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Abstract

STATISTICAL METHODS FOR NORMALIZATION AND ANALYSIS OF

HIGH-THROUGHPUT GENOMIC DATA

By Tobias Guennel, Dipl.-Math. techn.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2012

Major Director: Mark Reimers, Ph.D., Assistant Professor, Department of Biostatistics

High-throughput genomic datasets obtained from microarray or sequencing studies have

revolutionized the field of molecular biology over the last decade. The complexity of these

new technologies also poses new challenges to statisticians to separate biological relevant

information from technical noise. Two methods are introduced that address important

issues with normalization of array comparative genomic hybridization (aCGH) microar-

rays and the analysis of RNA sequencing (RNA-Seq) studies. Many studies investigating

copy number aberrations at the DNA level for cancer and genetic studies use compar-

ative genomic hybridization (CGH) on oligo arrays. However, aCGH data often suffer

from low signal to noise ratios resulting in poor resolution of fine features. Bilke et al.

[11] showed that the commonly used running average noise reduction strategy performs

poorly when errors are dominated by systematic components. A method called pcaCGH

is proposed that significantly reduces noise using a non-parametric regression on technical

covariates of probes to estimate systematic bias. Then a robust principal components

analysis (PCA) estimates any remaining systematic bias not explained by technical co-

variates used in the preceding regression. The proposed algorithm is demonstrated on



two CGH datasets measuring the NCI-60 cell lines utilizing NimbleGen and Agilent mi-

croarrays. The method achieves a nominal error variance reduction of 60%-65% as well

as an 2-fold increase in signal to noise ratio on average, resulting in more detailed copy

number estimates. Furthermore, correlations of signal intensity ratios of NimbleGen and

Agilent arrays are increased by 40% on average, indicating a significant improvement in

agreement between the technologies.

A second algorithm called gamSeq is introduced to test for differential gene expression in

RNA sequencing studies. Limitations of existing methods are outlined and the proposed

algorithm is compared to these existing algorithms. Simulation studies and real data are

used to show that gamSeq improves upon existing methods with regards to type I error

control while maintaining similar or better power for a range of sample sizes for RNA-Seq

studies. Furthermore, the proposed method is applied to detect differential 3’ UTR usage.



Chapter 1

Introduction

A new era in science is usually heralded by the adoption of a new technology that in-

creases throughput by an order of magnitude and exponentially reduces cost compared

with existing approaches. In the field of molecular biology, scientists have been witnesses

and drivers of two intertwined eras over the last two decades: the eras of microarrays and

next-generation sequencing (NGS). Microarrays evolved from Southern Blotting, where

fragmented DNA is attach to a substrate and then probed with a known gene or fragment

and were first reported in the late 1980’s and early 1990’s [4, 5, 53]. It took microarray

technology until the mid to late 1990’s, when miniaturized microarrays were first used for

gene expression profiling and a complete eukaryotic genome could be fit onto a microar-

ray [43, 90], to develop the throughput and cost efficiency to revolutionize how scientists

were investigating molecular processes. Since then the uses for microarrays have increased

exponentially to provide new insights into DNA methylation, copy number variation via

DNA genotyping and array comparative genomic hybridization (aCGH), and protein bind-

ing site usage through chromatin immunoprecipitation assays to name a few [28, 30, 91].

In a typical microarray experiment, a mRNA or DNA sample from a given cell type or

1



Figure 1.1. Worflow of a typical aCGH experiment [101].

tissue is used to generate a labeled sample, sometimes termed the ’target’, which is hy-

bridized in parallel to a large number of DNA sequences, immobilized on a solid surface in

an ordered array. The density of DNA sequences that can be attached to the microarray

surface allows the detection and quantification of up to several millions of targets simul-

taneously.

One application for microarray technology is the detection of copy number variations in

DNA samples through aCGH. Figure 1.1 illustrates the workflow of an aCGH microarray

experiment. First, DNA is extracted from a test and a normal control (reference) sample

and both are labeled with a fluorescent dye of different colors after DNA fragmentation.

The two genomic DNA fragment samples are then washed over a microarray and since

the DNA has been denatured, its fragments are single stranded and attempt to hybridize

with the arrayed single-strand probes. Next, digital imaging systems are used to capture

and quantify the relative fluorescence intensities of the labeled DNA probes that have

2
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Figure 1.2. Example of intensity ratios for aCGH experiment.

hybridized to each target. The fluorescence ratio of the test and reference hybridization

signals is determined at different positions along the genome and provides information

on the relative copy number of sequences in the test genome as compared to the normal

genome. Intensity ratios are log2 transformed and an example how these ratios are repre-

sented is shown in Figure 1.2. Here, log ratios of zero indicate no copy number variation

while positive and negative ratios indicate copy number gains or losses, respectively. De-

tecting copy number variations ultimately transforms into a change point problem where

scientists want to pin-point genomic regions of elevated or decreased copy number ratios

as exactly as possible. It is apparent in Figure 1.2 that these ratios are quite noisy and

normalization methods that improve signal to noise ratios allow more accurate detection

of change points are needed. Chapter 2 introduces a novel algorithm to normalize aCGH

data and compares it to existing methods.

After microarrays had become the most common technology for investigating molecu-

3



lar processes on a genome-wide scale, scientists were looking for a technology that would

overcome some of the pitfalls of microarray technology including for example a limited

dynamic range and reliance on manufactures to provide accurate assays for their bio-

logical question of interest. This new technology took center stage in 2008 when the

first complete human diploid genome was sequenced using Roche’s 454 sequencing plat-

form [108] to perform massively parallel DNA sequencing. Since then, high-throughput

or next-generation sequencing has revolutionized the field of molecular biology in recent

years replacing microarrays as the method of choice for many genome-wide studies of

transcription levels (RNA-Seq), DNA-protein interactions (ChIP-Seq), chromatin struc-

ture and DNA methylation (Methyl-Seq) [22, 29, 51, 58, 60]. The basic principle behind

DNA sequencing is that DNA fragments are not hybridized to probes attached to a glass

surface but rather sequenced directly. Sanger sequencing [89] had long been the choice for

sequencing small numbers of DNA fragments, but the need for low-cost sequencing spurred

the development of the above mentioned technologies that can sequence millions of DNA

fragments in parallel. Numerous sequencing platforms lead by Illumina’s HighSeq and

GenomeAnalyzer systems [57] and Applied Biosystem’s SOLiD system [54] have emerged

and provide scientists with a myriad of possibilities to quantify molecular processes on a

genome-wide scale with high resolution. For schematics how these two platforms sequence

DNA fragments, please refer to Figures B.1 and B.2 in Appendix B. A detailed review of

these and other NGS technologies can be found in [54]. The increase in throughput and

cost reduction that could be achieved through massive parallel sequencing was enormous.

While scientists could sequence six Megabases per day at $500 per Megabase sequenced

with Sanger sequencing, Roche’s 454 platform has a throughput of 750 Megabases a day at

$10 per Megabase while Illumina’s HighSeq platform and ABI’s SOLiD platform achieve

up to 35 Gigabases per day at $0.10 per Megabase [25]. These cost savings have led to an

4



exponential increase in experiments utilizing NGS and new methods to normalize and an-

alyze these datasets are needed. Although early studies claimed that NGS is less prone to

technical artifacts than microarrays [51, 106], it has become clear that this technology has

its own pitfalls [15, 22, 27, 57, 85, 87]. While these studies show that quality assessment

and normalization are important for NGS data, the second part of this thesis focuses on

the subsequent step, i.e. the analysis of quality assured data. More specifically, meth-

ods for analyzing gene expression data obtained through RNA sequencing (RNA-Seq)

are considered. Figure 1.3 shows a schematic of a typical RNA-Seq experiment. First,

mRNA from a tissue of interest is extracted, fragmented and reverse transcribed. These

cDNA fragments are then pre-processed and sequenced according to protocols supplied

by the manufacturer of the sequencing platform. The short sequence reads obtained from

the sequencing run are then aligned to a reference genome. Using this reference genome,

the researcher can then define a gene model of choice by defining genomic regions that

represent a gene. Gene expression levels are determined by counting how many reads fall

into these pre-defined regions. Once count data for each gene and sample are obtained,

the data is ready for analysis.

In Chapter 3, existing methods to analyze gene expression data obtained through

RNA-Seq are assessed. A new algorithm to analyze RNA-Seq data is proposed and com-

pared to existing methods in Chapter 4. Furthermore, the flexibility of the proposed is

illustrated in Chapter 5.

5



Figure 1.3. Workflow of a typical RNA-Seq experiment [106].
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Chapter 2

Normalization of aCGH Microarrays

2.1 Introduction

Copy number variation (CNV) of DNA sequences has long been suspected to be a form

of normal genetic variation and to play an important role in many genetic disorders.

However, only recently has its importance in human diversity been demonstrated by

Sebat et al. [92] and Iafrate et al. [33]. In a subsequent study, Redon et al. [79] found

quantitative evidence showing that CNV regions cover at least 12% of the human genome

and more nucleotide content per genome than single nucleotide polymorphisms (SNPs).

DNA copy number changes are also consistently observed in cancer cells where different

types of cancers show different copy number structures [35, 55]. More interestingly, Weiss

et al. [107] and Van Wieringen et al. [103] observed correlations between CNV and

clinical outcomes such as patient survival and responsiveness to certain treatments. In

this light, obtaining accurate and reliable estimates of chromosomal copy numbers has

become increasingly important.

Chromosomal comparative genomic hybridization (cCGH) was introduced by Kallion-
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iemi et al. [36] as method to investigate DNA copy number alterations on a genome-wide

scale. cCGH is capable of detecting loss, gain, and amplification of genomic regions with

different sensitivities for different copy number alterations. Copy number amplifications

can be detected in regions of less than 1 Mb, while a single copy loss can be difficult

to detect in regions of less than 5 Mb in length. With the emergence of microarrays,

array comparative genomic hybridization (aCGH) offered improved resolution, a higher

dynamic range, and improved throughput, along with a convenient way to access the loca-

tion of copy number alterations on the genomic map [70]. In a typical aCGH experiment,

genomic DNA from test and reference cells is isolated, labeled with two different fluores-

cent dyes and hybridized on an oligo microarray. After removing excess dye particles, a

high resolution camera takes pictures of each channel, which are subsequently scanned

and transformed into test and reference channel intensities. Typically, the ratio of test

to reference channel intensity (T/R) on a log2 scale is used to investigate copy number

variations. Since the reference genome is assumed to have very few copy number varia-

tions, any significant departures from zero in the log2(T/R) ratios indicate copy number

aberrations in the test sample.

Many early studies using aCGH have focused on amplifications where 10 or more extra

DNA copies are present. Lately detecting heterozygous deletions and subtle gains of one

or more extra DNA copies or detecting short to moderate length copy number aberrations

has become of increasing interest [10, 111]. However, low level copy number changes are

difficult to detect due to the low signal to noise ratios of current aCGH technologies. The

most commonly used approaches to increase signal to noise ratios during the analysis of

CNV are variants of neighbor dependent methods that average signal intensities of neigh-

boring probes [11, 47]. For example, the running average (RA) method [32, 71] calculates

an average signal intensity from all neighboring probes contained in a windows of size W .

8



Then, a sliding window is used to define regions of size W across the genome that are

investigated for copy number changes. The success of those methods in detecting small

segments of CNV depends on the length of the window selected, which in turn depends

on the signal to noise ratio in the data after pre-processing. Smaller signal to noise ratios

allow for smaller segments to be averaged, which consequently results in higher resolution.

Conducting a microarray experiment is a multi-step process during which technical

variation can be introduced by several sources. Technical variation is considered to be

any variation induced by differences in sample handling or the hybridization process. A

technical covariate is a variable that indexes differential effects of these differences in han-

dling on log-ratio intensities. If the magnitude of technical variation is comparable in size

to the magnitude of biological variation, the experiment is unlikely to yield statistically

significant biological differences. The first stage of the proposed algorithm aims to reduce

variation which can be indexed or predicted by known technical covariates. Normalization

methods adjusting for technical covariates have been developed for ChIP-chip arrays [48]

as well as Affymetrix gene expression [109]. Chen et al. [17] pointed out that normaliza-

tion methods for aCGH data are rare and that researchers often apply methods developed

for gene expression data in a slightly modified form to aCGH data. These authors demon-

strate using simulated aCGH data that this approach is problematic due to the different

nature of aCGH data, where the most important differences lie in smaller dynamic ranges

and dependencies among probes based on genomic position. Neuvial et al. [63] uncovers

continuous spatial biases as well as local spatial biases in BAC aCGH data, and stresses

the importance of correcting for spatial artifacts for meaningful biological inferences.

Several methods have been proposed to increase signal to noise ratios during pre-
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processing of aCGH data. Median and quantile normalization [14] usually used for nor-

malizing gene expression microarray data have also been used with aCGH data. Median

normalization centers the distribution of log intensity ratios at its median and thus does

not affect signal to noise ratios as it only shifts the distribution. Quantile normalization

calculates a reference distribution of log2 intensity ratios using all arrays in the data set

and then replaces intensity ratios for individual arrays with the corresponding quantile

of the reference distribution. The reference distribution is usually obtained by averaging

corresponding quantiles from individual arrays across all arrays. Lepretre et al. [46] have

proposed their waves aCGH correction algorithm (WACA) that uses a locally weighted

scatterplot smoothing (LOESS) fit [19] based on GC content and fragment size correction

to improve accuracy. Staaf et al. [99] propose an algorithm that performs population-

based intensity-based LOESS (popLowess) smoothing. The algorithm first stratifies data

into populations of copy numbers and then performs LOESS normalization based on M-A

plots [96].

The proposed algorithm consists of two parts. First, a non-parametric locally weighted

linear regression (LOESS) is used to estimate systematic bias due to variables that induce

technical variation. Second, a principal component analysis (PCA) is employed to account

for any unknown technical covariates that could further cloud the biological information

contained in the data. A detailed description of the algorithm is provided in the following

section.
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2.2 Materials and Methods

2.2.1 Datasets

In the late 1980’s, the National Cancer Institute (NCI) prepared a drug testing pipeline

whose first screening stage measured the effect of putative anti-cancer agents on various

cancer cell lines. To this end they gathered 60 cell lines, several of which (such as MCF-7)

had been previously widely used in cancer research. These 60 cell lines came from nine

distinct tissues of origin (although some were misclassified initially): breast, brain, colon,

lung, kidney, ovary, prostate, lymphocytes and melanocytes.

Samples of those 60 cell lines were hybridized to Agilent Human Genome CGH Mi-

croarray 44K [1] and NimbleGen HG17 CGH 385K WG Tiling [64] arrays. A summary

of each dataset is shown in Table 2.1. Thus, three datasets were available for analy-

sis: two consisting of signal intensities obtained from NimbleGen [81] and Agilent arrays

with standard dye assignments to test and control samples and one consisting of signal

intensities obtained from Agilent arrays where the dye assignments to test and control

samples were reversed. Note that the Agilent datasets contained four replicates for cell

line A549-ATCC and also that cell line NCI-H226 was excluded from analysis due to low

data quality. Furthermore, the experiment using NimbleGen arrays contained ten repli-

cates for cell line A549-ATCC, including four dye swaps, and four replicates for cell lines

SF-268 and OVCAR-8. The intensities used for analysis were the perfect match (PM)

intensities provided by Nimblescan v2.3.4 for the NimbleGen arrays and the processed in-

tensities provided by Agilent’s Feature Extraction Software v8.1.18. In a later stage each

probe’s neighbors on the genome are identified by locating each probe by BLAT search.
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The probes on the Agilent and NimbleGen aCGH platforms used here were based on the

UCSC version HG19 [38, 42]. All probes on either platform that did not align uniquely

to the most current human assembly built were dropped from the analysis reducing the

effective number of probes per array (see Table 2.1). The data sets are publicly available

on the CellMiner webpage [93] at http://discover.nci.nih.gov/cellminer.

Table 2.1. Summary of Agilent and NimbleGen Datasets

Agilent NimbleGen

Array Description
Human Genome HG17 CGH 385K

CGH Microarray 44K 2005-03-16 HG17 WG CGH
Number of Probes per Array 44000 385000

Effective Number of Probes (I) 42853 378779
Length of Probe Sequence 60 mer 45-85 mer

Median Probe Spacing 43000 bp 5000 bp
Number of Arrays (K) 124 72
Number of Dye Swaps 62 4

2.2.2 Algorithm

The principle idea behind the proposed algorithm is the following partition of a data

matrix M of intensity ratios:

M = M biological +M systematic +M random. (2.1)

Here, M biological represents signal due to biological differences of interest, M systematic

represents systematic noise due to technical covariates, and M random represents random

noise. The goal is to normalize the raw data matrix M by estimating M systematic and

removing the corresponding residuals:

M ∗ = M − M̂
systematic

. (2.2)
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The following sections introduce a two step algorithm that aims to obtain good estimates

of M systematic to remove as much systematic noise as possible.

Technical Covariate Normalization

A non-parametric regression approach using LOESS was employed to account for sus-

pected technical variables inducing non-biological variation. Locally weighted least squares

regression (LOESS regression) is a technique to fit a smoothing surface to the data us-

ing second order polynomials. After carefully investigating the dependence of log-ratios

on a variety of potentially informative technical covariates, the following probe specific

technical covariates for aCGH experiments were identified:

1. horizontal and vertical coordinates indexed by probe position X and Y on the array,

2. average reference channel intensity G across all arrays,

3. difference of reference channel intensity Gk to average reference channel intensity G

across all arrays, and

4. probe GC content GC.

For the purposes of this algorithm, the dependent variable is Mki = log2(Tki/Rki), the

ratio of the raw probe intensities of probe i, i = 1, . . . , I, for array k = 1, . . . , K, on a log2

scale. Then the LOESS model is specified by

Mki = f(Xi, Yi, GCi, Gki −Gi, Gi) + ε (2.3)

where f represents a nonlinear function, in this case a local regression surface, and ε

represents biological signal plus error not predictable from the technical covariates used.
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The normalized log2 intensity ratios are obtained by

MLOESS
ki = Mki − M̂ki, (2.4)

where M̂ki are the log2 intensity ratios as predicted from the technical covariates alone by

the LOESS model in Equation 2.3.

The following paragraphs describe the empirical evidence that led to the choice of

technical covariates. By design, microarray probes are randomly distributed across an

array to avoid spatial biases, i.e. probes that represent adjacent regions on the genome

are not located physically adjacent on an array. Therefore, in the absence of spatial ar-

tifacts, one would expect a random pattern of high ratios, low ratios, and ratios of one,

across an array. Furthermore the distribution of reference channel intensities should be

fairly homogeneous across the whole array as reference DNA was extracted from healthy

cells, i.e. cells for which the vast majority of DNA regions should have a copy number

of two. It is known that even healthy cells contain some DNA regions with deletions or

amplification, but probes measuring copy numbers for those sparse regions should again

be randomly distributed across the array. Reimers and Weinstein [80] introduced quality

assessment plots for microarray data to visualize spatial artifacts of regional biases. Fig-

ures 2.1 and 2.2.a) show plots of log2 reference channel intensities and log2 intensity ratios,

respectively, by physical probe position on two specific NimbleGen arrays. Two types of

non-random patterns can clearly be identified, continuous spatial gradients and distinct

local spatial artifacts. Considering log2 intensity ratios, continuous spatial gradients were

detected on numerous NimbleGen as well as Agilent arrays and a significant number of

NimbleGen arrays and a few Agilent arrays showed local spatial artifacts. Those patterns
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Figure 2.1. Spatial Artifacts in Reference Channel for NimbleGen Arrays: Plots show
deviations from average reference channel intensities for two NimbleGen arrays

seem to be even more pronounced for reference channel intensities on NimbleGen arrays.

To account for spatial artifacts in the reference channel of aCGH data, the reference

channel intensity for each array, as well as the difference of reference channel intensity to

average reference channel intensity across all arrays were used in the LOESS regression.

Let i, i = 1, . . . , I, denote the ith probe on a aCGH array. The average reference channel

intensity Gi for probe i is calculated as a 10% trimmed mean of Gki for all k = 1, . . . , K

where K is the number of arrays in an aCGH dataset and

Gi =
1

0.8K
[(L− 0.2 ∗K)(G(L)i +G(K−L+1)i) +

K−L∑
j=L+1

G(j)i], (2.5)

where L = b0.2Kc + 1 and G(j)i denotes the jth ordered reference channel intensity.

Equation 2.5 can similarly be used to calculate trimmed means of continuous data vectors

x and this calculation will be abbreviated by Mean10%(x) in the following.

Agilent arrays also show non-random patterns (plots not shown), but the frequency

and magnitude of those patterns were much smaller compared to NimbleGen arrays. Fur-
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Figure 2.2. Impact of Normalization on Spatial Artifacts: Plots show deviations from
average log2 intensity ratios a) before and b) after normalization
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thermore, Agilent’s Feature Extraction Software v8.1.18 pre-processing step of the raw

intensities produces similar effects as stage 1 of the proposed algorithm and therefore only

stage 2 was applied to the Agilent intensities. It should be noted that newer versions

of NimbleScan (v2.5 and higher) also include LOESS based spatial correction to adjust

signal intensities based on physical feature position. The algorithm should be adjusted to

the corresponding software version to avoid overcorrection of real biological signal.

Wu et al. [109] have shown that melting temperature can influence probe intensi-

ties. The melting temperature Tm of a DNA strand is defined as the temperature where

one-half of its nucleotides are paired with their complement while one-half are unpaired.

Ideally, each probe on the array should have the same melting temperature. However,

since each probe must uniquely identify one specific region of the genome, heterogeneous

melting temperatures across an array are common and need to be accounted for. A

probe’s GC content is a good proxy of its melting temperature. Furthermore, several

studies [52, 61, 98] have identified probe GC content as an important source of technical

variation.

The LOESS curve is fit using the loess function implemented in the R programming

environment [77]. Since the loess function can only fit four predictors at a time, two

LOESS surfaces were fit and the corresponding residuals were subtracted sequentially.

The first LOESS surface fits predictors related to spatial properties, i.e. horizontal and

vertical coordinates indexed by probe position X and Y on the array, average reference

channel intensity G across all arrays and difference of reference channel intensity Gk to

average reference channel intensity G across all arrays. The second LOESS surface fits

GC content by itself as this is a sequence specific predictor. Due to the evident fine-scale
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structure in Figures 1 and 2, a span of 1% is used, i.e. 1% of the data is used to fit each

local regression, for the first LOESS fit. On the other hand, the dependence on probe

GC content is smoother, and therefore a span of 30% in the second LOESS fit was used.

In principle the size of the LOESS span was chosen to use up approximately 1% of the

total available degrees of freedom. It was found however that using a span smaller than

1% increases the computational burden substantially while only marginal improvement in

normalization performance could be achieved.

Robust Principal Component Analysis of Residuals

The novel part proposed here is the combination of technical covariate normalization with

principal component analysis (PCA) to uncover any remaining systematic patterns due to

unaccounted technical variation after accounting for specific variables that are expected to

index unwanted technical variation in stage 1. The goal of PCA is to find a few principal

components that explain the majority of variance inherent in the data, i.e. to perform a

dimensionality reduction of the data. Specifically, a data matrix X ∈ RI×K is modeled

as

X = DτY τ +E. (2.6)

Here, Dτ ∈ RI×p denotes the transpose of the reduced rotation matrix containing only

the first p principal directions, Y τ ∈ Rp×K contains coordinates of each data point in the

new coordinate system, i.e. Y τ constitutes the transpose of the rotated data matrix, and

E ∈ RI×K are the corresponding residuals [45].

PCA is a special case of projection pursuit which maximizes the magnitude of a pro-

jection index PI after projection multidimensional data into a one-dimensional subspace.
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Formally, the jth principal direction aj is defined by

aj = arg max
‖a‖=1,a⊥a1,...,a⊥aj−1

PI(atx1, . . . ,a
txn) (2.7)

where x1, . . . ,xn are I-dimensional data points. Using the sample variance as projection

index corresponds to PCA, i.e. finding the eigenvalues of the sample covariance matrix and

the corresponding eigenvectors are the principal directions. PCA is not a robust method

as outliers can significantly influence the obtained principal components and directions,

Croux et al. [21] suggested using the median absolute deviation (MAD) as projection

index to deal with the high incidence of outliers in microarray experiments [44, 59]. An

efficient version of this algorithm is implemented in the R function PCAGrid within the

package pcaPP [23].

The proposed approach is based on the inherent characteristic of aCGH data, that

signal intensities of neighboring probes are highly correlated. Specifically, the approach

takes advantage of the common situation that probes that are in close proximity measure

the same copy number. The difference MLOESS
ki −M ′

ki between ratios of a specific probe

and its neighboring probes is partitioned into a systematic part and a random part, i.e.

X = MLOESS −MLOESS
in Equation 2.6 where MLOESS = {MLOESS

ki }i=1,...,I;k=1,...,K

and M
LOESS

= {MLOESS

ki }i=1,...,I;k=1,...,K . Here, M
LOESS

ki denotes the 10% trimmed

mean of probes within a window of window size W around probe i. The difference

MLOESS −MLOESS ∈ RI×K can then be viewed as a matrix of bias estimates, one for

each probe of each array. The accuracy of the bias estimates dependents on the window

size W as well as the validity of the assumption that neighboring probes measure the same

copy number. Therefore an iterative algorithm is used to find a window large enough to
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provide an accurate bias estimate while testing the validity of the above mentioned as-

sumption. The window size W is calculated by iteratively including up- and downstream

probes xi−h and xi+j, h = 1, . . . , H; j = 1, . . . , J , closest to probe i up to a maximum

window size of Wmax = 30 for Agilent arrays and Wmax = 60 for NimbleGen arrays, i.e.

Hmax = Jmax = 15 and Hmax = Jmax = 30, respectively. The maximum window sizes are

chosen based on the probe density of the respective array to ensure that probes in relative

proximity to the probe for which the bias ought to be estimated are chosen. At each step

of the iterative inclusion process, an ad-hoc test is used to compare whether the inclusion

of additional probes could possibly lead to the inclusion of a true copy number change due

to a biological process. If an actual change in copy number is suspected, the current probe

and all probes farther away from probe i are not included in the corresponding window.

This comparison is performed for the up- and downstream regions independently and

therefore the resulting window may not be symmetric. The ad-hoc test used to test for a

true change in copy number after each iteration is based on a Smith-Waterman algorithm

described in [74] and implemented in the R package cgh by Price et al. [75].

The normalized probe log2 intensity ratios MPCA
ki are then given by subtracting the

systematic bias predicted by the principal components from the original log2 ratio inten-

sities:

MPCA = MLOESS −DτY τ = M
LOESS

+E, (2.8)

where MPCA = {MPCA
ki }i=1,...,I;k=1,...,K . E is obtained by performing a robust PCA as

described above on MLOESS −MLOESS
and retaining the first p principal components,

i.e.

E = MLOESS −MLOESS −DτY τ . (2.9)
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The number of principal components kept is determined by scree plots. Scree plots show

the size of the principal components in decreasing order. If there is a strong systematic

component, the scree plot will level off at some point and all principal components up

to this point are retained. While it is not exact, the scree plot method is a reasonable

approach. A great difference in performance was not observed when one or two additional

PCs judged to be optimal from the scree plot were used. The scree plots for both Agilent

and NimbleGen data are shown in Figure 2.3. The plots level off after the third and

fourth principal component and thus three and four principal components are retained

for Agilent and NimbleGen data, respectively. For further details on PCA, please refer to

Johnson & Wichern [34] and Croux et al. [21]. The procedure outlined above assumes that

probes that are in close proximity measure the same copy number in the majority of cases,

and therefore that MLOESS −MLOESS
measures variability due to technical covariates

and not biological signal. The iterative algorithm used to estimate the error structure

was designed to automatically assess this assumption during the estimation process and

ensure the validity of the PCA performed.

2.2.3 Performance Measures

The following qualitative and quantitative measures to assess the performance of the

proposed normalization method were used:

• quality assessment plots visualizing spatial artifacts before and after normalization,

• the Derivative Log2Ratio Spread (DLRS) investigating the variance reduction in

differences between adjacent probes,

• signal to noise ratios of technical replicates of cell lines A549-ATCC and SF-268,
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Figure 2.3. Principal Components for Agilent and NimbleGen Data: Scree plots
obtained by robust principal components analysis of residual differences between
neighboring probes

• signal to noise ratios of arrays and their corresponding dye swaps of the same cell

line in the Agilent dataset,

• concordance between NimbleGen and Agilent arrays, and

• median aberrant region lengths as a measure of resolution depth.

Several of these performance measures have also been used in a recent study comparing

several aCGH platforms [68].

Derivative Log2Ratio Spread

The Derivative Log2Ratio Spread (DLRS) was introduced by Kincaid et al. [39] and is

implemented in Agilent’s own DNAanalytics software as the metric of choice for noise

quantification. It calculates a robust variance estimate of the difference in log2 intensities

of neighboring (with respect to chromosomal location) probes. The principal assumption
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is that the majority of adjacent probes measure the same copy number. In fact, the DLRS

assumes that less the 50% of probes delimit breakpoints [46]. Let

Dmethod
i,i+1;k = Mmethod

k(i+1) −Mmethod
ki ; i = 1, . . . , I − 1; k = 1, . . . , K, (2.10)

denote the difference in log2 intensity ratio of adjacent probes i and i + 1 on array k for

a specific normalization method (or the raw data). The DLRS for array k and a specific

method is given by

DLRSmethodk =
Q3(D

method
k )−Q1(D

method
k )

1.349 ∗
√

2
(2.11)

where Dmethod
k = Dmethod

i,i+1;k i=1,...,I−1;k=1,...,K
and Qn(Dmethod

k ) denotes the nth quartile of the

corresponding distribution of differences. The DLRS, presented as a robust method of

estimating noise from the sample array alone, can range from under 0.2 for an excellent

array to higher than 0.3 for poor experiments. One way to evaluate the mean efficiency

of an algorithm can then be written as

DLRSmethodeff =
1

K

K∑
k=1

DLRSrawk −DLRSmethodk

DLRSrawk

. (2.12)

Signal to Noise Ratios

Signal to noise ratios for technical replicates and dye swaps were estimated. For the

four replicates of the A549-ATCC sample, the mean variance within replicates estimated

using a robust estimator based on the median absolute deviation (MAD) was used as an

estimate of the dynamic range (signal) while noise was estimated by the median of the

variance across replicates calculated for all probes. Specifically, the signal to noise ratio
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was calculated using

SN =
1
K∗

∑K∗

k∗=1(1.4826 ∗MAD(Mmethod
k∗ ))2

Median({V ar(Mmethod
i )}i=1,...,I)

(2.13)

where K∗ is the number of replicates, Mmethod
k∗ = {Mmethodi

k∗ }i=1,...,I ,

Mmethod
i = {Mmethodi

k∗ }k∗=1,...,K∗ , and V ar(x) is the usual variance estimator.

Agreement between Technologies

To assess if there was an improvement in agreement between the two different aCGH plat-

forms, detection call intensities obtained from StepGram [47] with default settings were

used to compare technologies. Since the HG17 385K NimbleGen arrays have significantly

more probes than the CGH 44K WG Agilent array, the comparison was made between

each Agilent probe and the closest NimbleGen probe within a 15kb window. If no probe

was located within a 15kb window, the corresponding Agilent probe was omitted in this

analysis. The following metrics were used to assess improvement between technologies:

1. the proportion of variance (scaled by geometric mean of total variance in the two

data sets) explained in differences between matched Agilent and NimbleGen probes

with respect to the raw data, i.e.

V arexplained = 1−

V ar(A∗
Norm−N

∗
Norm)√

V ar(ANorm)∗V ar(NNorm)

V ar(A∗
raw−N∗

raw)√
V ar(Araw)∗V ar(Nraw)

,

2. the correlation between signal intensities of the two platforms before and after nor-

malization, and

3. the proportion of corresponding probes with the same detection call, i.e. pairs of
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probes from different platforms that were both called a deletion, amplification, or

neither.

While reporting correlation is more common, the first measure of agreement, the propor-

tion of scaled variance explained, seems preferable since the correlation measure is often

influenced by the large dynamic range of the array measures while the this measure is

scaled by total variance.

Resolution after Segmentation

While improvements in the quantitative performance measures mentioned above are useful

to assess how well normalization methods reduce noise levels, researchers are ultimately

interested in called regions with copy number aberrations. Improvements in this out-

come are difficult to measure, absent an independent assessment of true copy number

aberrations. Nevertheless the following measures calculated using copy number ratio calls

obtained from StepGram are useful empirical measures that can be used to assess whether

reduced noise levels have an impact on the ability to detect regions with copy number

aberrations:

1. median aberrant region length (MARL),

2. proportion of probes called aberrant (PPCA), and

3. median MAD across all cell lines after segmentation (MMAS).

The first two measures assess the resolution after segmentation. Reduced noise levels can

have a significant impact on copy number ratio calling. Although the true aberration

lengths are not known, it would be expected that if the MARL is reduced in the presence

of a similar PPCA, the segmentation algorithm is able to better distinguish between
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regions of differing copy numbers. Furthermore, the MMAS is a useful measure of the

dynamic range of the data since segmentation algorithms smooth the data and remove

noise based on statistical algorithms and segmented data therefore represent biological

information for the most part. While normalization methods aim to reduce noise levels, the

biological information that is of interest should not be normalized out by any normalization

procedure. Thus, after segmentation, the MAD, which is expected to be driven mostly

by biological differences between disease samples and genomic references, should be of

similar magnitude before and after normalization. Any significant reduction in MMAS

indicates that the normalization procedure does not only remove noise due to technical

variation but also biological interesting information.

2.2.4 Implementation

The approach outlined above is implemented in the R package pcaCGH available at

www.people.vcu.edu/∼mreimers. Basic parallel computing capabilities were implemented

to ensure efficiency. Currently, the NimbleGen Human Genome HG17 CGH 385K (remapped

to HG19) and the Agilent CGH Microarray 44K 2005-03-16 HG17 WG CGH (remapped

to HG19) are supported. Output from Nimblescan v2.3.4 for the NimbleGen arrays and

the processed intensities provided by Agilent’s Feature Extraction Software v8.1.18 were

used in this study. Additional chip types as well as output from the Nimblegen’s Nim-

blescan and Agilent’s Feature Extraction Software can be added by request.

2.3 Results

The proposed method was applied to the three datasets introduced in the previous section

and evaluated each performance measure for the proposed method as well as the following
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existing methods:

1. median normalization, Bolstad et al. [14], R package limma version 3.4.5,

2. quantile normalization, Bolstad et al. [14], R package limma version 3.4.5,

3. popLowess, Staaf et al. [99], R package popLowess version 1.0.2, and

4. WACA, Lepretre et al. [46], R code provided by author.

Each method was applied as recommended by the authors. WACA was designed specif-

ically for Agilent aCGH microarrays and therefore was not used with the NimbleGen

arrays.

2.3.1 Spatial Artifacts

Stage 1 of the proposed algorithm is targeted at specific technical covariates such as

melting temperature, reference channel artifacts, and spatial artifacts. To demonstrate

the effectiveness of technical covariate LOESS normalization in removing spatial artifacts,

Figure 2.2 shows log2 intensity ratios of two arrays before and after LOESS normalization.

It can clearly be seen that the majority of spatial artifacts are removed and the expected

random patterns of amplifications and deletion are observable. Note that the ability of

LOESS normalization to remove very sharp local biases such as the scratch seen on the

right of Figure 2.2.a) is limited due to the limited flexibility of the algorithm at reasonable

numbers of degrees of freedom. Although the effect of the scratch could be dampened, it

could not be removed completely.
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2.3.2 Derivative Log2Ratio Spread

Table 2.2 summarizes DLRS as well as mean efficiency estimates for each dataset and

normalization method. The proposed pcaCGH approach reduces DLRS significantly and

outperforms existing methods by up to an order of magnitude in terms of efficiency.

Especially striking is the improvement over the commonly used quantile normalization

approach for the Agilent data sets. While quantile normalization seems to increase the

DLRS, the pcaCGH method achieves a similar reduction in DLRS as in the NimbleGen

data set.

Table 2.2. Derivative Log2Ratio Spread: Comparison of DLRS estimates and mean
algorithm efficiency

Dataset Method DLRS 95% CI DLRSe 95% CI

Agilent

Processed Signal 0.176 (0.170,0.182) N/A N/A
pcaCGH 0.110 (0.105,0.116) 0.366 (0.334,0.398)
quantile 0.183 (0.176,0.190) -0.041 (-0.059,-0.023)

popLowess 0.171 (0.165,0.176) 0.030 (0.021,0.039)
WACA 0.170 (0.164,0.175) 0.035 (0.026,0.043)

Agilent Dye Swap

Processed Signal 0.174 (0.167,0.182) N/A N/A
pcaCGH 0.114 (0.109,0.118) 0.334 (0.301,0.368)
quantile 0.180 (0.173,0.187) -0.039 (-0.065,-0.001)

popLowess 0.168 (0.161,0.175) 0.036 (0.030,0.043)
WACA 0.166 (0.159,0.173) 0.045 (0.035,0.055)

NimbleGen

Raw Signal 0.155 (0.149,0.161) N/A N/A
pcaCGH 0.104 (0.010,0.104) 0.316 (0.290,0.343)
quantile 0.145 (0.138,0.151) 0.065 (0.042,0.087)

popLowess 0.132 (0.124,0.140) 0.088 (0.067,0.110)
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2.3.3 Improvement in Signal to Noise Ratios

Table 2.4 summarizes signal to noise ratios for each normalization method and data set as

well as fold changes in signal to noise ratios with respect to the raw data. Signal to noise

ratios for each array and its corresponding dye swap were calculated in a similar way.

Table 2.3 lists fold changes in signal to noise ratios between Agilent’s original and dye

swap raw data and normalized data. The proposed pcaCGH method is the only approach

that consistently improves signal to noise ratios significantly, well above improvements (if

any) of existing methods.

Table 2.3. Mean fold change between signal to noise ratios for dye swaps

Method Mean FC 95% CI

pcaCGH 1.87 (1.66,2.09)
median 1.01 (1.01,1.02)

quantile 0.96 (0.94,0.98)
popLowess 0.90 (0.83,0.96)

WACA 0.99 (0.96,1.01)
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Table 2.4. Signal to noise ratios for technical replicates

Dataset Cell Line Method S/N Ratio Fold Change

Agilent A549

Processed Signal 12.60 N/A
pcaCGH 26.99 2.14

median 12.67 1.01
quantile 12.06 0.96

popLowess 12.88 1.02
WACA 14.34 1.14

Agilent Dye Swap A549

Processed Signal 18.42 N/A
pcaCGH 29.32 1.60

median 20.10 1.09
quantile 16.23 0.88

popLowess 18.39 1.00
WACA 20.11 1.09

NimbleGen

A549

Raw Signal 2.03 N/A
pcaCGH 7.04 3.47

median 5.42 2.67
quantile 5.67 2.79

popLowess 5.41 2.67

SF-268

Raw Signal 3.11 N/A
pcaCGH 8.15 2.62

median 6.61 2.12
quantile 6.78 2.18

popLowess 6.57 2.11

OVCAR-8

Raw Signal 5.07 N/A
pcaCGH 11.25 2.21

median 9.34 1.84
quantile 8.40 1.65

popLowess 8.14 1.61
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2.3.4 Improvement in Agreement between Technologies

Table 2.5 shows the mean correlation across cell lines between log2 ratio intensities from

different platforms before and after normalization. While all normalization approaches

improved correlations significantly, the pcaCGH approach outperformed existing methods

easily. Furthermore, the variance in differences between corresponding probes from both

platforms could be reduced by up to 45% while the next best method popLowess could

only reduce the variance by up to 14% (see Table 2.6). Lastly, a similar increase in

proportion of matching probes with the same detection call, i.e. matched pairs of probes

from different platforms that were both called a deletion, amplification, or neither, was

observed across normalization procedures (see Table 2.7).

Table 2.5. Agreement between technologies: Mean correlations between NimbleGen
and Agilent probe intensities for normalization methods used

Agilent/NimbleGen Agilent DS/NimbleGen

Method Mean Correlation 95% CI Mean Correlation 95% CI

Raw Data 0.08 (0.06,0.09) 0.07 (0.05,0.09)
pcaCGH 0.50 (0.46,0.53) 0.49 (0.45,0.52)

median 0.35 (0.32,0.38) 0.35 (0.31,0.38)
quantile 0.37 (0.34,0.40) 0.37 (0.34,0.39)

popLowess 0.39 (0.36,0.42) 0.39 (0.36,0.42)
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Table 2.6. Variance explained in log2 ratio intensity differences between technologies

Agilent/NimbleGen Agilent DS/NimbleGen

Method Var. Explained 95% CI Var. Explained 95% CI

pcaCGH 0.12 (0.08,0.16) 0.13 (0.10,0.16)
median 0 N/A 0 N/A

quantile 0.06 (0.03,0.8) 0.07 (0.04,0.10)
popLowess 0.02 (0.01,0.4) 0.03 (0.01,0.05)

Table 2.7. Proportion of Probes in Agreement (PPA)

Agilent/NimbleGen Agilent DS/NimbleGen

Method PPA PPA

raw data 0.53 0.55
pcaCGH 0.72 0.72
median 0.72 0.73
quantile 0.76 0.76

popLowess 0.67 0.67
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2.3.5 Improved Resolution of Called Segments

Figure 2.4 shows detection calls for parts of chromosome 17 of cell line SK-MEL-5 for the

Agilent dataset where blue lines represent calls for the raw and green calls for normalized

log2 intensity ratios. It can be seen that regions of called copy number aberrations are

shorter and more frequent indicating an increased resolution. Table 2.8 quantifies this first

impression by listing the performance measures introduced in Section 2.2.3. The shorter

median aberrant region lengths after normalization indicate that along with the expected

long regions of copy number aberrations, there are also many more short regions present

in cancer cell lines that have not been detected due to low signal to noise ratios in the

raw data and that cannot be picked up by normalizing with existing methods. Further

evidence of improved resolution can be seen in Figure 2.5, which shows density plots

of intensity ratios before and after normalization for cell line OVCAR-8 in the Agilent

dataset. While only two clear peaks are distinguishable in pre-normalized data, three

clear peaks that are significantly sharper are present in post-normalized data.

Furthermore, the MMAS estimates for segmented data normalized by the proposed

pcaCGH method are not significantly smaller than those from either segmented raw data

or those from segmented data normalized with existing method. The lack of reduction in

dynamic range together with similar proportions of probes called aberrant across normal-

ization methods is strong evidence that the pcaCGH approach does not remove biological

relevant information.
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Table 2.8. Improvement in Resolution: Median aberrant region length (MARL),
proportion of probes called aberrant (PPCA), and median MAD across all cell lines
after segmentation (MMAS)

Dataset Method MARL PPCA MMAS

Agilent

Processed Signal 123 0.74 0.2815
pcaCGH 63 0.76 0.3041
median 122 0.73 0.2819
quantile 163 0.76 0.2648

popLowess 96 0.59 0.3011
WACA 115 0.70 0.2497

Agilent Dye Swap

Processed Signal 108 0.74 0.2959
pcaCGH 61 0.76 0.2617
median 109 0.72 0.2846
quantile 139 0.71 0.2532

popLowess 83 0.59 0.2865
WACA 95 0.69 0.2356

NimbleGen

Raw Signal 277 0.76 0.1621
pcaCGH 92 0.57 0.1779
median 245 0.57 0.1695
quantile 197 0.59 0.1888

popLowess 185 0.55 0.1789
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Figure 2.4. Visualization of Pre- and Post-normalized Data: Raw and Normalized
Data for a Segment of Chromosome 17 of Cell Line SK-Mel-5
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Figure 2.5. Density Plots of Signal Intensities Before and After Normalization:
Density plots for cell line OVCAR-8 are shown pre- and post-normalization.
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2.3.6 Interpretation and Utility of LOESS Regression and Prin-

cipal Components

To illustrate the utility of the LOESS regression and the PCA step in the proposed

algorithm, the loadings of the strongest principle component recovered from each data

set and their correlation to GC content as a known technical covariate were investigated.

To that end, the PCA step was applied directly to the raw NimbleGen data without

performing LOESS normalization first. Figures 2.6 and 2.7 show each probe’s loading

against its GC content recovered from the raw and LOESS normalized NimbleGen data,

respectively. The corresponding correlations between loadings and GC content were 0.247

and 0.071, respectively, indicating that the LOESS normalization does reduce systematic

variability due to technical covariate and also that the PCA step does pick up that same

variability if not already removed in step 1 of the algorithm. These observations and

the previous work on PCA like methods beg the question of whether the LOESS step is

needed at all. This was addressed by computing DLRS and DLRSe measures without

the initial LOESS step. The DLRS and DLRSe for the normalized data obtained from

applying the PCA step directly to the raw NimbleGen data is 0.136 and 0.111 while

the DLRS and DLRSe of the PCA step applied to the LOESS normalized data is 0.104

and 0.316, respectively. This shows that both LOESS regression and PCA contribute

substantively to reducing systematic variability. It was also of interest to verify that

neither the LOESS regression nor the PCA step are picking up significant amounts of

biological signal. If that were the case, one would expect that high principal component

loadings would cluster on a few genomic positions. Figures 2.8 and 2.9 show the loadings of

the first principle components by genomic position for Agilent and NimbleGen data while

Figure 2.10 shows the LOESS residuals against genomic position for the NimbleGen data.
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None of these three figures do show chromosome location patterns in the distribution of

the loadings suggesting that biological signal is not a major component of the variance

removed.

Note that the loadings were highly reproducible for the replicated Agilent data sets with a

correlation of 0.647 (see Figure 2.11). Furthermore, the NimbleGen data set was randomly

divided into two sets of 36 arrays and performed the PCA step on both data sets separately.

The resulting loadings of the first principal components were moderately correlated with

a correlation of 0.384 (see Figure 2.12).
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Figure 2.6. Scatter plot of each probe’s first principle component loading against its
GC content where the PCA step was applied directly to the raw NimbleGen data. The
correlation between the PC loadings and GC content is 0.247.
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Figure 2.7. Scatter plot of each probe’s first principle component loading against its
GC content where the PCA step was applied to the LOESS normalized NimbleGen
data. The correlation between the PC loadings and GC content is 0.071.
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Figure 2.8. Scatter plot of each probe’s first principle component loading against its
genomic position for the Agilent data set.
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Figure 2.9. Scatter plot of each probe’s first principle component loading against its
genomic position for the NimbleGen data set.
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Figure 2.10. Scatter plot of each probe’s LOESS residual against its genomic position
for the NimbleGen data set.
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Figure 2.11. Scatter plot of each probe’s first principle component loading for Agilent
and Agilent Dye Swap data sets. The correlation between the loadings is 0.647.
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Figure 2.12. Scatter plot of each probe’s first principle component loadings for
randomly divided NimbleGen data sets (36 arrays each). The correlation between the
loadings is 0.384.
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2.4 Discussion

Detecting copy number aberration has become an integral part of uncovering the under-

lying processes of many genetic diseases and is becoming more prevalent in personalized

patient care [65]. Array CGH technology has enabled researchers to investigate copy num-

ber aberrations across the whole genome in a high throughput fashion with an improved

resolution, a higher dynamic range, and a convenient way to access the data. While large

fold changes can be easily detected using standard methods to analyze the raw data, many

scientists suspect that shorter and more subtle copy number changes play an important

role in many genetic disorders. Microarray experiments involve numerous complex proce-

dures including DNA extraction, DNA hybridization, and image scanning, that contribute

to non-biological variation. Standard methods do not adjust for the technical error sources

and therefore lack the resolution to reliably detect those subtle changes and thus more

sophisticated approaches are needed.

A method called pcaCGH was proposed to normalize aCGH data using technical co-

variates and a robust PCA. Qualitative and quantitative evidence showing the efficiency

of the proposed algorithm was presented. Furthermore its performance was compared to

existing methods commonly used for normalization of aCGH data and it was shown that

the pcaCGH approach significantly improves on those methods.

A good measure of how well a normalization method performs is how well the biologi-

cal differences stand out above the ’noise’ of differences due to factors other than biology.

This ’technical noise’ is believed to be mostly systematic bias due to variation in technical

aspects of processing the samples. The technical noise due to variation in technical aspects
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of sample processing is well measured by the differences between replicate arrays which

measure the same sample relative to the differences between arrays measuring different

samples, which are compounded of biological differences and technical noise. Therefore the

ratio of the variance across biologically distinct samples, relative to the variance between

replicate samples, is a good measure of how well a normalization method has succeeded in

its goals. Note that by construction the procedure reduces overall variance in a dataset;

however it is not believed that the proposed procedure simply reduces variation. It was

shown that the ratios of variance attributable to combinations of biological and techni-

cal variation, to the differences attributable solely to technical variation, are significantly

better after applying the proposed algorithm than without normalization as well as better

than after applying existing normalization procedures.

Using this metric on technical replicates as well as dye swap replicates, it was demon-

strated that the proposed method significantly increases signal to noise ratio in comparison

to existing methods. The increase in signal to noise ratio seem to lead to a higher res-

olution, i.e. the ability to detect smaller copy number changes, which is apparent when

comparing median lengths of aberrant regions. Thus the proposed algorithm allows for a

more detailed picture of copy number structure across the whole genome. Furthermore

it was shown that while technical noise is reduced significantly the dynamic range is pre-

served.

Another strong argument for the proposed algorithm is an improved agreement across

platforms. To date, few previous analyses have investigated concordance between dif-

ferent aCGH technologies. Compelling evidence was presented that the algorithm not

only increases signal to noise ratios significantly, but also notably improves agreement
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between Agilent and NimbleGen data well above above improvements existing methods

can achieve.
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Chapter 3

Assessment of Current Methods for

Analyzing RNA-Seq Studies

3.1 Introduction

As mentioned in the introduction, the decrease in cost per Megabase sequenced and the

increase in throughput let to a significant increase in NGS datasets. The following two

chapters focus on the analysis of quality assured data obtained from RNA-Seq studies

investigating transcription levels through some form of experimental design. The main

advantage of RNA-Seq over microarrays for gene-expression studies is a higher dynamic

range as the only limiting factor for genes expressed at low levels is the number of total

reads obtained from the mRNA sample, which correlates to the total cost of a study,

while the lack of background noise due to cross hybridization as in microarray experi-

ments allows detection of weaker signals [106]. Furthermore, scientists do not have to rely

on probe annotations supplied by manufacturers anymore since the sequence of cDNA

molecules derived from the mRNA sample is obtained directly and can then be aligned to
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the scientist’s reference sequence or gene model of choice. Theses advantages have lead to

numerous RNA-Seq studies on a variety of organisms and cell types [24]. Scientists most

commonly look for differences in transcription levels for genes, where a gene is defined as

the union of its exons and this definition will be adopted for the following two chapters.

However, the methods described to analyze gene-level data could also be applied to exon-

by-exon analyses or any other analysis that summarizes reads aligning to a pre-specified

genomic region into count data as demonstrated in Chapter 5.

A natural choice to analyze count data is the Poisson distribution. Marioni et al. [51]

first investigated the properties of RNA-Seq data and concluded that the Poisson distri-

bution is suitable to describe count data obtained from sequencing technical replicates,

i.e. sequencing the same RNA sample repeatedly. However, it became clear very quickly

that the Poisson distribution could not explain extra variation seen in the data when

sequencing biological replicates, i.e. sequencing RNA samples extracted from the same

tissue but from separate individuals [16, 60, 86]. A natural extension to the Poisson distri-

bution is the negative binomial (NB) distribution that models extra variation above that

expected from a Poisson distribution through an additional parameter called the overdis-

persion parameter. Two methods, DESeq by Anders et al. [3] and edgeR by Robinson

et al. [87], based on the NB distribution have been adopted by the scientific community

as preferred approaches to analyze RNA-Seq data. Both approaches use some form of

information sharing across genes (see Sections 3.2.1 and 3.2.2) and were initially devel-

oped to simply detect differences between two groups of samples, e.g. RNA samples from

individuals with a specific disease and normal controls. As experimental designs have

recently become more complex, these methods were recently extended to handle potential

confounders in addition to the covariate of interest. To date, there has not been an evalu-

ation of these extensions’ performance with regards to type I error control and power and
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the purpose of this chapter is to extensively test DESeq and edgeR across a wide range of

scenarios and data structures through simulations and application to real data. The ex-

isting methods are also compared to a newly proposed method to introduced in Chapter 4.

3.2 Methods

The following sections summarize briefly the approaches by Anders and Huber [3], imple-

mented in the R package DESeq, and Robinson et al. [87], implemented in the R package

edgeR, and also outline the strategy to evaluate those methods. R version 2.14 (released

on 10/31/2011), DESeq version 1.6.0 and edgeR version 2.4.0 were used to obtain the

results presented in this study. Standard settings as described in the package’s vignettes

were used and the an example of the R code used to obtain presented results can be found

in Appendix C. Both methods are currently considered the “gold-standard” in analyzing

RNA-Seq data and were evaluated by performing extensive simulation studies under a va-

riety of scenarios as well as applying the methods to publicly available datasets and data

obtained from a RNA-Seq experiment conducted at Virginia Commonwealth University.

3.2.1 edgeR

Robinson et al. have developed their software edgeR [87] to analyze count data from high

throughput sequencing studies based on previous papers by Smyth and Verbyla [97] as

well as Robinson and Smyth [86]. Their model is based on the negative binomial (NB)

distribution with probability mass function (pmf)

fNB(y|r, p)
(
y + r − 1

k

)
(1− p)rpk, (3.1)
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for k = 0, 1, 2, . . ., p ∈ (0, 1) and r > 0. Here E(Y ) = µ = pr
1−p and V ar(Y ) = σ2 = pr

(1−p)2 .

The distribution can be re-parameterized in terms of µ and σ2:

fNB(y|µ, σ2) =

(
y + µ2/(σ2 − µ)− 1

µ2/(σ2 − µ)− 1

)
(µ/σ2)µ

2/(σ2−µ)(1− µ/σ2)y, y ≥ 0, µ ≥ 0, σ2 > 0.

(3.2)

Note that the NB distribution is equivalent to the Poisson distribution when σ2 = µ.

Furthermore, let lNB(µ, σ2|y) denote the likelihood function of the NB distribution. The

mean value µij of the observed counts for gene i, i = 1, . . . , I, and sample j, j = 1, . . . , J ,

is parameterized as

µij = qi,ρ(j)sj, (3.3)

where qi,ρ(j) is proportional to the expected value of the true (but unknown) concentration

of fragments from gene i under condition ρ(j) and sj represents a normalizing factor based

on the total number of reads from sample j compared to total number of reads from the

other samples. The authors define the variance the commonly used parameterization

σ2
ij = µij + θiµ

2
ij where θi is called the dispersion parameter. Assuming equal library sizes

for all samples, the authors estimate the dispersion θi for gene i by weighted conditional

maximum likelihood:

WL(θi) = li(θi) + αlC(θi), (3.4)

where θi is the genewise conditional log-likelihood derived in [86] and lC(θi) =
∑I

i=1 li(θi)

is the common likelihood over all genes. Since the assumption of equal library sizes is

unattainable for real HTS studies, Robinson et al. use a method called quantile adjusted

conditional maximum likelihood (qCML). Quantile-adjusted CML uses an iterative al-

gorithm to estimate θi that adjusts observed counts as if all observations come from a

NB(qi,ρ(j)s, σ
2
ij) distribution where s is the geometric mean of the library sizes sj, i.e.
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s =
(∏J

j=1 sj

) 1
J
.

The parameter α, estimated using an empirical Bayes procedure, determines how much

a gene’s dispersion estimate based on its counts alone is shrunken towards a common

dispersion estimate θ̂C obtained by maximizing lC . If α = 0 then the likelihood of that

gene’s data is maximized while if α is sufficiently large, the estimate for θi is close to the

estimate of a common dispersion θC . The Bayes procedure assumes that θ̂i|θi ∼ N(θi, τ
2
i )

and θi ∼ N(θ0, τ
2
0 ). The author’s strategy to estimate α relies on choosing α such that

WL(θi) coincides with an empirical Bayes rule using the posterior mean estimator of θi:

θ̂Bi = E(θi|θ̂i) =
θ̂i/τ

2
i + θC/τ

2
0

1/τ 2i + /τ 20
, (3.5)

where the hyperparameters θ0 and τ 20 can be estimated from the marginal distribution of

θ̂i. For a detailed derivation of the approach, please refer to the author’s original papers.

Robinson’s method has been extended to generalized linear models (GLMs) [62] using

Cox-Reid approximate conditional inference [20] to estimate dispersion and use those

values to fit NB models to each gene using their own fitting procedure. GLMs are used

to model the relationship between mean µij and explanatory variables through a link

function g:

g(µij) = g(qijsj) = βi0 + βi1xj1 + . . .+ βipxjp = xjβi, (3.6)

where X1, . . . , Xp represent either covariates of interest or confounders that need to be

adjusted for. Note that the rate qij for gene i and sample j does now not only depend

on conditions ρ(j) as proposed originally by Robinson et al. in Equation 3.3, but rather

on the values of all p covariates of that sample. The most commonly used link function

is the log link, which is used as link function of choice for all models presented hereafter

in this work. The software supplies p-values for testing differential expression based on
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standard likelihood ratio tests (LRTs).

3.2.2 DESeq

Anders et al. [3] also based their work on the NB distribution described in Equation 3.2

where µij = qi,ρ(j)sj is similarly defined as in edgeR. The variance σ2
ij however is defined

by the authors as a sum of a “shot noise“ term and a raw variance term:

σ2
ij(qi,ρ(j)) = sjqi,ρ(j) + s2jνρ(qi,ρ(j)) = µij + s2jνρ(qi,ρ(j)). (3.7)

Note that the term shot noise is not used properly here as it not depend on magnitude

of the actual signal, which in this case is qi,ρ(j). Furthermore note that Anders et al.

assume that the per-gene raw variance parameter νρ(j) is a smooth function of qi and ρ(j)

and consequently the variance σ2
ij is a function of these parameters. This assumption

is designed to obtain more precise estimates of the variance for gene i using data from

genes with similar gene expression. In general, Anders et al. fit the smooth function νi,ρ(j)

empirically by first estimating qi,ρ(j) and σ2
ij and then fitting a smooth curve through

those estimates. The smooth curve was first fit using a local regression but now uses a

parametric form as default fitting procedure. Specifically, the parametric form is given by

σ2
ij(qi,ρ(j)) = a0 +

a1
sjqi,ρ(j)

, (3.8)

where a0 and a1 are estimated using a robust gamma-family GLM.

Their algorithm to fit the proposed model and estimate all parameters is described in

great detail in [3] using the functional relationships described in Equations 3.7 and 3.8.

Two options are available in DESeq to fit the mean-variance relationship proposed in

Equation 3.7. The first approach estimates the variance for each gene without taking
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into account each sample’s group membership, i.e. νi,ρ(j) = νi, enabling this approach

to be applied to data without biological replicates. The second approach first calculates

variance estimates within each condition and then pools the estimates across conditions

taking into account biological variation. The two approaches are labeled ”blind” and

“pooled” dispersion estimation.

Using Equation 3.6, Anders et al. have since extended both approaches for use with GLMs

using a custom negative binomial family implementing Equation 3.7 in conjunction with

R’s glm function. DESeq also offers an ad hoc adjustment to dispersion estimates called

”sharing” modes. The first mode labeled fit-only uses the variance estimate obtained

by using the proposed algorithm to estimate the variance parameter σ2
ij. The second

mode labeled maximum estimates σ2
ij using the proposed method as well as the variance

estimator used to fit νi,ρ(j) and proceeds using the maximum of the two variance estimates

in subsequent analyses. Note that there does not seem to be a theoretical justification why

this adjustment is needed, but rather relies on empirical observations made by the authors

that using sharing mode fit-only can lead to false positives as mentioned in the help file for

the package. Two methods were evaluated and will be referred to as DESeq Liberal and

DESeq Conservative, respectively. DESeq Liberal uses “blind“ dispersion estimation and

sharing mode fit-only while DESeq Conservative uses pooled dispersion estimation and

sharing mode maximum. The software supplies p-values for testing differential expression

based on standard LRTs.

3.2.3 Simulation Studies

The simulation studies were designed to test the methods under realistic scenarios. To

that end, two publicly available datasets were used. The first contained RNA-Seq count

data on humans, chimpanzees, and rhesus macaques using liver RNA samples from three

54



males and three females from each species [12] and was downloaded from the NCBI Gene

Expression Omnibus [6] under accession number GSE17274. The dataset contained counts

for 17,254 genes. Count data for 12,410 genes expressed in human B-cell RNA samples

of 17 females and 24 males sequenced by Cheung et al.[18] was downloaded from the

ReCount database [24]. Since we do not know the true underlying distribution of the

dispersion parameters, the datasets were used to obtain four sets of dispersion estimates

using the following algorithms:

1. edgeR’s tagwise Cox-Reid dispersion estimation algorithm,

2. DESeq’s blind dispersion estimation algorithm with sharing mode fit-only,

3. DESeq’s pooled dispersion estimation algorithm with sharing mode maximum, and

4. maximum likelihood estimation using Ripley’s and Venables’ theta.ml R function

[105].

The four sets of dispersion estimates were then taken to be the true underlying distribution

of dispersion parameters and together with the estimated mean count for each gene were

used to create four simulation scenarios. Figures 3.1 and 3.2 illustrate the relationship

between mean-dispersion relationship for the four scenarios. By design, DESeq prescribes

a functional relationship between mean and dispersion while the correlation between mean

and dispersion for edgeR and ML dispersion estimates is significantly weaker.

Sixty-four datasets each with sample size 18 for the Marioni data and sample sizes

of 41, 18, 15, 12 and 9 for the Cheung data were simulated using the four simulation

scenarios described above. To assess power, 10% of genes were randomly chosen to have

log fold changes drawn from a N(0, 2) distribution and those fold changes were used to

generate gender differences. For each dataset, the three methods were used to obtain p-

values testing for gender differences. The proportion of genes with true gender differences
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 3.1. Dispersion estimates against mean gene count on a log scale
for the Marioni dataset
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 3.2. Dispersion estimates against mean gene count on a log scale
for the Cheung dataset
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called significant at a 10% false discovery rate (FDR) after Benjamini-Hochberg multiple

comparison correction [7] was used as an estimate of power. Additionally, a categorical

covariate with three levels distributed evenly across gender was included in each model and

was used to assess type I error. The size of each test at a 0.001 level was calculated as the

proportion of genes with p-values smaller than 0.001 where genes for which the models did

not converged were disregarded. Furthermore, the number of genes called significant at a

10% false discovery rate (FDR) after Benjamini-Hochberg multiple comparison correction

was recorded.

3.2.4 Application to Internal and Publicly Available Datasets

Gender-specific gene expression has been studied extensively over the last years [66, 95,

104, 110, 112]. These studies have shown that the vast majority of genes showing evi-

dence for gender-specific gene expression are located on chromosome Y, few are located on

chromosome X, and rarely any are located on autosomal chromosomes. Therefore testing

for gender-specific gene expression is well suited to compare methods in terms of false

positive rate and power on real data.

In addition to the Marioni primate dataset and the Cheung HapMap dataset, one ad-

ditional publicly available dataset and one additional internal dataset with phenotypic

information on gender were used. The public dataset is a subset of the Marioni primate

dataset that was re-aligned and summarized by Frazee at al. [24] and is available from the

Recount database under the name “Gilad“. This dataset contains count data on 10,525

genes for three male and three female samples. The internal dataset from Xiangning

Chen’s lab at Virginia Commonwealth University contained count data on 21,134 genes

for 82 sequenced brain samples from normal controls (n=26) and patients with bipolar

disorder (n=25) or schizophrenia (n=31). The Chen data included information on age,
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brain pH, and post mortem interval (PMI), which were used as covariates during model fit-

ting in addition to gender and diagnostic group. Furthermore, to generate a dataset with

smaller sample size, a subset was taken from the Cheung dataset by randomly choosing

ten male and ten female samples.

3.3 Results

Supplementary Table A.1 and Figure 4.2 show average size estimates at the 0.001 signifi-

cance level as well as average and maximum number of genes called significant at a 10%

FDR cutoff over 64 simulated datasets. It can be seen that edgeR and DESeq Liberal

only control the size of the test under one scenario. In the worst case, size estimates

for edgeR and DESeq Liberal are up to 3-fold and 8-fold over nominal size. This leads

to a significant number of false positives when applying a FDR procedure as shown in

Supplementary Table A.2 and Figure 4.3. To further evaluate the reason for the increased

number of false positives, the dispersion estimates were compared to the true dispersion

values used to simulate the data. Figures 3.3.a and 3.3.b show dispersion estimates from

edgeR and DESeq Liberal, respectively, against the true dispersion values in blue on a

log scale over 64 simulations for scenario 4. Red points indicate the average dispersion

estimate for a specific gene while green points indicate average dispersion estimates for

genes falsely identified as differentially expressed. The plots show that for the overwhelm-

ing majority of genes falsely called differentially expressed the dispersion estimate was

smaller than the true dispersion value. It was also of interest whether false positives oc-

cur only for genes expressed at high levels, low levels or a mixture of both. Figure 3.4

shows true dispersion values against mean gene count in black on a log scale for scenario

4. Red points indicate mean dispersion estimates obtained from DESeq Liberal over 64
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simulations while magenta points indicate false positives, which seem to occur for the

entire range of mean gene counts. The size estimates for DESeq Conservative were found

to be below nominal level for the majority of scenarios and sample sizes. However, for

scenario 4 and small sample sizes, size estimates were increased 2-fold above nominal level.

Similar observations to those made in the simulation studies could be made when both

methods were used to test for gender-specific gene expression in real data. Table 4.4 shows

the number of genes called differentially expressed at a 10% FDR cutoff after Benjamini-

Hochberg multiple comparison correction. DESeq Liberal identifies a significant number

of genes not located on chromosome Y and also identify genes on chromosome X that

are not known to show gender-specific expression for all datasets while edgeR performs

well for the Chen data, but not for the remaining datasets. DESeq Conservative is more

conservative, but also identifies a number of false positives for the Gilad dataset, which

features a small sample size.

3.4 Conclusions

The evaluation of methods using moderation when estimating the dispersion parameter

for a NB distribution has shown that DESeq Liberal and to a lesser extend edgeR have

significant problems to control type I error under certain scenarios. An explanation for

increased false positive rates was given by showing that these methods underestimate the

dispersion parameter for a subset of genes. DESeq Conservative is conservative for the

majority of scenarios and sample sizes tested, but also tends to increased false positive

rates when sample sizes are small. In Chapter 4 a new algorithm will be proposed that

does not use moderation and can handle categorical and continuous covariates. It will be
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shown that this algorithm maintains size under a variety of scenarios and has comparable

or better power for sample sizes of twelve or larger when compared to existing methods.

The results obtained in this chapter will be put into further perspective in Section 4.4.
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b

Figure 3.3. Dispersion estimates against true dispersion value on log scale
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Figure 3.4. Dispersion values against mean gene count on a log scale
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Chapter 4

Analyzing RNA-Seq Studies Using a

Negative Binomial Model with

Zero-inflated Component

4.1 Introduction

Gene expression analyses utilizing data obtained through sequencing of RNA molecules

(RNA-Seq [58, 60]) have gained widespread popularity over the last years. Due to the

high costs of sequencing when first introduced, early RNA-Seq studies employed very

simple experimental designs, i.e. compared a small number of biological replicates across

two conditions without regards for potential confounders. The two most popular software

packages DESeq [3] and edgeR [87] described in Sections 3.2.1 and 3.2.2 to analyze RNA-

Seq data were designed to analyze studies with few biological replicates by leveraging

information across genes. As sequencing costs decrease rapidly [40], more complex, and

ultimately more interesting, experimental designs can be utilized to investigate biological
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questions of interest. For example, due to its complexity, the Chen dataset introduced in

Section 3.2.4 requires the inclusion of several covariates such as age, gender, brain pH,

and PMI in addition to diagnostic group, which is the covariate of interest. The Marioni

dataset introduced in Section 3.2.3 has multiple biological replicates for males and females

across three species. A subset of a recently published gene expression study by Kang et

al. [37] using exon arrays to investigate the development of the human brain across 32

brain regions is currently being sequenced using RNA-Seq to investigate differences in

gene expression profiles across several brain regions. Covariates such as brain pH, PMI,

age and gender played an important role in the original study and will need to be adjusted

for in the RNA-Seq study as well. The emergence of these complex RNA-Seq datasets

stresses the need for models that can handle additional covariates.

The GLM framework introduced in Section 3.2.1 is well suited for complex datasets. Con-

sequently, Robinson et al. and Anders et al. extended their methods to handle additional

covariates using the GLM framework. As outlined in Chapter 3, these methods seem to

have trouble with controlling type I error under certain realistic scenarios.

More complex datasets have also unearthed an additional phenomenon that affects

a subset of genes. Consider Figure 4.1 that shows a heatmap of counts for a subset of

genes of the Marioni dataset. It can be seen that there are a number of genes for which

there are many samples with zero counts (blue color) while other samples have counts

between 70-1,000 (red color). These large differences do not seem to correlate with gender

or species differences for the majority of genes and therefore a GLM with gender and

species as explanatory variables will not be able to explain the variance present for these

genes.

In statistics this property is called zero-inflation, i.e. having more zero counts than
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Figure 4.1. Heatmap of counts for Marioni dataset
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one would expect from a NB distribution with given mean and dispersion. To further

quantify to what degree and how many genes are affected, simulation studies using NB

models with mean gene counts obtained from the Chen, Marioni, and Cheung datasets

and the four sets of dispersion estimates described in Section 3.2.3 were conducted to

determine the proportion of genes with zero counts above the expected number of zero

counts. One thousand datasets were simulated for each scenario and original dataset and

the number of zeros occurring for each gene were recorded. For each gene an empirical

p-value for the number of zeros occurring in the original dataset was computed as the

proportion of simulated datasets that showed more zeros than the observed zero count.

Table 4.1 lists the proportion of genes with empirical p-values smaller than 0.001 for three

datasets across all four scenarios. One would expect of course that 0.1% of the genes

have empirical p-values of 0.001 or smaller. The results of the simulation studies however

indicate that between 0.7% and 5% of genes could be affected depending on the true

underlying distribution of dispersion parameters and the structure of the dataset.

Table 4.1. Proportion of genes with empirical p-values smaller than 0.001

Dataset Scenario 1 Scenario 2 Scenario 3 Scenario 4
Chen 0.05 0.03 0.02 0.01
Cheung 0.017 0.016 0.009 0.007
Marioni 0.023 0.019 0.011 0.012

Furthermore, a NB GLM and a NB GLM with additional zero-inflation parameter

(see Section 4.2.1 for more detail) were fit to the Chen, Cheung, and Marioni datasets

and the Akaike information criterion (AIC [2]) for both models was recorded. Since

AICNB − AICZINB − 2 is distributed according to a χ2−distribution with one degree of

freedom, a p-value that quantifies how much the extra parameter in the zero-inflated NB

model improves the fit of the model can be obtained. Table 4.2 lists the number of genes

with moderate (p-value<0.2) and strong (p-value<0.05) evidence for an improved model
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fit among genes for which AICZINB was smaller than AICNB.

Table 4.2. Number of genes with AIC differences showing moderate and strong
evidence for improved model fit among genes for which AICZINB was smaller than
AICNB

Dataset Total P-value<0.2 P-value<0.05
Chen 1074 477 206
Cheung 749 244 123
Marioni 424 250 107

A zero-inflated NB model was introduced by Rashid et al. [78] to identify genomic

regions enriched in ChIP-seq and DNA-Seq data. In this chapter a comprehensive method

fitting a NB GLM with zero-inflation component is proposed that improves upon existing

methods with regards to type I error control while maintaining similar or better power for

a range of sample sizes for RNA-Seq studies. The zero-inflation component also improves

power for the subset of genes identified above. The method is called gamSeq as it is based

on a fitting algorithm used to fit generalized additive models (GAM) for location, scale,

and shape introduced by Rigby and Stasinopoulos [84]. The statistical properties of the

proposed model are evaluated and compared to existing methods for analyzing RNA-Seq

data.
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4.2 Methods

4.2.1 Negative binomial model with zero-inflated component

Using the GLM framework introduced in Section 3.2.2 and the parameterization used

by edgeR, i.e. µij = qijsj and σ2
ij = µij + θiµ

2
ij , the following negative binomial model

with zero-inflation component (ZINB) is proposed to analyze RNA-Seq studies with more

sophisticated experimental designs:

fZINB(yij|µij, θi,xj ,βi, πi, sj) = πi ∗ I0(yij) + (1− πi) ∗ fNB(yij|µij, θi,xj ,βi, sj), (4.1)

where y = 0, . . . , 1; j = 1, . . . , N ; i = 1, . . . , I and

• πi ∈ [0, 1] is unobserved probability of belonging to the point mass component of

zero counts,

• I0(yij) = 1 if yij = 0 and I0(yij) = 0 if yij > 0),

• fNB(y|µij, θi,xj ,β, sj) is the negative binomial pmf with log link function

log(µij) = log(qijsj) = log(sj) + βi0 + βi1xj1 + . . .+ βipxjp = log(sj) + xjβi. (4.2)

Recall that X1, . . . , Xp represent either covariates of interest or confounders that need to

be adjusted for and log(sj) is used as a constant offset to adjust for total number of reads

for sample j in the model statement. Note that for π ≡ 0, fZINB ≡ fNB.

Since the proposed model only ought to be used when evidence for zero-inflation exists,

the following algorithm is proposed to obtain parameter estimates for πi,βi, and θi for

gene i:
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1. Fit the NB model, i.e. set πi ≡ 0.

2. If at least one yij = 0, fit ZINB model.

3. If AICZINB < AICNB, use the parameter estimates and their estimated variance-

covariance matrix obtained from fitting the ZINB model. Otherwise, use the pa-

rameter estimates and their variance-covariance matrix obtained from fitting the

NB model.

4. Use the variance-covariance matrix of parameter estimates of the corresponding

model supplied by the fitting algorithm to test for significance of covariates of interest

using a Wald-type test.

Both models are fit using an algorithm by Rigby and Stasinopoulos [84] implementing

generalized additive models for location, scale and shape (gamlss) in their R package

gamlss [100]. The gamlss algorithm implements a wide variety of distributions and allows

all parameters of the distribution to be modeled as a combination of parametric and/or

additive nonparametric functions of explanatory variables as well as random-effect terms.

As shown in Equation 4.1, the ZINB distribution is defined by three parameters, the loca-

tion parameter µij, the scale (or dispersion) parameter θi and the zero-inflation parameter

πi. To achieve acceptable convergence rates in a timely and computational efficient man-

ner, the standard log link function shown in Equation 4.2 was used to model the location

parameter µij while no additional covariates were used to model the dispersion parameter

θi and zero-inflation parameter πi. The proposed algorithm will be referred to by gamSeq,

named after the accompanying R package, in the remainder of this text.

For the proposed model, Rigby and Stasinopoulos recommend the use of their own fitting

procedure introduced in [26] and [83]. For gene i, i = 1, . . . , I, contingent on the model

used, the algorithm maximizes the likelihood lZINB(βi, θi, πi|yi,X) or lNB(βi, θi|yi,X),
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corresponding to Equations 3.2 and 4.1 where yi = {yij}j=1,...,N and

X = {xjk}j=1,...,N ;k=1,...,p. An iterative Newton-Raphson algorithm is used to find the

maximum of the corresponding likelihoods using the observed information matrix. The

observed information matrix is also used to provide standard errors on parameter estimates

and standard Wald-type t-tests are used to test hypotheses for individual parameters. A

custom grid search is employed to find valid starting values. For a detailed description of

the fitting algorithm, please refer to Appendix B.2 in [84].

4.2.2 Model Assessment

To assess the performance of the proposed model, the same strategy outlined in Sec-

tions 3.2.3 and 3.2.4 was used. Four hypothetical true dispersion distributions based on

dispersion estimates obtained by using DESeq Conservative, DESeq Liberal, edgeR, and

ML estimation were used to simulate data according to a NB distribution. These sim-

ulation studies aim to evaluate the performance model with regards to type I error and

power of the proposed algorithm when the underlying distribution does not incorporate

any zero-inflation, i.e. under favorable conditions for the current approaches. Further-

more, scenarios 2 and 4 were used to simulate data according to Equation 4.1, i.e. a

negative binomial distribution with zero-inflation parameter π. Values of 0.05, 0.1, 0.15,

and 0.2 based on simulation studies outlined in Section 4.1 were chosen for π. Sixty-four

datasets were simulated for both scenarios using mean and dispersion estimates based on

the Cheung data and the size of the test at a 0.001 significance level, power at a 10%

FDR cutoff, and the number of false positives when testing for species differences were

recorded. The proposed model was also used to test for gender differences in the five

datasets described in Sections 3.2.3 and 3.2.4.
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4.3 Results

In this section the results from the simulation studies and application to real data de-

scribed in Section 4.2.2 are presented.

4.3.1 Statistical Properties

First the statistical properties of the proposed method are evaluated and compared to

existing methods. Supplementary Table A.1 lists size estimates at a 0.001 significance

level across the four different scenarios and datasets used and Figure 4.2 illustrates those

results. The horizontal red line in Figure 4.2 indicates the nominal level and bars above

the red line indicate increased type I error. In scenario 2, size estimates for all methods

are fairly close to nominal level and do not give reason for concern. In scenarios 1, 3 and 4

however, size estimates for edgeR are up to 2-fold, 3-fold and 4-fold above nominal level,

size estimates for DESeq Liberal are up to 5-fold and 8-fold above nominal level while size

estimates for DESeq Conservative are again at nominal level or below and size estimates

for gamSeq hover around nominal level. Supplementary Table A.2, listing the average

(maximum) number of false positives when testing for the categorical nuisance variable

included in the model using a 10% FDR cutoff, and Figure 4.3 provide further evidence

for increased type I error rates for edegR and DESeq Liberal for scenarios 1, 3, and 4.

Supplementary Table A.3 lists power estimates at a 10% FDR cutoff and Figure 4.4

shows power estimates against sample size for simulation studies based on the Cheung

data. Comparing power estimates for gamSeq to those for edegR and DESeq Liberal,
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Figure 4.2. Size estimates for simulation studies at 0.001 significance level. The red
line indicates nominal level.

73



Figure 4.3. Median number of false positives when testing for species differences.
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Figure 4.4. Power against sample size for Cheung simulation studies.

gamSeq provides similar or better power down to sample size 15, a slight power loss at

sample size 12 and a significant loss of power at sample size 9 for scenarios 1, 2, and 3

while for scenario 4 gamSeq provides higher power down to sample size 15, similar power

for sample size 12 and a loss of power at sample size 9. Compared to DESeq Conservative,

gamSeq provides higher power for sample sizes of 15 or larger, comparable power at sample

size 12, and shows a moderate power loss at sample size 9 across all scenarios.

To further investigate the reason for the increased numbers of false positives for DESeq

Liberal and edgeR observed in scenarios 3 and 4, biases of dispersion estimates obtained

from the simulations studies of sample size 15 based on the Cheung dataset were calcu-

lated. As shown in Table 4.3, which lists the interquartile range (IQR) and median bias,

all four methods perform fairly well in recovering the true underlying dispersion where
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gamSeq slightly underestimates and the remaining methods slightly overestimate the true

dispersion. For genes that were wrongly identified by DESeq Liberal as differentially

expressed in scenarios 3 and 4 however, the median bias of DESeq Liberal’s dispersion

estimates was determined to be -3.09 and -1.83, respectively, while the median bias of

gamSeq’s dispersion estimates was calculated as -1.18 and -0.71, respectively. Similar ob-

servations could be made when looking at false positives identified by edgeR in scenarios

3 and 4 where the median bias for edgeR’s dispersion estimates was -1.79 and -1.018,

respectively, compared to a median bias of -1.25 and -0.72 for gamSeq’s dispersion esti-

mates. It has been shown by Hubbard and Allen [31] that the LRT has inflated type I

error when the overdispersion parameter θ is significantly underestimated. Thus, these

findings indicate that underestimated dispersion for a subset of genes under certain sce-

narios leads to increased type I error rates for DESeq Liberal and edgeR while gamSeq’s

estimates for these genes are less biased allowing for better control of type I error.

Table 4.3. Median bias and IQR obtained from simulated datasets of sample size 15
based on Cheung data structure

Scenario DESeq Liberal edgeR DESeq Conservative gamSeq

1
Median Bias 0.1470 0.0279 0.1588 -0.0777

IQR (-0.01,0.2654) (-0.0323,0.1214) (0.0344,0.4605) (-0.1982,-0.0191)

2
Median Bias 0.0695 -0.0057 0.0487 -0.0817

IQR (0.0629,0.1013) (-0.0542,0.0537) (0.0181,0.2758) (-0.1780,0.0100)

3
Median Bias 0.2212 0.0452 0.1697 -0.1146

IQR (0.1695,0.2944) (-0.1006,0.1550) (0.1496,0.4856) (-0.2469,-0.0573)

4
Median Bias 0.2391 0.0770 0.1989 -0.0597

IQR (0.0749,0.4603) (-0.0260,0.2565) (0.0997,0.7446) (-0.2218,-0.0132)

Finally it was of interest to determine whether there is a relationship between test

statistics and dispersion estimates. When testing for differential gene expression the

interest lies in detecting differences in population means, i.e. the null hypothesis µA = µB

is tested against the alternative hypothesis µA 6= µB for two populations A and B. This
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implies that the dispersion parameter θ in the negative binomial distribution is a true

nuisance parameter in the sense that it is not of interest for testing the null hypothesis.

Thus, a desirable statistical property is the ability to detect true differences in populations

means independently from the value of the overdispersion parameter θ. Therefore test

statistics should in principle be independent from dispersion estimates obtained from the

fitting procedure. Figures 4.5 and 4.6 show test statistics against dispersion estimates

for the Marioni and Cheung data. Systematic patterns can be observed for the DESeq

methods and to a lesser extend for edgeR while gamSeq does not show any relationship

between test statistics and dispersion estimates.
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DESeq Liberal DESeq Conservative

edgeR gamSeq

Figure 4.5. Test statistics against dispersion estimates on log scale for
the Marioni dataset.
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DESeq Liberal DESeq Conservative

edgeR gamSeq

Figure 4.6. Test statistics against dispersion estimates on log scale for
the Cheung dataset.
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4.3.2 Application to internal and publicly available data

While simulation studies provide valuable insight into a method’s performance and ro-

bustness under various conditions, the ultimate goal is to analyze experiments designed

to answer biological questions of interest. To that end the proposed method was used to

test for gender differences using three publicly available datasets and one internal dataset

described in Sections 3.2.4 and 3.2.3. Table 4.4 shows the distribution of genes called

significant across chromosome Y, chromosome X, and autosomal chromosomes. For the

Chen dataset, the majority of genes identified to show evidence for gender specific gene

expression by DESeq Conservative, edgeR, and gamSeq are located on chromosome Y. All

genes located on chromosome X identified by gamSeq have been indicated to show gender

specific gene expression profiles by Xu at al. [110], Zhang et al. [112], and Preumont et

al.[73]. Genes identified by edgeR follow a similar pattern where four out of five genes lo-

cated on chromosome X overlap with those identified by gamSeq and therefore have been

indicated to show gender specific gene expression while the fifth gene and the two genes

located on other chromosomes have not been indicated before. DESeq Conservative and

gamSeq perform slightly better than edgeR as they identify more genes on chromosome

Y. DESeq Liberal performs worse with regards to false positives as the method identified

two genes on chromosome X and 18 genes on autosomal chromosomes that are not known

to show gender specific gene expression.

For the full Cheung dataset, DESeq Conservative and gamSeq perform similarly well, each

identifying six genes that showed evidence for gender specific gene expression in previous

studies, whereas the majority of genes identified by edgeR and DESeq Liberal have not

been indicated before and are most likely false positives. A random subset, i.e. ten male

and ten female samples, of the Cheung data was used to investigate the robustness of
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the findings from the full dataset. Results obtained with gamSeq proved to be the most

robust although five genes without prior evidence for gender specific gene expression were

identified. However, gamSeq’s increased false positive rate is modest when compared to

the breakdown in performance of edgeR and to a lesser extend DESeq Conservative.

Similar observations with regard to false positive findings could be made using the Mari-

oni and Gilad data where gamSeq performs well in both cases while DESeq Conservative

performs well for the larger dataset but does produce a significant number of false positive

findings when applied to the smaller dataset. DESeq Liberal and edgeR do both show the

same tendency towards false positive findings that was observed in the Cheung data.

Table 4.4. Genes called significant at a 10% FDR cutoff when testing for gender
differences.

Dataset Chromosome edgeR DESeq Lib. DESeq Cons. gamSeq

Chen
chr X 5 3 2 4
chr Y 10 17 16 15

autosomal 2 18 0 1

Cheung Full
chr X 2 10 0 1
chr Y 5 7 6 5

autosomal 22 231 0 0

Cheung SS20
chr X 12 8 1 0
chr Y 2 5 6 5

autosomal 240 182 31 5

Marioni
chr X 0 0 0 0
chr Y 0 0 0 0

autosomal 10 19 0 0

Gilad
chr X 1 1 0 0
chr Y 1 1 0 0

autosomal 57 39 37 0

4.3.3 Impact of zero-inflation on power and type I error

As indicated in the introduction, zero-inflation can play a significant role for a subset of

genes and it was of interest to determine how the statistical properties of the four methods
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change when zero-inflation is present. To that end, the simulation studies described

in Section 4.2.2 were used to assess power at a 10% FDR cutoff and size at a 0.001

significance level. Figures 4.7 and 4.8 as well as Supplementary Tables A.4 and A.5 show

size estimates for four levels of zero-inflation across 64 simulated datasets for scenario 2

and 4 based on dispersion estimates obtained from the Cheung dataset. Zero-inflation

seems to impact DESeq and edgeR differently. Both DESeq methods show inflated type

I error rates for increasing values of the zero-inflation parameter π and decreasing sample

size while edgeR is highly conservative for even small levels of zero-inflation. gamSeq on

the other hand hovers around nominal size across all scenarios. The proposed method has

also the edge with regards to power when zero-inflation is present. Figures 4.9 and 4.10

as well as Supplementary Tables A.6 and A.7 show power estimates for aforementioned

simulations. At the same nominal level, gamSeq outperforms the other methods for sample

sizes of twelve or larger across all scenarios. The difference in performance becomes more

pronounced with larger values of the zero-inflation parameter.

4.3.4 Implementation

The method is implemented in the R package gamSeq available at

www.people.vcu.edu/∼mreimers. The package depends on the gamlss package version 4.1.

Convergence rates for the different approaches are shown in Table 4.5.

Table 4.5. Convergence rates for the Chen, Marioni, and Cheung datasets

Dataset
Method

edgeR DESeq Lib. DESeq Cons. gamSeq
Chen 95.5% 96.4% 96.3% 96.7%

Marioni 81.0% 100.0% 99.9% 93.5%
Cheung 89.9% 100.0% 99.9% 99.0%
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Figure 4.7. Size estimates for scenario 2 at 0.001 significance level. The red line
indicates nominal level.
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Figure 4.8. Size estimates for scenario 4 at 0.001 significance level. The red line
indicates nominal level.
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Figure 4.9. Power estimates for scenario 2 at 10% FDR cutoff.
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Figure 4.10. Power estimates for scenario 4 at 10% FDR cutoff.
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4.4 Conclusions and Discussion

RNA-Seq studies are a powerful tool to test hypotheses regarding differences in tran-

scription levels on a genome-wide basis. In contrast to microarray data that contains

continuous measures of light intensity emitted due to hybridization of cDNA fragments

to probes representing a gene as proxy for its transcription level, RNA-Seq experiments

measure a gene’s transcription abundance through counts of cDNA fragments mapping to

that gene. The discrete nature of RNA-Seq data led to new applications of existing sta-

tistical models for analyzing count data in a high-throughput fashion. After the Poisson

distribution was deemed as insufficient to explain biological variation in gene counts, the

negative binomial distribution with its additional overdispersion parameter θ has been the

distribution of choice to analyze RNA-Seq data. Early methods such as DESeq and edgeR

used the properties of the NB distribution and empirical or Bayes approaches to increase

power through sharing information across genes in studies with few biological replicates.

Through the framework of GLMs these methods have been extended to analyze more

complex experimental designs that include multiple potential confounders in addition to

the covariate of interest.

In this chapter, gamSeq, a method based on the NB distribution with a zero-inflation

component, was proposed to analyze complex RNA-Seq type studies and compared to

existing methods across a wide range of sample sizes and hypothetical distributions of

the dispersion parameter θ derived from real data since its true distribution is unknown.

Several statistical properties including type I error, power, and bias of parameter esti-

mates were investigated. Through simulation studies it was shown that the proposed

method is more robust than existing methods with regards to controlling type I error

across a number of different dispersion distributions. The existing methods edgeR and
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DESeq Liberal were shown have increased size at a 0.001 significance level for a number

of scenarios while gamSeq reliably controlled across all scenarios. A third method, DESeq

Conservative, was considered and shown to be a conservative alternative that maintained

size below the nominal level. The importance of controlling type I error was demonstrated

by testing for gender differences in one internal and three publicly available datasets. DE-

Seq Liberal and to a lesser extend edgeR identified a significant number of false positives

for a number of datasets while gamSeq reliably identified genes known to show gender

specific gene expression. DESeq Conservative performed similar to gamSeq for a num-

ber of datasets, but was shown to have the same tendency for false positives as DESeq

Liberal when multiple cells had only one biological replicate, e.g. in datasets with few

biological replicates per parameter fitted. The simulation studies also provided a reason-

able explanation why existing methods fail control type I error in certain scenarios by

showing that in general dispersion estimates obtained through information sharing across

genes slightly overestimate the true underlying dispersion, but for a subset of genes, these

methods significantly underestimate dispersion. Since the estimate of variance for a NB

distribution is linearly related to the estimate of the dispersion parameter θ, underesti-

mating the dispersion translates into an underestimate of variance that in turn can lead

to false positives. In contrast, the proposed method gamSeq generally underestimates

the true underlying dispersion slightly, but was shown to be less prone to significantly

underestimate dispersion resulting in maintaining type I error at nominal level.

While controlling type I error is a necessary and desirable property for any statistical

method used for inference, it should not be achieved through sacrificing statistical power,

i.e. the ability to detect true biological differences. The same simulation studies used

to investigate type I error were used to demonstrate that the proposed method achieves

similar or better power compared to edgeR and DESeq Liberal and is superior to DESeq
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Conservative for sample sizes of twelve or larger. A significant loss of power could be

observed for a sample size of nine when fitting three categorical covariates, which trans-

lates into three observations per parameter fitted. In any traditional statistical analysis

fitting a GLM this sample size would be considered insufficient to attain reasonable power

when fitting a single model, not to mention fitting 10,000-20,000 models. For these small

sample sizes methods that share information across genes seem to provide merit although

positive results should be examined critically as it was shown that false positives are still

a concern.

The gamSeq algorithm also addresses the phenomenon of zero-inflation, i.e. a higher

number of zeros than expected from a NB distribution with given mean and dispersion,

observed in more complex datasets. The gamSeq algorithm uses a screening procedure

to identify genes with potential zero-inflation and introduces an additional zero-inflation

parameter π when needed. Empirical and statistical evidence was presented to illustrate

the problem and simulation studies were used to investigate its impact on power and type

I error. It was shown that gamSeq performs significantly better than existing methods

when zero-inflation is present and sample sizes are larger than or equal to twelve indi-

cating that the same sample size limitations as observed for data generated from a NB

distribution apply.

The gamSeq algorithm relies on the gamlss fitting algorithm, which was chosen due to its

robustness and potential to fit more complex models that can include random and non-

parametric effects. With the decreasing costs of RNA-Seq studies, longitudinal studies,

studies exploring gene expression from different tissues of the same individual, or studies

with technical replicates will become, or already are, feasible and will require explicit

modeling of the dependencies among observations. The flexibility of the gamlss algorithm

in principle allows implementation of such modeling approaches and extending the current
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R package to include such terms in RNA-Seq analyses will be considered in the future.

Recent studies have also uncovered that GC-content biases across samples may pose a

serious problem [27, 67]. It may well turn out that some of the variance observed in the

data is due to these biases. The gamlss algorithm allows explicit modeling of distribution

parameters such as the overdispersion parameter through additional terms. For example,

an adjustment for GC-content biases by modeling overdispersion as a function of gene

specific GC-content could be implemented.

First exploratory analyses using random effects and non-parametric terms indicate that

maintaining satisfactory convergence rates, computational efficiency, and desired statisti-

cal properties will be challenging. Issues that come with mixed models such as negative

estimates of variance components, slow convergence of fitting algorithms, and difficulties

in accurately estimating the variance-covariance matrix of parameter estimates multiply

when fitting 10,000-20,000 generalized mixed models at a time and innovative solutions

are needed.

In summary, insight into the behavior of existing methods to analyze RNA-Seq data

quantifying transcription levels is provided and their limitations are demonstrated. A

method is proposed that addresses the majority of limitations as well as the issue of

zero-inflation that affects a subset of genes. Furthermore, a brief outlook to future devel-

opments in the field is provided along with an outline of major challenges existing methods

are not able to address.
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Chapter 5

Alternative Usage of mRNA

polyadenylation sites

5.1 Introduction

Termination of transcription at the 3’ end of genes has long been suspected to play an

important role in regulation of gene expression [56, 69]. Lutz and Moreira [49] state that

alternative usage of polyadenylation sites can affect important molecular processes such as

RNA stability, translation, gene expression silencing, cell development and differentiation

or genomic maintenance. The authors categorize polyadenylation events into three types

shown in Figure 5.1. Biologically it is of interest whether the ratio of events of type

II and III varies significantly between different groups, e.g. different tissues or disease

groups. The high resolution of RNA-Seq enables researches to investigate differential

termination of gene transcription and detect novel 3’ untranslated regions (UTRs) or

polyadenylation sites. This chapter introduces statistical methods to test for differential

usage of polyadenylation sites using count data obtained through RNA-Seq experiments.
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Figure 5.1. Scenarios considered for differential 3’ UTR usage analysis [49].

Note that events of type II represent a differential use of polyadenylation sites while events

of type III represent differential use of 3’ UTRs. In the following differential usage of 3’

UTRs and differential usage of polyadenylation sites will be used interchangeably keeping

the difference in mind.

5.2 Materials and Methods

5.2.1 3’ UTR Database Used And Corresponding Read Counts

The AceView database curated by Danielle and Jean Thierry-Mieg [102] provides a com-

prehensive and non-redundant sequence representation of all public mRNA sequences

(mRNAs from GenBank [8] or RefSeq [76], and single pass cDNA sequences from dbEST

[13] and Trace [9]). These experimental cDNA sequences are first co-aligned on the genome
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then clustered into a minimal number of alternative transcript variants and grouped into

genes. AceView is arguably the richest transcript database currently available, contain-

ing more than 250,000 transcripts along with corresponding UTR regions. The UCSC

Genome Browser [82] incorporates AceView annotations and therefore was utilized to

create a database of 3’ UTRs matching scenarios II and III in Figure 5.1. Since differ-

ent datasets were aligned to different builds of the NCBI reference sequence, the following

steps were repeated for the NCBI36/hg18 assembly as well as the NCBI37/hg19 assembly:

1. extract genomic coordinates for all AceView transcripts and the corresponding

3’UTR regions as well as coding regions with respect to NCBI36/hg18 (AceView

build April 2007) and NCBI37/hg19 (AceView build February 2011)

2. For each gene, extract all combinations of 3’ UTR regions that correspond to type

II and III in Figure 5.1.

3. For each combination, remove regions that overlap coding regions, i.e. regions that

are used as protein coding regions in a different transcript. If the entire range of

either one of the 3’ UTR regions in a combination is used as a protein coding region,

then remove the combination from the putative 3’ UTR regions.

4. From the remaining combinations for each gene, choose the combination of 3’ UTR

regions that is supported by the most cDNA clones in the AceView database as the

3’ UTR region of interest.

Step 3 is necessary to ensure that sequenced reads that map to 3’ UTR regions are

representative of a UTR rather than a coding region of a transcript overlapping a specific

UTR. After step 4, the database contains two 3’ UTR regions for each gene and scenario.

10,184 genes had 3’ UTR combinations structured according to type II while 3,827 genes
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had 3’UTR combinations structured according to type III. Read counts for each 3’ UTR

region and sample were obtained by counting how many uniquely mappable reads with

at most one mismatch mapped to the corresponding genomic coordinates with a minimal

overlap of three base pairs to account for possible base call errors.

5.2.2 Testing for Differential 3’ UTR Usage Between Individual

Samples

Due to cost constraints of HTS, many early RNA-Seq studies lack biological replicates.

Often it is still of interest to make inferences about differential 3’ UTR usage between

individual mRNA samples extracted from two separate conditions or tissues. To illustrate

how to statistically analyze differential 3’ UTR usage using data from individual samples,

RNA-Seq data obtained by Illumia from their HiSeq 2000 platform [24] was used to extract

read counts for 15 different human tissue types (see Table A.8) sequenced with 75bp single

end reads for a total of 15 lanes with 50-70 million reads per lane. For each tissue, read

counts were obtained by using the algorithm outlined in Section 5.2.1. A multiplicative

model for ratios of Poisson rates between UTRs based on the GLM framework introduced

in Section 3.2.1 was then used to test for differential 3’ UTR usage:

log(n ∗ λ) = α + β1 ∗ tissue+ β2 ∗ region+ β12 ∗ region ∗ tissue (5.1)

Since this is a multiplicative model, testing for the interaction between region and tissue,

i.e. testing

H0 : β12 = 0 vs. Ha : β12 6= 0, (5.2)

94



is equivalent to testing whether the ratios in read counts for the two UTR regions differ

significantly between tissues. A LRT test was used to test the interaction. Note that this

model assumes that observations from overlapping or independent 3’ UTR regions from

the same gene are statistically independent. Realistically this assumption is violated for

both types of polyadenylation events since two read counts are obtained from the same

sample, one for each region. This equates to a model with two repeated measures per

sample. Since there are only four degrees of freedom available when fitting the full model

described in Equation 5.1, additional terms such as a random effect that could account for

repeated measures designs could only be added with additional replicates. This concern

is given further consideration in the next section.

5.2.3 Testing for Differential 3’ UTR Usage Between Two Con-

ditions With Biological Replicates

In more complex study designs it is often of more interest to compare two groups, e.g.

disease patients against normal controls, with each group having multiple biological repli-

cates. The framework presented in Section 5.2.2 can easily be extended to this scenario.

The Chen dataset introduced in Section 3.2.4 was used to illustrate the proposed model.

Recall that the Chen dataset contained reads for 82 sequenced brain samples from normal

controls (n=26) and patients with bipolar disorder (n=25) or schizophrenia (n=31) and

included information on age, brain pH, and post mortem interval (PMI), which were used

during model fitting in addition to gender and diagnostic group. Since the some of the

samples were sequenced at very low coverage due to multiplexing, all samples with less

than one million uniquely mappable reads were excluded leaving 62 samples, 19 samples

from normal controls, 13 samples from patients with bipolar disorder, and 30 samples
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from patients with schizophrenia. It was of interest to test whether read count ratios are

significantly different between diagnostic groups.

A multiplicative model similar to that shown in Equation 5.1 was fit using the zero-

inflated model introduced in Chapter 4.

log(n ∗ λ) = α + β1 ∗ group+ β2 ∗ region+ β12 ∗ region ∗ group

+ β3 ∗ age+ β4 ∗ sex+ β5 ∗ pH + β6 ∗ PMI

(5.3)

To further account for the repeated measures design, the model described in Equation 5.3

was also fit with an additional random term γi ∼ N(0, σ2
rI) where i=1,...,N and I is a 2×2

identity matrix, using the glmmADMB package. Again, since this is a multiplicative model,

testing for the interaction between region and group is equivalent to testing whether ratios

in read counts between two 3’ UTR regions differ significantly between diagnostic groups.

P-values based on Wald-type tests were used to test the interaction.

5.3 Results

5.4 Testing for Differential 3’ UTR Usage Between

Individual Samples

The method outlined in Section 5.2.2 was used to test for differential 3’ UTR usage

between tissues in the Bodymap dataset. The focus was the comparison of 3’ UTR usage

between brain and the remaining tissues since Sandberg et al. [88] suggested that mRNA

transcripts in brain tissue have longer 3’ UTRs. For polyadenylation events of type III,
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35%-50% of genes with detectable expression levels showed evidence for differential usage

at a 10% FDR cutoff when comparing brain tissue to the other 14 tissues. Among these

genes, 53%-65% used longer 3’ UTRs in brain. Similar observations could be made for

polyadenylation events of type II where 35%-62% of genes showed evidence for differential

usage at a 10% FDR cutoff with 53%-69% of those genes using longer 3’ UTRs in brain

tissue. Please refer to Supplementary Tables A.8 and A.9 for more details.

5.5 Testing for Differential 3’ UTR Usage Between

Two Conditions With Biological Replicates

Using models similar to the model described in Equation 5.3, the influence of diagnostic

group, brain pH, age, and PMI on differential usage of 3’ UTRs was investigated. Brain

pH was chosen as it has been shown to affect RNA integrity [94]. RNA degrades first

from the 3’ end [72] and therefore low RNA integrity could affect the number of fragments

in 3’ UTRs. PMI and age have not been found to be correlated with RNA integrity [41]

and are not expected to have an effect on apparent 3’ UTR usage. Diagnostic group was

the variable of interest as differences in 3’ UTR usage in patients with bipolar disorder or

schizophrenia when compared to normals would be an interesting biological phenomenon.

Figure 5.2 shows p-value plots for age, PMI, brain pH and diagnostic group after testing

for the interaction in model 5.3 without random effect term. No genes showed evidence for

an effect of age, PMI, or diagnostic group on 3’ UTR usage at a 10% FDR cutoff. However,

significant evidence for an effect of brain pH was found for 13 genes after multiple testing

correction. Similar results were found when a random effect was included in the model

(see p-value plots in Figure 5.3. Again, no genes showed evidence for differential 3’ UTR

usage depending on age, PMI, or diagnostic group while 26 genes, including all 13 genes
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found when omitting a random effect term, were found to show significant effect of brain

pH on 3’ UTR usage.

5.6 Conclusions and Discussion

In this chapter, a method based on the GLM framework was introduced to test for dif-

ferential usage of 3’ UTRs in two scenarios. The method was applied to two datasets for

which count data for UTR usage were extracted from reads aligned to the human reference

genome. The results obtained for the Bodymap dataset, i.e. a majority of genes show

evidence for differential 3’ UTR usage and transcripts in brain tissue have a slight pref-

erence towards longer UTRs, were consistent with observations made in previous studies

indicating that the proposed method gives sensible results.

Sensible results were also obtained when applied to the more complex Chen dataset. While

age and PMI do not seem to have an effect on differential 3’ UTR usage, a number of

genes showed evidence for an effect of brain pH. Interestingly, brain pH has been previ-

ously indicated to affect RNA integrity, which is often low due to RNA degradation at

the 3’ end of transcripts. Popova et al. [72] indicate that longer transcripts are more

affected by RNA degradation at the 3’ end. The mean length of transcripts associated

with genes listed in Table 5.1 is 3920bp while the mean length of all other transcripts in

RefSeq is 2970bp (t=1.79, df=47,p=0.0397 for one-sided test) supporting this conclusion.

While positive results could be obtained, the statistical power of the proposed method

is seriously limited in the Chen dataset by its lack of sequencing coverage. Seventy-five

percent of the shorter region of 3’ UTRs have mean counts of 30 or lower with 50% having

mean counts of 5 or lower. Future datasets with significant higher sequencing coverage

will allow a more detailed investigation of 3’ UTR usage using the proposed method.
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Age PMI

Brain pH Diagnostic Group

Figure 5.2. P-value plots for age, PMI, brain pH and diagnostic group
omitting a random effect term.
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Age PMI

Brain pH Diagnostic Group

Figure 5.3. P-value plots for age PMI, brain pH and diagnostic group
including a random effect term.
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Since by design of the proposed method observations are correlated, the merit of including

a random effect term in model 5.3 was evaluated. To that end, the glmmADMB was used

and the number of significant genes showing evidence for 3’ UTR usage influenced by

brain pH could be doubled. These results indicate that including a random effect should

be considered for study designs with repeated measures in space or time. However, first

exploratory analyses regarding power, type I error, and convergence rates show that the

glmmADMB package might not perform well for small sample sizes. Further research in

this direction, i.e. how to fit 10,000-20,000 generalized linear mixed models at a time

with satisfactory statistical properties and convergence rates along with computational

efficiency, is needed.
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Table 5.1. Genes with evidence for correlation between differential 3’ UTR usage and
brain pH

Gene Length of exonic regions (bp)
ANXA5 1599
ARF3 3537
BAD 1493

BPNT1 2461
DDX55 2622
FABP3 1097
GDAP1 4113
GSTO1 1310

GTPBP2 2979
HSPA5 3970
KLC1 3158
LMO4 5406

MGAT4A 10915
CLVS1 3492
NRN1 2056
PCLO 22498

PTPRS 7347
PUM1 5514

RAB5C 2031
RTN3 6691

SREBF1 5001
STX17 6908

TOLLIP 3660
TSGA13 1653
VAMP1 6044
ZCCHC9 1994
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Table A.1. Size estimates at significance level 0.001 across 64 simulated data sets
under various dispersion distribution scenarios and sample sizes

Method
Scenario

1 2 3 4
Marioni (N=18)

edgeR 0.00192 0.00127 0.00217 0.00275
DESeq Liberal 0.00201 0.00096 0.00691 0.00751

DESeq Conservative 0.00066 0.00049 0.00073 0.00084
gamSeq 0.00103 0.00098 0.00116 0.00110

Cheung (N=41)
edgeR 0.00129 0.00132 0.00192 0.00173

DESeq Liberal 0.00502 0.00140 0.00815 0.00856
DESeq Conservative 0.00057 0.00053 0.00050 0.00055

gamSeq 0.00100 0.00099 0.00119 0.00111
Cheung (N=18)

edgeR 0.00160 0.00141 0.00252 0.00281
DESeq Liberal 0.00344 0.00109 0.00751 0.01000

DESeq Conservative 0.00087 0.00051 0.00080 0.00096
gamSeq 0.00110 0.00106 0.00124 0.00114

Cheung(N=15)
edgeR 0.00177 0.00135 0.00237 0.00335

DESeq Liberal 0.00266 0.00087 0.00576 0.00857
DESeq Conservative 0.00090 0.00044 0.00091 0.00126

gamSeq 0.00110 0.00121 0.00122 0.00114
Cheung (N=12)

edgeR 0.00175 0.00136 0.00291 0.00381
DESeq Liberal 0.00213 0.00075 0.00528 0.00768

DESeq Conservative 0.00095 0.00040 0.00107 0.00166
gamSeq 0.00103 0.00105 0.00120 0.00105

Cheung (N=9)
edgeR 0.00156 0.00131 0.00310 0.00419

DESeq Liberal 0.00123 0.00067 0.00353 0.00496
DESeq Conservative 0.00085 0.00045 0.00179 0.00269

gamSeq 0.00083 0.00085 0.00149 0.00076
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Table A.2. Median (MAD) number of false positives at FDR cutoff of 10% across 64
simulated data sets under various dispersion distribution scenarios and sample sizes

Method
Scenario

1 2 3 4
Marioni (N=18)

edgeR 3 (3) 0 (0) 7 (3) 10 (5.9)
DESeq Liberal 7 (3.7) 1 (1.5) 102 (11.9) 109 (15.6)

DESeq Conservative 0 (0) 0 (0) 0 (0) 1 (1.5)
gamSeq 0 (0) 0 (0) 0 (0) 0 (0)

Cheung (N=41)
edgeR 0 (0) 0 (0) 2 (1.5) 1 (1.5)

DESeq Liberal 40 (8.2) 4 (3) 89 (13.3) 94 (14.1)
DESeq Conservative 0 (0) 0 (0) 0 (0) 0 (0)

gamSeq 0 (0) 0 (0) 0 (0) 0 (0)
Cheung (N=18)

edgeR 1 (1.5) 0 (0) 4 (3) 7 (5.9)
DESeq Liberal 16 (8.2) 2 (2.2) 74 (13.3) 116 (16.3)

DESeq Conservative 0 (0) 0 (0) 1 (1.5) 2 (1.5)
gamSeq 0 (0) 0 (0) 1 (0.7) 0 (0)

Cheung(N=15)
edgeR 1 (1.5) 0 (0) 5 (4.4) 9 (5.2)

DESeq Liberal 8 (4.4) 1 (1.5) 51 (11.1) 92 (13.3)
DESeq Conservative 0 (0) 0 (0) 1 (1.5) 2 (3)

gamSeq 0 (0) 1 (1.5) 1 (1.5) 1 (0.7)
Cheung (N=12)

edgeR 1 (1.5) 0 (0) 8 (4.4) 15 (5.9)
DESeq Liberal 5 (4.4) 1 (1.5) 41 (7.4) 79 (11.1)

DESeq Conservative 1 (0.7) 0 (0) 2 (1.5) 6 (3)
gamSeq 1 (1.5) 2 (1.5) 3 (3) 2 (1.5)

Cheung (N=9)
edgeR 1 (1.5) 1 (0) 10 (4.4) 18 (6.7)

DESeq Liberal 1 (1.5) 1 (1.5) 18 (7.4) 33 (8.2)
DESeq Conservative 1 (0) 0 (0) 7 (3) 11 (6.7)

gamSeq 1 (1.5) 2 (1.5) 7 (3) 3 (1.5)
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Table A.3. Power estimates at FDR cutoff of 10% across 64 simulated data sets under
various dispersion distribution scenarios and sample sizes

Method
Scenario

1 2 3 4
Marioni (N=18)

edgeR 0.544 0.485 0.493 0.508
DESeq Liberal 0.569 0.503 0.511 0.521

DESeq Conservative 0.545 0.453 0.460 0.472
gamSeq 0.543 0.462 0.499 0.538

Cheung (N=41)
edgeR 0.597 0.576 0.538 0.587

DESeq Liberal 0.619 0.597 0.554 0.606
DESeq Conservative 0.583 0.563 0.494 0.566

gamSeq 0.667 0.627 0.589 0.668
Cheung (N=18)

edgeR 0.518 0.518 0.464 0.531
DESeq Liberal 0.526 0.529 0.464 0.536

DESeq Conservative 0.477 0.483 0.402 0.488
gamSeq 0.547 0.516 0.450 0.588

Cheung(N=15)
edgeR 0.491 0.483 0.430 0.506

DESeq Liberal 0.486 0.475 0.418 0.497
DESeq Conservative 0.434 0.428 0.359 0.454

gamSeq 0.487 0.453 0.408 0.547
Cheung (N=12)

edgeR 0.468 0.464 0.395 0.480
DESeq Liberal 0.458 0.451 0.374 0.467

DESeq Conservative 0.400 0.398 0.309 0.422
gamSeq 0.415 0.390 0.315 0.479

Cheung (N=9)
edgeR 0.373 0.382 0.268 0.387

DESeq Liberal 0.346 0.355 0.228 0.352
DESeq Conservative 0.283 0.283 0.177 0.309

gamSeq 0.126 0.116 0.058 0.193
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Table A.4. Size estimates at significance level 0.001 across 64 simulated data sets in
scenario 2 with zero inflation

Method
π

0.05 0.10 0.15 0.2
Cheung (N=41)

edgeR 0.00042 0.00029 0.00025 0.00022
DESeq Liberal 0.00142 0.00144 0.00156 0.00053

DESeq Conservative 0.00059 0.00076 0.00072 0.00012
gamSeq 0.00090 0.00093 0.00109 0.00113

Cheung (N=18)
edgeR 0.00027 0.00036 0.00032 NA

DESeq Liberal 0.00157 0.00232 0.00349 0.00485
DESeq Conservative 0.00096 0.00161 0.00240 0.00382

gamSeq 0.00124 0.00120 0.00134 0.00139
Cheung(N=15)

edgeR 0.00032 0.00033 NA NA
DESeq Liberal 0.00165 0.00267 0.00398 0.00585

DESeq Conservative 0.00124 0.00203 0.00317 0.00474
gamSeq 0.00132 0.00133 0.00157 0.00159

Cheung(N=12)
edgeR 0.00027 0.00052 NA NA

DESeq Liberal 0.00208 0.00414 0.00594 0.00970
DESeq Conservative 0.00161 0.00338 0.00490 0.00799

gamSeq 0.00106 0.00121 0.00137 0.00141
Cheung (N=9)

edgeR 0.00036 0.00047 NA NA
DESeq Liberal 0.00353 0.00709 0.01258 0.01655

DESeq Conservative 0.00302 0.00583 0.01043 0.01362
gamSeq 0.00062 0.00062 0.00062 0.00100

118



Table A.5. Size estimates at significance level 0.001 across 64 simulated data sets in
scenario 4 with zero inflation

Method
π

0.05 0.10 0.15 0.2
Cheung (N=41)

edgeR 0.00087 0.00066 0.00048 0.00065
DESeq Liberal 0.00793 0.0073 0.00615 0.00443

DESeq Conservative 0.00053 0.00058 0.00058 0.00043
gamSeq 0.00114 0.0011 0.00119 0.00119

Cheung (N=18)
edgeR 0.00131 0.00092 0.00144 0.00083

DESeq Liberal 0.00921 0.00897 0.009 0.00949
DESeq Conservative 0.0014 0.00158 0.00237 0.00282

gamSeq 0.00115 0.00116 0.00126 0.00145
Cheung(N=15)

edgeR 0.00152 0.00073 0.00069 NA
DESeq Liberal 0.00815 0.00772 0.00818 0.00878

DESeq Conservative 0.00163 0.00231 0.00301 0.00453
gamSeq 0.00143 0.00137 0.00163 0.0016

Cheung(N=12)
edgeR 0.00179 0.00096 NA NA

DESeq Liberal 0.00748 0.00808 0.00922 0.01133
DESeq Conservative 0.00219 0.00351 0.00475 0.00694

gamSeq 0.00101 0.00111 0.00132 0.00147
Cheung (N=9)

edgeR 0.00129 NA NA NA
DESeq Liberal 0.00619 0.00923 0.01312 0.01703

DESeq Conservative 0.00407 0.00683 0.01069 0.01474
gamSeq 0.00052 0.00053 0.00047 0.00065
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Table A.6. Power estimates at 10% FDR cutoff across 64 simulated data sets in
scenario 2 with zero inflation

Method
π

0.05 0.10 0.15 0.2
Cheung (N=41)

edgeR 0.517 0.465 0.41 0.353
DESeq Liberal 0.581 0.56 0.518 0.478

DESeq Conservative 0.545 0.523 0.468 0.387
gamSeq 0.607 0.604 0.587 0.563

Cheung (N=18)
edgeR 0.402 0.304 0.225 0

DESeq Liberal 0.502 0.472 0.457 0.423
DESeq Conservative 0.448 0.409 0.383 0.339

gamSeq 0.493 0.484 0.468 0.438
Cheung(N=15)

edgeR 0.343 0.239 NA NA
DESeq Liberal 0.443 0.414 0.381 0.356

DESeq Conservative 0.382 0.351 0.307 0.278
gamSeq 0.418 0.399 0.383 0.398

Cheung(N=12)
edgeR 0.313 0.176 NA NA

DESeq Liberal 0.421 0.392 0.348 0.319
DESeq Conservative 0.36 0.317 0.27 0.24

gamSeq 0.366 0.328 0.3 0.299
Cheung (N=9)

edgeR 0.186 0.061 NA NA
DESeq Liberal 0.312 0.275 0.235 0.213

DESeq Conservative 0.243 0.206 0.174 0.154
gamSeq 0.131 0.062 0.022 0.011
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Table A.7. Power estimates at 10% FDR cutoff across 64 simulated data sets in
scenario 4 with zero inflation

Method
π

0.05 0.10 0.15 0.2
Cheung (N=41)

edgeR 0.523 0.467 0.41 0.363
DESeq Liberal 0.592 0.577 0.545 0.469

DESeq Conservative 0.545 0.525 0.496 0.396
gamSeq 0.661 0.642 0.629 0.609

Cheung (N=18)
edgeR 0.408 0.316 0.215 0.132

DESeq Liberal 0.508 0.481 0.455 0.425
DESeq Conservative 0.451 0.419 0.387 0.35

gamSeq 0.574 0.581 0.547 0.547
Cheung(N=15)

edgeR 0.364 0.246 0.166 NA
DESeq Liberal 0.465 0.434 0.395 0.365

DESeq Conservative 0.412 0.381 0.336 0.294
gamSeq 0.518 0.496 0.483 0.463

Cheung(N=12)
edgeR 0.331 0.187 NA NA

DESeq Liberal 0.437 0.387 0.352 0.314
DESeq Conservative 0.379 0.323 0.288 0.243

gamSeq 0.451 0.403 0.397 0.367
Cheung (N=9)

edgeR 0.192 NA NA NA
DESeq Liberal 0.31 0.265 0.224 0.197

DESeq Conservative 0.258 0.218 0.176 0.151
gamSeq 0.153 0.133 0.07 0.041
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Table A.8. Percentage of genes showing evidence for differential 3’ UTR usage and
percentage of those genes with using longer 3’ UTRs when compared to brain tissue for
UTRs of type III

Tissue Differential Usage Length
Blood 57.68% 66.91%

Muscle 62.11% 64.44%
Breast 41.18% 58.46%

Kidney 47.90% 58.61%
Lymphnode 58.33% 57.42%

Colon 46.38% 61.76%
Prostate 53.51% 60.38%

Testes 46.16% 69.02%
Hear 39.86% 69.12%
Lung 54.71% 64.77%

Ovary 34.85% 53.86%
Thyroid 39.97% 62.11%
Adrenal 40.96% 52.66%
Adipose 41.90% 68.42%

Table A.9. Percentage of genes showing evidence for differential 3’ UTR usage and
percentage of those genes with using longer 3’ UTRs when compared to brain tissue for
UTRs of type II

Tissue Differential Usage Length
Blood 53.51% 55.89%

Muscle 50.59% 56.71%
Breast 48.70% 63.61%

Kidney 36.20% 59.83%
Lymphnode 47.69% 57.16%

Colon 36.89% 53.31%
Prostate 37.12% 64.13%

Testes 43.23% 60.85%
Hear 44.21% 54.67%
Lung 36.58% 58.96%

Ovary 41.86% 64.92%
Thyroid 43.13% 53.36%
Adrenal 48.99% 57.73%
Adipose 42.65% 61.45%
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Appendix B

Supplementary Figures
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Figure B.1. Schematic of Illumina Genome Analyzer 2 workflow[50].
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Figure B.2. Schematic of ABI SOLiD workflow [50].
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Appendix C

Supplementary Code

This appendix demonstrates how the different methods were used to analyze the Marioni

dataset described in Section 3.2.3. The count file is available from

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE17274.

The other datasets and simulation studies were analyzed in similar fashion.

First, the necessary libraries are loaded and a function geneChr is defined that extracts

the chromosome a gene is located on given an gene identifier.

> library(multicore)

> library(DESeq)

> library(edgeR)

> library(gamSeq)

> geneChr <- function(ids,counts,prin=F){

+ require(org.Hs.eg.db)

+ cat("Number of genes with evidence for DGE:",length(ids),"\n")

+ if(length(ids)>0){

+ cat("Distribution of genes across chromosomes:")

+ print(table(unlist(lapply(rownames(counts)[ids],function(x)

+ tryCatch(get(get(x,org.Hs.egENSEMBL2EG),org.Hs.egCHR),

+ error=function(x) NA)))))

+ }

+ }
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The Marioni dataset is read in and pre-processed. The Marioni dataset contains one

technical replicate for each sample. Only one replicate was used in the analyses presented.

> marioniCounts <- read.table("/home/tguennel/ZIM/

+ GSE17274_ReadCountPerLane.txt",as.is=T,sep="\t",header=T)

> rownames(marioniCounts) <- marioniCounts[,1]

> marioniCounts <- marioniCounts[,-1]

> # order by species and gender

> marioniCounts <- marioniCounts[,order(sub("^.*\\.", "",

+ colnames(marioniCounts)))]

> # remove zero rows and replicates

> marioniCounts <- marioniCounts[-which(rowSums(

+ marioniCounts[,seq(2,36,by=2)])==0),-seq(1,36,by=2)]

> species <- rep(c("HS","PT","RM"),each=6)

> gender <- rep(rep(c("F","M"),each=3),3)

> # create data frame

> dataF2 <- data.frame(gender=gender,species=species)

Now gamSeq is run in parallel using eight CPUs and the chromosomes for genes called

significant are shown.

> nCPUs <- 8

> fitGamSeq <- gamSeq(counts=as.matrix(marioniCounts),

+ covariates="gender+species", data=dataF2, offSet=colSums(marioniCounts),

+ numCPUs=nCPUs)

Starting analysis

1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 ... 11 ...

12 ... 13 ... 14 ... 15 ... 16 ... 17 ...

Analysis completed

> geneChr(which(p.adjust(fitGamSeq$pValue$genderM,method="BH")<0.1),

+ counts=marioniCounts)

Number of genes with evidence for DGE: 0
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The same is repeated for edgeR and DESeq using code as suggested by the package’s

authors.

> design <- model.matrix(~gender + species ,data=dataF2)

> edgeRdata <- DGEList(counts=marioniCounts,

+ lib.size=colSums(marioniCounts), group=dataF2$gender)

> edgeRdata <- calcNormFactors(edgeRdata)

> edgeRdata <- estimateGLMCommonDisp(edgeRdata,design)

> edgeRdata <- estimateGLMTrendedDisp(edgeRdata,design)

> edgeRdata <- estimateGLMTagwiseDisp(edgeRdata,design)

> fitER <- glmFit(edgeRdata,design=design)

> lrtX1 <- glmLRT(edgeRdata,fitER,coef=c("genderM"))

> geneChr((1:nrow(marioniCounts))[-fitER$not.converged][which(p.adjust

+ (lrtX1$table$p.value[-fitER$not.converged],method="BH")<0.1)],

+ counts=marioniCounts)

Number of genes with evidence for DGE: 10

Distribution of genes across chromosomes:

1 10 11 12 14 15 19 2 20 6

1 1 1 1 1 1 1 1 1 1

First DESeq Conservative is run.

> dataF3 <- data.frame(condition=gender,species=species)

> cds <- newCountDataSet( marioniCounts, conditions=dataF3)

> cds <- estimateSizeFactors(cds)

> cds <- estimateDispersions(cds,method="pooled",sharingMode="max")

> fit1M <- fitNbinomGLMs(cds,count~condition+species,

+ glmControl=list(maxit=1000))

.................

> fit0M <- fitNbinomGLMs(cds,count~species,glmControl=list(maxit=1000))

.................

> pGenderDESPooled <- nbinomGLMTest(fit1M,fit0M)

> pGenderDESPooled[union(which(!fit0M$converged),

+ which(!fit1M$converged))] <- NA

> geneChr(which(p.adjust(pGenderDESPooled,method="BH")<0.1),

+ counts=marioniCounts)
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Number of genes with evidence for DGE: 0

Now the same for DESeq Liberal.

> # DESeq-Blind

>

> cds2 <- newCountDataSet( marioniCounts, conditions=dataF3)

> cds2 <- estimateSizeFactors( cds2 )

> cds2 <- estimateDispersions(cds2, method = "blind",

+ sharingMode="fit-only")

> fit1M2 <- fitNbinomGLMs(cds2,count~condition+species,

+ glmControl=list(maxit=1000))

.................

> fit0M2 <- fitNbinomGLMs( cds2, count ~ species,

+ glmControl=list(maxit=1000))

.................

> pGenderDESBlind<- nbinomGLMTest( fit1M2, fit0M2 )

> pGenderDESBlind[union(which(!fit1M2$converged),

+ which(!fit0M2$converged))] <- NA

> geneChr(which(p.adjust(pGenderDESBlind,method="BH")<0.1),

+ counts=marioniCounts)

Number of genes with evidence for DGE: 19

Distribution of genes across chromosomes:

1 10 11 12 13 14 15 17 19 2 20 4 6

2 1 1 2 1 1 1 1 2 2 1 1 2

The follwing R version and package versions were used for all analyses.

• R version 2.14.0 (2011-10-31), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,

LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8,

LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,

LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
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• Base packages: base, datasets, graphics, grDevices, methods, splines, stats, utils

• Other packages: akima 0.5-4, AnnotationDbi 1.16.0, Biobase 2.14.0, DBI 0.2-5,

DESeq 1.6.0, edgeR 2.4.0, gamlss 4.1-1, gamlss.data 4.0-5, gamlss.dist 4.1-0,

gamSeq 0.1.0, lattice 0.20-0, locfit 1.5-6, MASS 7.3-16, multicore 0.1-7,

nlme 3.1-102, org.Hs.eg.db 2.6.4, RSQLite 0.10.0

• Loaded via a namespace (and not attached): annotate 1.32.0, genefilter 1.36.0,

geneplotter 1.32.1, grid 2.14.0, IRanges 1.12.1, limma 3.10.0, RColorBrewer 1.0-5,

survival 2.36-10, tools 2.14.0, xtable 1.6-0

130



Vita

Virginia Commonwealth University

Department of Biostatistics

Box 980032

Richmond, VA 23298-0032

Date of Birth: April 28, 1982

Citizenship: Germany

Phone: (804) 822-5082

Fax: (804) 828-8900

Email: tobiasguennel@gmail.com

Education

Ph.D. Biostatistics, Virginia Commonwealth University, expected December 2011.

• Concentration: Genomics and Statistical Genetics.

Dipl.-Math. techn., Chemnitz University of Technology, Germany, 2001–2008.

• equivalent to M.S. Applied Mathematics.

• Minors: Mechanical Engineering and Computer Science.

• Thesis : Ordinal Classification Approach using Bagged Classification Trees and the

Proportional

• Odds Model as Splitting Criteria.

B.S. Mathematics, Longwood University, 2004–2006.

• Minor : Computer Science.

• Honors : Summa Cum Laude, Phi Kappa Phi.

131

http://www.vcu.edu/
http://www.biostatistics.vcu.edu/
mailto:tobiasguennel@gmail.com
http://www.pbk.org/


Research Interests

Microarray Data Analysis, High Throughput Sequencing Data Analysis, Statistical Chal-

lenges in Epigenetics, Statistical Genetics, Pharmacogenomics, Classification Systems.

Academic and Professional Experience

BioStat Solutions Inc., Mount Airy, MD

• Statistical Intern, January 2011-present.

Virginia Commonwealth University, Department of Biostatistics

• Predoctoral Fellow supported by National Institute on Drug Abuse Training Grant,

Mark Reimers, Ph.D., January 2010-Present.

• Graduate Assistant, Kellie J. Archer, Ph.D., Summer 2008-December 2009.

• Teaching Assistant, Al M. Best, Ph.D., Fall 2007-Spring 2008.

• Trainee, Kellie J. Archer, Ph.D., Summer 2006.

Longwood University, Department of Mathematics and Com-

puter Sciences

• Mathematics Tutor, Learning Center, Fall 2004-Spring 2006.

132

http://www.people.vcu.edu/~mreimers/
http://www.people.vcu.edu/~kjarcher/
http://www.people.vcu.edu/~albest/
http://www.people.vcu.edu/~kjarcher/
http://www.longwood.edu/library/services/learning.htm


Research

Work in Progress

• Technical variable normalization of two color CGH arrays, with Mark A. Reimers,

Ph.D..

• Quality assessment, normalization, and analysis of High-throughput Sequencing

data.

Publications in Refereed Journals

• Integrating RNA-Seq and genome-wide association to identify risk genes for schizophre-

nia, Chen X, Zhong, Y, XU J, Peng Z, Guennel T, Reimers M, Bacanu S, Zhongming

Z, and Kendler KS, Abstract for International Society of Psychiatric Genetics Sym-

posium, 2011.

• Comparing performance of multi-class classification systems with ROC manifolds:

When volume and correct classification fails, Schubert CA and Guennel T, Com-

munications in Statistics - Simulation and Computation, under review, 2011.

• Spatiotemporal transcriptome of the human brain, Kang HM, Kawasawa YI, Cheng

F, Zhu Y, Xu X, Li M, Sousa1 AM, Pletikos M, Meyer KM, Guennel T, Sedmak G,

Shin Y, Johnson MB, Krsnik Z, Fertuzinhos S, Umlauf S, Vortmeyer A, Weinberger

DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, and Šesta N, Nature,
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