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ABSTRACT

Quantitative Methods for Dissecting Heterogeneity in Genetic Studies of Complex
Traits

by

Tim Bernard Bigdeli

Co-Chairs: Michael C. Neale & Brion S. Maher

Etiological models of complex disease are elusive[99, 68, 10], as are replicable find-

ings of large effect[117, 17, 18, 53]. Commonly-cited explanations have previously

invoked low-frequency genomic variation[93], allelic heterogeneity at susceptibility

loci[68, 64], variable etiological trajectories[29, 28], and epistatic effects between mul-

tiple loci; these have represented among the most methodologically-challenging issues

in molecular genetic studies of complex traits. Major sequencing initiatives, such as

the 1,000 Genomes Project, are currently identifying human polymorphic sites at fre-

quencies previously unassailable and, not ten years after publication of the first major

genome-wide association findings, medical sequencing has already begun to displace

GWAS as the standard for genetic analysis of complex traits. However, several recent

studies have shown that the cumulative effect of a large number of common SNPs can

account for a significant proportion of the variance in liability to complex traits, high-

lighting a conspicuous discrepancy between the explanatory value of reported GWAS

associations and the realized contribution of common genetic variation. Emergent

polygenic models posit the influence of thousands of common causal variants, many
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or most of which will remain obscured by genome-wide significance thresholds. Ex-

pectations regarding the number of additional variants “discoverable” by GWAS are

sobering, as are implications for risk prediction in complex disease. With studies of

complex disease primed for an unprecedented survey of human genetic variation, it is

essential that these nascent, impending challenges be addressed.

Of interest herein are methodologies which utilize differential patterns of linkage

disequilibrium to resolve the underlying genetic liability to complex traits, the range

of allele frequencies for which common association tests are appropriate, and the rel-

evant dimensionality of common genetic variation within ethnically-concordant but

differentially ascertained populations. Using high-density SNP genotype data, we

consider both hypothesis-driven and agnostic (genome-wide) approaches to associa-

tion analysis, and address specific issues pertaining to empirical significance and the

statistical properties of commonly-applied tests. Lastly, we attempt to place these

diverse contributions into a unified framework of human population genetic theory.
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CHAPTER I

Introduction & Relevant Background

1.1 Single Nucleotide Polymorphisms

Human genetic polymorphisms represent a diminutive fraction of the total diploid

DNA complement, occurring nonetheless within a spectrum of allelic frequencies

and varying considerably with respect to molecular information content. Single nu-

cleotide polymorphisms (SNPs) are distinguished by their relative abundance within

the genome, occurring with sufficient regularity to permit targeted studies of specific

genomic regions by linkage-disequilibrium mapping [18, 5, 94]. Having introduced

the class of polymorphism relevant to subsequent analyses, we establish an initial

order of complexity for our discussion of genome-wide dimensionality, and introduce

a basic metric of genetic diversity for a single locus within a population. Heterozy-

gosity describes the probability of a given individual being a heterozygous at a given

polymorphic site,

n
∑

i!=j

pipj

[119]

where n is the number of alleles at said locus, and pi and pj are the allelic frequencies

or, considered together, the genotype frequency for a particular combination of alle-
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les in a diploid organism. The majority of SNPs are biallelic, thereby constraining

the effective number of possibilities at a single locus to homozygous for either allelic

variant, or heterozygous. Current genome-wide marker panels typically provide cov-

erage of SNPs with minor allele frequencies (MAF) greater than 5%, below which

standard associations tests are demonstrably unreliable (Chapter 2). As such, much

of variation in complex disease as of yet unaccounted for by genome-wide studies has

been attributed to putative effects of rare variants [93, 90, 83, 80, 12]. In addressing

the accompanying variability as it pertains to realized dimensionality, it is rather

more straightforward to partition our discussion into those components which are

directly empirically quantifiable. That is, we consider variable allelic frequencies as

manifested in the distributional properties of basic tests of association.

1.2 Association Between a SNP and Disease Outcome

Association between a SNP and disease outcome is commonly evaluated using

Pearson’s χ2 test for independence, as applied to a contingency table of allele or

genotype counts. A given individual’s diploid set of alleles are considered indepen-

dently, thus representing the relevant unit of analysis for which estimated effects are

relevant [2]. Consider the 2×2 contingency table of allele counts by disease state, for

a given SNP with alleles A = {A, a}

A a
cases Acas acas 2Ncas

controls Acon acon 2Ncon

Atotal atotal 2N

As no restrictions are placed on the total number of observations in each cell, the

quantities represent binomially-distributed data. The standard χ2 statistic is calcu-

lated as

2



χ2 =
N(Acasacon − acasAcon)2

2NcasNconAtotalatotal

Alternatively, the Cochran-Armitage test for trend represents a modification of

a genotypic test with 2 degrees of freedom to incorporate a suspected ordering of

effects under a given genetic model [100]. For a given SNP, consider the 2× 3 contin-

gency table of genotype count by disease state, with genotype classes G = {g0, g1, g2}

corresponding to carriers of zero, one, or two copies of the minor allele.

AA Aa aa Total
cases AAcas Aacas aacon 2Ncas

controls AAcon Aacon aacon 2Ncon

Total AAtotal Aatotal aatotal 2N

We calculate the test-statistic as

T =

∑2
i=0 wi · (Ncon · gi|con −Ncas · gi|cas)

V ar(T )

where w = {w0, w1, w2} is the set of weights to be applied to the k genotype cate-

gories. Under an additive model, in which each additional copy of a disease-associated

allele increases liability to illness, we apply weights w = {0, 1, 2}. For large N , the

approximation of Tcatt is a normally distributed (N(0,1)), 1d.f. random variable and a

more powerful test of association than a genotypic χ2 test.

For a fixed number of minor alleles, there exists a discrete set of possibilities for

how these might be arranged within a contingency table of observed counts. Let C

represent any even number of alleles, and let us assume equal numbers of cases and

controls. From the 2 × 2 contingency table corresponding to an allelic χ2 (1.1), it

is apparent that our observed data may take on any of C + 1 arrangements. For

a two-sided test, these C + 1 arrangements represent C/2 + 1 possible values of

the resultant test-statistic. That is, if we restrict all C copies to either cases or

controls, we obtain the most-extreme result. For any fixed C, this discrete set of

3



possibilities is illustrated by a normal probability plot of observed quantiles, which

will be distributed as a step-function. From the 2× 3 contingency table of genotypes

χ2 by outcome (1.2), we see that consideration of the diploid state substantially

increases the number of possibilities for the observed data. Because the observed

count of either genotypic class constrains the value of others, we calculate the total

number of possible arrangements as follows:

C/2
∑

i=0

C−2i
∑

j=0

1

For forty copies of the minor allele, this yields 3,311 possibilities for a 2 × 3 table,

compared with 41 possibilities for allelic data. However, for progressively fewer C, the

probability of observing a minor allele homozygote becomes vanishingly small, and

gains in statistical power from application of the Cochran-Armitage test for trend

will be minimal, especially when N is large.

Interpretation of the resultant test-statistic is by approximation to a theoreti-

cal distribution, providing a probability estimate of observing so extreme a value

by chance. Significance for dense-SNP data is assessed under strong control of the

FWER, meaning that we consider only those test-statistic values which are very ex-

treme, or highly improbable under the null hypothesis. The critical range of values

corresponds to the asymptotic tail(s) of the reference distribution which, for normally-

or χ2-distributed test-statistics, trends to zero for increasingly extreme values. Of

central importance is the tendency of Pearson’s χ2 test to over-estimate significance

when observed counts are very small or absent entirely. If inflation of the resultant

test-statistic is sufficient to warrant rejection of the null hypothesis, then a Type-I

error has occurred. To avoid systematic accruement of false-positive findings, Yates’s

correction for continuity is applied [126]. The rationale for Yates’ correction is, simply,

that this inaccuracy arises as a direct consequence of deriving probability estimates

for a binomial distribution using the continuous, theoretical χ2 distribution. In prac-

4



tice, if any cell within a given contingency table contains too few observations, then

0.5 is added to each quantity, thereby lessening the calculated differences between

observed and expected values. Common variants with low minor allele frequency

(MAF) are subject to this source of Type-I error, especially in underpowered studies.

On the other hand, note that the correction is itself prone to returning somewhat

deflated probability estimates, thus increasing the Type-II, or false-positive, error

rate. Alternatively, Fisher’s exact test provides an exact estimate of significance for

a given set of values within a contingency table, and is an appropriate method when

sample size is limiting [34, 126]. Recall the distinction between sampling procedures

that are with or without replacement; Fisher’s Test evaluates an exact probability

estimate from the hypergeometric distribution of counts within a contingency table

with fixed marginal total, whereas Pearson’s χ2 provides an approximation to the

theoretical χ2 distribution for binomial data with the expectation of convergence as

N approaches infinity (Central Limit Theorem). As such, Fisher’s Exact test repre-

sents the canonical test for small sample sizes. Calculation of the exact test statistic

is as follows:

p =
(2Ncas)!(2Ncon)!(Atotal)!(atotal)!

(Acas)!(acas)!(Acon)!(acon)!(2N)!

With respect to significance for low-frequency markers, the sidedness of a particular

test-statistic distribution is especially salient. Exploratory genome-wide studies are

predominantly hypothesis-free, without any a priori expectation that a particular

allelic variant is more prevalent among cases or controls. For symmetrical distribu-

tions such as the usual χ2, the two-sided P -value may simply be halved to obtain the

one-sided estimate; whether an observed effect is “protective” or conveys some “risk”

is gleaned directly from the observed counts. For Fisher’s Test, the proper means

of obtaining a two-sided P -value has been subject to debate. In some instances, the

two-sided test gives a result only slightly larger than the one-sided P -value, reflecting

5



asymmetry in the observed distribution [61].

1.3 Family-Based Approaches to Association

Basic approaches to family-based association test for excess transmission of an al-

lele or alleles at a candidate marker, the most notable being the transmission disequi-

librium test (TDT) [108] and the generalized to arbitrary pedigrees and phenotypes,

family based association test (FBAT) [98]. An alternative approach to the TDT

creates pseudocontrols based on the alleles that were, and were not, transmitted to

an affected offspring from genotyped informative parents. Limitations of Spielman’s

TDT arise upon inclusion of families for which multiple affected offspring or extended

pedigrees are available. Whereas Spielman’s TDT considers a contribution from any

heterozygous parent to be independent, the the pedigree disequilibrium test (PDT)

[67] treats each trio as an independent unit of analysis. Because tests of association

may not assume independence of trios and discordant sib-pairs (DSPs) derived from

the same extended pedigree, PDT defines a summary variable accounting for each

possible trio and DSP. For a biallelic marker A with alleles A1 and A2, let us define

for each informative trio and DSP,

XT = (A1alleles transmitted)(A1alleles not transmitted)

XS = (A1alleles in affected sib)(A1alleles in unaffected sib).

Then, for each extended pedigree, let nT and nS represent the numbers of informative

trios and DSPs, respectively, as follows:

T =

∑N
i=1 Di

√

∑N
i=1 D

2
i

Under the null hypothesis of no linkage disequilibrium between the marker and the

6



trait, T is normally distributed, with mean equal to 0 and variance equal to 1.

Tests of association for pedigrees generally feature at least one of two components;

the within-family component considers transmissions of alleles from parent to child, or

the extent of allele-sharing between siblings, and is typically robust to stratification

and, potentially, allelic heterogeneity; the between-family component considers the

actual allele transmitted or shared, but is liable to population stratification.

1.4 Multi-locus Diversity and Linkage Disequilibrium Map-

ping

Consideration of a second, biallelic locus demonstrates the correspondence be-

tween the number of independent SNPs and a simple binomial expansion. Examina-

tion of Pascal’s Triangle illustrates the extent to which progressively greater numbers

of variable sites increases the relevant set of possibilities for observed multi-SNP geno-

types. That is, if n represents the number of independent, biallelic loci under consider-

ation, 2(n+1) gives the corresponding number of possibilities for the allelic complement

observed for a given, diploid individual. Given 10 and 100 SNPs, we observe 2048 and

2.53× 1030 possible combinations, respectively, while the number of “possible” allelic

combinations reflecting current marker densities in GWAS corresponds to a binomial

expansion which is incalculable by standard analytical packages. While the preceding

illustration clearly represents a profound exaggeration of the relevant dimensionality

for an individual’s genome-wide complement, it nonetheless permits us to establish

a discrete set of basic assumptions regarding the biological constraints on individual

genetic differences.

In a given population, the extent of genetic sequence diversity is largely at-

tributable to conserved evolutionary mechanisms underlying sexual reproduction and—

albeit to a vastly lesser degree—rates of de novo molecular changes to DNA sequence

7



itself. Whether of the transmissible or sporadic type, the aforesaid differences arise

from a common, founding genetic source (i.e. population), often referred to collec-

tively as the “ancestral” state (e.g. genome, chromosome, haplotype, or allele). At

a single, polymorphic locus, the extent of variability is, at bottom, a function of the

number and respective frequencies of allelic variants, while the extent of variability for

syntenic positions is a function of the rates of recombination within that region. The

resulting pattern of intercorrelations between SNPs describes linkage disequilibrium

(alternatively, gametic phase disequilibrium), the extent to which co-segregation of

alleles at distinct loci deviates from expectation. That is, a hypothetical set of loci

with alleles A/a and B/b, is said to be in linkage equilibrium if the possibilities for

unique gametes (or haplotypes), given by AB/Ab/aB/ab occur in significantly higher

(or lower) proportions than expected based on the frequency of each allele i.e. A*B,

A*b, a*B, and a*b. Measures of LD include D, D′, and both signed and unsigned r

(r2) [5, 8, 52]. The choice of LD measure generally depends on context and applica-

tion, as their properties differ somewhat. More generally, LD relationships realized

over expansive genomic regions form the basis of indirect approaches to association.

Indirect approaches to association are premised on the presence of unobserved vari-

ants, the notion of complete saturation of genomic variation having been, until only

recently, seemingly incredible. As exemplified by the additional degree-of-freedom(s)

routinely incurred by haplotype-based association tests, the dimensionality of a multi-

SNP haplotype is given by the smallest set of constituent alleles which fully differenti-

ate it. Haplotype definitions may therefore include SNP and non-SNP variation, given

that variants are both inheritable and linked. Rare haplotypic backgrounds or the

presence of nearby causal variation is more readily detected by the combined informa-

tion of multiple tagging-SNPs. The observation that a disease association is stronger

with a haplotype than its composite SNPs is also consistent with cis-interactions be-

tween these alleles [81]. In contrast, epistatic or trans-effects represent interactions

8



between “unlinked” loci.

1.5 Complex, common human disease

1.5.1 Multifactorial Inheritance

The multifactorial model posits that there exists an unobserved continuous lia-

bility distribution underlying most complex traits, such that numerous small effects

yield the observed phenotypic outcome. Variants of moderate to high effect-size are

not likely to be common, and thus would not contribute significantly to liability to

common diseases. Rather, a multitude of loci displaying conditional penetrance, pos-

sible epistatic, and environmental interactions likely yield the clinically observable

disease state. In the context of complex disease etiology, We consider two types of

genetic heterogeneity, locus and allelic. Locus heterogeneity arises from the existence

of multiple disease genes of convergent effect with respect to pathophysiology, any

number of which may or may not be relevant to all instances of disease. Allelic

heterogeneity describes the existence of multiple polymorphisms within a particular

disease gene, such that carrying a particular allele may only be predictive of disease

within select populations.

1.5.2 Schizophrenia

Schizophrenia is a devastating psychiatric condition affecting nearly 1% of the

worlds population, and in which a substantial number of patients do not respond

to treatment [9]. Additionally, patients vary with respect to particular symptoms,

with hallucinations and delusions often accompanied by a combination of cognitive

deficits, disorganization symptoms, and severe mood disorder, including manic and

depressive episodes. Family studies indicate markedly increased risk of illness among

relatives of afflicted individuals, with children of schizophrenics as much as ten times

9



and cousins twice as likely to become ill. Heritability estimates, some upwards of 80%

[38], indicate that a substantial proportion of variance in disease risk is attributable

to genetic factors.

1.6 GWAS, Multiple-Testing

Available genome-wide platforms offer dense coverage of common (typically, 5%

MAF or greater) single nucleotide polymorphisms (SNPs), relying on an indirect ap-

proach to association through linkage disequilibrium (LD) to capture common varia-

tion in the vicinity of a typed locus, and typically including only those variants with

minor allele frequency (MAF) greater than 5%. Although quite efficient, there is little

power with these SNPs to detect associations with uncommon, or rare variation. By

convention, any SNP with < 5% MAF is considered “rare” in this context. Excep-

tions include age-related macular degeneration and inflammatory bowel disease, for

which large-effect variants were successfully identified using relatively modest sample

sizes.

A particularly salient issue in GWAS is what strength of evidence constitutes a

genome-wide significant finding. As association is typically assessed on a per-SNP

basis, an appropriate correction for multiple-tests is by control of the family-wise er-

ror rate (FWER) or Type-I error, the probability of observing a significant finding

by chance if no true association exists. Calculation of the corresponding significance

threshold, α′, is a function of the number of markers analyzed, although methods

exist for estimating an effective number of “independent” loci based on LD between

markers. Numerous α′ thresholds have been proposed to represent significance at the

genome-wide level, most being to the order of ∼ 10−8. Lower-frequency SNPs are

more likely to exhibit significant differences between groups, and will yield smaller

P -values. It follows that the corresponding distribution of P -values will require more

stringent correction to maintain equivalent control of the FWER. This has been
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demonstrated by simulation of dense-SNP and resequencing data, and comparison

to expected distributions for existing genome-wide platforms. Efforts to estimate the

“effective” number of tests in the genome illustrate the effect of SNP ascertainment

and study design on the expected distribution of P -values [24, 48]. For rare variants,

larger samples have the potential to yield smaller P -values, with an accompanying

decrease in the α′ required to maintain the FWER at a desirable level.
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CHAPTER II

Empirical Significance for Single Marker Tests of

Low-Frequency Variants

T. Bernard Bigdeli1,2, Michael C. Neale1,2,3, and Benjamin M. Neale4,5 1Department of Human and Molecular

Genetics,Virginia Commonwealth University, Richmond, VA

2Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University, Rich-

mond, VA

3Department of Psychiatry, Virginia Commonwealth University, Richmond, VA

4Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA

5Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Insti-

tute of Technology, Cambridge, MA

2.1 Abstract

With the dramatic technological developments of genome-wide association SNP

Chips and next generation sequencing, human geneticists now have the ability to

assay genetic variation at ever rarer allele frequencies (≥ .01). To fully understand

the impact of these rare variants on common, complex disease, we must be able to

accurately assess the significance of these variants. However, it is well-established
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that classical association tests are not appropriate for the analysis of low-frequency

variation, giving spurious findings when observed counts are too few. To further our

understanding of the asymptotic properties of traditional association tests, we con-

ducted a range of null simulations of a typical rare variant and proceeded to test

the allelic χ2, Cochran-Armitage trend, Wald and Fisher’s exact tests. We demon-

strate that rare variation shows marked deviation from the expected distributional

behavior for each test, with fewer minor alleles corresponding to a greater degree of

test-statistic deflation. The effect becomes more pronounced at progressively smaller

levels. We also show that the Wald Test is particularly deflated at α levels consistent

with genome-wide association significance, much more so than the other association

tests considered. In general, these classical association tests are inappropriate for the

analysis of variants for which the minor allele is observed fewer than 80 times.

Keywords: genome-wide association, next-generation sequencing, significance test-

ing, rare variation
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2.2 Introduction

Genome-wide association studies (GWAS) have uncovered hundreds of loci rel-

evant to common, complex disease [65]. These studies assay SNP variation across

the allele frequency spectrum, but are limited to studying SNPs with minor allele

frequency (MAF) of at least 1-5%. In spite of incomplete coverage of rare alleles in

GWAS, a number of rare variants have been implicated in common, complex disease.

For example, recent work in Type I Diabetes identified a rare protective mutation in

the gene IFIH1, with a population allele frequency of approximately 2% [83]. New se-

quencing endeavors such as the 1,000 Genomes Project are identifying human genetic

variation down to frequencies less than one percent. This expanding collection of

genetic polymorphisms is, in turn, being made accessible through extending genome-

wide association SNP chips to ever decreasing frequencies.

With the increased focus on rare variants, the question of how best to assess their

statistical significance arises. For extremely uncommon variation, methods have been

developed to test whether a set of variants are implicated in disease [75, 59, 63, 80].

Such methods are better suited to loci for which classical association testing cannot

be conducted because of the limited number of observations. Considered another way,

a single locus that has only ten copies of the minor allele in a balanced case-control

study cannot achieve significance at established genome-wide levels (5 × 10-8) [99].

One strategy to overcome this problem is to group multiple variants and to conduct

tests of association with particular regions rather than with specific variants.

Given that the field has adopted a genome-wide association significance threshold,

the accuracy of extreme p-values is also of great importance. For example, in the sem-

inal work of Jonathan Cohen and colleagues, who identified PCSK9 as a component

of LDL cholesterol, the authors used a χ2 test to assess the role of rare variation in

determining risk of coronary heart disease, and reported p-values of 0.008 and 0.003

for African-American and Caucasian samples, respectively [13]. If instead a Fisher’s
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exact test is applied, these p-values shrink to 0.0037 and 0.0024, respectively. Thus,

the basic χ2 test in this circumstance is comparatively conservative in the face of rare

observations. To enhance our understanding of the asymptotic properties of these

traditional association tests, we have undertaken a range of simulations of the χ2,

Cochran-Armitage trend [78, 120, 106], and Wald tests [101].

2.3 Methods

To assess the asymptotic behavior of rare variant testing, we used a simple null

model consisting of a SNP with 1% MAF equally likely to occur in 1,000 cases and

1,000 controls. We initially assigned genotypes for each individual randomly, allowing

for sampling variance. That is, each individual replicate may have an observed minor

allele frequency of 1%, a little more than 1% or slightly less than 1%. To further

constrain the behavior of these tests, we limited the minor allele count to 40 copies

among 2,000 individuals. To determine whether the sample size matters, we increased

the number of individuals to 10,000, while still fixing the number of minor alleles to

40. We also considered 20 and 80 copies of the minor allele in a sample size of 10,000.

We proceeded to analyze each simulated dataset using a suite of common, association

tests: the allelic χ2, the 1 d.f. Cochran-Armitage trend test and the Wald Test for

logistic regression. As our goal was to assess the asymptotic behavior of these tests,

we chose to conduct a large number of simulations (one billion) for each scenario.

2.3.1 Tests of Association

The allelic χ2 test compares allele frequencies between cases and controls, and

is widely used as a test of association for disease traits [2]. Because the allelic test

considers the allele as the relevant unit of analysis, it is assumed that Hardy-Weinberg

equilibrium exists. This is equivalent, in the present context, to assuming that the

alleles at a locus occur independently within both case and control populations. In
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other words, non-additive effects of the alleles at a locus are assumed to be absent.

The allelic test is known to give spurious results if this condition is not met, although

SNPs that show severe departures from Hardy-Weinberg equilibrium are generally

unreliable and should be excluded from analysis. Interpretation of odds ratios given by

this method is also with respect to alleles, as opposed to individuals, and is discussed

elsewhere [100].

The Cochran-Armitage test for trend is a modification of a 2 d.f. genotypic χ2 to

account for an hypothesized ordering of effects across genotype classes, consistent with

additive models of disease risk [4, 35]. Applied to common variants, the trend-test

is a more powerful test of association than standard allelic and genotypic χ2, owing

to a weighting of genotypic classes which reduces the effective degrees of freedom.

Since the individual represents the relevant unit of analysis, the trend test has the

additional advantage of not assuming Hardy-Weinberg equilibrium, though the allelic

and trend tests are expected to be asymptotically equivalent when this condition is

met [100]. Odds ratios from the trend test may be interpreted as the increase in risk

to an individual conferred by each additional copy of the non-reference (i.e. minor)

allele.

The Wald Test [118, 46] compares the maximum likelihood estimate of a statis-

tical parameter to its expectation under the null, often as an approximation to the

theoretical χ2 distribution. In the present context, we apply the Wald Test to a

simple logistic model (Aff ∼ β0 + β1 · SNP) which considers the number of minor

alleles carried by an individual. Because it is often desirable to include demographic

or clinical covariates in predictive disease models, we extend our regression model to

incorporate a covariate predictor of fixed prevalence in the population, but for which

carriers of the minor allele are at increased risk of endorsement. As for our basic

logistic model, we applied the Wald Test to obtain a χ2 approximation for the effect

of SNP genotype.
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2.3.2 Generation of Asymptotic Distributions

Under each scenario, we simulated genotypic data which were identical with re-

spect to the total number of minor alleles, C, the total sample size, N , and the

proportions of cases and controls. For each replicate dataset, we sampled N times

without replacement from a population of N diploid persons, in which only C chro-

mosomes carry the minor allele, and assigned case-status at random to exactly half

of all individuals. It follows that the resultant case-control differences in allele fre-

quency will be identically distributed, as illustrated by the observation that in the

most-extreme circumstance, all C copies of the minor allele will occur within cases or

controls. By comparison, random simulation of genotypes on a per individual basis,

as previously described, might yield instances in which the total number of alleles

is slightly greater or slightly fewer than C, thus introducing an additional source of

variation in the test-statistic. Stated differently, each replicate dataset represents a

standard 2×2 table of allele counts by outcome , but for which the marginal totals of

rows and columns are fixed. Similarly, for both the trend test and the logistic model,

the data may be arranged as 2×3 contingency tables of genotypic counts by outcome,

in which the marginal totals are generally maintained. That is, our focus is on the

asymptotic properties of standard association tests as applied to low-frequency vari-

ants, for which the occurrence of a minor allele homozygote (MAF2) is an exceedingly

rare event.

Because it is often desirable to include demographic or clinical covariates in pre-

dictive disease models [116, 7, 101], we extended the regression models to incorporate

a binary covariate predictor of fixed prevalence in the population, which carriers of

the minor allele are more likely to endorse. We assume a .10 population endorsement

rate across all scenarios, but vary this rate among carriers as .10, .20, .40, .60, and

.80. For each replicate dataset, we fitted logistic models which specified case-control

status as a function of SNP genotype and a single covariate, and applied the Wald
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Test to obtain a χ2 approximation for the effect of the SNP genotype. Of particular

interest is the effect of adding a predictor, unrelated to disease, on the regression

of disease outcome on genotype. Note that although the numbers of cases and con-

trols are fixed and equal across permutations, random simulation of a covariate will

introduce variance into the observed distribution of test-statistics.

Distributions for Fisher’s Exact Test were also derived, but indirectly from the

distributions for the allelic χ2. This is justified by our simulation procedure, as fixing

the marginal totals constrains the number of possible configurations of the data within

a 2× 2 table of counts. That is, each unique value of the allelic χ2 corresponds to a

specific set of observed counts for which the value of Fisher’s test is known.

Due to the exceptional number of permutations required to evaluate asymptotic

behavior within the critical region, we seeded 100,000 separate instances of our sim-

ulation procedure per scenario, making use of several high-performance computing

clusters. Rendering of complete null distributions for each test was simplified by tab-

ulating observed test-statistics within each constituent distribution and compounding

the resulting counts. We proceeded to quantify departures from expected asymptotic

behavior, as defined by the theoretical χ2 distribution for 109 tests.

2.4 Results

2.4.1 Common Association Tests

For each scenario, Table 2.1 gives the number of Cochran-Armitage trend, allelic

χ2, and logistic regression tests (uncorrected for continuity) found to be significant

at various α-levels. Corresponding quantile-quantile plots are displayed in Figure

2.1. Expectations regarding asymptotic behavior are based on the theoretical χ2

distribution (see Central Limit Theorem), to which approximations of binomial SNP

data are definitively inexact. At a given threshold, the probability of observing a
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significant test-statistic under the null is simply the proportion of the total number

of permutations. Because our sampling procedure is effectively without replacement,

resultant test-statistics occur in discrete quanta. This is illustrated by the step-

function-like appearance of the observed quantile plots (Figure 2.1).

Consider the distributions of allelic χ2 and Fisher’s Exact tests, recalling that a

2×2 table of allelic counts will follow a hypergeometric distribution if marginal totals

are held constant. For 40 copies of the minor allele in 1,000 cases and 1,000 controls,

we observe fewer significant allelic χ2 tests than expected, with more pronounced

discrepancies for progressively smaller α. Comparing the allelic χ2 and Fisher’s Exact

methods, significant test counts obtained by each method are indistinguishable for

all but the most-extreme α-levels. Given the same number of minor alleles (40) in

5,000 cases and 1,000 controls, we see an overall pattern of deflation similar to that

observed for the smaller sample. Inspection of Table 2.1 reveals a slight increase in the

number of significant tests observed, less than 2% and 5% for α thresholds of 10-2 and

10-5, respectively. However, the larger sample size does not see the allelic χ2 attain

significance at α < 10-8. Restricting the number of minor alleles to exactly 20 copies,

there is marked decrement in the value of test-statistics by either method, with neither

reporting a single p-value less than 10-6. We observe an excess of significant findings

by the allelic χ2 for the α < 10-2 critical region, with no such inflation apparent for

Fisher’s Exact Test. Increasing the number of minor alleles to 80 copies in 5,000 cases

and 5,000 controls, asymptotic behavior is visibly restored. Residual deflation is only

minimally apparent at genome-wide thresholds, at which both tests report significant

findings.

Excepting those additional values indicating one or more observed minor homozy-

gotes, quantiles for the Cochran-Armitage trend test largely parallel those of the

allelic χ2. With 40 minor alleles in 1,000 cases and 1,000 controls, the trend test gives

a significant result at α < 10-8 which the allelic test failed to identify. Loss of power
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is evident, with fewer significant permutations observed overall than with either the

allelic or exact test. Differences between the allelic χ2 and trend tests are less marked

with 40 copies in 5,000 cases and 5,000 controls, due to the reduced likelihood of ob-

serving a minor allele homozygote. With only 20 copies of the minor allele, power for

the trend test is diminished further. Under these conditions, the chances of observing

a minor homozygote is only one in one million. Like the allelic χ2 and exact tests,

the trend test fails to return a single p-value less than 10-6. An excess of significant

findings in the α < 10-2 critical region is also apparent, but to a slightly lesser extent

than seen for the allelic χ2. Power for the trend test is restored by increasing the

number of minor alleles to 80 copies. Despite the deflation being visibly attenuated,

the trend test gives slightly fewer significant differences in the critical region than

either the allelic χ2 or Fisher’s Exact test.

Deflation of the Wald Test statistic is considerably more pronounced than those

of the allelic χ2 and trend tests. With 40 minor alleles in either sample size, the

Wald Test fails to report a single significant finding at α < 10-5, returning p-values

10, 100, and 1,000-fold larger than expected at α thresholds of 10-5, 10-7, and 10-8,

respectively. With the total number of minor alleles limited to 20 copies, deviation

from expected distributional behavior is particularly extreme. We fail to observe any

significant findings for α < 10-3, corresponding to a deflation factor of 100,000 at

α < 10-8. With 80 minor alleles in 5,000 cases and 5,000 controls, the Wald Test

is noticeably improved but still gives p-values an order of magnitude larger than

expected at α < 10-8.

Comparing 80, 40, and 20 copies of the minor allele in 5,000 cases and 5,000

controls, there is an overall increase in the extent of deflation for successively fewer

copies of the minor allele, and an increase in the value of α at which this deflation is

first apparent. Given the demonstrated non-effect of sample size, it follows that we

may take findings for 80 minor alleles in 5,000 cases and 5,000 controls as indicative
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of expected null behavior for a 2% MAF SNP. Under these conditions, the allelic χ2

and trend tests exhibit similar asymptotic behavior and return empirical significance

estimates which, compared to those obtained by Fisher’s Exact Test, are not appre-

ciably misestimated. Equivalently, we take findings for 40 minor alleles in 5,000 cases

and 5,000 controls as representative of a 1%, establishing a reasonable lower limit for

the allelic χ2 and trend tests. The Wald Test is particularly sensitive to the number

of minor alleles, returning substantially diminished estimates of significance in the

genome-wide critical region. At α < 10-6, deflation of the Wald Test statistic is at

least 4, 40, and 400 times greater than for the allelic χ2 with 80, 40, and 20 minor

alleles, respectively. Whereas the allelic and trend tests both exhibit inflation in the

α < 10-2 critical region for 20 copies of the minor allele, the counts for Fisher’s Test

are simply reduced compared to 40 or 80 copies, demonstrating the robustness of

Fisher’s Test in situations for which our common tests are not suitable.
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2.4.2 Null Covariate Effect

Table 2.2 gives the observed number of Wald Test statistics for logistic models

incorporating a null covariate effect of fixed prevalence among controls; corresponding

quantile-quantile plots are displayed in Figure 2.2. Regression coefficients, α levels

and expectations regarding asymptotic behavior are as described for our previous

implementation.

With random assignment of case-status, inclusion of the covariate in our regression

analysis should not alter the observed distribution of test-statistics. While generally

true, approximations at the extreme tails appear slightly less deflated for higher

prevalences of the covariate among carriers of the minor allele (Figure 2.2). Strictly-

speaking, this phenomenon may be best described as countervailing inflation, occur-

ring as a result of increased sampling variance. That is, increasing the covariance

between minor allele and covariate is accompanied by a gradual degradation of the

discrete-valued function seen for our original logistic model. For very small α, at

which approximations of binomial data to the continuous χ2 distribution are ex-

ceptionally poor, this additional variance imparts a slight effect on our probability

estimates. Comparison of 40 minor alleles in 1,000 and 5,000 cases and 5,000 controls

exemplifies our interpretation; the effect is markedly enhanced in the smaller sample,

as would be expected for any sampling effect.
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Figure 2.1: Quantile-Quantile plots for simulated null distributions of 1B allelic χ2,
Cochran-Armitage Trend, Wald, and Fisher’s Exact tests, calculated for a fixed num-
ber of minor alleles among equal numbers of cases and controls.
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Figure 2.2: Quantile-quantile plots for simulated null distributions of 1B Wald Test
statistics for logistic models featuring variable risk of a binary covariate to carriers of
the minor allele, and given for a fixed number of minor alleles among equal numbers
of cases and controls.
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2.5 Discussion

We have demonstrated the tendency of common tests of association to underes-

timate significance of less-common variants, highlighting the inadequacy of current

analytical practices for dense-SNP and re-sequencing data. These results show con-

vincingly that common approaches to multiple-test correction will be subject to in-

flated Type II error rates, particularly within the genome-wide significance levels. The

sampling variance for a 1% allele does slightly improve the continuity of the asymp-

totic distribution, but does not preclude the deflated estimates of extreme p-values

from this distribution.

Table 2.3 gives the number of permutations required to establish significance at

various significance thresholds. At the 95% confidence level, our estimates are valid for

α < 10-6, at which we see a considerable discrepancy between realized and expected

test-statistic values for 20, 40, and 80 minor alleles. The required number of simula-

tions to attain equivalent precision at current genome-wide α-levels is prohibitively

large. However, this observed trend in distributional behavior is thoroughly convinc-

ing at increasingly stringent significance thresholds. Recent estimates of genome-wide

α’ are commonly of the order of 10-8, and will undoubtedly become even smaller as

larger numbers of rare variants are tested. With respect to what constitutes an ap-

propriate correction for genome-wide studies, a reasonable assertion is that α′ should

reflect the total number of polymorphisms in the genome [48, 24]. Meaningful repli-

cation of novel findings demands that p-values be readily interpretable in the context

of the entire catalogue of reported associations, and not subject to across-study dif-

ferences in study design, sample size, or the number of SNPs actually assayed.

The appropriate choice of statistical test for analysis of rare variation is not en-

tirely straightforward. Small samples are typically remedied by Yates correction [126]

to the usual χ2 formula. However, it is well-established that the corrected χ2 yields

a conservative estimate of significance [61], increasing the likelihood of observing a
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false negative finding. Alternatively, Fisher’s exact test provides an exact estimate of

significance for a given set of values within a contingency tables, and is an appropriate

method when sample size is limited. Intrinsic differences between these approaches

demand careful consideration, with non-negligible consequences for both study design

and interpretation of findings. We caution readers against casual interpretation of ex-

act tests across studies, and recommend that empirical significance for low-frequency

variants be assessed by permutation.
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3.1 Abstract

Background: Prior genomewide scans of schizophrenia support evidence of linkage

to regions of chromosome 20. However, association analyses have yet to provide sup-

port for any etiologically relevant variants.

Methods: We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs)

in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish

high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were

genotyped using an Illumina iSelect genotyping array which employs the Infinium as-

say. Given a previous report of novel linkage with chromosome 20p using latent classes

of psychotic illness in this sample, association analysis was also conducted for each of

five factor-derived scores based on the Operational Criteria Checklist for Psychotic

Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests

of association were conducted using the PDTPHASE and QPDTPHASE packages of

UNPHASED. Empirical estimates of gene-wise significance were obtained by adap-

tive permutation of a) the smallest observed P -value and b) the threshold-truncated

product of P -values for each locus.

Results: While no single variant was significant after LD-corrected Bonferroni-

correction, our gene-dropping analyses identified loci which exceeded empirical sig-

nificance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are

significantly associated with depressive symptoms of schizophrenia (Pemp < 2× 10−5)

based on the minimum P -value and truncated-product methods, respectively.

Conclusions: Using a gene-based approach to family-based association, R3HDML

and C20orf39 were found to be significantly associated with clinical dimensions of

schizophrenia. These findings demonstrate the efficacy of gene-based analysis and

support previous evidence that chromosome 20 may harbor schizophrenia suscepti-

bility or modifier loci.
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3.2 Introduction

With a lifetime prevalence of 1 percent and an estimated annual cost of $62.7 bil-

lion in the United States [123], schizophrenia (Scz) is a debilitating neuropsychiatric

disorder which poses a significant burden to public health. Whether schizophrenia

represents a single or multiple disease processes is a source of persistent controversy,

as patients vary considerably in onset, course and outcome of disease, and the par-

ticular combination of symptoms endorsed [28, 29]. Models comprising continuous

traitsoften extracted in factor analysis of symptom profileshave been adduced, typi-

cally distinguishing positive, negative, disorganization, and affective symptoms [92].

One explanation for this variability lies in the existence of more than one putative

etiopathogenic mechanism, each imparting susceptibility to a more or less distinct

disease subtype or influencing the character of illness dimensionally. Detection and

subsequent replication of several putative risk variants, facilitated by genome-wide

association studies (GWAS) [87, 113, 82, 96, 104, 111], has seen renewed interest in

this question among geneticists and diagnosticians alike [15, 16, 17].

Consistent with the observed variability in clinical presentation is the hypothesis

that schizophrenia is likely genetically heterogeneous [113, 96]. Linkage and candidate

gene association studies have implicated a number of genes and genomic regions,

with varying degrees of subsequent independent replication. Allelic heterogeneity

has been demonstrated in meta-analyses of candidate genes such as DTNBP1 [77,

64]. If the observed clinical heterogeneity of schizophrenia is in fact due to genetic

heterogeneity, the use of more clinically homogenous phenotypes may increase the

signal-to-noise ratio in gene-finding studies. A previous report by our group described

detection of novel linkage to 20p using latent classes of psychotic illness [31]. Linkage

analysis of Mania, Schizomania, Deficit Syndrome and Core Schizophrenia latent

classes yielded several suggestively significant loci, in regions of chromosome 20 which

had previously yielded very little evidence of linkage in our sample. Furthermore,
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the presence of susceptibility genes in chromosome 20 has been suggested by several

previous linkage studies as well [14, 73, 40, 58, 121, 3, 115]. In addition to genes which

increase susceptibility to more or less distinct clinical subtypes of illness, other genes

may influence clinical features of disease in a dimensional fashion, without altering

liability to the illness itself. These have previously been described as modifier loci

[28]. Modifier loci may not be resolvable using traditional dichotomous phenotypes

(simply affected or unaffected), but rather, by quantitative symptomatic measures.

Several examples have been reported [66, 54, 102, 129, 103, 27, 30].

Recent GWAS of schizophrenia support a polygenic model in which potentially

thousands of common variants individually impart small effects. Given the unprece-

dented multiple-comparison burden incurred in a genome-wide approach, hypothesis-

based strategies remain viable alternatives for the study of complex disease. A gene-

based approach is particularly convenient. In an analysis of bipolar and schizophre-

nia datasets, Moskvina and colleagues [76] observed significantly more SNPs within

genes showing evidence for association than expected, with intergenic SNPs showing

no such trend. We describe a comprehensive, gene-based association survey of 327

genes in regions linked to chromosome 20 in our previous studies. In addition to test-

ing for association with traditional diagnostic definitions of schizophrenia, we also

sought to assess whether chromosome 20 harbors modifier loci. Association analysis

was therefore also performed for five factor-derived scores, representing hallucina-

tions, delusions, depressive symptoms, manic symptoms, and negative symptoms, in

schizophrenia cases only. In addition to single-marker tests of allelic association, we

employ two gene-based test-statistics, the minimum observed P -value per gene and

the truncated product of P -values, to evaluate the efficacy of a gene-based approach

as applied to a large, family-based study.
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3.3 Methods

Ethics Statement This research was approved by the Institutional Review Boards

of Virginia Commonwealth University School of Medicine and the Washington VA

Medical Center. All subjects gave verbal assent to participate in research, as this was

the norm in Ireland at the time these data were collected.

3.3.1 Sample

Fieldwork for the Irish Study of High Density Schizophrenia Families (ISHDSF)

was conducted between April 1987 and November 1992, with probands ascertained

from public psychiatric hospitals in Ireland and Northern Ireland [56]. Selection crite-

ria were two or more first-degree relatives meeting DSM-III-R criteria for schizophre-

nia or poor-outcome schizoaffective disorder (PO-SAD). Diagnoses were based on

the Structured Interview for DSM-III-R Diagnosis (SCID) [109]. Independent re-

view of all pertinent diagnostic information was made blind to pedigree assignment

and marker genotypes by KSK and DW, with each diagnostician making up to three

best-estimate DSM-III-R diagnoses. The Operational Criteria Checklist for Psychotic

Illness (OPCRIT) [70] was completed by KSK for all subjects with probable lifetime

histories of hallucinations or delusions (N = 755; N = 722 genotyped). Our diagnos-

tic schema contains 4 concentric definitions of affection: narrow (D2) (schizophrenia,

PO-SAD, and simple schizophrenia) (N = 577), intermediate (D5) which adds to

D2 schizotypal personality disorder, schizophreniform and delusional disorders, atyp-

ical psychosis and good-outcome SAD (N = 700), broad (D8) (all disorders which

significantly aggregated in relatives of probands) (N = 754) and very broad (D9),

including any psychiatric illness (N = 961). Exploratory and confirmatory factor

analysis of the OPCRIT was conducted previously by Fanous et al. [32]. This yielded

a five-factor solution, comprising depressive, manic, and negative symptoms, delu-

sions and hallucinations. Factor-derived scores were obtained by summing the scores
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of all items belonging to each factor.

3.3.2 Bioninformatics and SNP-selection

Using WebGestalt [128], a total of 378 genes were initially identified as mapping

to the region of chromosome 20 corresponding to the peak NPL and to the positions

corresponding to a NPL of at least 1 on either side, based on the Illumina version

4.0 linkage SNP map used for genotyping in a multicenter linkage study funded by

R01-MH068881 [49]. While there was very little evidence of linkage in our published

microsatellite-based scan [112], we did observe modest evidence using the map in the

Holmans et al. study, which included our study sample (results available on request).

We included predicted genes and open reading frames (ORFs) from the p-terminal

to 45.85 Mb (20q13.13). Physical map positions for 362 genes were obtained from

the UCSC Genome Browser (hg17/NCBI Build 35) [55]. Tagging SNPs were selected

for each identified genomic region (excluding upstream and downstream regions of

genes) using Tagger (r2 ≥ 0.8, minor allele frequency (MAF) ≥ 0.1) [18], as applied

to the HapMap CEPH dataset [52]. Of these, 31 genes were excluded on the basis

of tagging SNPs being unavailable. After removing multiple occurrences of markers

resulting from overlap of adjacent genomic regions, 3,386 SNPs in 331 genes were

selected for inclusion.

3.3.3 Genotyping

Genotyping was conducted by Illumina, Inc. using a custom iSelect array, which

employs the Infinium assay. In total, DNA for 1,128 individuals was submitted for

genotyping of 3,386 SNPs. As SNP markers from several ongoing experiments were in-

cluded on the same array, per-individual summary statistics reflect genotyping across

a total of 7,500 SNPs. Average genotyping completion rate across all SNPs was

99.97%. Of 1,128 samples, 21 failed to yield usable genotypes. Genotypes were ex-
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amined for apparent Mendelian incompatibilities using PEDCHECK v 1.1 [86] and

removed for entire families where appropriate.

3.3.4 Association Analysis

We performed association analysis for categorical diagnoses of schizophrenia using

PDTPHASE (UNPHASED v. 2.404), an implementation of the pedigree disequilib-

rium test (PDT) with extensions to deal with uncertain haplotypes and missing data

[67, 23]. The PDT is an extension of the transmission disequilibrium test (TDT) to

examine general pedigree structures and is similarly a test of association in the pres-

ence of linkage. Association with quantitative measures of disease was assessed using

QPDTPHASE (UNPHASED v. 2.404), an implementation of the quantitative trait

PDT with extensions to deal with uncertain haplotypes and missing data [23, 74]. An

LD-corrected significance threshold was obtained using the SNPSpD package for R

[85, 97]. For 2,988 SNPs, SNPSpD calculated an estimated 1,569 independent tests,

with a corresponding significance threshold of αSNPSpD ≈ 3.18 × 10−5, maintaining

the type I error rate at 5%.

3.3.5 Gene-wide Tests of Empirical Significance

Estimates of empirical significance for association results were obtained by adap-

tive permutation of gene-dropping simulations created with MERLIN [1]. Simu-

lated genotypes were of identical frequency, marker spacing, and pattern of miss-

ing data as the actual genotypes, with individual phenotypes and pedigree structure

also preserved within each simulated dataset. For markers in linkage disequilibrium

(r2 ≥ 0.1), alleles were simulated using the haplotype frequencies for the marker

clusters. To reduce computation time, those pedigrees of complexity greater than 70

bits were omitted from calculation of allele and haplotype frequencies. Each simu-

lated dataset was analyzed as described above in two ways: retaining the minimum
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P -value per gene, as well as the calculating the threshold-truncated product of P -

values (αtrunc ≤ 0.01) per gene. For the set of single-SNP hypotheses corresponding

to a gene, the truncated product method considers the product of only those P -

values falling below a specified threshold, evaluating the probability of observing as

significant a product by chance. Whereas Fishers Combined Test assesses the overall

evidence for departure from the null, the truncated product approach can be used to

assess whether suggestive or significant findings are truly significant [127]. Previous

reports support the use of a truncated product approach in conjunction with the PDT

[45]. Empirical significance was calculated from the proportion of simulated gene-wise

test statistics more significant than the actual results (robs+1/nperm+1). We used an

adaptive permutation procedure, by which empirical P -values were obtained for 100,

1,000, 10,000, and 100,000 simulations. Only those observed associations for which

there were not at least ten more significant simulated results were carried forward to

each successive stage of permutation analysis.

3.4 Results

3.4.1 Gene-wide Association Analyses

Following quality-control protocols, 2,988 single nucleotide polymorphisms in 327

genes were tested for association with a diagnosis of schizophrenia (Figure 3.1). Es-

timates of empiric significance (Pemp) were obtained via an adaptive permutation

procedure employing the smallest observed P -value, as well as the truncated prod-

uct of P -values (αtrunc ≤ 0.01) per gene. The number of genes carried forward in

successive stages of this procedure, in both approaches, can be found in Table 3.1.

Using the minimum gene-wide P -value approach, no genes were observed to be sig-

nificantly associated with narrow (N = 1574), intermediate (N = 1749), or broad

(N = 1808) diagnoses of schizophrenia. Next, we sought to identify those SNPs as-
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sociated with clinical dimensions of schizophrenia in a subset of cases (N = 721) for

which the OPCRIT was available. A previous report by Fanous and colleagues [31]

supports linkage of latent classes derived from the OPCRIT to chromosome 20 in

this sample. No genes were found to be significantly associated with the negative,

manic, hallucinations or delusions factors. In the analysis of the clinical dimensions,

R3HDML demonstrated significant evidence of association (Pemp < 2×10−5) with the

depressive factor using the minimum P -value approach. Using the truncated product

of P -values, C20orf39 was also found to be significantly associated with the depres-

sive factor (Pemp < 2 × 10−5). It is important to note that, for both C20orf39 and

R3HDML, we observed fewer than ten simulated results more significant than the

observed test-statistic after 100,000 permutations. Hence, our estimates of empirical

significance may be conservative. However, extending our analyses to 1M permuta-

tions was not carried out as it was too computationally demanding. Because valida-

tion of a truncated product approach in extended pedigrees relies on the permutation

procedure faithfully conserving patterns of LD within each replicate dataset, we ob-

tained a quantitative measure of how well haplotype-block structure was maintained

for C20orf39 across actual and simulated datasets. In calculating an LD-corrected

significance threshold, SNPSpD estimates the effective number of independent tests

present in a set of markers. Using SNPSpD, 1,000 replicate datasets for C20orf39 were

assessed for number of independent tests. When compared to the estimate based on

the actual pattern of LD in C20orf39 (i.e., 26 independent tests), the distribution of

these simulation-derived estimates demonstrates that the LD structure within each

replicate does not differ significantly from the observed data (P ≈ 0.409; 95% CI:

[26,28]). This increases confidence in the truncated product finding for C20orf39.

However, this may not hold for every gene and may be sensitive to specific patterns

of linkage disequilibrium.
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3.4.2 Single Marker Association Analysis

Taking each SNP to represent an independent hypothesis but correcting for LD

using SNPsPD, we found that no single marker met experiment-wide criteria for

association (αSNPsPD < 3.18× 10−5) with either the three categorical diagnostic def-

initions used or our OPCRIT-derived factor scores (Tables 3.2, 3.3). The strongest

evidence of association with a diagnosis of schizophrenia was in PLCB1 (20p12.3)

(rs6108205, P ≈ 1.00 × 10−3, intermediate Scz diagnosis). For the depressive fac-

tor, we observed the strongest associations experiment-wide at 20q13.12 (rs3761184,

P ≈ 3.31 × 10−5) in R3HDML This was very close to the LD-corrected significance

threshold calculated using SNPSpD (P = 3.18× 10−5). Furthermore, rs11700002, in

C20orf39 at 20p11.21 attained P ≈ 1.01× 10−4.
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Figure 3.1: Physical distributions of single-marker associations on chromo-
some 20, for both categorical diagnoses and clinical dimensions of Scz.
Associations are displayed as log-transformed P -values (−log10P ) at genomic posi-
tions in megabases (Mb). Where appropriate, a dotted line indicates the Bonferroni-
corrected significance threshold, accounting for number of SNPs assayed experiment-
wide. Similarly, a dashed line indicates the LD-corrected significance threshold, as
estimated by SNPSpD.
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Figure 3.2: Association of C20orf39 SNPs with depressive symptoms of
Scz. Magnitudes and directions of associations are displayed in the upper panel,
with upwards-oriented triangles indicating a positive correlation with symptom factor
score. A dashed line is provided at the inclusion threshold for the truncated product
of P -values. Connecting lines relate the physical positions of associations to SNP
labels in the corresponding LD-map (r2). Plot generated using snp.plotter for R [62].
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3.5 Discussion

We have conducted a comprehensive gene-based association study of 327 genes on

chromosome 20 in an Irish sample of 270 high-density schizophrenia families. This

study sought to identify common variants conferring susceptibility to schizophrenia,

following up reported linkage in this sample to clinical subtypes of psychotic illness

[31], as well as previous studies reporting linkage to chromosome 20. Because those

clinical subtypes were derived from quantitative symptom dimensions, we also tested

for association with these same dimensions. Although traditional single-marker tests

failed to identify any SNPs meeting experiment-wide criteria for significance, appli-

cation of gene-wide association metrics revealed two previously unimplicated loci,

R3HDML and C20orf39, associated with depressive symptoms. Our findings support

the power of gene-based association approaches. They also lend further support to

previous evidence suggesting that genetic differences may underlie clinical heterogene-

ity in schizophrenia [28, 29]. One of the aims of this study was to identify genomic

loci predisposing to a particular form of illness or which modifies clinical presentation

amongst affected individuals. Such genes have been described previously as modifier

or susceptibility-modifier loci and are reviewed elsewhere [28]. Of the two loci showing

the strongest associations, namely R3HDML and C20orf39, neither appears to affect

the risk of the illness itself. That is, no single variant in either gene met even nominal

significance criteria (P < 0.05) for association with narrow, intermediate, or broad

diagnoses of schizophrenia. These two genes would therefore fulfill our definition of

modifier genes [28]. However, the strength of evidence we observed for R3HDML

is greater than that observed for C20orf39. R3HDML was identified by application

of the minimum P -value approach. Among affected individuals, those carrying the

minor allele (G) of the corresponding SNP, rs3761184, had higher mean depression

scores. On the other hand, for C20orf39, empirical significance was attained using the

truncated product of P -values. This makes it more difficult to identify a specific risk
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genotype. This is because the truncated product method only considers all variation

within a gene jointly.. In Figure 3.2, it is apparent that those markers contribut-

ing to the truncated product for C20orf39 comprise a block of LD distinct from the

surrounding region, with the majority showing association of the minor allele with

higher depression scores. Whereas individually, none of the single-marker associations

were significant after our permutation procedure, the degree of correlation between

the SNPs may have been sufficient to produce an empirically significant association

for C20orf39 as a whole. In order to rule out a spurious gene-wise association due

to higher LD, we analyzed a set of permutations using SNPSpD, then compared the

distribution of estimated number of independent tests (SNPs) to that obtained for

the actual data. If our gene-dropping simulations were found to consistently under-

estimate the extent of LD between adjacent markersindicated by a larger number of

independent testswe would expect an inflation of the empiric test-statistic. Alterna-

tively, if the observed LD within simulated datasets tended to overestimate pairwise

LD, the corresponding distribution of truncated products would underestimate the

empiric test-statistic. For C20orf39, the observed SNPSpD estimate of ∼ 26 tests

was not found to differ significantly from the null distribution of simulated datasets,

suggesting that our gene-dropping procedure was faithfully conserving LD-structure

across our simulations. As discussed, increased gene-size, especially in the presence

of higher LD between markers, might also contribute to over-estimation of the test

statistic. To our knowledge, neither R3HDML nor C20orf39 has been functionally

characterized to date. Both are predicted genes identified on the basis of domain ho-

mology. The R3HDML locus encodes a putative serine protease inhibitor belonging

to the CRISP family of cysteine-rich secretory proteins, and contains evolutionarily

conserved exonic and intronic regions bearing greater than 90% similarity to Rhesus

macaque [89]. Interspersed within the conserved intronic sequences are numerous

stretches of simple tandem repeats (e.g. CGn). Our SNP of interest in R3HDML,
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rs3761184, falls just upstream (< 50 bp) of the second exon and 150 bp downstream

of one such repeat-rich region. Roles in fertilization, spermatogenesis, and pathogen

response have all been proposed for CRISP proteins, but these mechanisms are not

immediately supportive of R3HDML as a schizophrenia candidate gene. However,

recent implication of a number of HLA genes in large-scale GWAS suggest that genes

involved in immune-related mechanisms, such as pathogen response, could be reason-

able Scz candidates [96]. The presence of specific sequence features in the vicinity

of the associated SNP may warrant more thorough bioinformatic inquiry. Addition-

ally, R3HDML lies approximately 57 kb downstream of the GDAP1L1 locus, which

appears to encode a gluthionine S-transferase (GST). Cell-culture studies have demon-

strated a relationship between gluthionine deficiency and oxidative stress, mechanisms

frequently purported to contribute to schizophrenia pathophysiology [42, 105]. How-

ever, GDAP1L1 was not significantly associated. Our empirically significant finding

for C20orf39 presents additional challenges for interpretation, given its provisional

status as an open reading frame. Provisionally known as TMEM90B, this locus en-

codes a predicted transmembrane protein. Of 33 SNPs assayed within C20orf39,

the nine included in the truncated product bounded a region of LD corresponding

to the coding region of C20orf39. The upstream, untranslated region of C20orf39,

which itself corresponds to a distinct set of ESTs, yielded no SNPs meeting local

significance criteria. Whether the markers driving this association simply lie in joint

linkage disequilibrium with nearby causal variation, or actually demarcate an etiolog-

ically relevant genomic region, is unknown. Depressive symptoms, especially suicidal

ideation, comprise a considerable portion of morbidity and mortality in schizophrenia

[47]. Therefore, follow up of these two genes could be important in the search for

clues to more successful identification and treatment of this clinical dimension. As

demonstrated by Moskvina et al., polymorphisms mapping to functional elements

are more likely to be associated with complex disease than intergenic variation [76].

46



Despite ongoing annotation and characterization of functional elements, however, our

knowledge of genomic variation, functional or otherwise, remains incomplete. This is

exemplified by C20orf39 and R3HDML, which are novel and unannotated. A major

benefit of gene-based approaches is that they are robust to allelic and haplotypic het-

erogeneity across samples. This makes them particularly suited for use in replication

and meta-analysis. In traditional replication of single-marker associations, the asso-

ciated SNP in the discovery sample is usually assayed in all subsequent replication

samples. This could inflate Type-II error in the presence of population differences

in haplotype structure and allele frequencies [81]. Complex patterns of associations,

whether spurious or due to genetic heterogeneity, have been more the rule rather than

the exception in candidate gene studies of complex disease, as demonstrated by stud-

ies of DTNBP1 [77, 64]. For discovery-based approaches, adoption of a gene-based

strategy may be of even more immediate benefit, specifically by providing a straight-

forward means of multiple-test correction. Furthermore, traditional methods to cor-

rect for multiple-testing, such as Bonferroni correction or the less overtly conservative

SNPSpD method, may be less robust in detecting small genetic effects. However, in

spite of the advantages of gene-based association studies intergenic causative variants

or variants in unrecognized genes might have been missed in this study. Given the

poor spatial resolution of linkage and intrinsic differences between these methodolo-

gies, we are currently unable to fully relate our association findings with the results

of our previously published linkage study of latent classes. However, it is notable that

R3HDML is located in a region which was linked to the deficit syndrome latent class,

for which members were substantially more likely to fall below the median for de-

pressive symptoms. Despite failing to demonstrate any evidence of association with

a diagnosis of schizophrenia, R3HDML may be associated with a disease subtype

characterized by low levels of depression. Because subtyping precludes use of our full

sample for association analysis, statistical power is insufficient to test this hypothesis.
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Other methods aiming to identify more clinically homogenous subgroups have been

applied to linkage analysis of schizophrenia. In a study of 168 affected sibling pairs,

Hamshere and colleagues [43] demonstrated that inclusion of major depression as a

covariate yielded suggestive evidence of linkage at 20q11.21, while schizophrenia as a

whole did not. Taken together, these studies are compelling in their support of 20q11

harboring genes relevant to the affective component of schizophrenia. Emerging ev-

idence supports a role for genetic variants conferring risk of both schizophrenia and

bipolar disorder [96, 60]. Furthermore, genome scans of both disorders have consis-

tently implicated regions of chromosome 20 [21, 71, 122, 26, 37, 88]. A recent study of

383 bipolar or schizoaffective relative pairs found suggestive linkage at 20q13.31 when

conditioning on the presence of mood-incongruent psychosis, furthering the argument

that chromosome 20 loci may have relevance to conditions containing admixtures of

mood and psychotic symptoms [44].

The findings presented here provide additional support to published findings sug-

gesting that schizophrenia modifier loci may exist on chromosome 20 and, more gener-

ally, that genetic differences underlie clinical heterogeneity in schizophrenia [107]. We

await replication of the observed associations between these loci and either categori-

cally defined illness or more or less distinct subtypes or clinical dimensions. There are

two main limitations relevant to this study. First, the truncated product of P -values

is particularly sensitive to patterns of LD (unpublished results), since markers could

be significant only due to their LD with other significant markers. Applied to family-

based analysis of extended pedigrees, the validity of gene-based testing relies on the

permutation method realistically maintaining LD across simulated datasets. As dis-

cussed, for C20orf39, the LD structure for a random sample of simulated datasets

did not differ significantly from the actual data (P > 0.05). Second, our analysis

of multiple symptom dimensions may increase the Type-I error rate due to multiple

testing. However, as we have previously shown, these dimensions are correlated [32],
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making Bonferroni correction overly conservative. It remains unclear whether the

failure of traditional approaches to detect experiment-wide significant loci reflects the

spurious nature of these findings or simply the limited power of this sample. Ul-

timately, the genotype-phenotype correlations reported herein require confirmation

in independent samples for which comparable symptom measures are available. We

are unaware of other family-based schizophrenia samples in which OPCRIT data are

readily available. However, this is likely to be attempted in case-control samples by

the Psychiatric GWAS Consortium Cross-Disorders Group [17].
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CHAPTER IV

Whole-Genome In Silico Genotyping and

Association Study of the Irish Study of

High-Density Schizophrenia Families (ISHDSF)

T. Bernard Bigdeli1,2 et al.

1Department of Human and Molecular Genetics,Virginia Commonwealth University, Richmond, VA

2Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University, Rich-

mond, VA

4.1 Abstract

Background: Recent WGAS of Schizophrenia have identified major susceptibility

loci on 2q32.1, 6p21.3-22.1, 11q24.2, and 18q21.2 but the majority of the genetic vari-

ance in disease risk remains unaccounted for.

Methods: The initial sample consisted of N = 843 individuals from 234 Irish high-

density families (ISHDSF) genotyped on the Illumina 610-Quad platform (557,373

SNPs) and N = 349 additional, related subjects genotyped on the Illumina ver-

sion 4 linkage panel. We conducted in silico genotyping to infer WGAS data for
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sparsely-genotyped subjects using MERLIN (v. 1.1.2). A total of 535,728 SNPs were

tested for association with Schizophrenia using the generalized disequilibrium test

(GDT). An LD-corrected threshold for experiment-wide significance was obtained us-

ing SNPSpD.

Results: We successfully inferred WGAS data for N = 206 subjects by in silico

genotyping. An association at 1q32.1 between narrowly-defined Scz and PPP1R12B

(rs12734001, P < 1.2×10−7) was significanct after LD-corrected Bonferroni-correction.

Conclusions: Using an approach to family-based association which considers all

phenotypically-discordant relatives pairs, a SNP in PPP1R12B was found to be sig-

nificantly associated with categorical dimensions of schizophrenia. These findings (1)

support the presence of a Schizophrenia susceptibility locus in the vicinity of chromo-

some 1q32 and (2) demonstrate efficient WGA analysis of multiply-affected pedigrees.

4.2 Introduction

We present herein findings and implications of a whole-genome association study

(WGAS) of Schizophrenia (Scz) in 234 Irish high-density Schizophrenia families. That

the etiologies of Scz and its spectrum disorders are multifactorial is widely-recognized,

as are the high degree of heritability (∼80%) and substantial familiality exhibited by

these disorders. Despite an abundance of empirical evidence supporting a fundamen-

tal role for genetic factors in Scz pathophysiology, this devastating neuropsychiatric

disorder has remained largely recalcitrant towards efforts to identify major suscep-

tibility loci. In recent years, large population-based WGAS have identified several

strong associations between genetic loci and Scz, including the major histocompati-

bility complex (MHC), ZNF804A, TCF4, and NRGN. However, the larger part of the

total genetic variance in liability to Scz remains unaccounted for. Possible explana-

tions for the limited progress in delineating the etiology of Scz include its extensive
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clinical heterogeneity, the inherent complexity of the biological systems and tissues

involved, and the possibility of genetic heterogeneity among individual cases.

The results of recent WGAS are appropriately interpreted as supporting a common

polygenic model—but of considerably greater multiplicity than previously thought.

However, the presence of even moderate genetic heterogeneity is certain to be ac-

companied by some loss in power to detect individual effects. It follows that some

number of “true” effects will go undetected by large, population-based studies of Scz

employing traditional, single-marker approaches to association.

The present study, despite employing a relatively-underpowered sample originally

intended for linkage analysis, does present two key advantages in this respect. First,

recruitment of probands was on the basis of membership in multiply-affected pedi-

grees; such “high-density” families are conceivably enriched for large genetic effects.

Second, the combined sample is relatively un-diverse ethnically, as evidenced by a con-

siderable degree of cryptic relatedness between otherwise unrelated subjects. Using

whole-genome SNP data, available for a subset of association-informative subjects,

we successfully infer WG data in additional, related subjects typed previously on

a low-density SNP panel for linkage. To maximize the amount of information ex-

tracted from each pedigree, we utilize a “within-family” approach which considers

all phenotypically-discordant relative-pairs to evaluate the evidence of association

between common SNPs and categorical diagnoses of Scz.

4.3 Methods

4.3.1 Samples

Fieldwork for the Irish Study of High Density Schizophrenia Families (ISHDSF)

was conducted between April 1987 and November 1992, with probands ascertained

from public psychiatric hospitals in Ireland and Northern Ireland [56]. Selection crite-
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ria were two or more first-degree relatives meeting DSM-III-R criteria for schizophre-

nia or poor-outcome schizoaffective disorder (PO-SAD). Diagnoses were based on

the Structured Interview for DSM-III-R Diagnosis (SCID) [109]. Independent re-

view of all pertinent diagnostic information was made blind to pedigree assignment

and marker genotypes by KSK and DW, with each diagnostician making up to three

best-estimate DSM-III-R diagnoses. The Operational Criteria Checklist for Psychotic

Illness (OPCRIT) [70] was completed by KSK for all subjects with probable lifetime

histories of hallucinations or delusions (N = 755). Our diagnostic schema contains 4

concentric definitions of affection: narrow (D2) (schizophrenia, PO-SAD, and simple

schizophrenia) (N = 577), intermediate (D5) which adds to D2 schizotypal personal-

ity disorder, schizophreniform and delusional disorders, atypical psychosis and good-

outcome SAD (N = 700), broad (D8) (all disorders which significantly aggregated

in relatives of probands) (N = 754) and very broad (D9), including any psychiatric

illness (N = 961).

4.3.2 Genotyping

In total, 853 individuals representing 237 high-density schizophrenia families were

selected for high-throughput genotyping on the Illumina 610-Quad platform, with the

selection of particular persons from extended pedigrees based on informativeness of

their genetic relationships for association analyses. Moreover, this strategy consid-

ered those samplings of family members which optimized potential for application of

in silico [6] genotyping methods to additional family members for whom less-dense

genotyping data was available, namely those selected for a previous genome scan

[49]. Following lift-over to the most recent genome assembly (GRCh37.2), 557,373

autosomal SNPs were available for analysis; genotyping completion was greater than

99.9%.

Genotyping for the previous genome scan, described by Holmans et al. (2009),
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was carried out at the Center for Inherited Disease Research (CIDR) using the Il-

lumina GoldenGate assay22 to analyze the Illumina version 4 linkage marker panel.

Quality-control filtering of SNPs, described elsewhere, yielded a final, unpruned set of

5,298 autosomal SNPs. Of these, 5,290 SNPs were found to be extant in the current

genome build (GRCh37). Across the 234 families retained for whole-genome analysis,

genotypes were available for 1,180 individuals, consisting largely of affected sib pairs

(ASPs) and parent-offspring trios, of which 349 were untyped for WGA. Following

removal of genotypes implicated in Mendelian inconsistencies, genotyping completion

in the pre-inference sample (N = 349) was 99.3%.

4.3.3 Data pre-processing and quality-control

In order to investigate the possibility of duplicated or erroneously identified DNAs,

we compared estimates of genetic relatedness (identity-by-descent) against expecta-

tion based on known familial relationships. The majority of observed inconsisten-

cies were instances of a single, duplicated sample labeled falsely as representing an

affected sib-pair. For sex-discordant sib-pairs, the true identity of a duplicate sam-

ple was resolved by consideration of X-chromosome genotypes, for which males will

be haploid. For same-sex pairs of equivalent diagnostic status, duplicated samples

were arbitrarily assigned one of the two alleged ids, thus preserving any remaining

genetically-informative relationships. Following exclusion of problematic samples, a

total of 843 individuals representing 234 pedigrees were retained for analysis.

Strand alignment and merging of WGA and linkage datasets gave a final, pre-

inference set of N = 560, 657 SNPs, of which 2,006 were common to both panels.

The concordance rate of these SNPs was greater than 99%. Mendelian inconsistencies

represented less than 0.00002% of the total genotypes. Pairwise estimates of genome-

wide pihat were found to be within expectation for first-degree relationships but were

suggestive of excess sharing between more-distantly related persons, including first-
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and second-cousins, and avuncular relationships. Although it is conceivable that the

observed cryptic relatedness is due to inbreeding or assortative mating, it may also

be a consequence of the analytical procedure employed. Estimates of proportions of

alleles shared IBD0, IBD1, and IBD2 were generated using PLINK [95], which does

not exhaustively delineate phase. Ongoing analyses of the genetic substructure in

this population do indicate that the observed over-relatedness does not correlate with

nationality (results not shown).

Of 843 individuals for whom WGAS SNPs were available, N = 93 represented

pedigree founders, though N = 286 of the selected samples were demonstrated to be

effectively independent, with additional “derived” founders originating from selection

of marry-ins or, in pedigrees for which two or more non-founder genotypes were

available, by random selection of a single non-founder. Allele-frequency estimates for

the 555,367 SNPs unique to the WGA panel were calculated from this “derived” pool

of founders. The three-fold increase in the number of contributive samples yielded a

visibly improved MAF distribution with fewer monomorphic sites observed overall.

Allele-frequency estimates for the 5,290 linkage SNPs were calculated from N = 766

founders available in the combined sample.

In silico genotyping of sparsely-genotyped (i.e. linkage) samples at dense-panel

(i.e. WGAS) loci was conducted with MERLIN (v. 1.1.2) [1] on a per-pedigree, per-

chromosome basis, using sample-wide allele-frequency estimates for SNPs with MAF

> 1%. For rarer alleles (i.e. MAF< 1%), pedigree-specific allele-frequency estimates

were based on all family members, thus ensuring accurate resolution of uncommon

haplotypes in pedigrees segregating a rare allele. That is, SNPs with MAF less than

1% were only presumed to be polymorphic for pedigrees in which at least one copy

of the minor allele was observed. In order to reduce computational intensiveness for

prohibitively large, multiplex sibships for which dense-panel genotypes were available,

all combinations of three siblings,
(

n>4
3

)

, were subjected to independent rounds of
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in silico genotyping, then re-merged to attain the final, consensus set of inferred

genotypes.

4.3.4 Association Analyses

We performed association analysis for categorical diagnoses of schizophrenia using

GDT (v. 0.1.1), an implementation of the generalized disequilibrium test (GDT)

[11]. The GDT is a generalization of such “within-family” tests as the transmission

disequilibrium test (TDT) and, similarly, the pedigree disequilibrium test (PDT),

but is distinguished by its utilization of genotypes for all available phenotypically-

discordant relative-pairs. Although the PDT may applied to extended pedigrees, its

comparisons are limited to discordant first-degree relatives, namely parent-offspring

and discordant-sibling pairs. Because such “within-family” tests consider the number

of genotypically-discordant pairs rather than allelic or genotypic frequencies, we did

not exclude SNPs on the basis of MAF as these SNPs are not expected to yield

increased Type-I error.

In total, 535,728 polymorphic WGAS SNPs were tested for evidence of asso-

ciation with a diagnosis of Schizophrenia, corresponding to a Bonferroni-corrected

experiment-wide significance threshold of (α = .05)/(535, 728) ≈ 9.33 × 10−8. An

LD-corrected significance threshold was obtained using the SNPSpD package for R

[85, 97]. For each chromosome, an estimate of the “effective” number of independent

tests was calculated based on the observed pairwise LD; for metacentric chromo-

somes1, the p- and q-arms were taken as effectively independent units, for which

estimates of the effective number of tests were calculated separately; for acrocentric

chromosomes2, a singular estimate of the number of effective tests was calculated.

For both acrocentric chromosomes and the p- and q-arms of metacentric chromo-

somes, whole-“chromosome” data was arbitrarily bisected, as necessary, to reduce

1Chromosomes 1-12 and 16-20.
2Chromosomes 13, 14, 15, 21, and 22.
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computational burden. Summation of per-chromosome estimates yielded an approx-

imate LD-corrected experiment-wide significance threshold of (α = .05)/(265, 494) ≈

1.88× 10−7.

4.4 Results

4.4.1 In silico Genotyping

Of N = 349 sparsely-genotyped individuals in 234 pedigrees, genotypes at N =

557, 373 untyped WGA loci were successfully inferred for N = 206 individuals on the

basis of informative relationships with densely-genotyped relatives. Figures 4.1 and

4.2 gives the per-sample and per-locus missingness distributions, displayed by MAF

and the probability of the imputed genotype, Pr(G). We observe the largest gains in

genotypic information for SNPs with MAF between 40% and 5% and Pr(G) < .95. In

subsequent association analyses, we utilized all inferred genotypes with Pr(G) > .90.

Table 4.1 gives the number of classical linkage- and association-informative relative-

pairs for each diagnosis of Schizophrenia considered herein, before and following our

imputation procedure. Any realised gains in statistical power to detect disease-related

loci are a function of the number of additional, informative relationships contributed

to by sparsely-genotyped samples. However, given the variability of the per-sample

missingness statistic, gains in sample size are not equivalent for all loci, and notably

less at extreme MAFs. For example, at MAF < .10 and Pr(G) > .90, we observe in

excess of 80 sparsely-genotyped individuals with at least 80% genotyping completion

at dense panel loci. At the same threshold of Pr(G), we observe in excess of 200

individuals with > 60% genotyping completion for SNPs with MAF < 5%, but no

individuals for whom genotyping completion exceeded 70%. From the corresponding

distribution of per-SNP missingness at MAF < 5%, it is evident that of 60,000 SNPs,

unobserved genotypes for in excess of 40,000 SNPs achieved genotyping completion
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> 90%, whereas approximately 22,500 SNPs were uncompletely uninferrable.

Table 4.1: Sample and informative sample-pair counts for each Schizophrenia diagnosis.
Schizophrenia Diagnosis

Narrow (D2) Intermediate (D5) Broad (D8) Unaffected

N Trios DSP ASP N Trios DSP ASP N Trios DSP ASP N

Observed 432 172 204 185 527 210 234 282 560 222 246 327 217

Imputed 24 15 82 21 28 19 96 29 29 19 98 33 87

For each categorical diagnosis of Scz, N, Trios, DSP, and ASP give the total number of affected individuals, parent-offspring pairs,
discordant sib-pairs, and affected sib-pairs, respectively. As diagnoses are concentric, observations are unilaterally cumulative across
categories.

4.4.2 Association Studies

Table 4.2 gives the thirty most significant GDT results across all categorical di-

agnoses of Schizophrenia. Corresponding Manhattan and quantile-quantile plots are

displayed in Figures 4.3 and 4.4, respectively. While no single variant achieved es-

tablished significance thresholds for genome-wide significance (i.e. 5 × 10−8), an

association at 1q32.1 between narrowly-defined Scz and PPP1R12B (rs12734001,

P < 1.2×10−7) exceeded our LD-corrected threshold for experiment-wide significance

(αSNPSpD ≈ 1.88 × 10−7). A nearby SNP in strong LD (r2 = 1) with rs12734001

yielded our second most significant association (rs3817222,2.5 × 10−7) but did not

meet our LD-corrected significance threshold. Both SNPs feature among the most-

significant observed associations for intermediate and broad diagnoses of Scz, but are

eclipsed somewhat by highly-correlated (r2 > .96) associations at 11p13 (rs4755351,

5.6×10−7; rs12360973 1.6×10−6) between TCP11L1 with intermediate Scz, neither

of which met experiment criteria for significance. Inspection of the observed quantile

distributions (Figure 4.4) reveals a notable correspondence between the most sig-

nificant associations for the three categorical diagnoses, with the greatest departure

from expected behavior observed for narrowly-defined Scz, for which our realized,

post-inference sample has least power to detect disease-related loci. Whether this

reflects some specificity of effect with respect to core Schizophrenia is unclear.

58



4.5 Discussion

We have conducted whole-genome in silico genotyping and association analysis of

categorical diagnoses of Scz in an Irish sample of 234 high-density schizophrenia fami-

lies for which both linkage and association findings have been reported previously. By

optimizing selection of association-informative family members for high-throughput

genotyping, we demonstrate gainful inference of dense-panel SNP data (> 500, 000

markers) among untyped relatives of WGAS samples using a sparse SNP panel of

marker density representing less than one percent of the total WGAS SNP content.

Combined analysis of observed and inferred genotype datasets by a family-based ap-

proach which utilizes all phenotypically-discordant relative pairs yielded substantial

improvements to the power to detect disease-related loci using this sample. While no

single variant attained established criteria for genome-wide significance, i.e. 5×10−8,

an association between narrowly-defined Scz and PPP1R12B (1q32.1) met our LD-

corrected threshold for experiment-wide significance. Our findings lend support to

the use of extended pedigrees in genetic studies of complex disease, with meaningful

implications for study-design.

4.5.1 In silico Genotyping

One of the aims of this study was to assess the completeness of genotypic data at-

tainable by in silico methods as applied to extended pedigrees, and the consequences

for power to detect association with disease-related loci. As established by Burdick et

al. (2006), the contingent of informative familial relationships is crucial to accurate

delineation of phase, with three-generation pedigrees representing the ideal circum-

stance. Exclusion of duplicate and inference-ineligible individuals reduced the total

number of applicable samples from N = 349 to N = 206. For a given DSP typed

for our WGAS, the gain of an additional sibling with non-missing affection status

corresponds to a minimum increase of one observation for that pedigree. However,
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the availability of multiple, multiplex sibships guarantees that gains in sample size

will be consistently larger than the observed number of individuals for whom dense-

panel genotypes were successfully inferred. Furthermore, by utilizing the GDT, we

facilitate comparison of second- and third-degree relatives, thus extracting a greater

amount of information from large, multi-generational pedigrees than by traditional

analytic methods. However, non-uniformity in the per-sample missingness statistic

demonstrates some variability in our power to detect allelic effects across the MAF

spectrum. At higher allelic frequencies, a corresponding increase in heterozygote

frequency is expected to diminish phasing accuracy, especially in genomic regions

containing a large number of relatively-common SNPs. In such regions, successful

inference of untyped loci relies on the informativeness of parental haplotypes, which

is itself a function of local patterns of linkage disequilibrium. Based on the genotypic

(allelic) priors alone, inferred genotypes for common SNPs are more likely to be ex-

cluded at more stringent thresholds for Pr(G). Similarly, SNPs with lower MAF are

likely to be inferred with either a high degree of certainty or poorly. This “all or noth-

ing” behavior is readily apparent from the distribution of per-locus and per-sample

missingness statistics, which are essentially bimodal at MAF < 5%.

By retaining rarer, common alleles (MAF < 1%) we sought to preserve our ability

to distinguish rare haplotypes. Given the aforementioned cryptic relatedness observed

between allegedly unrelated persons in this sample, we considered our ability to accu-

rately resolve—and, thereby, distinguish in parents—rare haplotypic backgrounds to

represent a particularly salient issue. Our analytic treatment of less common SNPs

(i.e. < MAF 1%), while conservative in this respect, may have yielded slightly bi-

ased estimates of allele frequency for these SNPs. Without unanimous genotyping of

all pedigree founders, those founders for which genotype data were available cannot

be presumed to represent obligate carriers of a rare allele, thus necessitating con-

sideration of all pedigree members. To ensure that this strategy did not indirectly
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influence the observed distribution of observed case-control differences, we considered

the observed GDT test-statistic as a function of the estimated MAF. For narrowly-

defined Scz, for which we observed our most significant findings experiment-wide,

the correlation between MAF and the magnitude of effect (|ZGDT |) was observed

to be approximately −0.018, thus effectively validating this expectation. Neale et

al. (2008) demonstrate a specific bias of Spielman’s TDT in the transmission of the

major versus the minor allele [79]. Allelic transmission tests represent the “between-

family” component of applicable family-based tests and, as such, are not considered

by the GDT per se. That is, comparisons of affected/unaffected parent-sibling pairs

and vice-versa are without respect to minor/major allele status. However, Neale

and colleagues demonstrate that this bias may arise from differential rates of missing

genotypes, possibly reflecting the observation that genotyping clustering algorithms

typically call the major homozygote genotypic class most accurately. Although differ-

ential rates of missing data in cases and controls have been demonstrated by Clayton

(insert year) to bias the association test-statistic, the effect of differential rates of

imputed genotypes in our sample is not expected to appreciably influence the GDT,

as each family contributes at least one “unaffected v. affected” comparison to the

calculated test-statistic.

4.5.2 Association Studies

Interpretation of the findings reported herein is not entirely straightforward. Evi-

dence of linkage between chromosome 1q32 and both Schizophrenia and Bipolar Dis-

order has been reported in diverse samples, including but not limited to Caucasian-

American, Finnish, and Korean populations[20, 25, 41, 50]. A recent meta-analysis

of 32 genome-scans of Schizophrenia, which included our sample, found that regions

of 1q met their threshold for aggregate genomewide evidence of linkage[84]. It is

important to note that, as for any unvalidated finding, the observed signal may re-
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flect LD between the typed SNP and nearby causal variation or represent a spuri-

ous association. However, associations between Schizophrenia and cytogenic anoma-

lies also support the presence of a susceptibility locus on 1q, most notably DISC1

(1q42)[110, 72, 19, 114]. More recently, a pharmacogenetic study of neurocognition

as a predictor of antipsychotic treatment outcome reported associations between SNPs

in two genes, SLC26A9 (1q32) and GPR137B (1q42-43), and response to the drug

olanzapine [69].

Of particular interest is the finding that with inclusion of additional, less-severely

affected persons, we observe some attenuation in the strength of the reported asso-

ciations with PPP1R12B. Whether this reflects some specificity of effect is a com-

pelling possibility, albeit not immediately conclusive. Similarly, two additional SNPs

at 11p13 exhibited an overall increase in significance at more-inclusive diagnostic

thresholds. While the latter observation is most easily explained by appreciable gains

in sample size with broadly-defined categories, that these SNPs are associated with

affective components of disease is not implausible, following reports of linkage evi-

dence at regions of 11p for Bipolar Disorder [22]. Also notable is the observation that

our most significantly-associated SNP, rs12734001, exhibits severe departure from

Hardy-Weinberg equilibirum (HWE) in our combined pool of founders and “derived”

independent subjects (N = 286; 4.721× 10−9). Given the criteria for inclusion in the

original study, we do not presume that the present sample meets the basic assump-

tions for HWE and therefore we did not exclude SNPs on this basis. However, an

excess of heterozygotes and the complete absence of minor-allele homozygotes among

said N = 286 subjects may be of some consequence. A paucity of minor homozygotes

may suggest a particularly deleterious effect of the risk allele. Alternatively, this

genotypic distribution might indicate a problematic SNP assay, or reflect a particular

bias in genotype-calling.

That we observe our most significant association at a locus with no previous
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functional evidence of etiological relevance to Scz poses additional challenges to in-

terpretation. Protein phosphatase 1, regulatory subunit 12B (PPP1R12B), known

alternatively as myosin phosphatase target subunit 2 (MYPT2), was identified as

a second human isoform of MYPT, with which it shares 61% sequence homology.

Whereas MYPT1 is widely distributed in human tissues, western blot analysis de-

tected PPP1R12B protein in only heart and brain [36]. In vitro studies demonstrate

that binding of the delta-subunit of protein phosphatase 1 (PP1) by either isoform

increases its activity. In human tumor cells, inhibition of MYPT1-PP1-delta was

shown to result in deactivation of the tumor supressor merlin, encoded by NF2,

and downstream activation of Ras. Numerous lines of evidence support a role for a

related gene, PPP1R1B, in the pathophysiologies of Schizophrenia and Bipolar Dis-

order. The PPP1R1B locus encodes dopamine-and-cAMP-regulated neuronal phos-

phoprotein (32 kDa), or DARPP-32, is an integral regulatory molecule involved in

dopaminergic signaling in the prefrontal cortex. Also of interest are findings from

post-mortem studies which indicate lower expression of DARPP-32 in the prefrontal

cortex (PFC) of suicide-completed Schizophrenia patients [33]. Given the array of

physiological mechanisms in which protein phosphatase 1 participates and its an-

tagonism of protein kinases, it is conceivable that variants in or near PPP1R12B

contribute to pathogenesis in Scz through dysregulation of protein phosphorylation.

The findings presented here provide additional support to published findings sug-

gesting that Scz loci may exist on chromosome 1q and, more generally, that common

SNPs contribute to Scz liability. However, without independent replication, the find-

ings presented herein cannot be taken as confirmatory of a novel susceptibility loci at

1q32.
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CHAPTER V

Global Discussion

5.1 Summary

The preceding chapters may be considered to be a survey of GWAS-era associa-

tion studies which, while not comprehensive, highlights several salient methodological

issues relevant to current genetic studies of complex disease. Briefly, we have thus

far discussed issues of study design, including but not limited to, the range of allelic

frequencies appropriately analyzed by traditional single-marker approaches, the dis-

tributional behavior of several common multi-marker tests with respect to statistical

power to detect associations, and various approaches to comparing related, phenotyp-

ically discordant individuals. Furthermore, we have considered case-only analysis of

clinically heterogeneous traits in the context of modifier and susceptibility-modifier

genes, and expectations regarding prevalence and size of genetic effects for differen-

tially ascertained populations. In the subsequent discussion, we attempt to frame

these contributions in a unified context, with an emphasis on genetic heterogeneity—

of both the allelic and locus types—and population differences in patterns of linkage

disequilibrium, as manifested by post hoc realizations regarding power to detect sig-

nificant disease-SNP associations.
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5.1.1 Locus Heterogeneity

Locus heterogeneity describes a scenario in which populations, or subsets of af-

fected persons, differ with respect to which pathogenic loci underlie disease presen-

tation. Even moderate levels of locus heterogeneity will severely compromise power

to detect significant associations with loci at which the susceptibility-conferring al-

lele/variant is enriched or penetrant in a fraction of affected cases. This loss of

statistical power is comparable to an equivalent degree of case misspecification. How-

ever, it is reasonable to suggest that for many common diseases, the extent of locus

heterogeneity will be considerably less within multiply-afflicted families than in un-

related individuals, especially for populations exhibiting limited evidence of genetic

admixture. In chapters 3 and 4, we describe association analysis for a sample of Irish

high-density Schizophrenia families (ISHDSF). This study was originally designed for

linkage analysis but it also has some advantages for association studies. First, recruit-

ment of probands was on the basis of membership in multiply-affected pedigrees; such

“high-density” families are conceivably enriched for large genetic effects. Second, we

observe extensive allelic sharing in this sample between allegedly unrelated individu-

als, which may suggest lower levels of population genetic divergence than would be

expected for the general population. Examination of chromosome- and genome-wide

patterns of LD revealed extensive collinearity between SNPs, corresponding to esti-

mates of the effective number of independent tests which amounted to roughly half of

the total number of assayed SNPs in each study. In addition to substantially lowering

the experiment-wide significance threshold, this finding has potential implications for

genetic studies of linkage and association. First, to the extent that familial cases

overlap in their sources of polygenic liability to disease, the breadth of etiologically

relevant genetic heterogeneity may also be less in our combined sample than in the

general population.

This reduced heterogeneity may also be true of variants that modify the course or
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presentation of illness, without directly influencing disease risk. For clinically hetero-

geneous disorders such as schizophrenia, locus heterogeneity may explain the observed

variability in disease presentation, trajectory, and course-of-treatment. As reviewed

by Fanous and Kendler (2005), distinct susceptibility loci might increase susceptibil-

ity to more or less distinct clinical subtypes of illness, whereas other “modifier genes”

may influence clinical features of disease in a dimensional fashion without altering

liability to the illness itself [28]. In Chapter 3, we sought to identify such modifier

loci in the Irish Study of High-Density Schizophrenia Families (ISHDSF), following

reported evidence of linkage to regions of chromosome 20 in the same sample using

latent classes of psychotic illness. In addition to narrow, intermediate, and broad

diagnoses of schizophrenia, we considered five factor-derived scores based on the Op-

erational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania,

depression, and negative symptoms). Using a gene-based approach to association,

we demonstrated two empirically significant associations with depressive symptoms

of schizophrenia. Most notably, of the two loci showing the strongest associations,

namely R3HDML and C20orf39, neither appeared to affect the risk of schizophrenia.

While this may simply reflect the limited power in this sample to detect SNP-disease

associations, we take this finding as tentatively supporting roles for R3HDML and

C20orf39 as “modifier genes.”

In our GWAS of the ISHDSF, we attempted to remedy the unfavorable statistical

power of this sample by employing an approach to family-based association which

considers all phenotypically-discordant relative pairs, the generalized disequilibrium

test (GDT) [11]. This represents a significant departure from previous association

studies using this sample, which mainly utilized the pedigree disequilibrium test

(PDT). Despite both representing generalizations of Spielman’s transmission dise-

quilibrium test (TDT) to extended pedigree structures, the GDT and PDT differ

markedly in the sources of associations considered. Specifically, the PDT considers
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parent-to-affected-child allelic transmissions and allelic sharing between phenotyp-

ically discordant sibling pairs (DSP), representing “between-” and “within-family”

components of family-based association, respectively. The “within-family” compo-

nent assumes homogeneity within families with respect to population stratification

and, as such, is also a test of linkage. That is, phenotypically discordant relatives

are treated as matched pairs without respect to a specific reference allele. Consider

the consequences of population stratification or, analogously, the ascertainment of

ethnically diverse subjects for Type I error. Sub-sample allele frequency differences

will confound tests of association that consider allelic or genotypic counts, including

the “between-family” component of the PDT. By comparison, the GDT offers sub-

stantially greater power to detect significant disease associations by maximizing the

amount of information extracted from extended pedigrees. Nonetheless, our GWAS

yielded only one significant association with schizophrenia, further demonstrating the

unsuitability of this sample for traditional studies of association. However, that the

as yet unsubstantiated association with PPP1R12B demonstrates some specificity-

of-effect to core schizophrenia is somewhat notable.

5.1.2 Allelic heterogeneity and LD-based methods

A second type of genetic heterogeneity, allelic heterogeneity, describes a phe-

nomenon in which study populations differ with respect to the allele or haplotype

shown to confer susceptibility at a disease-associated locus. Excepting the possibility

of a spurious finding in either or both populations, this observation is attributable to:

(a) a true contrariety of causal variants; (b) etiological differences in the pathogenic

mechanism at said locus; or, for indirect approaches to associations; (c) between-

group differences in the specific pattern of LD between markers. For rare variation,

scenarios (a) and (b) are plausible and perhaps not mutually exclusive. For example,

normal gene function may be abrogated by missense or nonsense mutations which
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may both have arisen in a given population. This is rather less conceivable for com-

mon variants which are, in all likelihood, unlikely to represent true causal variation.

Instead, allelic heterogeneity in common SNP-disease associations seem most likely

to arise as a consequence of (c). Population differences in patterns of LD represent a

widely-acknowledged shortcoming of single-marker association studies, contributing

to non-replication of several well-established candidate loci. Such inconsistencies are

easily resolvable by a gene-based approach, which considers all common variation at a

locus jointly. Given some genomic context, functional or otherwise, for clustering com-

mon SNPs, combined methods simply represent a comprehensive approach to indirect

association. As shown in Chapter 3, while single-marker analyses yielded no signif-

icant evidence of association with either diagnoses or dimensions of schizophrenia,

our gene-based approach identified two novel associations with depressive symptoms

of schizophrenia. Of specific interest is the finding for C20orf39, identified by per-

mutation of the truncated product of P -values. From Figure 3.2, it is apparent that

the SNP associations contributing to the truncated product for C20orf39 comprise a

distinct LD-block, and that the majority of these indicate an association of the minor

allele with higher depression scores. Critically, no single association was sufficient to

produce an empirically-significant finding for C20orf39.

For extremely rare variation, the very limited number of observed instances pre-

cludes any single variant from attaining established genome-wide significance thresh-

olds. In Chapter 2 we found that the approximation that traditional association

test-statistics make to the theoretical χ2 will yield deflated significance estimates

when variants are at the rarer end of the common spectrum (1% to 5%). We demon-

strated that it is the number of observations, as opposed to the calculated allelic

frequencies, that drive the observed deflation. Furthermore, some deflation was ap-

parent at genome-wide significance thresholds given minor allele frequencies as high

as 4%. Because accurate representation of p-values is of fundamental importance to
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genetic association studies, it is crucial that an appropriate statistical test be applied.

A number of grouped tests have been developed to assess the evidence of association

between a set of rare variants and disease. Conceptually, both grouped rare variant

and gene-based approaches presume an equivalence of functional context for multi-

ple variants, in the sense that the aggregate evidence of association is assessed for a

given locus or region. However, grouped tests of rare variants differ from gene-based

approaches in that the latter invokes the specific pattern of inter-correlation between

neighboring SNPs as justification, whereas the grouping of rare alleles reflects the

inaccuracy of traditional association tests at low allele frequencies.

Despite the increasing accessibility of re-sequencing technology, LD-based analyti-

cal methods are proving ever more important to molecular genetic studies of common,

complex disease. The catalogue of human genetic polymorphisms now encompasses

variants of unprecedented low frequency, owing to sequencing endeavors such as the

1,000 Genomes Project (1kGP). The current paradigm shift has also been accompa-

nied by an overall reduction in the cost of high-throughput SNP genotyping arrays, an

increasing number of which are incorporating this newly identified variation. Emer-

gent reference datasets permit high-resolution imputation of unobserved variants for

samples typed for GWAS, greatly extending the coverage of genetic variation proffered

by otherwise outmoded platforms. That previous genotyping efforts are thus salvage-

able is a major boon to genetic studies, facilitating expedient re-analysis, replication,

and meta-analysis. In Chapter 4, we describe analogous augmentation of genotypic

data in sparsely genotyped (i.e. for linkage) samples using whole-genome SNP data

available for related individuals. Whereas imputation approaches rely on Markov

sampling of phased, reference haplotypes, family-based in silico genotyping utilizes

haplotypic phase, where discernible in family members, to construct exact priors

for unobserved genotypes. Non-uniformity of the per-SNP missingness statistic was

apparent across the MAF spectrum; higher frequencies corresponded to decreased
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phasing accuracy; low MAF SNPs were “all or nothing.” However, the presence of

large sibships in the ISDHSF permitted computationally efficient, high-fidelity in-

ference via an iterative procedure which considered all combinatorial arrangements

of GWAS-typed samples. We plan to extend this approach to the ISHDSF at even

higher marker densities, following 1kGP-based imputation of GWAS samples.

5.2 Future Directions

Widely-held expectations regarding the relative number and prevalence of risk

variants underlying complex, common disease have undergone periodic revision, as

evidenced by the forecasted efficacy of GWAS and, more recently, the increased focus

on rare and/or structural variants that are not adequately captured by common SNPs.

Major medical sequencing efforts are underway but represent an emergent challenge

for researchers, both with respect to study design and given the inherent difficulties

in identifying and analyzing very low-frequency or structural variants. Therefore, to

what extent the “missing heritability” in many complex traits resides in rare and/or

structural variation remains to be seen. However, that interrogation of common ge-

netic variation to date has been exhaustive is a dubious assertion. Improved genotype

imputation procedures and large meta-analyses have contributed to a growing number

of replicated disease-SNP associations. Furthermore, recent demonstrations of poly-

genic effects involving a large number of common variants suggest that the genetic

architectures of many complex traits are of a largely unanticipated degree of complex-

ity, but that a large proportion of the heritability of these traits can be explained by

joint consideration of all common SNPs. With much of the focus of modern genetic

studies of complex disease gradually shifting towards rarer variation, it is essential

that the central lessons of the GWAS era be considered in a manner facilitative of

downstream successes.

Although thousands of reproducible associations with human diseases and traits
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have been detected by GWAS, individual effects are generally quite small and, taken

together, may account for only a few percent of the estimated variance. This disparity—

between the estimated proportion of variance attributable to genetic factors and the

realized contribution of statistically-significant associations—casts significant doubt

on the tractability of these diseases by indirect approaches to association. It is con-

ceivable that the perceived “missing heritability” reflects contributions of rare vari-

ants, epistasis,G×E interactions, and epigenetics. However, a rather more compelling

argument posits the influence of thousands of small effects, many or most of which are

undetectable by GWAS. Consider that, given the large number of tests performed in

GWAS, a necessarily stringent multiple-testing correction must be applied to buffer

against an increased rate of false positives (Type I), but comes at the cost of an

increased rate of false negatives (Type II). It follows that, for many causal variants

of very small effect, the observed case/control difference in allelic or a frequencies

will be insufficient to warrant rejection of the null hypothesis of no association. This

highlights a critical distinction between what proportion of variance is explainable

by GWAS significant findings and the cumulative contribution of common varia-

tion. For example, a study conducted by the International Schizophrenia Consortium

(ISC) demonstrated that ∼3% of the variance in liability to Schizophrenia could be

explained by an aggregate risk score composed of a large number of SNPs which did

not individually meet criteria for GWAS significance, and that the predictive value

of this score across various inclusion thresholds corresponded to a polygenic model

in which common variation explained approximately one-third of the variation in

Schizophrenia risk[96]. Furthermore, this score was shown to explain ∼1.9% of the

variance in risk of bipolar disorder but had no significant predicative value for any of

six non-psychiatric disorders, including Crohns disease, type I and type II diabetes.

More recently, Lee et al. (2011) have demonstrated that simultaneous consideration

of all SNPs—in the context of realized genetic relationships between unrelated cases
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and controls—can explain a large proportion of the heritability in complex disease[57].

Their approach is based on a method described previously by the same group in a

study of human height, in which at least 46% of the total variance in height was ex-

plained by common variant effects[124]. Extension of this method, which is based on

mixed linear model analysis, to disease traits (i.e. “affected” or “unaffected”) entails

transformation of the observed scale (0-1) to a continuous liability scale, and thereby

must account for an overrepresentation of cases with respect to actual disease preva-

lence in order to provide an unbiased estimate of the variance explained by common

SNPs[57]. As applied to whole-genome data from the Wellcome Trust Case Control

Consortium (WTCCC), this method estimated that common SNPs (MAF>5%) ac-

counted for 22, 37, and 28 percent of the variability in liability to Crohn’s disease,

bipolar diorder, and type I diabetes, respectively. Following a reported finding by the

WTCCC between type I diabetes and the MHC[120], the authors also showed that

chromosome 6 alone accounted for 18% of the variability in liability to disease.

The majority of demonstrable evidence of polygenic effects has addressed what

proportion of genetic variance in disease- or trait-risk can be explained by a model

including a large number of SNPs which do not individually attain genome-wide

significance. As exemplified by the aforementioned report from the International

Schizophrenia Consortium[96], the observed distribution of test-statistics from a pri-

mary GWAS can serve as a basis for assembling a genetic risk sum score. Similarly,

Peterson et al. (2011) employed a meta-analytic strategy in constructing a genetic

risk sum score for obesity. In either scenario, the predictive value of this score is eval-

uated in an independent sample. Such “evidence-based” strategies are premised on

the expectation that the pooled findings from large-scale association studies harbor

some number of true susceptibility variants. It follows that, for methods informed

by observed case-control differences in allelic or genotypic frequencies, power to sub-

stantiate polygenic risk is not unrelated to power to detect individual effects. An
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alternative approach, implemented in the GCTA software[125], can estimate the vari-

ance explained by all GWAS SNPs from the realized genetic relationships between

unrelated individuals. We take the latter approach to represent an “agnostic” ap-

proach to polygenic association but note that, while presenting a powerful alternative

to single-SNP testing, this method is not expected to yield evidence which directly

implicates specific loci in complex disease etiology. Taken together, however, the suc-

cessful application of both “evidence-based” and “agnostic” approaches are of singular

implication, as they suggest that a significant number of causal variants—both com-

mon and rare—are tagged by common SNPs on commercially available SNP arrays.

While compelling, the possibility of an extensively polygenic basis to complex disease

presents significant challenges for efforts aimed at improving our understanding of

underlying etiopathogenic mechanisms. Consider that tagging SNPs are generally

selected for informativeness in the context of indirect association mapping, rather

than on the basis of any actual functional relevance. Extricating a true causal vari-

ant from the complex networks of LD which tag it represents an extant challenge

in the interpretation of GWAS findings, as illustrated by numerous significant asso-

ciations with intergenic SNPs of no discernible correspondence to nearby coding or

regulatory sequence[39, 96, 104, 111]. This issue is further complicated by incomplete

functional annotation of the genome and, similarly, incomplete marker saturation.

The number of statistically non-significant loci implicated under a polygenic model

thus poses a major methodological quandary. Refinement of polygene signals on the

basis of demonstrable, pleiotropic effects represents an intriguing strategy, but one

that is likely to be of limited applicability. More generally, replication of a reported

polygene finding in ethnically diverse populations can lend significant support to its

authenticity[96, 51].

Perhaps of more immediate consequence is the outlook for future GWAS, partic-

ularly with respect to what sample sizes and marker densities may be required to

76



identify additional variants. That is, reported associations may represent the “low-

hanging fruit” of the causal variant spectrum, being of sufficiently large effect-size

to have been detected to date. Identification of novel, lower-penetrance variants by

GWAS will undoubtedly require larger sample sizes and may also entail refinement

of clinical phenotypes. However, particular expectations regarding the number and

effect-sizes of detectable variants are functions of the unknown, underlying genetic

architecture and, therefore, necessarily disease-specific. Park et al. (2010) examined

recent GWAS of several human diseases and estimate the number of as yet undetected

common SNPs of similar effect size, as well as what sample sizes would be required

to do so[91]. Consider Crohn’s disease, which has a sibling relative risk, λsib, of 20-35

(compared with ∼10 for Schizophrenia) and prevalence of 0.1%. The authors esti-

mate that 142 loci exist with odds ratios between .07 and 1.96 and that these SNPs

are expected to account for approximately 20% of the genetic variance in Crohn’s.

Projections of the required size of GWAS demonstrate significantly diminishing re-

turns, with “discovery” of 108, 132 and 140 loci entailing sample sizes of 30,000, 40,000,

and 50,000. Compare this with the modestly heritable breast, prostate, and colorectal

cancers (λsib of 2-3) for which fewer associations have been reported. Given the same

sample sizes cited for Crohn’s, the authors estimate that 21, 33, 44 additional suscep-

tibility loci could be discovered, accounting cumulatively for 8.7, 11.4, and 13.5% of

the variance in risk in each of these cancers. That a nearly equivalent proportion of

the variance in risk could be explained by so fewer loci in the cancers raises important

questions regarding allocution of resources to future GWAS.

5.3 Current Directions

Given the robustness of polygenic findings in schizophrenia, the largely unestab-

lished nature of polygenic disease mechanisms, and the projected multiplicity of

disease-related effects, we sought to investigate the evidence of aggregate disease-

77



related genetic differences, as manifested by differential patterns of linkage disequi-

librium in a sample of unrelated Schizophrenia cases (Ncases = 732) and controls

(Ncontrols = 933). Consider that, excepting de novo events occurring against other-

wise indistinguishable haplotypic backgrounds, population genetic divergence at the

level of DNA sequence is predominantly a function of patterns and frequency of recom-

bination between loci. It follows that, if a majority of polygenic risk to schizophrenia

were conferred by a large number of unlinked common variants, examination of overall

patterns of LD in cases and controls should reveal only those differences attributable

to sampling variability or stochastic variation.

5.3.1 Multi-SNP estimates of collinearity

Employing a “sliding-window” approach, we conducted long-range linkage dise-

quilibrium mapping on the basis of a fixed window length of 1,000 SNPs with an

overlap interval of 100 SNPs between adjacent windows. For cases and controls, we

summarized the overall co-linearity of SNP genotypes within a particular window by

estimation of the effective number of independent tests using SNPSpD. Figure 5.1

displays the genome-wide mappings for the 22 human autosomes. Case-control dif-

ferences are displayed as the loge ratio of the number of independent tests in cases

versus controls, with negative values indicating fewer independent tests in cases com-

pared to controls or, equivalently, that cases exhibit a greater degree of collinearity

between SNPs. Alternatively, increased collinearity may be considered to represent

an approximation of the observed homozygosity within a given region.

Excepting a minority of chromosomal regions, observed case-control differences in

patterns of regional homozygosity are minimal. It is important to note that within

a given population, the extent of LD varies between genomic regions. We do not,

therefore, derive any singular threshold for what magnitude of case-control difference
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in the estimated number of independent tests represents a “significant” finding. How-

ever, we do interpret gradual inflection in the log-ratio value as reflecting actual, albeit

generally small, group differences. Sporadic minima and maxima are most reasonably

interpreted as an excess of missing genotypes in in cases and controls, respectively.

We attempted to corroborate observed group differences in regional homozygos-

ity by examining identity-by-descent (IBD) sharing of chromosomal segments within

each group for the same set of genomic windows. Figure 5.2(a) displays the observed

medians for the proportion of alleles shared identity-by-descent, π̂, among cases and

controls. For comparison, median estimates of identity-by-state (IBS) sharing are dis-

played in Figure 5.2(b). Although the pattern in IBD sharing is largely concordant

between cases and controls, we observe that regions for which either group displays

a relative excess of sharing are in agreement with the observed trends in regional

homozygosity displayed in Figure 5.1.

5.3.2 trans-effects

We sought next to assess whether the overall group differences in regional ho-

mozygosity would alter the observed, genome-wide trans-SNP interactions between

“unlinked” loci. Whereas the spatial distribution of cis-interactants is definitively

linear and inclusive of intervening loci, trans-interactions will be distributed accord-

ing to the particular definition of “unlinked” applied. At extremes, loci mapping to

separate chromosomes represent completey “unlinked” entities though loci mapping

to a single chromosome may be considered effectively “independent” if in approx-

imate linkage equilibrium. Under independent assortment (of chromosomes), it is

not unreasonable to posit a null hypothesis of no (0) correlation between loci occur-

ring on different chromosomes. Because we are rather less interested in the origin or

magnitude of specific SNP×SNP correlations than in gross distributional differences
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between cases and control, we opted specifically to utilize our full dataset without

pruning of highly-correlated SNPs.

Quantiles for the genome-wide distribution of extra-chromosomal SNP×SNP cor-

relations in cases and controls are displayed in Figure 5.3(a). We observe that, ex-

cepting some degree of quantization of the correlation test-statistic, the observed

distributions for cases and controls are largely concordant. From the CHR×ALL

distributions given in Figure 5.3(b), some variability in the distribution of each chro-

mosome is apparent, with respect to both the magnitude of the observed correlations

and deviation from expected behavior. For example, the P -values corresponding

to the most significant correlations with chromosome 9 SNPs are several orders of

magnitude larger than those observed for chromosome 7. This variability is indepen-

dent of chromosome size and SNP-density, and likely reflects—to some degree—the

distribution of low-frequency and monomorphic sites genome-wide. For some chromo-

somes, most conspicuously chromosome 11, some deviation from expected behavior

is apparent, most of which is confined to the upper quantiles. From the CHR×CHR

distributions in Figure 5.3(c), the source of this deviation is shown to arise from the

correlation with chromosome 7 SNPs. The increased number of significant correla-

tions between chromosomes 7 and 11 might reflect a higher degree of true LD on

neighboring SNPs located on either chromosome.

5.3.3 Interpretation

We expect that random variability in patterns of observed cis-interactions may

give rise to spurious differences, most likely arising as a consequence of sampling varia-

tion in the haplotypic diversity. Resolving the conditions under which cis-interactions

are likely to manifest could benefit from the refinement of boundary definitions. As

cited previously in Chapter 3, it has been demonstrated that the vicinity of gene-

coding regions are enriched for significant genome-wide associations [76]. Whether
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common variation in and around genes exhibits greater evidence for cis-interactions is

not a straightforward question, since many coding sequences will exhibit a higher de-

gree of conservation and, thereby, less divergence than non-coding loci. However,

re-sequencing of of associated regions will eventually resolve whether unobserved

rare variation captured jointly by multiple SNPs are responsible for an observed

signal. The failure of comprehensive, direct association mapping to account for a

well-supported WGAS-significant finding may suggest the presence of disease-related

cis-interactions between genic variation and up/downstream regulatory regions, or

across multiple, syntenic loci.

Epistatic or trans-interaction between unlinked loci represents a distinctly possi-

ble but largely unsubstantiated source of variance in complex traits. Classical def-

initions of epistasis, much like those of penetrance, are burdened somewhat by a

connotation of biological interaction. A “hypothesis-free” approach to detecting epis-

tasis (e.g. GWAS) can entail an overwhelming multiple-testing burden, such that

derivation of prior odds of association for interactions is problematic in the absence

of functional knowledge. In the present context, we do not presume a specifically

multiplicative effect but rather assess the case-control differences in distribution of

correlations for all completely unlinked loci.
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(a) ALL×ALL (b) CHR×ALL (c) CHR×CHR

Figure 5.3: Case/control distributions of genome-wide trans-associations. For cases and
controls, correlation test P -values representing all SNP×SNP comparisons were assembled to render
(a) complete quantile distributions from (c) quantile distributions for each CHR×ALL comparison.
(c) Quantile distribution for 7×CHR comparison.

5.4 Closing remarks

Advancement of risk prediction represents a long-held aspiration in complex dis-

ease genetics, but one that has been differentially deferred for many common dis-

eases. In particular, the etiologies of common psychiatric diseases have demonstrated

a persistent, historical recalcitrance to genetic studies. However, recent developments

suggest an imminent revolution in the molecular genetics of several disorders, in-

cluding Schizophrenia. Refinement of polygenic approaches may aid in disentangling

true susceptibility loci from a host of etiologically-irrelevant, statistically-significant

associations. More broadly, an extensively polygenic etiology suggests a convergence

of individual differences in neurodevelopment and function which, while conceivably

unfavorable in terms of risk prediction, may aid in better situating these adverse

and divergent diagnostic entities within the purview of natural human phenotypic

variation.
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