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Abstract 

 

RACIAL DIFFERENCES IN THE GENETICS OF PREECLAMPSIA 

By Lori D. Hill, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2011. 

Major Director: Jerome F. Strauss III, M.D.,Ph.D. 
Dean of the School of Medicine 

Professor of Obstetrics and Gynecology and of Human and Molecular Genetics 
 

Preeclampsia (PE), characterized by hypertension and proteinuria after 20 weeks 

of gestation, affects 5-8% of pregnancies worldwide.  Although preeclampsia is a 

significant cause of maternal and perinatal mortality and morbidity, its etiology remains 

to be elucidated. Racial differences have been observed for preeclampsia, with U.S. 

Blacks having higher rates and more severe disease, compared to U.S. Whites and 

Hispanics. One potential source of racial differences in preeclampsia is genetic variation 

between populations. Genetic susceptibility to preeclampsia is well established, but the 

specific contributions of maternal vs. fetal genes, and how these vary among racial 

groups is poorly understood. This dissertation addressed racial differences in the 

genetics of preeclampsia in Chileans, U.S. Blacks, and U.S. Whites through candidate 

gene studies and variance components modeling. First, 



 

we determined whether three genes, which are relevant to the pathophysiology of 

preeclampsia, Catechol-O-methyltransferase (COMT), Methylenetetrahydrofolate 

reductase (MTHFR), and Endoplasmic reticulum aminopeptidase 2 (ERAP2), were 

associated with the risk for preeclampsia in Chilean and U.S. Black mothers and 

fetuses. We found that the maternal COMT and an interaction between the fetal COMT 

and MTHFR were associated with the risk for preeclampsia in Chileans. We also found 

that the fetal ERAP2 was associated with the risk for preeclampsia in U.S. Blacks. We 

next used structural equation modeling of a unique Children of Twins (COT), 

supplemented with full and half-siblings, study design to investigate the fetal genetic, 

maternal genetic, shared environmental, and unique environmental contributions to 

preeclampsia in U.S. Whites and Blacks. Through this modeling we uncovered a unique 

source of racial differences in preeclampsia. We found that U.S. Whites and Blacks 

showed a similar prevalence of preeclampsia in first births, but across the next three 

births, the prevalence in Whites declined to a greater degree than in Blacks. In 

conclusion we have identified specific maternal and fetal genes that contribute to the 

risk for preeclampsia. Furthermore, we have identified sources of racial differences in 

preeclampsia, which include differences in associations between COMT, MTHFR, and 

ERAP2 and the risk for preeclampsia among populations and differences in the 

prevalence of preeclampsia across subsequent births between U.S. Whites and U.S. 

Blacks. 
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Chapter 1: General Introduction 

 

Clinical overview of preeclampsia 

Preeclampsia is one of the most common disorders of pregnancy, affecting 3-5% 

of pregnant women worldwide (1). In addition to being a common disorder of pregnancy, 

preeclampsia is a leading cause of maternal and perinatal morbidity and mortality. It is 

estimated that preeclampsia results in more than 60,000 maternal deaths worldwide (2), 

and accounts for 20% of maternal deaths in the United States (U.S.) each year (3). In 

the U.S. the overall case-fatality rate for preeclampsia is approximately 6.4 per 10,000 

cases at delivery (3). 

Preeclampsia is defined clinically as the presence of new-onset high blood 

pressure (defined as systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 

90 mm Hg) and proteinuria (300mg or greater in a 24 hr urine specimen) after 20 weeks 

gestation, or during the first 48 hours following delivery (1, 4). Preeclampsia can be 

further categorized into mild, severe (systolic blood pressure ≥ 160 mm Hg, diastolic 

blood pressure ≥ 110 mm Hg, or ≥ 5g protein in a 24 hr urine specimen), or the rare 

severe variant of HELLP syndrome (hemolysis, elevated liver enzymes, and low 

platelets) (1, 4). 

Serious health risks for both the mother and fetus/neonate are associated with 

preeclampsia. The mother is at risk for seizures (eclampsia), renal failure, pulmonary 

edema, stroke and death, whereas the fetus is at risk for intrauterine growth restriction, 
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death, and prematurity with attendant complications (5). A greater appreciation for long 

term complications of preeclampsia is also emerging. Preeclampsia is associated with 

earlier development of cardiovascular disease in both the mother and infant (6, 7). 

Furthermore, women who have had preeclampsia are at an overall greater risk of 

developing hypertension, cardiovascular disease, cerebrovascular disease, and kidney 

damage (8-11). Although preeclampsia is common and results in potentially devastating 

outcomes for both mother and child, the only definitive treatment is delivery. Inducing 

premature delivery does “cure” preeclampsia, however, it also places the neonate at 

risk of the sequelae of prematurity and low birth weight (5, 12). 

In addition to limited treatment options for preeclampsia, there are few reliable 

methods to predict which women will develop preeclampsia.  Several pregnancy-

specific risk factors have been associated with a higher risk for preeclampsia. 

Nulliparous women or multiparous women with a new partner are at increased risk for 

preeclampsia (13, 14). Women with a history of preeclampsia, especially early onset 

disease, very young women, and women of advanced maternal age are also at 

increased risk for preeclampsia (4, 14, 15). Pregnancies with increased placental mass, 

including multi-fetal gestation and hydatidiform mole, are at higher risk of being 

complicated by preeclampsia (14, 16, 17). Finally, smoking decreases the risk for 

preeclampsia in some populations (18). Preexisting conditions in the mother also place 

her at higher risk of developing preeclampsia during pregnancy. These conditions 

include chronic hypertension, obesity, diabetes mellitus, renal disease, metabolic 

syndrome, and lupus (4, 14, 15). All of these risk factors are non-specific and, since 
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they are common among women who do not develop preeclampsia, provide little 

predictive power. 

One of the main limitations to the prevention and treatment of preeclampsia is 

the inadequacy of the diagnostic criteria. Preeclampsia is diagnosed based on the 

presence of two basic clinical findings, which fail to capture the complexity of this 

syndrome. Preeclampsia is a heterogeneous disorder that encompasses a range of 

both classical and non-classical presentations based on the current definition. The 

classic presentation of preeclampsia includes a wide range in time of onset (20 weeks 

gestation to 48 hours post-partum), amount of proteinuria (300 mg/day to nephrotic 

syndrome), severity of disease, and course of progression (1, 4, 19, 20). There are also 

non-classical presentations that include the absence of proteinuria, absence of 

hypertension, HELLP syndrome, and eclampsia without previous signs and symptoms 

of preeclampsia (19, 20). Moreover, the diagnostic criteria for preeclampsia do not 

reflect the current understanding of the role of the placenta in this disease.  

It is well established that preeclampsia is a disease of the placenta that results in 

the maternal phenotype of hypertension and proteinuria. The disease, therefore, is 

believed to begin early in the first trimester of pregnancy, yet maternal symptoms are 

usually not recognized until much later, with most presenting during the third trimester. 

The reliance on end stage signs and symptoms for diagnosis, and the diagnosis of 

preeclampsia late in the course of pregnancy reflect the inadequacies of the current 

criteria for diagnosis. A better understanding of the etiology of preeclampsia is needed 

so that a more adequate and comprehensive set of diagnostic criteria can be developed 

for the disorder. 
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Etiology of Preeclampsia 
 

Despite much research, the proximate cause of preeclampsia remains poorly 

understood. Preeclampsia is believed to be a complex disorder influenced by multiple 

genetic, immunological, environmental, and social factors (21, 22). As a disorder of 

pregnancy, the pathophysiology of preeclampsia is also complex because it involves the 

interplay of two individuals, mother and fetus. As such there are both fetal and maternal 

contributions to this condition. 

Preeclampsia is a placental disorder that results in the maternal phenotype of 

hypertension and proteinuria. The central role of the placenta is evidenced by the fact 

that delivery of the placenta, not the fetus, “cures” the disorder, and the fact that 

preeclampsia can develop with hydatidiform moles, where only placental tissue and no 

fetus is present. Consequently, abnormalities leading to preeclampsia are thought to 

occur early in pregnancy, and originate in fetal (placental) tissues, and the later stages 

of disease manifest in maternal tissues. This multistage process is outlined in Figure 

1.1, which provides a general overview of our current understanding of the 

pathophysiology of preeclampsia (23). A discussion of the specific mechanisms thought 

to be important to the development of the disease is presented below. 

Placentation is a critical event in the establishment of pregnancy, providing the 

vascular connection between the mother and fetus. During normal placentation 

cytotrophoblasts invade the uterine spiral arteries and transform them from small, high 

resistance vessels, to larger, low resistance vessels. This transformation ensures 

adequate placental profusion to maintain the fetus. Placental ischemia and hypoxia are 

central features of preeclampsia. Placentas from preeclamptic pregnancies show 
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shallow trophoblast invasion (24-26) and poor spiral artery remodeling (27-29). This is 

thought to result from an imbalance in angiogenic and anti-angiogenic factors, 

inflammatory factors, and hypoxia response factors (30-32). The angiogenic/ anti-

angiogenic balance is tightly controlled by oxygen levels and normally ensures 

adequate remodeling of the spiral arteries (33). In preeclampsia abnormal 

concentrations of circulating angiogenic and anti-angiogenic factors have been widely 

reported. In particular, abnormalities in soluble fms-like tyrosine kinase (sFlt1), 

placental-derived growth factor (PlGF), vascular endothelial growth factor (VEGF), 

transforming growth factor beta (TGF-β), and soluble endoglin (sENG) have been 

described by a number of authors (34-41). 

The next stage of preeclampsia shifts to a balance between the feto-placenta 

and the maternal system. Inflammation is also a key regulator of placentation and pro-

inflammatory cytokines have been linked to poor placentation (31, 32, 42-44). Many of 

these cytokines, including interleukin 16 (IL-16), interleukin 10 (IL-10), tumor necrosis 

factor alpha (TNFα), interferon gamma (IFNγ), interleukin 1 (IL-1), interleukin 6 (IL-6), 

interleukin 8 (IL-8), and interleukin 12 (IL-12), show altered levels in preeclamptic 

pregnancies (44). Normal pregnancy is considered to be a pro-inflammatory condition, 

but in preeclampsia, there is an exaggerated state of systemic inflammation (42). 

Oxidative stress in the placenta causes it to produce reactive oxygen species (ROS) 

that activate circulating leukocytes. In women with preeclampsia, there is an increase in 

neutrophil activation and transendothelial migration (45, 46). Activated neutrophils 

release a number of molecules which lead to increased inflammation, vascular oxidative 

stress, and an imbalance in vasoactive factors (46, 47). The placental release of pro-
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inflammatory factors, or the pre-existence of increased inflammation in the maternal 

vasculature, could both contribute to the development of preeclampsia.  

Additionally, pregnancy is a condition that requires immune tolerance of the fetus 

by the mother since fifty percent of the fetal genome is not shared with the mother. The 

maternal immune system in preeclampsia shows a different response profile that 

includes a predominant T Helper Cell Type 1 (Th1) immune response, which correlates 

to poor placentation, inflammation, and endothelial dysfunction (48). Furthermore, 

preeclampsia is associated with decreased levels of HLA-G, which normally protects the 

fetus from immune attack by the mother. Decreased levels of HLA-G have been 

reported in the circulation of women with preeclampsia, and reduced cell-surface 

expression has been reported in trophoblasts (49-52). 

In this stage, systemic endothelial damage is the focus of disease. In 

preeclampsia, endothelial dysfunction results in vasospasm, increased vascular 

peripheral resistance, and vascular leakiness. The key vasodilator of the endothelium 

and regulator of peripheral vascular resistance in pregnancy is nitric oxide (NO). 

Women with preeclampsia showed impaired production of NO metabolites (53). 

Furthermore, a rat model showed that pharmacologic inhibition of NO production 

resulted in a preeclampsia-like phenotype that included hypertension, proteinuria, 

intrauterine growth restriction, and renal endothelial lesions (54, 55). NO is an important 

downstream mediator of many of the angiogenic and anti-angiogenic factors that show 

abnormalities in the circulation of women with preeclampsia (i.e. VEGF, TGF-β, sFlt1, 

and sENG) (53). NO is formed by endothelial nitric oxide synthase (eNOS) using L-

arginine as substrate. Abnormalities in the production of NO and the activity of eNOS 
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have been documented in preeclampsia (56), and supplementation of women at high 

risk for preeclampsia with L-arginine significantly reduces risk of preeclampsia (57). In 

sum, NO is a likely end stage target of dysregulation in preeclampsia, and a major 

contributor to the systemic endothelial dysfunction that characterizes this disorder. 

It is postulated that placental ischemia and hypoxia cause the placenta to release 

vasoactive and inflammatory factors that lead to intravascular inflammation (30-32), and 

endothelial dysfunction (35, 36, 58-60). Hypoxia Inducible Factor 1 alpha (HIF-1α) is a 

transcription factor that mediates cellular responses to hypoxia and its expression is 

altered in preeclampsia (33, 61, 62). HIF-1α expression is normally suppressed during 

pregnancy, but its up-regulation in preeclampsia leads to the expression of numerous 

genes which encode angiogenic, anti-angiogenic, and inflammatory molecules including 

those that encode proteins that are increased in the circulation of women with 

preeclampsia (i.e. sFlt1 and sENG). Moreover, the inflammatory response feeds into a 

positive feedback loop with hypoxia and endothelial damage and potentially intensifies 

these processes. 

The reactions of the endothelium to damage, and to the attempt by the placenta 

to increase perfusion, are important to the progression of preeclampsia. A complicated 

cascade of events is set into motion by the maternal and fetal systems. The attempts to 

increase perfusion, correct the endothelial damage, and the toxic molecules released as 

a result of damage, lead to a worsening of the maternal and fetal conditions. Oxidative 

stress, leading to free radical production, vasoactive molecules, placental debris, 

cytokines, and additional inflammatory molecules continue to escalate the systemic 

endothelial damage. Major regulatory systems participate in the attempt to regulate the 
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increasing blood pressure and problems in these might contribute to the inability of the 

body to effectively regulate blood pressure. Both the maternal and fetal renin-

angiotensin-aldosterone system (RAAS) show defects in preeclampsia (63, 64). The 

RAAS system is one of the primary means the body uses for regulating blood pressure. 

  It is also important to consider the pre-existing state of the maternal endothelium 

as a contributing factor to preeclampsia. The fragility of the endothelium determines the 

amount of insult it can incur before reaching the amount of damage necessary for 

preeclampsia to develop. Pre-existing conditions that put a mother at increased risk for 

developing preeclampsia generally include conditions that affect the endothelium and, 

therefore, put it at a weakened state prior to pregnancy. Pre-existing hypertension 

diminishes the mother’s ability to effectively manage the additional damage to the 

vascular system. In these cases, a lower amount of damage can be tolerated before 

preeclampsia develops as compared to a healthy maternal system prior to pregnancy. 

The final stage of preeclampsia is systemic maternal endothelial damage that 

results in the clinical phenotype of hypertension and proteinuria. Anti-angiogenic factors, 

systemic inflammation, immunologic factors, and hypoxia all play a part in creating the 

systemic damage (23). The endothelial damage can affect all areas of body, including 

the liver, kidneys, and brain (23). Endothelial damage can further progress to end organ 

effects that result in the numerous complications associated with preeclampsia.  

 

Racial differences in preeclampsia  

Racial differences in preeclampsia are well established. Compared to White 

women in the United States (U.S.), higher rates of preeclampsia have been found 

among U.S. Black women and lower rates have been found among U.S. Asian women 
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(65-68). Hispanic women have also been reported to have lower rates of preeclampsia 

compared to Black women (67, 68). Besides maternal race being associated with 

differences in preeclampsia rates, maternal-paternal racial discordance was reported to 

be associated with an increased incidence (66). 

In addition to being at increased risk for developing preeclampsia, U.S. Black 

women often have more severe disease and are at a greater risk for severe 

complications (65). In the case of severe preeclampsia, U.S. Black women have more 

severe hypertension and need more antihypertensive medications than U.S. White 

women (69). Furthermore, U.S. Black women have higher case-fatality rates with 

reports showing that, compared to U.S. White women, U.S. Black women are three 

times more likely to die from preeclampsia (3, 70). 

Attempts to identify the source of racial disparity in preeclampsia have, thus far, 

been unsuccessful. Studies have been unable to account for racial disparity by 

controlling for socioeconomic factors that are typically associated with differences in 

health between these groups (67, 68). A 10 year longitudinal study from 1993 to 2002 in 

New York also showed that despite greater access to care over time, the disparity 

between Whites and Blacks increased (68). There are several possible sources of racial 

differences that might be contributing to the disparity. For instance, differences in 

genetic causes of preeclampsia, differences in previously unmeasured environmental 

factors, or differences in the balance between genetic and environmental factors may 

exist between groups.  

Currently, the majority of research on preeclampsia has relied on studies of 

White women to characterize the epidemiology and pathophysiology of preeclampsia. It 
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will be important to include different racial populations in preeclampsia research so that 

the cause(s) of racial disparities can be determined and incorporated into the 

development of treatment and management strategies. 

 
Genetic contribution to preeclampsia  

 
A familial predisposition to preeclampsia has been consistently demonstrated in 

studies from the U.S., Scotland, Iceland, Scandinavia, and Australia. These studies 

have shown an increased risk for first-degree relatives of women and a relatively strong 

heritability which is estimated to be 0.54 (95% CI, 0-0.71) (71-76). With evidence for a 

significant genetic contribution, research next focused on determining the maternal and 

fetal genetic effects. Studies have reported both a maternal and a fetal genetic 

component to preeclampsia (75, 77-79). The most substantial study of the respective 

maternal and fetal contributions to preeclampsia estimated the maternal effect to be 

0.35 (95% CI, 0.33-0.36) and the fetal effect to be 0.20 (95% CI, 0.11-0.24), with 

maternally and paternally inherited genes assumed to act equally through fetal genetic 

effects (78). These estimates were standardized for a total variance of 1.0. The overall 

conclusion of research investigating a genetic predisposition to preeclampsia is that 

more than 50% of liability can be attributed to inheritance and that both maternal and 

fetal genes contribute. 

Despite the wide acceptance of these estimates, there are serious limitations in 

the studies from which they were derived. The majority of evidence to support the 

heritability of preeclampsia comes from epidemiologic studies, which show familial 

aggregation patterns, and although these study designs strongly support a genetic 

component to preeclampsia, they are unable to estimate the contribution of manifest 
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genetic and environmental variables (71-79). The two main studies that have been cited 

for these estimates are both large Swedish twin studies. The 0.54 estimate of heritability 

from the largest published twin study was not statistically significant and had very wide 

confidence intervals (76). Furthermore, the study that attempted to separate maternal 

and fetal genetic estimates only included three unique family relationships, yet they 

estimated five parameters (78). This leaves the models unidentifiable and, in particular, 

leaves the fetal genetic estimate indistinguishable from maternal genetics and shared 

environment. These results leave questions about the actual values of these 

parameters, and warrant better study designs that can more confidently estimate the 

parameters. Specifically, maternal genetic, fetal genetic, shared environmental, and 

unique environmental parameters remain to be determined. 

 Although the relative importance of maternal and fetal genetic versus 

environmental contributions to preeclampsia has not been firmly established, linkage 

and candidate gene studies have shown a variety of chromosomal regions and genes to 

be associated with preeclampsia (80-82). Genes involved with endothelial dysfunction, 

oxidative stress, angiogenesis and thrombophilia have been associated with 

preeclampsia (80-82). The diversity of genes found to be associated with preeclampsia 

is reflective of the complex nature of this disorder and reaffirms many of the suspected 

mechanisms thought to contribute to disease. While numerous associations have been 

reported, they are overwhelmingly of maternal genes because genetic studies have 

focused on maternal genotypes. With the placenta playing a major role in the 

pathogenesis of preeclampsia, fetal genes should equally be considered and included in 

genetic studies. 
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Racial differences are also underappreciated in genetic research on 

preeclampsia. The studies on the heritability of preeclampsia and candidate gene 

studies have almost exclusively looked at White populations. With genetic differences 

between racial groups a potential source of racial disparities in preeclampsia, it is 

important to include different populations in genetic studies.  

 

Overview of current research 

The aim of this dissertation is to explore genetic contributions to preeclampsia 

through candidate gene studies and structural equation modeling techniques. This 

research provides new insights into the genetics of preeclampsia by including multiple 

racial groups in order to address issues of disparity, by separating between maternal 

and fetal genes, and by moving beyond a single variant approach in the candidate gene 

studies with the inclusion of haplotypes and gene-gene interactions. 

The first three projects of this dissertation are candidate gene studies that 

determined whether three genes Catechol-O-methyltransferase (COMT), 

Methylenetetrahydrofolate reductase (MTHFR), and Endoplasmic reticulum 

aminopeptidase 2 (ERAP2), were associated with the risk for preeclampsia. The 

functions of COMT, MTHFR, and ERAP2 are relevant to the pathophysiology of 

preeclampsia. Furthermore, animal models and/or human studies have suggested that 

genetic variation in these genes could contribute to preeclampsia. The predicted 

contributions of these genes, in reference to the stages of preeclampsia, are presented 

in figure 1.2. A detailed discussion on the predicted mechanisms can be found in 

Chapter 2 for COMT and MTHFR, and chapter 4 for ERAP2. 
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The first two projects specifically investigated the genetic contributions of COMT 

and MTHFR to preeclampsia. These projects included several unique features that 

improve upon current approaches typically employed in preeclampsia and pregnancy-

specific research. First, the study populations for these projects were composed of 

Chilean maternal-fetal dyads and U.S. Black mothers and fetuses. By collecting 

samples from the mother and neonate, both maternal and fetal genes were analyzed, 

and more importantly, the combination of maternal and fetal genes in a single 

pregnancy was evaluated. This allowed for the discrimination between maternal and 

fetal genetic associations and for an analysis of both maternal and fetal effects in a 

single pregnancy. Second, the haplotype structure of COMT, composed of four single 

nucleotide polymorphisms (SNPs), was studied to account for more functionally relevant 

alleles of this gene. This provided more information on the gene and allowed for better 

characterization of COMT variants and their role in preeclampsia. Third, two genes were 

included in the study to investigate the potential for epistasis to contribute to the risk for 

preeclampsia. The inclusion of both genes in this study revealed new roles for the 

genes in preeclampsia and underscored the importance of considering how the 

combination of variants in networks of genes relates to disease risk.  

The second candidate gene study of this dissertation investigated the association 

between the ERAP2 gene and risk for preeclampsia. In addition to including both 

maternal and fetal genes in this study, again two racial populations were included to 

explore the problem of racial disparities in this disorder. The inclusion of Chileans and 

U.S. Blacks in this study revealed differences in the genetic factors that contribute to the 

risk for preeclampsia between racial groups. 
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The final project of this dissertation aimed to improve upon the current 

understanding of the heritability of preeclampsia by more precisely defining the 

contributions of genetic and environmental contributions to the development of 

preeclampsia. By using a unique children of twins study design that was supplemented 

with full sibling and half sibling relationships, this study was designed to discriminate 

between maternal genetic, fetal genetic, shared environmental, and unique 

environmental contributions to preeclampsia. Furthermore, both U.S. Whites and Blacks 

were studied, which provided unique insight into the source of racial disparity in 

preeclampsia. 
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Figure 1.1. Summary of the pathophysiology of preeclampsia. In the early stage of 

disease, multiple factors contribute to placental dysfunction which leads to the placental 

release of anti-angiogenic factors and other inflammatory mediators. In the second 

stage of disease, the placental release of factors, in conjunction with maternal factors, 

leads to systemic endothelial damage. Systemic endothelial damage, ultimately results 

in hypertension, proteinuria, and other complications of preeclampsia. This figure has 

been adapted from Young et al. (23). 
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Figure 1.2. Summary of the pathophysiology of preeclampsia, including predicted 

involvement of Catechol-O-methyltransferase (COMT), Methylenetetrahydrofolate 

reductase (MTHFR), and Endoplasmic reticulum aminopeptidase 2 (ERAP2). We 

hypothesize that COMT and MTHFR are involved in placental hypoxia-driven disruption 

of angiogenic and anti-angiogenic factors. Specifically, that decreased COMT and 

MTHFR activity, leads to an up-regulation of Hypoxia Inducible Factor 1 alpha (HIF-1α). 

Increased HIF-1α is thought to lead to the inappropriate up-regulation of hypoxia-
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induced genes and the placental release of factors that contribute to endothelial 

damage and the maternal phenotype. ERAP2 has the potential to contribute to 

preeclampsia in multiple ways. First, ERAP2 is involved in immunological and 

inflammatory processes. By altering these processes, ERAP2 could contribute to 

abnormal placentation. Second, ERAP2 is involved in inflammatory cytokine production 

and might contribute to the placental release of these factors. Third, the involvement of 

ERAP2 in inflammation could contribute to increased inflammation in the maternal 

system, and makes the maternal endothelium more sensitive to disease. Finally, 

ERAP2 is involved in blood pressure regulation and could contribute to hypertension in 

the later stage of disease. This figure has been adapted from Young et al. (23). 
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Chapter 2: Epistasis between COMT and MTHFR in maternal-fetal dyads 

increases risk for preeclampsia 

 

This chapter is published as: 

Hill LD, York TP, Kusanovic JP, Gomez R, Eaves LJ, Romero R, Strauss JF 3rd. 

2011 Epistasis between COMT and MTHFR in maternal-fetal dyads increases risk for 

preeclampsia. PLoS One 6(1):e16681 

 

 

Abstract  

One proposed mechanism of preeclampsia is placental hypoxia-driven imbalances in 

angiogenic and anti-angiogenic factors, causing endothelial cell dysfunction. Catechol-

O-methyltransferase (Comt)-deficient pregnant mice have a preeclampsia phenotype 

that is reversed by exogenous 2-methoxyestradiol (2-ME), an estrogen metabolite 

generated by COMT. 2-ME inhibits Hypoxia Inducible Factor 1α, a transcription factor 

mediating hypoxic responses. COMT has been shown to interact with 

methylenetetrahydrofolate reductase (MTHFR), which modulates the availability of S-

adenosylmethionine (SAM), a COMT cofactor. Variations in MTHFR have been 

associated with preeclampsia.  By accounting for allelic variation in both genes; the role 

of COMT has been clarified. COMT allelic variation is linked to enzyme activity and four 

single nucleotide polymorphisms of this gene (SNPs) (rs6269, rs4633, rs4680, and 
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rs4818) form haplotypes that characterize COMT activity. We tested for association 

between COMT haplotypes and the MTHFR 677 CT polymorphism and preeclampsia 

risk in 1103 Chilean maternal-fetal dyads. The maternal ACCG COMT haplotype was 

associated with reduced risk for preeclampsia (P = 0.004), and that risk increased 

linearly from low to high activity haplotypes (P = 0.003). In fetal samples, we found that 

the fetal ATCA COMT haplotype and the fetal MTHFR minor “T” allele interact to 

increase preeclampsia risk (p = 0.022). We found a higher than expected number of 

patients with preeclampsia with both the fetal risk alleles alone (P = 0.052) and the fetal 

risk alleles in combination with a maternal balancing allele (P < 0.001). This non-random 

distribution was not observed in controls (P = 0.341 and P = 0.219, respectively). Our 

findings demonstrate a role for both maternal and fetal COMT in preeclampsia and 

highlight the importance of including allelic variation in MTHFR.  

 

Introduction 

Preeclampsia (PE) affects 5-8% of pregnancies worldwide and is characterized 

by hypertension and proteinuria after 20 weeks of gestation (1). Although preeclampsia 

remains a significant source of maternal and perinatal mortality and morbidity, its 

etiology remains unclear. A genetic susceptibility to preeclampsia has been well 

established and genes involved with endothelial dysfunction, oxidative stress, 

angiogenesis and thrombophilia have been associated with preeclampsia (71, 80, 81, 

83). 

It has long been recognized that preeclampsia is a placental disorder that results 

in the maternal syndrome. Placental hypoxia is a key feature of this condition and 
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placentas from patients with preeclampsia show shallow trophoblast invasion (24-26) 

and failure of vascular transformation of the spiral arteries (27-29). During normal 

placentation, oxygen levels tightly control the balance between angiogenic and anti-

angiogenic factors to ensure adequate remodeling of the maternal spiral arteries and 

sufficient placental blood supply (34). It is postulated that a hypoxia-driven disruption of 

the angiogenic balance causes the placenta to release factors that lead to intravascular 

inflammation (30-32), endothelial dysfunction (35, 36, 58-60) and the maternal 

phenotype. Indeed, abnormal concentrations of circulating angiogenic and anti-

angiogenic factors including soluble fms-like tyrosine kinase (sFlt1), placental growth 

factor (PlGF), vascular endothelial growth factor (VEGF), transforming growth factor 

beta (TGF-β), and soluble endoglin (sENG) have been well documented in 

preeclampsia (34-41). Although abnormalities in these factors have been consistently 

demonstrated, there is no discernable pattern that characterizes preeclampsia, 

suggesting that a defect in an upstream regulator may contribute to the pathophysiology 

of preeclampsia.  

2-methoxyestradiol (2-ME) is a natural metabolite of estradiol and it is generated 

by catechol-O-methyltransferase (COMT) in the placenta. 2-ME is a compound with 

diverse biological activities including inhibition of Hypoxia Inducible Factor 1α (HIF-1α) 

(33, 61). HIF-1α is a transcription factor that mediates cellular responses to hypoxia and 

its expression is altered in preeclampsia (33, 61, 62). Cytotrophoblastic invasion has 

also recently been reported to be modulated by 2-ME during hypoxic conditions (84). In 

collaboration with Kanasaki et al., we found that the Comt-deficient pregnant mouse 

exhibits a preeclampsia phenotype similar to that found in human preeclampsia, 
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including hypertension, proteinuria and vascular and placental lesion; and the mouse 

preeclampsia-like phenotype is reversed by administration of 2-ME (61). In this report, 

circulating concentrations of 2-ME and placental COMT activity were significantly 

reduced in women diagnosed with preeclampsia, raising the possibility that altered 

production of 2-ME may contribute to the pathophysiology of preeclampsia by altering 

the placental response to hypoxia (61). Moreover, severe preeclampsia and fetal growth 

restriction have been associated with reduced placental COMT activity (85, 86). HIF-1α 

is an upstream regulator of many of the factors implicated in the angiogenic balance 

and endothelial dysfunction (34, 62). By modulating HIF-1α activity, COMT represents a 

point at which this upstream regulator could be disrupted. 

Human allelic variation in COMT has been associated with changes in enzyme 

activity levels (87, 88). COMT is one of several enzymes that degrades catecholamines 

and is involved in vascular and metabolic homeostasis, including dopamine, 

epinephrine, norepinephrine, and catechol estrogens. The COMT enzyme is involved in 

a wide variety of physiological processes such as prefrontal cortex function and lipid 

metabolism and has been implicated in diseases such as schizophrenia, pain 

sensitivity, Parkinson’s disease, and cancer (88-92). Previous studies investigating the 

role of genetic variation in COMT have largely focused on the single nucleotide 

polymorphism (SNP) rs4680 Val/Met, which has been associated with a modest 4-fold 

difference in activity (87). However, a recent functional analysis of 4 SNPs, rs6269, 

rs4633, rs4818, and rs4680, demonstrated that enzymatic activity is more precisely 

determined by three haplotypes of these SNPs, which result in a 25-fold difference in 

enzyme activity (88).  
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Preeclampsia is thought to be multifactorial in origin with multiple genes, 

environmental, and social factors acting in conjunction to cause disease (21, 22, 93). 

Variations in the methylenetetrahydrofolate reductase (MTHFR) gene have been 

associated with elevated homocysteine, a risk factor for endothelial dysfunction, 

vascular disease, and preeclampsia (94-97). Some previous studies have shown allelic 

variations in MTHFR to be associated with preeclampsia, although others have failed to 

replicate these associations (81, 98, 99). MTHFR modulates the availability of methyl 

groups (97), which are the cosubstrate for COMT (87) and Roffman et al. recently 

showed that stratifying COMT genotypes by MTHFR genotype revealed a role of COMT 

in prefrontal cortex function (87, 97, 100).  

In the present case-control study, we investigated the association between 

COMT haplotypes and preeclampsia in 1,103 Chilean maternal-fetal dyads. Haplotype 

frequencies were determined by genotyping 4 SNPs from the COMT gene: rs6269, 

rs4633, rs4818, and rs4680. Based on previous findings of haplotype-specific 

differences in enzymatic activity and protein levels, we evaluated the relationship of the 

functional variation linked to COMT haplotype and preeclampsia (88). Finally, we 

assessed whether the relationship between COMT and preeclampsia was influenced by 

MTHFR. 

 

Methods 

Ethics Statement: This study was conducted according to the principles expressed in 

the Declaration of Helsinki. The study was approved by the Institutional Review Board 

of the Virginia Commonwealth University School of Medicine (IRB # HM12520). All 
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patients provided written informed consent for the collection of samples and subsequent 

analysis. 

 

Study design and population: A case-control study was initiated by searching our clinical 

database and bank of biological samples and included Hispanic women and their 

neonates in the following groups: 1) Cases – women with preeclampsia and their 

neonates (n = 528 dyads); and 2) Controls – women who delivered at term with a 

normal pregnancy outcome and their neonates (n = 575 dyads). Participants received 

obstetrical care at the Sótero del Río Hospital in Santiago, Chile (an affiliated of the 

Pontificia Catholic University of Santiago, Chile). Exclusion criteria included: (1) known 

major fetal anomaly or demise; (2) multi-fetal pregnancy; (3) serious maternal medical 

illness (renal insufficiency, congestive heart disease, etc.); (4) refusal to provide written 

informed consent; and (5) a clinical emergency, which prevented counseling of the 

patient about participating in the study, such as fetal distress or maternal hemorrhage. 

All women provided written informed consent before collection of the samples. The use 

of clinical data and collection and utilization of maternal and neonatal blood for research 

purposes was approved by the Institutional Review Boards of the Sótero del Río 

Hospital and the Eunice Kennedy Shriver National Institute of Child Health and Human 

Development, NIH, DHHS. Racially, the Chilean population is estimated at nearly 95% 

white and mestizo (mixed white and Amerindian); 3% Amerindian; and 2% other. 

Mixtures between the conquering Spaniards, largely Andalusians and Basques, and the 

Mapuches (Araucanians) produced the principle Chilean racial type (2002 census). 

There is no reported evidence to support differences in disease prevalence amongst 
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Chileans and there is no evidence to support the presence of group structure within this 

population.  Therefore, population stratification was determined to not be a source of 

potential bias in this study population. 

 

Clinical definitions: Preeclampsia was defined based on the presence of gestational 

hypertension (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 

mmHg) and proteinuria (≥300 mg in a 24-hour urine collection, two or more dipstick 

measurement of 1+, or one or more dipstick measurement ≥2+) according to ACOG (1) 

and the National High Blood Pressure Education Program (1, 101). Patients were 

considered to have a normal pregnancy outcome if they did not have any medical, 

obstetrical, or surgical complication, and delivered a term neonate (≥37 weeks) of 

appropriate birth weight for gestational age (102) without complications.  

 

Sample collection: Maternal blood samples were obtained from the mother at the time of 

enrollment in the protocol, and from the umbilical cord immediately after delivery before 

the detachment of the placenta. Samples were collected with a vacutainer into tubes 

containing EDTA. The plasma tubes were balanced and centrifuged at 1300g for 10 

minutes at 4°C to separate cellular components from clear plasma, and the samples 

were stored at -70°C until assayed. 

 

DNA extraction: DNA was extracted from maternal and cord blood with a Qiagen 

Autopure using standard procedures (Qiagen). 
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Genotyping: Single-nucleotide polymorphism analysis was performed using real-time 

allelic discrimination TaqMan assays (Applied Biosystems) with modifications. All PCR 

reactions contained 25-75 ng of DNA, 6.25 ul TaqMan Universal Master Mix (Applied 

Biosystems)(2x), 0.3 ul TaqMan Genotyping Assay (Applied Biosystems) (20x), and 

water for a final volume of 12.5 ul. Real-time PCR was performed on an ABI 7500 Fast 

Real-Time PCR Machine (Applied Biosystems) under the following conditions: 50oC for 

2 min, 95oC for 10 min, and 40 cycles of amplification (92oC for 15 sec and 60oC for 1 

min). For each cycle, the software determined the fluorescent signal from the VIC- or 

FAM- labeled probe (Applied Biosystems). Allelic discrimination for COMT was 

performed using TaqMan Genotyping assays C___2538746_1 for SNP rs6269, 

C___2538747_20 for SNP rs4633, C___2538750_10 for SNP rs4818, 

C__25746809_50 for SNP rs4680 (Applied Biosystems). Allelic discrimination for 

MTHFR was performed using TaqMan Genotyping assay C__1202883_20 for SNP 

rs1801133. 

 

Statistical Analysis:  Fisher’s exact tests implemented in the PLINK software (103) were 

used to test individual SNPs for allelic associations with case-control status and to 

confirm Hardy-Weinberg equilibrium in the control group only. Inter-SNP linkage 

disequilibrium calculations for COMT were performed in Haploview (version 4.0) (104). 

Haplotype frequencies were also generated in PLINK based on the four COMT SNPs 

and both global and haplotype-specific tests were performed to test for frequency 

differences between disease status for maternal and fetal samples separately. 

Haplotypes with an independent effect were further investigated by multiple logistic 
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regression in R to condition by covariates known to influence rates of preeclamsia and 

to adjust for the correlation between maternal-fetal genotypes. These tests involved 

assigning haplotypes to subjects based on the most likely phase reconstructed 

haplotypes generated by the expectation-maximization algorithm implemented in 

PLINK. An additive term for the haplotype of interest was coded as 0, 1, or 2 based on 

copy number present. Based on the previously mentioned haplotype-specific functional 

information from Nackley et al. (88), we also coded COMT haplotypes to reflect 

enzymatic activity. COMT haplotypes were sequentially ordered 1 through 5 where 1 

was ACCG/ACCG, 2 was ACCG/ATCA, 3 was ATCA/ATCA, 4 was ATCA/GCGG, and 5 

was GCGG/GCGG. Interactive effects between the maternal ATCA COMT haplotype 

and maternal MTHFR and the fetal ATCA COMT haplotype and fetal MTHFR were 

tested using multiple logistic regression in R. The MTHFR was included as an additive 

term coded as 0, 1, or 2 based on copy number of the minor “T” allele. Permutation 

analysis in R with 10,000 iterations was used to compare models with and without 

significant interaction terms. Logistic regression in R was used to test for differences in 

clinical characteristics between disease classes for non-genetic variables.   

 

Results 

Table 2.1 displays the demographic and clinical characteristics of mothers and 

neonates from pregnancies with preeclampsia as well as controls. No significant 

differences were observed in maternal age or neonatal sex between groups. Consistent 

with previous epidemiologic studies, patients with preeclampsia showed a significantly 

higher body mass index (BMI, P <0.001) and fewer previous live births (P = 0.007). In 
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accordance with preeclampsia resulting in intrauterine growth restriction and indicated 

preterm birth, offspring born to women with preeclampsia showed a significantly lower 

gestational age at delivery and birthweight (P < 0.001). 

 Single SNP analysis revealed no associations between COMT polymorphisms 

rs6269, rs4633, rs4818, and rs4680 and preeclampsia in either maternal or fetal 

samples (Table 2.2). All SNPs were found to be in Hardy-Weinberg equilibrium in the 

maternal and fetal control samples separately. However, haplotype analysis showed the 

four SNPs to be in very high linkage disequilibrium (LD) for both maternal and fetal 

samples (Table 2.3). Three main haplotypes were identified: ACCG, ATCA, and GCGG 

(SNP order on the chromosome: rs6269, rs4633, rs4818, rs4680) and correspond to the 

low, intermediate, and high enzyme activities of COMT, respectively, identified by 

Nackley and colleagues (88).  

The haplotype analysis of COMT frequency differences between cases and 

control subjects is shown in Table 2.4. A global test of differences among haplotypes 

reached statistical significance for maternal samples, but not for fetal samples (P = 

0.016 and P = 0.116, respectively). Separate tests for haplotype-specific effects on 

disease class resulted in significant results for both the maternal (P = 0.004) and fetal (P 

= 0.038) ACCG haplotype (Table 2.4). This haplotype was observed more frequently in 

controls than cases for both maternal and fetal samples, indicating a possible protective 

effect. To control for the correlation of genotypes inherent in maternal-fetal dyads, we 

conditioned the maternal ACCG haplotype by the respective fetal ACCG haplotype. This 

resulted in only a significant effect of the maternal ACCG haplotype (maternal P =  

0.041; fetal P = 0.446) on risk for disease and indicated that the effect of the ACCG 
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haplotype was maternally derived and initial significant result for the fetal ACCG 

haplotype was likely a result of the correlation of the fetal-maternal genotype.  

 Additional multiple logistic regression analysis was performed to include risk 

factors for preeclampsia (maternal age, BMI, and previous live births). Results of a final 

regression model, which only included covariates found to be significant in this 

population is shown in Table 2.5. Only the maternal ACCG haplotype (maternal P = 

0.034, fetal P = 0.419) was observed to have a significant effect and was associated 

with a decreased risk of preeclampsia (OR = 0.796; 95% CI: 0.646, 0.982). Increased 

BMI was associated with an increased risk for preeclampsia (OR = 1.108; 95% CI: 

1.076, 1.142) and a larger number of previous live births decreased the risk for 

preeclampsia (OR = 0.782; 95% CI: 0.695, 0.880).  

 Nackley et al. demonstrated in a mammalian expression system that COMT 

haplotypes resulted in an ordered progression of enzyme activity with the ACCG 

haplotype showing a 18-25 fold decrease in activity and the ATCA haplotype showing a 

2.5-3 fold decrease in activity compared to the GCGG high activity haplotype (88). 

Results of a multiple logistic regression model that included maternal and fetal terms to 

reflect enzymatic activity of the COMT haplotypes (ie., each coded as an ordinal 

variable), maternal BMI, and previous live births are shown in Table 2.6. When maternal 

and fetal terms were analyzed separately, both show a significant positive relationship 

with increasing enzymatic activity and preeclampsia risk (P = 0.003 and P = 0.014 

respectively). However, when both maternal and fetal terms were included in the same 

model, again the fetal association decreased in significance (P = 0.561) and the 

maternal ordered COMT haplotypes approached significance (P = 0.061).   
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Obesity is a major risk factor for preeclampsia and our results demonstrated BMI 

to be strongly associated with preeclampsia in this population (47). COMT metabolizes 

catecholamines, which are known to modulate lipid mobilization (105). Several studies 

have found modest associations between obesity and the rs4680 (Val158Met) SNP of 

COMT (106, 107). The potential for COMT to contribute to preeclampsia risk through 

maternal BMI led us to investigate whether the association between maternal COMT 

haplotype and preeclampsia risk in our study could be explained by a relationship 

between COMT and BMI. PLINK was used to test for allelic associations between 

individual SNPs and BMI, where BMI was the quantitative phenotype. Haplotype 

frequencies were also generated in PLINK based on the four COMT SNPs and 

haplotype-specific tests were performed to test for frequency differences in association 

with BMI. Table 2.7 shows results for analyses that tested the relationship between 

maternal COMT and BMI in our study population. No significant associations between 

COMT haplotypes or individual maternal SNPs and BMI were observed. 

The potential for MTHFR to influence risk for preeclampsia both through a single 

gene effect and an interaction with COMT was studied (81, 98, 100). The rs4680 loci of 

COMT encodes for an amino substitution (Val158Met) and COMT protein with 

methionine at position 158 is reported to be less stable and with reduced activity (87). 

However, this instability can be overcome by the binding of the methyl cosubstrate for 

COMT, s-adenosylmethionine (SAM) (108). MTHFR modulates the availability of methyl 

substrates for COMT, including SAM, and the minor “T” allele of the rs1801133 SNP of 

MTHFR has been associated with reduced MTHFR activity and reduced production of 

SAM (97). The ATCA haplotype of COMT is the only observed haplotype to have the 
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“A” allele at the rs4680 loci and we postulated that an interaction between the ATCA 

haplotype of COMT and the minor “T” allele of the MTHFR rs1801133 SNP would result 

in a further decrease of COMT activity because there would not be adequate levels of 

SAM to stabilize the COMT protein. We therefore tested for epistasis between the 

ATCA COMT haplotype and SNP rs1801133 of MTHFR. Results of a multiple logistic 

regression model that included maternal and fetal terms for the interaction between the 

ATCA COMT haplotype and MTHFR are shown in Table 2.8. A significant interaction (P 

= 0.022) between the fetal ATCA COMT haplotype and the fetal MTHFR was observed, 

which resulted in an increased risk for preeclampsia (OR = 1.370; 95% CI: 1.048, 

1.792). The critical value for the test statistic associated with the interaction term was 

also estimated using permutation techniques and resulted in an empirical p-value of 

0.023. No association was found between SNP rs1801133 in MTHFR and preeclampsia 

in either maternal or fetal samples (P = 0.470 and P = 0.225 respectively). 

Our results revealed both a maternal protective effect and a fetal risk effect. 

Since our data included maternal-fetal dyads, we looked at the combination of maternal 

and fetal effects in a single pregnancy, focusing on the fetal high risk genotypes. Within 

cases we looked at the proportion of pregnancies that had two fetal high risk COMT 

ATCA x MTHFR “T” combinations with no maternal protective COMT ACCG allele and 

those that contained the two fetal high risk combinations with a balancing maternal 

COMT ACCG allele. We observed a higher than expected number of patients with 

preeclampsia with both the fetal risk alleles alone (Chi-square = 3.789; P = 0.052) and 

the fetal risk alleles in combination with a maternal balancing protective allele (Chi-
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square = 22.549; P < 0.001). This non-random distribution across dyads was not 

observed in controls (P = 0.341 and P = 0.219, respectively). 

 

Discussion 

Preeclampsia is a common disorder of pregnancy with potentially devastating 

complications (1, 4). Placental hypoxia and endothelial cell dysfunction are central 

features of this disorder (34). One proposed mechanism for preeclampsia is placental 

hypoxia-driven imbalance of angiogenic and anti-angiogenic factors (34-40), resulting in 

endothelial dysfunction (35, 36, 58, 60, 109). 2-Hydroxyestrogens are metabolized by 

COMT to produce 2-ME, a compound with diverse biological activities including 

inhibition of HIF-1alpha, a transcription factor that mediates cellular response to hypoxia 

(33, 61, 62). Epidemiologic data has consistently demonstrated a strong genetic 

susceptibility to preeclampsia and COMT has been identified as a candidate gene for 

preeclampsia studies (61, 71, 76, 80). In the present study, we found that the maternal 

ACCG haplotype of COMT, which is associated with low enzyme activity, was 

associated with a significantly reduced risk for preeclampsia in this population, and that 

the risk increased in a linear fashion from low to high activity alleles. We also found that 

epistasis between fetal COMT and MTHFR, which is associated with decreased 

enzyme activity as well, was associated with significantly increased risk for 

preeclampsia in this population. 

 We have previously reported that a Comt  -/- mouse model exhibits a 

preeclampsia phenotype that is reversed by administration of 2-ME (61). This model 

lead us to postulate that decreased production of 2-ME in humans, as a result of allelic 
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variation in COMT, contributed to the development of preeclampsia (61). The results of 

our current study showed that a maternal haplotype of COMT, which likely results in 

decreased levels of maternal 2-ME production, was in fact protective and decreased the 

risk for preeclampsia. In contrast, an interaction between a fetal haplotype of COMT and 

fetal MTHFR, which likely results in decreased level of fetal 2-ME production, increased 

the risk for preeclampsia as was initially predicted. A significant limitation to the Comt -/- 

mouse model is that COMT was absent in both the maternal and fetal compartments. 

By being deficient in both compartments, it is unclear whether the preeclampsia-like 

phenotype is a result of deficiencies in both compartments, or rather a deficiency in only 

one of the compartments. Although our results appear contradictory and do not support 

our initial hypothesis, we would like to propose that they are not inconsistent with the 

mouse model. We speculate that decreased maternal COMT activity would be 

beneficial by increasing the production of 2-ME by the placenta and that a placental loss 

of COMT activity is the key deficiency that contributes to the development of 

preeclampsia.  

Previous research on genetic variation in the COMT gene has largely focused on a 

single SNP rs4680, which causes a valine to methionine substitution at position 158 

(Val158Met) of the membrane bound version of the protein and position 108 of the 

soluble form. This amino acid substitution has been associated with a 4-fold decrease in 

activity in homozygote individuals (87). Three additional SNPs, rs6269, rs4633, and 

rs4818, have recently been reported by Nackley et al. to contribute to haplotype 

structures with rs4680 (88). Although only rs4680 encodes an amino acid change, the 

additional polymorphisms are predicted to cause changes in mRNA secondary structure 
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and thus, alter translation of the gene. Three main haplotypes were identified GCGG, 

ATCA, and ACCG and functional analysis in a mammalian expression system revealed 

changes in enzyme activity ranging from a decrease of 2.5-3 fold with the intermediate 

haplotype, ATCA, to a decrease of 18-25 fold with the low activity haplotype, ACCG 

(88). Decreased activity of the low ACCG haplotype was attributed to low translation of 

the protein, while the decreased activity of the ATCA haplotype was attributed to 

impaired stability of the protein as a result an amino acid substitution at SNP rs4680 

(88). Our study supports this conclusion in that we found the four SNPs to be in very 

high linkage disequilibrium and we identified the same three haplotypes in our Chilean 

population. Our single SNP analysis showed no significant results, but haplotype 

analysis revealed a significant association between COMT and preeclampsia.  

These results are in agreement with several recent studies that identified COMT 

haplotype associations with attention deficit hyperactivity disorder, pain sensitivity, and 

Parkinson’s disease (110-112). Even more compelling, however, is our finding that 

preeclampsia risk changed in a linear fashion when we ordered haplotypes by reported 

enzymatic function. The ATCA haplotype was between the ACCG and GCGG 

haplotypes, with the ACCG haplotype being associated with the lowest risk for 

preeclampsia, and the GCGG haplotype with the highest risk. This progressive risk 

supports the assertion by Nackley et al. that ATCA represents the intermediate activity 

haplotype, while ACCG and GCGG are the extremes (88). The results reported herein 

have significant implications not only for research in preeclampsia, but also for future 

studies investigating genetic variation in the COMT gene. Our results suggest that 

investigating only the COMT rs4680 158Val  Met polymorphism provides incomplete 
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information because it fails to recognize haplotype structures, which account for larger 

variations in enzyme activity. COMT haplotypes therefore can provide clarification of the 

role of COMT alleles in disease. The identification of haplotypes which modulate 

enzyme activity to a greater degree than a single polymorphism might explain the 

sometimes contradictory results of previous genetic association studies with other 

common diseases (113, 114). 

When considering the COMT gene independently, our results show that the 

maternal low activity haplotype of COMT, ACCG, was associated with a significantly 

lower risk for preeclampsia. The lower activity of the ACCG COMT haplotype has been 

reported to be the result of changes in mRNA secondary structure that lead to 

decreased translation of COMT protein (88). Thus, the protective maternal effect of 

COMT on the risk for preeclampsia is likely the result of a translational mechanism. This 

significant association between COMT and preeclampsia highlights the importance of 

this gene in preeclampsia, but does not support the causative mechanism suggested by 

the Comt knock out mouse. The finding of a protective effect of a low COMT activity 

haplotype may suggest that reduced catecholamine metabolism or 2-ME production in 

the maternal compartment spares the placenta from hypoxia. Decreased metabolism of 

catecholestrogens in the maternal compartment would increase the amount circulating 

through the placenta and increase the potential production of 2ME in this compartment.  

Obesity is a major risk factor for preeclampsia and increased BMI was highly 

correlated with increased risk for preeclampsia in our study (47). COMT metabolizes 

catecholamines including dopamine, epinephrine, norepinephrine, and 

chatecholestrogens. Catecholamines modulate lipid mobilization by means of adipose 
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tissue lipolysis (105). Specifically, estrogen and androgen concentrations are involved in 

body fat regulation and estradiol appears to stimulate preadipocyte proliferation and 

differentiation. Additionally, 2-ME has been shown to inhibit preadipocyte proliferation 

and differentiation in vitro (105). In 2004, Tworoger et al. found that the rs4680 SNP in 

COMT modestly affected exercise-induced fat loss and in 2008, Annerbrink et al. found 

that the rs4680 SNP was associated with increased waist-to-hip ratio and abdominal 

sagittal diameter (106, 107). In our study, there was no association between maternal 

COMT haplotypes or individual SNPs and BMI (Table 5).  While we can conclude that 

BMI was not driving the relationship between COMT and the risk for preeclampsia in the 

present study, it is not valid to extend these results past the current sample since 

individuals with preeclampsia are oversampled in a case-control study. 

Our COMT x MTHFR interaction findings support a similar finding by Roffman et 

al. that the low COMT activity allele only in the presence of a low MTHFR activity allele 

was associated with prefrontal cortex function (100). In our study, the ATCA haplotype 

of COMT increased the risk for preeclampsia when the fetus also carried a low activity 

allele of the MTHFR gene, characterized by the minor “T” allele at SNP rs1801133. 

Unlike the translational mechanism proposed to govern the maternal COMT effect, the 

mechanism for the COMT x MTHFR interaction is most likely to be post-translational. 

The ATCA haplotype of COMT is the only haplotype that alters the amino acid 

sequence and it results in a thermodynamically unstable COMT protein. However, this 

instability can be overcome by the binding of its cosubstrate, S-adenosylmethionine 

(SAM) (108). MTHFR modulates the availability of SAM and the minor “T” allele at SNP 

rs1801133 results in lower production of SAM (97). Therefore, when the fetus carries 
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the “T” allele of MTHFR and the ATCA haplotype of COMT, the instability of COMT is 

not rectified and lower COMT activity is realized. 

The identification of a fetal genetic risk factor for preeclampsia is an important 

step in understanding the cause(s) of preeclampsia. The placenta is fetal tissue and our 

results strengthen the argument that primary defects in the placenta play a central role 

in the development of preeclampsia. Additionally, our findings are consistent with the 

observations of reduced placental COMT activity and suggest that loss of activity in the 

fetal compartment of the Comt -/- mice appears to be responsible for the development 

of disease in this model (61).  

Our findings have demonstrated both protective and risk alleles for COMT in 

association with the risk for preeclampsia. By investigating maternal-fetal dyads, we 

were able to explore the implications of both, seemingly contradictory, associations in a 

single pregnancy. We found a disproportionately high number of cases with two fetal 

ATCA COMT x MTHFR “T” risk combinations and with the two fetal risk combinations 

and one maternal ACCG protective COMT allele. What is most striking about our results 

however is the much larger chi-square value for the preeclamptic pregnancies that have 

two fetal risk combinations and one balancing maternal protective allele versus only 

having two fetal risk combinations and no balancing maternal allele (chi-square 22.549 

vs. 3.789). The more significant nonrandom distribution of women with preeclampsia 

with a maternal protective ACCG COMT allele suggests that when the fetus is at high 

risk, it is preferred to have a maternal protective ACCG COMT allele to potentially offset 

the risk to some degree. Consequently, these pregnancies may be more viable than 

pregnancies where the fetus is at high risk, but has no maternal protection from 
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disease. This hypothesis might help explain the findings in the -/- Comt mouse model 

and the observation that women with preeclampsia have lower levels of circulating 2ME 

(61). The balancing combination of maternal and fetal COMT alleles results in low 

COMT activity in both the maternal and fetal compartments and this mimics the low 

COMT profile of the knockout mouse. Although our results appear consistent with the 

mouse model, further studies are needed to understand how COMT behaves differently 

in the maternal and fetal compartments to modulate the risk for preeclampsia. 

Racial differences in preeclampsia have been identified. Increased rates of 

preeclampsia have been found in U.S. Black, Hispanic, and Asian women compared to 

white women, with U.S. Blacks having the highest rates (66). Additionally, maternal-

paternal racial discordance has been associated with an increased incidence (66). 

These findings indicate that differences in genetic causes of preeclampsia may exist 

between racial groups. Global variation in allele frequencies for both COMT and 

MTHFR have also been demonstrated (97, 115-120). Moreover, allele frequencies for 

both genes are known to not only differ among major racial categories such as 

European, Asian, and U.S. Black, but substantial variation has also been demonstrated 

in subpopulations of each (97, 115-120). Racial variation in each gene raises the 

possibility that different alleles of COMT and MTHFR could contribute to preeclampsia 

risk in different racial groups. The Chilean population in this study has a genetic 

background most similar to Western Europeans, and in particular, those of Spanish 

descent (2002 census). Future studies among different racial populations are needed to 

determine if our results can be extended to other racial groups. 
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Table 2.1.  Maternal and fetal characteristics of pregnancies diagnosed with 

preeclampsia and controls. 

 Preeclampsia Controls P-value 

Number of dyads 528 575 - 
Maternal Age (years) 26.3 (7.5) 26.1 (6.2) 0.692 
BMI (kg/m2) 26.4 (5.4) 24.5 (4.4) < 0.001 
Previous live births 0.80 (1.19) 0.99 (1.08) 0.007 
Birthweight (grams) 2805.7 (815.7) 3423.2 (303.0) < 0.001 
Gestational age at delivery (weeks) 36.8 (3.4) 39.7 (1.1) < 0.001 
Fetal sex (% female) 45.8 53.3 0.492 

Data are presented as means (SD). BMI, body mass index. 
 
 
 
 
 
 
 
 
 
Table 2.2. COMT single SNP analysis for maternal and fetal samples with and without 

preeclampsia. 

 
COMT SNP 

Frequency 
Preeclampsia 

Frequency 
Controls 

 
Chi-square 

 
P-value 

Maternal     
rs6269 0.316 0.284 2.676 0.104 
rs4633 0.372 0.347 1.551 0.214 
rs4818 0.307 0.274 2.897 0.091 
rs4680 0.367 0.348 0.858 0.373 

Fetal     
rs6269 0.308 0.287 1.142 0.305 
rs4633 0.376 0.355 1.040 0.309 
rs4818 0.299 0.283 0.705 0.425 
rs4680 0.376 0.354 1.154 0.288 

SNP, single nucleotide polymorphism. 
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Table 2.3. COMT pair-wise SNP linkage disequilibrium analysis for maternal and fetal 

samples. 

COMT SNP Combination D’ (95% C.I.) R2 

Maternal   
rs6269:rs4633 1.000 (0.98, 1.00) 0.239 
rs6269:rs4818 0.991 (0.97, 1.00) 0.936 
rs6269-rs4680 0.974 (0.93, 1.00) 0.225 
rs4633:rs4818 0.987 (0.95, 1.00) 0.222 
rs4633:rs4860 0.984 (0.97, 1.00) 0.959 
rs4818:rs4680 0.980(0.94, 1.00) 0.217 

Fetal   
rs6269:rs4633 1.000 (0.98, 1.00) 0.242 
rs6269:rs4818 0.984 (0.96, 1.00) 0.940 
rs6269-rs4680 0.994 (0.96, 1.00) 0.239 
rs4633:rs4818 0.994 (0.96, 1.00) 0.232 
rs4633:rs4860 0.992 (0.98, 1.00) 0.984 
rs4818:rs4680 0.994 (0.96, 1.00) 0.232 

SNP, single nucleotide polymorphism; D’, D prime between the two loci; C.I., confidence 

interval; R2, correlation coefficient between the two loci. 
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Table 2.4.  COMT haplotype analysis for mothers and fetuses with and without 

preeclampsia. 

 
Haplotype 

Frequency 
Preeclampsia 

Frequency 
Controls 

 
Chi-square 

 
DF 

 
P-value 

Maternal      
Global Test   8.260 2 0.016 

ATCA 0.373 0.348 1.531 1 0.216 
GCGG 0.310 0.277 2.807 1 0.094 
ACCG 0.317 0.375 8.112 1 0.004 

Fetal      
Global Test   4.308 2 0.116 

ATCA 0.381 0.359 1.302 1 0.254 
GCGG 0.302 0.283 0.907 1 0.341 
ACCG 0.318 0.360 4.308 1 0.038 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680. DF, degrees of freedom. 

Maternal and fetal samples were analyzed separately. The Global test of association 

indicated that, in maternal samples, a significant difference in allele frequencies 

between cases and controls existed amongst the COMT haplotypes. When haplotypes 

were tested individually, both the maternal and fetal ACCG COMT haplotypes were 

found more frequently in controls than cases.  
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Table 2.5. Logistic regression model of primary risk factors for preeclampsia including 

presence of the ACCG COMT haplotype. 

Term Estimate (S.E.) P-value Odds Ratio (95% C.I.) 

Maternal ACCG -0.228 (0.107) 0.034 0.796 (0.646, 0.982) 
Fetal ACCG -0.092 (0.114) 0.419 0.912 (0.729, 1.140) 
Maternal BMI 0.103 (0.015) < 0.001 1.108 (1.076, 1.142) 
Previous live births -0.246 (0.060) < 0.001 0.782 (0.695, 0.880) 
Intercept -2.289 (0.378) < 0.001 - 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680. S.E., standard error; C.I., 

confidence interval; BMI, body mass index. When both maternal and fetal ACCG 

haplotypes from the maternal-fetal dyads were included in a single model, the maternal 

ACCG COMT remained significantly associated with reduced risk for preeclampsia. The 

fetal ACCG COMT haplotype is not associated with risk for preeclampsia after 

correcting for shared genetics between the mother and fetus.  
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Table 2.6. Logistic regression model of primary risk factors for preeclampsia including 

COMT haplotype specified according to reported enzymatic activity. 

Term Estimate (S.E.) P-value  Odds Ratio (95% C.I.) 

Maternal haplotypes * 0.166 (0.089) 0.061 1.180 (0.992, 1.406) 
Fetal haplotypes † 0.052 (0.090) 0.561 1.053 (0.883, 1.257) 
Maternal BMI 0.081 (0.019) <0.001 1.084 (1.045, 1.126) 
Previous live births -0.236 (0.076) 0.002 0.790 (0.680, 0.917) 
Intercept -2.560 (0.529) <0.001  

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680. Ordered COMT 

haplotypes: 1=ACCG/ACCG, 2=ACCG/ATCA, 3= ATCA/ATCA, 4=ATCA/GCGG, 

5=GCGG/GCGG. Haplotypes were ordered from 1 (low activity) to 5 (high activity) in 

accordance with reported information on enzyme activity[33]. Maternal haplotypes 

showed increased risk for preeclampsia as haplotypes moved from low to high activity 

alleles. * If maternal term fitted in model without fetal haplotypes P = 0.003, OR = 1.221 

(1.073, 1.390). † If fetal term fitted in model without maternal haplotypes P = 0.014, OR 

= 1.179 (1.034, 1.345).  S.E., standard error; C.I., confidence interval; BMI, body mass 

index. 

 
Table 2.7. Maternal COMT analysis for body mass index. 

COMT  Estimate (S.E.) P-value 

SNP   
rs6269 0.120 (0.231) 0.605 
rs4633 -0.182 (0.222) 0.413 
rs4818 0.092 (0.234) 0.693 
rs4680 -0.192 (0.223) 0.390 

Haplotype   
ATCA -0.191* 0.392 
GCGG 0.114* 0.628 
ACCG 0.093* 0.675 

Estimate is reported with (Standard Error) for SNPs. COMT haplotype SNP order: 

rs6269, rs4633, rs4818, rs4680. *Standard errors are not calculated for haplotypes by 

PLINK. S.E., standard error; SNP, single nucleotide polymorphism. 
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Table 2.8. Logistic regression model of COMT-MTHFR interaction risks for 

preeclampsia. 

Term Estimate (S.E.) P-value Odds Ratio (95% C.I.) 

Maternal ACCG  -0.220 (0.126) 0.080 0.803 (0.627, 1.027) 
Fetal ACCG -0.126 (0.134) 0.345 0.882 (0.678, 1.146) 
Maternal ATCA 0.017 (0.173) 0.921 1.017 (0.725, 1.428) 
Fetal ATCA -0.323 (0.174) 0.064 0.724 (0.515, 1.018) 

Maternal MTHFR -0.038 (0.143) 0.792 0.963 (0.727, 1.274) 
Fetal MTHFR -0.084 (0.145) 0.563 0.919 (0.692, 1.222) 
Maternal ATCA : Maternal 
    MTHFR 

-0.028 (0.138) 0.840 0.972 (0.742, 1.274) 

Fetal ATCA : Fetal MTHFR 0.315 (0.137) 0.022 1.370 (1.048, 1.792) 
Maternal BMI 0.102 (0.015) < 0.001 1.107 (1.075, 1.140) 
Previous live births -0.252 (0.060) < 0.001 0.777 (0.691, 0.874) 
Intercept -2.082 (0.437) < 0.001 - 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680.  MTHFR SNP rs1801133. 

S.E., standard error; C.I., confidence interval; BMI, body mass index. An interaction 

between the fetal ATCA COMT haplotype and the minor “T” allele of MTHFR 

significantly increased the risk for preeclampsia; after correcting for risk factors 

identified to modulate risk in this population. 
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Chapter 3: COMT and MTHFR variation and Preeclampsia in U.S. Blacks: 

Implications of ancestral differences in haplotype structure and minor allele 

frequency 

 

Introduction 

 Racial differences exist for preeclampsia, with U.S. Blacks having a higher 

incidence and more severe disease than Whites (65-68). This racial disparity in disease 

burden places U.S. Black women and their babies at higher risk for severe 

complications and/or death (3, 70). Unfortunately, there are only a limited number of 

studies that have addressed the causes of the racial differences in preeclampsia among 

racial groups. Moreover, these studies were unable to account for the difference by 

adjusting for differences in socioeconomic indicators (67, 68). Thus, the source(s) of the 

observed racial disparities remains unknown. One potential factor that could contribute 

to racial differences in preeclampsia is genetic variation. Based on ancestral differences 

in genetic backgrounds, different genes or different variants of the same gene may be 

associated with preeclampsia in different populations. Heterogeneity in genetic 

associations with preeclampsia could result from differences in which genes contribute 

to disease, differences in polymorphisms within disease-causing genes, differences in 

linkage between genetic regions, or differences in allele frequencies among racial 

groups.  
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In Chapter 2, we demonstrated that Catechol-O-methyltransferase (COMT) and 

Methylenetetrahydrofolate reductase (MTHFR) were associated with the risk for 

preeclampsia in Chilean maternal-fetal dyads. In the current study, we extended the 

findings presented in Chapter 2 to include a U.S. Black population. By including U.S. 

Blacks in our studies of these genes, we can determine if our findings were specific to 

the Chilean population, or whether they are common between Chileans and Blacks. 

 

Methods 

U.S. Black women and fetuses from Pennsylvania and Michigan were included in this 

study. The study population consisted of 836 maternal (424 preeclamptic, 412 normal) 

and 837 fetal (375 preeclamptic, 462 normal) samples. Race was self-reported and U.S. 

Blacks were identified by selecting “Black, not Hispanic” on the self-report form. Of the 

1673 total samples, 78% were paired maternal-fetal dyads. A full description of the 

study population has been previously described (121), and can be found in Chapter 4. 

Additionally the maternal and fetal characteristics of the population are presented in 

table 4.1. The methods and analysis applied to this population are the same as 

described for the Chilean population in Chapter 2.  Power calculations were made using 

the Genetic Power Calculator (122), assuming a 5% disease prevalence. 

 

Results 

 Table 3.1 shows minor allele and haplotype frequencies for COMT and MTHFR 

SNPs in U.S. Blacks. In comparison to Chileans, the minor “T” allele frequency of 

MTHFR for U.S. Blacks was significantly lower (~0.45 vs 0.11, respectively). The minor 
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allele frequencies (MAF) of the four COMT SNPs were also different in comparison to 

the Chileans (Table 2.2). The four COMT SNPs form 7 haplotypes in U.S. Blacks: 

ACCG, ATCA, GCGG, GCCG, GCCA, ACGG, and ATCG.  This was a more variable 

haplotype structure than was seen in U.S. Whites or Chileans (88, 123). However, the 

three haplotypes observed in U.S. Whites and Chileans were among the most frequent 

haplotypes observed in U.S. Blacks. 

 The COMT gene alleles vary in frequency among major racial groups such as 

Europeans, Asians, and U.S. Blacks, and substantial variation is also observed in 

subpopulations of each broad racial group (97, 115-117). The racial variation in COMT 

haplotype frequency can be seen in Table 3.2, which provides a comparison of the most 

frequent haplotypes observed in U.S. Blacks, U.S. Whites, and Chileans. Notably, U.S. 

Whites show a lower frequency of the ACCG haplotype, U.S. Blacks show a lower 

frequency of the GCGG haplotype, and U.S. Blacks have a fourth haplotype (GCCG) 

that accounts for 20.3% of the observed haplotypes.  

 Consistent with our study of a Chilean population, no associations between 

COMT SNPs or the rs1801133 SNP of MTHFR and preeclampsia were found in U.S. 

Blacks (Table 3.3). However, in contrast to the Chilean study, associations between 

COMT haplotype and preeclampsia were not observed in either U.S. Black women or 

fetuses (Table 3.4). The lack of association remained even when the analysis was 

limited to a minor allele frequency of >0.05. The association between the maternal 

ACCG haplotype and preeclampsia detected in the study of Chileans was also not 

replicated. 
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 Based on the results presented in Chapter 2, we tested for interactions between 

COMT haplotype and the rs1801133 SNP of MTHFR in the U.S. Black population. 

Because of the low minor allele frequency of the MTHFR SNP, a dominant model for 

this gene was used in the analysis. This was necessary to attain a sufficient number of 

observations in combination with individual COMT haplotypes to meet the criteria of the 

statistical test. Epistasis between the ATCA COMT haplotype and MTHFR was not 

observed in either U.S. Blacks mothers or fetuses in association with preeclampsia 

(Table 3.5). In addition to testing for epistasis between the ATCA haplotype and the 

MTHFR SNP, all other haplotypes were examined. No significant associations were 

observed between any other COMT haplotype and the MTHFR SNP and risk for 

preeclampsia.  It is important to note that haplotypes with very low frequencies did not 

provide sufficient numbers of observations in combination with the MTHFR minor allele 

to satisfy the requirement of the statistical assumptions. 

   

Discussion 

 In this study, we showed that Chileans, U.S. Whites, and U.S. Blacks have 

differences in allele and haplotype frequencies for both COMT and MTHFR. This 

suggests that ancestral differences in the genetic backgrounds of these three 

populations might contribute to heterogeneity in genetic contributions to preeclampsia. 

We showed that U.S. Blacks have a looser haplotype structure for COMT, which is 

consistent with a more diverse genetic background for this population. In contrast to the 

three haplotypes of COMT observed in Chileans and U.S. Whites, U.S. Blacks were 

observed to have seven haplotypes (88, 123). Global variation in allele frequency for 
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individual SNPs in COMT has been well established (115-117), and our study indicated 

that these differences are also seen at the haplotype level. Additionally, U.S. Blacks had 

a minor allele frequency for the rs1801133 SNP of MTHFR that was one-quarter of the 

minor allele frequency observed in Chileans. The difference in minor allele frequencies 

for the MTHFR SNP was consistent with published data on this SNP (115, 118, 119).  

 In Chileans, we demonstrated that the maternal ACCG haplotype of COMT 

decreased the risk for preeclampsia, and that the fetal ATCA haplotype of COMT in 

combination with the fetal minor “T” allele of rs1801133 in MTHFR increased the risk for 

preeclampsia. These findings did not replicate in the study of U.S. Black women and 

fetuses. There are two potential reasons for the differences in results for these two 

studies. First, based on the increased number of haplotypes, this study had lower power 

to detect a primary effect of COMT than the Chilean study. Additionally, the number of 

maternal and fetal samples was lower for this group, further decreasing power. Based 

on the haplotype frequency of the maternal ACCG in U.S. Blacks, our study only had 

20% power to detect the effect size indicated by the Chilean study. With the increased 

number of haplotypes and the much lower minor allele frequency for the MTHFR SNP, 

our ability to detect a gene-gene interaction was also substantially diminished. This was 

due to the very low number of observations of each COMT haplotype in combination 

with the minor allele of the MTHFR SNP. A much larger sample size will be needed to 

achieve adequate power for these effects to be detected, if they are present. The 

second possibility for the lack of replication is that these genes do not contribute to 

preeclampsia in U.S. Blacks. Preeclampsia is a syndrome with a wide range of clinical 

presentations. Furthermore, racial differences in this disorder are reflective of the 
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heterogeneous nature of preeclampsia. Racial groups differ in their genetic 

backgrounds, raising the possibility that there are differences in genetic contributions to 

preeclampsia between populations. COMT and MTHFR may not contribute to 

preeclampsia in a significant way in U.S. Blacks, or different variants in the genes, 

which were not measured in our study, could be important for the development of the 

disorder in this population. The low minor allele frequency of the MTHFR SNP suggests 

a lower potential for this gene to contribute to preeclampsia in U.S. Blacks compared to 

Chileans or U.S. Whites.  

Differences between populations in associations between COMT haplotypes and 

the risk for preeclampsia have also recently been seen. Roten et al. reported that the 

maternal ACCG haplotype of COMT was associated with an increased risk for recurrent 

preeclampsia (124). “Flip-flop” associations (opposite associations) are now recognized 

to reflect the complexity of common diseases, rather than contradictory findings (125). 

The “flip-flop” phenomenon was proposed by Lin et al. in 2007 and argues that opposite 

associations actually confirm an association, and can be explained by multilocus effects 

and variation in interlocus correlations. In particular, one of the examples explored by 

Lin et al. was contradictory associations that have been reported between COMT and 

schizophrenia. They showed that variable linkage disequilibrium (LD) could account for 

the reported differences (125). An alternative explanation for these findings could be 

that, based on shared genetics between mother and fetus, the observed association 

reflected a fetal genetic contribution. Without measuring the fetal genes, it is difficult to 

separate between maternal and fetal effects. Future studies that account for more 

complex contributions to the risk for preeclampsia by gene networks or physiologic 
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pathways that include genes, environmental, and social factors may clarify the 

similarities and differences between the genetics of preeclampsia in different racial 

populations. 
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Table 3.1. Genotype and Haplotype frequencies for MTHFR and COMT SNPs in U.S. 

Blacks. 

Group Gene SNP/Haplotype Minor Allele Minor Allele Frequency 

Maternal MTHFR rs1801133 T 0.107 
 COMT rs6269 G 0.378 
  rs4633 T 0.315 
  rs4818 G 0.197 
  rs4680 A 0.296 
  ACCG  0.271 
  ATCA  0.271 
  GCGG  0.160 
  GCCG  0.193 
  ATCG  0.043 
  ACGG  0.036 
  GCCA  0.025 
Fetal MTHFR rs1801133 T 0.114 
 COMT rs6269 G 0.397 
  rs4633 T 0.321 
  rs4818 G 0.218 
  rs4680 A 0.295 
  ACCG  0.243 
  ATCA  0.268 
  GCGG  0.174 
  GCCG  0.194 
  ATCG  0.051 
  ACGG  0.043 
  GCCA  0.024 

SNP, single nucleotide polymorphism. COMT single SNP frequencies are listed first, 

followed by COMT haplotypes formed by those SNPs. COMT haplotype SNP order: 

rs6269, rs4633, rs4818, rs4680.  
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Table 3.2. Comparison of maternal COMT haplotype frequencies across three distinct 

racial populations. 

Haplotype U.S. Blacks U.S. Whites Chileans 

ACCG 0.278 0.103 0.375 
ATCA 0.249 0.473 0.348 
GCGG 0.163 0.375 0.277 
GCCG 0.203 - - 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680. Haplotype frequencies 

were calculated from control subjects only. The U.S. White frequencies were taken from 

Nackley et al. (88) and the Chilean frequencies were taken from Hill et al. (123). The 

GCCG haplotype was only observed in the U.S. Black population, in addition to 3 

additional haplotypes (GCCA, ACGG, ATCG), which comprised the remaining 10.7% of 

haplotypes observed. 
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Table 3.3.  COMT and MTHFR SNP analysis for U.S. Black mothers and fetuses with 

and without preeclampsia. 

Gene SNP 
Frequency 

Preeclampsia 
Frequency 
Controls 

 
Chi-square 

 
P-value 

Maternal      
   MTHFR rs1801133 0.101 0.110 0.232 0.630 
   COMT rs6269 0.354 0.391 1.580 0.209 
 rs4633 0.351 0.298 3.472 0.062 
 rs4818 0.184 0.203 0.661 0.416 
 rs4680 0.328 0.280 3.094 0.079 
Fetal      
   MTHFR rs1801133 0.105 0.122 1.102 0.294 
   COMT rs6269 0.382 0.410 1.313 0.252 
 rs4633 0.326 0.317 0.169 0.681 
 rs4818 0.230 0.207 1.115 0.291 
 rs4680 0.296 0.294 0.005 0.956 

SNP, single nucleotide polymorphism. 
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Table 3.4.  COMT haplotype analysis for U.S. Black mothers and fetuses with and 

without preeclampsia. 

 
Haplotype 

Frequency 
Preeclampsia 

Frequency 
Controls 

 
Chi-square 

 
DF 

 
P-value 

Maternal      
Global Test   4.159 6 0.655 

ACCG 0.267 0.273 0.057 1 0.811 
ATCA 0.306 0.255 3.585 1 0.058 
GCGG 0.152 0.165 0.369 1 0.544 
GCCG 0.180 0.200 0.709 1 0.400 
ATCG 0.043 0.043 <0.001 1 0.987 
ACGG 0.030 0.038 0.602 1 0.438 
GCCA 0.023 0.025 0.045 1 0.832 

Fetal      
Global Test   4.399 6 0.623 

ACCG 0.247 0.240 0.100 1 0.752 
ATCA 0.273 0.266 0.078 1 0.780 
GCGG 0.180 0.169 0.272 1 0.602 
GCCG 0.176 0.049 3.107 1 0.078 
ATCG 0.053 0.049 0.170 1 0.680 
ACGG 0.050 0.038 1.210 1 0.271 
GCCA 0.022 0.026 0.228 1 0.633 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680. DF, degrees of freedom. 

Maternal and fetal samples were analyzed separately. The Global tests of association 

compared all haplotypes in a single analysis. The individual haplotype tests compared 

each haplotype to “all others” (i.e., a combined group of any haplotype not equivalent to 

the test haplotype). The global test and individual haplotype tests all indicated that no 

significant difference in allele frequencies between cases and controls existed amongst 

the COMT haplotypes.  
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Table 3.5. Logistic regression model of COMT-MTHFR interaction risks for 

preeclampsia in U.S. Black mothers and fetuses. 

Group Term Estimate (S.E.) P-value 

Maternal ATCA haplotype 0.250 (0.149) 0.093 
 MTHFR SNP -0.071 (0.278) 0.798 
 ATCA : MTHFR -0.049 (0.316) 0.876 
 Intercept -0.819 (0.129) <0.001 

Fetal ATCA haplotype 0.097 (0.137) 0.475 
 MTHFR SNP 0.074 (0.240) 0.756 
 ATCA : MTHFR -0.421 (0.300) 0.160 
 Intercept -0.132 (0.111) 0.236 

COMT haplotype SNP order: rs6269, rs4633, rs4818, rs4680.  MTHFR SNP rs1801133. 

S.E., standard error; C.I., confidence interval. Epistasis is indicated by a “:” between 

terms. Based on low minor allele frequency for MTHFR (~0.11), MTHFR was coded as 

a dominant term in the model in order to attain a sufficient number of COMT ATCA 

haplotype : MTHFR minor “T” allele of rs1801133 observations for analysis. 
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Chapter 4: Fetal ERAP2 variation is associated with preeclampsia in U.S. Blacks 

 

This chapter is published as: 

Hill LD, Hilliard  DD, York TP, Srinivas S, Kusanovic JP, Gomez R, Elovitz MA, 

Romero R, Strauss JF 3rd. 2011 Fetal ERAP2 variation is associated with 

preeclampsia in African Americans in a case-control study. BMC Medical Genet 12:64. 

 

 

Abstract 

Background: Preeclampsia affects 3-8% of pregnancies and is a major cause of 

maternal and perinatal morbidity and mortality worldwide. This complex disorder is 

characterized by alterations in the immune and vascular systems and involves multiple 

organs.  There is strong evidence for a genetic contribution to preeclampsia. Two 

different single nucleotide polymorphisms (SNPs) in the endoplasmic reticulum 

aminopeptidase 2 (ERAP2) gene were recently reported to be associated with 

increased risk for preeclampsia in two different populations. ERAP2 is expressed in 

placental tissue and it is involved in immune responses, inflammation, and blood 

pressure regulation; making it is an attractive preeclampsia candidate gene. 
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Furthermore, ERAP2 expression is altered in first trimester placentas of women 

destined to develop preeclampsia.  

 

Methods: A case-control design was used to test for associations between two SNPs in 

ERAP2, rs2549782 and rs17408150, and preeclampsia status in 1103 Chilean 

maternal-fetal dyads and 1637 unpaired U.S. Black samples (836 maternal, 837 fetal).  

 

Results: We found that the fetal minor allele (G) of rs2549782 was associated with an 

increased risk for preeclampsia in the U.S. Black population (P = 0.009), but not in the 

Chilean population. We found no association between rs17408150 and risk for 

preeclampsia in the Chilean population. Association between rs17408150 and risk for 

preeclampsia was not tested in the U.S. Black population due to the absence of the 

minor allele in this population. 

 

Conclusions: We report an association between fetal ERAP2 and preeclampsia in a 

U.S. Black population. In conjunction with previous studies, which have found maternal 

associations with this gene in an Australian/New Zealand population and a Norwegian 

population, ERAP2 has now been associated with preeclampsia in three populations. 

This provides strong evidence that ERAP2 plays a role in the development of 

preeclampsia. 
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Introduction 

Preeclampsia (PE) affects 3-8% of pregnancies worldwide, with rates varying by 

race, and leads to potentially devastating complications for both the mother and fetus 

(1, 66). Preeclampsia is clinically characterized by high blood pressure and proteinuria, 

usually occurring after 20 weeks of gestation.   Although this serious disorder is 

common during pregnancy, its etiology remains poorly understood (1). Preeclampsia is 

considered a disease of the placenta, with shallow trophoblast invasion (24-26) and 

poor spiral artery remodeling (27-29) being central features of this disorder. It is 

postulated that immune, vascular, and inflammatory disturbances participate in the 

placental dysfunction that ultimately produces the preeclampsia phenotype (126). 

A genetic susceptibility to preeclampsia has been established with both maternal 

and fetal genes contributing to disease (66, 71, 75, 77-81, 83). Preeclampsia is a multi-

factorial trait, with multiple genes, as well as environmental and social factors 

contributing to disease risk (21, 22, 93). Johnson et al. recently reported that 

Endoplasmic reticulum aminopepetidase 2 (ERAP2) was associated with preeclampsia 

in an Australian/New Zealand family-based study and a Norwegian case-control study 

of maternal samples (127). Although ERAP2 was associated with risk for preeclampsia 

in both populations, different polymorphisms of the gene were identified in each group. 

ERAP2 is expressed in the syncytiotrophoblast and it is a member of the oxytocinase 

subfamily of M1 aminopeptidases, which are known to play a critical role in the 

maintenance of normal pregnancy (49, 128, 129). Additionally, ERAP2 is involved in the 

regulation of blood pressure, immune responses, and pro-inflammatory cytokine 

production (49, 50, 130-132). It was recently shown that ERAP2 expression was altered 
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in first trimester placentas of pregnancies destined to develop preeclampsia (133). The 

involvement of ERAP2 in multiple pathways known to influence the risk for 

preeclampsia, its expression in placental tissue, and the previously described altered 

expression of ERAP2 in placentas before maternal symptoms developed (133); suggest 

that the fetal ERAP2 gene contributes to the development of preeclampsia.  

In the present study, we investigated whether the previously described 

associations between ERAP2 and risk for preeclampsia (127) replicated in other racial 

groups and extended our study design past maternal only samples to also include fetal 

samples. We examined the association between ERAP2 and risk for preeclampsia in 

two distinct case-control cohorts: Chilean (1103 maternal-fetal dyads) and U.S. Black 

(836 maternal and 837 fetal samples). We genotyped the two SNPs in ERAP2, 

rs17408150 and rs2549782, that were previously identified as being associated with 

preeclampsia. Our results demonstrate that the rs2549782 SNP of the fetal ERAP2 

gene is significantly associated with risk for preeclampsia in the U.S. Black population; 

further suggesting that this gene plays a key role in the development of disease and 

may provide insight into the disparity between preeclampsia rates between racial 

groups. 

 

Methods 

Chilean study design and population: A case-control study was initiated by searching 

the clinical database and bank of biological samples of the Perinatology Research 

Branch (Eunice Kennedy Shriver National Institute of Child Health and Human 

Development, NIH, DHHS) and included Hispanic women and their neonates in the 
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following groups: 1) Cases – women with preeclampsia and their neonates (n = 528 

dyads); and 2) Controls – women who delivered at term with a normal pregnancy 

outcome and their neonates (n = 575 dyads). Participants received obstetrical care at 

the Sótero del Río Hospital in Santiago, Chile (an affiliate of the Pontificia Católica de 

Chile in Santiago, Chile). Exclusion criteria included: (1) known major fetal anomaly or 

demise; (2) multi-fetal pregnancy; (3) serious maternal medical illness (renal 

insufficiency, congestive heart disease, etc.); (4) refusal to provide written informed 

consent; and (5) a clinical emergency, which prevented counseling of the patient about 

participating in the study, such as fetal distress or maternal hemorrhage. All women 

provided written informed consent before collection of the samples. The use of clinical 

data and collection and utilization of maternal and neonatal blood for research purposes 

was approved by the Institutional Review Boards of the Sótero del Río Hospital, the 

Eunice Kennedy Shriver National Institute of Child Health and Human Development, 

NIH, DHHS and Virginia Commonwealth University. Racially, the Chilean population is 

estimated at nearly 95% white and mestizo (mixed white and Amerindian); 3% 

Amerindian; and 2% other. Mixtures between the conquering Spaniards, largely 

Andalusians and Basques, and the Mapuches (Araucanians) produced the principle 

Chilean racial type (2002 census). 

 

U.S. Black study design and population: A case-control study was initiated by searching 

clinical databases and bank of biological samples at the University of Pennsylvania and 

the Perinatology Research Branch (Eunice Kennedy Shriver National Institute of Child 

Health and Human Development, NIH, DHHS), at Wayne State University. Study 
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subjects included U.S. Black women and neonates in the following groups: 1) Cases – 

women with preeclampsia (n = 424) and neonates born to women with preeclampsia (n 

= 375); and 2) Controls – women who delivered at term with a normal pregnancy 

outcome (n = 412) and neonates delivered at term to women with a normal pregnancy 

outcome (n = 462). Race was self-reported and U.S. Blacks were identified by selecting 

“Black, not Hispanic” on the self-report form. Participants in this study received 

obstetrical care at the University of Pennsylvania Medical Center, Philadelphia, PA or 

the Hutzel Women’s Hospital, Detroit, MI. The criteria for cases, controls, and exclusion 

of subjects in the U.S. Black study were the same as described for the Chilean study. Of 

the maternal and neonatal subjects identified, 78% of samples were identified as 

maternal-neonatal dyads. To obtain adequate sample sizes for this study, therefore, 

maternal and neonatal samples were tested independently and un-paired samples were 

included in each group. The use of clinical data and collection and utilization of maternal 

blood, cord blood, and neonatal cheek swabs for research purposes was approved by 

the Institutional Review Boards of the University of Pennsylvania, Wayne State 

University, the Eunice Kennedy Shriver National Institute of Child Health and Human 

Development, NIH, DHHS, and Virginia Commonwealth University.   U.S. Black race 

was self-reported for all samples. 

Clinical definitions: Preeclampsia was defined based on the presence of gestational 

hypertension (systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 

mmHg) and proteinuria (≥300 mg in a 24-hour urine collection, two or more dipstick 

measurement of 1+, or one or more dipstick measurement ≥2+) according to ACOG (1) 

and the National High Blood Pressure Education Program (101). Patients were 
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considered to have a normal pregnancy outcome if they did not have any medical, 

obstetrical, or surgical complication, and delivered a term neonate (≥37 weeks) of 

appropriate birth weight for gestational age (102, 134) without complications.  

 

Sample collection: Maternal blood samples were obtained from the mother at the time of 

enrollment in the protocol. Umbilical cord blood samples or neonate cheek swabs were 

obtained immediately after delivery. Blood samples were collected with a vacutainer into 

tubes containing EDTA. The plasma tubes were balanced and centrifuged at 1300g for 

10 minutes at 4°C to separate cellular components from clear plasma, and the samples 

were stored at -70°C until assay.  

 

DNA extraction: DNA was extracted from maternal and cord blood with a Qiagen 

Autopure system using standard procedures (Qiagen). DNA was extracted from 

neonate check swabs using traditional methods as previously described (135).  

 

Genotyping: Single-nucleotide polymorphism analysis was performed using real-time 

allelic discrimination TaqMan assays (Applied Biosystems) with modifications. All PCR 

reactions contained 25-75 ng of DNA, 6.25 ul TaqMan Universal Master Mix (Applied 

Biosystems) (2x), 0.3 ul TaqMan Genotyping Assay (Applied Biosystems) (20x), and 

water for a final volume of 12.5 ul. Real-time PCR was performed on an ABI 7500 Fast 

Real-Time PCR Machine (Applied Biosystems) under the following conditions: 50oC for 

2 min, 95oC for 10 min, and 40 cycles of amplification (92oC for 15 sec and 60oC for 1 

min). For each cycle, the software determined the fluorescent signal from the VIC- or 
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FAM- labeled probe (Applied Biosystems). Allelic discrimination for ERAP2 was 

performed using TaqMan Genotyping assays C___3282749_20 for SNP rs2549782 and 

C___25649505_10 for SNP rs17408150 (Applied Biosystems).  

 

Statistical Analysis: Logistic regression in R was used to test for differences in clinical 

characteristics between disease classes for non-genetic variables. Fisher’s exact tests 

implemented in the PLINK software (103) were used to test individual SNPs for genetic 

associations with case-control status and to confirm Hardy-Weinberg equilibrium. SNPs 

with an independent effect were further investigated by multiple logistic regression in R 

to condition by covariates found to be significantly different between cases and controls 

in the clinical characteristics analysis. An additive term for the significant SNP(s) was 

coded as 0, 1, or 2, based on copy number of the minor allele. Allele frequencies from 

the control groups were used to determine the odds ratios at which our study design 

had 80% power at an alpha of 0.05. Power calculations were made using the Genetic 

Power Calculator (122), assuming a 5% disease prevalence. 

 

Results 

Clinical Characteristics of the Study Populations: Table 4.1 displays the demographic 

and clinical characteristics of mothers and neonates from pregnancies with 

preeclampsia as well as controls. For Chilean subjects, no significant differences were 

observed in maternal age or fetal sex between groups. Consistent with previous 

epidemiologic studies, Chilean patients with preeclampsia showed a significantly higher 

body mass index (BMI) (P <0.001) and fewer previous live births (P = 0.007). In 
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accordance with preeclampsia resulting in intrauterine growth restriction and indicated 

preterm birth, offspring born to Chilean women with preeclampsia showed a significantly 

lower gestational age at delivery and birth weight (P < 0.001). Similar results were 

observed in U.S. Black subjects. Maternal age was not significantly different between 

cases and controls for either the maternal or the fetal study groups, whereas, 

gestational age at delivery and birth weight were significantly different between cases 

and controls for both groups (P < 0.001). Additionally, in the fetal group, mothers with 

preeclampsia showed a significantly higher BMI (P = 0.049) and fewer previous live 

births (P = 0.040). Although these measures were not significant in the maternal study 

group, they were trending in the same direction. In the fetal group, there were 

significantly more female neonates than male (P = 0.024). Significant differences in 

associations between fetal sex and preeclampsia have been reported in the literature, 

but results vary with some studies reporting a bias towards male fetuses, some 

reporting a bias towards female fetuses, and still others reporting no differences in fetal 

sex in association with preeclampsia (136-144). No significant difference in fetal sex 

was observed between cases and controls in the maternal study group. 

 

Chilean Population: The minor allele (G) frequencies for rs2549782 in maternal and 

fetal samples were 0.3386 and 0.3292, respectively. The minor “A” allele frequencies for 

rs17408150 in maternal and fetal samples were 0.0422 and 0.0395 respectively. The 

minor allele frequencies are consistent with published data and the Johnson et al. 

study(115, 127). Single SNP analysis revealed no associations between ERAP2 

polymorphisms rs2549782 and rs17408150 and preeclampsia in either maternal or fetal 
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samples (Table 4.2). All SNPs were found to be in Hardy-Weinberg equilibrium in the 

maternal and fetal control samples and no substantial linkage disequilibrium was 

observed (R2 = 0.087 and 0.072, respectively). 

 

U.S. Black Population: The minor allele (G) frequencies for rs2549782 in maternal and 

fetal samples were 0.4103 and 0.3990 respectively. The minor allele frequencies are 

consistent with published data and the Johnson et al. study (115, 127). We did not 

genotype rs17408150 in this population because the minor “A” allele is reported to be < 

1.0% in individuals of African descent (115).  

 To establish the genetic similarity between the University of Pennsylvania 

Medical Center and Hutzel Women’s Hospital U.S. Black samples, and determine if 

these groups were appropriately combined into a single study population, we compared 

allele frequencies for three genes: ERAP2, MTHFR, and COMT. Allele frequencies of 

both COMT and MTHFR are not only known to differ among major racial categories, but 

substantial variation has also been demonstrated in subpopulations of each, including 

U.S. Black (97, 115-120). Genotypes for MTHFR and COMT were readily available for 

our samples and based on their aforementioned racial variation, they represented ideal 

genes for the genetic comparison of the two U.S. Black sample collection locations. 

Minor allele frequencies for ERAP2, MTHFR, and COMT were comparable between 

both U.S. Black study sites (Table 4.3). Additionally, the same COMT haplotype 

structure was identified in each group and the haplotype frequencies were comparable. 

The genetic similarity of the two groups across six variable SNPs and COMT haplotype 
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structure and frequency, supported combing the groups into a single U.S. Black study 

population.  

 Single SNP analysis yielded a significant association between the fetal 

rs2549782 and preeclampsia in the U.S. Black population (P = 0.009), while no 

association was observed in the maternal SNP (Table 4.2). Additional multiple logistic 

regression analysis was performed on the fetal group to adjust for risk factors of 

preeclampsia (BMI, previous live births, and gravidity) that were found to be significant 

in the clinical measures analysis (Table 4.4). rs2549782 remained significant (P = 

0.012) and was associated with an increased risk for preeclampsia (OR = 1.529; CI: 

1.099, 2.128). Of the previously identified clinical measures tested, only the number of 

previous live births remained significant, with a larger number of previous live births 

decreasing the risk for preeclampsia (OR = 0.845; CI: 0.744, 0.960). All SNPs were 

found to be in Hardy-Weinberg equilibrium in the maternal and fetal groups. Finally, we 

used two methods to confirm that the positive association we observed was not 

attributed to population stratification based on the different U.S. Black sample collection 

locations. First, multiple logistic regression analysis was performed in R to test whether 

there was an interaction between the fetal genotype and the sample collection location. 

No significant association was observed between a location x fetal rs2549782 

interaction and the risk for preeclampsia (P = 0.098). Second, we performed a cluster 

analysis in PLINK using a Cochran-Mantel-Haenszel model that tested for overall 

disease/gene association, while controlling for clusters. After controlling for the sample 

collection location, the fetal rs2549782 was still significantly associated with an 

increased risk for preeclampsia (P = 0.027; OR = 1.302; CI: 1.029, 1.648). These 
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results, in addition to the absence of evidence for differences in the rates of 

preeclampsia between U.S. Black groups in the United States, justifies combining these 

samples in this study. 

 

Discussion 

Preeclampsia is one of the leading causes of maternal and perinatal morbidity 

and mortality worldwide; yet its etiology is poorly understood (1). It is thought that poor 

placentation and inadequate maternal blood supply lead to placental hypoxia and the 

placental release of factors that contribute to intravascular inflammation (30-32), 

generalized endothelial dysfunction (35, 36, 58-60) and the maternal symptoms. A 

genetic susceptibility to preeclampsia is well established and genes involved with the 

immune system, inflammation, hemodynamics, endothelial dysfunction, oxidative stress, 

and angiogenesis have been associated with preeclampsia (71, 80, 81, 83). The 

identification of genes involved in a variety of physiologic processes reflects the 

complex nature of this disorder.  

It was recently reported by Johnson et al. that the ERAP2 gene was associated 

with preeclampsia (127). They found an association with the rs2549782 SNP in an 

Australian/New Zealand maternal cohort and the rs17408150 SNP in a Norwegian 

maternal cohort. In the present study, we sought to test whether there were 

associations between the two previously identified SNPs in ERAP2 and risk for 

preeclampsia in two distinct racial sample sets, Chilean and U.S. Black. In contrast to 

the previous study, we also included fetal samples to determine if the fetal ERAP2 gene 

was associated with risk for preeclampsia. We were motivated to use this design by the 
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fact that placental tissue is of fetal origin and by interest in determining if any genetic 

association might be attributed to the sharing of alleles between mother and fetus of 

one-half, in accordance with Mendelian segregation patterns. We found that, in U.S. 

Blacks, the presence of the minor allele (G) of the rs2549782 SNP in the fetal ERAP2 

gene increased the risk for preeclampsia. We found no associations between the two 

SNPs in the Chilean population, or the rs2549782 SNP of the maternal ERAP2 gene in 

the U.S. Black population.  

ERAP2 is a member of the oxytosinase subfamily of M1 aminopeptidases, along 

with ERAP1 and oxytosinase (49, 50). It catalyzes the cleavage of amino acids, 

sequentially, from the amino terminus of a variety of protein and peptide substrates 

(130). ERAP2 is a soluble protein that is expressed ubiquitously throughout the body. It 

is primarily localized in the endoplasmic reticulum lumen, but under certain conditions, it 

is also secreted (49, 50). Although aminopeptidases cleave a variety of residues, 

ERAP2 shows specificity for basic amino acids, and in particular, it preferentially 

cleaves arginine and lysine (49, 50). ERAP2 has been found to cleave angiotensin III, 

kallidin, and various N-terminal extended precursors to Major Histocompatibility 

Complex (MHC) class I- presented antigenic peptides (50). In contrast to other 

members of this subfamily of enzymes, it does not cleave oxytocin, vasopressin, or 

angiotensin II (50). As one of the newer aminopeptidases to be described, the full 

repertoire of substrates for ERAP2 needs to be defined (50).  

Preeclampsia is usually diagnosed after 20 weeks of gestation, but it is thought 

that problems arising early in pregnancy, especially during placentation, are the origin of 

this disorder. ERAP2 is expressed in the syncytiotrophoblast and it has been reported 
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that expression of this gene was down-regulated in first trimester placentas of women 

who subsequently developed preeclampsia (128, 133). The identification of aberrant 

gene expression, before maternal symptoms develop, suggests a role for ERAP2 early 

in the disease course. 

ERAP2 has the potential to contribute to the development of preeclampsia in 

multiple ways due to its involvement in the regulation of immune responses, pro-

inflammatory cytokine production, and blood pressure (49, 50, 130-132). Preeclampsia 

is associated with a predominant T Helper Cell Type 1 (Th1) immune response, which 

correlates to poor placentation, inflammation, and endothelial dysfunction (48). One of 

the primary roles of ERAP2 is Human Leukocyte Antigen (HLA) trimming of class 1-

binding peptides. Decreased levels of HLA-G have been reported in the circulation of 

women with preeclampsia and reduced cell-surface expression has been reported in 

trophoblasts (49-52). Interferon-gamma (IFN γ) regulates both the ERAP2 and ERAP1 

genes and they have been implicated in immune activation and inflammation (132). 

ERAP1, which is closely related to and forms complexes with ERAP2 (51), also cleaves 

the cell surface receptors for pro-inflammatory cytokines.  

Pregnancy is a pro-inflammatory state, and inflammation is a key regulator of 

placentation (31, 32, 42, 43). Although normal pregnancy is pro-inflammatory, 

preeclampsia is associated with an exaggerated state of systemic inflammation, and 

aberrant production of placental cytokines has been widely reported (44). The placental 

release of pro-inflammatory cytokines, or the pre-existence of increased inflammation in 

the maternal vasculature, could both contribute to the development of preeclampsia. In 

addition to being pro-inflammatory, many cytokines also regulate other processes that 
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are important to the establishment and maintenance of pregnancy. Placentation is 

tightly regulated by the oxygen balance to ensure adequate remodeling of the maternal 

spiral arteries and sufficient perfusion of the placenta (34). Hypoxia Inducible Factor 1α 

(HIF-1α) is a transcription factor that mediates cellular responses to hypoxia and its 

expression is altered in preeclampsia (33, 62, 145). HIF-1α is regulated through oxygen 

dependent and independent mechanisms, and several of the cytokines that are 

modulated by ERAP2 have been shown to participate in the oxygen independent 

regulation mechanisms (146). 

Finally, ERAP2 regulates blood pressure through the renin-angiotensin (RAS) 

pathway. Specifically, ERAP2 cleaves Angiotensin III and kallidin, both of which are 

involved in regulating the dilation and constriction of blood vessels (50). Abnormalities in 

the processing of these vasoactive substances could be a cause of maternal high blood 

pressure, but they also might participate in placental hypoxia, which is a key feature of 

preeclampsia. Defects in the RAS system have been demonstrated both in the maternal 

system and fetal tissue (63, 64), further emphasizing the potential for ERAP2 to be 

involved in the pathophysiology of preeclampsia.  

Compared to white women (defined as not U.S. Black, Asian, Hispanic, or Native 

American), Caughey et al. found higher rates of preeclampsia among U.S. Black 

women and lower rates among Hispanic women (66). Additionally, maternal-paternal 

racial discordance was reported to be associated with an increased incidence (66). This 

supports the hypothesis that the genetic basis for preeclampsia is heterogeneic. Our 

results, in conjunction with the findings of Johnson et al., provide a potential explanation 

for the observed differences between racial groups (127). Four racial populations were 
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examined between the two studies. Allelic variation between European groups, 

especially Mediterranean, central Europe, and Scandinavia are well characterized and 

support that they are distinct populations (97, 115-120). The Chilean population is 

representative of a Mediterranean racial background, specifically from Spanish descent. 

ERAP2 appears to contribute to the risk for preeclampsia in three of the racial groups, 

with two different allelic variants being associated with risk. Maternal variants increase 

the risk for preeclampsia in an Australian/ New Zealand cohort and a Norwegian cohort 

(127). Although preeclampsia is thought to be a placental disorder, the maternal 

phenotype and, in particular, the susceptibility of the maternal system to disease plays 

an important role in this disorder (21). Chronic hypertension, obesity, diabetes, and 

renal disease, all put a woman at increased risk of developing this disorder. A fetal 

variant increases the risk for preeclampsia in the U.S. Black cohort. Importantly, the 

placenta is fetal tissue and our results strengthen the argument that primary defects in 

the placenta play a central role in the development of preeclampsia. Moreover, this 

finding is consistent with the observation of altered ERAP2 expression in placentas from 

women who developed preeclampsia.  

One strength of our study is the inclusion of both maternal and fetal genotypes, 

which gives us the ability to discriminate between maternal and fetal genetic effects. 

The mother and fetus share fifty percent genetic identity so failure to include both 

maternal and fetal genes in a study creates the potential for a true association with the 

unmeasured gene to manifest as an observed association with the measured gene 

based on the correlation between maternal and fetal genotypes. There is also the 

potential for both the maternal and fetal ERAP2 genes to contribute to the risk for 
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preeclampsia in a single racial population. By measuring only the maternal genes, an 

additional fetal association could be missed.  Thus, the question still remains whether 

both maternal and fetal ERAP2 contribute to preeclampsia in different racial populations 

where only maternal genes were tested. 

 A second potential source of variation between races is the finding that two 

different SNPs in the ERAP2 gene are associated with risk for preeclampsia. Both of 

these SNPs are missense mutations that are predicted to alter the three-dimensional 

structure of the protein and damage function. Additionally, rs2549782 resides within the 

highly conserved zinc-binding domain. While both SNPs are expected reduce enzyme 

function, they likely alter function to different degrees and are not equivalent mutations. 

Moreover, the SNPs reside in different domains of the protein and because ERAP2 has 

multiple functions, the mutations could have significantly different physiologic 

consequences. 

 Alternatively, the observed variation could be explained by differences in linkage 

disequilibrium (LD) structure between populations or failure to account for larger 

haplotype structure. Although, the SNPs tested in these studies are predicted to alter 

enzyme function, they might not represent the causal variant in preeclampsia. These 

populations might share the same causal variant, but that variant could be in LD with 

different SNPs in each population. Finally, two haplotypes of ERAP2 have recently been 

described that lead to changes in mRNA decay and ultimately MHC class I presentation 

on cell surfaces (147). The haplotypes are composed of numerous SNPs, with 

rs2549782 representing one of the four coding SNPs that are considered diagnostic 

(147). The frequency of each haplotype was estimated to be 0.5 across multiple racial 
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groups and similar patterns of long-range LD were also observed; indicating a single 

ancestral division of functional significance (147). Neither our study, nor Johnson et al. 

included the depth of sequencing necessary to characterize the reported haplotypes.  

Our findings did not support a genetic association between ERAP2 and the risk 

for preeclampsia in either the Chilean population or the maternal U.S. Black population. 

However, it should be noted that the present study had limited statistical power to detect 

very small effects. In the Chilean population, our study was adequately powered to 

detect Odds Ratios of at least 2.3 for rs17408150 and 1.5 -1.7 for rs2549782. In the 

U.S. Black population, our study was adequately powered to detect Odds Ratios of 1.6 - 

1.9 for rs2549782. The effect sizes for a single risk factor in a complex disorder are 

expected to be relatively modest. Furthermore, we only tested for associations between 

two SNPs in the ERAP2 gene so we are unable to rule out the possibility that different 

variants of this gene are associated with risk for preeclampsia in these populations. 

Future studies, increasing the number of markers to saturate the maternal and fetal 

ERAP2 genes, are needed to characterize the haplotype structures of each group in 

order to distinguish between maternal and fetal effects of this gene. 

 

Conclusions 

 Our results show that fetal carriage of the minor allele (G) of rs2549782 in the 

ERAP2 gene increases the risk for preeclampsia in U.S. Blacks. We found no 

associations between the maternal rs2549782 SNP of the ERAP2 gene and risk for 

preeclampsia in either the U.S. Black or Chilean populations or the rs17408150 SNP of 

the ERAP2 gene and risk for preeclampsia in the Chilean population. The association of 
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rs2549782 with risk for preeclampsia is consistent with findings of a previous study that 

found an association of maternal ERAP2 alleles in an Australian/New Zealand 

population (127). The results of our study, in combination with those of Johnson et al. 

(127), describe replicated associations between ERAP2 and preeclampsia in three 

distinct populations. These observations represent an important step in understanding 

the pathophysiology of preeclampsia and how genetic variation might play a significant 

role in racial differences. 
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Table 4.1.  Maternal and fetal characteristics of pregnancies diagnosed with 

preeclampsia and controls. 

Population  Preeclampsia Controls P-value 

Chilean Number of dyads 528 575 - 
Maternal-Fetal 
Dyads 

Maternal Age (years) 26.3 (7.5) 26.1 (6.2) 0.692 

 BMI (kg/m2) 26.4 (5.4) 24.5 (4.4) < 0.001 
 Previous live births 0.80 (1.19) 0.99 (1.08) 0.007 
 Birthweight (grams) 2805.7 (815.7) 3423.2 (303.0) < 0.001 
 Gestational age at    

     delivery (weeks) 
36.8 (3.4) 39.7 (1.1) < 0.001 

 Fetal sex (% female) 45.8 53.3 0.492 

U.S. Black Number of subjects 424 412 - 
Maternal Maternal Age (years) 26.0 (6.3) 25.3 (5.9) 0.100 
 BMI (kg/m2) 30.9 (8.7) 29.7 (7.9) 0.070 
 Previous live births 3.2 (2.3) 3.3 (2.0) 0.529 
 Birthweight (grams) 2431.1 (893.8) 3292.1 (462.4) < 0.001 
 Gestational age at  

     delivery (weeks) 
36.0 (3.7) 39.5 (1.3) < 0.001 

 Fetal sex (% female) 52.4 48.4 0.253 

U.S. Black Number of subjects 375 462 - 
Fetal Maternal Age (years) 25.8 (6.5) 25.8 (6.1) 0.947 
 BMI (kg/m2) 31.0 (8.5) 29.8 (7.9) 0.049 
 Previous live births 3.1 (2.2) 3.4 (2.1) 0.040 
 Birthweight (grams) 2490.3 (851.8) 3294.7 (469.7) < 0.001 
 Gestational age at  

     delivery (weeks) 
36.2 (3.4) 39.5 (1.2) < 0.001 

 Fetal sex (% female) 54.8 47.0 0.024 

Data are presented as means (SD). BMI, body mass index. 
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Table 4.2. ERAP2 Allelic analysis for maternal and fetal samples with and without preeclampsia. 

 
Population ERAP2 SNP 

Genotype  
(count) 

Minor  
Allele 

Frequency 
Preeclampsia 

Frequency 
Controls P-value 

Odds Ratio  
(95% C.I.) 

Chilean Maternal       
    rs2549782 GG (135) G 0.330 0.347 0.393 0.925 (0.775, 1.104) 
  TG (477)      
  TT (491)      
    rs17408150 AA (2) A 0.044 0.041 0.752 1.069 (0.706, 1.619) 
  TA (89)      
  TT 

(1012) 
     

 Fetal       
    rs2549782 GG (124) G 0.333 0.326 0.751 1.033 (0.865, 1.234) 
  TG (477)      
  TT (500)      
    rs17408150 AA (0) A 0.040 0.039 1.000 1.021 (0.665, 1.568) 
  TA (87)      
  TT 

(1014) 
     

African Maternal       
 American    rs2549782 GG (147) G 0.429 0.391 0.133 1.166 (0.958, 1.420) 
  TG (383)      
  TT (295)      
 Fetal       
    rs2549782 GG (114) G 0.435 0.369 0.009 1.320 (1.075, 1.619) 
  TG (387)      
  TT (268)      

SNP, single nucleotide polymorphism; C.I., confidence interval. The minor allele (G) of rs2549782 was found significantly 

more frequently in cases than controls in U.S. Black fetal samples.  
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Table 4.3. Genotype and Haplotype frequencies for ERAP2, MTHFR, and COMT for 

U.S. Black samples.  

    Minor Allele Frequency 

Group Gene SNP/Haplotype Minor Allele Pennsylvania Michigan 

Maternal ERAP2 rs2549782 G 0.397 0.374 
 MTHFR rs1801133 T 0.112 0.102 
 COMT rs6269 G 0.393 0.384 
  rs4633 T 0.292 0.316 
  rs4818 G 0.200 0.215 
  rs4680 A 0.276 0.291 
  ATCA  0.249 0.270 
  GCCA  0.027 0.021 
  GCGG  0.163 0.169 
  ACGG  0.037 0.048 
  ATCG  0.043 0.045 
  GCCG  0.203 0.194 
  ACCG  0.278 0.253 
Fetal ERAP2 rs2549782 G 0.359 0.424 
 MTHFR rs1801133 T 0.120 0.133 
 COMT rs6269 G 0.408 0.425 
  rs4633 T 0.319 0.300 
  rs4818 G 0.214 0.167 
  rs4680 A 0.292 0.308 
  ATCA  0.267 0.257 
  GCCA  0.022 0.051 
  GCGG  0.175 0.139 
  ACGG  0.040 0.028 
  ATCG  0.049 0.043 
  GCCG  0.207 0.235 
  ACCG  0.240 0.247 

U.S. Black samples originated from two locations: the University of Pennsylvania 

Medical Center, PA and Hutzel Women’s Hospital, MI. Minor allele frequencies and 

haplotype frequencies were calculated from control samples only at each location. 

When comparing locations, no test achieved a significant difference at the 5% level 

using a Z-test for differences in two independent proportions. SNP, single nucleotide 

polymorphism. COMT single SNP frequencies are listed first, followed by COMT 
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haplotypes formed by those SNPs. COMT haplotype SNP order: rs6269, rs4633, 

rs4818, rs4680.  

 

 

 

 

 

Table 4.4. Logistic regression model for preeclampsia, including presence of the 

rs2549782 minor allele in U.S. Black fetuses. 

Term Estimate (S.E.) P-value Odds Ratio (95% C.I.) 

Fetal rs2549782 0.425 (0.169) 0.012 1.529 (1.099, 2.128) 
Maternal BMI 0.021 (0.014) 0.140 1.021 (0.993, 1.049) 
Previous live births - 0.168 (0.065) 0.010 0.845 (0.744, 0.960) 
Fetal Sex (% female) 0.355 (0.228) 0.120 1.426 (0.912, 2.231) 
Intercept -1.810 (0.492) < 0.001 - 

S.E., standard error; C.I., confidence interval; BMI, body mass index. The minor allele 

(G) of rs2549782 significantly increases the risk for preeclampsia in U.S. Black fetal 

samples; after correcting for risk factors identified to modulate risk in this population. 
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Chapter 5: Separating the genetic and environmental risks for preeclampsia in 

White and Black Women from the United States. 

 

Introduction 

 Preeclampsia is considered a complex disorder with multiple genetic, 

environmental, and social factors contributing to the disease (21, 22). Epidemiologic 

studies have consistently shown that first degree relatives of women with preeclampsia 

and daughters from pregnancies complicated by preeclampsia are at increased risk for 

developing the disorder (71-75).  Moreover, sons from preeclamptic pregnancies are 

more likely to conceive pregnancies with preeclampsia (77). Large twin studies have 

estimated the heritability for preeclampsia to account for approximately half of the 

variance attributed to the disorder (0.54; 95% CI, 0-0.71) (76, 78). Consistent with the 

hypothesis that preeclampsia is a disease of placental origin with maternal contributions 

to disease, both maternal and fetal genetic components are predicted to contribute to 

the heritability. Cnattingius estimated the respective maternal and fetal contributions to 

be 0.35 (95% CI, 0.33-0.36) and 0.20 (95% CI, 0.11-0.24) (78). Although these 

estimates are widely accepted, they have several limitations. The heritability estimate 

for preeclampsia was not statistically significant based and had wide confidence 

interval. Furthermore, the study design used to separate the maternal and fetal genetic 

components was under-identified and did not include enough unique familial 

relationships to estimate the four variance components (fetal genetic, maternal genetic, 
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shared environment, and unique environment). Finally, these studies were based on 

large Swedish cohorts, and therefore only provide estimates for Scandinavian Whites.  

Differences in incidence and severity of preeclampsia exist among different racial 

populations. Black women from the United States (U.S.) have higher rates of 

preeclampsia and more severe disease compared to U.S. Whites and U.S. Hispanics 

(65-68). Furthermore, U.S. Black women and fetuses have higher case-fatality rates 

compared to Whites and Hispanics (3, 70). These racial differences cannot be 

explained solely by differences in socioeconomic indicators (67, 68). Despite the racial 

disparity and resulting significant increases in maternal and fetal morbidity and mortality 

from preeclampsia for U.S. Blacks, most research has focused on White women, and 

has not included additional racial populations. Importantly, the heritability of 

preeclampsia has not been studied in Blacks, so the contributions of genetic and 

environmental factors to disease have yet to be determined. 

Recently, York et al., proposed a new study design that allowed for the 

separation of fetal genetic, maternal genetic, shared environment, and unique 

environment variance components for preterm birth (148, 149). By using children of 

twins (COT), supplemented with full and half-sibling relationships, they were able to 

include familial relationships that varied in the correlation of fetal genetics, maternal 

genetics, and shared environments. These relationships were then used to estimate the 

contributions of fetal genetics, maternal genetics, shared environment, and pregnancy 

specific environment to preterm birth (149). Moreover, York et al. demonstrated that 

differences in variance components existed between U.S. Whites and U.S. Blacks for 
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preterm birth (149). This extended twin design, provides a powerful tool for separating 

the genetic and environmental factors contributing to pregnancy-specific disorders. 

In the current study, the COT, supplemented with full and half-siblings, design 

was used to determine the common fetal, maternal, shared environment, and unique 

environment variance components underlying preeclampsia for Whites and Blacks. This 

analysis revealed that racial differences existed in the extent to which the prevalence of 

preeclampsia declined across subsequent births. Moreover, the analysis showed 

preeclampsia could not be characterized by a common set of genetic and environmental 

factors contributing equally across birth order. Differences across birth order necessitate 

a new modeling approach that allows for additional birth order-specific factors or 

influences between pregnancies. 

 

Methods 

Study Population: The sample population was obtained by combining the birth records 

from 1989 to 2008 from the Virginia Department of Health (VDH) Office of Vital Records 

for full and half-sibships with birth records identified through the Mid-Atlantic offspring 

Twin Registry (MATR), as previously described (149). Informed consent was not 

required since personally identifiable information was not submitted by either the MATR 

or VDH. Birth outcome exclusion criteria included multiple births, any congenital 

anomalies, maternal hemoglobinopathies, and gestational ages > 45 weeks or < 20 

weeks. For each birth record, race was classified as Black if the child’s race and the 

race of both parents were listed as non-Hispanic Black and White if the child’s race and 

the race of both parents were listed as non-Hispanic White. After screening, the sample 
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used in this study consisted of 766,811 births, of which 17.6% were classified as Black 

(Table 5.1). 

 

Model for Maternal and Fetal Effects: Expectations for genetic and environmental 

contributions to variances and covariances of relatives were derived from biometrical 

genetic theory, as previously described (149), and are summarized in Table 5.2. 

Structural equation modeling was used to derive estimates of genetic and 

environmental effects using software that implements maximum likelihood approaches 

(150). These methods yield goodness-of-fit indices quantifying how well the model 

accounts for the empirical variances and covariances and enabling the testing of 

hypotheses regarding the causes of variation within groups and their heterogeneity 

between groups. 

 

Parameter Estimation and Hypothesis-Testing:  Expectations for covariance matrices 

were specified for each sibship and children of twins family type based on the equations 

in Table 2. A model assuming common genetic and environmental influences (common 

factor) across pregnancies was used. The model specifications were adapted from York 

et al. for a binary outcome (149). For the binary outcome, a constraint was added, which 

required the sum of the variances (f2 + m2 + hc2 + e2 + (c2 - hc2)) to equal one. Model 

assumptions included: (1) random mating; (2) genetic effects were additive and 

constant over pregnancies; (3) the influence of fetal and maternal genetic differences 

are the same for male and female fetuses (i.e., genetic effects are autosomal and 

neither X-linked nor sex-limited); (4) genetic and environmental variables do not interact 
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and; (5) environmental effects were pregnancy-specific apart from the effects of 

maternal genotype, shared environmental effects, measured covariates, and other 

aspects of the parental phenotype (e.g., cultural inheritance). 

 Maximum likelihood estimates of the thresholds and expected covariance 

matrices were obtained using the structural equation modeling program Mx (150). To 

ensure that models fully converged and that maximum likelihood estimates  were 

reached, three million iterations were used. Furthermore, the models were re-run two 

additional times with the same model specifications, but starting the next model from the 

values determined by the previous analysis. The final estimates were reported from the 

results of the third model. A test of heterogeneity was performed by equating the 

thresholds and genetic and environmental parameters across racial groups, assessing 

the decline in model fit. The optimum number of thresholds needed was determined by 

observing the decline in fit as thresholds were equated both within and between racial 

groups. The contribution of individual parameters were examined by dropping each in 

turn from the model and observing the decline in fit of the submodel by the likelihood 

ratio chi-square test and change in the Akaike Information Criterion (AIC) in an attempt 

to arrive at a model yielding the optimal balance of parsimony and goodness-of-fit. 

Measured covariates were included for a sub-analysis of the European American 

population to determine if they could clarify the results of the full model. Two covariates 

were chosen based on prior evidence of association with preeclampsia to account for 

differences between births: maternal age and birth order. Both extremely young age and 

advanced maternal age are risk factors for preeclampsia, so the square of the estimate 
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for maternal age was used as the covariate in the threshold equations. Birth order was 

coded as a factor with values 1 to 4. 

 

Results 

 Table 5.3 summarizes model-fitting statistics for multiple models to determine the 

number of thresholds needed within and between racial groups and whether racial 

groups could be equated. The full model (model 1 in table 5.3) allowed for separate 

thresholds for each birth and for the effects of fetal genetic (f2), maternal genetic (m2), 

shared environment (c2), and unique environment (e2) to take unique values in each 

race. The full model also included a term h, to allow for differences in the contribution of 

the shared (familial) environment between full and half-siblings. Compared to model 1, 

model 2 with h removed resulted in a non-significant degradation in model fit and 

indicated that this parameter could be omitted. All subsequent nested models were 

compared to model 2. Model 3 indicated that groups could not be equated across race, 

providing evidence for racial heterogeneity. Models 4 to 6 indicated that thresholds 

could not be equated across all births for either Whites or Blacks. Models 7 and 8 also 

show that thresholds could not be equated between races according to birth order, 

further providing evidence for racial differences in the prevalence of preeclampsia. 

Model 9 indicated that a separate threshold for each birth was needed for Whites, while 

model 10 indicated that for Blacks only two thresholds were needed. One threshold was 

needed for the first birth, but the thresholds for births 2 to 4 could be equated. In 

addition to 4 thresholds being indicated for Whites, model 11 showed that the 

thresholds did not have a linear change from 1 to 4.  
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 Model fitting statistics for multiple models for the source and magnitude of factors 

contributing to variation in preeclampsia and heterogeneity between races are 

presented in table 5.4. The full model for this analysis was taken from the threshold 

model analysis (model 10, table 5.3), and included a separate threshold for each White 

birth and two separate thresholds for Blacks, with one threshold for the first birth and a 

second threshold for births 2 to 4. In the full threshold model, thresholds, genetic, and 

environmental parameters were allowed to take on unique values in each race as 

described for table 5.3. Models 2 to 5 in table 5.4 show that fetal genetic, maternal 

genetic, shared environment, and unique environment parameters could each be 

equated across race in models where the other 3 genetic and environmental 

parameters were allowed to take on unique values. Furthermore, models 6 and 7 

indicated that both genetic or both environment parameters could also be equated in a 

single model where the other two genetic or environment parameters were allowed to 

take on unique values. However, model 8 demonstrated that all four genetic and 

environment parameters could not be equated between races in the same model. 

 The sequential omission of variance components in models 9 and 10 of table 5.4 

showed that both fetal (f2) and maternal (m2) genetic parameters could be omitted from 

the European American models. However, model 11 showed that both genetic 

parameters could not be omitted from the same model, indicating that there is genetic 

contribution to preeclampsia, but that the models were unable to separate between 

genetic parameters and/or between genetic and environment parameters. Model 12 

indicated that omitting shared environment (c2) from the White model, resulted in a 

significant degradation in model fit, thus it could not be omitted. Models 13 to 16 
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indicated that fetal genetic (f2), maternal genetic (m2), and shared environment (c2) 

variance components could all be omitted from the Black models. Unlike Whites, both 

genetic parameters could be omitted from the same model. The ability to omit all 

parameters from the Black models further suggests that the current models were unable 

to separate the four genetic and environment variance components, rather than the 

terms actually being able to be omitted. 

 Based on the results of table 5.4, a more parsimonious model than the full 

common factor threshold model, was unable to be reached. Therefore, table 5.5 shows 

the estimates of thresholds and variance components for the full threshold model. There 

was a small but statistically significant difference (P = 0.047) in the prevalence of 

preeclampsia between Whites and Blacks among first births (4.7% and 4.9, 

respectively). After the first birth, the prevalence of preeclampsia decreased for both 

races. For Whites the prevalence of preeclampsia decreased successively for each 

additional birth from 3.0% for the second birth to 2.5% for the fourth birth. However, for 

Blacks, the prevalence of preeclampsia decreased to 4.1% for the second birth and 

remained at this level for each additional birth. Thus, the prevalence of preeclampsia for 

Whites was 39% lower than Blacks by the fourth birth. When all births were combined, 

the overall prevalence of preeclampsia in Whites was 4.0% and for Blacks was 4.5%. 

The difference between races in prevalence of preeclampsia for subsequent births 

indicates that this is the source of the overall higher incidence of preeclampsia reported 

for Blacks.  

The results of table 5.4 also lead us to conclude that reliable estimates for the 

four variance components could not be determined. Table 5.5 shows the variance 
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components estimates for the full threshold model as a matter of record. For Whites, 

fetal genetic factors explain 16.2%, maternal genetic factors explain 11.8%, shared 

environmental factors explain 25.7%, and unique environmental parameters explain 

46.4% of variability of preeclampsia. For Blacks, fetal genetic factors explain 32.4%, 

maternal genetic factors explain 8.3%, shared environmental factors explain 10.4%, and 

unique environmental parameters explain 48.9% of variability of preeclampsia. These 

estimates remained stable across the variety of models tested, which suggests that the 

models are converging, and that the difficulty with separating factors is not the result of 

computational limitations or errors.   

 Because the prevalence of preeclampsia decreased with successive births, risk 

factors were potentially modified from one birth to the next. Therefore, a sub-analysis of 

the White population was performed that included maternal age and a term for birth 

order to determine whether they could help explain the variability between thresholds 

and clarify common genetic and environmental contributions to preeclampsia. Table 5.6 

summarizes the fit statistics for the models that included covariates. Model 1 is the full 

threshold model with the two covariates. Model 2 indicated that omitting both covariates 

resulted in a significantly worse fitting model. Models 3 and 4 indicated that birth order 

could be omitted, but maternal age could not be omitted. Being able to drop birth order 

was consistent with the observation that a linear term could not be fitted to the 

thresholds in table 5.3.  Models 5 to 7 indicated that with the addition of maternal age, 

omitting either maternal age or shared environment resulted in a significant degradation 

in model fit. Although this is an improvement over the results presented in table 5.4, the 

common factor model is still unable to estimate the fetal genetic contribution to 
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preeclampsia. This sub-analysis provides further evidence that a common factor model 

is not an appropriate approach for preeclampsia. 

 

Discussion 

 Applying the Children of Twins (COT), supplemented with full and half-siblings, 

structural equation modeling design to preeclampsia yielded new insights into the 

disorder, but ultimately demonstrated that a common factors model does not accurately 

model this disease. Preeclampsia research predominantly focuses on the first 

pregnancy of a woman, but by including up to four births per woman, this study provided 

an unanticipated source of racial differences. U.S. Black women show higher rates of 

preeclampsia and this study suggests that the higher rate results from Black women 

having a smaller decrease in prevalence with subsequent births. The difference in 

prevalence of preeclampsia in the first births among White women and Black women is 

small, but statistically significant (4.7% and 4.9%, respectively). Both populations 

showed the highest rates of preeclampsia in first births, which is consistent with 

primigravida being at higher risk for preeclampsia (13, 14). However, the prevalence of 

preeclampsia in White women decreased across subsequent births to a much greater 

extent than in Black women. The prevalence of preeclampsia in White women 

decreased with each subsequent birth to 2.5% by the fourth birth. Black women also 

showed a decrease in prevalence after the first birth, but the prevalence only decreased 

to 4.1% for the second birth and then stayed constant for births three and four. When all 

births were considered together the prevalence of preeclampsia was 4.0% in Whites 

and 4.5% in Blacks, which is consistent with reported values for these populations (67, 



89 

68, 70). This suggests that White women are able to decrease their risk for 

preeclampsia with subsequent pregnancies to a much greater degree than Black 

women. The reason for this racial difference is unknown, but one possibility is that 

White women are able to modify their environment or behavior to a greater degree than 

Black women. Black women may be limited in their ability to change their circumstances 

and therefore remain at higher risk for subsequent births. For example, Black women 

may be unable to increase their pre-natal care for subsequent pregnancies, but White 

women may increase their care with subsequent pregnancies based on their experience 

during the first pregnancy. Alternatively, the continued high risk in Blacks could be the 

result of an increase in risk factors over time that offsets an underlying decline. U.S. 

Blacks have a higher prevalence of chronic hypertension, obesity, and insulin resistance 

(151-154). These maternal conditions are risk factors for preeclampsia and they 

increase in prevalence with increasing age. It is possible that the initial risks for 

preeclampsia decline with subsequent births in a similar pattern between U.S. Whites 

and Blacks, but that Blacks accumulate more maternal risk factors across subsequent 

births than Whites. 

 Although the differences in prevalence across births provided new information on 

racial differences in preeclampsia, it also presented challenges for the model design 

that was chosen for this study. York et al. demonstrated that a common factor model 

was able to estimate fetal genetic, maternal genetic, shared environment, and unique 

environment contributions to preterm birth. Preterm birth has many similarities to 

preeclampsia including both fetal and maternal genetic contributions (148, 155). As 

such, it was reasonable to assume that a model similar to the one used for preterm birth 
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was a good place to begin for preeclampsia. Preterm birth is a continuous variable 

outcome and the mean could be equated across all four births. Preeclampsia is a binary 

outcome that requires a threshold model. Unlike preterm birth, preeclampsia required 

different thresholds for different birth orders. Thresholds are more correlated with the 

variance components than means are for a continuous variable outcome. This makes 

the variance components more sensitive to variability in thresholds across births and 

likely contributed the inability of the common factors model to separate between 

variance components. More importantly, the necessity of multiple thresholds within each 

race, established that difference existed between births.  

 Differences between births led to the common factors model failing to separate 

variance components within and between races for preeclampsia. Each variance 

component could be equated across race, yet all could not be equated in a single 

model. Additionally, within races multiple variance components could be dropped one at 

a time, but multiple parameters could not be dropped at once. Both of these 

observations indicated that there were wide confidence intervals around the parameters 

and that the confidence intervals included zero. The parameters themselves are 

correlated with each other, as relatives share contributions from up to three components 

(fetal genetics, maternal genetics, and shared environment). Therefore, when one of 

these parameters was equated or dropped, the correlated parameters were adjusted 

within the wide confidence interval to compensate for the model adjustment. This was 

evidenced by the ability to drop one genetic term at a time from the White models, but 

not both genetic terms from a single model. The results indicated that the current model 

was not appropriate for preeclampsia. 
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 Failing to separate parameters and the wide confidence intervals around the 

estimates mimics the results expected from an underpowered study. This study 

included large numbers with more than 600,000 birth for Whites and more than 100,000 

births for Blacks. The eight familial relationships and the large number of births provided 

adequate numbers for estimating the four parameters. This further suggests that the 

common factor model is an inadequate design for preeclampsia. 

 The final attempt to improve upon the common factor model was including 

covariates to potentially account for the differences between births that were observed. 

Both extremely young age and advanced maternal age are risk factors for preeclampsia 

and age is a factor that changes across births (4, 14). Additionally, including a term for 

birth order could account for a linear change across birth order. Consistent with the 

results for the threshold models, the birth order term did not improve the model. This 

demonstrated that the difference in birth order was not simply a step-wise change from 

one birth to the next in U.S. Whites. Maternal age did explain a significant amount of the 

variation and resulted in thresholds that were more similar across births. However, the 

model with maternal age was still unable to separate between genetic terms. At this 

point, the evidence overwhelming indicated that a common factor model was not 

appropriate for preeclampsia, and no further exploration of this model was warranted. 

 In spite of the limitations of the common factor model, lessons learned in this 

analysis can be used to guide the development of new models for estimating the 

variance components that contribute to preeclampsia. The next approach to modeling 

preeclampsia will need to focus on how factors change and what factors change 

between births. There are several models that might be able to address these issues. 
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First, the change between births may not be linear and simply dependent on birth order. 

Inter-birth interval may play a role in how the risk for preeclampsia changes with 

subsequent births. Including a measure of the time between births would allow for non- 

linear changes within one woman’s birth history, and would allow for differences 

between women with respect to equally ordered births. Second, there may be unique 

variance components for each birth in addition to underlying common factors for all 

births. A model that would allow for the distinction and evaluation of both common 

factors across pregnancies and pregnancy-specific factors might be more appropriate 

for preeclampsia. Finally, the common factor model assumes that births are correlated, 

but fails to allow for births to exert influences on each other. The first birth could affect 

the second birth or all subsequent births. Thus, each birth could be influenced by either 

the immediately preceding birth, or the additive effects of all previous births. There is 

good evidence for this in normal pregnancies. With each subsequent birth, labor and 

delivery generally proceeds more rapidly. This suggests that pregnancies are not 

independent and a woman’s body adapts from one pregnancy to the next. These 

longitudinal effects could result from changes in any one of the genetic or environmental 

influences on preeclampsia. For example, maternal genetic factors, such as those that 

influence chronic hypertension, obesity, or insulin resistance, could increase the percent 

of disease accounted for by maternal genetics and/or pregnancy-specific environment 

over time. Additionally, major shifts between total genetic and environmental influences 

could take place over time. Models to account for longitudinal and “carry-over” effects 

have been developed and could be adapted to preeclampsia (156). 
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Table 5.1 Sample Frequencies by parental relationship and race. 

 White  Black 

Parental Relationship N. Families N. Births  N. Families N. Births 

Sibship 290,349 602,860  69,112 123,747 
Maternal half-sibship 6,735 12,909  2,431 4,653 
Paternal half-sibship 5,419 10,507  2,839 5,542 
MZ male twin 622 1,209  71 105 
MZ female twin 658 1,336  102 153 
DZ male twin 421 779  61 88 
DZ female twin 397 767  79 132 
DZ male-female twin 990 1,794  160 235 
Total 305,591 632,156  74,855 134,655 

MZ, monozygotic; DZ dizygotic. 
 
 
 
 
 
 
 
 
 
Table 5.2 Expected covariance of preeclampsia expressed as variance components 

between pregnancy outcomes as a function of relationship between offspring. Courtesy 

of Dr. York (149). 

Parental relationship Familial relationship of offspring Expected covariance 

MZ female twins Cousin ¼ f2 + m2 

DZ female twins Cousin  ⅛ f2 + ½ m2 
MZ male twins Cousin ¼ f2 
DZ male twins Cousin ⅛ f2 
DZ male-female twins Cousin ⅛ f2 
Full sibship Sibling ½ f2 + m2 + c2 

Maternal half-sibship Half-sibling ¼  f2 + m2 + hc2 
Paternal half-sibship Half-sibling ¼  f2 + hc2 

f2 = fetal genetic, m2 = maternal genetic, c2 = shared familial environment, h = parameter 

to allow for differences in half-sibling versus full-sibling shared environment. 
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Table 5.3 Indices of model fit to determine within-group and between-group threshold 

parameters. 

Model Description -2LL k AIC P-value 

1 Full model 246160.50 18 -1287439.5 - 
2 Half-sibling environmental h 

parameters omitted from each race 
246160.44 16 -1287443.6 0.970 

3 No racial heterogeneity 246747.08 8 -1286870.9 <0.001 
4 Identical thresholds within each race 247746.13 10 -1285869.9 <0.001 
5 Identical White thresholds 247687.94 13 -1285922.1 <0.001 
6 Identical Black thresholds 246218.39 13 -1287391.6 <0.001 
7 1st threshold equated between races 246164.39 15 -1287441.6 0.047 
8 4th threshold equated between races 246170.37 15 -1287435.6 0.002 
9 White Identical 2nd-4th thresholds  246173.57 14 -1287434.4 0.001 
10 Black Identical 2nd-4th thresholds  246161.34 14 -1287446.7 0.638 
11 White thresholds with linear change, 

Black 2nd-4th thresholds equated 
246399.26 12 -1287212.7 <0.001 

The table presents the following values: -2 times the log likelihood (-2LL), the number of 

free parameters in the model (k), an index of the balance between goodness of model fit 

and parsimony (Akaike’s information criterion, or AIC), and the P-value significance 

result from the likelihood ration test (distributed as a chi-square statistic). The Full model 

is a common factor model that allows for the following parameters to take on unique 

values within each race: four thresholds (1 for each birth), four variance components 

(fetal genetics, maternal genetics, shared environment, and unique environment), and a 

term (h) to allow for differences between shared environmental contributions for full and 

half-siblings. The fit of model 2 was compared to model 1 and all subsequent models 

were compared to model 2. Significant P-values indicate a significant reduction in model 

fit. f2, fetal effect; m2, maternal effect; c2, shared environmental effect. 
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Table 5.4 Indices of model fit to assess within-group genetic and environmental 

contributions and between group racial heterogeneity. 

Model Description -2LL k AIC P-value 

1 Full threshold model 246161.34 14 -1287446.7 - 
2 f2 equated across race 246161.49 13 -1287448.5 0.705 
3 m2 equated across race 246161.44 13 -1287448.6 0.762 
4 c2 equated across race 246162.60 13 -1287447.4 0.263 
5 e2 equated across race 246161.42 13 -1287448.6 0.780 
6 f2 and m2 equated across race 246161.48 12 -1287450.5 0.932 
7 c2 and e2 equated across race 246165.62 12 -1287446.4 0.118 
8 f2, m2, c2 equated across race 246214.94 11 -1287399.1 <0.001 
9 White f2 omitted 246162.21 13 -1287447.8 0.352 
10 White m2 omitted 246164.31 13 -1287445.7 0.085 
11 White f2 and m2 omitted 246168.48 12 -1287443.5 0.028 
12 White c2 omitted 246175.00 13 -1287435.0 <0.001 
13 Black f2 omitted 246162.35 13 -1287447.6 0.315 
14 Black m2 omitted 246161.92 13 -1287448.1 0.448 
15 Black f2 and m2 omitted 246166.62 12 -1287445.4 0.071 
16 Black c2 omitted 246162.19 13 -1287447.8 0.358 

The table presents the following values: -2 times the log likelihood (-2LL), the number of 

free parameters in the model (k), an index of the balance between goodness of model fit 

and parsimony (Akaike’s information criterion, or AIC), and the P-value significance 

result from the likelihood ration test (distributed as a chi-square statistic). The fit of all 

models was compared to model 1. Significant P-values indicate a significant reduction 

in model fit. f2, fetal effect; m2, maternal effect; c2, shared environmental effect. 
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Table 5.5 Estimated thresholds and variance components from full threshold model. 

Population Source Estimate Percent 

White 1st threshold 1.673 4.7 
 2nd threshold 1.880 3.0 
 3rd threshold 1.891 2.9 
 4th threshold 1.965 2.5 
 Fetal genetic 0.162 16.2 
 Maternal genetic 0.118 11.8 
 Shared environment 0.257 25.7 
 Unique environment 0.464 46.4 

Black 1st threshold 1.655 4.9 
 2nd threshold 1.741 4.1 
 3rd threshold 1.741 4.1 
 4th threshold 1.741 4.1 
 Fetal genetic 0.324 32.4 
 Maternal genetic 0.083 8.3 
 Shared environment 0.104 10.4 
 Unique environment 0.489 48.9 
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Table 5.6 Indices of model fit to assess maternal age and birth order as covariates for 

Whites 

Model Description -2LL k AIC P-value 

1 Full threshold model with covariates 205238.12 10 -1058323.9 - 
2 No covariates 205252.79 8 -1058313.2 <0.001 
3 Maternal age omitted 205252.77 9 -1058311.2 <0.001 
4 Birth order omitted 205238.16 9 -1058325.8 0.834 
5 f2 omitted 205238.17 8 -1058327.8 0.975 
6 m2 omitted 205244.17 8 -1058321.8 0.049 
7 c2 omitted 205256.64 8 -1058309.4 <0.001 

The table presents the following values: -2 times the log likelihood (-2LL), the number of 

free parameters in the model (k), an index of the balance between goodness of model fit 

and parsimony (Akaike’s information criterion, or AIC), and the P-value significance 

result from the likelihood ration test (distributed as a chi-square statistic). The fit of 

models 2 to 4 was compared to model 1 and the fit of models 5 to 7 was compared to 

model 4. Significant P-values indicate a significant reduction in model fit. f2, fetal effect; 

m2, maternal effect; c2, shared environmental effect. 
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Chapter 6: Perspectives 

 

 Throughout the course of this dissertation, I have addressed racial differences in 

the fetal and maternal genetic contributions to preeclampsia. In chapter 2, I presented 

evidence that Catechol-O-methyltransferase (COMT) contributes both maternal and 

fetal genetic effects to preeclampsia, through single gene and epistatic effects with 

Methylenetetrahydrofolate reductase (MTHFR). Furthermore, I provided evidence that 

the combination of maternal COMT and fetal COMT genes in a single pregnancy is 

important to this disorder. In chapter 3, I extended the study presented in Chapter 2 to 

include a U.S. Black population. By comparing the findings in Chileans to U.S. Blacks, I 

demonstrated that there were ancestral differences in allele frequency for both COMT 

and MTHFR and that these differences could contribute to racial differences in 

preeclampsia. In chapter 4, I presented evidence that the fetal Endoplasmic reticulum 

aminopeptidase 2 (ERAP2) is associated with preeclampsia in U.S. Blacks, but not 

Chileans. In chapter 5, I applied a unique Children of Twins (COT), supplemented with 

full and half-siblings, to estimate the overall contributions of fetal genetics, maternal 

genetics, shared environment, and unique environment to preeclampsia in Whites and 

Blacks. Through this analysis, I uncovered a unique source of racial differences. A 

discussion of the general conclusions of our research, the implications of our findings, 

and questions that remain to be answered is presented below. 
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Maternal and Fetal Genetics 

Our candidate gene studies identified both maternal and fetal genetic variants 

that are associated with the risk for preeclampsia. This represents a significant 

contribution to our understanding of preeclampsia because these are among the first 

studies to identify fetal genetic variants that are associated with the risk for this and 

other pregnancy disorders. We showed that fetal COMT, MTHFR, and ERAP2 were all 

three associated with the risk for preeclampsia in certain populations. Identifying three 

fetal genes that are associated with risk for disease provides strong evidence to support 

the role of fetal genetics in the development of preeclampsia and emphasizes the need 

for more studies to include fetal samples.  

By studying the three genes (COMT, MTHFR, and ERAP2) in maternal-fetal 

dyads, we also revealed that the same gene could contribute to preeclampsia 

differently, depending on whether it is the maternal allele or the fetal allele. This is 

evidenced by the three main findings in chapter 2: (1) COMT haplotype alone was 

associated with the risk for preeclampsia in mothers, but the combination of COMT 

haplotype by MTHFR variant was associated with the risk for preeclampsia in fetuses; 

(2) low COMT activity, predicted based on COMT haplotype, reduced the risk for 

preeclampsia in mothers, but low COMT activity, predicted based on the interaction 

between COMT haplotype and MTHFR, increased the risk for preeclampsia in fetuses; 

and (3) the combination of maternal and fetal alleles in a single pregnancy was related 

to preeclampsia status. This complexity would not have been appreciated without the 

inclusion of fetal samples that were paired with maternal samples.  
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These findings have important implications for our current understanding of how 

genes contribute to preeclampsia and for developing therapies to treat this disorder. 

First, previous studies that only included maternal samples provide incomplete results. 

Maternal and fetal genomes share fifty percent identity. Therefore, by only analyzing 

maternal genes, fetal effects could manifest through an observed maternal association 

or fetal effects could be missed altogether. Studies should be extended to include fetal 

genes to determine if only maternal effect(s), only fetal effect(s), or if both maternal and 

fetal effects are present. In regards to developing therapies for preeclampsia, focusing 

on maternal genetic contributions could fail to identify one half of a genes contribution to 

disease. This could have serious consequences if a gene contributes to disease 

differently in the mother and the fetus. Developing therapies that address the maternal 

genetic affect could be unsuccessful if the implications of fetal genes are not understood 

or considered. 

The candidate gene studies of COMT, MTHFR, and ERAP2 show an association 

between these genes and risk for preeclampsia, but they do not provide evidence for 

the mechanism of action. Future studies need to determine how the genes are 

contributing to preeclampsia. As outlined in chapter 2, placental hypoxia is a key feature 

of preeclampsia and placental hypoxia-driven imbalances in angiogenic and anti-

angiogenic factors are thought to contribute to endothelial dysfunction in this disorder. 

2-methoxyestradiol (2-ME) is generated by COMT and 2-ME inhibits Hypoxia Inducible 

Factor 1α (HIF-1α), a transcription factor mediating hypoxic responses. Cytotrophoblast 

invasion and placental vascular development have also been reported to be modulated 

by 2-ME during hypoxic conditions, and this process was associated with a decrease in 
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the expression of HIF-1α (84). Comt-/- mice develop a preeclampsia phenotype that is 

reversed by exogenous 2-ME (61). Furthermore, circulating concentrations of 2-ME and 

placental COMT activity have been shown to be significantly reduced in women 

diagnosed with preeclampsia (61). Taking into consideration our results, we 

hypothesize that decreased COMT activity in placentas leads to decreased 2-ME, which 

in turn leads to a failure to inhibit HIF-1α and/or impaired cytotrophoblastic invasion. 

This would result in the inappropriate up-regulation of hypoxia-induced genes by HIF-

1α. In mothers, decreased COMT activity appears to be protective and we hypothesize 

that decreased COMT activity in the maternal compartment leads to shunting of 2-ME 

precursors to the fetal compartment. The increase of substrate could help to 

compensate for the decreased activity of COMT in the placenta. To test these 

hypotheses, biologic experiments need to be paired with the genotypic information. 

Specifically, the following experiments are needed: (1) measure COMT protein and 

activity levels in maternal plasma and placentas to determine if COMT haplotype is 

associated with differences in COMT activity, (2) measure the protein level and activity 

level of the ATCA COMT haplotype with respect to MTHFR variant in order to determine 

how epistasis between these genes affects COMT activity, (3) measure 2-ME and HIF-

1α levels in maternal plasma and placentas to determine if COMT and COMT x MTHFR 

allelic variation are associated with 2-ME and HIF-1α levels in each compartment 

separately and how the two compartments compare to each other.  

ERAP2 has the potential to contribute to preeclampsia through multiple 

mechanisms including regulation of blood pressure, pro-inflammatory cytokine 

production, and immune responses (49, 50, 130-132). With multiple mechanisms 
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possible, a more exploratory approach to investigate the biologic contribution of ERAP2 

is warranted. Designing studies that pair genetic information with a range of biologic 

mechanisms would be necessary to determine which functions of ERAP2 are important 

to the development of preeclampsia. In addition to determining the biologic relevance of 

ERAP2, more work is needed to determine the functional relevance of the identified 

genetic variants. One allele of rs2549782 is a missense mutation that is predicted to 

alter the three-dimensional structure of the protein and damage function (127). 

Additionally, rs2549782 resides within the highly conserved zinc-binding domain. 

Functional analysis to determine the change(s) in enzyme activity related to rs2549782 

genotype need to be performed. There is also good evidence that rs2549782 is 

important not because of its functional significance, but because it distinguishes 

between two forms of ERAP2 that are maintained by balancing selection. Two groups of 

researchers have recently reported an ancestral division in ERAP2 that resulted in two 

branches of the gene (147, 157). The branches can be characterized by haplogroups 

that are characterized by a large number of SNPs. The two haplogroups of ERAP2 have 

been maintained through long-standing balancing selection. Although a large number of 

SNPs fully characterizes the two forms of ERAP2, four diagnostic SNPs and rs2549782 

in particular can distinguish between them. Importantly, the two forms show large 

functional differences with one form effectively representing a null mutant. The 

consequences of the non-functional protein are significantly decreased MHC class 1 

presentation (147). Genotyping additional SNPs to fully distinguish the two forms of 

ERAP2 in our samples and pairing this information with measures of MHC presentation 
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in maternal and placental tissue could provide insight into the biologic significance of 

our observed association. 

 A common mechanism could also exist for all of the identified associations. All of 

the genetic variants identified in these studies encoded amino acid changes to the 

proteins. Differences in amino acid structures of the proteins could, therefore, be 

appreciated between maternal and fetal proteins. This sets up the potential for genetic 

conflict between maternal and fetal genes. If fetal COMT, MTHFR, and/or ERAP2 are 

exposed to the maternal immune system, the mother could mount a response against 

the fetal proteins because of their amino acid sequence differences. This immune attack 

could lead to some of the identified abnormalities in preeclampsia including poor 

placentation, maternal vascular inflammation, placental/fetal vascular and tissue 

inflammation, placental/fetal cell death, and imbalances in the fetal levels of these 

proteins. 

 

Genetic Interactions 

Preeclampsia is a complex disorder with multiple genes, environmental, and 

social factors all contributing to disease (21, 22). Complex traits are traditionally thought 

to result from the additive effects of large number of genes with small effects, however, 

there is increasing evidence that gene-gene and gene-environment interactions are 

important contributors to complex traits (158-161). Our findings in chapter 2, that show 

that epistasis between the fetal COMT and MTHFR genes is associated with an 

increased risk for preeclampsia, provides strong evidence for the inclusion of multiple 

genes and gene networks in preeclampsia research. No association between fetal 
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COMT or fetal MTHFR was observed, but when the combination of COMT haplotype 

and the rs1801133 SNP of MTHFR was analyzed, the interaction between the genes 

was associated with the risk for preeclampsia. If these genes had been studied 

independently, this relationship would not have been appreciated. Another example of 

epistasis in preeclampsia was recently reported by Lim et al. (162). They found that 

epistasis between the -34 T/C polymorphism of Cytochrome P450, family 17, subfamily 

A, polypeptide 1 (CYP17A1) and the rs4680 SNP of COMT increased the risk for 

preeclampsia, above and beyond the risk increase due to the rs4680 SNP alone (162). 

No association was found between the -34 C/T SNP of CYP17A1 and preeclampsia 

when this SNP was studied independently (162).  

The importance of studying epistasis between genes is further highlighted by 

contrasting the results of our study presented in Chapter 2, and the study by Roten et 

al. (124). We found that the maternal low activity haplotype of COMT (ACCG) was 

associated with a decreased risk for preeclampsia in Chilean women, yet Roten et al. 

found that the ACCG haplotype was associated with an increased risk for recurrent 

preeclampsia in Norwegian women. This could represent genetic heterogeneity in the 

contribution of COMT to preeclampsia, but it also could result from studying COMT 

variation in isolation, without accounting for the additional genetic, environmental, and 

social factors that it interacts with to cause preeclampsia.  

The concept of opposite associations not being contradictory, but rather 

indicating the complexity of a disorder, was first proposed by Lin et al. and is called the 

“flip-flop” phenomenon (125). They showed through a series of simulation studies, that 

associations in opposite directions could be fully explained by failing to correct for gene-
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gene interactions and differences in linkage between genomic regions, which is a 

common difference between different racial populations. Our study, the Lim et al. study, 

and the implications of the Lin et al. study highlight the importance of considering the 

complexity of preeclampsia in future research (123, 125, 162). Research on 

preeclampsia needs to move beyond single gene studies and start to incorporate gene-

gene combinations, gene-networks, and factors that contribute to functional pathways 

into association tests. 

 A significant limitation to pregnancy research is the separation between maternal 

and fetal studies. Pregnancy involves two individuals, mother and fetus, in a single 

biological system. As a result, pregnancy is a unique condition in which there are two 

genomes and these genomes have the potential to interact. This adds a unique layer to 

pregnancy disorders by allowing for genetic interactions between mother and fetus in 

addition to genetic interactions within each individual. There are seven pairwise genetic 

interactions that should be considered when studying preeclampsia: maternal gene x 

maternal gene, maternal gene x maternal environment, fetal gene x fetal gene, fetal 

gene x fetal environment, maternal gene x fetal gene, maternal gene x fetal 

environment, and fetal gene x maternal environment. Beyond pairwise interactions, 

interactions between more than two components could also exist and should ultimately 

be considered when investigating pregnancy disorders. The genetic interactions could 

be additive (i.e., the effect of 4 alleles rather than the normal 2 for one individual), 

synergistic, or conflicting (i.e., the difference between maternal and fetal genes). 

Genetic conflict is a popular concept that has been the focus of much research on 

preeclampsia. The classic model for genetic conflict in pregnancy is Rhesus (Rh) 
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incompatibility, which results in hemolytic anemia of the newborn due to a maternal 

immune response. Currently, statistical methods to investigate maternal-fetal genetic 

interactions broadly assume the “Rh model”, which omits main effects of maternal or 

fetal genes because the only mechanism is an incompatibility that results in immune 

attack (83). To accurately determine how the maternal and fetal genomes might interact 

to contribute to preeclampsia, genetic models that make no assumptions about the type 

of interactions should first be considered. The results of such “full” models should then 

be used to guide the research towards the type(s) of interactions that contribute to the 

risk for preeclampsia. 

 Our studies included both maternal and fetal samples and importantly maternal-

fetal dyads. This allowed us to look at both maternal and fetal genetic effects in a single 

pregnancy and to build a more complete view of genetic contributions to preeclampsia. 

This was an important advancement in preeclampsia research because it captured the 

pregnancy unit and it is an important study design to consider in the future. Studying 

maternal-fetal dyads would allow for the analysis of interactions between the two 

genomes. The challenge at this point is to develop statistical methods that could 

separate between main effects of genes, genetic interactions within maternal genes, 

genetic interactions within fetal genes, and interactions between maternal and fetal 

genes. 

 

Racial Differences 

 Racial disparities in preeclampsia place U.S. Black women and fetuses at higher 

risk of developing this disorder, and at higher risk of complications and/or death from 
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the disorder, compared to U.S. Whites and Hispanics (3, 65-68, 70). Our studies 

demonstrated racial differences in associations between specific genes and 

preeclampsia and in the decrease in prevalence of preeclampsia across subsequent 

births. These findings represent and important advancement in our understanding of the 

factors that contribute to racial differences in preeclampsia. 

 There is a genetic contribution to preeclampsia and based on ancestral 

differences in racial genetic backgrounds, this raises the possibility that genetic 

differences between populations contributes to differences in preeclampsia. We showed 

that SNP minor allele and haplotype frequencies of COMT and MTHFR differed among 

racial groups. U.S. Blacks showed a looser COMT haplotype structure with seven 

observed haplotypes, compared to three in U.S. Whites and Chileans. Furthermore, the 

minor allele frequency for the rs1801133 SNP of MTFR was only ~0.11 for U.S. Blacks, 

compared to ~0.45 for Chileans. In our Chilean study we found the maternal COMT and 

an interaction between the fetal COMT and MTHFR to be associated with the risk for 

preeclampsia. In our U.S. Black study we found no associations between COMT and 

MTHFR and the risk for preeclampsia in either maternal or fetal samples. The 

differences in COMT haplotype structure/frequency and in minor allele frequency of the 

rs1801133 SNP of MTHFR resulted in a lack of power in the study of the U.S. Black 

population. We had inadequate (≤ 20%) power to detect effects with the same odds 

ratios estimated in the study of the Chilean population. As a result, we were unable to 

determine whether these genes were associated with the risk for preeclampsia in U.S. 

Blacks. However, the low minor allele frequency of the rs1801133 SNP of MTHFR 

suggests that this variant is of less importance to disease risk in the U.S. Black 
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population. Future studies need to increase the sample size of the U.S. Black 

population and increase the number of markers in these genes to determine whether 

additional variants are more functionally relevant in this population. 

 We found that the fetal rs2549782 SNP of ERAP2 was associated with the risk 

for preeclampsia in U.S. Blacks, but not Chileans. We also found that the maternal 

rs2549782 SNP of ERAP2 was not associated with preeclampsia in either population 

and the rs17408150 SNP of fetal and maternal ERAP2 was not associated with the risk 

for preeclampsia in Chileans. An association between the maternal rs2549782 SNP of 

ERAP2 and preeclampsia has been previously reported in an Australian/New Zealand 

population (127). Additionally an association between the maternal rs17408150 SNP in 

ERAP2 and preeclampsia in a Norwegian population was reported by the same group 

(127). rs17408150 has a minor allele frequency of <1% in U.S. Blacks and was, 

therefore, not included in our analysis of this population. Collectively, these reports and 

our results demonstrate differences in associations between ERAP2 and risk for 

preeclampsia among four different distinct racial populations. The difference in the allele 

frequencies of SNPs in ERAP2 documents ancestral differences in variants of this gene 

between populations. As a result, the differences in association between racial 

populations could indicate that this gene only contributes to preeclampsia in certain 

populations, that different polymorphisms in ERAP2 are associated with disease in 

different populations, or that linkage between the causative genetic region and the 

analyzed SNPs differs among the populations.  Future studies are needed to increase 

the number of markers genotyped in maternal and fetal ERAP2 to be able to determine 

the source of the differences in association between populations. 
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 We demonstrated racial differences in associations between specific genes and 

preeclampsia. Another way in which genetic contributions to preeclampsia could differ 

among racial populations is through differences in percentage of disease explained by 

genetics within each group. This could be the result of differences in the number of 

maternal genes, fetal genes, or both maternal and fetal genes that contribute to 

disease. We hypothesized that variance components modeling would allow us to 

compare the maternal and fetal genetic contributions to preeclampsia between U.S. 

Whites and U.S. Blacks. Ultimately, the common factors model we chose proved to be 

inadequate to model preeclampsia, but it did provide unique insight into racial 

differences.  

An unanticipated discovery in our research was that the difference in prevalence 

of preeclampsia between U.S. Whites and U.S. Blacks in our study was primarily the 

result of a greater decrease in prevalence across births for Whites. This provides a 

unique source of racial differences that had previously not been appreciated. 

Preeclampsia studies predominantly focus on a woman’s first birth, but by including up 

to four births per woman in our study design, we were able to compare the prevalence 

of preeclampsia across births. Our study showed only a modest difference in 

prevalence of preeclampsia between Whites and Blacks for a woman’s first pregnancy, 

but the gap in prevalence widened with each subsequent pregnancy. By the fourth 

pregnancy, the prevalence of preeclampsia in Whites was 39% lower than in Blacks.  

When all births were combined, the prevalence of preeclampsia in Whites was 4.0% 

compared to 4.5% in Blacks. This suggests that the observed increase in incidence of 

preeclampsia in the U.S. Black population is the result of an increased incidence after 
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the first birth. Furthermore, the nearly similar rate of preeclampsia seen in the first birth 

of U.S. Whites and Blacks, also suggests that nulliparous U.S. White and Black women 

share more risk factors for preeclampsia, than multiparous women. In later births, 

factors that contribute to risk for preeclampsia in the two populations appear to diverge. 

Variance components models that can model the change in parameters that contribute 

to the development of preeclampsia across births are needed to determine the source 

of the racial difference in prevalence observed in our study. 

 

Variance Components Modeling  
 

A strong genetic contribution to preeclampsia is well accepted, with both 

maternal and fetal genes contributing to disease. The heritability of preeclampsia has 

been estimated to be 0.54, with 0.35 being attributed to maternal genes and 0.20 being 

attributed to fetal genes (76, 78). Despite the wide acceptance of these estimates, the 

methods used to determine them had limitations that resulted in wide confidence 

intervals and a failure to fully separate the maternal and fetal genetic parameters. 

Furthermore, estimates have only been reported for women of Northern European 

decent. Thus, better methods are needed to more precisely estimate the maternal and 

fetal genetic contributions to preeclampsia and different racial groups need to be 

studied to determine if these parameters change between groups.  

 In chapter 5 we used a novel Children of Twins (COT), supplemented with full 

and half-siblings, study design to determine the fetal genetic, maternal genetic, shared 

environmental, and unique environmental contributions to preeclampsia in U.S. Whites 

and Blacks. By using relationships between the children of twins, this design utilized 
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eight unique familial relationships and had increased power to separate between fetal 

and maternal genetics. York et al. first used this design to determine the variance 

components of preterm birth and reported differences between fetal genetic, maternal 

genetic, and unique environmental contributions to this disorder between U.S. Whites 

and Blacks (149). We, therefore, hypothesized that applying a similar model to 

preeclampsia would adequately model this disorder. However, we found that a common 

factor model was inadequate for preeclampsia and that differences existed between 

births within each population. Based on these findings, a new modeling approach 

utilizing the COT data should be considered for preeclampsia. 

 The common factor model used in our study assumes an underlying genetic 

biometrical model. It was reasonable to initially assume a genetic model for 

preeclampsia based on the strong evidence for a genetic contribution to disease and 

the results of the preterm birth study by York et. al. (149). One reason that the common 

factor model could have been inadequate for preeclampsia is that a genetic biometrical 

model was inappropriate. Modeling preeclampsia should start at the beginning with an 

unstructured model that allows all variances and covariances allowed to take on unique 

values in twin and sibling type (i.e., a fully saturated model). Nested models of the fully 

saturated model can then be compared to determine the most parsimonious model that 

fits the data. This will remove constraints being placed on the model by preconceived 

assumptions, and will allow for the development of a model that will best fit the data. A 

genetic biometrical model is a nested model of the fully saturated model and can be 

compared to determine if it is a good fit for the data. 
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 The second consideration in developing a new approach to modeling 

preeclampsia, is the observation that more than one threshold is needed within each 

race. This implies differences in preeclampsia across birth order and future models will 

need to determine the implications of these differences. There are multiple ways that 

ways that changes could occur between births. For example, different factors could be 

important to preeclampsia for each birth, or each birth could be influenced by either the 

immediately preceding birth, or the additive effects of all previous births. Gillespie et al. 

has developed a longitudinal model of genetic and environmental influences that could 

be applied to preeclampsia (156). This model does not have to assume a genetic 

structure and can be used to inform us on how preeclampsia is changing across time 

(i.e. across births). This will allow us to distinguish between the effects of one 

pregnancy on the next, the cumulative effects of all previous pregnancies across time, 

and the effects of unique factors being introduced with each birth. The longitudinal 

model, that incorporates changes across time, will also be a nested model of the fully 

saturated model. By starting from the fully saturated model, a complete analysis of the 

parameters that influence preeclampsia will be possible and will be fully driven by the 

data.  
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