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 Patterned silver (Ag) columnar nanorods were prepared by the glancing angle physical 

vapor deposition method.  The Ag columnar nanorods were grown on a Si (100) substrate 

patterned with posts in a square “lattice” of length 1 µm. An electron beam source was used as 

the evaporation method, creating the deposition flux which was oriented 85˚ from the substrate 

normal.  A Dimension Icon with NanoScope V controller atomic force microscope was used to 

measure the spring constant in 10 nm increments along the long axis of five 670 nm long Ag 

nanorod specimens.  The simple beam bending model was used to analyze the data.  Unexpected 

behavior of the spring constant data was observed which prevented a conclusive physically 

realistic value of the Young’s modulus to be calculated. 



 

Chapter 1: Introduction  

 
 

1.1 MotivationEquation Section 1.1 

 

 Nanofibers and nanorods have been used in a wide array of applications, ranging from 

tissue engineering,1 reinforcement in composites,2 and micro/nano-electromechanical systems 

(MEMS/NEMS).3 While these nanomechanical devices are in use, the forces present in their 

applications can result in both elastic and plastic deformation, along with mechanical failure.  

Development of future nanomechanical devices requires characterization of properties of these 

nanocolumnar arrays, in order to realize their practical applications.4 

 Here three main techniques are reviewed which are found in literature for atomic force 

microscope (AFM) based mechanical characterization of nanorods: the nano tensile test, the 

nanomechanical bending test, and nanoindentation.5 As with a macroscopic stress-strain 

experiment, the nano tensile test requires tension to be exerted along the long axis of the 

nanorods in a uniform fashion, and direct measurement of the resulting stress and strain in order 

to extract the Young’s modulus. The AFM cantilever is used to apply the force, and the nanorod 

must be fixed to one end of the cantilever while the other end of the nanorod is fixed to the 

substrate.  Due to the experimental difficulties of realizing this setup on a nanoscale, the nano 

tensile test is reported as the most difficult to perform.5, 6 Other difficulties inherent to this test 

include alignment and gripping, since direct manipulation of the testing specimen is required 5.  

The geometry of the silver nanorods studied in this thesis is not well-suited for the tensile test, as 

will be discussed in Section 1.4. 



2 

 The nanoindentation method is reported by Tan and Lim to be the most convenient, 

however the application of this test requires not only that the nanorod specimen lay flat on a rigid 

substrate, but a reliable method for measurement of both the indentation depth and applied force 

exist, and also sufficient adhesion between the substrate and nanomaterial exist.5 The AFM 

cantilever is either assumed infinitely rigid, or not.  If the cantilever deformation is not neglected, 

convolution of the cantilever deformation during the test makes extraction of the Young’s 

modulus of the sample more complicated.5  The nanorods studied in this thesis are also not 

intrinsically suited for this test; since the nanorods exhibit cantilevered-beam geometry, any 

nanoindentation force applied will result in a bending moment and therefore convolution 

between the measurement of the applied nanoindentation force and the restoring force resulting 

from the bending of the cantilevered-style beam. 

 This thesis seeks to investigate the application of the ex situ nanomechanical bending test 

to extract the spring constant and Young’s modulus of silver (Ag) nanorods.  The 

nanomechanical bending test is reported as giving the most data spread of all the methods 

discussed,7 however this test is well-suited for the sample geometry of the Ag nanorods which is 

discussed in Section 1.4. The method described first by Wong et al. in 19978 is the experimental 

procedure used in this thesis, however using force-distance spectroscopy in place of lateral force 

microscopy to extract the spring constant of the nanorods. 

 Other applications of the bending test employing an AFM is reported in studies by Gaire 

et al. in 2005.9  Gaire et al. reports measuring the stiffness of amorphous silicon nanorods grown 

by the glancing angle deposition (GLAD) technique using an AFM and plotting the stiffness 

versus a geometrical factor common to all of the nanorods, the slope of which is the Young’s 

modulus. Their results indicate the scatter common to the bending test, with a value of 94.14 ± 
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10.21 GPa. A similar experimental procedure was followed by Nagar et al. in 2009,10 where they 

report a spring constant of 65.6 ± 20.8 Nm-1 for similarly prepared slanted silicon nanorods, 

which also demonstrates the scatter common to the bending test.   

 The method of Wong et al.8 is to measure the spring constant of nanorod specimens using 

the AFM at incremental distances along the long axis. The spring constant data are then plotted 

versus the positive distance from the pinning point, and the Young’s modulus is extracted by 

fitting the curve to the simple beam bending model discussed in the next section.  Wong et al.8 

argue that by measuring the force constant in this manner, a more reliable measurement of the 

Young’s modulus is made and the scatter in the measured spring constant data becomes less 

relevant. 

 

1.2 Atomic Force Microscopy and Nanomechanical Characterization 

Equation Section 1.2 

The AFM was developed by Binnig, Quate and Gerber in 1985.11  Since its development the 

AFM has made a large contribution in the field of nanomechanics, owing to its ability to measure 

pico- to nano-Newton forces.12  Due to the nature of the AFM, a topographical image of the 

sample must first be obtained in order to locate nanostructures for mechanical testing. 

The two main imaging modes of the AFM are contact mode (static AFM) and tapping mode 

(dynamic AFM). The basic principle of static AFM operation is simple: the tip of a micro 

machined cantilever, commonly made of single crystal silicon Si, is scanned by a piezoelectric 

scanner in a raster pattern in the x-y plane while in contact with the sample surface.  Generally 

the x direction is referred to as the fast-scan direction, and y the slow-scan direction. The 
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piezoelectric scanning tube along with the raster pattern followed during both static and dynamic 

AFM imaging modes is shown in Figure 1. 

Due to sample-cantilever interaction, the cantilever can deflect both normally with respect to 

the surface (z direction) of the sample and torsionally along the long axis of the cantilever.  One 

side of the AFM cantilever may be coated with a thin coating of reflective metal, typically 

aluminum, so that a laser spot when aligned on the end of the cantilever so the beam is reflected 

back to a photosensor diode can measure the deflection of the cantilever. This is referred to as 

the optical-lever scheme. The deflection of the cantilever is measured by the change in voltage 

signal of the four-quadrant photo sensor diode. The AFM software, employing a feedback loop, 

keeps the deflection of the cantilever, and therefore the force exerted by the cantilever on the 

surface, constant.  The topographical features of the surface are then represented by the voltage 

supplied by the feedback loop to the piezoelectric scanner located at the base of the cantilever in 

order to keep the normal deflection of the cantilever constant.  An overall schematic of the AFM 

is presented in Figure 2. 

In dynamic AFM the cantilever is not held fixed but is vibrated at its fundamental resonance 

frequency. The feedback loop then monitors the mean squared amplitude of vibration of the 

cantilever which is held fixed. Sample features are again represented by the change in voltage 

required to move the AFM cantilever in the normal direction in order to keep the mean squared 

vibrational amplitude constant. 

The deflection of the cantilever is of course caused by interaction with the surface of the 

sample. The forces responsible for the deflection of cantilever can be either attractive or 

repulsive.  Attractive forces will include van der Waals (vdW) interactions, capillary forces, 

electrostatic forces and chemical forces, while repulsive forces include Pauli-exclusion 
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interaction and Coulombic interaction 12.  The Lennard-Jones (LJ) 6-12 potential has both of 

these attractive and repulsive forces built in and has the form,13 

 6 12

1 1( )r
r r


   , (1.1) 

where r is the distance between the cantilever tip and the sample.  The repulsive force is the 

positive term while the attractive force is the negative term.  A plot of the LJ potential is found in 

Figure 3. 

The imaging modes above are standard imaging modes, while the imaging mode used in data 

collection in this thesis was the Bruker proprietary QNM PeakForce14 imaging mode.  In order to 

understand the concepts of this imaging mode, first a digression into force-distance spectroscopy 

is necessary. 

 In force-distance spectroscopy the x-y motion of the piezoelectric scanner is halted and 

the cantilever is “ramped” in the z direction while the deflection of the cantilever is monitored by 

the optical lever scheme.  The distance the cantilever is ramped is defined by the user, and the 

sample-cantilever interaction force in the elastic deformation regime can be described by 

Hooke’s Law,  

  c c cF k   , (1.2) 

where Fc is the force exerted by the cantilever on the surface, kc is the cantilever spring constant 

and δc is the deflection of the cantilever from the equilibrium position. The cantilever can be 

modeled by Hooke’s law when the cantilever deflection is kept small so as to keep the 

deformation in the elastic regime; that is to not permanently deform the cantilever. The 

deflection of the cantilever is then plotted as a function of the z-piezo ramp distance, and the 

spectra is called a force curve.   
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 There are several key features force curves exhibit. A force curve is shown in Figure 4.  

First, as the z piezo moves the cantilever from region 1 to region 2 the cantilever is not deflected.  

The data above show a baseline deflection that has a negative slope indicating a long-range 

attractive force which is attributed to static charge on the sample surface inducing an image 

charge on the AFM cantilever.  At point 2, the van der Waals force and capillary force due to the 

adsorbed water layer on the sample cause a sudden negative deflection of the cantilever.  This is 

called the “jump to contact” point.  Beginning at point 3 the tip is in physical contact with the 

sample surface.  The rest of the extension ramp is completed then the retract cycle begins at point 

4.  At point 5 the cantilever restoring force overcomes the capillary force and the “jump off 

contact” point is reached.  The difference between the force at point 6 and the minimum at point 

5 can be taken as the force of adhesion; here this force was about 40nN.  The z piezo then 

retracts the rest of the way from point 6 to point 7 and the ramp cycle is complete.   

 The Bruker PeakForce Quantitative Nanomechanical Mapping (QNM) Package14 can be 

thought of as a hybrid imaging mode that combines contact mode and tapping mode; the AFM 

takes a fast force curve at each pixel in the scan, keeping the tip-sample force below a preset 

setpoint, and then lifts the cantilever and moves to the next point in the scan.  This is especially 

advantageous when imaging a sample with nanorods since during imaging this force and 

therefore the sample deformation can be minimized resulting in an artifact-free image.  An 

extension of this package, called ScanAssyst14, uses algorithms developed by Bruker to change 

scanning parameters in real-time using the QNM14 force curve data resulting in near artifact-free 

images.   

During preliminary studies, it was found that the standard imaging modes exhibit artifacts 

in the image due to the nanorod bending during scanning. An image recorded in standard tapping 



7 

mode with discontinuities in the slow scan direction as well as artifacts in the topological profile 

is shown below in Figure 5 b, with a comparison of an image taken with the proprietary 

PeakForce QNM package14 (Figure 5 a) that exhibits almost no artifacts due to the minimization 

of the tip-sample force during imaging.

1.3 Hooke’s Law, Elastic Theory and Beam Bending 

 
Robert Hooke in 1678 laid the foundation for modern elastic theory with his publication of 

his work with metal springs titled, “The power of any spring is in the same proportion with the 

Tension Thereof.”15  This work was actually first published by Hooke in 1676 as the anagram, 

“ceiiinosssttuu” at the end of another published work 16, as was a common practice at the time in 

order to stake a claim to a discovery.  The anagram decoded reads in Latin, “ut tension sic vis,” 

which translates to “as the extension, so the force.”17  This relationship can be described 

mathematically by the well-known formula of the same form of Equation (1.2), 

  F k x   , (1.3) 

where F is the restoring force exerted by the spring with a spring constant k displaced from its 

equilibrium by Δx.  An important condition is that this is only valid when the relationship 

between stress and strain is linear, as is the case for small deformations in most isotropic 

homogenous materials.  When the relationship between stress and strain is linear in a material for 

a given displacement, the material is said to be linearly elastic. This relationship does not only 

hold for mechanical springs, but also is applicable to the deformation of beams for small 

displacements, as will be visited after a discussion of linear elastic theory. 

  It is quite apparent that when external forces are applied to a body or material deformations 

can result.  When these external forces are removed, however, if the body returns to its original 
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state after the external force or forces are removed the body is said to be perfectly elastic.18  The 

generalized theory of elasticity, when defining stress and strain, makes reference to two types of 

external forces; surface forces and body forces. Surface forces, also called contact forces, arise 

from mechanical contact with other bodies and include friction, tensile forces, normal forces, and 

shearing forces. Body forces, or internal forces, are forces that act throughout the volume of a 

body and can be due to a force field such as gravity or electric fields, or can also be due to an 

outside forces influence.  The magnitude of the internal forces acting on a unit cross sectional 

area is called the stress.18  The intensity of the distribution, the stress σ, is just the force F divided 

by the unit area A, 

 F
A

  . (1.4) 

Another key part of elastic theory is strain, ε, which is defined as the stretch or deformation 

of interior parts of the body per unit length, 

 l
l

 
 . (1.5) 

Hooke’s law can be written in terms of the relationship between stress and strain for perfectly 

elastic materials as, 

 E  , (1.6) 

where the constant of proportionality E is defined as the Young’s modulus, or one-dimensional 

modulus of elasticity.   

In macroscopic stress-strain experiments the strain can be measured by a strain gauge, which 

is fixed to the surface of the strained material and measures the elongation (or contraction) by the 

change in electrical resistance18 of a coil of wire.  Stress can simply be calculated, and the 

Young’s modulus is then the slope of the stress vs. strain curve.  In nanoscale experiments, 
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however, there exist no such strain gauges which prevent extracting the Young’s modulus from a 

stress-strain curve’s slope, requiring a different method for acquiring the Young’s modulus.   

One method is to call on the elementary beam theory,3-5, 8, 9, 20 specifically the simple bending 

theory.19  Consider a cantilevered beam of length L as shown in Figure 6. In Figure 6 the long 

axis, or neutral axis, of the beam is defined to be the x direction and the point load located at x 

will result in a deflection in the y direction.  This axis is defined as the neutral axis because for a 

bending moment applied in the y direction, the planes above the neutral axis are stretched while 

planes below the neutral axis are compressed, while the neutral axis is neither compressed nor 

stretched.  The deflection of the beam is assumed to be constrained to the x-y plane, simplifying 

this to a two-dimensional problem.  The other simplifying assumptions of simple beam bending 

theory are as follows;19 

1. The beam is initially straight and unstressed. 

2. The material of the beam is assumed to be perfectly homogenous and isotropic. 

3. The elastic limit is nowhere exceeded. 

4. The Young’s Modulus is equivalent for bending and tension. 

5. Plane cross-sections remain plane before and after bending. 

6. Every cross-section of the beam is symmetric about the plane of bending. 

7. There is no resultant force perpendicular to any cross-section. 

A well-known formula for the deflection y of a cantilevered beam of length L subject to a 

point load F at x is,19 

  
2(3 )

6
F L x xy

EI


 , (1.7) 
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where E is again the Young’s modulus and I is the area moment of inertia. The moment of inertia 

for the silver nanorods is given by the second moment of inertia for a circular cross section of 

radius r, 

  
4

4
rI 

 . (1.8) 

Equation (1.7) allows calculation of the deflection as a function of the distance away from the 

fixed end of the beam.  Rearranging Equation (1.7) by solving for the force F yields, 

Substituting in Equation (1.8) into Equation (1.7) and taking the partial derivative of Equation 

(1.7), F
y




, yields the spring constant, k as a function of x, 

  
4

3

3( )
2(3 )

rk x E
L x x





 (1.10) 

 
Since, for a cantilevered beam, the distance from the free end of the rod to the location of the 

point load (the force F) does not change the force constant, set L = x to yield, 

  
4

3

3( )
4

rk x E
x


  (1.11) 

This method of finding the value of the force constant as a function of distance from the pinning 

point of a cantilevered beam was, to the knowledge of the author, first applied to nanorods and 

reported in the literature by Wong et al. in 1997.8 
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1.4 Glancing Angle Deposition 

 
Glancing angle deposition (GLAD) is a type of physical vapor deposition (PVD) performed 

at oblique angles.7 In a PVD experiment, the deposition source is vaporized resulting in a vapor 

flux that travels toward the substrate. Different evaporation methods include thermal 

evaporation, magnetron sputtering, electron-beam evaporation and laser ablation.20 The vapor 

will undergo a phase change from vapor to solid when incident on the substrate surface. Figure 7 

shows a basic schematic of the incident vapor flux, the substrate, and the angle between them θ 

for glancing angle deposition. 

When the direction of vapor flux and the substrate normal are parallel, uniform evaporate 

coverage of the substrate occurs and a thin film is fabricated. In order to create nanostructures 

with varying morphologies, different parameters of the deposition can be adjusted. Changing the 

angle of incident flux so the source and substrate normal are not parallel, or deposition at oblique 

angles is one possible variation that results in anisotropic sample morphology.  

In oblique angle deposition, the angle measured between the vapor path and substrate normal 

is large, typically θ > 80°.20  The GLAD technique makes use of the large oblique angle of 

incident flux to produce films with intrinsic anisotropy.7  Anisotropy of the films is due to the 

atomic-scale shadowing effect from the initial nucleation sites.7, 20  This shadowing effect occurs 

when the evaporant first nucleates on the surface of the substrate “shadowing” the area behind 

the nucleus as viewed from the deposition source from receiving further incident flux. The 

growth of the film from the nucleation sites is driven by adatom diffusion to energetically lower 

preferential sites.  A schematic of this shadowing effect, adatom diffusion, including the 

deposition angle is found in Figure 8. The oblique angle technique can be modified with the 

addition of substrate rotation around an axis parallel to its normal. 
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Substrate rotation changes the net shadowing effect, causing the growth of the film to follow 

the apparent position of the vapor source. What results is a columnar structure that increases in 

length along its long axis while the incident flux is present.7  When the substrate is patterned 

with periodic “plugs,” the incident vapor will grow preferentially at these sites resulting in 

macroscopic patterning of the grown nanocolumns.4, 20-23 

Paradigmatic examples illustrating the affect of changing deposition parameters on columnar 

microstructures include tilted columns, chevronic columns, chiral columns and vertical 

columns.7, 20  Fixed-oblique-angle style depositions with substrate rotation result in tilted 

columns.7 Chevronic columns form when the substrate is held at a fixed oblique angle and is 

rotated regularly in 180° intervals.23 Chiral columns exhibiting a helical structure are what result 

when the substrate is slowly and continuously rotated.7 The vertical column is the limiting case 

of the chiral columns. Pitch is a measure of the vertical distance gained with a complete rotation.  

With increasing rotational speed the pitch will decrease and ultimately approach zero which 

results in vertically aligned columns.7 

These vertically aligned columns created by oblique angle deposition with varying deposition 

parameters exhibit differences in not only physical features, such as topology and structure, but 

also electrical and optical properties.4, 7, 20-23  Of chief interest in this thesis are the mechanical 

properties of isolated tilted nanocolumns, in particular the modulus of elasticity or Young’s 

modulus.  Sample geometry of the tilted nanorods is well suited for the nanomechanical bending 

test.5 
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1.5 Chapter 1 Figures 

 

Figure 1: Raster pattern created by the piezoelectric scanner. The y-direction is the slow scan 
direction and the x-direction is the fast scan direction. Image credit: Bruker Nanoscope Software 
(v8.10r2) Manual.  
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Figure 2: Basic AFM schematic showing the laser reflecting off of the back side of the 
cantilever, the photosensor diode, and the x-, y-, and z- directions of the piezoelectric scanner. 
Image Credit: Bruker Nanoscope (v8.10r12) software manual. 
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Figure 3: The Lennard-Jones potential.24  Positive potential indicates repulsive forces and 
negative potential indicates an attractive force. 
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Figure 4: A force curve with z ramp size 100 nm. The z-piezo is ramped towards the surface 
starting at point 1 to 4 then is retracted from point 4 to 7.  
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Figure 5: (a) An image taken in PeakForce QNM mode with ScanAssyst,14 (b) An image taken 
in standard tapping mode exhibiting scan artifacts. The scale bar is 1µm in both images. 
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Figure 6: Cantilevered beam of length L with point load F showing the neutral axis before and 
after application of the point load F. 
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Figure 7: Schematic of a glancing angle deposition experiment, showing the evaporation source 
and the vapor flux travelling towards the substrate and the deposition angle θ the vapor flux 
makes with the substrate normal. 

Evaporation 
Source 

θ 

Substrate 
normal 

Vapor Flux 



20 

 
 
Figure 8: Diagram of mechanisms present during physical vapor deposition, showing adatom 
diffusion to energetically lower preferential sites, the substrate normal, the deposition angle θ, 
the growth direction, and the shadowing affect from the nucleation sites. 
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Chapter 2: Experimental Method 

2.1 Sample Preparation and Characterization 

Silver nanorods were prepared using the oblique angle technique with the deposition 

angle θ = 85˚.  The silicon substrate was held fixed during deposition in order to create the 

nanocolumns.  The substrate used was patterned with posts in a rectangular lattice with side 

length 1µm in order to create a well-patterned array of cantilevered nanorods favorable for 

mechanical bend testing.  

The vacuum chamber used to grow the silver nanorod sample uses an electron beam to 

heat the evaporation source.  Electron beam evaporation is performed by directing a beam of 

electrons to strike a sample in a crucible.  The sample first turns molten and then begins to 

change into the vapor phase.  The chamber has the capability to have more than one source to 

change from during the deposition by having several crucibles on a rotating stage.  A turbo 

molecular pump was used to achieve a base pressure of about 5 x 10-7 Torr before the deposition 

was started. To create the silver nanorod sample, first 10 nm of titanium was deposited onto the 

silicon substrate, to aid in adhesion of the silver. Then the silver crucible was selected as the 

deposition target.  The filament current was raised such that the silver deposition rate was 5 Å/s 

and held constant for ~30 minutes to reach a deposited film thickness of 850 nm.  

A Hitachi SU-70 scanning electron microscope was used to image the sample.  The 

accelerating voltage was set to 5 kV and the working distance was 5mm.  Figure 9 and Figure 

10 show top-down views of the nanorods. Figure 11 and Figure 12 show cross-sectional views.  

15 nanorods were measured for their length and width using the software package ImageJ.  The 



22 

average length was found to be 670 ± 10 nm, and the average width 340 ± 10 nm, which gives a 

radius of 170 ± 10 nm. 

 

2.2 Nanomechanical Bending Test 

 As stated earlier, the patterned silver nanorod samples grown are well-suited for the 

nanomechanical bending test in order to measure the intrinsic spring constant and ultimately the 

Young’s Modulus. When the AFM cantilever is in contact with a nanorod, the system can be 

modeled as two springs in series, and for small deformations in the elastic regime of both springs 

Hooke’s law can be applied.  The well-known formula from Hooke’s law that gives the 

equivalent spring constant for two springs in series is, 

  1 1 1

eq ct nrk k k
  , (1.12) 

where keq is the equivalent spring constant, kct the AFM cantilever spring constant, and knr the 

nanorod spring constant. A schematic of the bending test is shown in Figure 13, while the 

Hookean spring system is represented in Figure 14.  The spring constant of the nanorod can be 

extracted from the slope of the force versus distance curve for the nanorod-cantilever spring 

system.  The deflection of the nanorod for the given force exerted by the cantilever can be 

calculated by subtracting the deflection of the cantilever from the z-piezo height,  

  nr ctz    (1.13) 

 When performing mechanical measurements with the AFM, selection of the AFM 

cantilever with mechanical properties similar to the sample is paramount.  In this study the 

cantilevers used were MikroMasch NSC15.  The backsides of the cantilevers come from the 

manufacturer coated with 10 nm of aluminum to increase reflectivity and therefore the sensitivity 
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of the optical lever scheme discussed in Section 1.2.  The nominal properties of the NSC 15 Al-

BS cantilevers is summarized in Table 1, while a schematic showing nominal dimensions is 

found in Figure 15.  

The first step in the calibration procedure is to load the AFM cantilever.  The laser is then 

aligned to the end of the cantilever, and the reflection centered on the four-quadrant PSD, with 

the horizontal and vertical signal reading 0 ± 0.01 V.  When the cantilever is deflected, the 

output signal of the PSD is in volts. A sensitivity factor to convert the deflection of the cantilever 

from volts to the dimensionally appropriate units of nanometers is required.  This parameter is 

called the deflection sensitivity.  In order to get an accurate deflection sensitivity and to ensure a 

linear relationship between the z-piezo travel and the deflection of the cantilever, a sapphire 

(Al2O3) sample is loaded.  Sapphire has a Young’s Modulus of 345 GPa which is larger than the 

Young’s Modulus of silicon, ensuring no deformation from the AFM cantilever.  Using a 

rearranged version of Equation (1.11), making the substitution that F/y = k the force constant 

and solving for E yields, 

  
3

3

4kxE
wt

  (1.14) 

where k is the spring constant calculated from the Sader method, x is the length of the cantilever, 

w the width, and t the thickness.  The Young’s Modulus of the cantilever was calculated to be 

69.0 GPa, which ensures that the monocrystalline silicon cantilever will not deform the Al2O3 

sample.  An optical microscope image used in measuring the dimensions of the cantilever is 

located in Figure 16, while the measured dimensions using the free open source software 

package ImageJ are found in Table 2. 

The cantilever is ramped towards the sample, and the resulting force curve’s slope in the 

contact regime is measured.  The inverse of this slope is the deflection sensitivity.  A table with 
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ten deflection sensitivity measurements for the cantilever used is given in Table 3, 

demonstrating the high repeatability of the deflection measurements. Plastic deformation of the 

AFM cantilever can result in a nonzero voltage signal from the PSD, which will invalidate 

furthering the experiment with a nonzero initial deflection.  Realignment of the laser at this stage 

will also invalidate the deflection sensitivity measurement, so once the deflection sensitivity 

measurement is made and the PSD signal is checked to ensure a zero deflection signal, no 

experimental parameters can be changed without invalidating the calibration and necessitating a 

repeat calibration. A sample force curve from which the deflection sensitivity was measured is 

given in Figure 17.  Note the lack of hysteresis in the curve demonstrating no sample 

deformation and linear deflection response indicating the ramp was in the elastic regime. 

 The Sader method25 is the chosen method used to calculate the AFM cantilever spring 

constant in this study.  This method is widely accepted as giving less than 15% uncertainty 26 

with some reported uncertainties as low as 5%27 and does not require destruction or modification 

of the cantilever, making the method both widely accessible and reliable.  Sader et al.25 give the 

equation to calculate the spring constant k as, 

  2 20.1906 ( )f i f fk b LQ    , (1.15) 

where ρf the density of air, ωf the fundamental resonant frequency, Гi is the hydrodynamic 

function, b is the cantilever width, L is the cantilever length and Q the quality factor of the 

fundamental resonance peak.   

The density of air, ρf is 1.2041 kg/m,3 as given by the International Standard Atmosphere 

for a temperature 20˚C and pressure 101.325 kPa. Sader et al. recommend measurement of Q and 

ωf from the power spectrum of thermal vibration in order to reduce error.25  The power spectrum 
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is the fast-Fourier transform of cantilever deflection data collected over 16.5 seconds, and shows 

the mean squared amplitude (loosely termed power) versus frequency. A Mathematica24 

notebook was then created for fitting the power spectrum to a Lorentzian shape of the form, 
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
 

, (1.16) 

where Aw is the baseline thermal noise, B0 a Lorentzian fit parameter and ωr is the fundamental 

resonance frequency.  The code used to extract the parameters in Equation (1.16) is found in 

Appendix A.  A power spectrum from which the Mathematica24 notebook fits Q and ωf is shown 

in Figure 18.  The AFM software also can “auto-tune” the AFM cantilever through a range of 

frequencies by mechanical excitation to obtain the fundamental resonance frequency.  The 

resonant frequency calculated by fitting the power spectrum data to Equation (1.16) was in 

agreement to the software-measured value, which was 266.6 kHz.  Table 4 shows five “tuning” 

measurements, and demonstrates the low uncertainty and high repeatability of the measurement 

of the fundamental resonant frequency. 

After the above calibration is performed, the AFM is switched from contact mode to 

PeakForce QNM mode14 in order to image the sample.  The Bruker proprietary ScanAssyst14 

changes the scanning parameters in real-time, allowing for a virtually artifact-free topological 

image of the sample to be aquired without input from the user, which is invaluable when imaging 

a nanorod sample whose mechanical response necessitates constant adjustment of scan 

parameters.  Once the image is captured, the AFM is switched into “Point and Shoot” mode, 

which allows the user to select points on the sample where force curves will be taken.  Operating 

in this mode, force curves were taken twice at each position in 10 nm increments on five 

nanorods, as shown in Figure 19.  The selected ramp size was 100 nm, since during preliminary 
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studies this small ramp size only resulted in elastic deformations for the Ag nanorods.  The 

cantilever was ramped twice at each position to increase the yield of useable force curves. 

Once the force curves are taken, the nanorod deflection needs to be extracted from the 

force curve data in order to measure the force constant knr along the length of the nanorod for 

fitting to Equation (1.11).  For that process, due to the shear volume of force curves involved, a 

Mathematica notebook was written to automate some aspects of analysis.  The code to the 

notebook can be found in Appendix B, along with sufficient annotations to allow the reader to 

follow the procedure if they are familiar with Mathematica’s language. 
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2.3 Chapter 2 Figures: 

 
 

Figure 9: Top down view of the silver nanorod sample, scale is 5µm. 
 
 
 
 

 
 

Figure 10: Top down view of the silver nanorod sample, scale is 1 µm. The post pattern is 
highlighted by the arrow on four nanorods, with the Ag growing on top of the post. 
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Figure 11: Cross sectional view of the silver nanorods, scale is 5 µm. 
 
 
 

 
 

Figure 12: Cross sectional view of the silver nanorods, scale is 1 µm. 
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Figure 13: The bending test, showing the Ag nanorods grown on the posts on the Si substrate 
and the AFM cantilever. 
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Figure 14: Schematic view of the two Hookean springs in series, the nanorod and AFM 
cantilever. The substrate is fixed, and the z-piezo ramps in-line with both springs.  The spring 
constant of the cantilever kct is calculated by the Sader Method. The spring constant of the 
equivalent spring system is calculated from the slope of the force-distance curve in the contact 
regime. The slope of the nanorod knr is then calculated by plotting the force exerted by the 
cantilever versus the deflection of the nanorod, δnr.  

kct = 33.7 N/m 

knr = 
( )nr

dF
d 

 

Substrate 

Z-Piezo 

Contact point 

Ramp size 

keq = 
( )ct

dF
d 
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Figure 15: Schematic view of the MikroMasch NSC15 Al-BS AFM cntilever showing (a) the 
side view, (b) a view of the cantilever with pyramidal scanning tip. 
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Figure 16: Optical microscope image used for measuring the dimensions of the NSC 15 
cantilever found in Table 2. 
 
 

 
Figure 17: A sample deflection sensitivity measurement.  The deflection sensitivity is the 
inverse of the slope.  The linearity of the sloped portion indicates no sample deformation. 



33 

 
 
Figure 18: The power spectrum of the NSC15, showing the fundamental resonance peak at 
266.6 kHz.  The data are the red dots while the Lorentzian fit is the blue solid line. 
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 1   

 
Figure 19: A screenshot taken in PeakForce QNM mode showing the 4 µm x 4 µm 
topographical image and the force curves, indicated by the white “+” taken in 10 nm increments 
along the long axis of the nanorods.  The free ends of the nanorods are pointing left while the 
pinned ends are on the right, the measurements were made from the free end to the pinned end. 

1 2 

3 
4 

5
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2.4 Chapter 2 Tables:  

 
Table 1: Manufacturer quoted characteristics of the NSC 15 Al-BS. 

 
Resonant Frequency ωf (kHz) Spring Constant k (N/m) Length Width Thickness 

min nominal max min nominal max 
(l ± 5 
µm) 

(w ± 3 
µm) (t ± 0.5 µm) 

265 325 400 20 40 75 125 35 4.0 
 

 
Table 2: Measured values of the characteristics found in Table 1. 

 
ωf (kHz) k (N/m) l (µm) w (µm) 

266.6 33.7 124 37.3 
 
 

Table 3: Ten Deflection Sensitivity Measurements with the average and statistical uncertainty 
are presented. 

Trial 

Deflection  
sensitivity 

(nm/V) 
Average 
(nm/V) σ (nm/V) 

1 65.87 65.97 0.16 
2 65.88 
3 66.07 
4 65.99 
5 66.08 
6 65.73 
7 65.85 
8 65.95 
9 65.99 
10 66.33 

 
 

Table 4: Five measurements of the resonant frequency of the NSC 15 cantilever are presented, 
showing the high repeatability of the measured value for the resonant frequency of the cantilever. 

Trial ωf (kHz) ωf (kHz) σ 
1 266.631 266.630 0.001 

2 266.626 
3 266.630 
4 266.630 
5 266.630 
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Chapter 3: Results 

3.1 Results 

 
 Fitting the exported data to the model, the spring constant as a function of distance, was 

unsuccessful; the data exhibited no x-3 dependence.  The data, in fact, show an increase in spring 

constant with an increase in distance from the pinning point of the nanorod.  This is counter-

intuitive, and not physically realistic. Figures 20-29 show the first and second spring constant 

measurement for rods 1-5.  The distance is, as stated, the distance away from the pinning point.  

The cantilever deflection vs. z-piezo height force curves were “filtered” using the Nanoscope 

software.14 The filtering process involved visually scanning through the ~1000 force curves, and 

looking for “well behaved” curves, which are curves that follow the basic shape of Figure 4 for 

both the extend and retract cycle. From these force curves the equivalent spring constant was 

calculated. 

 To understand this unexpected behavior, refer to Figure 30 which shows a composite 

SEM image showing both the NSC15 cantilever used during this study and the silver nanorod 

sample.  The image is to scale, so the relative sizes are exactly as they physically are. It is clear 

that the scattering behavior is from the cantilever interacting with more than one nanorod. In 

Figure 30, the measurements presented confirm that as the AFM tip approached the fixed end of 

the nanorod, due to the size of the pyramidal tip there was physical contact between the tip and 

the next-nearest nanorod neighbor. 

 In order to attempt fitting to the model, the data were also filtered after initial analysis.  

Figure 31(a) shows a well-behaved cantilever force vs. z-piezo height curve, from which the 

equivalent spring constant keq was calculated.  Figure 31(b) shows a well-behaved cantilever 
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deflection vs. nanorod deflection plot, from the slope of which the nanorod spring constant was 

extracted after multiplying all of the y values by the spring constant of the cantilever to make the 

y-axis the force exerted by the cantilever on the nanorod. All of these types of curves were 

visually checked for; linearity in both the extend and retract cycles with well-behaved slopes that 

exhibit no singularities, that the extend and retract cycles were not too different from each other 

in terms of their slope, that the extend slope was less than the retract slope, and that the origin 

was where the curves started from. A curve that was selected as “bad” can be seen in Figure 32.  
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3.2 Chapter 3 Figures 

 
Figure 20: Rod 1 plot of the first spring constant measurement as a function of distance (k(x)). 
This plot is considered “well behaved” in the retract cycle before ~600 nm, while the extend 
cycle exhibits scatter. 
 
 

 
Figure 21: Rod 1 plot of the second k(x) measurement. This plot is considered “well behaved” 
in the retract and extend cycles before ~600 nm. 
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Figure 22: Rod 2 plot of the first k(x) measurement. This plot is considered well behaved in the 
extend cycle from ~250 until ~600 nm, while the retract cycle does not show much scatter, but 
does not follow expected behavior. 
 

 
Figure 23: Rod 2 plot of the second k(x) measurement.  In this plot, the extend and retract 
curves are in agreement until, again, about 600 nm. 
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Figure 24: Rod 3 first measurement of k(x), exhibiting large scatter in both the extend and 
retract cycles. 
 

 
Figure 25: Rod 3 second measurement of k(x) showing good agreement between the extend and 
retract cycles until about 500 nm.  
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Figure 26: Rod 4 first k(x) measurement, the retract cycle is well-behaved before 600 nm, while 
the extend curve exhibits scatter. 
 

 
Figure 27: Rod 4 second k(x) measurement, showing good agreement between the extend and 
retract cycles until about 600 nm. 



42 

 
Figure 28: Rod 5 first k(x) measurement, showing large scatter in the retract cycle but is well 
behaved in the extend until about 600 nm. 

 

 
Figure 29: Rod 5 second k(x) measurement, showing good agreement between the extend and 
retract cycles until about 600 nm. 
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Figure 30: SEM composite image of the NSC15 used during mechanical testing and the Ag 
nanorod sample, both images have the same scale. The “X” marks the approximate position on 
the free end of the nanorod assumed for where the last “well behaved” force curves were taken. 
The value of the spring constant used in calculating the Young’s modulus was taken from this 
point.  

AFM cantilever scan direction 

1 – 450 ± 10 nm 
2 – 400 ± 10 nm 
3 – 400 ± 10 nm 
4 – 150 ± 10 nm 
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Figure 31: The blue points are the extend cycle, and the red are the retract cycle on both plots:  
(a) A cantilever deflection vs. z piezo height plot, from which keq was calculated. The black dots 
show what the Mathematica program considered as the contact point, and thus only extracted 
information from the contact regime to the right of these points. (b) A cantilever force vs. 
nanorod deflection plot, from which knr was calculated from the slope of the model fit (solid 
line). The retract cycle always exhibits a steeper slope due to the adhesive forces present.  

a) 

b) 

retract extend 
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Figure 32: (a) A well-behaved cantilever deflection vs. z-piezo height force curve from which 
the equivalent spring constant keq was calculated.  The extend cycle is blue and the retract cycle 
is red. Here the curves are confined to between when the piezo was between 80 – 100 nm in the 
ramp cycle due to the filtering process:  In order to process the data with Mathematica, the two 
lists of points need to be the same length.  The AFM software does not always record the entire 
ramp cycle due to nonlinearity in the z-piezo, but as long as the contact-regime is there the data 
are considered to be valid. (b) The filtered force vs. nanorod displacement curve. This was 
chosen as bad data due to the perpendicular nature of the extend cycle with regard to the retract 
cycle.   

a) 

b) 
retract 

extend 
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Chapter 4: Conclusion and Future Work 

4.1 Conclusion 

 The data did not fit the model, and it was shown that the data did not fit possibly due to 

experimental difficulty. A proposed explanation for the experimental difficulty is the violation of 

the boundary conditions in the experiment.  Specifically, the simple beam bending model 

requires the fixed end of the cantilevered beam to be just that, fixed on an infinitely rigid 

support. This condition may not exist experimentally, meaning the pinning point of the nanorod 

on top of the post cannot be assumed to be infinitely rigid. 

 Another possible source of difficulty is the geometric nature of the nanorods.  The beam 

bending model assumes a length to width aspect ratio of greater than 10, whereas the nanorods in 

this study had an aspect ratio closer to 5.  This means that the part of the nanorod that was 

actually a “cantilevered beam” was the part that was not attached to the post, and was not long 

enough to exhibit cantilevered beam behavior. 

 In conclusion, the mechanical bending test was carried out on Ag nanorods using an 

AFM. Large scatter and unexpected behavior was observed in the measured spring constant, 

which impacted the calculation of the Young’s modulus.  The data were not analyzed further due 

to the fact that the data did not fit the model, and thus the model can be assumed to be 

insufficient for this experiment. 
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4.2 Future Work 

It is apparent that the experimental results from the bending test can yield not only 

physically unrealistic values for the Young’s modulus, but also show puzzling counter-intuitive 

behavior.  As discussed in the previous section, boundary conditions are imperative to 

experimental success and should not simply be assumed but verified.  Verification of the 

nanorod pinning position would entail further SEM studies, and perhaps performing yield and 

fracture experiments with different adhesion layer thicknesses to investigate the affect of the 

adhesion layer on nanorod pinning. 

One different experimental approach that may yield more reliable Young’s modulus 

measurements may be to perform the AFM bending test inside an SEM chamber where visual 

confirmation can be made of the fixed end of the nanorod.  Another characterization technique 

called X-ray diffraction can be used to investigate the strain on an inter-atomic level, which can 

lead to measurement of the Young’s modulus 31. 

Another future study that could be undertaken is to grow longer silver nanorod specimens 

that have a length to width aspect ratio that is greater than 10. This would not preclude using the 

beam bending model as the analysis procedure, and would most likely yield rods that actually 

exhibit the proposed behavior.
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Appendix A: Fitting Power Spectrum data to a Lorentzian 
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Appendix B: Mathematica code for analysis of force curves 

 
SetDirectory["Directory path with exported .txt files goes here"]; 
plotsize=400; 
Needs["PlotLegends`"]; 
dataFiles=FileNames["*.txt"]; 
(*Get all the file names in the directory for importing.*) 
 
dataNumberStr=StringTake[dataFiles,{20,22}];(*Take only the digits that increment as file 
number changes*) 
 
dataNumberExp=ToExpression[dataNumberStr];(*These are integers*) 
 
xpos=Riffle[Reverse[Table[i,{i,0,IntegerPart[Length[dataFiles]/2]*10,10}]],Reverse[Table[ 
i,{i,0,IntegerPart[Length[dataFiles]/2]*10,10}]]]; 
 
(*Fills a dummy table the same length as many force curve files were found, in steps of 10 nm 
for the position.*) 
  
(*This for loops runs through the body of the loop for all of the data files found in the directory*) 
For[file=1;,file<Length[xpos]+1,file++;, 
 
SetDirectory["Filepath goes here"]; 
 
Clear[raw]; 
 
raw= Drop[Import["Standardized file name prefix"<>dataNumberStr[[file]]<>".000.txt", 
"TSV"], 904, -1]; 
 
dc0e2=Map[{#[[3]],#[[5]]}&,raw]; 
ze=Select[dc0e2[[All,1]],NumberQ]; 
dc0e=Select[dc0e2[[All,2]],NumberQ]; 
 
dc0r2=Map[{#[[4]],#[[6]]}&,raw]; 
zr=Select[dc0r2[[All,1]],NumberQ]; 
zr=Reverse[zr]; 
dc0r=Select[dc0r2[[All,2]],NumberQ]; 
dc0r=Reverse[dc0r]; 
ze=Map[#+(zr[[-1]]-ze[[-1]])&,ze]; 
 
(*The 3rd (extend) and 4th (retract) columns of the data files are the calculated ramp, 11th and 
12th are the height sensor data, the 5th and 6th are deflection.*) 
 
dl=Length[dc0e]-Length[dc0r]; 
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dz=Length[ze]-Length[zr]; 
 
(*Adjust the lengths of the extend and retract lists to match.*) 
 
If[dl>0 , 
dc0e=Drop[dc0e,Abs[dl]], 
dc0r=Drop[dc0r,Abs[dl]] 
]; 
If[dz>0 , 
ze=Drop[ze,Abs[dl]], 
zr=Drop[zr,Abs[dl]] 
]; 
(*Shift the deflection baseline to 0 by subtracting the average of the first 1/3 data points from the 
entire list.*) 
 
basee=Mean[Take[dc0e,IntegerPart[Length[dc0e]/3]]]; 
 
dce=dc0e-basee; 
 
dcr=dc0r-basee; 
  
(*Calculate nanorod deflection dn = z - dc*) 
 
dne=ze-dce; 
dnr=zr-dcr; 
 
(*Multiply the cantilever deflection dc times the force constant of the cantilever to get the force 
data, then make the list of x-y coordinates for plotting.*) 
 
kc=33.74; 
forcee=dce*kc(*calculate the cantilever force by F = kc dc*); 
forcer=dcr*kc; 
fdce=Partition[Riffle[ze,dce],2]; 
fdcr=Partition[Riffle[zr,dcr],2]; 
 
fdne=Partition[Riffle[ze,dne],2]; 
fdnr=Partition[Riffle[zr,dnr],2]; 
teste=MovingAverage[Reverse[dce],7]; 
testr=MovingAverage[Reverse[dcr],7]; 
 
cpe=TakeWhile[teste,#>=0&]//Length; 
cpr=TakeWhile[testr,#>=0&]//Length; 
 
contacte=Length[dce]-cpe; 
contactr=Length[dcr]-cpr; 
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If[contacte<IntegerPart[Length[fdce]/3],contacte=contactr]; 
If[contactr<IntegerPart[Length[fdcr]/3],contactr=contacte]; 
 
(*Shorten the deflection of cantilever, nanorod and force lists to only after the contact point, and 
zero the nanorod deflection with the first point being 0.*) 
 
aclengthe=Length[ze]-contacte; 
aclengthr=Length[zr]-contactr; 
 
dneac0=Take[dne,-aclengthe]; 
dnrac0=Take[dnr,-aclengthr]; 
 
dceac=Take[dce,-aclengthe]; 
dcrac=Take[dcr,-aclengthr]; 
 
forceeac=Take[forcee,-aclengthe]; 
forcerac=Take[forcer,-aclengthr]; 
 
dneac=dneac0[[All]]-dneac0[[1]]; 
dnrac=dnrac0[[All]]-dnrac0[[1]]; 
  
(*This riffles the lists together,then partition them into groups of 2. ie;{{x1,x2,x3},{y1,y2,y3}}-
>{{x1,y1},{x2,y2},{x3,y3}}*) 
 
fvdce=Partition[Riffle[dceac,forceeac],2]; (*make an x,y list of the force vs cantilever defl for 
plotting*) 
fvdcr=Partition[Riffle[dcrac,forcerac],2]; 
 
fvdnce0=Partition[Riffle[dneac,forceeac],2];(*make an x,y list of the force vs n-c defl for 
plotting *) 
fvdncr0=Partition[Riffle[dnrac,forcerac],2]; 
 
(*Find the first position in the force vs net deflection list where the y value is positive and drop 
all elements before that one*) 
fvdnce=Drop[fvdnce0, First[ First[ Position[ fvdnce0,First[Select[fvdnce0[[All,2]],#>=0&] 
(*Sel*)] (*First*)](*Pos*) ] (*First*)] (*First*)](*Drop*); 
fvdncr=Drop[fvdncr0, First[ First[ Position[ fvdncr0,First[Select[fvdncr0[[All,2]],#>=0&] 
(*Sel*)] (*First*)](*Pos*) ] (*First*)](*First*) ](*Drop*); 
 
mindce = {fdce[[contacte, 1]], fdce[[contacte, 2]]}; 
mindcr = {fdcr[[contactr, 1]], fdcr[[contactr, 2]]}; 
 
mindne = {fdne[[contacte, 1]], fdne[[contacte, 2]]}; 
mindnr = {fdnr[[contactr, 1]], fdnr[[contactr, 2]]}; 
 
cantdefplot=ListPlot[{fdce,fdcr},  
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PlotRange->{{0,100},{-5,10}}, 
PlotLabel->"Cantilever Deflection vs Z piezo height", 
PlotLegend->{"Extend","Retract"}, 
LegendPosition->{-0.8,0.25}, 
LegendSize->0.4, 
Frame->True, 
FrameStyle-> Directive[Black], 
FrameLabel->{"Z Piezo (nm)","Cantilever Deflection (nm)"}, 
ImageSize->plotsize, 
Epilog->{PointSize[Large],Point[{mindce,mindcr}]}, 
LegendShadow->False 
]; 
 
SetDirectory["exported"]; 
 
Export[ToString[dataNumberStr[[file]]] <>"def.jpeg",cantdefplot,"JPEG"]; 
 
knelmf=LinearModelFit[fvdnce,x,x]; 
kne0=LinearModelFit[fvdnce,x,x][[1,2,2]];(*Extracts the slope of the linear fit and assigns it to a 
variable for exporting.*) 
 
knrlmf=LinearModelFit[fvdncr,x,x]; 
knr0=LinearModelFit[fvdncr,x,x][[1,2,2]]; 
 
kne=Abs[((kne0)^-1-(kc)^-1)^-1]; 
knr=Abs[((knr0)^-1-(kc)^-1)^-1]; 
 
forceplot=ListPlot[{fvdnce,fvdncr}, 
PlotRange->{{0,15},{0,300}}, 
ImageSize->plotsize]; 
fitplot=Plot[{knelmf[x],knrlmf[x]},{x,0,15}, 
PlotRange->{{0,15},{0,300}}, 
ImageSize->plotsize]; 
 
forcePlotExport=Graphics[{forceplot[[1]],fitplot[[1,1,3]],fitplot[[1,1,4]]},Axes-
>True,AspectRatio->0.75,Frame->True,FrameLabel->{"Nanorod Deflection (nm)","Force 
(nN)"},PlotLabel->"Force vs. Nanorod Deflection"]; 
 
Export[ToString[dataNumberStr[[file]]]<>"fit.jpeg",forcePlotExport, 
"JPEG"]; 
 
ToString[dataNumberStr[[file]]] <>", "<>ToString[kne]<>", "<>ToString[knr]<> ", 
"<>ToString[xpos[[file]]]>>>"rod5.txt"; 
] 
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