyntomodulin 

 
Figure 4.7 Representative chromatograms of the (A) lower limit of quantification of OXM (1 

ng/mL), monitoring SRM: 636.9→666.9 m/z , (B) OXMIL isotope labeled internal 
standard, monitoring 642.3→676.6 m/z (B), (C) rat sample dosed with OXM 
monitoring SRM: 636.9→666.9 m/z. 
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A) Blank Rat Plasma 
 

 
B) Blank Rat Plasma OXMIL  

 
Figure 4.8 Representative blank rat plasma chromatograms of  (A) OXM, monitoring SRM: 

636.9→666.9 m/z  and (B) OXMIL isotope labeled internal standard, monitoring 
642.3→676.6 m/z. 

 

4.D.3 SAMPLE PREPARATION SELECTION AND OPTIMIZATION 

During this investigation protein precipitation (PPE) and solid phase extraction (SPE) 

were evaluated. Precipitating reagents acetonitrile, perchloric acid (7%) and methanol were 

tested as solvents for sample purification. Glucagon is a similar polypeptide to OXM due to its 

sequence containing the first 29 amino acids of OXM. Glucagon has been quantified using a 

protein precipitation with acetonitrile in rat plasma (Delinsky et al., 2004); however, the recovery 
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observed when using reversed phase SPE and strong cation-exchange SPE. Mixed mode weak 

cation (WCX) and anion (MAX) microelution solid phase extractions were further optimized to 

improve recovery. Recovery using the manufacturer’s protocol’s for MAX and WCX was 

approximately 10 to 15%, respectively.  An investigation was performed to determine where the 

loss was occurring. The first investigation included collection of all loading, washing, and 

elution solvents to evaluate the presence of OXM in any of these solvents. It was observed in the 

manufacturer’s protocol for wash 2 (20% acetonitrile) that the presence of OXM was prevalent 

in the collected wash; therefore, wash 2 was reduced to 5% acetonitrile, which yielded negligible 

recovery of OXM during analysis. The loading application for each SPE was 4% phosphoric 

acid, which may not adequately disrupt OXM from other proteins. Consequently, nonspecific 

protein binding was investigated. It was first observed that recovery of OXM in water as a matrix 

was significantly lower (5% versus 15%) than rat plasma, thus nonspecific binding may be an 

issue. Chaotropes such as guanidine hydrochloride and UREA were added to the plasma to 

facilitate disruption of OXM binding to proteins; however, these reagents had negligible effects 

as compared to the 4% phosphoric acid that was currently being added to the plasma prior to 

loading onto the SPE. Lastly, a stronger elution solution was tried. Instead of 1% TFA in the 

eluent, the TFA percentage was increased to 5% which resulted in improved recovery. MAX was 

chosen due to slightly better recovery (~55%) than WCX (~45%). 

 

4.D.4 VALIDATION RESULTS 

4.D.4a LINEARITY 

Linearity was determined using the peak area ratio of OXM and its isotope labeled 

internal standard as a function of concentration over the range 1 to 1,000 ng/mL. Calibration 
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curves had acceptable reverse calculated residuals between -8.6% and 6.0%. Inter-run precision 

measured in terms of percent relative standard deviation ranged from 6.5% to 11.0% over six 

analytical runs. Data are present in Table 4.4. 
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Table 4.4 Reverse predicted concentrations for oxyntomodulin calibration standards (ng/mL) 
 

Oxyntomodulin Concentration (ng/mL) 

RUN Number 1.00 2.00 5.00 10.00 25.00 50.00 100.00 250.00 500.00 1000.00 r2

Run 1 0.81 1.98 4.90 7.94 24.30 56.00 86.40 189.00 567.81 992.23 0.992
0.97 1.90 5.79 11.00 23.30 51.40 114.00 251.00 552.00 1070.00

Run 2 0.99 2.10 4.37 8.78 22.40 50.40 95.40 284.00 573.33 1144.22 0.993
0.89 1.93 5.09 9.99 25.44 43.10 93.67 255.55 506.33 1008.40

Run 3 0.96 1.80 5.43 8.20 26.20 55.70 87.70 241.00 443.00 1132.22 0.995
1.02 1.91 5.31 9.84 25.68 56.31 102.42 257.77 502.77 1011.42

Run 4 0.82 2.07 5.04 9.72 24.82 48.22 88.76 250.67 509.99 979.23 0.990
0.86 2.42 5.10 9.88 26.32 49.21 99.32 246.55 576.44 1005.66

Run 5 0.94 1.98 4.91 8.89 24.25 55.44 86.03 206.66 491.35 1014.44 0.994
0.97 1.94 5.81 8.25 25.00 53.09 90.24 281.22 567.34 997.33

Run 6 0.92 1.88 4.31 8.55 26.31 52.22 95.34 241.99 571.22 999.03 0.991
0.83 1.95 4.30 9.09 28.74 51.89 99.11 267.99 498.09 1020.22

Mean 0.91 1.99 5.03 9.18 25.23 51.92 94.87 247.78 529.97 1031.20 0.992
SD 0.071 0.16 0.52 0.91 1.64 3.88 8.11 27.38 43.51 54.65 0.002

%RSD 7.73 7.93 10.30 9.96 6.51 7.47 8.54 11.05 8.21 5.30 0.18
%DFN -8.57 -0.55 0.60 -8.23 0.92 3.83 -5.13 -0.89 5.99 3.12  
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4.D.4b SELECTIVITY 

Six different lots of rat plasma were evaluated for selectivity of the method. No 

significant (<10% of LLOQ) endogenous peaks at the retention time of OXM were observed for 

any of the lots. Figure 4.7(B) shows a representative blank rat plasma chromatogram. 

Qualification SRM’s were monitored throughout the entire study, which are listed in table 1. The 

SRM transition for OXM 636.9→666.9 was chosen over the other monitored transitions due to 

superior selectivity and reproducibility. Transitions 557.4→225.4 and 636.9→110.1 had higher 

response but were not reliable for quantification due to imprecision most likely from matrix 

effects.  A blank sample with internal standard and the upper calibration standard (1,000 ng/mL) 

were analyzed for analyte interference and found to have only a negligible effect on OXM or 

internal standard response. 

The post-column infusion study described in section 4.C.1 resulted in no obvious 

suppression or enhancement at the retention time of OXM. Figure 4.9(A) reveals the ion profile 

for OXM during the post-column infusion, which shows no change in response at the retention 

time of OXM (tr = 3.93 min.). Figure 4.9 (B) represents the chromatographic profile of 

phospholipids monitored during the post-column infusion, which indicated their presence 

following extraction; however, all peaks were chromatographically resolved from OXM. The 

late eluting peaks present in the phospholipid profile (Figure 4.9 B) are well resolved from OXM 

and the run time was increased to 8 minutes to avoid late elution phospholipids on subsequent 

injections. 
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A) Oxyntomodulin Monitored (636→666) 
 

 
B) Post-Column Infusion Monitoring of Phospholipids (184→184) 
 

 
Figure 4.9 Post-column infusion profiles of oxyntomodulin (A) and phospholipids (B). 
 
Matrix effects were further evaluated with a post-extraction addition study performed as 

described in section 4.C.1. The presence of matrix effects was -33.4% for LQC, -23.2% for 

MQC, and -40.2% for HQC.  
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obtained by dividing the matrix pre-spiked extracted samples by the post-spiked extracted 

samples and multiplying by 100. The results revealed 54.5, 64.9, 58.7% recovery for the LQC, 

MQC, and HQCs, respectively. Carryover assessment resulted in no response in solvent blanks 

following the high calibration standard was observed at the retention time of OXM. 

 

4.D.4.d PRECISION AND ACCURACY 

Table 4.5 summarizes the inter- and intra-day precision and accuracy results. Inter-day 

results were determined based on six separate runs, whereas intra-day results were determined in 

one run with six replicates of the LLOQ QC, LQC, MQC, HQC and DQC samples.  Accuracy 

(% bias) for inter-day was -11.7 to 12.4 % for all quality controls including the LLOQ. Intra-day 

accuracy resulted in -13.1 to 8.2% bias. The relative standard deviation (precision) for inter-run 

results ranged from 4.0 to 14.3% and intra-day precision was 5.6 to 15.3% RSD. The LLOQ was 

within ±20% for precision and accuracy, and all other controls were within ±15% for inter and 

intra assay results. 

 
Table 4.5 Inter and Intra-assay Precision and Accuracy  

 QC (ng/mL) 

Average measured 
concentration 
(ng/mL) ± SD

Inter-
assay 

% bias*

Intra-
assay % 

bias

Intra-assay 
precision 
(%RSD) 

Inter-assay 
precision 

(%RSD)*
LLOQ (1.00) 0.88 ± 0.13 -11.70 -13.10 15.26 14.30
LQC (2.50) 2.81 ± 0.31 12.40 6.74 11.14 11.03
MQC (60.00) 66.7 ± 2.67 11.16 8.22 5.60 4.01
HQC (800.00) 817.23 ± 59.91 2.15 5.11 8.26 7.33
DQC (5000.00) 5102.31±363.28 N/A 2.04 7.12 N/A

*(QCs analyzed n ≥3 in six separate analytical runs)  
  

4.D.4e STABILITY AND INCURRED SAMPLE RE-ANALYSIS (ISR) 

Stability assessments included: post-preparative stability (PPS), storage stability, stock 

stability, and freeze-thaw stability. PPS was determined from quality controls stored in the 
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autosampler for approximately 39 hours at 5°C. These stored QC’s proved to be stable with 

accuracy results all within ± 12.4%. Freshly prepared calibration standards were used to 

calculate the accuracy of stored QC’s. Storage stability results ranged from -13.3 to -15.1% 

biases for LQC and HQC with and without DPP-IV inhibitor samples stored at -70ºC for 64 

days. The stress test for stock solution held at room temperature compared to a fresh aliquot of 

the same stock showed acceptable peak area response differences (5.2% bias). Freeze-thaw 

stability was assessed for three cycles, with LQC and HQC resulting in -18.1% and -16.3% 

biases, respectively. One freeze-thaw cycle of the LQC and HQC’s resulted in acceptable 

accuracy (± 15%). Therefore, samples should be sub-aliquotted for daily use and be thawed in an 

ice water bath as a precaution. 

Ten rat samples were analyzed a second time to evaluate incurred sample re-analysis. The 

latest European Medicines Agency bioanalytical guidance was used to determine the 

acceptability of ISR results (Ema, 2011). This guidance indicates 67% percent of the ISR 

samples must be within 20% of the mean of the original and repeat sample. Results in indicated 

that 7 out of 10 (70%) of the repeated rat samples met this criteria. 

 

4.D.5 CROSS TECHNOLOGY IMMUNOASSAY VALIDATION 

A peptide immunoassay kit was validated using reagents provided with the kit procedure. 

Calibration curves resulted in R2 values of 0.988 and 0.991, respectively, with a linear range 

from 0.1 to 7 ng/mL. The curve fitting was a four parameter fit with y = ((A-D)/(1 + (x/C)^B)) + 

D. Precision (%CV) of these calibration curve replicate points were between 0.4 to 24.5%. The 

same rat samples that were used for the pharmacokinetic study described in section 2.12 were 

analyzed with the LC-MS/MS method and this immunoassay. The results of the rat samples 
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analyzed with the immunoassay were significantly different than the LC-MS/MS results and 

almost all time points yielded no detectable response for OXM. Furthermore only one rat had a 

similar pharmacokinetic profile.  However, some of the individual time points did not match with 

this rat either (percent difference as much as 200% at the 5 minute time point). An investigation 

followed where successive runs with calibration standards and quality controls were evaluated in 

two different matrices. It was suspected that the rat plasma from the rat species may contain a 

matrix effect that would hinder this assay. Thus, another investigation was performed using 

dilution to reduce the suspected matrix effect. The kit contains a peptide-free rat serum for 

preparation of calibration standards, quality controls, and samples. This rat serum was also used 

as a diluent to prepare quality control samples (low, 0.2 ng/mL and high, 6 ng/mL), which may 

dilute out the potential matrix effect from rat plasma obtained from the same rat species used in 

the pharmacokinetic study. Dilutions of 1, 10, and 100 of blank rat plasma with the kit matrix 

(peptide free rat serum) supplied with the kit were evaluated at the same concentrations. The 

results indicate there may be a matrix effect because no result was obtained for 1 and 10-fold 

dilutions. The 100-fold dilution was acceptable for the high QC (6 ng/mL) with a percent bias of 

17.3%; however, no result was obtained for the low QC. Therefore, a significant dilution of this 

rat plasma may be necessary to achieve reliable results whereas too much dilution would result 

in poor sensitivity. 

      

4.E. CONCLUSIONS  

Polypeptides that are approaching protein sizes are challenging molecules to quantify in 

the presence of a complex biological matrix such as plasma. Matrix effects and non-specific 

binding proved to be a challenge during method development and validation. Characteristics of 
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the peptide such as isoelectric point (pI), hydrophobicity, and individual amino acid residues 

must be considered for separation, storage, and ionization. All of these characteristics affected 

the development and optimization for oxyntomodulin. The use of 3-NBA proved to be beneficial 

for ionization of the peptides and as a mobile phase additive for reversed phase ion pair 

chromatography.  The use of 2D-LC was found to be necessary for peptide quantification due to 

its reliable removal of matrix effects and superior robustness. Stability experiments indicate that 

peptide stability can be a concern and storage precautions such as daily use aliquots for samples, 

quality controls, and stock solutions must be necessary. Another concern was the inability of the 

immunoassay to yield results that could be correlated with the LC-MS/MS analysis. These 

results could be an anomaly, but prove the value of using LC-MS/MS as an alternative to 

immunoassays. 
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CHAPTER 5 

 

DEMONSTRATING UTILITY OF LC-MS/MS:   
IN VIVO PHARMACOKINETICS OF OXYNTOMODULIN IN RATS FOLLOWING 

INTRAVENOUS AND PULMONARY ROUTES OF ADMINISTRATION 
 

 

5.A INTRODUCTION 

 In Chapter 4, two-dimensional LC-MS/MS coupled with µelution anion exchange solid 

phase extraction (SPE) were employed to determine rat plasma concentrations of an anorectic 

gut-secreting peptide, oxyntomodulin (OXM). The method has been successfully validated, 

enabling quantification of OXM. A linear range of 1-1000 ng/mL in rat plasma yielded reverse 

predicted concentrations between -3.7 and 2.9 %DFN (percent difference from nominal).  In 

addition, low, medium, and high quality controls were between 2.2 and 12.4 %DFN, and 4.0 to 

11.0 %RSD. Clearly, one of the prospective uses of this validated analytical method is for 

determination of the plasma OXM concentration versus time profiles following administration, 

as OXM has been suggested to possess therapeutic potential in obesity treatment by reducing 

food intake and body weight (Dakin et al., 2001; Dakin et al., 2004; Dakin et al., 2002; Wynne & 

Bloom, 2006; Wynne, Park et al., 2006).  Indeed, Nadkarni has recently demonstrated that 

needle-free pulmonary administration of OXM at 0.5 mg/kg enabled 30.0±5.4 % food intake 

suppression for 4-6 hr period in freely-fed rats (Nadkarni, 2009). 
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 Hence, in this chapter, the method validated in Chapter 4 was used to determine the 

plasma OXM concentration versus time profiles following intravenous and pulmonary routes of 

administration in rats for conventional noncompartmental pharmacokinetic analysis. These data 

were then discussed, associated with the absolute bioavailability for pulmonary delivery of 

OXM, the difference in dose-response pharmacokinetics due to analytical methods and across 

different species, and bioavailability using pulmonary delivery of similar peptides. Employment 

of the validated LC-MS/MS method for a pharmacokinetic study of oxyntomodulin further 

shows the benefits of LC-MS/MS technology.  

 

5.B MATERIALS AND METHODS 

 

5.B.1 MATERIALS 

Lyophilized human oxyntomodulin (OXM; molecular weight of 4449 Da) was purchased 

from Bachem Americas, Inc. (Torrance, CA, USA). It was received as lyophilized powder and 

certified with an HPLC purity of at least 97%; therefore, it was directly reconstituted for 

preparation of OXM dosing solutions. Phosphate-buffered saline (PBS; 0.2 M; pH 7.4) was 

obtained from Invitrogen Corporation (Carlsbad, CA, USA). 

 

5.B.2 ANIMALS 

The animal experiments followed the NIH Principles of Laboratory Animal Care (NIH 

publication # 85-23, revised in 1985). The experiments were approved by VCU’s Institutional 

Animal Care and Use Committee IACUC (AM10038). All animal experiments were carried out 

by Dr. Masahiro Sakagami and Ms. Hua Li. Sprague-Dawley rats (male; Hilltop Lab Animals 
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Inc., Scottdale, PA) in a weight range of 291- 454 g were used after at least two days of 

acclimatization in the animal care facility. Animals had free access to standard rat chow (Harlan 

Teklad Global Diet, Product # 7012, Boston, MA) and drinking water. 

 

5.B.3 IN VIVO ANIMAL STUDIES FOR OXM PHARMACOKINETICS FOLLOWING 

INTRAVENOUS INJECTION AND PULMONARY ADMINISTRATION 

In vivo experiments were carried out, as described previously with slight modifications 

(Nadkarni, 2009). Rats were anesthetized with an intraperitoneal injection of 50 mg/kg of 

sodium pentobarbital (Ovation Pharmaceuticals, Inc. (Deerfield, IL) and then placed on a 

surgical board for OXM administration and blood sampling. Rats were divided into 3 groups 

with n=4, first group (1) received an intravenous bolus injection at 0.05 mg/kg (Rat 4, 5, 6, and 

7), second group (2) received a pulmonary solution administration at 0.05 mg/kg (Rat 2, 8, 9, and 

10) and the third group (3) received a pulmonary solution administration at 0.50 mg/kg (Rat 1, 

11, 12, and 13).  For intravenous injection, nominal 0.1 ml of OXM solution prepared in saline 

was injected into the right jugular vein at 0.05 mg/kg. Blood (0.1 mL) samples were withdrawn 

from the left jugular vein at 2, 5, 10, 20, 30, 45, 60, 90, 120, and 180 min following injection. 

For pulmonary administration, nominal 0.1 mL of OXM solution prepared in saline was 

orotracheally instilled at 0.05 mg/kg and 0.5 mg/kg using the MicroSprayer (PennCentury). 

Blood samples (0.1 mL) were withdrawn from the left jugular vein at 2, 5, 10, 20, 30, 45, 60, 90, 

120, and 180 min following administration. During experiments, animals were maintained under 

sufficiently-deep anesthesia with supplemental pentobarbital injected at 25 mg/kg as needed, and 

placed under a heating lamp to maintain body temperature. All blood samples were centrifuged 
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at 12,000 rpm (23,182 xg) for 2 min, and plasma samples were then stored immediately at -70ºC 

until analysis. 

 

5.B.4 DETERMINATION OF OXM IN RAT PLASMA BY LC-MS/MS 

The rat plasma samples taken from the above animal studies were analyzed by the 

method described and validated in Chapter 4. Briefly, after appropriate dilution with blank rat 

plasma (Biochemed Services, Inc. Winchester, VA), the rat plasma samples were spiked then 

spiked with 0.020 mL of 2.25 µg/mL the isotope-labeled OXM internal standard (OXMIL). These 

samples were then extracted using a Waters Oasis® MAX µelution modified solid phase 

extraction (SPE) method as described in Chapter 4. Following extraction, samples were injected 

onto the instrument, which was coupled with two-dimensional reversed phase ion pair 

chromatography tandem mass spectrometry for analysis of oxyntomodulin in rat plasma. The 

samples were analyzed with a chromatographic run time of 8 minutes. Multiple charged state 

forms of OXM and OXMIL were monitored using selected reaction monitoring (SRM), where 

transitions of 636.9→666.9 (m/z) and 642.3→676.9 (m/z), were selected, respectively, with +7.  

As described in Chapter 4, the method was validated with acceptable limits for precision and 

accuracy as shown in Tables 4.3 and 4.4.  

 Note that the plasma samples were thawed and kept in an ice water bath to prevent 

potential loss or degradation of OXM.  
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5.B.5 PHARMACOKINETIC DATA ANALYSIS 

 

5.B.5a NONCOMPARTMENTAL PHARMACOKINETIC DATA ANALYSIS 

Plasma concentration versus time profiles of OXM following intravenous injection and 

pulmonary administration were analyzed in each animal by conventional noncompartmental 

approach. The maximum plasma peak concentration (Cmax) and the time to reach Cmax (Tmax) 

were assessed by visual inspection. All other parameters were computed using Microsoft Excel, 

as follows:  

The terminal phase slope () was determined, which represents the slope of the terminal phase 

on the plasma concentration-time profile on a semi-log linear plot, and its half-life (t1/2) was 

calculated from equation 5.1 (Eq. 5.1). 

 

t1/2 = 0.693/β          (Eq. 5.1) 

The area under the plasma concentration vs. time curve (AUC0-inf) was determined from: 

AUC0-inf = AUC0-tlast + AUCtlast-inf 

where AUC0-tlast was calculated by the trapezoidal method and AUCtlast-inf was the extrapolated 

residual area calculated from the last plasma concentration (Clast) divided by . For intravenous 

injection, the plasma concentration at time 0 (Ct=0) was calculated from: 

Ct=0 = A + B 

where A and B are the coefficients of the following 2-compartment model equation, derived 

from the method of residuals (Gibaldi, 1982): 

 C=A*exp(-alpha*t)+B*exp(-beta*t)       (Eq. 5.2)  

The apparent clearance (CL/F), volume of distribution of central compartment (Vdcc) and 
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apparent pseudo steady state (Vdpss/F), are calculated from: 

CL/F = Dose/AUC0-inf         (Eq. 5.3) 

Vdcc = Dose/Ct=0         (Eq. 5.4) 

Vdpss/F = (CL/F)/β          (Eq. 5.5) 

Absolute bioavailability for OXM following pulmonary administration (F) was then determined 

from AUC0-inf for the individual profiles relative to the mean AUC0-inf for OXM following 

intravenous administration with dose normalization from the equation as shown below: 

F = [AUClung/ AUCIV] x [DoseIV/ Doselung]       (Eq. 5.6) 

where subscripts lung and IV represent pulmonary and intravenous administration, respectively. 

inejection,  

All derived parameters were expressed as mean ± standard deviation (SD) with n =4. Statistical 

significance was determined using an unpaired t-test or analysis of variance (ANOVA) and 

employed p<0.05. 

 

5.C RESULTS 

 

5.C.1 NONCOMPARTMENTAL ANALYSIS OF OXM PLASMA PROFILES FOLLOWING 

INTRAVENOUS AND PULMONARY ADMINISTRATION 

 Figure 5.1 illustrates the plasma concentration-time profiles following intravenous 

administration of OXM at 0.05 mg/kg on a linear scale. The plasma concentrations beyond 90 

min were all below lower limit of quantification (LLOQ). The noncompartmental parameters are 

shown in Table 5.1. The profile was determined to be biexponential (as shown later in Figure 

5.3) and it was concluded that there was simultaneous distribution and elimination. The terminal 
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half life was 20±3.3 min, while CL and Vdcc were determined to be 3.81±1.32 mL/min/kg and 

105.8±29.1 mL/kg. It has been reported that rats with similar weights to this study (~300 g) have 

approximately 16.0 mL of plasma and the glomerular filtration rates are approximately 5 

mL/min/kg (Davies et al., 1993; Nadkarni, 2009). Furthermore, when considering body weight 

and statistical similarities, these physiological parameters are effectively consistent with the 

results, which indicate multi-compartment distribution and renal elimination. 

 
 

 
 
Figure 5.1 Oxyntomodulin (OXM) concentration in plasma vs. time profile following 

intravenous bolus (IV bolus) injection at 0.05 mg/kg in individual rats with n =4. 
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Table 5.1 Noncompartmental pharmacokinetic parameters following intravenous bolus injection 
of oxyntomodulin at 0.05 mg/kg in rats (n=4). 

 
Parameters Rat 4 Rat 5 Rat 6 Rat 7 Mean±SD
Dose per body weight (mg/kg) 0.05 

Cmax (ng/mL) 394.4 438.1 594.4 790.8 554.4±179.4

AUC0-inf (ng x min/mL) 12420 8658 11169 19787 13008±4782

Terminal Slope β (min-1) 0.032 0.034 0.046 0.031 0.036±0.0069

t1/2 (min) 21.9 20.4 15.1 22.3 20.0±3.3
CL (mL/min/kg) 4.03 4.14 5.11 1.96 3.81±1.32

Vdcc (mL/kg) 126.2 122.2 111.7 63.2 105.8±29.1

Vdpss (mL/kg) 127.5 182.5 130.0 81.4 130.3±41.3
All values are shown with significant digits typically used in pharmacokinetic data.  
 
 

5.C.2 NONCOMPARTMENTAL ANALYSIS OF OXM PLASMA PROFILES FOLLOWING 

PULMONARY ADMINISTRATION 

 

The same dose (0.05 mg/kg) that was administered into the lungs yielded much lower 

plasma concentrations of oxyntomodulin than intravenous administration. Noncompartmental 

analysis results are presented in Table 5.2 and the respective plasma concentration-time profiles 

are shown in Figure 5.2. The bioavailability of pulmonary administration of OXM was 

0.13±0.04. However, this may be due to enzymatic degradation by dipeptidyl peptidase, which is 

known to rapidly clear circulating oxyntomodulin by removing the histidine-serine dipeptide 

from the N-terminus (Santoprete et al., 2011). The pulmonary dose at 0.5 mg/kg showed a ten-

fold increase almost proportional to dose (10-fold higher). The bioavailability was similar (F= 

0.13±0.03), and the Cmax and AUC0-inf were comparable when normalized for dose (Table 5.2, 

5.3). Plasma concentration-time profiles are also shown in Figure 5.2. Furthermore, the terminal 

phase (β) for intravenous and pulmonary doses was statistically consistent (p>0.05), which 
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indicates that lung absorption was not the slowest process (kinetically rate-determining). 

Consequently, systemic elimination was the slowest process even with pulmonary 

administration, which is indicative of non-flip flop pharmacokinetics.  

 

 
 
Figure 5.2 Oxyntomodulin (OXM) plasma concentration vs. time profiles following orotracheal 
instillation (IT) at 0.05 mg/kg (Rats 2, 8, 9, and 10 ) and 0.50 mg/kg (Rats 1, 11, 12, and 13) in 
individual rats with n =4. 
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Table 5.2 Noncompartmental pharmacokinetic parameters following pulmonary  
administration of oxyntomodulin at 0.05 mg/kg in rats (n=4). 
 

Parameters Rat 2 Rat 8 Rat 9 Rat 10 Mean±SD
Dose per body weight (mg/kg) 0.05 

Cmax (ng/mL) 33.9 31.2 51.8 36.8 38.4±9.2

Tmax (min) 5.0 5.0 5.0 5.0 5.0±0.0

AUC0-inf (ng x min/mL) 1025 1020 1811 1103 1240±383

Terminal Slope β (min-1) 0.035 0.019 0.044 0.028 0.032±0.010
t1/2 (min) 29.9 34.2 25.4 21.8 27.8±5.4
CL (mL/min/kg)/F 48.8 49.0 27.6 45.3 42.7±10.8

Vdpss (mL/kg)/F 2105.4 2418.2 1013.4 1423.6 1740.1±638.1
F 0.10 0.10 0.18 0.11 0.13±0.039

Cmax/Dose (kg/mL) 678.6 623.9 1036.8 736.2 768.9±184.4

AUC0-inf/Dose (kg x min/ml) 20510 20406 36226 22053 24799±7655
All values are shown with significant digits typically used in pharmacokinetic data.  
 

Table 5.3 Noncompartmental pharmacokinetic parameters following pulmonary  
administration of oxyntomodulin at 0.5 mg/kg in rats (n=4). 
 

Parameters Rat 1 Rat 11 Rat 12 Rat 13 Mean±SD
Dose per body weight (mg/kg) 0.5 

Cmax (ng/mL) 357.4 444.9 456.8 438.0 424.3±45.3

Tmax (min) 5.0 5.0 5.0 5.0 5.0±0.0

AUC0-inf (ng x min/mL) 7714 14349 12737 15136 12484±3333

Terminal Slope β (min-1) 0.041 0.033 0.042 0.033 0.037±0.0050

t1/2 (min) 27.4 21.3 16.4 20.8 21.5±4.5
CL (mL/min/kg)/F 64.8 34.8 38.9 38.5 44.2±13.8

Vdpss (mL/kg)/F 2560.1 1241.4 1068.6 1140.8 1427.1±761.6
F 0.079 0.15 0.13 0.15 0.13±0.017

Cmax/Dose (kg/mL) 714.7 889.9 913.6 876.0 848.6±90.6

AUC0-inf/Dose (kg x min/ml) 15427 28698 25475 30272 24968±6667
All values are shown with significant digits typically used in pharmacokinetic data.  
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The overall mean plasma concentration-time profiles (mean±standard deviation) of both lung 

doses and the intravenous dose are shown in Figure 5.3. The terminal phase (β) for intravenous 

and both respective lung doses are illustrated in a semi-log linear plot in Figure 5.4.  
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A) 

 
B)  

 
 
Figure 5.3 Oxyntomodulin (OXM) concentration in plasma vs. time profiles following 

intravenous bolus injection (IV) at 0.05 mg/kg, and orotracheal instillation (IT) at 
0.05 mg/kg and 0.50 mg/kg  in rats on A) linear and B) semi-log scales. The solid 
lines are plotted by linear interpolation. Note: Only two rats had results at 90 minutes 
for IV and IT dose (0.5 mg/kg) Data represent mean±SD (n=4). 
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5.D. DISCUSSION 

 

5.D.1 PHARMACOKINETIC SUMMARY 

The validated LC-MS/MS method for the analysis of OXM in rat plasma as described in 

Chapter 4 was used to determine plasma the plasma concentration-time profiles, using non-

compartmental pharmacokinetic analysis. The plasma concentration-time profile was shown to 

be a biexponential plot following intravenous bolus injection. The terminal half-life was 20±3.3 

minutes and clearance (CL) was 1.4±0.5 mL/min, suggesting that OXM was eliminated by the 

kidneys . The pulmonary administration of OXM yielded half-lives similar to that for 

intravenous injection. Additionally, the AUC0-inf and Cmax were dose-proportional, suggesting 

that linear kinetics max exist between the dose range of 0.05 and 0.5 mg/kg. This dose-

proportional pharmacokinetics most likely lent a support to lung absorption via diffusion and 

showed non flip-flop kinetics as previously concluded with a similar peptide, PYY3-36 (Nadkarni, 

2009). The bioavailability of OXM with pulmonary administration remained low at 13% and 

OXM disappeared from systemic circulation within 90 minutes, which was likely the reason for 

4-6 hours of food intake suppression in rats (Nadkarni, 2009).   

 

5.D.2 ANALYTICAL EFFECTS ON PHARMACOKINETICS OF OXYNTOMODULIN 

WITH DIFFERENT SPECIES 

Pharmacokinetic studies of oxyntomodulin have been reported following intravenous 

infusion (IV-inf), subcutaneous, or IV bolus routes of administration with radioimmunoassays.  

Pharmacokinetic parameters for Cmax, area under the curve (AUC0-inf), half-life (t1/2), clearance 

(CL), and volume of distribution (Vdcc) have been determined based on traditional non-
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compartmental methods and are shown in Table 5.4. Terminal half-life (t1/2) was similar in the 

present study compared as to a study in pigs (Baldissera et al., 1988), in which t1/2 was 

approximately 20 minutes for both species; however, pigs were subjected in IV bolus and 

multiple infusions with oxyntomodulin as compared to the intravenous (IV bolus) administration 

in rats. In addition, metabolism between species can be different. A human study also reported 

t1/2, which was found to be 12±1minute following an IV-infusion rate of 100 and 400 ng/kg-1/h-1 

(Schjoldager et al., 1988). Studies performed in humans with infusions of OXM at different 

doses were comparable, where AUC0-inf/dose was calculated for Schjoldager et al. and Cohen et 

al resulting in 364.8 versus 349.3 kg x min/ml, respectively. Cross evaluation of species and 

route of administration indicates differences in reported pharmacokinetic parameters but these 

differences may be effects related to the species themselves, the route of administration, and also 

possibly the analytical technique employed. Radioimmunoassay’s (RIA) have been used 

traditionally for the pharmacokinetics of peptides such as oxyntomodulin. Some disadvantages to 

these techniques such are: the need for radioactive disposal, normally require two antibodies, 

limited linearity is normally one to two orders of magnitude, and non-specific binding, which can 

affect precision and accuracy (Hoofnagle et al., 2008). In table 5.4, three of the pharmacokinetic 

studies were obtained by an in-house radioimmunoassay (Cohen et al., 2003; Schjoldager et al., 

1988; Wynne et al., 2005). These results were determined based estimating human 

enteroglucagon (later named OXM) from subtraction of RIA values obtained with a glucagon 

antiserum that is C-terminally reacting (RCS5) from those acquired with an N-terminal-to 

midmolecule-reacting antiserum (R59). However, these results could be inaccurate due to non-

specific binding from anti-reagent antibodies, which may result in false positives (Hoofnagle et 

al., 2009; Whiteaker et al., 2007). Immunoassays have also shown inter-laboratory variability 
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(Rawlins et al., 2004), where groups demonstrated sample data variations with six immunoassay 

platforms for thyroid stimulating hormone. Pharmacokinetic parameters can be affected by the 

lack of selectivity or variability. Parameters affected by variations in plasma concentration-time 

profile data include: AUC0-inf, clearance, and bioavailability. 

LC-MS/MS is a viable alternative for pharmacokinetics studies due to its selectivity and 

ability to quantify multiple analytes in one sample simultaneously, if necessary. Minimal studies 

have been performed investigating inter-laboratory variability when employing LC-MS/MS for 

the analysis of polypeptides. However, a recent multi-site assessment between eight laboratories 

and simultaneous quantification of seven proteins fortified in human plasma indicated good 

inter-laboratory precision (<20% RSD) for six of the seven proteins evaluated (Addona et al., 

2009b). Leptin was the only exception, which had a larger inter-laboratory variation (>20% 

RSD). Although new immunoassay technologies have similar capabilities detecting multiple 

analytes, they lack the ability to selectively quantify metabolites or derivatives of similar 

peptides.  
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Table 5.4 Pharmacokinetic parameters of oxyntomodulin in various species 
 
Species Route Dose 

(µg/kg) 
Analytical 

Method
Cmax 

(pmol/L 
or 

ng/mL)

AUC0-inf 
(ng*min/mL)

t1/2 

(min)±
SD 

Reference

human IV-inf 0.40 RIA 264, 
1175

145,947 12±1 (Schjoldager 
et al., 1988)

human IV-inf 1.4 RIA 907, 
4035

489,079 59 (Cohen et 
al., 2003)

human SC 18.9 RIA 972, 
4325

536,719 90 (Wynne et 
al., 2005)

pig IV/IV-
inf 

# RIA 300, 
1335

57,002  20±4 (Baldissera 
et al., 1988)

rat IV 50.0 LC-MS/MS 124, 
554

13,008 20±3.3 present 
study

Notes: Standard deviations are shown when available for half-life as published or with the 
present study. AUC0-inf is based on estimated plasma concentration-time profiles digitized from 
the plasma concentration vs. time profiles presented in the literature or present data. #Dose for 
pig study was not calculated based on µg/kg due to variable dosing regimen throughout study 
with IV and IV-inf doses. RIA = radioimmunoassay, LC-MS/MS = liquid chromatography 
tandem mass spectrometry. 
 
 

5.D.3 COMPARISON OF OXYNTOMODULIN TO OTHER PEPTIDES FOLLOWING 

PULMONARY ADMINISTRATION IN RATS 

Pulmonary administration has been evaluated in rats for similar sized peptides (Gedulin 

et al., 2008; Nadkarni, 2009). Table 5.5 presents some physical characteristics along with 

bioavailability F(in %) following pulmonary administration in rats. The molecular weight (MW), 

number of amino acid residues (number of AA), isoelectric point (pI), percent hydrophobic 

amino acids (%H, AA), percent acidic amino acids (%A, AA), percent basic amino acids (%B, 

AA), percent neutral amino acid (%N, AA), and bioavailability (%F) were compared to 

determine if similar peptide physical and chemical characteristics would be expected to yield 
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similar low bioavailability. Similar bioavailability results were obtained with OXM, exenatide, 

and PYY3-36 in rats, as molecular weights, number of amino acids, and percent hydrophobic 

amino acid residues (%H) were comparable. This implies that these characteristics may result in 

similar bioavailability for pulmonary administration. However, lung absorption and non-

absorption (other than absorption) rates may be different for these peptides.  

 

  



145 
 

Table 5.5 Comparison of similar peptide physical characteristics that have employed pulmonary delivery in rats 
 

Peptide 
MW 

(g/mol) 
number 

of AA pI
%H 
AA

%A 
AA

%B 
AA

%N 
AA F (%)

Analytical 
Method Reference

OXM 4449 37 9.9 32.43 8.11 18.92 40.54 12.7 LC-MS/MS Present study

PYY3-36 4149 34 9.3 38.24 14.71 20.59 26.47 13.0 ELISA (Nadkarni, 2009)

Exenatide 4187 39 4.5 28.21 15.38 10.26 46.14 13.6
ELISA (Gedulin et al., 

2008)
Note: AA = amino acids. pI = isoelectric point. %H = percent hydrophobic AA, %A = percent acidic AA, %B = percent basic AA,  
%N = percent neutral AA, F = bioavailability in percent. ELISA = enzymed linked immunosorbent assay.
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5.E. CONCLUSIONS 

 Liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to 

successfully determine the in vivo pharmacokinetics of oxyntomodulin (OXM) following 

intravenous injection and intratracheal instillation in rats. The validated method was used to 

obtain plasma concentration-time profiles of OXM, which were then characterized with 

noncompartmental analysis. Intravenous administration of OXM had profiles that appeared to be 

biexponential, yielding the terminal t1/2 of 20.0±3.3 min. Its Vdpss and CL were 130.3±41.3 ml/kg 

and 3.81±1.32 ml/min/kg, respectively. These results suggest a narrow distribution of OXM 

within the body and that OXM was most likely eliminated by the kidneys. Pulmonary 

administration for both doses (0.05 and 0.5 mg/kg) indicated dose-proportional Cmax and AUC0-

inf, and was also confirmed by CL/dose. The terminal slopes were consistent with that observed 

in the intravenous profile. This also indicates that lung absorption kinetics were linear. 

Furthermore, the lung absorption was not rate-determined in its overall pharmacokinetics, i.e., 

non- “flip-flop”.  The low bioavailability was shown to be only 13 %, and the peptide was not 

detected after 90minutes.
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CHAPTER 6 

 

 

SUMMARY AND OVERALL CONCLUSIONS 
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Targeted protein and polypeptide quantification have increasingly become important 

to the validation of biomarker candidates, their quantitative analysis and the development 

of protein therapeutics. Peptide or protein therapeutic treatment requires pharmacokinetic 

studies performed with reliable analytical methodologies. Since the 1950’s, ligand 

binding assays have been the standard of practice for measuring protein and peptides in 

clinical samples (Hoofnagle et al., 2009). The platform for immunoassays has evolved 

from radioimmunoassay to primarily enzyme linked immunosorbent assays (ELISA), and 

microfluidic point of care testing immunoassays (Hoofnagle et al., 2009). Despite these 

advancements in technology for immunoassays, they suffer from the same limitations, 

which is that the selectivity of the assay is limited by the antibody used. This lack of 

selectivity is especially a concern with structurally related compounds such as drug 

metabolites which may be found in biological samples. The inaccuracy from this lack of 

selectivity in human or animal samples can lead to falsely elevated results that would 

affect the pharmacokinetic data, and interpretation of the appropriate dose. As a serious 

example of this problem, five different immunoassay platforms where evaluated for the 

determination of a tumor marker for pancreatic cancer (cancer antigen 19-9, CA 19-9). 

Unfortunately, the study revealed the potential for a patient to be misdiagnosed with a 

recurrence of cancer in one immunoassay, only to find out with another method they 

were still in remission (La'ulu et al., 2007). These inadequacies associated with 

immunoassays support alternative methods for quantitative analysis is desirable.  This led 

us and others to investigate alternative methods for quantitative analysis of large 

molecules (i.e., proteins and peptides) in plasma using the small molecule gold standard, 

liquid chromatography tandem mass spectrometry. 
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In the first chapter, strategies for quantitative analysis of large molecules using 

liquid chromatography tandem mass spectrometry were discussed. Technological 

advances over the last twenty years in biochemistry and mass spectrometry have allowed 

the use of peptides as surrogates to quantify enzyme digested proteins using triple 

quadrupole mass spectrometers. Multiple sample preparation processes may be 

incorporated to achieve quantification of target proteins using these signature peptides. 

Employing signature peptides as quantitative surrogates of the target protein may be 

considered a viable alternative to immunoassays. This multi-step process includes 1) In 

Silico signature peptide prediction and modeling 2) In silico MRM peptide transition 

modeling coupled with real mass spectra 3) protein purification 4) enzymatic digestion 5) 

signature peptide purification 6) incorporation of an isotope labeled internal standard 

peptide or protein 7) quantitative LC-MS-MS using MRM transitions for signature 

peptide(s) and internal standard(s).  

Employing this multi-step signature peptide approach for quantitative analysis of a 

proteins was demonstrated in chapter 3. Specifically, quantitative analysis of a 

therapeutic protein through use of surrogate proteotypic peptides was evaluated for the 

measurement of Amevive (Alefacept) in human plasma using liquid chromatography 

tandem mass spectrometry. Signature peptides were obtained through in silico and 

iterative tuning processes to represent Alefacept for quantification. Horse heart 

myoglobin was chosen as a protein analogue internal standard to compensate for errors 

associated with matrix effects and to track recovery throughout the entire sample 

pretreatment process.  The myoglobin signature peptide was chosen due its similar 

retention time to the alefacept signature peptide (3.6 versus 4.2 minutes). Therefore, 
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protein analogue internal standards can be an effective way of tracking sample 

pretreatment, digestion, and ultimately correcting for matrix effects when a similar 

retention time is obtained.  Samples were prepared for analysis by selective precipitation 

of the target proteins with pH controlled at 5.1 and heat denaturation at 45°C followed by 

enzymatic digestion, dilution, and filtration. This partial precipitation extraction requires 

multiple combinations of pH and temperatures to fully optimize this sample purification 

step. However, by applying the optimization studies discussed in Chapter 3, other 

proteins with isoelectric points well away from human serum albumin may use this 

approach for purification prior to digestion. This will allow an antibody-free purification 

step in plasma. Following the partial protein precipitation, an on –line extraction of the 

signature peptides was carried out which allowed for multiple injections with only 

changing the guard column. The same analytical column was used for the entire 

validation, with over 400 injections and counting. Therefore, on-line sample purification 

preceded by a partial protein precipitation can be combined as an effective and robust 

analytical method for analysis of plasma samples. Tandem mass spectrometric detection 

was performed on a hybrid triple quadrupole linear ion trap equipped with electrospray 

ionization to positively ionize signature peptides for Alefacept and myoglobin. The 

method was linear for Alefacept (protein) concentrations between 250 and 10,000 ng/mL. 

Precision and accuracy for inter and intra-assay for the lower limit of quantification was 

less than 20% (16.2 and 10.3, respectively). The method was validated according to 

current FDA guidelines for bioanalytical method validation and no antibody purification 

step was needed to quantify therapeutic levels. 

In chapter 4, intact polypeptide quantification was investigated as a second 

alternative approach to immunoassays. Biomolecules can exist as intact ions, with 
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multiple charges using electrospray ionization (Fenn et al., 1990). Using these principles, 

a polypeptide was chosen for intact quantification by using its multiple charge state form. 

The multiple charges allowed for the m/z to be reduced to within the triple quadrupole 

mass range (2800 m/z) for analysis of oxyntomodulin (4449 Da) in rat plasma. In this 

assay, a modified solid phase extraction (SPE) method coupled with two-dimensional 

reversed phase ion pair chromatography tandem mass spectrometry was used for the 

validation and analysis of oxyntomodulin in rat plasma. Modified SPE, two-dimensional 

liquid chromatography coupled with 3-nitrobenzyl alcohol as a mobile phase additive, 

along with monitoring of multiply charged SRM transitions (+7 charge state) of OXM 

were found to be  necessary to achieve a lower limit of quantification of 1 ng/mL. The 

method was validated within range of 1 to 1000 ng/mL, and met current FDA guidelines. 

This linear range was appropriate for obtaining the plasma concentration time-profiles 

presented in chapter 5. Following a complete validation, the method was applied to a 

pharmacokinetic study using rat plasma samples that were intravenously (IV bolus) dosed 

or received pulmonary administration of oxyntomodulin. 

Alternative approaches to immunoassays were established and validated in chapters 

3 and 4. A critical part of the evaluation of any methodology however is application to 

real samples. Real samples provide a better argument using alternative methodologies. 

Therefore, the validated oxyntomodulin method described in chapter 4 was applied for 

the pharmacokinetic evaluation of rats dosed with intravenous and oratracheal instillation 

(IT) routes of administration at doses of 0.05 mg/kg for IV and IT, and 0.5 mg/kg IT. The 

method allowed for the accurate determination of plasma concentration-time profiles 

which exhibited a biexponential profile; therefore, simultaneous distribution and 
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elimination was postulated. The terminal half-life for intravenously dosed rats was 

20.0±3.3 min. Pulmonary administration (using IT) profiles were dose-proportional at 

0.05 and 0.5 mg/kg and indicated linear kinetics. Furthermore, the terminal half-lives 

were similar to the intravenous injection, which suggested non-“flip-flop” 

pharmacokinetics for oxyntomodulin in rats. The absolute bioavailability (%F) was low 

at ~13%, which may suggests non-absorptive loss of oxyntomodulin from the lung.  

Overall this dissertation successfully provided useful approaches for quantitative 

analysis of large molecules in plasma. In chapter 3, partial protein precipitation (selective 

precipitation) was demonstrated as an effective sample purification for proteins that 

possess an isoelectric point away from major plasma proteins such as albumin (pI = 4.7). 

This approach combined with on-line sample purification could be applied to other 

proteins with similar pI’s following optimization of pH and temperature. Combined with 

these purification steps was the employment of a protein analogue internal standard, 

myoglobin. Even though progress has been made recently with use of extended peptide 

internal standards (Plumb et al., 2012), using a protein analogue internal standard is an 

economical approach to compensating for matrix effects and tracking the entire sample 

pretreatment process. Retention matching signature peptides may be applied to other 

similar proteins. 

In chapter 4, taking advantage of the multiple charges on an intact biomolecule 

proved to be another alternative to immunoassays. Combining mass to charge (m/z) ratio 

reduction with optimizing the charge state distribution and product ion formation allowed 

for a large polypeptide (OXM: 4449 Da) to be quantified with a triple quadrupole mass 

spectrometer. This is unique in itself given that most large polypeptides have not been 
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quantified using a multiple charge state and selected reaction monitoring (Van Den Broek 

et al., 2008). Using 3-nitrobenzyl alcohol (3-NBA) was shown to increase charge states 

and intensity in the peptides evaluated. Although this has been shown with cytochrome c 

previously (Lavarone et al., 2001), chapter 4 demonstrated the novelty with 3-NBA as an 

ion pair for the first time using it coupled with reversed phase chromatography for 

separation of OXM and enhancement of sensitivity.      

LC-MS/MS was shown to precisely and accurately quantify a signature peptide as a 

surrogate for a protein therapeutic, Alefacept and quantify a multiply charged intact 

polypeptide, oxyntomodulin, in plasma. These approaches show great promise as 

alternatives to immunoassays and are applicable to other large molecules.  

Technological advances will improve these alternative approaches and eventually 

become a new tradition of for quantification of proteins and peptides. Advances with 

using extended peptide internal standards or even stable isotope labeled proteins will 

allow for sufficient tracking of sample purification and compensate for matrix effects. 

Using purification techniques such as immunoaffinity may improve sensitivity of protein 

quantification with LC-MS/MS as recently demonstrated  (Xu et al., 2010), which may 

compete with immunoassay detection limits. Detection limits are still a limiting factor 

with LC-MS/MS compared to immunoassays, but with superior selectivity and 

technological advancement, it is only a matter of time when quantitative analysis of 

samples in plasma will use LC-MS/MS as the gold standard for small and large 

molecules.  
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APPENDIX 1 
 

CHARGED STATE DISTRIBUTION INTENSITY OF POLYPEPTIDES IN 

TWELVE SOLVENT MIXTURES 
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Solvents Description

S1 25:75 ACN:H2O
S2 25:75 MeOH:H2O
S3 25:74:1 ACN:H2O:3-NBA
S4 25:74:1 MeOH:H2O:3-NBA
S5 25:74:1 ACN:H2O:glycerol
S6 25:74:1 MeOH:H2O:glycerol
S7 25:74:1 ACN:H2O:formic acid
S8 25:74:1 MeOH:H2O:formic acid
S9 24:74:1:1 ACN:H2O:3-NBA:formic acid
S10 24:74:1:1 MeOH:H2O:3-NBA:formic acid
S11 24:74:1:1 ACN:H2O:glycerol:formic acid
S12 24:74:1:1 MeOH:H2O:glycerol:formic acid
Note: ACN = acetonitrile, MeOH = methanol, 3-NBA = 3-nitrobenzyl alcohol, H2O = deionized water 
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CHARGE STATE DISTRIBUTION OF ANGIOTENSIN-1 
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CHARGE STATE DISTRIBUTION OF OBESTATIN 
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CHARGE STATE DISTRIBUTION OF GHRELIN 

 
Note: no charge states were detected for solvents 5 and 6.  
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CHARGE STATE DISTRIBUTION OF GLUCAGON 
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CHARGE STATE DISTRIBUTION OF PYY1-36 

 
 
  

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

In
te

n
si

ty
 (

cp
s)

Solvent

+4

+5

+6

+7

+8

+9

+10



176 
 

CHARGE STATE DISTRIBUTION OF PYY3-36 
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CHARGE STATE DISTRIBUTION OF OXYNTOMODULIN 
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CHARGE STATE DISTRIBUTION OF INSULIN GROWTH FACTOR-1 (IGF-1) 

 
 Note: no charge states were detected for solvents 1, 2, 5, and 6. 
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CHARGE STATE DISTRIBUTION OF PARATHYROID HORMONE (PTH) 

 
Note: only solvents 1 and 2 showed charge states for PTH. No other solvent detected any charge state for 
PTH.  
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CHARGE STATE DISTRIBUTION OF LEPTIN 
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CHARGE STATE DISTRIBUTION OF MYOGLOBIN 
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APPENDIX 2 

 

NORMALIZED PLASMA OXM CONCENTRATION TABLES 

FOR RATS DOSED WITH INTRAVENOUS AND ORATRACHEAL INSTILLATION 

ROUTES OF ADMINISTRATION 
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IT 0.05 mg/kg 

Time   RAT mean SD SE
min h #2 #8 #9 #10       

0 0.00 0 0 0 0 0.00 0.00 0.00
2 0.03 missing 21.50 22.28 18.86 20.88 1.79 1.03
5 0.08 33.93 31.20 51.84 36.81 38.45 9.22 4.61
10 0.17 30.03 25.75 48.65 32.60 34.26 10.00 5.00
20 0.33 24.91 11.61 41.95 15.55 23.50 13.50 6.75
30 0.50 9.70 8.34 33.46 11.94 15.86 11.83 5.91
45 0.75 5.43 7.35 8.84 9.57 7.80 1.83 0.91
60 1.00 3.18 5.65 3.96 5.02 4.45 1.10 0.55
90 1.50 1.85 2.77 2.40 2.21 2.30 0.38 0.19

 

IT 0.5 mg/kg 

Time   RAT mean SD SE
min h #1 #11 #12 #13       

0 0.00 0 0 0 0 0.00 0.00 0.00
2 0.03 0.00 364.58 209.43 360.90 233.73 171.77 99.17
5 0.08 362.96 446.15 461.16 525.60 448.97 66.90 33.45
10 0.17 344.91 392.11 380.27 359.10 369.09 21.13 10.56
20 0.33 126.36 276.48 224.34 247.50 218.67 65.13 32.57
30 0.50 84.45 211.76 173.89 211.50 170.40 60.00 30.00
45 0.75 59.12 125.05 112.74 160.20 114.28 41.91 20.96
60 1.00 14.18 76.66 49.05 142.20 70.52 54.19 27.10
90 1.50 BLOQ 28.91 BLOQ 38.70 33.80 N/A N/A
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IV Bolus 0.05 mg/kg 

Time   RAT mean SD SE
min h #4 #5 #6 #7       

2 0.03 394.38 438.07 594.38 790.75 554.39 179.45 89.72
5 0.08 327.50 352.20 437.77 490.47 401.98 75.58 37.79
10 0.17 265.00 228.99 378.34 423.71 324.01 92.02 46.01
15 0.25 251.25 152.45 246.02 256.81 226.63 49.65 24.82
20 0.33 176.25 103.92 133.86 231.51 161.38 55.37 27.69
30 0.50 166.25 82.76 104.40 214.28 141.92 59.82 29.91
45 0.75 90.00 56.63 84.76 151.29 95.67 39.87 19.93
60 1.00 63.75 26.13 19.12 142.67 62.92 56.66 40.07
90 1.50 20.63 BLOQ missing 24.77 22.70 N/A N/A
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