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The binding mechanisms of molecules to cyclodextrins continues to be studied to 

better explain the interactions occurring.  The majority of published models focus on 

one-to-one molecular binding thermodynamics to explain experimental results.  They 

rely on physical concepts of energies and forces to guide the actions of molecules 

expressed mathematically in terms of differential and non-linear equations.  These 

models are limited in scope due to their complexity and are not easily expanded to 

study many diverse analytes.  Conversely, cellular automata uses simple mathematical 

idealizations of systems governed by deterministic and probabilistic rules that are easily 
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adaptable to many types of molecular interactions.  The primary goal of this research is  

to develop a model that is easy to use in the prediction of -cyclodextrin 

chromatographic separations of enantiomers. 

The model uses variegated square cells to simulate the physical environment of 

the molecules involved, evolving by a series of discrete time-steps referred to as 

iterations.  Governing probabilistic rules define the physical and chemical interactions.   

Rules are randomly applied to all the cells of the system during each iteration and the 

system is updated accordingly.  Micro and macro visual analysis is possible in addition 

to statistical output. 

Results demonstrate the model’s capability to use probabilistic rules for breaking 

of analyte-to-cyclodextrin complexes that were correlated to published experimentally 

determined equilibrium constants.  The model was further expanded to predict the 

strength of interactions between enantiomer pairs to -cyclodextrin and their potential 

separation.  The model accurately predicted the order of strength for six enantiomer 

pairs.  To truly predict chromatographic separation of enantiomers, the model was 

expanded from one-to-one interactions between enantiomers and -cyclodextrin to a 

larger modeled chromatographic scale.  At this scale enantiomer separation was 

modeled and evaluated for peak resolution and selectivity while varying column 

temperature, mobile phase pH and flow, and injection volumes.  All results agreed well 

with published laboratory results.  With the cost of research and development 

increasing, ongoing budget cuts, and the rush to get products to market first, an 

analytical model that can run multiple chromatographic simulations in minutes versus 

days could prove a valuable tool to many industries. 
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CHAPTER 1 Cellular Automata and the History of Enantiomer Models 

 

1.1 Introduction 

As yet, the analytical process of chromatographic enantiomer separation has not 

been modeled using cellular automata.  This first work in the area uses mathematical 

systems that are easily adaptable to different enantiomer analytical processes. The 

binding mechanisms of analytes to cyclodextrins continues to be studied to better 

explain the interactions occurring.  Predominantly, published models of analyte to 

chromatographic stationary phase interaction focus on molecular binding 

thermodynamics to explain experimental results.  They rely on physical concepts 

involving energies and forces to guide the actions of molecules expressed 

mathematically in terms of differential and non-linear equations.  Results are completely 

determined by the parameter sets used to describe the potential energy of the system 

on the specific initial conditions.  This limits the scope of these models due to their 

complexity, making them difficult to study additional binding interactions.  Conversely, 

cellular automata uses simple mathematical idealizations of system energies governed 

by deterministic and probabilistic rules that are easily adaptable to many types of 

molecular interactions. 
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“In some cases this complex behavior may be simulated numerically with just a  

few components. But in most cases the simulation requires too many components, and 

this direct approach fails. One must instead attempt to distill the mathematical essence 

of the process by which complex behavior is generated. The hope in such an approach 

is to identify fundamental mathematical mechanisms that are common to many different 

natural systems. Such commonality would correspond to universal features in the 

behavior of very different complex natural systems. To discover and analyze the 

mathematical basis for the generation of complexity, one must identify simple 

mathematical systems that capture the essence of the process. Cellular automata are a 

candidate class of such systems.” (Wolfram 1983). 

 

1.2 Chromatographic modeling background 

The analysis of complex systems involving multiple ingredients with even more 

simultaneous interactions has restricted the use of models relying on complex ordinary, 

partial differential, and non-linear equations.  These methods are limited due to their 

mathematical complexity.  In response for the need to study more complex systems 

(Kier, Seybold, and Cheng 2005) Molecular dynamics and Monte Carlo simulations 

were developed (Leach 1996; Tildesley 1998) that examine ingredient interactions as a 

system driven by defined force field equations that become more complex as additional 

elements are included to be studied.  

Differential equation models can explain properties of enantiomer 

chromatographic separations, but they quickly become complex and difficult to expand 

beyond studying the enantiomers and column of interest.  As in the study of bupivacaine 
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enantiomer separation (Choi, Row et al. 2004).  While the model did accurately predict 

the peak selectivity of the enantiomers under chromatographic conditions, several 

assumptions were built into the equations that would permit the prediction of peak 

shape: 

 Variables are function of time and column length  

 Liquid phase follows only axial dispersion flow 

 Stationary phase and flow rate are constant throughout column 

 Linear driving force drives intra-particle mass transfer 

 Isothermal environment 

One assumption directly limits the results.  Having a mass transfer that is linear results 

in Gaussian shaped peaks, therefore peak tailing and resolution could not be modeled 

as found in laboratory conditions.  There were many equations developed in the 

prediction of enantiomer selectivity, but one main equation was developed to describe 

the mass balance for enantiomer “i” in the mobile phase throughout the column: 

 

       

  
   

       

  
   

        

   
 

     

 

 

  

       

  
 

  

C, Concentration of enantiomer “i” in mobile phase (mg/mL) 

t, Time (min) 

u, Interstitial velocity (m/min) 

z, Axial coordinate (m) 

D
L
, Axial dispersion coefficient (m

2
/min) 
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, Column bed porosity 

R
p
, Radius of particles (m) 

q, Average adsorbed phase concentration of “i” (mg/mL) 

 

The equation is composed of four main portions that describe fluid motion of 

enantiomers, axial dispersion of enantiomers, stationary phase properties, and finishing 

with the equilibrium of enantiomers on the stationary phase is described further by a 

competitive Langmuir isotherm: 

 

        
          

  ∑            
   

 
       

  
     

 

  
                 

 

a and b, Enantiomers of bupivacaine 

k, Mass transfer coefficient (1/min) 

 

The Langmuir isotherm assumes that adsorption of enantiomers on a particular 

stationary phase site is unaffected by its neighboring sites.  Therefore, enantiomer 

interactions with each other and steric factors do not affect modeled interactions with 

stationary phase.  As the authors concluded, in order to develop this specific model, 

experimental data was needed to estimate the Langmuir isotherm coefficients.  While 

the model does provide a prediction on the selectivity of separation for bupivacaine 

enantiomers, it is limited to selectivity since peak shape is Gaussian.  In addition, to use 

this model to study additional chromatographic separations, further experimental data 
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would be needed along with information on column design for column bed porosity and 

the average size of stationary phase particles.   

Molecular dynamics relies on Newton’s laws of motion (Allen 1995) and assumes 

the second law of motion to be linear.  Since this assumption does not hold true as 

velocities approach the speed of light, the longer a model using molecular dynamics 

runs, the more error is introduced.  This limits the length of molecular dynamic studies 

typically to several nanoseconds and is not practical for studying chromatographic 

interactions which can last minutes.  Monte Carlo simulations use random sampling 

applied to algorithms defining the system.  After each time step, configurations that 

lower the energy state of the system are accepted and the system progresses;  

however, as the system attributes studied increases, the complexity of the algorithms 

limit the expandability of the model.  Because of this, models of these techniques are 

best design for modeling one-to-one interactions. 

Monte Carlo and molecular dynamic simulations can be used in combination for 

modeling enantiomer separations (Kim, Jung et al. 2003).  The enantiomers of 

propranolol were modeled for separation on -cyclodextrin stationary phase.  Monte 

Carlo docking simulations were first run to determine the initial docking orientations with 

the lowest energy of propranolol enantiomers in -cyclodextrin; however, the differences 

in complex energies were not conclusive due to the standard deviations: 

 (R)-propranolol--cyclodextrin complex = - 44.43 ± 1.06 kcal/mol 

 (S)-propranolol--cyclodextrin complex = - 43.89 ± 1.62 kcal/mol 

Molecular dynamic simulations were then carried out with these complexes of the 

lowest energy.  Molecular dynamics uses Newtonian mechanics of motion for structure 
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refinement of the propranolol enantiomer complex formations with -cyclodextrin.  Using 

NVT calculations (constant moles (N), volume (V), and temperature (T)) with a leap-frog 

algorithm, runs were conducted for a total run time of 100 nanoseconds (ns).  From 

these runs an interaction energy was determined for each enantiomer complex, with a 

lower energy representing a more stable complex and greater retention.  The (R)-

propranolol--cyclodextrin complex was found to have an interaction energy 0.95 

kcal/mol lower than the (S)-propranolol--cyclodextrin complex, which agreed with 

chromatographic retention.  It was also determined that the run time was critical in 

obtaining accurate results, since from 0 to 20ns the (S)-propranolol--cyclodextrin 

complex had the lowest energy and hence more stable which does not agree with 

chromatographic results.  It was also found that only in molecular dynamic simulations 

with runs times 10 times greater than typical simulations (Kim, Jung et al. 2003) could 

noticeable chiral recognition be predicted.  Typical molecular dynamic simulations are 

carried out for less than 5ns to limit the error introduced from Newtonian mechanics, 

however it was concluded by the authors that longer run times are needed for accurate 

simulations for the prediction of chiral separation. 

 

1.3 Cellular automata background 

In the 1940’s a mathematician-physicist named John von Neumann began a 

unique modeling design of self-reproducing biological cells later referred to as 

automata.  With the help of Stanislaw Ulam, a fellow mathematician, they formed the 

foundation of the modeling technique called cellular automata.  Neumann’s first model 

involved 29 different states for cells to exist in and was cumbersome to use due to the 
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computations required, even though the technique was simpler than other models at the 

time.  It was not until computers became more available in the late 70’s that cellular 

automata interest really developed, based on the number of publications released 

(Wolfram 2002). 

Cellular automata models are made up of several components (Wolfram 2002):  

a grid consisting of cells, cell shape, ingredient(s) location and amount, rules governing 

the behavior of ingredients, and a specified runtime or number of time steps called 

iterations.  The cell grid determines the size and shape of the environment for 

interactions to occur.  The cells of the grid may be empty or occupied by ingredients.  

Cell shape can be any shape that is capable of forming a grid (e.g. triangles, hexagons, 

squares) (Schwartz 1997), with square cells being the most common due to their ease 

of use and 4-sided tetrahedral binding configuration.  Cells may be variegated, so that 

different rules apply to each side of the cell as in modeling chiral interactions (Kier, 

Seybold, and Cheng 2005). 

Rules of probability govern ingredient behavior of the system and are local to the 

environment surrounding each ingredient known as its neighborhood.  The two 

neighborhoods used in this model are the von Neumann and extended von Neumann  

neighborhoods (see Figure 1, adapted from Kier, Seybold, and Cheng 2005).  The von 

Neumann neighborhood consists of four adjacent cells to ingredient A along the x and y 

axis while the extended von Neumann consists of four cells extending one cell beyond 

the von Neumann neighborhood.  In this way the model evolves asynchronously with 

each iteration, potentially leading to unexpected emergent properties of the system.  In 
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cellular automata models there are several common rules that are altered to study 

interactions (Kier, Seybold, and Cheng 2005):   

 

1. Joining (J) is the factor that one ingredient will bond to another when 

separated by one empty cell (using extended von Neumann neighborhood).  

This value is changed to represent a short range attraction or repulsion. 

2. Breaking probability (PB) represents the attractive strength between two 

ingredients that are attached (bond strength, using von Neumann 

neighborhood).  This probability ranges from complete repulsion between 

ingredients to permanent bonds forming. 

3. Free Moving probability (PM) controls whether ingredients move or not, and 

how fast they move verses other ingredients.  A value of zero results in no 

movement regardless of other rules, while a value of one gives a maximum 

probability of moving once other rules are considered. 

4. Flow factor (G) favors motions of movable ingredients in a favored direction 

as in mobile phase flow.  Increasing values greater than zero represent 

increasing mobile phase flow rates. 

5. Molecules rotate in three dimensional space and to represent this in two 

dimensions, moving ingredients are allowed to rotate 0, -90, +90, and 180 

each iteration. 

 

Once the above parameters of the model are determined, the run time or number 

of iterations is defined as well as the number of runs to perform and average.  Since 



9 

 

runs typically take from seconds to a few minutes, many runs are easily averaged to 

have a statistical measure of confidence in the results.  When a run is executed, it 

evolves by a series of discrete time iterations as the rules are applied randomly to all 

the ingredients in the system asynchronously and the system is updated accordingly.  

Some movement rules, such as PM, PB, and J are applied as a single probabilistic 

equation since each influences the others.  Results are examined visually for analyte 

movement at the molecular level, statistically for ingredient interactions, and system 

wide for averaged interaction behavior.   

Cellular automata has been used to model chromatographic behavior of analytes 

with changes to the chromatographic system (Kier, Cheng, and Karnes 2000).  When 

compared to what would be expected under laboratory conditions, peak shape and 

retention, mobile phase flow rate, and solvent polarity behaved as expected in the 

model.  Enantiomer behavior in monolayers has also been modeled using cellular 

automata to study amphiphile behavior (Moa, Stine et al. 2002).  A model was designed 

using a hexagonal grid to replicate the observed homochiral and heterochiral 

discrimination that occurs in the formation of monolayers.  The authors decided on a 

cellular automata approach to represent the interactions occurring because they 

believed to properly model the phenomena would be “difficult to model using traditional 

simulation methods and perhaps impossible to model analytically” (Moa, Stine et al. 

2002).  Cellular automata cells have rules of movement, rotation, and binding.  Each 

model run is started with the enantiomers randomly distributed and run for a number of 

iterations that results in islands of bound enantiomers.  The entire system is then 

measured for overall interaction strength and number of cells bound together.  It was 
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found that after 20,000 iterations the system reached equilibrium with enantiomers 

having an average of 2.5 attached neighbors and an interaction strength at ~75% of 

complete interaction of all enantiomers.  Furthermore it was found that by increasing 

enantiomer population by 150% (from 640 cells to 1600) this decreased equilibration 

time to 4,000 iterations with an average number of neighbors of 2.5 and an interaction 

strength at 74% of possible maximum.  To study homochiral interactions, movement 

rules where modified and 640 cells of a racemic mixture were run for 40,000 iterations.  

The change in run time was not explained by the authors.  Enantiomer islands formed in 

the shape of circles or boxes that signified chiral separation, however island formation 

was considered incomplete due to the island structures partial formation.  To study 

heterochiral interactions, movement rules where again modified and 1600 cells of a 

racemic mixture were run for 4,000 iterations.  The change in cell population from 

homochiral studies was not explained by the authors.  Formation of enantiomer islands 

was more complete than with homochiral interactions, with enantiomers preferring to 

bind to their opposite form.  It was found that in racemic mixtures, heterochiral 

interactions had a greater number of bound neighbors and interaction strength at any 

given time point during the runs than homochiral interactions.  The results from the 

study of homochiral and heterochiral interactions were determined consistent with 

analytical observations by several techniques (i.e. scanning probe microscopy, X-ray 

diffraction, fluorescence microscopy). It was suggested by the authors that using 

models like the one presented could be used to study adsorption of chiral molecules 

onto a surface and remain as interesting areas for additional research. 

 



11 

 

 

 

 

          von Neumann             extended von Neumann 

        X   

  X      X   

 X A X   X X A X X 

  X      X   

        X   

 

Figure 1: The cellular automata von Neumann and extended von Neumann  

neighborhoods used in the model. 
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1.4 Cyclodextrin chromatography background 

Cyclodextrins are cyclic rings made from -D-glucose monomers typically 

ranging in size from 6 to 9 glucose units (Liu and Guo 2002): -cyclodextrin(6 units), -

cyclodextrin(7 units), -cyclodextrin(8 units), and -cyclodextrin(9 units).  Cyclodextrin 

rings are shaped like a funnel with a hydrophobic interior of carbon and hydrophilic 

edges of hydroxyl groups.  The wider analyte entrance end of the cyclodextrin has two 

secondary hydroxyl groups for every glucose unit and the narrower end has one primary 

hydroxyl group for every glucose unit.  This results in the cyclodextrin funnel having a 

hydrophobic interior and a hydrophilic exterior along both ends as in Figure 2 (Chen, 

Chang, and Gilson 2004; adapted from Regiert 2007). 

 There are several proposed binding forces that affect cyclodextrin to analyte 

inclusion complex formation: 

 Steric hindrance 

 Charge transfer interaction 

 van der Waals interactions 

 Hydrophobic interaction 

 Electrostatic interaction 

 Hydrogen bonding 

 Steric hindrance plays a major role in determining if an inclusion complex can 

form.  The diameter of the wide (or entrance) end of the cyclodextrin may prevent an 

analyte from entering or allow several analytes to enter into the inner cavity based on 

their size and conformation (Saenger, Takaha et al. 1998).  Charge transfer interactions 

occur only with radicals when electrons in higher molecular orbitals of analyte move to 
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lower unoccupied orbitals of the cyclodextrin (Kano, Kubota et al. 1990) and are not 

included in this model. 

 Strength of cyclodextrin to analyte complexes are typically measured by their 

complex stability constant: 

 

 
]][[ ACD

ACD
K




                        Eq. 1 

  

where CDA is the concentration of the analyte to cyclodextrin inclusion complex, CD is 

the concentration of unbound cyclodextrin, and A is the concentration of unbound 

analyte.  The major driving forces for retention strength have been determined to be van 

der Waals and hydrophobic interactions, while hydrogen bonding and electrostatic 

interactions determine conformation of the inclusion complex (Liu and Guo 2002).  Due 

to the imbalance of hydroxyl groups on the ends of cyclodextrin rings, twice as many at 

the wider end, the rings have significant dipoles.  van der Waals forces most observed 

in cyclodextrin complexes include analyte induced dipole moment interaction with the 

dipole of cyclodextrins, along with the synchronization of electronic motion of the 

analyte and cyclodextrin.  This allows for temporary dipole alignment between the 

molecules resulting in complex formation (Conners 1997).  

 The hydrophobic interior of the cyclodextrin cone attracts hydrophobic analytes to 

varying degrees depending on the polarity of the mobile phase.  For analytes that 

contain polar and non-polar functional groups, the cyclodextrins may complex with just 

the non-polar portion of an analyte leading to potential chiral separations.  Polarity of the 
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analyte can be correlated to the strength of the cyclodextrin complex formation 

(Rekharsky and Inoue 1998).  Enanteomeric separation has also been observed, where 

due to stereochemistry, one enanteomer can position its hydrophobic portion into the 

cyclodextrin ring while the other enanteomer cannot due to steric hindrance or hydrogen 

bonding with the secondary hydroxyl groups. 

 With the large number of hydroxyl groups at the two ends of the cyclodextrin ring, 

the ring has polar properties due to electrostatic interactions.  This results in 

cyclodextrins having significant dipole moments (Kitagawa, Chujo et al. 1988; Sakurai, 

Inoue et al. 1988) which can produce very specific ion-dipole complexes in non-polar 

solvents (Miertus, Tomasi et al. 1998), but are not of significance in aqueous systems. 

 Hydrogen bonding may occur at the primary OH(C6) and secondary OH(C2&3) 

hydroxyl groups of the glucose backbone in cyclodextrins (see Figure 3, adapted from 

Saenger, Takaha et al. 1998).  Hydrogen binding of cyclodextrin hydroxyl groups to 

analytes occurs frequently at the secondary hydroxyl groups due to their proximity to the 

analyte as it enters the cyclodextrin cavity.  This limited spatial bonding can give stereo 

specific chromatographic separations.  Mobile phase selection is critical for hydrogen 

bonding to occur since solvation of the hydroxyl groups will occur if possible (Rekharsky 

and Inoue 1998). 

 

 

 

 

 



15 

 

 

 

 

 

Figure 2: A cyclodextrin ring structure with a hydrophobic interior of carbon and 

hydrophilic edges of hydroxyl groups. 
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Figure 3: -cyclodextrin ring made from an -D-glucose monomer with primary hydroxyl 

groups on carbon 6 and secondary hydroxyl groups on carbons 2 and 3. 

 

 

 

 

 

 

 

 

 



17 

 

1.5 Conclusions 

In today’s global industries, research budgets are under continuous strain to do 

more with less (Abate 2003).  Laboratory tests are expensive and time consuming.  

Reduced testing during research and development and more focused research (i.e. 

targeted, surgical, expedited) are constantly being examined as ways for companies to 

get products to market quicker with lower costs.  Modeling has emerged as a way to 

predict chromatographic separations in the laboratory to reduce method development 

time, thereby reducing R&D costs.  The proposed cellular automata model of -

cyclodextrin stationary phase has potential as a predictive tool for enantiomer 

separations, thereby reducing method development time by quickly eliminating 

unnecessary laboratory experiments and identifying chromatographic conditions that 

stand a greater chance of success, saving time and research money. 

Past published models have relied on complex algorithms to study binding 

interactions that do not make them practical for continuous user modifications, as in 

study of bupivacaine enantiomers in section 1.2 were 27 variables (some requiring 

experimental data to estimate) must be determined before the partial differential 

equations can be calculated.  If the chromatographic system or enantiomers are 

changed, then the variables need to be adjusted accordingly with additional laboratory 

chromatographic runs.  Some published cellular automata models have been expanded 

to study monolayer interactions (Linyong, Stine et al. 2002), but most models are limited 

to one-to-one interactions that can only focus on a few analytes before becoming overly 

complex to use.  In contrast the proposed cellular automata model uses simple 

probability rules that are easily expandable to study diverse chromatographic systems.  
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Probability rules and model environment are based on the intermolecular forces from 

the chemical and physical properties of the enantiomers, stationary phase, and mobile 

phase solvents involved.  These do not require laboratory experiments to determine.  

Therefore changes to the enantiomers studied or the chromatographic system only 

requires examination of their chemical and physical properties to adjust model 

parameters. 

The proposed cellular automata model has the flexibility to study the movement 

and binding actions of enantiomer to cyclodextrins while analyzing the chromatographic 

system as a whole, visually and statistically.  This has not been accomplished to date.  

Predicting cyclodextrin chiral separation is even more difficult due to the stereochemical 

factors to consider which render traditional models very limited in scope and not easily 

expandable without a great depth of manipulation of the complex algorithms involved.  

Using the variegated cell properties of the cellular automata model which are easily 

modified, chiral separations will be studied.  Correlation of model predictions to 

experimental results will be performed for validating the model.  Since most published 

models focus on one-to-one interactions, this model will begin there but will be 

expanded to model chromatographic column scale to better represent an experimental 

environment.  This will permit the incorporation of solvent/mobile phase effects like 

solvation, polarity of the mobile phase, varying flow rates, and temperature.  Correlation 

to experimental data will be possible across a wide variety of analytes to study how an 

analyte’s polarity, chiral structure, hydrophobicity, etc. affects chromatographic retention 

on -cyclodextrin stationary phase.  Once the model variables are correlated to 

enantiomer properties, it is then possible to use it to predict separation behavior. 
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CHAPTER 2 Cellular Automata Model Approach and Experimental 

Design 

 

2.1 Introduction 

High performance liquid chromatography method development can be time 

consuming and costly, taking weeks to develop an acceptable method or even peak 

separation.  However, with some knowledge of the chemical properties of the analytes 

(enantiomers) and using the proposed model, developing a method for enantiomeric 

separation on –cyclodextrin may only take hours. 

The model environment is first designed to establish one-to-one interactions 

between a chiral molecule and -cyclodextrin.  Enantiomers have to be modeled and 

run individually to measure strength of the interaction.  Results are then compared 

between the enantiomers to predict whether or not chromatographic separation is likely.  

Nevertheless, this one-to-one interaction does not take into account many factors that 

affect laboratory separations. 

To be a better prediction of chromatographic separation the model needs to be 

expanded beyond a single analyte interaction with one stationary phase molecule.  To 

accomplish this, the model is further expanded to included many analyte interactions.  

Other laboratory environmental conditions are added such as the presence of dual 
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solvent mobile phases and flow.  This expansion of the model environment is not meant 

to mimic exact ratios of real life laboratory interactions within a high performance liquid 

chromatography column with thousands upon thousands of interactions, as this would 

vastly slow down the model and require significant computational power.  Additionally, 

there may be no benefit in expanding the model to this degree, since the purpose of the  

model is to be designed in a way to predict chiral separations that correlate well with 

laboratory results in an efficient manner.  

 

2.2 Programming environment 

2.2.1 Software environment 

The cellular automata model is a JavaTM application executed using Eclipse 

Classic (versions 3.1.2 and 3.7.1, The Eclipse Foundation) as an integrated 

development environment.  All calculations and plots are performed using Microsoft 

Office Excel 2003 or 2010 (Microsoft Corporation). 

 

2.2.2 Computer hardware 

All model simulations were performed on a Toshiba Satellite™ A305 laptop, with 

Intel Core™ Duo CPU 1.83 GHz, 3.00 GB RAM, on a Windows 7 32-bit operating 

system (© Windows Corporation) . 

 

2.3 Analyte to cyclodextrin (one-to-one) model design 

To properly represent a cyclodextrin ring using a two dimensional cellular 

automata grid of square cells, several cells are used for the cyclodextrin ring including 
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empty space, and a single cell for the analyte molecule (see Figure 4).  Cells B0-6 make 

up the cyclodextrin ring, where B0, 1, and 4 represent the primary hydroxyl groups while 

B3 and 6 represent the upper edge of the cyclodextrin cone with the secondary hydroxyl 

groups.  B2, 3, 5, and 6 represent the interior of the cyclodextrin.  B3 and 6 may 

represent two portions of the cyclodextrin due to the different sets of rules assigned to 

the variegated analyte cell A.  The variegated cell A(0-3) is an analyte with four sides, 

each having its own set of rules.  Like enantiomers with a chiral center, the variegated 

cell can be modeled with four different interaction properties to represent different 

enantiomers.  Analytes always start unbound in the interior of the cyclodextrin.  This 

position was chosen based on the general acceptance in literature of analyte retention 

and positioning within cyclodextrins.  Once the analyte leaves the cyclodextrin ring B 

cells it becomes bound to a C cell. The joining factor and breaking probability between 

the analyte and C cells are set so that the analyte does not become unbound.  In this 

way, cells C1-5 are used as a detector for analyte A for its time spent interacting in the 

cyclodextrin cavity. Cells B and C are stationary with a free moving probability of zero. 

While the analyte moves freely in any direction unless acted upon by other movement 

rules (attractive and/or repulsive forces) by assigning a free moving probability of one.  

This design makes up the environment to study the one-to-one interactions of an 

enantiomer with a single cyclodextrin. 
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Figure 4: The two dimensional, cellular automata grid representing a cyclodextrin ring 

with a variegated analyte cell. 
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2.4 Liquid chromatographic model design 

2.4.1 Expansion of cellular automata model 

Up until this point the model has been designed to study only one-to-one 

interactions between an analyte and one β-cyclodextrin stationary phase molecule in 

high performance liquid chromatography.  This provides useful information on the 

potential for enantiomer separation; however, it does not take into account many 

laboratory conditions that may affect the separation. To have an improved prediction on 

how enantiomers may separate in an high performance liquid chromatography column 

other factors need to be included.  

 Thousands of interactions occur between many analyte and stationary phase 

molecules depending on the amount of sample injected onto the chromatographic 

column and the column’s design.  Thousands of interactions are impractical to model, 

as this would vastly slow down the model and require substantial computational power.  

There may be no benefit in expanding the model to this degree, since the  model is 

designed to predict chiral separations in an efficient manner and not replicate the 

physical environment of a chromatographic column. The number of analytes and β-

cyclodextrin stationary sites needs to be increased in a manner that allows multiple site 

interactions as the analytes move through the column.  β-cyclodextrin stationary sites 

are evenly spaced in an alternating manner to avoid possible solvent channels so that 

the analytes will have stationary phase interaction and not move through the column 

without interaction.   
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Analytes are placed randomly at the beginning of the modeled column, prior to 

the stationary phase, to represent the beginning of an injection of sample onto a high 

performance liquid chromatography column.  Two different types of cellular automata 

cells are used representing enantiomer pairs.  At the beginning of each run the analyte 

cells are randomly intermixed and have the ability to rotate as they move, which plays a 

part in their separation behavior since they are variegated cells. 

Mobile phase cells are also added to the model.  Two different types of cells are 

used so that dual solvents may be modeled.  Their polarity and densities are 

incorporated into the model to best represent their chemical and physical properties 

under laboratory conditions.  The mobile phase cells interact with analytes and 

stationary phase in various ways according to their chemical nature. 

Flow (gravity factor in the model) is incorporated on analytes and mobile phase 

cells at equal values.  The gravity parameter in the cellular automata model represents 

the tendency to move in a certain direction (see section 1.3).  Several gravity factors 

were evaluated visually to determine the best value for the model.  At a value of 1.0, 

due to other forces present, analytes cells frequently moved consistently against the 

downward flow of gravity.  While this is acceptable for a cell or two, anything greater 

does not appear to model the directional movement of analytes and mobile phase under 

laboratory conditions.  Therefore the flow was tested at higher values.  As the flow was 

increased to a gravity factor of 2.0, there was consistent downward flow of the analytes 

with little movement against the mobile phase flow.  A gravity factor of 2.0 was used for 

all runs. 
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2.4.2 Cellular automata grid layout 

As in the one-to-one model, a β-cyclodextrin is represented using several cells 

(see Figure 5).  The β-cyclodextrin is now made of variegated cells that are divided into 

two types of sites, each having their own set of interaction rules.  B0 sides represent the 

secondary hydroxyl groups located at carbon two of the β-cyclodextrin (see Figures 2 

and 3) in addition to the hydrophobic interior of the β-cyclodextrin depending on what 

side of the analyte cell it is interacting with.  B1 sides represent the hydrophobic interior 

of the β-cyclodextrin, while B2 represent the primary hydroxyl groups of the β-

cyclodextrin at carbon six.  The outside or exterior of the β-cyclodextrin denote sites that 

have minimal interaction with analytes and are labeled as C. 

There are two types of analyte cells in the model, A and D, to represent an 

enantiomer set.  Analyte cells are variegated with 4 sides to represent a chiral molecule.  

Each side has its own set of interaction rules with stationary phase sites (B0-B2), mobile 

phase cells W1 or W2, and each other.  Mobile phase cells are non-variegated and 

have the same set of interaction rules on each side (see Figure 6) 

The cellular automata model environment consists of a grid of cells 40 columns 

wide and 800 rows long for a total of 32,000 cells to represent a chromatographic 

column.  This grid design evolved through several steps of runs and observations.  The 

original design was only 205 rows long, ending at the last placement of β-cyclodextrin 

cells.  This however allowed the early eluting enantiomer cells to renter the column 

before the stronger retained analyte cells exited the column.  The modeled column is 

designed as a torus with no sides, bottom, or top enabling free cell movement.  With the 

early eluting enantiomer reentering the modeled column, it interfered with the latter 
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eluting enantiomer’s interaction with the stationary phase.  This was unacceptable so 

the grid was extended to 300, 400, 450, and finally 800 rows to eliminate this problem.  

The first 10 rows of the grid does not contain any cyclodextrin cells so that analyte cells 

may start there at the beginning of each run to represent a sample injection.  One 

hundred of each analyte are randomly placed within this space so that analytes are 

intermixed with each other and mobile phase cells.  Various amounts of analyte were 

tried before deciding on 100.  Analyte amount was reduced to 50 and increased to 200; 

however, 100 provided the best interaction relationship with the number of stationary 

phase sites, resulting in proper peak shape. 

-cyclodextrin cells begin at row eleven in the orientation as in Figure 5.  The first 

10 rows are left for analyte cells A and D along with mobile phase to simulate injection 

of analytes onto the modeled column.  This orientation was chosen to avoid analytes 

being pushed into the -cyclodextrin funnel shape by flow if the open end was faced 

upward, with the analyte having to push against mobile phase flow to exit.  Conversely, 

if the cyclodextrin was faced downward, analytes would have to move against the flow 

to enter the cyclodextrin.  Oriented on its side the -cyclodextrin sites have analytes 

enter due to their attraction or lack thereof.  The side direction that the -cyclodextrin 

faces does not matter since all moving cells may exit one side of the grid and reappear 

on the opposite side, eliminating analyte and mobile phase cell movement boundaries.  

-cyclodextrin sites were placed in a manner so that they are spaced five cells apart on 

any side.  Figure 7 shows the placement of the first ten -cyclodextrin stationary phase 

sites.  This type of placement continues until a total of one hundred -cyclodextrin sites 
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exist, so that stationary phase is present from rows 10 to 204. The remaining 595 rows 

are left empty for mobile phase at the start of each run.  These rows provide an area for 

the analytes to move into after their interaction with the stationary phase sites.  It is in 

these rows that the analytes will be examined, as in high performance liquid 

chromatography when analytes leave the column and continue onward to the detector. 

Placement of mobile phase cells is random; however, several factors need to be 

considered to determine their concentration: empty space available in the grid after 

placement of stationary phase and analytes, empty space left to allow for ingredient cell 

movement, concentration of solvent in mobile phase, and density of solvent at varying 

temperatures.  Of the 32,000 available cells, only 31,100 are available once analytes (A 

and D) and cyclodextrin sites are subtracted out.  It has been previously demonstrated 

in aqueous systems that 69% occupancy of the cell grid allows for water cells to behave 

chemically similar to actual conditions (Kier and Cheng 1994). In the chromatographic 

system modeled (Feitsma, Zeeuw et al. 1985), the mobile phase consists of 62.5% 

water, 31.5% acetonitrile, and 6.0% methanol.  Since acetonitrile and methanol both 

have the potential for hydrogen bonding, albeit weaker than water (Chaudhari and Lee 

2004) their model probabilities would be the same.  For simplicity, the model will consist 

of a two solvent mobile phase, 62.5% water and 37.5% acetonitrile.  Additionally, taking 

into account the density of the solvents involved (Weast 1988; Khimenko and Gritsenko 

1980) results in equation 2: 

 

W = 31100 × 0.69 × C ×           Eq. 2 

  31100, number of empty cells in grid 
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  0.69, percent of occupied space 

  C, concentration of solvent in mobile phase 

  , density of solvent 

Using equation 2, the cell concentration of water and acetonitrile was determined for 

each chromatographic temperature modeled (see Table 1).  The calculated number of 

cells for each solvent were placed randomly throughout the grid.  See Figure 8 for an 

example of a model generated environment (note: only the upper portion is displayed 

due to space constraints).  Appendix B shows portions of the cellular automata file 

“desoi2.inf” that places the cells in the grid.   

 

Table 1: Cell population of water and acetonitrile at varying temperatures. 
 

 
Density Number of Cells 

 
Water ACN Water ACN 

Temperature W1 W2 W1 W2 

24 0.9973 0.7793 13376 6271 

31 0.9954 0.7716 13350 6209 

37 0.9934 0.7650 13323 6156 

44 0.9907 0.7573 13287 6094 

50 0.9881 0.7507 13252 6041 

57 0.9848 0.7430 13208 5979 

 

In addition to location in the grid, cell type and orientation are defined.  Cell types 

are defined in the string file “desoi2.str” (Appendix C) and are as follows: 

 A = 0 

 D = 1 

 B0 = 2 
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 B1 = 3 

 B2 = 4 

 W1 = 5 

 W2 = 6 

Orientation values are from 0 to 4 and are only relevant for cells that do not move and 

rotate, since orientation determine which direction the variegated sides face at the 

beginning at the run.    
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Figure 5: The two dimensional, cellular automata grid representing a cyclodextrin ring 

with a variegated analyte cell for chromatographic scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B0 

B0 

B1 

B1 

B2 

B2 

B2 



31 

 

 

 

 

 

Figure 6: Analyte cells A and D with variegated sides to represent chiral molecules and 

non-variegated mobile phase cells W1 and W2. 
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Figure 7: Cyclodextrin grid layout for the first 30 rows of the cellular automata 

environment 
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Figure 8: Model generated chromatographic scale environment with analyte, 

cyclodextrin, and mobile phase cells. 
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2.5 Conclusions 

The computer hardware and Eclipse Classic software used have an impact on 

the speed of analysis at the chromatographic scale.  Typical run times were seven 

minutes.  When run on a 64 bit system with faster processors (main and video) with 

more memory, the run time was approximately three minutes.  It was found that running 

without graphical display cut this time even further.  It is recommend that the model be 

run on a 64 bit system.  It should be noted that once one run has begun, parameters of 

the model may be changed and a new run started.  In this manner many runs can be 

performed simultaneously.  

The one-to-one interaction model is simplistic by nature.  While it does provide a 

prediction of the strength of enantiomer binding with -cyclodextrin, several factors are 

not accounted for.  Solvent interactions are not accounted for along with the influence of 

mobile phase flow.  Competitive interaction of the enantiomer pairs with the -

cyclodextrin cannot be studied since each enantiomer is analyzed individually.  Despite 

these limitations, the model is sufficient for its intended purpose as are the majority of 

published models that treat interactions as if in a vacuum. 

 Escalating the model to a chromatographic scale would not simply be increasing 

the number of enantiomer to -cyclodextrin interactions.  With the introduction of the 

additional ingredients, many rules of interaction must be considered: 

 Enantiomer to -cyclodextrin 

 Enantiomer to mobile phase 

 Enantiomer to enantiomer 

 Mobile phase to -cyclodextrin 
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 Mobile phase to mobile phase 

Each type of interaction has its own probabilistic rules that allow each model run to 

evolve in a dynamic manner based on general chemical principals of the molecules 

involved.  The greater number of types of interactions in addition to the larger number of 

ingredients to interact results in dramatic increase in the number of interactions versus 

the one-to-one model.  To analyze the results from the model, more complex analysis is 

required to go from the raw data of cell locations to generating chromatograms using 

Excel.   
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CHAPTER 3 Validation of Cellular Automata Model 

 

3.1 Introduction 

The model is first tested for basic functionality to verify that the modeled 

cyclodextrin retains analytes (one-to-one interaction) and that retention rules affect 

retention with acceptable reproducibility.  Model rules are then optimized to the 

interaction forces of the complex formation as well as correlated to published 

experimentally determined equilibrium complex stability constants.   

The model is then expanded to confirm that the variegated analyte cell performs 

as anticipated for a chiral molecule.  Model rules are correlated to enantiomer-(β-

cyclodextrin) overall binding energies to develop the model’s rule equations.   The rules 

are then used to predict the retention strength and chromatographic separation of six 

drug enantiomer sets with similar aromatic characteristics in their nonionic state (see 

Figure 9).  Enantiomers were modeled without consideration of solvent environment, as 

if in a vacuum. Only enantiomers and stationary phase molecules are modeled, which is 

a common approach in models of one-to-one interactions.  Model results are then 

compared to published, experimentally determined results.   

One-to-one enantiomer interactions with β-cyclodextrin have been the focus of 

the model so far, which has similarly been accomplished using other modeling 

techniques.  However, to predict how enantiomers will separate in the lab, one-to-one 
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interactions are not sufficient.  That is why the model is expanded to chromatographic 

scale, incorporating solvents, mobile phase flow, and multiple stationary phase sites for 

β-cyclodextrin.  Enantiomers of mandelic acid and brompheniramine are modeled and 

compared to published chromatographic results for their selectivity. 

Cyclohexylphenylglycolic acid, which is similar to mandelic acid with the hydrogen on 

the chiral carbon replaced with cyclohexane, is modeled at varying mobile phase 

temperatures, flow rates, sample loads, and pH.  The results are compared vs. 

published chromatographic results for selectivity, resolution, peak tailing and capacity 

factors. 
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Figure 9: The six enantiomer pairs used in the cellular automata model to predict their 

chromatographic retention. 
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3.2 Cellular automata model rule testing 

3.2.1 Model movement rule testing for basic functionality in on-to-one interactions 

 Analyte interaction with cyclodextrin involves insertion of a portion or all of the 

analyte into the cyclodextrin interior.  Therefore, the time an analyte is in this position is 

used to measure the strength of an analyte-cyclodextrin complex.  Once the analyte 

leaves the cyclodextrin and binds to cells C, the analyte-cyclodextrin complex is 

considered to no longer exist.  The number of iterations required for the analyte to bind 

to C is a direct measure of complex strength.  Each result reported is the average of 

100 runs.  From 100 runs, the number of iterations required for 95% of the analytes to 

bind to C is considered the time required for the complex to end.  This number of 

iterations is reported as “iterations to escape”.  Six results, for a total of 600 runs, are 

determined for each reported value along with a relative standard deviation and 

confidence interval.     

 Before modeling experimental cyclodextrin complexes, model performance is 

evaluated.  To do this the following questions are considered: does the model retain 

analytes and does retention of analyte change with changes to the breaking probability 

and joining factor between the cells of analyte and cyclodextrin? 

 Previous studies of water molecule interaction demonstrate that joining and 

breaking variables have the relationship of log J = -1.5 PB + 0.6 (Kier, Seybold et al. 

2000).  This relationship is a reasonable approach to cyclodextrin interactions since the 

hydrophobic behavior of cyclodextrins has been shown using molecular dynamics 

simulations (Geiger, Rahman et al. 1979; Jorgensen, Ravimohan et al. 1985), and other 
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model based techniques (Blokzijl and Engberts 1993; Hummer, Pratt et al. 1996; 

Ohmine and Tanaka 1993). 

 To confirm that the model forms analyte-cyclodextrin complexes and that the 

retention changes with rule changes, breaking probability and joining factor are varied in 

the model from very strong to very weak analyte-cyclodextrin bonding strength.  

Bonding was modeled from the strongest interaction that was not permanent at a 

breaking probability of 0.05, to the weakest interaction with very little bonding and a 

breaking probability of 0.95.  A total of 28 different value sets for the variables are 

evaluated to represent analytes forming strong to weak interactions with the 

cyclodextrin.  A run time of 10,000 iterations is used to allow for the strongest bonding 

interactions to end.  The number of iterations required for 95% of each analyte condition 

to leave the cyclodextrin is reported in Figure 10. 

  The cyclodextrin model forms a stronger complex and retains analytes longer as 

the breaking probability and joining factor were adjusted to do so.  At a breaking 

probability of 0.95, representing the weakest of interactions, the analyte was retained for 

only 13 iterations with a 95% confidence interval of 1 iteration.  Modeling a very strong 

interaction with a breaking probability of 0.05, the analyte was retained for 7,060 

iterations with a confidence interval of 901 iterations. Therefore, the model performed as 

anticipated.  Additionally, the 95% confidence interval of each result increases as 

retention was increased.  This is consistent with the chromatographic phenomena of 

band broadening.  Typically the longer an analyte is retained on the stationary phase, 

the broader the chromatographic peak (Skoog 1985).  Therefore, the modeled 
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stationary phase performs similarly to isocratic chromatography systems in terms of 

retention band broadening. 

 The strength of cyclodextrin complexes is commonly compared by referring to 

the complex stability constant of the complex.  The log of analyte-cyclodextrin complex 

stability constants have shown to have a linear relationships when examining 

hydrophobic (Matsui and Mochida 1979) and van der Waals interactions (Sanemasa, 

Deguchi et al. 1994).  Therefore, the log of iterations for analytes to escape from the 

cyclodextrin is compared to that of the joining factor for linearity.  The plot of joining 

factor vs. log(iterations to escape) gives an equation of log(iterations to escape) = 

0.8242(J) + 0.9457 with a coefficient of determination of 0.9959 (Figure 11).  This 

demonstrates a linear relationship with no bias, since the y intercept of 0.9457 means 

that a joining factor of 0 gives “iterations to escape” of 9.   

When the weakest interaction was modeled to represent little to no bonding, the analyte 

required 13 iterations to escape.  Any iterations less than this represents no significant 

bonding,  therefore 9 iterations is reasonable for non-bonding interaction. 

 The next step is to see if different sites within the cyclodextrin retain differently 

and if similar sites retain similarly as is expected in cyclodextrin bond formation.  The 

beginning premise is that B0 should retain longer than B3 and B6 since B0 is deeper 

inside the cyclodextrin, requiring a longer time for the analyte to exit the cyclodextrin.  

B3 and B6 are located at equal but opposite locations in the cyclodextrin so they should 

retain similarly (see Figure 4).  The same 28 sets of joining and breaking values used 

for binding strength are evaluated for B0, 3, and 6 with a run time of 100 iterations 
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(n=6).  The number of iterations required for the analyte to leave the cyclodextrin 

complex 95% of the time is reported (see Figure 12). 

The model forms a stronger complex and retains analytes longer at B0 vs. B3 

and B6 within 95% confidence intervals.  Additionally B3 and B6 retain the analytes 

equivalently within 95% confidence intervals.  Accordingly, the model performs as 

anticipated.  These results confirm that retention of the analyte in the modeled 

cyclodextrin ring can be modified at specific sites with repeatable results and that the 

model replicates chromatographic stationary phase behavior. 
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Figure 10: Escape iterations vs. joining factor with the 95% confidence interval 

expressed along the y-axis. 
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Figure 11: Log(Escape Iterations) vs. joining factor with the 95% confidence interval 

expressed along the y-axis. 
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Figure 12: Twenty eight sets of joining and breaking values used for binding strength 

are evaluated for B0, 3, and 6 with the number of iterations required for the analyte to 

leave the cyclodextrin complex 95% of the time reported. 
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3.2.2 Model movement rule testing for enantiomeric behavior  

Before modeling enantiomer experimental published data, model performance is 

evaluated for the variegated enantiomer cell A.  To do this the following questions are 

evaluated: with just an inner β-cyclodextrin cavity interaction occurring how does the 

model retain the enantiomer cell, does the retention of the enantiomer cell increase 

when retention is modeled at the secondary hydroxyl sites (cells B3 and B6) in addition 

to retention at the inner β-cyclodextrin cavity. 

The length of time an enantiomer remains in the β-cyclodextrin ring is used to 

measure the strength of an enantiomer-(β-cyclodextrin) complex.  Each result reported 

is the average of 1000 runs.  From 1000 runs, the number of iterations required for 95% 

of the enantiomers to leave the β-cyclodextrin complex and bind to C is considered the 

time required for the complex to end.  Six results, for a total of 6000 runs, are 

determined for each reported value along with a relative standard deviation and 95% 

confidence interval. 

 To test that the model retains an enantiomer with just an inner β-cyclodextrin 

cavity interaction occurring, the breaking probability and joining factor of the variegated 

enantiomer cell to several β-cyclodextrin cells are varied at 5 values to simulate strong 

to neutral (equal attraction and repulsion) retention interactions (see Table 2).  The 

binding variables were adjusted in this way for interactions between A1 and A3, 

representing the phenyl portion of the enantiomer with B2, 3, 5, and 6 representing the 

inner hydrophobic β-cyclodextrin cavity (see Figure 4).  The log of analyte-(β-

cyclodextrin) complex stability constants were shown to have linear relationships when 

examining hydrophobic (Ohmine and Tanaka 1993) and van der Waals interactions 
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(Sanemasa, Deguchi et al. 1994), therefore, the log of the iterations for enantiomers to 

escape from the β-cyclodextrin is compared to that of the joining factor (see Figure 13).  

This comparison gives a non-linear relationship of log (iterations to escape) = 0.0765J2 - 

0.0089J + 1.5266 with a coefficient of determination of 0.9963.  Under the strongest 

interaction conditions the enantiomer takes 233 iterations (14, 95% CI) to exit the β-

cyclodextrin and 35 iterations (2, 95% CI) under neutral interaction conditions.  This 

confirms that the model retains enantiomers longer as the breaking probability and 

joining factor were adjusted to do so but in a non-linear manner.  Non-linear interaction 

may be the result that not all of the enantiomer cell sides are interacting equally.  The 

next step is to see if retention of the enantiomer cell increases when interaction is 

added at the secondary hydroxyl sites. 

 

Table 2: Complexation model values for joining factor and breaking probability. 
 

PB J PB J 

Strong Bond Strong Attraction 0.050 3.350 

  

0.114 2.690 

0.195 2.030 

0.309 1.369 

Neutral Neutral 0.500 0.708 

 

 In addition to the inner β-cyclodextrin binding described previously, binding to the 

secondary hydroxyl sites (cells B3 and B6) is added by adjusting the binding variables 

for interactions between A0 to B3 and 6.  Breaking probability and joining factor were 

set as previously as in Table 2.  Under these binding conditions, log (iterations to 

escape) = 0.0767J2 - 0.0033J + 1.5334 with a coefficient of determination of 0.9974 
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(see Figure 14).  Under the strongest interaction conditions the enantiomer takes 248 

iterations (15, 95% CI) to exit the β-cyclodextrin.  While the enantiomer with two 

binding interactions is retained longer in the β-cyclodextrin than with just one interaction 

(248 and 233 iterations respectively), the 95% confidence intervals show little difference 

statistically.  Nevertheless this is only one interaction between an enantiomer analyte 

and one β-cyclodextrin stationary phase molecule.  Very small differences can lead to 

enantiomer separation, since under normal chromatographic conditions many 

thousands of these interactions are possible.  Figure 15 demonstrates that the 

enantiomer with two binding interactions is retained longer in the cyclodextrin than with 

just one interaction under all retention conditions.  Accordingly, the model performs as 

anticipated with analytes retained longer as the number and strength of interactions are 

increased.  If analytes had consistently exited the cyclodextrin after just a few 

interactions, then changing breaking probability would not have affected retention.  This 

was critical in establishing the model, for if probability of breaking did not affect analyte 

retention inside the cyclodextrin then further development of the model would be 

unsuccessful.  These results confirm that retention of an enantiomer in the modeled β-

cyclodextrin can be modified at specific binding sites with repeatable results and that 

the model can replicate enantiomer chromatographic behavior.   
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Figure 13: Log(Iterations to Escape) vs. joining factor with the 95% confidence interval 

expressed along the y-axis for variegated cell A1, 2 interactions with B2, 3, 5, 6. 
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Figure 14: Log(Iterations to Escape) vs. joining factor with the 95% confidence interval 

expressed along the y-axis for variegated cell A1, 2 interactions with B2, 3, 5, 6 and A0 

with B3, 6. 
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Figure 15: Log(Iterations to Escape) vs. joining factor with the 95% confidence interval 

expressed along the y-axis for variegated cell A1, 2 interactions with B2, 3, 5, 6  vs. A1, 

2 interactions with B2, 3, 5, 6 and A0 with B3, 6. 
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3.3 Development of model rules 

3.3.1 Development of model rule equations for stability constants 

 By developing the model’s probability and factor equations from a diverse and 

large quantity of published chromatographic experimental data, an optimal modeling of 

one-to-one molecular binding strengths between analytes and cyclodextrins should be 

achievable.  In correlating the model to experimental data from published literature, 

several limitations must be acknowledged.  The model is examining a one-to-one 

analyte to cyclodextrin interaction, where experimental data covers both one-to-one 

through chromatographic scale interactions.  Solvation is not yet accounted for in the 

model, while the experimental data used is in solvent environments.  Furthermore, the 

literature references determined complex stability constants by numerous techniques: 

calorimetry, gas chromatography, UV spectroscopy, potentiometry, and others.  All of 

these contribute to differences between the model and experimental design that may 

impact modeling results. 

 By examining 968 complex stability constants (K) of cyclodextrin inclusion 

complexes (Rekharsky and Inoue 1998), it is possible to estimate the log K for very 

weak through very strong bonds.  Since values for breaking probability and joining 

factor are known for these bonds from the previous modeling experiments, they are 

correlated to log K in Table 3.  
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Table 3: Complexation model values across log K range. 
 

     Weak Bond Strong Bond 

J, Joining Factor 0.15 3.35 

PB, Breaking Probability 0.95 0.05 

log K, Complex Stability Constant 0.25 5.50 

 

It was previously described in section 3.2.2 that the log of analyte-(β-

cyclodextrin) complex stability constants have linear relationships when examining 

hydrophobic and van der Waals interactions, the two strongest interaction energies 

modeled.  Therefore, there should be a linear relationship between the joining factor 

that models these energies and log K, which gives the following equations:  

 

J = 0.610 x log K                  Eq. 3 

 

PB = (log J – 0.6) / -1.5                     Eq. 4 

 

Using these relationships, log K vs. log of iterations for analyte to escape will be 

compared. 

 

3.3.2 Development of model equations for enantiomeric interactions 

3.3.2.1 Development of model rule equations 

 The development of breaking probability and joining factor values take into 

account the major bonding interactions in the enantiomers studied: van der Waals, 
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hydrophobicity, hydrogen binding at the primary and secondary hydroxyl groups, and 

steric interactions.  It should be noted that values for variables represent the overall 

behavior of the possible interactions and not the specific energy of these interactions.  

Joining factor is calculated from breaking probability, therefore, the breaking probability 

formula is derived for A0 (hydrogen binding with secondary hydroxyl groups of β-

cyclodextrin), and A1,3 (binding and steric forces within β-cyclodextrin). 

 A starting breaking probability value of 0.5 means that there is equal attraction 

and repulsion force between the analyte and β-cyclodextrin.  A probability of 0.0 

represents a bond that has zero probability of breaking.  Since a value of zero is not 

representative of the chromatographic environment of the model, the lower limit for 

breaking probability is set at 0.05 to signify a very strong attractive interaction but one 

that can separate.  This value range is the basis for the breaking probability equation.  

Hydrogen bonding is the only modeled attractive force for the enantiomers with the 

secondary hydroxyl groups of the β-cyclodextrin.  Of the enantiomers modeled, N-

methylphenobarbitone has the highest potential for hydrogen bonding interaction with 2 

Nitrogen and 3 Oxygen atoms.  With O-HN having a bond strength of ~6.9 kcal/mole 

and O-HO ~5.0 kcal/mole (Ege 2003), N-methylphenobarbitone has a possible total 

hydrogen bonding potential of 28.8 kcal/mole.  This represents the highest hydrogen 

bonding potential of the enantiomer group studied. Although the likelihood of all the 

nitrogen and oxygen atoms bonding at once is unlikely due to their structural separation, 

varying interactions are possible as molecules move.  The hydrogen bonding potential 

for the enantiomers studied is therefore relative to 28.8 kcal/mole.  Taking this into 



55 

 

account, a maximum breaking probability of 0.05, and a starting value of 0.50, results in 

the equation for the breaking probability of A0 with cells B3 and B6 (see Figure 4) to be: 

 

 45.0
/8.28

50.0 .sec
)0( 

molekcal

H
P AB

                   Eq. 5  

 0.50, Equal attraction and repulsion value 

Hsec., Potential hydrogen bonding for enantiomer at secondary hydroxyl groups of 

the –cyclodextrin (additive from N and O atoms) 

 28.8 kcal/mole, Maximum hydrogen bonding potential of enantiomers studied 

 0.45, Maximum decrease in breaking probability 

 

 Unlike the interactions at the secondary hydroxyl groups, a breaking probability 

for the interior cavity of β-cyclodextrin must take into account, van der Waals forces, 

hydrophobicity for the portion of analyte inside β-cyclodextrin, hydrogen bonding in β-

cyclodextrin, and steric hindrance inside β-cyclodextrin.   The induced dipole of the 

analyte contributes to the overall van der Waals interaction and is proportional to its size 

(Grimme 2008).  Decahydronaphthalene  is one of the larger molecules that enters the 

-cyclodextrin cavity (Rekharsky and Inoue 1998).  Therefore its van der Waals volume, 

~60% of -cyclodextrin’s internal volume, is used as the maximum likely to interact with 

-cyclodextrin.  To calculate its volume and portions of enantiomers that enter the β-



56 

 

cyclodextrin cavity, the method of Atomic and Bond Contributions of van der Waals 

volume (VABC) is used (Zhoa, Zissimos et al. 2003).  This technique uses the number 

of atom types present, number of bonds formed, and the number of aliphatic and 

aromatic rings in the molecule to calculate its van der Waals volume.  The authors 

provided and Excel spreadsheet to perform the calculations.  The technique was 

validated by comparing the results of VABC for 677 organic compounds to computer 

determined van der Waals volumes.  VABC results were found to be equivalent to 

convention, but more computationally intensive calculated results that require van der 

Waals radii, inter-atomic distances, and angles of bonds. 

 

 VvdW =  all atom contributions – 5.92NB -14.7RA – 3.8RNA                      Eq. 6 

  NB, number of bonds = total number of atoms – 1 + RA +RNA 

  RA, number of aromatic rings 

  RNR, number of non-aromatic rings 

 

Using VABC, decahydronaphthalene has a van der Waals volume (V) of 156.8 Å3.  This 

represents the highest probable van der Waals bonding potential currently modeled 

which is typically less than 1kcal/mole (Saenger, Takaha et al. 1998).  This volume is 

used later to proportion the van der Waals contribution in the enantiomers studied 

relative to their van der Waals volume entering the β-cyclodextrin cavity.  
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 In aqueous environments one of the strongest bonding forces occurring between 

enantiomers and the β-cyclodextrin cavity is hydrophobicity.  The hydrophobic bonding 

energy of a molecule is determined by assuming that the overall hydrophobic bond 

energy is the sum of each group or atom of the molecule.  Decahydronaphthalene is 

again used as the molecule to have a maximum hydrophobic bonding potential 

calculated to be 10.0 kcal/mole.  This value is used to proportion hydrophobic bonding 

potential in the enantiomers studied.  The portions of enantiomers that can undergo 

hydrophobic attraction (W) are calculated in the same manner (Kakitani and Yomosa et 

al. 1980). 

 Hydrogen bonding in the interior of β-cyclodextrin is also possible, and 

contributes to the overall enantiomer bonding to β-cyclodextrin.  Nitrogen in analytes 

that enter the β-cyclodextrin cavity may undergo a hydrogen bonding attraction (Liu and 

Guo 2002; Aree, Hoier et al. 1998), albeit a weak interaction at ~0.7 kcal/mole.  

Brompheniramine is the only enantiomer containing nitrogen, in its pyridine ring, that is 

likely to enter hydrophobic β-cyclodextrin cavity due to pyridine’s hydrophobic 

properties.  Therefore hydrogen bonding on the interior of β-cyclodextrin is limited in the 

model to 0.70 kcal/mole. 

 In addition to the above attractive forces for enantiomers towards cyclodextrin, 

steric hindrance from the enantiomer may inhibit it entering β-cyclodextrin.  -

cyclodextrin has an interior volume of 262 Å3 (Saenger, Takaha et al. 1998).  The 

assumption in the model is that any substitution onto the portion of the enantiomer 

entering β-cyclodextrin (typically the phenyl group) would hinder the enantiomer 
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complex proportionally to its van der Waals volume (Durham 1996).  It should be noted 

that due to cyclodextrin’s ability to undergo conformational changes and that 

cyclodextrins have two open ends, it is possible for some larger molecules to enter β-

cyclodextrin partially (Chen, Gilson et al. 2004). 

 Once more, a breaking probability of 0.5 means that there is equal bonding 

attraction and repulsion force between the analyte and β-cyclodextrin, which is the 

starting value for breaking probability.  van der Waals, hydrophobic, and hydrogen 

bonding combine to have a total potential bonding energy of 11.7 kcal/mole (see Table 

4).   

 

Table 4: Bonding Energy Contributions for PB(A1,3) 

     max kcal/mole % contribution Contribution to 0.45 of PB(A1,3) 

van der Waals 1.0 8.5 0.038 

Hydrophobic 10.0 85.5 0.385 

Hydrogen bonding 0.7 6.0 0.027 

 

All three energy contributions are evaluated for their potential contribution to the 

lowering of breaking probability resulting in a stronger bonding interaction.  Taking into 

account all of the attracting and repulsing forces, the resulting equation for the breaking 

probability of A1 and 3 with cells B2, 3, 5, and 6 is shown in equation 7: 


















 45.0

262Å
027.0

/7.0
385.0

/0.10
038.0

Å8.156
5.0

33)3,1(

S

molekcal

H

molekcal
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P AB  

 V, van der Waals volume of portion of enantiomer in -cyclodextrin cavity 
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 156.8 Å3, Decahydronaphthalene van der Waals volume 

 0.038, van der Waals contribution to 0.45 of PB(A1,3) 

 W, Hydrophobic bonding energy of enantiomer in -cyclodextrin cavity 

 10.0 kcal/mole, Modeled maximum hydrophobic bonding potential 

 0.385, Hydrophobic contribution to 0.45 of PB(A1,3) 

 H, Hydrogen bonding energy of enantiomer in -cyclodextrin cavity 

 0.7 kcal/mole, Modeled maximum hydrogen bonding potential 

 0.027, Hydrogen bonding contribution to 0.45 of PB(A1,3)  

S, van der Waals volume of the substitution onto the portion of the enantiomer 

entering the cyclodextrin 

262 Å3, -cyclodextrin interior volume 

0.45, Maximum steric inhibition of PB(A1,3) 

Equations 5 and 7 are used to determine PB(A0) and PB(A1,3) for each enantiomer set.  By 

developing the model’s probability and joining factor equations from fundamental 

bonding interactions, a model of one-to-one molecular binding strengths between the 

enantiomers and -cyclodextrin is achieved.  In correlating the model to experimental 

data from published literature, several limitations must be acknowledged.  The model is 

examining a one-to-one enantiomer to -cyclodextrin interaction, where selectivity 

experimental data represents chromatographic scale interactions.  Solvation is not 
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accounted for in the model, while the chromatographic experimental data used is in a 

solvent environment.  These may contribute to differences between the model and 

experimental data, impacting modeling results. 

 

3.3.2.2 Development of PB values from equations 

Equations 5 and 7 are used to generate the breaking probability for PB(A0) and 

PB(A1,3) respectively and their corresponding joining factor for the six drug enantiomer 

sets in their nonionic state (see Figure 9).  For all enantiomers except for the 

enantiomer brompheniramine (S), the main interaction is with the phenyl group.  

Brompheniramine (S) however prefers the insertion of the pyridine ring into the -

cyclodextrin (Durham 1996).  Hydrophobic attraction (W) is modeled the same for N-

methylphenobarbitone, ephedrine, pseudoephedrine, and mandelic acid since the 

phenyl group enters the cyclodextrin.  Brompheniramine has one less hydrogen 

regardless of which ring enters β-cyclodextrin and therefore has a slightly lower W 

value.  Ibuprofen has a higher W value due to isobutyl on the phenyl ring.  Hydrogen 

bonding (H) in the interior of β-cyclodextrin only occurs for brompheniramine (S) 

enantiomer at 0.7 kcal/mole due to the pyridine ring.  Steric hindrance occurs in several 

enantiomers.  Using the VABC method (Zhoa, Zissimos et al. 2003) ibuprofen has the 

largest steric interference (75.1Å3) from the isobutyl group on the phenyl ring that enters 

the cyclodextrin cavity for interactions to occur.  N-methylphenobarbitone (S) has steric 

interference (23.5Å3) from the two oxygen atoms near the phenyl ring that lack much 

mobility due to their double bonds.  N-methylphenobarbitone (R) has additional steric 
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interference from the methyl group which now interferes with the phenyl ring entering 

the cyclodextrin cavity for a total steric interference of 48.0Å3.  Brompheniramine (R) 

has steric interference from the bromine (26.5Å3), where the brompheniramine (S) has 

none since the pyridine group enters the cyclodextrin cavity (Durham 1996). 

 PB(A0) focuses on the bonding occurring along the outer ring of the -cyclodextrin 

with the secondary hydroxyl groups.  As previously mentioned, O-HN and O-HO 

have a hydrogen bond potential of 6.9 kcal/mole 5.0 kcal/mole respectively.  Using this, 

hydrogen binding at the -cyclodextrin’s secondary hydroxyl groups (Hsec) is determined 

for each enantiomer by summing the potential hydrogen sites taking into consideration 

the steric orientation of the enantiomers.  Once the phenyl ring enters β-cyclodextrin, N-

methylphenobarbitone enantiomers have the best chance of hydrogen bonding at the 

para positioned oxygen and meta positioned two nitrogens.  The ortho positioned 

oxygens are positioned close to the phenyl ring in the interior of the cyclodextrin and 

unlikely to interact.  In ibuprofen the torsion angles of the attached chiral center and 

isobutyl group allow ibuprofen (S) to potentially have the two oxygens of the carboxylic 

acid group interact to form hydrogen bonds, where ibuprofen (R) only has one possible 

oxygen interaction (Durham 1996).  This is similar to mandelic acid where mandelic acid 

(S) has three potential oxygen interactions and mandelic acid (R) only has one.  

Ephedrine (SR and RS) and pseudoephedrine (SS) prefer conformations with -

cyclodextrin that allow for hydroxyl and amino hydrogen bonding interactions.  While 

pseudoephedrine (RR) has a conformation that does not favor any hydrogen bonding 

interactions based on potential energy plots (Durham 1996).  Brompheniramine (S) 
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prefers a conformation with -cyclodextrin where the pyridine ring is in the cyclodextrin 

cavity, allowing for one amino interaction on the cyclodextrin outer ring.  

Brompheniramine (R) however prefers the bromophenyl portion entering the 

cyclodextrin cavity allowing for one amino interaction and a pyridine interaction with the 

cyclodextrin outer ring (Durham 1996).  The pyridine may undergo hydrogen bonding 

with the cyclodextrin secondary hydroxyl groups on the outer ring with a strength of 

about 3 kcal/mol (Dimitrova, Galabov et al. 2004).  Values for PB(A0) and PB(A1,3) are 

calculated for the enantiomers using the above determinations (see Table 5). 

 

Table 5: Equation variable values for enantiomers. 

 V W H S Hsec PB(A1,3) PB(A0) 

MPB (S) 79.85 4.6 0.0 23.5 18.8 0.3439 0.2063 
MPB (R) 79.85 4.6 0.0 48.0 18.8 0.3860 0.2063 
IBP (S) 79.85 7.4 0.0 75.1 10.0 0.3247 0.3438 
IBP (R) 79.85 7.4 0.0 75.1 5.0 0.3247 0.4219 
EF (SR) 79.85 4.6 0.0 0.00 11.9 0.3035 0.3141 
EF (RS) 79.85 4.6 0.0 0.00 11.9 0.3035 0.3141 
PF (SS) 79.85 4.6 0.0 0.00 11.9 0.3035 0.3141 
PF (RR) 79.85 4.6 0.0 0.00 0.0 0.3035 0.5000 
MA (S) 79.85 4.6 0.0 0.00 15.0 0.3035 0.2656 
MA (R) 79.85 4.6 0.0 0.00 5.0 0.3035 0.4219 
BP (S) 73.55 4.4 0.7 0.00 6.9 0.2858 0.3922 
BP (R) 79.85 4.4 0.0 26.52 9.9 0.3568 0.3453 

 

3.3.3 Development of model equations for the chromatographic system 

3.3.3.1 Development of model equations for mandelic acid and brompheniramine 

In the one-to-one model, several interactions were addressed for mandelic acid 

and brompheniramine.  Hydrogen binding between the enantiomers at the secondary 
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hydroxyl groups of the –cyclodextrin, along with van der Waals, hydrophobicity, 

hydrogen binding, and steric interactions at the interior of the –cyclodextrin.  Using this 

previous work, equation 5 is used to determine breaking probability of A0 (S-

enantiomer) and D0 (R-enantiomer) with cell B0 of the cyclodextrin.  Equation 7 is used 

to determine breaking probability of A1-3 and D1-3 with B0 and B1. 

With a system that now includes additional forces that result in further movement, 

such as attractive and repulsive forces on the analytes from mobile phase interactions 

and flow, interaction of the analytes with each other, and with the primary hydroxyl 

groups of the cyclodextrin should be incorporated.  It has been previously shown that for 

mandelic acid the main interaction is in the interior of the –cyclodextrin with the phenyl 

group (Durham 1996).  Since the phenyl group is hydrophobic, there should be a 

repulsion force with the primary polar hydroxyl groups of the -cyclodextrin, hence an 

increase in the breaking probability between the two.  In equation 7, the hydrophobic 

energy of a molecule was determined by the sum of each group or atom of the 

molecule.  Using this same approach, and that decahydronaphthalene is again used as 

the molecule to have a maximum hydrophobic energy at 10.0 kcal/mole (Kakitani and 

Yomosa et al. 1980), the following equation is developed: 
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 W, Hydrophobic energy of enantiomer in cyclodextrin cavity 

 10.0 kcal/mole, Modeled maximum hydrophobic energy potential 
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 0.45, Maximum inhibition of PB(B2) 

A starting breaking probability value of 0.5 means that there is equal attraction and 

repulsion force between the analyte and the primary hydroxyl groups of β-cyclodextrin, 

therefore repulsion due to the hydrophobicity of the phenyl group will increase the value 

of PB(B2) with sides A1-3 and D1-3 of the mandelic acid enantiomers.  All other mandelic 

acid interactions with β-cyclodextrin were either considered improbable or insignificant 

and assigned a breaking probability of 0.5. 

 It has been shown that the brompheniramine (S) enantiomer prefers the insertion 

of the pyridine ring into the –cyclodextrin while the (R) enantiomer prefers the insertion 

of the para-substituted phenyl group (Durham 1996).  For (R)-brompheniramine then, 

equation 8 is used to determine the hydrophobic repulsive force between D1-3 and B2.  

(S)-brompheniramine though has the potential for hydrogen bonding from the pyridine 

group with the primary hydroxyl groups of the cyclodextrin (Dimitrova, Galabov et al. 

2004).   Equation 8 should not be used to predict the interaction between A1-3 and B2, 

rather an equation for attractive forces involving hydrogen bonding like equation 5.  (S)-

brompheniramine has the potential for the nitrogen from the pyridine to bond with the 

primary hydroxyl groups of the β-cyclodextrin.  With O-HN having a bond strength of 

~6.9 kcal/mole (Ege 2003), and pyridine undergoing hydrogen bonding with a strength 

of ~3 kcal/mol (Dimitrova, Galabov et al. 2004) equation 9 results:  

 














 45.0

/9.6
50.0

.

)2(
molekcal

H
P

prim

BB  Eq. 9  



65 

 

 0.50, Equal attraction and repulsion value 

 Hprim., Potential hydrogen bonding for enantiomer from N 

 6.9 kcal/mole, Maximum hydrogen bonding potential 

 0.45, Maximum decrease in breaking probability 

Again, a starting breaking probability value of 0.5 means that there is equal attraction 

and repulsion force between the analyte and the primary hydroxyl groups of β-

cyclodextrin, therefore attraction due to the hydrogen bonding of the pyridine group will 

reduce the value of PB(B2) with sides A1-3 of the (S)-brompheniramine. 

 

3.3.3.2 Development PB values for mandelic acid and brompheniramine 

Breaking probabilities and their corresponding joining factors (using equation log 

J = -1.5 PB + 0.6 (Kier, Seybold et al. 2000)), are calculated for the enantiomers of 

mandelic acid and brompheniramine using the equations from sections 3.3.2.1 and 

3.3.3.1 for interactions with -cyclodextrin (see Table 6).   
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Table 6: Breaking probability and joining factors for mandelic acid and brompheniramine 

with –cyclodextrin cells.   

Interaction 
 

Interaction 

Mandelic Acid PB J 
 

Brompheniramine  PB J 

A0 B0 0.2656 1.591 
 

A0 B0 0.3922 1.027 

A0 B1 0.5000 0.7079 
 

A0 B1 0.5000 0.7079 

A0 B2 0.5000 0.7079 
 

A0 B2 0.5000 0.7079 

A1 B0 0.3035 1.396 
 

A1 B0 0.2858 1.484 

A1 B1 0.3035 1.396 
 

A1 B1 0.2858 1.484 

A1 B2 0.7070 0.3463 
 

A1 B2 0.3043 1.392 

A2 B0 0.3035 1.396 
 

A2 B0 0.2858 1.484 

A2 B1 0.3035 1.396 
 

A2 B1 0.2858 1.484 

A2 B2 0.7070 0.3463 
 

A2 B2 0.3043 1.392 

A3 B0 0.3035 1.396 
 

A3 B0 0.2858 1.484 

A3 B1 0.3035 1.396 
 

A3 B1 0.2858 1.484 

A3 B2 0.7070 0.3463 
 

A3 B2 0.3043 1.392 

Mandelic Acid PB J 
 

Brompheniramine  PB J 

D0 B0 0.4219 0.9271 
 

D0 B0 0.3453 1.208 

D0 B1 0.5000 0.7079 
 

D0 B1 0.5000 0.7079 

D0 B2 0.5000 0.7079 
 

D0 B2 0.5000 0.7079 

D1 B0 0.3035 1.396 
 

D1 B0 0.3568 1.161 

D1 B1 0.3035 1.396 
 

D1 B1 0.3568 1.161 

D1 B2 0.7070 0.3463 
 

D1 B2 0.6980 0.3573 

D2 B0 0.3035 1.396 
 

D2 B0 0.3568 1.161 

D2 B1 0.3035 1.396 
 

D2 B1 0.3568 1.161 

D2 B2 0.7070 0.3463 
 

D2 B2 0.6980 0.3573 

D3 B0 0.3035 1.396 
 

D3 B0 0.3568 1.161 

D3 B1 0.3035 1.396 
 

D3 B1 0.3568 1.161 

D3 B2 0.7070 0.3463 
 

D3 B2 0.6980 0.3573 

 

Other interactions also require breaking probabilities and joining factors: 

 Enantiomer to mobile phase 

 Enantiomer to enantiomer 

 Mobile phase to -cyclodextrin 
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 Mobile phase to mobile phase 

   Enantiomer interaction with mobile phase (water and acetonitrile) should involve 

no overall significant attraction or repulsion.  Although competing interactions of 

repulsion (water with benzene) and attraction (hydrogen bonding) are acknowledged, 

they should work against each other.  Therefore, all enantiomer interactions with mobile 

phase were assigned the breaking probability of 0.5 (no attraction or repulsion).   

 Enantiomer to enantiomer interaction also has competing interactions.  

Hydrophobic attraction may occur between benzene portions of the enantiomers and 

hydrogen bonding attraction between the alpha hydroxy acids may occur.  Nevertheless 

repulsing interactions will occur when the opposite portions of the enantiomers interact, 

therefore enantiomer interactions were assigned the breaking probability of 0.5. 

 Mobile phase interactions with -cyclodextrin are a little more complex since 

water (W1) and acetonitrile (W2) will behave differently in the hydrophobic interior and 

hydroxyl groups of the cyclodextrin.  At the B0 cells of the cyclodextrin, which represent 

both the secondary hydroxyl sites and the upper hydrophobic interior of the cyclodextrin, 

water is attracted due to hydrogen binding but repelled due to the hydrophobicity.  Since 

these forces are opposite, a breaking probability of 0.5 is assigned.  B1 represents the 

stronger hydrophobic interior of the cyclodextrin, an environment where water would be 

repelled.  Therefore a breaking probability of 1.0 is assigned between water and B1.  B2 

cells denote the primary hydroxyl groups that water will be attracted to due to hydrogen 

binding.  The breaking probability between water and the B2 cells follows the same 

probability of water-water interactions, varying with temperature described later.  The 
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exterior of the -cyclodextrin (C0) is considered to have no attractive or repulsive forces 

with either mobile phase solvent and has a breaking probability of 0.5 with each. 

 Like water, acetonitrile has the same competing interactions as water at B0 and 

is assigned a breaking 0.5.  In the hydrophobic interior of the cyclodextrin acetonitrile is 

not repelled like water and has a breaking probability of 0.5.  At the primary hydroxyl 

groups, acetonitrile may have some attraction and repulsion and is therefore given a 

value of 0.5 (see Table 7). 

 

Table 7: Breaking probability and joining factors for mandelic acid and brompheniramine 

with mobile phase cells. 

Interaction PB J 

A0-3 W1 0.5000 0.7079 

D0-3 W2 0.5000 0.7079 

        

A0-3 A0-3 0.5000 0.7079 

A0-3 D0-3 0.5000 0.7079 

D0-3 D0-3 0.5000 0.7079 

        

W1 B0 0.5000 0.7079 

W1 B1 1.000 0.1259 

W1 B2 vary with temperature vary with temperature 

W2 B0 0.5000 0.7079 

W2 B1 0.5000 0.7079 

W2 B2 0.5000 0.7079 

 

 Solvents of the mobile phase interact but vary with temperature.  Since 

temperature variation in the chromatographic system will be studied, then these 

interaction  changes need to be accounted for.  Water breaking probabilities vary with 
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temperature (Kier, Seybold, and Cheng 2005).   Acetonitrile breaking probabilities vary 

with temperature but are different than water since its liquid range is -45.7C to 81.6C 

(Weast 1988) (see Table 8).  Breaking probabilities of 0.00 to 1.00 are used to cover the 

liquid range of acetonitrile temperature. 

 

Table 8: Breaking probability and joining factors for water (W1) and acetonitrile (W2) 

with each other. 

 
Temperature, C 

 
24 31 37 44 50 57 

W1-W1             

PB 0.240 0.310 0.370 0.440 0.500 0.570 

J 1.74 1.36 1.11 0.871 0.708 0.556 

              

W1-W2 
W2-W2             

PB 0.544 0.599 0.647 0.702 0.749 0.805 

J 0.608 0.503 0.426 0.352 0.300 0.247 

 

 

3.3.3.3 Development of model equations for cyclohexylphenylglycolic acid 

In the development of model equations for mandelic acid and brompheniramine, 

several types of interactions were considered.  To study these interactions further 

another enantiomer set was chosen, cyclohexylphenylglycolic acid.  It is similar to 

mandelic acid except that a hydrogen has been replaced with cyclohexane (see Figure 

16).  Where mandelic has minimal chiral separations since the only chiral discriminating 

characteristic is the different interactions of the alpha hydroxy acid, 

cyclohexylphenylglycolic acid has the potential for different interactions between the 
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benzene and cyclohexane groups in the interior of the –cyclodextrin.  Equations 5, 7, 

and 8 should be used to calculate the appropriate breaking probabilities, but they need 

to be adapted to the new molecule being analyzed.  

With O-HO having a bond strength of ~5.0 kcal/mole (Ege 2003), 

cyclohexylphenylglycolic acid has a possible total hydrogen bonding potential of 15.0 

kcal/mole.  This represents the highest hydrogen bonding potential due from the alpha 

hydroxy acid with the secondary hydroxyl groups of -cyclodextrin.  Taking this into 

account, a maximum PB of 0.05, and a starting value of 0.50, results in the equation for 

the breaking probability of A0 and D0 with cell B0: 
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Eq. 10  

 0.50, Equal attraction and repulsion value 

 Hsec., Potential hydrogen bonding for enantiomer (additive of O atoms) 

 15.0 kcal/mole, Maximum hydrogen bonding potential 

 0.45, Maximum decrease in breaking probability 

 

A breaking probability for the interior cavity of β-cyclodextrin takes into account, 

van der Waals forces, hydrophobicity for the portion of analyte in β-cyclodextrin, and 

steric hindrance inside β-cyclodextrin.  Hydrogen bonding in the interior of the β-
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cyclodextrin is no longer incorporated since neither benzene or cyclohexane are likely to 

interact in this manner. 

Cyclohexylphenylglycolic acid contains both a benzene and cyclohexane that 

may enter the –cyclodextrin hydrophobic interior.  It has been shown with 

brompheniramine that different groups attached to the chiral carbon can have 

preferential interaction with the interior of the –cyclodextrin (Durham 1996).  However, 

benzene and cyclohexane do not differ enough in their van der Walls volume (79.85Å3 

and 98.66Å3) (Zhoa, Zissimos et al. 2003) or hydrophobic binding potential (4.6Å and 

5.8Å) (Kakitani and Yomosa et al. 1980) to explain significant chromatographic 

separation.  It has been shown with mandelic acid that the phenyl group preferably 

enters the –cyclodextrin cavity, but there is also enough volume for cyclohexane to 

enter either interchangeably or simultaneously.  Other studies have demonstrated this 

type of interaction, as in fenoprofen (Choi, Jung et al. 2000) where one enantiomer 

prefers the insertion on one benzene ring into the –cyclodextrin, while the other prefers 

both benzene rings (161Å3 van der Waals volume) to form interactions within the –

cyclodextrin.  Combined, benzene and cyclohexane have a van der Waals volume 

178Å3 compared to the internal volume of –cyclodextrin 262Å3 (Saenger, Takaha et al. 

1998). Due to cyclodextrin’s ability to undergo conformational changes and that they 

have two open ends, it is possible for even larger molecules to enter β-cyclodextrin 

partially (Chen, Gilson et al. 2004).  Since cyclohexane and –cyclodextrin may change 

their spatial conformation, one enantiomer of cyclohexylphenylglycolic acid may have 

this type of interaction while the other enantiomer has only the original benzene 
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interaction.  Chromatographic retention and selectivity have been demonstrated to 

improve as the hydrogen on the chiral center of mandelic acid is replaced with larger 

substituted groups (Feitsma, Zeeuw et al. 1985), evidence that the second group plays 

an important role in increasing the selectivity of the retention interaction.  Therefore the 

proposal that cyclohexane plays a role in the interaction of retention will be incorporated 

into the model.  d-cyclohexylphenylglycolic acid (D cell) is retained the least in the 

system studied (Feitsma, Zeeuw et al. 1985) and will be modeled with the phenyl group 

entering the –cyclodextrin interior, while l-cyclohexylphenylglycolic acid (A cell) will be 

modeled with the phenyl and/or cyclohexane interacting with the –cyclodextrin interior.   

As explained in section 3.3.2.1, one of the strongest bonding forces occurring 

between enantiomers and the β-cyclodextrin cavity is hydrophobicity.  Benzene and 

cyclohexane combined have a maximum hydrophobic bonding potential (W) at 10.4 

kcal/mole.  Since neither the phenyl or cyclohexane group have additional groups 

attached, steric hindrance will not be included. 

 Once more, a breaking probability of 0.5 means that there is equal bonding 

attraction and repulsion force between the analyte and β-cyclodextrin, which is the 

starting value for PB.  van der Waals and hydrophobic bonding combine to have a total 

potential bonding energy of 11.4 kcal/mole (see Table 9).   

 

 

 



73 

 

Table 9: Bonding Energy Contributions for PB(B0,1) with A and D1-3. 

     max kcal/mole % contribution Contribution to 0.45 of PB(B0,1) 

van der Waals 1.0 8.8 0.040 

Hydrophobic 10.4 91.2 0.410 

 

Taking into account the attracting interactions involved, the resulting equation for the 

breaking probability of A1-3 and D1-3 with B0 and B1 is shown in equation 11: 
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Eq. 11 

  

V, van der Waals volume of portion of enantiomer in cyclodextrin cavity 

 178.5 Å3, Benzene and cyclohexane van der Waals volume 

 0.040, van der Waals contribution to 0.45 of PB(B0,1) 

 W, Hydrophobic bonding energy of enantiomer in cyclodextrin cavity 

 10.4 kcal/mole, Modeled maximum hydrophobic bonding potential 

 0.410, Hydrophobic contribution to 0.45 of PB(B0,1) 

 

As in equation 8, the phenyl or cyclohexane groups will not have an attraction to 

the primary hydroxyl groups due to their hydrophobic nature.  Therefore, there should 
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be a repulsion between the two.  Equation 12 is identical to equation 8 except the  

maximum hydrophobic energy is now increased: 
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 W, Hydrophobic energy of enantiomer in cyclodextrin cavity 

 10.4 kcal/mole, Modeled maximum hydrophobic energy potential 

0.45, Maximum inhibition of PB(B2) 

 

Repulsion due to the hydrophobicity of the phenyl cyclohexane groups will increase the 

value of PB(B2) with sides A1-3 and D1-3 of the cyclohexylphenylglycolic acid 

enantiomers.   
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Figure 16: Cyclohexylphenylglycolic acid (CHPGA). 
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3.3.3.4 Development PB values for cyclohexylphenylglycolic acid 

Using the variables discussed in the previous section, their values are 

determined for each enantiomer (see Table 10).  The breaking probabilities with 

corresponding joining factors are calculated for the cyclohexylphenylglycolic acid 

enantiomers using equations 10, 11, and 12 for their interactions with -cyclodextrin 

(see Table 11).   

 

Table 10: Equation variable values for cyclohexylphenylglycolic acid enantiomers. 

 V W Hsec 

l-Cyclohexylphenylglycolic acid (A) 178.51 10.4 15 

d-Cyclohexylphenylglycolic acid (D) 79.85 4.6 15 

 

 

 

 

 

 

 

 

 

 

 

  



77 

 

Table 11: Breaking probability and joining factors for l-Cyclohexylphenylglycolic acid 

and d-Cyclohexylphenylglycolic acid with –cyclodextrin cells. 

Interaction 

l-Cyclohexylphenylglycolic acid  PB J 

A0 B0 0.0500 3.350 

A0 B1 1.000 0.1260 

A0 B2 1.000 0.1260 

A1 B0 0.0500 3.350 

A1 B1 0.0500 3.350 

A1 B2 0.9500 0.1500 

A2 B0 0.0500 3.350 

A2 B1 0.0500 3.350 

A2 B2 0.9500 0.1500 

A3 B0 0.0500 3.350 

A3 B1 0.0500 3.350 

A3 B2 0.9500 0.1500 

d-Cyclohexylphenylglycolic acid PB J 

D0 B0 0.0500 3.350 

D0 B1 1.000 0.1260 

D0 B2 1.000 0.1260 

D1 B0 0.3008 1.409 

D1 B1 0.3008 1.409 

D1 B2 0.6990 0.3560 

D2 B0 0.3008 1.409 

D2 B1 0.3008 1.409 

D2 B2 0.6990 0.3560 

D3 B0 0.3008 1.409 

D3 B1 0.3008 1.409 

D3 B2 0.6990 0.3560 

 

 

Interactions between A0 and D0 representing the alpha hydroxy acid and the 

hydrophobic interior of the -cyclodextrin are unlikely and were assigned a breaking 

probability of 1.  All other interactions involving mobile phase solvents and enantiomers 

are values in Tables 7 and 8. 
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3.4 Conclusions 

Once the physical environment of the model was defined, the breaking 

probabilities and their accompanying joining factors of the interactions had to be 

determined.  To determine the breaking probabilities, the appropriate equations to do so 

had to be developed for recognized chemical interaction forces.  This was an 

evolutionary process as the model was expanded from one-to-one general analyte 

interactions with -cyclodextrin, to enantiomer retention studies, and eventually 

expansion to a chromatographic scale. 

With the first interactions studied being the testing of the model for basic 

functionality, the equation were rather straight forward.  A solid foundation in these 

equations was critical as the model was expanded to comparing results to analyte 

complex stability constants. 

Testing enantiomeric behavior expanded the model to use variegated cells which 

proved critical in studying more complex enantiomers.  New interaction energies were 

introduced into the equations.  It should be emphasized that the goal was to incorporate 

the additional interaction energies involved into the model at an appropriate level, not to 

determine their exact values that occur at the molecular level.  As the model was 

expanded to the chromatographic scale, many more interactions needed to be 

incorporated into the model.  This resulted in new equations involving new interaction 

energies to consider.  The foundation of all equations are based on generally excepted 

chemical and physical properties of the molecules involved. 
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CHAPTER 4 Correlation of Model Results to Published Results 

 

4.1 Introduction 

The cellular automata model was developed in a stepwise manner, examining 

results of one type interaction and then expanding the model to a more complex one: 

 One-to-one analyte interactions with -cyclodextrin 

 One-to-one enantiomer interactions with -cyclodextrin 

 Chromatographic scale enantiomer interactions with -cyclodextrin 

 Chromatographic scale interactions with changing chromatography conditions 

At each point in the evolution of the model, it was evaluated against published modeled 

or laboratory results.   

 One-to-one analyte interactions were compared to complex stability constants of 

analytes and -cyclodextrin.  This demonstrated the models ability to form interactions 

of similar strength to published results.  One-to-one interactions between enantiomers 

and -cyclodextrin were modeled to compare results with the potential binding energies 

of the complexes formed.  Chromatographic conditions such as mobile phase solvent 

interaction and flow were not yet considered.  Although a good predictor for the potential 

for chromatographic separation, it is still limited since additional factors contribute the 

ability to separate and analyze peaks. 
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 Further expansion of the model to the chromatographic scale gives a better 

prediction of chromatographic separation since selectivity, peak tailing and resolution, 

and capacity factors are examined.  Interpretation of the model results become more 

complex as model raw data files are imported into Excel and graphed to create 

chromatograms. 

To compare the chromatographic model expansion results to previous one-to-one 

studies, mandelic acid and brompheniramine are again modeled and the results 

evaluated.  Conditions that affect chromatographic separation are then evaluated for 

cyclohexylphenylglycolic acid enantiomers: system temperature, mobile phase flow rate, 

pH of mobile phase, and injection volume.  The non-linear adsorption isotherms of the 

system are also examined. 

 

4.2 Correlation of model results to complex stability constants 

For the model to predict binding strengths between analytes and cyclodextrins, 

the relationship between the amount of time an analyte stays within the cyclodextrin 

versus log K must be understood.  To do this, twenty eight value sets (n=6) are used for 

the variables across the log K range of 0.25 – 5.5.  A comparison of log (iterations to 

escape) vs. log K gives a linear relationship (coefficient of determination,  0.9924) 

expressed as log(iterations to escape) = 0.5026 x log K +0.9394 (Figure 17).  This 

demonstrates a linear relationship with no bias, since the y intercept of 0.9394 means 

that a log K of 0 gives “iterations to escape” of 9.  As previously demonstrated, any 

iterations less than 13 represents no significant bonding. 
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Since analyte retention is now correlated to log K, and since the joining factor 

and breaking probability can be calculated from experimental log K values, the model is 

tested to see if it accurately predicts the retention order of different analytes when 

compared to experimental data.  Using 65 analytes whose log Ks were experimentally 

determined (Blokzijl and Engberts 1993) that span weak to strong retention with small to 

larger differences in log K, joining factor and breaking probability were determined for 

each using equations 3 and 4.  All analytes are run with a run time of 2000 iterations (n 

= 6).  The model accurately predicted the relative retention strength/elution order of all 

65 analytes (see Table 12).  The model’s %RSD for analytes ranged from 3.2 to 22.5%, 

which compares reasonably well with the experimental %RSD range of 0.4 to 45.8%.  

Additionally, it is clear that the model accurately predicts elution order for large and very 

small differences in log K, as in butanoic acid (log K = 1.511) and benzoate (log K = 

1.559).   
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Table 12: Experimental log K vs. model retention. 
 

Analytes Host 

Experimental Iterations >0.95 

%RSD 
Model 

% Increase Retention log K  %RSD mean (n=6) 

4-cyanophenol  2.24 0.4% 103.3 3.2%  

4-chlorophenol  2.43 0.4% 125.2 14.7% 21.1% 

cyclohexanone  1.34 4.5% 40.0 17.2%  

cyclohexanol  1.89 1.1% 83.5 10.0% 108.8% 

2,5-hexanediol  1.41 7.1% 50.3 4.7%  

1,5-hexanediol  1.54 3.9% 51.3 7.1% 2.0% 

1,6-hexanediol  2.01 1.0% 92.0 11.6% 82.8% 

1,2-hexanediol  2.27 4.0% 113.5 8.3% 125.5% 

3-hexanol  2.19 2.7% 115.7 20.6%  

2-hexanol  2.45 0.8% 141.2 13.9% 22.0% 

1-hexanol  2.58 1.9% 147.8 7.3% 27.8% 

(2-methoxyphenethyl)ammonium  1.14 2.6% 33.5 11.8%  

(3-methoxyphenethyl)ammonium  1.23 0.8% 39.5 17.9% 17.9% 

(4-methoxyphenethyl)ammonium  1.48 0.7% 54.3 16.5% 62.2% 

(1-methylhexyl)ammonium  2.642 0.2% 173.2 14.1%  

(1-methylheptyl)ammonium  3.053 0.2% 263.7 13.1% 52.3% 

2,7-naphthalenedisulfonate  0.98 6.1% 31.8 16.2%  

2-naphthalenedisulfonate  2.56 0.4% 147.0 17.4% 361.8% 

3-nitrophenol  2.09 1.0% 95.0 10.6%  

4-nitrophenol  2.34 1.7% 121.5 14.1% 27.9% 

2-nitrophenol  3.70 29.7% 515.5 8.3% 442.6% 

3-nitrophenolate  2.31 0.4% 116.5 12.9%  

4-nitrophenolate  3.26 2.1% 306.5 11.4% 163.1% 

3-nitrophenyl acetate  1.72 0.0% 63.7 15.5%  

4-nitrophenyl acetate  1.92 0.0% 72.5 20.4% 13.9% 

1,5-pentanediol  1.49 0.7% 51.5 20.8%  

1,2-pentanediol  1.89 1.6% 77.5 17.2% 50.5% 

3-pentanol  1.85 1.1% 81.5 9.7%  

2-pentanol  2.00 1.5% 94.8 15.9% 16.4% 

1-pentanol  2.44 0.8% 130.2 22.5% 59.7% 

1,2-propanediol  0.48 45.8% 16.3 20.8%  

1,3-propanediol  0.63 6.3% 21.5 15.8% 31.6% 

2-adamantylammonium  3.87 1.3% 625.7 20.1%  

1-adamantylammonium  3.95 1.3% 626.3 18.0% 0.1% 

1-adamantylmethylammonium  4.48 1.8% 1305.8 11.2% 108.7% 

butanoic acid  1.511 0.9% 51.8 11.3%  

benzoate  1.559 0.3% 59.2 11.0% 14.1% 

benzoic acid  2.737 0.1% 193.7 15.3% 273.6% 

trans-1,2-cyclohexanediol  2.00 2.0% 92.3 12.2%  

cis-1,2-cyclohexanediol  2.43 1.6% 137.5 16.3% 48.9% 

hexanoate  1.830 0.6% 74.5 22.0%  

hexanoic acid  2.467 0.3% 162.8 21.1% 118.6% 

3-(2-hydroxyphenyl)propionate  1.908 0.6% 89.2 15.2%  
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3-(4-hydroxyphenyl)propionate  2.473 0.2% 133.0 9.5% 49.2% 

3-O-methyldopamine  0.63 23.8% 18.5 16.1%  

4-O-methyldopamine  1.71 0.6% 70.0 12.0% 278.4% 

(3-methylphenyl)acetate  1.08 4.6% 28.5 10.1%  

(4-methylphenyl)acetate  1.61 1.2% 52.7 8.3% 84.8% 

naphthalene  2.83 0.0% 205.7 18.0%  

1-naphthaleneacetate  4.35 1.1% 1028.2 6.1% 399.9% 

1-naphthyl acetate  2.19 0.0% 94.5 16.1%  

2-naphthyl acetate  2.51 1.2% 138.3 12.9% 46.4% 

3-nitrophenolate  2.07 3.4% 96.2 12.4%  

4-nitrophenolate  2.76 0.7% 202.7 18.2% 110.7% 

pentanoate  0.92 23.9% 30.7 21.3%  

pentanoic acid  1.96 0.5% 79.2 17.9% 158.2% 

2-propanol  0.41 19.5% 14.2 15.5%  

1-propanol  0.65 21.5% 19.7 13.0% 38.8% 

4-chloro-4-[(4-hydroxyphenyl)azo]benzoate  4.16 0.5% 894.2 13.1%  

2-chloro-4-[(4-hydroxyphenyl)azo]benzoate  4.30 4.0% 953.2 10.4% 6.6% 

2-naphthalenesulfonate  1.58 1.9% 53.3 16.4%  

2,7-naphthalenedisulfonate  2.58 0.8% 156.2 13.4% 192.8% 

2-[(4-hydroxyphenyl)azo]benzoate  3.28 1.8% 324.3 12.8%  

3-[(4-hydroxyphenyl)azo]benzoate  4.04 0.2% 752.7 16.9% 132.1% 

4-[(4-hydroxyphenyl)azo]benzoate  4.15 1.2% 860.0 3.8% 165.2% 

 

Although the model accurately predicts analyte elution order, correctly 

determining log K from model retention would demonstrate  model accuracy when 

compared to experimental data.  Using the iterations to escape from the data collected 

and the rearranging of the equation relationship from Figure 17 to solve for log K, 

log(iterations to escape) = 0.5026 x log K + 0.9394, the model determined log K is 

compared to experimental values (see Figure 18).  The model and experimental log K 

have strong correlation with a coefficient of determination of 0.9960.  The model’s 

determined log K is slightly biased high with a slope of 0.9159 and an intercept of +0.15; 

however, the standard error of the slope is ±0.06 for model predicted log K and may 

contribute to this bias.  The experimental log K range of 0.25 to 5.5 originally correlated 

to joining factor and breaking probability may need adjusting to better represent the 
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strength of the complexes formed.  Additionally, the model is simplified verses 

experimental systems as previously explained which may contribute to the slight bias. 

To determine the predictive power of the model, several parameters were 

evaluated (Tropsha, Gombar et al. 2003) using generally accepted statistical tests for 

models of chemical properties:  
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 y , Average log K 
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2R , Coefficient of determination 

 2

0R , Coefficient of determination with intercept forced through origin 

 
Slope, 0.85 ≤ k ≤ 1.15 

 

If all parameters are met then the model demonstrated acceptable predictability.  

The cross-validated correlation coefficient was 0.9854, which being greater than 0.5 is  

indicative of a predictive model.  A coefficient of determination of 0.9960 has a suitable 

quality of the fit between the predicted values of the model and experimental values.  
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The coefficients of determination was 0.0131, confirming that the model’s slope does 

not differ greatly from one with an intercept through the origin.  A slope of 0.9727 when 

forced through the origin also showed minimal bias.  Additionally the mean prediction 

error was determined to be 0.0350 and a root mean squares error of 0.1065 

demonstrates accuracy throughout the predicted population.  It is concluded that the 

model is predictive within the boundaries of examining one-to-one molecular binding 

strengths between analytes and cyclodextrins.   
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Figure 17: Log(Escape Iterations) vs. log K across the log K range of 0.25 – 5.5, 

resulting in a linear relationship. 
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Figure 18: The model determined and experimental log K demonstrate a good 

correlation with a coefficient of determination of 0.9960.  
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4.3 Correlation of model results for enantiomeric chromatographic separations 

Results of the model were compared to published potential binding energies of 

the enantiomer-(-cyclodextrin) complexes and high performance liquid 

chromatography selectivity data (see Table 13 (Durham, D. 1996; Han and Armstrong 

1989) and Figure 19) demonstrating that the model accurately predicts enantiomer 

retention in -cyclodextrins and the lack thereof.  Using the determined values for PB(B0) 

and PB(B1,3), each enantiomer was run with enough iterations to allow the complex to 

terminate with 95% of the enantiomers leaving the cyclodextrin. This is a measure of the 

strength of the enantiomer-(-cyclodextrin) bonding interactions.   

 

Table 13: Model retention, potential energy differences, and high performance liquid 

chromatography results compared 

 Iterations to Escape 
(ITE) 

P.B.E. ITE P.B.E. 
HPLC  

Selectivity,  

MPB (S) 48.2 (1.18) 130.87 2.83 2.33 1.11 

MPB (R) 45.3 (1.20) 128.54    

IBP (S) 49.5 (1.10) 131.62 1.33 0.92 ns 

IBP (R) 48.2 (1.18) 130.70    

MA (S) 51.8 (0.94) 140.36 0.67 0.05 1.05 

MA (R) 51.2 (0.33) 140.31    

EF (RS) 51.5 (1.10) 137.65    

EF (SR) 51.7 (1.20) 137.66 0.17 0.01 ns 

PF (RR)  50.3 (0.83) 139.00    

PF (SS) 51.5 (1.58) 139.57 1.17 0.57 1.12 

BP (S) 52.0 (1.52) 140.49 5.17 6.80 1.13 

BP (R)  46.8 (1.38) 133.69    

 

The model predicts that brompheniramine would separate to the greatest extent 

with a difference in iterations to escape (ITE) of 5.17.  This agrees with the differences 

in potential binding energy (PBE) of enantiomer-(-cyclodextrin) complexes of 6.80 
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kcal/mole, where a value close to or greater than one predicts sufficient complexation 

for high performance liquid chromatography separation (Durham 1996).  Moreover, high 

performance liquid chromatography selectivity (, selectivity factor) for 

brompheniramine demonstrates the greatest selectivity at 1.13 (Durham 1996; Han and 

Armstrong 1989).  N-methylphenobarbitone is predicted to have the next greatest 

separation with an ITE of 2.83. This agrees with the published PBE of 2.33 kcal/mole 

and a selectivity of 1.11.  Pseudoephedrine is predicted to have separation by the 

model with an ITE of 1.17.  Published PBE for pseudoephedrine of 0.57 kcal/mole 

does not indicate much separation; however, a chromatographic selectivity of 1.12 

does.  NMR analysis has demonstrated that both pseudoephedrine and ephedrine have 

nearly identical positioning of the phenyl ring in the cyclodextrin cavity, and that any 

separation occurring is due to hydrogen bonding along the cyclodextrin outer edge 

(Mularz and Petersheim et al. 1988).  Therefore the pseudoephedrine separation 

occurring will be highly dependent on the surrounding mobile phase environment.   

Ibuprofen, mandelic acid, and ephedrine do not have significant chromatographic 

separation, with only mandelic acid having a selectivity factor of 1.05, while ibuprofen 

and ephedrine are not separated.  This agrees with model predictions for ephedrine 

(ITE of 0.17) and mandelic acid (ITE of 0.67), except ibuprofen has an ITE of 1.33 

predicting chromatographic separation.  Ibuprofen has an P.B.E. of 0.92 predicting the 

possibility of separation.  It appears that one-to-one modeling is insufficient in predicting 

ibuprofen selectivity. 

Model results are graphically displayed (see Figure 19) showing iteration to 

escape with their 95% confidence intervals as error bars.  It clearly displays the 
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separation of brompheniramine and N-methylphenobarbitone enantiomers, with less 

separation for ibuprofen. It also demonstrates lack of separation of mandelic acid, 

ephedrine, and pseudoephedrine.  This demonstrates that the model can predict 

enantiomer retention in -cyclodextrins and the lack thereof that agrees with published 

chromatographic separations (with the exception of pseudoephedrine), along with the 

degree of the retention relative to changes in potential binding energies of the 

complexes formed. 
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Figure 19: Iterations to Escape vs. enantiomers modeled with the 95% confidence 

interval expressed along the y-axis to graphically display separation and the lack of 

separation of enantiomers. 
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4.4 Correlation of model results for chromatographic scale separations 

4.4.1 Mandelic acid and brompheniramine model results  

4.4.1.1 Interpretation of model data into chromatograms 

Before the model data output can be compared to the selectivity of laboratory 

generated chromatograms, it must be transformed from columns of numbers in a 

Windows Notepad file into an Excel “X Y (Scatter)” graph (© Windows Corporation).  In 

order to do this several steps are involved. 

The cellular automata model output is a data file that reports cell population, 

location of D (R-enantiomer) and A (S-enantiomer) of mandelic acid, and 

brompheniramine in the following format: 

 Run iteration 

 Row 

 A average population at the above iteration 

 A standard deviation 

 D average population at the above iteration 

 D standard deviation 

The run iteration is the iteration in the run that is being observed.  Since runs go into 

thousands of iterations, it was decided to record every 10th iteration.  The row 

represents how far through the column a cell has moved, with row 204 being the end of 

the modeled column (see section 2.4.2).  The cell average population is the average 

population of cells A or D at that row at a specific point in time (e.g. iteration).  For the 

analysis of mandelic acid and brompheniramine, each run reported was the average of 
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60 runs.  This number of runs was reached by first only taking one run that repeated 10 

times, and reporting the average.  This did not provide good peak shape in the Excel 

generated chromatograms.  Peak population had not yet achieved enough 

reproducibility around the peak maximum to plot.  Peaks were split into several 

maximums.  As in the one-to-one interaction studies, it was decided to rerun the model 

5 more times and take the average of the 6 runs.  This resulted in a total of 60 runs.  

Excel chromatograms now had appropriate peak shape, with a single peak maximum 

that when retained longer resulted in wider peaks with greater tailing as in typical 

chromatography.  Therefore, a single run that repeated 60 times was performed.  

Comparison of the two approaches demonstrated that one run that repeats 60 times is 

the simplest approach resulting in the same peak shape as in the above average of 6 

runs. 

 Enantiomers cell location of A and D were examined when 90% (or 90 of the 100 

cells) were past the last –cyclodextrin cells at row 204.  With 90% of the enantiomer 

cells eluted from the stationary phase, the cell population was sufficient to generate 

Excel chromatograms.  At lower percentages of elution, peaks were distorted with a 

tailing shoulder that represented enantiomer cells still in the stationary phase.   This 

model measurement is taking a snapshot of cell location of every enantiomer cell at a 

particular iteration.  Note that the number of iterations for A and D will be different 

depending on their retention by the –cyclodextrin cells resulting a in degree of 

separation.  Once an iteration is determined for the average number of cells A where 90 

have moved beyond row 204, all row data for that iteration is imported into Excel.  This 
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is repeated for D cells.  Since this results in a large number of rows (i.e. 800 rows), the 

sum of every ten rows is determined and a new table is calculated (see Table 14). 

 

Table 14: Model data output for brompheniramine of iteration and cell location, A being 

Brompheniramine (S), and D Brompheniramine (R). 

row iteration A iteration D 

140 12580 0.1 11250 0.0 

150 12580 0.2 11250 0.1 

160 12580 0.7 11250 0.4 

170 12580 1.0 11250 0.7 

180 12580 2.1 11250 1.5 

190 12580 3.2 11250 3.9 

200 12580 4.8 11250 7.0 

210 12580 6.4 11250 11.6 

220 12580 9.0 11250 14.2 

230 12580 11.0 11250 16.9 

240 12580 13.1 11250 16.7 

250 12580 12.8 11250 11.0 

260 12580 11.0 11250 8.2 

270 12580 9.5 11250 4.2 

280 12580 6.8 11250 1.9 

290 12580 3.8 11250 1.0 

300 12580 2.5 11250 0.5 

310 12580 1.2 11250 0.2 

320 12580 0.4 11250 0.0 

330 12580 0.3 11250 0.0 

340 12580 0.1 11250 0.0 

total cells =  100   100 

 

Rows 140 to 349 were used since this range contained all 100 cells of both 

enantiomers.  Though, the difference between time of elution from the stationary phase, 
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the difference in iterations, has not been accounted for as can be seen in the Excel 

chromatogram (Figure 20). 

 To correct for this, the time or iterations between the enantiomers needs to be 

accounted for since the earlier eluting enantiomer continues to move with flow as the 

other enantiomer is being retained in the column.  To do this the flow rate in 

rows/iteration was determined.  This was accomplished by setting the breaking 

probabilities of the analytes equivalent to the mobile phase and determining how many 

iterations it takes for unretained cells to move in just mobile phase beyond row 205.  By 

doing this the flow rate is determined and the row position of the early eluting D cells 

can be calculated (see Table 15): 

 

  FlowIIRR DAD             Eq. 12 

 RD, Row for D population 

 R, Row uncorrected 

 IA, Iteration for cells A 

 ID, Iteration for cells D 

 Flow, rows/iteration 
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Table 15: Model data output for brompheniramine with cell location D adjusted for 

mobile phase flow. 

Row Row A Row adjusted for flow D 

140 140 0.1 179 0.0 

150 150 0.2 189 0.1 

160 160 0.7 199 0.4 

170 170 1.0 209 0.7 

180 180 2.1 219 1.5 

190 190 3.2 229 3.9 

200 200 4.8 239 7.0 

210 210 6.4 249 11.6 

220 220 9.0 259 14.2 

230 230 11.0 269 16.9 

240 240 13.1 279 16.7 

250 250 12.8 289 11.0 

260 260 11.0 299 8.2 

270 270 9.5 309 4.2 

280 280 6.8 319 1.9 

290 290 3.8 329 1.0 

300 300 2.5 339 0.5 

310 310 1.2 349 0.2 

320 320 0.4 359 0.0 

330 330 0.3 369 0.0 

340 340 0.1 379 0.0 

  total cells =  100   100 

 

With the corrected row position for D cells, new Excel chromatograms are generated 

See Figure 21 for brompheniramine and Figure 22 for mandelic acid enantiomers.  The 

Excel chromatograms were generated using a “X Y (Scatter)” chart with straight lines 

and a moving average of 2. It should be noted that peaks are in order of row location, 

therefore they are in the opposite order of typical chromatograms.  Additionally the 

peaks themselves are reversed in shape with tailing being on the left side of the peak.  

For this study only selectivity is being evaluated and compared to published results from 
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section 4.3, therefore peak shape and elution order will not be altered since this will not 

affect selectivity calculations. 
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Figure 20: Excel chromatogram of brompheniramine enantiomers without iterations 

accounted for.  
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Figure 21: Excel chromatogram of brompheniramine enantiomers. 

  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

130 180 230 280 330 380

C
e

ll 
P

o
p

u
la

ti
o

n
 

Corrected Row 

2 per. Mov. Avg.
(Brompheniramine (S))

2 per. Mov. Avg.
(Brompheniramine (R))



100 

 

 

.  

 

Figure 22: Excel chromatogram of mandelic acid enantiomers. 
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4.4.1.2 Mandelic acid and brompheniramine results evaluation 

In high performance chromatography, the selectivity between peaks on a 

chromatogram is calculated by: 

 

'' / AB kk              Eq. 13 

 k’B = (tR – t0) / t0 , Retention factor of analyte B 

 k’A = (tR – t0) / t0 , Retention factor of analyte A 

 tR, Retention time of analyte 

 t0, Void retention time 

Since the Excel generated chromatograms are not traditional and do not have a void 

retention time, selectivity was evaluated by two different techniques.  First by finding the 

row location of the population maximum for the enantiomer from data as in Table 15.  

The ratio of the row location for each enantiomer set was determined.  Another 

approach was to take the ratio of the number of iterations to elute for the enantiomers.  

Results were the compared to published results  in Table 16. 

 

Table 16: Selectivities of modeled enantiomers vs. published selectivities. 

 Selectivity 

Published 

Selectivity 

by Row 

Selectivity 

by Iteration 

Mandelic acid 1.05 1.01 1.01 

Brompheniramine 1.13 1.12 1.12 
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 Mandelic acid had a laboratory selectivity of 1.05, resulting in hardly any 

separation (Durham 1996).  Evaluating the model results, selectivity by maximum row 

population gave a value of 1.01 and by iteration a value of 1.01.  While these values are 

lower than laboratory results, the model accurately predicts that insufficient separation 

will occur.  Brompheniramine has a greater laboratory separation with a selectivity of 

1.13, while the model predicts a row and iteration selectivity of 1.12 and 1.12, 

respectively.  Here, the model correctly predicts brompheniramine enantiomer 

selectivity with greater chromatographic separation.  Therefore, the model accurately 

predicts the lack of chromatographic selectivity in mandelic acid while predicting greater 

selectivity with brompheniramine enantiomers. 

 Predicting chromatographic selectivity is useful; however, it does not consider all 

of the measurements on how well the peaks are separated.  Brompheniramine 

enantiomers have greater selectivity but are still not baseline resolved (see Figure 21). 

Peak tailing and resolution provide even more information on prediction of peak 

separation.  To accomplish this, more information from the model results is needed. 

 

4.4.2 Cyclohexylphenylglycolic acid model results 

4.4.2.1 Interpretation of model data into chromatograms  

In predicting the chromatographic separation of cyclohexylphenylglycolic acid 

enantiomers, more than selectivity is needed.  Peak shape needs to be examined.  To 

accomplish this more information from the model is extracted.  Along with flow rate, void 

retention time will be determined.  From this, capacity factors will be compared to 

published values. Tailing factors and resolution will be determined manually from the 
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Excel chromatograms (see Figures 23 and 24 respectively). With this information, 

enantiomer separation is examined more closely.  

It was previously demonstrated that a run with 60 repetitions produced Excel 

chromatograms with appropriate peak shape (section 4.4.1.1).  To run with a number of 

repetitions that produces reliable results, but is also efficient, several runs were made 

and the chromatograms were evaluated.  Runs with 10, 50, and 100 repetitions were 

performed. Ten repetitions resulted in a peak shape that was distorted and not ideal.  

Although for examining selectivity and a rough estimation for resolution, 10 repetitions 

may be sufficient.  Fifty repetitions had appropriate peak shape with a single maximum 

and peak tailing.  One hundred repetitions did not improve the precision of selectivity 

and only a slight improvement on peak shape.  Therefore 50 repetitions was chosen, 

and all runs preformed going forward were run this way. 

Void retention (I0 in iterations) was determined by setting breaking probabilities of 

the analytes equivalent to the mobile phase and determining how many iterations it 

takes for unretained cells to move through the stationary phase cells beyond row 205.  

Flow rate (rows/iteration) was then determined by taking the 205 rows the unretained 

analytes traveled and dividing by the void retention.  Retention factors may now be 

determined: 

 

TIIIk R /)/)(( 00
'              Eq. 14 

 IR, Retention iterations of analyte 

 I0, Void retention iterations 
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 T, Tailing factor of analyte 

The number of retention iterations represents when 99% (or 99 of the 100 cells) are 

past the last –cyclodextrin cells at row 204.  This is an increase in the percentage of 

90% from the previous analysis of mandelic acid and brompheniramine.  Measuring at 

99% elution from the –cyclodextrin stationary phase gave greater repeatability of the 

peak shape; however, the retention iteration is the iteration for elution at the tail end of 

the peak.  To account for peak shape, the retention factor is divided by the tailing factor.  

Selectivity is now calculated directly from equation 15. 

 

'' / DA kk              Eq. 15 

 k’D = Retention factor of analyte D 

 k’A = Retention factor of analyte A 

 

 As before with mandelic acid and brompheniramine, once an iteration is 

determined for the average number of cells A, where 99 have moved beyond row 204, 

all row data for that iteration is imported into Excel.  This is repeated for D cells.  Every 

ten rows are summed (see Table 17); however, the difference between time of elution 

from the stationary phase, the difference in iterations of A (l-cyclohexylphenylglycolic 

acid) and D (d-cyclohexylphenylglycolic acid), has not yet been accounted for. 
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Table 17: Model data output at 24C of iteration and cell location, A being l- 

cyclohexylphenylglycolic acid, and D d-cyclohexylphenylglycolic acid. 

 

 

  

Row Iteration A Iteration D Row Iteration A Iteration D

10 9390 0.0 6490 0.0 410 9390 5.9 6490 2.1

20 9390 0.0 6490 0.0 420 9390 6.4 6490 1.4

30 9390 0.0 6490 0.0 430 9390 5.2 6490 0.6

40 9390 0.0 6490 0.0 440 9390 5.8 6490 0.3

50 9390 0.0 6490 0.0 450 9390 5.9 6490 0.1

60 9390 0.0 6490 0.0 460 9390 5.6 6490 0.2

70 9390 0.0 6490 0.0 470 9390 6.0 6490 0.0

80 9390 0.0 6490 0.0 480 9390 5.3 6490 0.0

90 9390 0.0 6490 0.0 490 9390 4.4 6490 0.0

100 9390 0.0 6490 0.0 500 9390 4.1 6490 0.0

110 9390 0.0 6490 0.0 510 9390 3.5 6490 0.0

120 9390 0.0 6490 0.0 520 9390 1.8 6490 0.0

130 9390 0.0 6490 0.0 530 9390 1.5 6490 0.0

140 9390 0.0 6490 0.0 540 9390 1.1 6490 0.0

150 9390 0.1 6490 0.1 550 9390 0.4 6490 0.0

160 9390 0.1 6490 0.1 560 9390 0.3 6490 0.0

170 9390 0.1 6490 0.1 570 9390 0.2 6490 0.0

180 9390 0.2 6490 0.2 580 9390 0.1 6490 0.0

190 9390 0.1 6490 0.2 590 9390 0.0 6490 0.0

200 9390 0.1 6490 0.2 600 9390 0.0 6490 0.0

210 9390 0.2 6490 0.2 610 9390 0.0 6490 0.0

220 9390 0.1 6490 0.2 620 9390 0.0 6490 0.0

230 9390 0.1 6490 0.6 630 9390 0.0 6490 0.0

240 9390 0.2 6490 1.4 640 9390 0.0 6490 0.0

250 9390 0.3 6490 2.8 650 9390 0.0 6490 0.0

260 9390 0.3 6490 3.2 660 9390 0.0 6490 0.0

270 9390 0.7 6490 3.8 670 9390 0.0 6490 0.0

280 9390 0.6 6490 4.8 680 9390 0.0 6490 0.0

290 9390 0.6 6490 5.4 690 9390 0.0 6490 0.0

300 9390 0.7 6490 5.6 700 9390 0.0 6490 0.0

310 9390 1.1 6490 7.1 710 9390 0.0 6490 0.0

320 9390 1.3 6490 8.2 720 9390 0.0 6490 0.0

330 9390 1.6 6490 8.1 730 9390 0.0 6490 0.0

340 9390 2.2 6490 8.2 740 9390 0.0 6490 0.0

350 9390 2.1 6490 7.7 750 9390 0.0 6490 0.0

360 9390 3.3 6490 7.7 760 9390 0.0 6490 0.0

370 9390 3.9 6490 6.6 770 9390 0.0 6490 0.0

380 9390 4.5 6490 6.1 780 9390 0.0 6490 0.0

390 9390 5.9 6490 3.9 790 9390 0.0 6490 0.0

400 9390 6.0 6490 2.9 800 9390 0.0 6490 0.0

36 100total cells = 
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Enantiomer population row position is now determined by knowing the 

enantiomer iteration, row position, and void iteration : 

 

10000/)( 0IIRowRow RA             Eq. 16 

 RowA, Row relative position adjusted for iteration 

Row, Row position unadjusted 

 IR, Retention iterations of analyte 

 I0, Void retention iterations 

 10000, factor to normalize RowA to a manageable number 

 

With the row position now representing a relative position to the time the enantiomers 

were retained by the stationary phase to each other and the void retention (see Table 

18), Excel chromatograms are generated for cyclohexylphenylglycolic acid using a “X Y 

(Scatter)” chart with straight lines and a moving average of 6 (see Figure 25). Using a 

straight line plot gave point to point lines, making it difficult to determine the peak 

tangent lines for calculation of resolution (see Figure 24).  A moving average of 6 was 

used in the Excel plots to better define the peaks curvature that eliminated this problem.  

Note that the peaks are reversed in shape with tailing being on the left side of the peak.  

To correct this, the row populations of each enantiomer are reversed and re-plotted 

resulting in a more conventional chromatogram (see Figure 26). 
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Table 18: Model data output at 24C of adjusted cell location for retention, A being l- 

cyclohexylphenylglycolic acid, and D d-cyclohexylphenylglycolic acid.  

 

 

 

Row

Row adjusted

for Retention A

Row adjusted

for Retention D Row

Row adjusted

for Retention A

Row adjusted

for Retention D

10 8 0.0 5 0.0 410 318 5.9 199 2.1

20 16 0.0 10 0.0 420 326 6.4 204 1.4

30 23 0.0 15 0.0 430 334 5.2 209 0.6

40 31 0.0 19 0.0 440 341 5.8 214 0.3

50 39 0.0 24 0.0 450 349 5.9 219 0.1

60 47 0.0 29 0.0 460 357 5.6 224 0.2

70 54 0.0 34 0.0 470 365 6.0 228 0.0

80 62 0.0 39 0.0 480 372 5.3 233 0.0

90 70 0.0 44 0.0 490 380 4.4 238 0.0

100 78 0.0 49 0.0 500 388 4.1 243 0.0

110 85 0.0 53 0.0 510 396 3.5 248 0.0

120 93 0.0 58 0.0 520 404 1.8 253 0.0

130 101 0.0 63 0.0 530 411 1.5 258 0.0

140 109 0.0 68 0.0 540 419 1.1 262 0.0

150 116 0.1 73 0.1 550 427 0.4 267 0.0

160 124 0.1 78 0.1 560 435 0.3 272 0.0

170 132 0.1 83 0.1 570 442 0.2 277 0.0

180 140 0.2 87 0.2 580 450 0.1 282 0.0

190 147 0.1 92 0.2 590 458 0.0 287 0.0

200 155 0.1 97 0.2 600 466 0.0 292 0.0

210 163 0.2 102 0.2 610 473 0.0 296 0.0

220 171 0.1 107 0.2 620 481 0.0 301 0.0

230 178 0.1 112 0.6 630 489 0.0 306 0.0

240 186 0.2 117 1.4 640 497 0.0 311 0.0

250 194 0.3 122 2.8 650 504 0.0 316 0.0

260 202 0.3 126 3.2 660 512 0.0 321 0.0

270 210 0.7 131 3.8 670 520 0.0 326 0.0

280 217 0.6 136 4.8 680 528 0.0 330 0.0

290 225 0.6 141 5.4 690 535 0.0 335 0.0

300 233 0.7 146 5.6 700 543 0.0 340 0.0

310 241 1.1 151 7.1 710 551 0.0 345 0.0

320 248 1.3 156 8.2 720 559 0.0 350 0.0

330 256 1.6 160 8.1 730 566 0.0 355 0.0

340 264 2.2 165 8.2 740 574 0.0 360 0.0

350 272 2.1 170 7.7 750 582 0.0 365 0.0

360 279 3.3 175 7.7 760 590 0.0 369 0.0

370 287 3.9 180 6.6 770 598 0.0 374 0.0

380 295 4.5 185 6.1 780 605 0.0 379 0.0

390 303 5.9 190 3.9 790 613 0.0 384 0.0

400 310 6.0 194 2.9 800 621 0.0 389 0.0
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Figure 23: Technique of manual calculation of tailing factor on Excel chromatogram.  
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Figure 24: Technique of manual calculation of resolution on Excel chromatogram. 

 

  



110 

 

 

 

 

 

Figure 25: Excel chromatogram of cyclohexylphenylglycolic acid enantiomers at 24C 

with inverted cell populations. 
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Figure 26: Excel chromatogram of cyclohexylphenylglycolic acid enantiomers at 24C. 
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4.4.2.2 System temperature variation 

When complexes form between the enantiomers of cyclohexylphenylglycolic acid 

with -cyclodextrin, the strength of those complexes can be affected by temperature 

(Hinze 1981).  Because interactions of analytes with the interior of -cyclodextrin are 

slow relative to other chromatographic interactions (Feitsma, Zeeuw et al. 1985), slower 

mass transfer between the enantiomers and the interior of the -cyclodextrin can affect 

the resolution of the enantiomers.  Higher temperatures can increase the speed of this 

mass transfer, decreasing retention time while increasing peak resolution as in the 

modeled chromatographic conditions of 24C and 57C (see Figures 26 and 27).  This 

was demonstrated in the laboratory (Feitsma, Zeeuw et al. 1985).  The chromatographic 

system in Feitsma’s was run at 24, 31, 37, 44, 50, and 57 degrees Celsius.  Using the 

solvent cell populations from Table 1 and model probabilities and factors from Table 8, 

the model was run at these temperatures.   

Model results and published laboratory results (Feitsma, Zeeuw et al. 1985) are 

compared in Table 19 and Figure 28.   

 

Table 19: Chromatographic resolution of cyclohexylphenylglycolic acid enantiomers vs. 

temperature. 

Temperature, C 24 31 37 44 50 57 

Lab Resolution 1.41 1.47 1.47 1.57 1.53 1.63 

Model Resolution 1.24 1.32 1.35 1.46 1.53 1.64 

Lab Resolution calculated 1.14 1.25       1.51 
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It was first observed that the model predicted enantiomer resolutions did increase with 

an increase in modeled temperature, as in the laboratory results.  However, the slopes 

of the  model resolutions differed from laboratory results at 0.012 vs. 0.006 respectively.  

As can be seen in Figure 28, the plots of laboratory and model resolutions do not 

overlap.  In fact the greatest difference is at the lowest temperature of 24C.  This 

difference decreases as the temperature is increased, with the laboratory and model 

results converging at 50C.  Upon examination of the laboratory results, it was 

discovered that peak resolution was calculated assuming a Gaussian shaped peak 

(Feitsma, Zeeuw et al. 1985) using the equation: 

)(2/)( ,, dldRlR ttR               Eq. 17 

 R, Resolution 

tR,l, Retention time of l-cyclohexylphenylglycolic acid 

tR,d, Retention time of d-cyclohexylphenylglycolic acid 

 l, Peak width of l-cyclohexylphenylglycolic acid at ½ peak height 

 d, Peak width of d-cyclohexylphenylglycolic acid at ½ peak height 

Of the three chromatograms provided in the publication at different temperatures (24, 

31, and 57C), they were found to have tailing factors that ranged from 3.9 to 2.3.  The 

assumption of a Gaussian shaped peaked therefore appeared non-ideal.  The 

chromatograms from the publication were enlarged on a copy machine and the 

resolutions were calculated manually using the technique from Figure 24. It was found 
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that the laboratory resolutions where now lower than the previously reported laboratory 

resolutions, with a slope of 0.011.  The change in model resolution was now more 

parallel to laboratory results.  Model results also fall in between the two different 

techniques of interpreting reported laboratory resolutions.   

There was still the question as to why model results and reported laboratory 

results converge as temperatures increase, agreeing at 50 and 57C.  Laboratory 

chromatograms show that d-cyclohexylphenylglycolic acid tailing factor decreases from 

3.88 at 31C to 2.25 at 57C.  While l-cyclohexylphenylglycolic acid decreased slightly 

from 2.67 to 2.50.  Therefore the peaks are becoming more Gaussian at higher 

temperatures and equation 17 is more appropriate to use as temperatures increase.  As 

the peaks become more Gaussian, resolution values from equation 17 will approach 

values calculated from baselines peak widths as in the model. 

Since higher temperatures decrease retention time of the enantiomers by 

increasing the speed of mass transfer, selectivity between the peaks may decrease as 

temperature increases.  This was demonstrated in the laboratory (Feitsma, Zeeuw et al. 

1985).  Model results and published laboratory results are compared in Table 20 and 

Figure 29.  Selectivity values of the model are nearly equivalent to the laboratory values 

as seen in Table 20.  When plotted vs. temperature, the decreasing slope of selectivities 

with increasing temperature of both laboratory and model results nearly overlap with 

identical slopes of -0.005. 
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 Table 20: Chromatographic selectivity of cyclohexylphenylglycolic acid enantiomers vs. 

temperature. 

Temperature, C 24 31 37 44 50 57 

Lab Selectivity 1.57 1.53 1.50 1.47 1.44 1.40 

Model Selectivity 1.56 1.53 1.50 1.48 1.42 1.38 

  

Model resolution values fall between two different techniques of interpreting 

laboratory peak resolution and the differences between model and laboratory results are 

explainable due to peak shape.  Therefore, it is correct in concluding that the model 

accurately predicts the resolution of cyclohexylphenylglycolic acid enantiomers under 

varying temperature conditions.  Additionally, the model accurately predicts the 

selectivity of the laboratory chromatographic results.  By this technique, the separation 

of cyclohexylphenylglycolic acid enantiomers can be modeled for chromatographic 

temperature optimization. 

 

 

  



116 

 

 

 

  

Figure 27: Excel chromatogram of cyclohexylphenylglycolic acid enantiomers at 57C. 
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Figure 28: Chromatographic resolution of cyclohexylphenylglycolic acid enantiomers vs. 

temperature. 
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Figure 29: Chromatographic selectivity of cyclohexylphenylglycolic acid enantiomers vs. 

temperature. 
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4.4.2.3 Mobile phase flow variation 

Although not evaluated in the laboratory separation of cyclohexylphenylglycolic 

acid enantiomers (Feitsma, Zeeuw et al. 1985), mobile phase flow impacts peak 

retention.  How the model responds to an increase and decrease in mobile phase flow 

would be valuable to evaluate verses conventional chromatography behavior.  The 

model has been run with a gravity factor of 2.0 (see section 2.4.1) representing the 

laboratory conditions of 1.0 mL/min.  Flow will be modeled at  25% 1.0 mL/min, or a 

gravity factor of 1.5 and 2.5 for all mobile phase cells and analyte cells.  In theory, 

selectivity, resolution, and tailing factors should not significantly change in a patterned 

manner.  Although random fluctuation in these should be expected.  Capacity factors of 

the peaks should increase with flow rate since the void volume is solely dependent on 

flow rate and analytes are dependent on flow rate and stationary phase retention that 

does not change proportionally with flow rate.  The mobile phase flow was altered and 

runs were performed under conditions of from section 3.3.3.3-4 at 24C.  Results are 

summarized in Table 21. 

 

Table 21: Modeled peak separation properties of cyclohexylphenylglycolic acid 

enantiomers at varying mobile phase flow rates 

 
d-cyclohexylphenylglycolic acid l-cyclohexylphenylglycolic acid 

 
75% 100% 125% 75% 100% 125% 

Selectivity 1.44 1.56 1.51       

Resolution 1.11 1.24 1.40       

Tailing factor 1.12 1.13 1.10 1.15 1.15 1.15 

Capacity factor 2.97 2.98 3.54 4.39 4.76 5.60 
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 Selectivity between the cyclohexylphenylglycolic acid enantiomers should not 

decrease or increase in a particular direction with changes in flow rate, since flow rate 

should affect enantiomer retention nearly equally.  At 75% of normal flow rate the 

selectivity decreased from 1.56 at 100% flow rate to 1.44; however, at a flow rate of 

125% selectivity decreased to 1.51.  Therefore, no pattern of change was observed and 

is consistent  normal chromatographic behavior. 

 Resolution between the enantiomers increased steadily from 1.11 to 1.40 as 

mobile phase increased from 75% to 125%.  At first this seams inconsistent with what 

would be expected.  Examining factors that contribute to peak resolution, it’s seen that 

selectivity was greater for 100% and 125% flow rates, which will increase peak 

resolution.  Additionally, with a 125% flow rate, the tailing factor for d-

cyclohexylphenylglycolic acid decreased to 1.10 versus the other flow rates of 75% and 

100%, 1.12 and 1.13 respectively.  This will further increase the resolution between the 

peaks.  It appears that increases in peak resolution as flow rate increases is not a result 

of the mobile phase flow rate, but the result of random fluctuations in the selectivity and 

tailing factors. 

 Tailing factors for l-cyclohexylphenylglycolic acid remained constant at 1.15 

throughout the mobile phase flow changes.  While d-cyclohexylphenylglycolic acid had 

tailing factors that fluctuated slightly with no pattern. 

 Capacity factors were determined by: 

 

0

0'
V

VV
k R                Eq. 18 
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 k’, Capacity factor  

VR, Retention volume = retention iteration x flow rate (rows/iteration) 

V0, Void volume = void retention x flow rate (rows/iteration) 

Capacity factors should increase with flow rate.  Additionally, analytes that are retained 

longer should have capacity factors that increase more than peaks with less retention 

since their retention volume is less impacted by flow rate due to slower mass transfer 

with the stationary phase.  d-cyclohexylphenylglycolic acid elutes first and had a 

capacity factor increase from 2.97 to 3.54, or a 119% overall increase from a flow rate 

of 75% to 125%.  l-cyclohexylphenylglycolic acid elutes last and had a capacity factor 

increase from 4.39 to 5.60, or a 128% increase.  Capacity factor changes were constant 

with what would be anticipated in a high performance liquid chromatography system. 

 

4.4.2.4 Mobile phase pH variation 

Changes in pH have been shown to have an effect on the chromatographic 

separation of cyclohexylphenylglycolic acid (Feitsma, Zeeuw et al. 1985).  Mandelic 

acid, which is structurally similar, was previously modeled in section 4.4.1.2, where 

selectivity was shown to be mainly dependent on the interactions of the alpha hydroxyl 

acid with the secondary hydroxyl groups of the -cyclodextrin. It is not unexpected then 

that the chromatographic separation of mandelic acid, with a pka of 3.85 (Weast 1988), 

is influenced by pH.  Using the same buffered mobile phase (pH of 4.2) from the 

separation of cyclohexylphenylglycolic acid enantiomers, mandelic acid enantiomers 
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separated very slightly. When the pH was increased to 6.5, the mandelic acid 

enantiomers were no longer separated (Feitsma, Zeeuw et al. 1985).  

Cyclohexylphenylglycolic acid only differs from mandelic acid by the substitution 

of the hydrogen on the chiral carbon of mandelic acid with cyclohexane.  At a pH of 4.2 

the enantiomers of cyclohexylphenylglycolic acid separate under laboratory conditions 

(Feitsma, Zeeuw et al. 1985) with a resolution of 1.14 (see Table 22).  When the pH of 

the phosphate buffer in the mobile phase is raised to 6.5, the resolution of the peaks 

decreases to 0.67 under laboratory conditions.  Although not fully understood, it was 

hypothesized by the authors that this is the result from differences in dissociations of the 

alpha hydroxy acids.  This results in a change of hydrogen bonding with the secondary 

hydroxyl groups of the -cyclodextrin, stronger for mandelic acid and 

cyclohexylphenylglycolic acid at a pH of 4.2 and weaker at 6.5.  This hypothesis will be 

investigated by modeling changes in the breaking probability from section 3.3.3.3 of A0 

and D0 (alpha hydroxy acid portion of cyclohexylphenylglycolic acid) with cell B0 

(secondary hydroxyl groups of the -cyclodextrin) from 0.05 for strong interaction to 

0.50, a neutral interaction.  Results of this model can be found in Table 22 and Figure 

30. 
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Table 22: The effect of pH on peak resolution and selectivity of cyclohexylphenylglycolic 

acid enantiomers. 

pH 4.2 6.5 

Lab Resolution 1.14 0.67 

Model Resolution 1.24 0.57 

      

Lab Selectivity 1.57 1.29 

Model Selectivity 1.56 1.06 

 

Both the laboratory and model’s resolution decreased significantly from a mobile 

phase pH of 4.2 to 6.5.  The resolution differences between the laboratory and model 

results are small (0.1) at both pHs.  As can be seen visually in the Excel 

chromatograms (Figure 26 for pH 4.2 and Figure 30 for pH 6.5), at a pH of 4.2 the 

cyclohexylphenylglycolic acid enantiomer peaks are clearly retained longer based on 

row position and peak overlap versus a pH 6.5.  Peak retention change is also 

consistent with laboratory results (Feitsma, Zeeuw et al. 1985), retention times 

decreasing with a pH of 6.5.   

Peak selectivity was likewise compared.  At a pH of 4.2, both the laboratory 

model results had a selectivity of 1.6.  When the pH of the mobile phase was changed 

to 6.5, laboratory selectivity decreased to 1.3, while the model selectivity decreased to 

1.1.  Although slightly different, the selectivity results both decreased significantly.   

Based on the model’s changes in peak resolution and selectivity at different pH, 

results agree with laboratory outcomes.  The model’s results support the hypothesis that 

a change in hydrogen bonding between the alpha hydroxy acid group of 

cyclohexylphenylglycolic acid with the secondary hydroxyl groups of the -cyclodextrin 
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plays a role in the enantiomeric separation.  To verify this experimentally, 

cyclohexylphenylglycolic acid could be structurally altered to replace the carboxylic acid  

and hydroxyl group with structures incapable of hydrogen binding while maintaining the 

chiral center and not causing steric interference that might change the interaction with 

-cyclodextrin.  Run under the same chromatographic system, the separation should be 

similar to that of cyclohexylphenylglycolic acid at a pH of 6.5. 
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Figure 30: Excel chromatogram of cyclohexylphenylglycolic acid enantiomers at pH 6.5. 
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4.4.2.5 Lowering sample injection vs. retention times 

In high performance liquid chromatography, retention of analytes on the 

stationary phase is affected by many factors.  Selection of the proper stationary phase 

and mobile phase are critical;  however, there are some factors that effect analyte 

retention that are not as easily to understand.  In a linear chromatographic system, the 

distribution of analyte in the column is represented by (Jonsson 1996): 

 

MCS cKc                Eq. 19 

 cs, Concentration of analyte in stationary phase  

cM, Concentration of analyte in mobile phase  

KC, Distribution constant 

 

As can be seen from equation 19, analyte movement through the column should not be 

impacted by overall analyte concentration resulting in a linear isotherm.  Under ideal 

conditions, changes in sample concentration should not change the analytes retention 

time.   

In chromatographic systems where there is peak tailing, convex adsorption 

isotherms typically predominate resulting in increased retention time with decreased 

sample amounts (Heftmann 1983).  However, when sample amounts are low, all 

distribution isotherms are likely to be linear (Jonsson 1996).   
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It has been observed with cyclohexylphenylglycolic acid enantiomers that as the 

amount of sample injected onto the column is reduced, the retention time of the 

analytes increases (Feitsma, Zeeuw et al. 1985).  At the lowest concentrations the 

increase in retention time is greatest and still increasing in a non-linear manner.  This 

phenomenon is not explained by traditional convex isotherms, since at lower 

concentrations the adsorption isotherm should become linear (Jonsson 1996). 

Laboratory conditions involved injecting approximately 11g of each 

cyclohexylphenylglycolic acid enantiomer onto the chromatographic system and 

sequentially reducing the amount in half, for concentration values of 100, 50, 25, 12.5, 

6.3, 3.1, and 1.6 percent of the original concentration.  To model this, enantiomer 

concentrations were changed similarly in concentration.  The number of cells for each 

enantiomer has been 100 for each (see section 2.4.2).  Enantiomer cell concentrations 

were reduced from 100 to 50, 25, 13, 6, 3, and 2 cells.   

Determining retention time of enantiomers in the model could no longer be 

determined by 99% elution and peak shape as has been done to this point, since at 

lower cell concentration (i.e. 2 and 3 cells) there is no tradition peak shape.  At these 

low levels of enantiomer cells, there is no cell population distribution to plot in Excel.   

Instead, retention time will be relatively compared by determining the iteration when the 

average cell concentration of one cell is past the stationary phase or beyond row 205.  

Using this approach, all cell concentrations can be compared in the same manner.` 

Model results at the different concentrations were then compared to published 

laboratory results (see Table 23).   
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Table 23: Impact on enantiomer retention from amount injected into the stationary 

phase.  

Relative Concentration 2 3 6 13 25 50 100 

d-CHPGA lab retention 1.14 1.13 1.11 1.09 1.06 1.03 1.00 

l-CHPGA lab  retention 1.20 1.17 1.15 1.11 1.08 1.04 1.00 

d-CHPGA model retention 1.35 1.24 1.19 1.11 1.06 1.05 1.00 

l-CHPGA model  retention 1.60 1.45 1.27 1.17 1.12 1.05 1.00 

 

Sample amounts were relative to the 100% level (100 cells for each enantiomer) and 

rounded to eliminate decimals, since cell population must be modeled in integer values.  

For laboratory results, retention times were normalized against the retention at 100% 

sample concentration.  Model retention iterations were normalized against the retention 

at 100 cell population.  In both the laboratory and model results, the retention of the 

enantiomers increased as sample amount decreased.  As can be seen in Figure 31, the 

model’s retention was nearly identical to laboratory results until relative concentration 

levels reached 6% and below.  Unlike laboratory conditions where dilution levels of 2% 

still result in many analyte molecules interacting, the model is limited to just 2 analyte 

cells.  The model does predict the increase in retention with changes in analyte 

concentration; however, it’s accuracy of the degree of change is limited when less than 

13 cells were modeled. 

There was peak tailing under all conditions (Feitsma, Zeeuw et al. 1985) in the 

chromatographic system studied, therefore, convex adsorption isotherms appear to 

drive the retention.  Yet, even at the most diluted samples the isotherms do not become 

linear as would be expected (Jonsson 1996).  This observation was not explainable by 
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the authors.  With all other parameters being held constant, it was only the sample 

concentration that was changing and affecting retentions.  The question is asked, since 

analytes have the ability to interact with each other, if the tendency towards analyte-to-

analyte interaction changes, does this impact the retention of analytes and how would 

this affect a convex isotherm? 

Previous model runs had a breaking probability between enantiomers of 0.5, 

meaning there is equal attraction and repulsion force between them.  These breaking 

probabilities between enantiomer cells A0-3 and B0-3 will be changed to have less 

interaction between themselves with a value of 0.80.  Analytes will be modeled for 

greater interaction between themselves with breaking probabilities of 0.20 and 0.35.  

Model runs and their interpretation will be the same as before.  Run results are 

summarized in Table 24.   

 

Table 24: Impact on enantiomer retention from amount injected into the stationary 

phase at varying analyte-to-analyte breaking probabilities. 

Relative amount 2 3 6 13 25 50 100 

d-CHPGA lab retention 1.14 1.13 1.11 1.09 1.06 1.03 1.00 

d-CHPGA model retention, PB = 0.20 1.23 1.16 1.08 1.04 1.01 1.00 1.00 

d-CHPGA model retention, PB = 0.35 1.31 1.23 1.10 1.07 1.03 1.01 1.00 

d-CHPGA model retention, PB = 0.50 1.35 1.24 1.19 1.11 1.06 1.05 1.00 

d-CHPGA model retention, PB = 0.80 1.38 1.30 1.21 1.11 1.08 1.04 1.00 

l-CHPGA lab  retention 1.20 1.17 1.15 1.11 1.08 1.04 1.00 

l-CHPGA model  retention, PB = 0.20 1.32 1.27 1.13 1.05 1.01 1.00 1.00 

l-CHPGA model  retention, PB = 0.35 1.50 1.33 1.23 1.13 1.05 1.03 1.00 

l-CHPGA model  retention, PB = 0.50 1.60 1.45 1.27 1.17 1.12 1.05 1.00 

l-CHPGA model  retention, PB = 0.80 1.64 1.50 1.34 1.18 1.10 1.06 1.00 
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Changing the strength of the interactions between enantiomers had an impact on the 

phenomenon of increasing retention time with decreased sample amounts.  This can 

best be examined by looking at how the individual enantiomers changed versus 

laboratory results graphically (see Figures 32 and 33).   

In Figure 32, the initial breaking probability conditions for d-

cyclohexylphenylglycolic acid enantiomer-to-enantiomer interactions are displayed 

versus the laboratory results.  As before, the model values for relative retention versus 

the 100% original amount of the enantiomer agrees with laboratory conditions at 

samples amounts greater 6%.  When the breaking probability of enantiomer interactions 

is increased to 0.80, modeling less enantiomer interactions, the relative retention values 

do not change significantly from a breaking probability of 0.50.  It may be that once 

repulsion between analytes reaches a certain strength and rapidly become dispersed in 

mobile phase, retention becomes solely driven by interactions with the stationary phase 

since analyte cells are no longer near each other.  Therefore continuing to increase the 

analyte-to-analyte repulsion has minimal impact. 

At sample amounts greater 6% the values remain similar to laboratory results, 

and at 6% and less retention increases significantly.  When the analyte-to-analyte 

breaking probability is lowered to 0.20 and 0.35 the results change.   

A breaking probability of 0.20 represents a stronger attraction between 

cyclohexylphenylglycolic acid cells.  Model results show that this type of attraction 

shows no change in relative retention with dilution of the sample down to 25%.  In this 

range there appears to be a linear isotherm.  At dilution values of 13 and 6%, relative 
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retention begins to increase but is still below laboratory results.  Not until dilution values 

of 3 and 2% do model values exceed experimental results and retain similarly as they 

did at higher breaking probabilities.  A breaking probability of 0.35 was modeled for the 

enantiomer with relative retention results falling between the breaking probabilities of 

0.20 and 0.50.  Depicting a movement from a linear to a convex adsorption isotherm.  

Similar results were found for l-cyclohexylphenylglycolic acid in Figure 33. 

This phenomenon is not explained by just a convex isotherm.  Although a convex 

isotherm is present, it is proposed that analyte-to-analyte interaction is playing a role in 

retention in addition to a convex isotherm adsorption of analyte-to-stationary phase.  As 

the attraction between analytes increases there is less of an increase in overall relative 

retention as sample amounts decreased.   Additionally, as the sample concentration 

becomes so low that analyte-to-analyte interactions become less likely to occur, the less 

significant analyte attraction has on retention.  Since changing the interactive forces 

between enantiomers would involve changing the mobile phase composition to make 

the environment more or less likely for solvation of the enantiomers, hence affecting 

analyte retention, this phenomenon would be difficult to analyze under laboratory 

conditions. 
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Figure 31: Relative concentration of enantiomers versus their relative retention under 

laboratory and model conditions. 
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Figure 32: Relative concentration of d-cyclohexylphenylglycolic acid enantiomer at 

different breaking probability factors versus relative retention under laboratory and 

model conditions. 
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Figure 33: Relative concentration of l-cyclohexylphenylglycolic acid enantiomer at 

different breaking probability factors versus relative retention under laboratory and 

model conditions. 
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4.5 Conclusion 

The proposed predictive model is based on correlation to experimentally 

determined complex stability constants and uses simple variable factors and 

probabilities to accurately determine the retention order of a wide variety of analytes 

and their complex strength to cyclodextrin stationary phases.   By using such a diverse 

and large number (968) of analytes to develop the model’s probability and factor 

equations, optimal modeling of one-to-one molecular binding strengths between 

analytes and cyclodextrins is achieved.   

A cellular automata model using probability rules and factors that are based on 

generally accepted chromatographic bonding forces between enantiomers and  -

cyclodextrin stationary phase gives a predictive tool for separation potential using 

chromatography.  The cellular automata model agrees with published potential binding 

energies of six sets of enantiomer-(-cyclodextrin) complexes and experimentally 

determined high performance liquid chromatography separation.   

At chromatographic scale the model accurately predicted the lack of separation 

of mandelic enantiomers and the separation of brompheniramine enantiomers 

previously modeled in one-to-one interactions.  By examining cyclohexylphenylglycolic 

acid enantiomers, the model accurately predicted both the selectivity and resolution of 

the enantiomer peaks at varying temperatures.  Mobile phase flow rate changes in the 

model changed peak retention and shape in the same manner expected in traditional 

high performance liquid chromatography.  Modeled changes in mobile phase pH agree 

with laboratory outcomes when examining peak resolution and selectivity.  Changes in 

injection volume resulted in an increase in retention time of the modeled enantiomers as 
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was observed in the published laboratory results.  However, the non-linearity of the 

change at low sample concentrations had not been explained.  This phenomenon is not 

explained by just a convex isotherm.  Although a convex isotherm is present, analyte-to-

analyte interaction may be playing a role in retention in addition to a convex isotherm 

adsorption of analyte-to-stationary phase.  Additionally, as the sample concentration 

becomes so low in the model that analyte-to-analyte interactions become less likely to 

occur, the less significance analyte attraction has on retention. 
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Chapter 5 Summary and Conclusions 

 

A cellular automata model written as a JavaTM application executed using Eclipse 

Classic as an integrated development environment was developed to analyze and 

predict the retention and chromatographic separation of enantiomers on -cyclodextrin 

stationary phases.  To date, the analytical process of high performance liquid 

chromatographic separation of enantiomers on cyclodextrins has not been modeled 

using cellular automata.  Current published models of analyte to cyclodextrin stationary 

phase interaction focus on molecular binding thermodynamics, relying on physical 

concepts involving energies and forces to guide the actions of molecules expressed in 

terms of differential and non-linear equations.  Results are wholly determined by the 

parameter sets used to describe the potential energy of the system on the initial 

conditions.  This limits the scope of these models due to their complexity, making them 

difficult to study additional binding interactions.  This first work in the area using cellular 

automata modeling, relies on mathematical systems of probability that are easily 

adaptable to different enantiomer analytical systems. 

  The model environment is designed in two main stages, one-to-one interactions 

and chromatographic scale. In one-to-one interactions between enantiomers and -

cyclodextrin, enantiomers are modeled and run individually to measure strength of the 
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interaction.  Results were then compared between the enantiomers to predict whether 

or not chromatographic separation is likely.   

In order for the model to be able to predict binding strengths of enantiomers to -

cyclodextrin, the relationship of the iterations of retention between an enantiomer and -

cyclodextrin versus complex stability constant (log K) is determined.  Twenty eight value 

sets are used for breaking probabilities throughout the log K range of 0.25 – 5.5.  A 

comparison of log (iterations to escape) vs. log K has a linear relationship (coefficient of 

determination,  0.9924) expressed as log(iterations to escape) = 0.5026 x log K +0.9394 

(Figure 17).  This demonstrates a linear relationship with no bias. 

With enantiomer retention correlated to log K, the model was tested to see if it 

accurately predicts the retention order of different analytes when compared to 

experimental data.  Using 65 analytes whose log Ks were experimentally determined 

(Blokzijl and Engberts 1993),  one-to-one interactions were modeled with cyclodextrin 

stationary phase that spanned weak to strong retention with small to larger differences 

in log K.  The model accurately predicted the relative retention strength of all 65 

analytes (see Table 12).    

Enantiomer retention was then modeled in on-to-one interactions to compare to 

published potential binding energies of the enantiomer-(-cyclodextrin) complexes and 

high performance liquid chromatography selectivity data (see Table 13 (Durham, D. 

1996; Han and Armstrong 1989) and Figure 19).  Breaking probabilities between the 

enantiomers and -cyclodextrin were determined for six sets of enantiomers.   

The model predicted that brompheniramine would separate the most with a 

difference in iterations to escape (ITE) of 5.17.  This agrees with the differences in 
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potential binding energy (PBE) of brompheniramine-(-cyclodextrin) complexes of 6.80 

kcal/mole where a value greater than one predicts sufficient complexation for high 

performance liquid chromatography separation (Durham 1996). The model predicts that 

N-Methylphenobarbitone to have the next greatest separation with an ITE of 2.83.  

This agrees with a PBE of 2.33 kcal/mole and a  of 1.11.  With model results of ITE 

of 1.17 pseudoephedrine has some separation potential.  PBE for pseudoephedrine is 

0.57 kcal/mole indicating not much separation, however a chromatographic selectivity of 

1.12 does.  NMR analysis has demonstrated that pseudoephedrine separation occurs 

due to hydrogen bonding along the cyclodextrin outer edge (Mularz and Petersheim et 

al. 1988).  Therefore, the separation occurring will be highly dependent on the 

surrounding mobile phase environment, which has not yet been accounted for in the 

model.  Ibuprofen, mandelic acid, and ephedrine do not have significant 

chromatographic separation.  This matches model predictions for ephedrine (ITE of 

0.17) and mandelic acid (ITE of 0.67).  Ibuprofen has an ITE of 1.33 predicting 

chromatographic separation.  Other one-to-one modeling techniques have predicted 

separation of ibuprofen; however, chromatographic separation is less likely.  It appears 

that one-to-one modeling is insufficient in predicting ibuprofen selectivity. 

Model results are graphically displayed (see Figure 19) showing iterations to 

escape.  It shows the separation of brompheniramine and N-Methylphenobarbitone 

enantiomers, with less separation for ibuprofen. It also demonstrates lack of separation 

of the other enantiomers.  The model is able to predict enantiomer retention in -

cyclodextrins and the lack thereof, with the exception of ibuprofen. 
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One-to-one interactions do not take into account many factors that affect 

chromatographic separations.  Therefore the model was expanded to represent a 

chromatographic scale.  From the one-to-one modeled interactions, mandelic acid and 

brompheniramine were run under chromatographic model conditions to compare 

results.  Mandelic acid had a laboratory selectivity 1.05 (Durham 1996), while model 

results by maximum row population gave a value of 1.01 and by iteration a value of 

1.01.  While these values are lower than laboratory results, the model accurately 

predicts the insufficient separation.  Brompheniramine had a greater laboratory 

separation with a selectivity of 1.13, while the model predicted a row and iteration 

selectivity of 1.12 and 1.12, respectively.  Consequently, the model accurately predicts 

the lack of chromatographic selectivity in mandelic acid while also predicting greater 

selectivity with brompheniramine enantiomers.  Predicting selectivity is helpful, though it 

does not consider how well the peaks are separated.  More information from the model 

was required to examine peak shape.   Flow rate and void retention time were 

determined, and from this capacity factors. Tailing factors and resolution were 

determined manually from the Excel chromatograms so that enantiomer separation 

could be more closely examined. 

 Modeling the chromatographic system for cyclohexylphenylglycolic acid 

enantiomers, the model accurately predicted both the resolution and selectivity of the 

enantiomer peaks at varying temperatures (see Figures 28 and 29).  Mobile phase 

changes in the model changed peak retention and shape in the same manner expected 

as in traditional chromatography.  Modeled changes in mobile phase pH of 4.2 to 6.5 

agree with laboratory outcomes when examining the loss of peak resolution and 



141 

 

selectivity at pH 6.5.  Changes in sample amount on the column resulted in an increase 

in retention time of the modeled enantiomers as was observed in the published 

laboratory results (see Figure 31).   

 As a model for one-to-one enantiomer binding interactions with -cyclodextrin, it 

has proven to be accurate in the prediction of binding strengths.  In its expansion to the 

chromatographic scale, the model has been proven rugged under the varying 

chromatographic conditions studied that affect peak separation.  Used as a tool for 

method development, the model has potential for reducing the time and cost in 

enantiomer separations using cyclodextrins. 
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APPENDIX A 

 

Model program and manual 

1. On the disk included, copy the folder “desoi” onto any location on computer 

2. Install the 32 or 64 bit version of Eclipse SDK on the computer 

3. Open Eclipse and Import the existing project “desoi” 

4. Key files to modify 

a. “b.txt”  

i. Under the main project open b.txt to change the following 

parameters (example): desoi2  desoi2  7000  1000  50  10  0 

1. Name of file simulation 

2. Name of variation, should be same name as simulation file 

3. Number of iterations to run, 7000  

4. Start recording at iteration 1000  

5. Number of runs to average, 50 

6. Record data every 10 iterations 

7. Graphics turned off, 1 for on 

b. “desoi2.inf”, to modify grid layout and cell population 

c. “desoi2.prb”, to change to probabilities and absolute gravity (mobile phase 

flow) of cells 
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d. “desoi2.inf”, to change cell design 

5. Once parameters are set run simulation 

6. Model run result file is found in the main project folder in a folder name 

“CAOutput” 
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APPENDIX B 

 

Java cell layout file for chromatographic scale, “desoi2.inf” 

The file name is:desoi2.inf         

desoi2.str    is the Str file on which the prb file is based   

40   Num of Columns 
   

  

800   Num of Rows 
    

  

 

The number of cells per cell types are below:     

  
  

cell type      number of cells 

  
  

A 
 

100   

  
  

D 
 

100   

  
  

B0 
 

200   

  
  

B1 
 

200   

  
  

B2 
 

300   

  
  

W1 
 

13376   

  
  

W2 
 

6271   
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First row of –cyclodextrin cells (B0, 1, and 2) 

LUX LUY RBX RBY CellType CellNum  Orient 

5 10 5 10 2 1 2 

5 14 5 14 2 1 0 

6 10 6 10 3 1 2 

6 14 6 14 3 1 0 

7 11 7 13 4 3 0 

13 10 13 10 2 1 2 

13 14 13 14 2 1 0 

14 10 14 10 3 1 2 

14 14 14 14 3 1 0 

15 11 15 13 4 3 0 

21 10 21 10 2 1 2 

21 14 21 14 2 1 0 

22 10 22 10 3 1 2 

22 14 22 14 3 1 0 

23 11 23 13 4 3 0 

29 10 29 10 2 1 2 

29 14 29 14 2 1 0 

30 10 30 10 3 1 2 

30 14 30 14 3 1 0 

31 11 31 13 4 3 0 

37 10 37 10 2 1 2 

37 14 37 14 2 1 0 

38 10 38 10 3 1 2 

38 14 38 14 3 1 0 

39 11 39 13 4 3 0 
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Second row of –cyclodextrin cells (B0, 1, and 2) 

LUX LUY RBX RBY CellType CellNum  Orient 

1 20 1 20 2 1 2 

1 24 1 24 2 1 0 

2 20 2 20 3 1 2 

2 24 2 24 3 1 0 

3 21 3 23 4 3 0 

9 20 9 20 2 1 2 

9 24 9 24 2 1 0 

10 20 10 20 3 1 2 

10 24 10 24 3 1 0 

11 21 11 23 4 3 0 

17 20 17 20 2 1 2 

17 24 17 24 2 1 0 

18 20 18 20 3 1 2 

18 24 18 24 3 1 0 

19 21 19 23 4 3 0 

25 20 25 20 2 1 2 

25 24 25 24 2 1 0 

26 20 26 20 3 1 2 

26 24 26 24 3 1 0 

27 21 27 23 4 3 0 

33 20 33 20 2 1 2 

33 24 33 24 2 1 0 

34 20 34 20 3 1 2 

34 24 34 24 3 1 0 

35 21 35 23 4 3 0 

 

Placement of enantiomers (A & D) and mobile phase 

LUX LUY RBX RBY CellType CellNum  Orient 

0 0 39 9 0 100 0 

0 0 39 9 1 100 0 

0 0 39 799 5 13376 0 

0 0 39 799 6 6271 0 
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APPENDIX C 

 

Java cell types for chromatographic scale, “desoi2.inf” 

The file name is:desoi2.str 

14 number of side types 

Their names are:   

a0 
 

  

a1 
 

  

a2 
 

  

a3 
 

  

d0 
 

  

d1 
 

  

d2 
 

  

d3 
 

  

b0 
 

  

b1 
 

  

b2 
 

  

c0 
 

  

w1 
 

  

w2     

 

Their colors are:   

0  Black 
 

  

1  Blue 
 

  

2  Green 
 

  

3  Red 
 

  

4  Brown 
 

  

5  Yellow 
 

  

6  Orange 
 

  

0  black 
 

  

8  Burgundy   

9  White 
 

  

0 black 
 

  

11 Violet 
 

  

1  Blue 
 

  

2  Green     

7 number of cell types 

Their names are:   

A 
 

  

D 
 

  

B0 
 

  

B1 
 

  

B2 
 

  

W1 
 

  

W2     

 

Their side types are    

(4 for 4slice, and 1 for solid):   

a0 a1 a2 a3  

d0 d1 d2 d3  

b0 c0  c0  c0 

b1  c0  c0  c0  

c0  c0  c0  b2 

w1 
  

  

w2        
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