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Abstract

This dissertation deals with developing parallel processing algorithms for Graphic Pro-

cessing Unit (GPU) in order to solve machine learning problems for large datasets.

In particular, it contributes to the development of fast GPU based algorithms for

calculating distance (i.e. similarity, affinity, closeness) matrix. It also presents the

algorithm and implementation of a fast parallel Support Vector Machine (SVM) us-

ing GPU. These application tools are developed using Computing Unified Device

Architecture (CUDA), which is a popular software framework for General Purpose

Computing using GPU (GPGPU).

Distance calculation is the core part of all machine learning algorithms because

the closer the query is to some data samples (i.e. observations, records, entries), the

more likely the query belongs to the class of those samples. K-Nearest Neighbors

(k-NNs) search is a popular and powerful distance based tool for solving classification

problem. It is the prerequisite for training local model based classifiers. Fast distance

calculation can significantly improve the speed performance of these classifiers and

GPUs can be very handy for their accelerations. Meanwhile, several GPU based

sorting algorithms are also included to sort the distance matrix and seek for the k-

nearest neighbors. The speed performances of the sorting algorithms vary depending

upon the input sequences. The GPUKNN proposed in this dissertation utilizes the

GPU based distance computation algorithm and automatically picks up the most

suitable sorting algorithm according to the characteristics of the input datasets.

Every machine learning tool has its own pros and cons. The advantage of SVM is

the high classification accuracy. This makes SVM possibly one of the best classifiers.

However, as in many other machine learning algorithms, SVM’s training phase slows
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down when the size of the input dataset increases. The GPU version of parallel SVM

based on parallel Sequential Minimal Optimization (SMO) implemented in this dis-

sertation is proposed to reduce the time cost in both training and predicting phases.

This implementation of GPUSVM is original. It utilizes many parallel processing

techniques to accelerate and minimize the computations of kernel evaluation, which

are considered as the most time consuming operations in SVM. Although the many-

core architecture of GPU performs the best in data level parallelism, multi-task (aka.

task level parallelism) processing is also integrated into the application to improve the

speed performance of tasks such as multiclass classification and cross-validation. Fur-

thermore, the procedure of finding worst violators are distributed to multiple blocks

on the CUDA model. This reduces the time cost for each iteration of SMO during the

training phase. All of these violators are shared among different tasks in multiclass

classification and cross-validation to reduce the duplicate kernel computations. The

speed performance results have shown that the achieved speedup of both the training

phase and predicting phase are ranging from one order of magnitude to three orders

of magnitude times faster compared to the state of the art LIBSVM software on some

well known benchmarking datasets.



Chapter 1

Introduction

Machine learning is a discipline targeted on designing and developing algorithms

which allow computers to learn based on empirical data and capture the characteris-

tics of interest in order to make a prediction for a new data query. All the collected

data can be considered as examples (training samples) which illustrate the relations

among the observed variables. Many important patterns can be recognized after ap-

plying the learning procedure. Supervised learning is one type of machine learning

techniques inferring a function using supervised data, which does the classification

or regression jobs. Classifiers are generated in the classification problems in which

both input feature vector �x and the related output label y are known. They are used

for classifying new data queries and give discrete output. On the other hand, if the

continuous output is required, a regression function will be created instead of a clas-

sifier. This dissertation mainly focuses on classification problems. Currently, there

are many well developed classification tools, e.g. Support Vector Machine, Neural

Network, Decision Tree, k-NNs search, etc. They all have certain advantages and

disadvantages in different scenarios. However, one of the common drawback among

them is the lack of scalability, which largely restricted their popularity and usage in

processing large datasets. The fact is that it is an era of exploded information now,

1
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and large scale datasets are found everywhere. For instance, a mid-size social network

website can easily collect Tera-bytes of multimedia data such as users’ status change,

newly uploaded photos, daily notes, conversations and so on. Most of these raw data

are left unprocessed and archived due to the software limitations. However, these

data can be very useful to help learn the users’ preferences, interests and patterns of

their activities. The outcome is obvious. Better user experience always leads to more

customers. Therefore, the newly improved many-core GPUs are involved to help re-

duce the processing time for training large datasets. They are superbly fast in floating

points operations and small in physical size. The hardware cost is also much less and

so is the power consumption compared to CPUs which offer the same level of pro-

cessing capability. With the assists of GPUs, a proper equipped workstation can do

just about the same job which could only be done on a small clustering system in the

past. GPU’s popularity on solving data intensive applications is growing everyday.

In this dissertation, GPUs are used for developing fast parallel SVM software.

This dissertation is mainly focusing on developing and implementing classifica-

tion, a.k.a. pattern recognition, algorithms for GPUs. The NVIDIA Tesla GPUs

and CUDA software development kit are used as the main hardware and software

components for the sake of software implementation. However, the proposed paral-

lel processing algorithms, methodologies and optimization strategies are all original

and general, which can be extended and adapted to other platforms or frameworks.

They are all considered as the contributions of this dissertation. The final developed

GUI enabled SVM tool which has been configured and installed in the department’s

ACE-Tesla computer is also part of the contribution of this dissertation.

The original research objective includes the classic linear and non-linear SVM

design as well as the local model based classifiers such as Local Linear SVM [1] and

Adaptive Local Hyperplane [2]. The SVM part has been successfully finished in this
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dissertation work. The crucial problem of the local model based classifiers, which is

the distance computation, has also been addressed in the dissertation. In Chapter

2, some existing work done on both sequential and parallel SVM implementation

are briefly reviewed. Major contributions of this dissertation are also listed in this

chapter. Chapter 3 discusses the detail information about GPU and NVIDIA’s CUDA

technology. CUDA programming model and optimization strategies are presented and

explained to help understand the proposed implementations in the later chapters.

Similarity search and distance computation is discussed in Chapter 4, which is the

fundamental of building local model based classifiers. The speed performance of the

proposed GPUKNN algorithm is also given. Chapter 5 reviews various decomposition

approaches such as Platt’s SMO, Keerthi et al.’s improved SMO and Cao et al.’s

parallel SMO in solving Quadratic Programming (QP) problem, which is the core of

SVM solver. This chapter also introduces the proposed GPUSVM algorithm. Chapter

6 describes the hierarchy design architecture of the GPUSVM package. Chapter

7 presents the simulations and comparisons between the state of the art LIBSVM

software and the GPUSVM software. The comparisons are done for both accuracy

and speed performances on several benchmarking datasets of various sizes. The results

have shown the impressive speed performance of the novel GPUSVM over LIBSVM

while achieving very close accuracies. Chapter 8 gives the conclusions and points out

some possible future work as the continuation of this dissertation.



Chapter 2

Background, Related Work and

Contributions

This chapter first briefly reviews the historical development of sequential SVM al-

gorithms and parallel SVM algorithm. Parallel SVM algorithm used to be not very

popular a decade ago compared to its sequential counterpart. There is much less re-

search done on parallel SVM due to the lack of the availability for parallel hardware.

However, it becomes more and more popular recently not only because sequential

SVM suffers from a very slow training phase on large datasets, but also due to the

huge improvement and the availability of the cheap and easy to program parallel

hardware. K-NNs search is another classic classification tool, which recently has also

been used for building local model based classifiers. These classifiers have good ac-

curacy and they can be trained efficiently in parallel. Some of these classifiers are

reviewed in this chapter. The core of k-NNs search is distance calculation which

has been addressed in this dissertation using powerful GPUs. Then several exist-

ing mature parallel processing framework are discussed and compared to show their

advantages and disadvantages. They are good options for creating parallel machine

learning tools. At the end, the contributions of this dissertation are given.

4
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2.1 The History of Sequential SVM

Support Vector Machine [3, 4] is a learning algorithm which has become popular

due to its high accuracy performance. It solves both the classification and regression

problems. Nevertheless, the training phase of an SVM could be a computationally

expensive task especially for large datasets, because the core of the training is solving

a QP problem. Solving large QP problem with numeric method can be very compli-

cated, time consuming and memory inefficient. More details of solving QP problem

are explained in Chapter 5. There are countless efforts and research which have been

put on how to reduce the training time of SVM. After Vapnik invented SVM, he

proposed a method known as “chunking” to break down the large QP problem into a

series of smaller QP problems. This method seriously reduces the size of the matrix

but it still cannot solve large problem due to the computer memory limitations at

that time. Osuna et al. presented a decomposition approach using iterative meth-

ods in [5]. Joachims introduced practical techniques such as shrinking and kernel

caching in [6], which are common implementation in many modern SVM software.

He also published his own SVM software called SVMLight [6] using these techniques.

Platt invented SMO [7] to solve the standard QP problem by iteratively solving a QP

problem with only two unknowns using analytic methods. This method requires very

small amount of computer memory. Therefore it addresses the memory limitation

issue brought by large training datasets. Kecman et al. [4] proposed the Iterative

Single Data Algorithm (ISDA) which uses a single sample during every iteration of

the optimization, which performs a coordinate descent search for a minimum of the

cost function. ISDA has shown to have all the good properties of SMO algorithm

while being slightly faster. Later on, Keerthi et al. developed an improved SMO in

[8] which resolves the slow convergence issue in Platt’s method. More recently, Fan et

al. introduced a series of working set selection [9], which further improves the speed
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of convergence. These methods have been implemented and integrated in the state of

the art LIBSVM software [10]. These major work summarize the background details

of how to implement a fast classic SVM in sequential programming.

2.2 The Development of Parallel SVM

Compared to the sequential SVM, there is not much of research done on parallel SVM.

However, the development of fast parallel SVM is still a very hot research topic. Some

earlier works using parallel techniques in SVM can be found in [11], [12], [13] and

[14]. Cao et al. presented a very practical Parallel Sequential Minimal Optimization

(PSMO) [15] implemented with Message Passing Interface on a clustering system.

The performance gain of training SVM using clusters shows the beauty of parallel

processing. This method is also the foundation of the proposed GPUSVM here. Graf

et al. introduced the Cascade SVM [16] which decomposes the training dataset to

multiple chunks and trains them separately. Then the support vectors from different

individual classifiers are combined and fed back to the system again. They proved that

the global optimal solution can be achieved by using this method. This method uses

task level parallelism compared to the data level parallelism in Cao et al.’s method.

Cascade SVM offers a new way to handle ultra-large datasets training. Catanzaro et

al. proposed a method to train a binary SVM classifier using GPU in [17]. Significant

speed improvements were reported compared to the LIBSVM software. The latest

GPU version of SVM was from Herrero-Lopez et al. [18]. They enabled the possibility

to solve multiclass classification problems using GPU.
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2.3 K-Nearest Neighbors Search and Local Model

Based Classifiers

Although classic SVM shows its elegance in many aspects, researchers also put lots

of efforts on other different variants of SVM. Some of them such as Iterative Single

Data Algorithm mentioned earlier uses a single sample in solving QP problem. Others

use approximate models such as Proximal SVM [19, 20]. Kecman et al. explore

the possibility of combining local linear SVMs to approximate the global optimal

solution in [1]. Similar work is also shown in [21, 22]. This local model idea starts an

innovative trend with combination of various other classifiers. The Adaptive Local

Hyperplane [2] is one of the best. Yang and Kecman’s results have shown that ALH

beats most of other classifiers on classification accuracy for several popular datasets.

However, finding the optimal local model requires performing k-NNs search on the

training dataset. This can be very time consuming since the training stage must test

through a series of different k values. One of the typical way of finding k-NNs is using

Tree structure [23]. However, this type of method has limited speed performance in

the cases when training datasets have large feature space. Besides, doing repeated

individual k-NNs search is not very practical for training local model based classifiers

in terms of speed performance. The better approach would be computing the distance

matrix of the training dataset in advance and then sort it with indexes by either rows

or columns. Thus k-NNs can be easily located in the index matrix with whatever

given k value without performing the search operation. The disadvantage of this

method is the high cost of the distance matrix computation. This disadvantage can

be offset by utilizing the computational power of GPUs. The earliest implementation

of GPU based Euclidean distance calculation is introduced by Chang et al. in [24],

but their proposed implementation is too simple to be useful in application design.
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A more practical implementation can be found in [25]. The complete GPU KNN

algorithm was first implemented by Garcia et al. [26]. However, they use a modified

insertion sort which only sorts a portion of the distance matrix. Thus it involves

duplicated distances computation when a series of k values are tested. Furthermore,

there are neither options for using other metrics nor for an inclusion of the weights in

the distance computation. Weighted Euclidean distance computation is a necessary

part of ALH algorithm. Our research is an extension of [25, 27] which includes the

weighted Euclidean distance, cosine similarity and Manhattan distance calculation

using GPUs. It will be integrated into the Local Linear SVM and ALH to improve

their speed performance during the training phase in the future.

2.4 Parallel Computing Framework

There are many existing parallel programming tools and models proposed for differ-

ent architecture of computer systems in the past decade. Message Passing Interface

(MPI) [28] and OpenMP [29] are two of the most widely used parallel models which

are designed for main stream computing systems. MPI is a model in which computing

nodes do not share memory with each other. It is commonly used in a distributed

environment such as a clustering system. All data sharing and exchange must be

done through explicit message communications. A typical setup of MPI model in-

cludes a master node and a group of slave nodes. The master node scatters the data

to the slave nodes and gathers the results back after the computations have finished

on the slave nodes. Most of the synchronizations are done on the master node. Per-

formance of MPI system is highly related to the speed of intra-network connection

due to the large amount of data exchange. Thus many MPI based algorithms are

optimized to minimize these data exchange. The lack of the shared memory access

across multiple computing nodes requires a significant amount of work on the appli-
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cation design. OpenMP supports shared memory, which is more commonly used in

the standard workstation systems and multi-core personal computers. Shared mem-

ory system usually has a smaller scale compared to the distributed system. The

scalability of OpenMP are restricted compared to MPI. Furthermore, the require-

ment of precise threads management will not allow the OpenMP to generates many

threads due to the cost of threads overhead, threads context switching and threads

synchronization. Besides, if the amount of threads exceeds the number of computing

cores, time-division multiplexing is used by computing cores to switch between phys-

ical threads. Therefore it is less likely to improve the performance by creating more

threads, which just involves extra computations. The advantage of OpenMP is the

boost on the performance of existing applications by using multi-core system with

minimal amount of modifications on the original algorithms if they are applicable.

For example, algorithms running data independent tasks in a large loop structures

can be easily accelerated with OpenMP.

GPU’s programming model is kind of a mixture of both message passing and

shared memory with some of its own unique features. First of all, there is no shared

memory access between GPUs and CPUs. All the data must be transferred from

the main memory to the device memory for processing, which behaves the same

as MPI model does. Secondly, there are shared memory which can be accessed

by all threads within a block but threads from different blocks inside of the GPU.

This shows certain similarity feature to shared memory model. Furthermore, GPU

threads are lightweight and efficient. They are much simpler in structure compared

to CPU threads with less overhead, which makes it possible to generate huge amount

of threads for massive parallel processing. More details about GPU programming

model will be introduced in Section 3.2. More recently, several major industry players

including Apple, Intel, AMD/ATI and NVIDIA have jointly developed a standard-
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ized programming model called Open Computing Language (OpenCL) [30]. OpenCL

shares many common aspects from CUDA but it is still not very mature which makes

it less popular on NVIDIA GPUs. Therefore CUDA is used for implementing the

proposed algorithm in order to achieve the maximum speed gain by using the latest

hardware from NVIDIA.

2.5 Contributions of This Dissertation

Although there is plenty of research done using GPU to improve speed performance

of complex algorithms, many applications are still theory oriented and lack practical

usage. This dissertation not only introduces the parallel SVM algorithm and distance

calculation algorithms designed for GPU programming, but it also implements them

using CUDA framework and makes them practical for processing real-world datasets.

As it has been mentioned in the previous section, the author develops the algorithms

in a way that they can be ported to other platform such as OpenCL. The GPUKNN

search algorithm introduced in this dissertation, which is the fundamental for the

use of local model based classifiers, combines the fast distance calculation and sorting

using GPU. By largely reducing the time cost of k-NNs search, the speed performance

of LLSVM and ALH is expected to be improved heavily. Furthermore, not only does

this practical application offer the choice for different distance metrics, but it is also

smart to pick up the proper sorting algorithm for the best performance depending

upon the characteristics of input datasets.

The CUDA implementation of parallel SVM developed in this dissertation has

achieved great performance using Fermi series Tesla GPUs, which are the second

generation hardware platform for CUDA. The software utilizes the parallelism in

both data level and task level to maximize the performance of one single GPU card

or several GPU cards operating simultaneously. It also leverages the computation
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load between CPU and GPU. This helps improving the efficiency of the GPUSVM

algorithm. The current implementation of the GPUSVM outperforms the state of

the art LIBSVM tool in speed performance for both training phase and predicting

phase. It also has as good accuracy performance as LIBSVM. Besides, the software is

compatible with previous generation of GPUs and it is practical in solving real-world

problems. It supports multi-GPU system to enable even further speed improvement

on cross-validation training, which is a slow procedure on classic sequential machines.

The software is developed using a three-layer structure. The bottom layer written in

CUDA has an SVM solver and a predictor for SVM training and predicting functions.

The middle layer written in Python offers command line interface to call the solver

and predictor. It also contains utility functions of scaling the data files, shuffling

the input datasets, running cross-validations and some other tasks related to SVM.

The upper layer written in JAVA offers a user friendly graphic user interface for easy

operation.



Chapter 3

Graphic Processing Units

GPUs are micro processors commonly seen on video cards. The main function of GPU

is offloading and accelerating the graphic rendering jobs from the CPU. Rendering is

a process of generating an image from a model by a set of computer programs and

it usually involves floating point intensive computations based on various mathemat-

ical equations. Thus, before 2006, most of these GPUs were designed in a way that

computing resources were partitioned into vertexes and pixel shaders. Even though

the hardware of GPUs have matured for intensive floating point computations, there

is no other way but using OpenGL or DirectX to access the features in GPUs. Smart

programmers disguised their general computations to graphic problems in order to

utilize the hardware capability of GPU. They were the first who started to use GPUs

to solve general purpose computing problems. In order to overcome this inflexibility,

NVIDIA introduced the GeForce 8800 GTX in 2006, which maps the separated pro-

grammable graphics stages to an array of unified processors. Figure 3.1 shows the

shader pipeline of GeForce 8800 GTX GPU. It is organized into an array of highly

threaded streaming processors (SMs). In Figure 3.1, two SMs form a building block;

however, the number of SMs in a building block can vary between different genera-

tions of CUDA GPUs. Each SM in Figure 3.1 has a number of streaming processors

12
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(SPs) that share control logic and instruction cache. Each GPU currently comes with

up to 6GB (e.g. Tesla C2070) GDDR DRAM, referred to as global memory. These

global memory are essentially the frame buffer memory that is used for graphics. For

graphics applications, they hold video images and texture information for render-

ing, but for computing purpose they function as high bandwidth off-chip memory.

All later GPU products from NVIDIA follow this design philosophy thus they are

capable of general purpose computing and referred to as CUDA capable devices.

Figure 3.1: The architecture of a typical CUDA-capable GPU.

The latest Tesla GPU has the shader processors (cores) fully programmable with

large instruction memory, instruction cache and instruction sequencing control logic.

In order to reduce the total hardware cost, several shader processors will share the

same instruction cache and instruction sequencing control logic. The Tesla architec-

ture introduced a more generic parallel programming model with a hierarchy of par-

allel threads, barrier synchronization and atomic operations to dispatch and manage

highly parallel computing work. Combined with C/C++ compiler, libraries, runtime
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software and other useful components, CUDA Software Development Kit is offered

to developers who do not posses the programming knowledge of graphic applications.

With a minimal learning curve of some extended C/C++ syntax and some basic

parallel computing techniques, developers can start migrating existing projects using

CUDA with NVIDIA GPUs. Introductions of CUDA programming model and its

related optimization strategies are given in the following sections.

3.1 Computing Unified Device Architecture

(CUDA)

CUDA is a software platform developed by NVIDIA to support their general purpose

computing GPUs for easy programming and porting existing applications to GPUs.

It primarily uses C/C++ syntax and a few new keywords as an extension, which offers

a very low learning curve for an application designer. The latest CUDA version has

been supported by various third parties. Many toolboxes and plug-ins can be found

to help increase the productivity. CUDA memory model and thread organization is

introduced in this part.

3.2 CUDA Programming Model

Figure 3.2 shows the memory model of the CUDA device. The device codes can read-

/write per-thread registers; read/write per-block shared memory; read/write per-grid

global memory; read only per-grid constant memory. The host codes can transfer

data to/from per-grid global and constant memory. Constant memory offers faster

memory access to CUDA threads compared to global memory. The threads are or-

ganized in a hierarchical structure. The top level is a grid which contains blocks of
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Figure 3.2: CUDA device memory model.

threads. Each grid can contain at most 65535 blocks in either x- or y-dimension or

both in total. Each block can contain at most 1024 (Fermi series) or 512 threads

in either x- or y- dimension, or maximally 64 in z-dimension. The total number of

threads in all three dimensions must be less than or equal to 1024 or 512 depending

on the hardware specification. The organization of threads is shown in Figure 3.3.

The host (CPU) launches the kernel function on the device (GPU) in the form of grid

structure. Once the computation is done, the device becomes available again then the

host can launch another kernel function. If multiple devices are available at the same

time, every kernel function can be managed through one CPU thread. It is fairly easy

to launch a grid structure containing thousands of threads. The optimum number of
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thread and block configuration varies among different applications. To achieve bet-

ter performance, there should be at least thousands or tens of thousands of threads

within one grid. It would not make much sense to use too few threads to extract

maximal performance from hardware. However, too many threads whose number

exceeds the number of data would also increase the thread overhead and bring down

the efficiency. The multiprocessor creates, manages, schedules, and executes threads

in groups of 32 parallel threads called warps. Thus a multiple of 32 could be a good

candidate value for the optimal number of threads per block. Threads within the

same block have limited shared memory and they are able to communicate with each

other by using these shared memory. All threads have their own registers and access

to the global memory as well as the constant memory. The size of the global memory

can be as large as up 6GB (depending on the GPU hardware). Similar to Message

Passing Interface (MPI), there is no shared memory between host and device thus the

data must be transferred from the host memory to device memory in the first place.

The result must also be transferred back for future processing or storage.

3.3 CUDA Optimization Strategy

Optimizations generally are targeted on improving certain algorithms with maximum

utilization of hardware. Several techniques which have been used in the proposed

algorithms are given here. The first one is loop unrolling which is shown in Figure

3.4. Loop unrolling has been used in sequential programming for a long time. Most

modern compilers automatically unroll the loop in certain degrees to achieve better

performance. In the simple example below, the loop structure is executed only once

in the unrolled version instead of twice in the normal version. The advantage is that

each thread can now process two data elements without using an extra loop. It is

true in most situations that not enough threads can be created to match the total
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Figure 3.3: CUDA thread organization.

number of data. Thus, each thread may process more than one data element, which

requires the usage of loop structure. Think about how to write a code to do vector

summation in sequential way. It can be done like this:

int idx = 0;

while(idx < n) {

sum[idx] = a[idx] + b[idx];

++idx;
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Figure 3.4: One level loop unroll in the kernel functions.

}

Similarly, writing a CUDA kernel function to do the same job looks like the following:

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int shift = gridDim.x * blockDim.x;

while(idx < n) {

sum[idx] = a[idx] + b[idx];

idx += shift;

}
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To reduce the overhead of loop, common practice suggests doing one level of loop

unrolling as shown below.

int idx = blockIdx.x * (blockDim.x * 2) + threadIdx.x;

int shift = gridDim.x * blockDim.x * 2;

while(idx < n) {

sum[idx] = a[idx] + b[idx];

if(idx + blockDim.x < n) {

sum[idx + blockDim.x] = a[idx + blockDim.x] + b[idx +

blockDim.x];

}

idx += shift;

}

CUDA compiler does not support automatic loop unrolling like sequential program-

ming compilers due to the complexity of condition checking mechanism. Thus it is

the developers’ job to write loop unrolling statements in the source code.

Another commonly used technique is reduction. Because threads from different

blocks cannot communicate with each other, the results returned from each block

compose a vector. In most applications, since the results are distributed to many

blocks for parallel processing, they require the summation of the distributed results

and this is so called reduction. Figure 3.5 shows both inefficient reduction pattern

and preferred reduction pattern. It is important to let the threads access the global

memory in a coalesced manner to achieve the best performance. The correct imple-

mentation of reduction technique is much more complex than what is shown in the

figure. Threads must be synchronized at every stage and reductions stop at the block

level since there are no threads communication among blocks. Thus, to compute the

final result the complete reduction will require multiple launches of kernel functions

with reduced grid size until the total number of blocks in the grid becomes one. Re-

duction can be utilized to implement MAX, MIN, SUM and some other functions
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which are basic but very useful.

Figure 3.5: Non-coalesced reduction pattern and preferred coalesced reduction pat-
tern.

The third commonly used technique is the utilization of shared memory. GPUs

are fast on floating points operations but not on memory accessing operations. If

a program requires frequently access to memories, it might not be able to achieve

better performance by using GPUs. Although GPU can have global memory as large

as 6GB, the amount of shared memory is very limited. Assuming a problem which

computes summations of any two vectors among four different vectors, there are six

different combinations as a group of two vectors. Thus creating six rows of blocks

to compute the results is most intuitive idea as our first response. However, this
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configuration is shown as Grid 0 in Figure 3.6. Each vector must be read three times

from the global memory. Instead, Grid 1 configuration reduces the number of reads

for the same vectors to two, but every row block must compute two results. In order

to let the threads share data between two vector summations, shared memory must

be involved to store the data read from the global memory. In the configuration of

Grid 2, vector A is read only once but all other vectors are read twice. This does very

small improvement compared to Grid 1 in terms of memory accessing operations but

it requires much more shared memory, which might be not satisfied in some scenarios.

Thus, how to design the grid configuration and maximize the usage of limited shared

memory is an important concern for producing efficient codes. One good example

is the matrix multiplication which can be found in CUDA SDK sample codes. Our

fast distance computation routine in the next Chapter carries similar idea behind the

scene.

Figure 3.6: Different grid configurations for solving the vector summation problem
among four vectors.



Chapter 4

Similarity Search on Large

Datasets

Measuring similarity (i.e. distance, affinity, closeness) between different samples is the

fundamental approach in pattern recognition. This approach is based on the belief

that the closeness in a feature space means similarity between two samples. Similarity

search is based on the comparisons among distances. Euclidean, cosine and Manhat-

tan distances are common similarity metrics which are used in many machine learning

algorithms. The idea behind the similarity search is that a smaller distance between

two data points may indicate a stronger or closer relationship between them. General

distance matrix for a dataset is a symmetric square matrix containing distances from

each data point to all other data points including itself. When the total number

of samples grows large, it is usually not feasible to compute or store the complete

distance matrix in the system memory. For example, a dataset containing 100,000

samples could cost approximately 40GB space in single precision format and twice of

that in double precision. Obviously, half of them can be reduced due to the symmetric

property, however it is still not practical in real-world application design. Therefore

most of distance computations are done in real time or precalculated in advance. A

22
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fragment of the complete distance matrix is referred to as a partial distance matrix

shown in Figure 4.1. It contains distances between one set of data points to another

set of data points, which could have different number of samples. Partial distance

matrix can be asymmetric and rectangular. It is used for reproducing the original

complete distance matrix.

Figure 4.1: The complete distance matrix and its partial distance matrices.

This chapter addresses the issue of how to utilize the power of GPU to accelerate

the time consuming distance matrix computation. The definitions of three major

distance kernels are given at the beginning and then the classic algorithms as well

as the parallel algorithm using CUDA for distance calculation are introduced. Data

partitioning and distributed computing techniques for large distance matrix are also

presented. And then a few parallel sorting algorithms are given to build the complete

GPU based GPUKNN software. This tool has a good speed performance in solving

k-NNs search problem compared to the classic sequential algorithm. The results of

the speed performance on calculating distance matrix, sorting and the GPUKNN are

given at the end of the chapter.
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4.1 Distance Definition

Define two matrices A and B. A contains nA samples and each sample has m features.

Each row represents one data sample from the dataset. B has nB samples and it is

organized in the same format as A. The distance matrix DAB between A and B is an

nA by nB matrix where each row represents the distances between one data sample

from A to all data samples from B. The distance value dij represents the distance

between data sample �ai and data sample �bj.

4.1.1 Weighted Euclidean Distance

Weighted Euclidean distance is a more generalized Euclidean distance, also known

as weighted L2-norm distance, which offers the option of specifying a weight for each

different feature. It is defined by

dij =

√√√√
m∑

k=1

wk(aik − bjk)
2. (4.1)

When all weights are equal to one, weighted Euclidean Distance becomes to the stan-

dard Euclidean Distance. If wk = 0, the kth feature will be eliminated in distance

calculation. Weighted Euclidean distance becomes useful when the features have dif-

ferent impacts on the classification result. In Figure 4.2, the solid green line defines

the best separation boundary. Both features must be used for computing this separa-

tion line. However, the dashed yellow line can also separate the two classes without

any failure and it only uses feature 1. It is obvious that correct classification cannot

be done using just feature 2. This indicates that using a bigger weight for feature

1 compared to feature 2 might yield better classification result. If the weights are

proper chosen, weighted Euclidean distance performs better than standard Euclidean

distance. Many advanced machine learning models such as ALH in [2] use weighted
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Figure 4.2: Impact of different weights on classification.

Euclidean distance.

4.1.2 Cosine Similarity

Cosine similarity, a.k.a. cosine distance is defined as

dij =
�aT

i ·�bj

‖�ai‖‖�bj‖
=

m∑
k=1

aikbjk

√√√√
m∑

k=1

a2
ik

√√√√
m∑

k=1

b2
jk

. (4.2)

Cosine similarity is a useful measurement in documents comparison and text mining.

Weighted cosine similarity is not widely used.
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4.1.3 Weighted Manhattan Distance

Weighted Manhattan distance is another popular distance measurement similar to

weighted Euclidean distance. It is also referred as weighted L1-norm distance, which

is defined as

dij =
m∑

k=1

wk|aik − bjk| (4.3)

4.2 Distance Calculation Algorithms

4.2.1 Classic Sequential Method

Algorithm 1 shows the standard procedure of calculating distances between two

datasets. This method involves a nested for loop structure, which leads to a polyno-

mial time complexity of O(nAnBm) a.k.a. cubic time. Considering the size of feature

space is much smaller than the number of data samples, the time complexity is re-

duced to quadratic O(n2) in many cases. However, algorithms having quadratic time

complexity are still very slow and time consuming. A good property of Euclidean

distance is that the computations for the distance matrix can be broken down to

matrix level operations. In this way, the nested loop structure for pair-wise distance

computation can be removed. This is shown in Algorithm 2.

The idea of this algorithm is computing the weighted Euclidean distance matrix

using three partial distance matrices directly shown in Equation 4.4 instead of com-

puting every pair of distance one by one using loops.

DAB =
√

P1 + P2 − 2P3. (4.4)

The square root operation on the matrix is doing element-wise square root. The three
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Algorithm 1 Classic sequential distance calculation using loops.

1: load A, B, �w and allocate memory for DAB

2: for i = 1 to nA do
3: for j = 1 to nB do
4: dij = computeEucDist(�ai, �bj, �w)

5: or dij = computeCosDist(�ai, �bj)

6: or dij = computeManDist(�ai, �bj,�w)
7: end for
8: end for
9: return DAB

10: computeEucDist(�ai, �bj, �w)
11: d = 0
12: for k = 1 to m do
13: d = d + wk(aik − bjk)

2

14: end for
15: d =

√
d

16: return d
17:
18: computeCosDist(�ai, �bj)
19: p = pa = pb = 0
20: for k = 1 to m do
21: p = p + aikbjk

22: pa = pa + aikaik

23: pb = pb + bjkbjk

24: end for
25: d = p/(

√
pa
√

pb)
26: return d
27:
28: computeManDist(�ai, �bj,�w)
29: d = 0
30: for k = 1 to m do
31: d = d + wk|aik − bjk|
32: end for
33: return d
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Algorithm 2 Matrix operation based method for weighted Euclidean distance.

1: load A, B, �w and allocate memory for DAB

2: �v1 = (A · A)�w
3: �v2 = (B · B)�w
4: P1 = [�v1 �v1 . . . �v1]
5: P2 = [�v2 �v2 . . . �v2]

T

6: W = [�w �w . . . �w]T

7: P3 = A(B · W)T

8: DAB =
√

P1 + P2 − 2P3

9: return DAB

partial distances matrices are P1, P2 and P3 and they are expressed as

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

wka
2
1k · · ·

m∑
k=1

wka
2
1k

...
. . .

...
m∑

k=1

wka
2
nAk · · ·

m∑
k=1

wka
2
nAk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [�v1 �v1 . . . �v1]. (4.5)

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

wkb
2
1k · · ·

m∑
k=1

wkb
2
nBk

...
. . .

...
m∑

k=1

wkb
2
1k · · ·

m∑
k=1

wkb
2
nBk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�vT
2

�vT
2

...

�vT
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

wka1kb1k · · ·
m∑

k=1

wka1kbnBk

...
. . .

...
m∑

k=1

wkanAkb1k · · ·
m∑

k=1

wkanAkbnBk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.7)

Matrices P1 and P2 shown in Equation 4.5, 4.6 are composed by vector �v1 and vector

�v2. The weight vector �w is shown in

�w = [w1 w2 ... wk]
T . (4.8)
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Vector �v1 is acquired by

�v1 = [
m∑

k=1

wka
2
1k,

m∑
k=1

wka
2
2k, ...,

m∑
k=1

wka
2
nAk]

T

= (A · A)�w (4.9)

and vector �v2 is acquired by

�v2 = [
m∑

k=1

wkb
2
1k,

m∑
k=1

wkb
2
2k, ...,

m∑
k=1

wkb
2
nBk]

T

= (B · B)�w. (4.10)

The partial distance matrix P3 is computed by

P3 = A(B · W)T . (4.11)

When all weights are equal to 1, the weighted Euclidean distance becomes standard

Euclidean distance and Equation 4.11 changes to

P3 = ABT . (4.12)

The matrix multiplication in Equation 4.11 or 4.12 takes most of the computation

time in Euclidean distance calculation. The naive implementation yields exact same

quadratic time complexity. However, CUDA has its own fast Basic Linear Algebra

Subroutines called CUBLAS [31]. The weighted Euclidean distance calculation can be

accelerated by calling matrix-matrix multiplication routine from CUBLAS. This im-

plementation turns out to have improved time complexity compared to the quadratic

one. When it comes to the cosine similarity and weighted Manhattan distance, there

is no way to transform the distance matrix computations to simple matrix opera-
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tions thus routines from CUBLAS are useless. Although, the time complexity stays

in quadratic, the time cost of distance computations can still be reduced by using

parallel techniques. A general GPU based parallel distance computation algorithm

is introduced in the following section. It can be used for all three metrics and it

offers as good speed performance as using CUBLAS for weighted Euclidean distance

computations as well.

4.2.2 Parallel Method Using CUDA

In order to map the distance calculation to the CUDA programming model, the GPU

kernel function utilizes a 2-D grid and uses shared memory to reduce the duplicated

memory fetching operations. The size of the block within the grid is set to 16 by 16.

The following code is used for initialization.

#define BLOCK_DIM 16

dim3 dimBlock(BLOCK_DIM ,BLOCK_DIM ,1);

dim3 dimGrid ((nA+BLOCK_DIM -1)/BLOCK_DIM ,

(nB+BLOCK_DIM -1)/BLOCK_DIM ,1);

In this way, the size of the grid will depend upon the input. It overcomes the imple-

mentation issue in [24] and supports input datasets with any dimensionality and any

number of data points. The pseudo code provided in [24] requires the input feature

space as a multiple of 32 and the input number of data points as a multiple of 2,

which are not practical in real-world applications. Figure 4.3 shows how the kernel

function works. Most blocks compute 256 pairwise distances. Some blocks located

on the bottom edge or the right edge of the grid may compute less than 256 pairwise

distances. That means some threads allocated in these blocks are not involved for the

computation. This cannot be avoid when the input datasets are irregular, which do

not have the number of data points as a multiple of 16. The shared memory is used

for storing the values of the features and the values of the weights. Feature values can
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be reused in calculation of 16 pairwise distances and the weight values can be reused

in calculation of all 256 pairwise distances in that block. This significantly reduces

the time cost of global memory access.

Figure 4.3: CUDA blocks mapping for generalized distance matrix calculation.

4.3 Performance Results of Distance Kernel

Function

The following results are published in [25] generated by a workstation equipped with

the first generation of Tesla cards. The workstation has an Intel Xeon E5462 2.8GHz

quad-core CPU and 16GB RAM. There are three Tesla C1060 GPU devices connected

to the system through PCI Express interface. Each of these cards has 4GB device

memory. The CUDA 3.0 toolkit is used and the driver version is 195.36.15 for 64bit
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Linux system. The operating system is Fedora Core 10 Linux. The benchmark of

GPU algorithms includes two ways of data transferring time between host memory

and device memory as well as the computational time on the GPU.

Table 4.1 shows the normal Euclidean distance matrix calculation comparison

among naive C implementation, MKL based C implementation, Chang et al.’s CUDA

implementation [24], and the proposed generalized CUDA implementation. It is easy

to observe that using MKL and multi-thread support for CPU can boost the perfor-

mance 5 to 6 times, thus comparison with the naive C implementation does not truly

reflect the performance gain by using GPU. Our implementation is slightly slower in

these special cases (both n and m are multiple of 16) compared to Chang et al.’s im-

plementation because the kernel function has been modified to suit general datasets,

which cannot be used by Chang et al.’s method. It takes two datasets as input,

thus the same dataset is copied twice from the system memory to the device mem-

ory in theses special cases. In general, the GPU implementation still has a speed-up

of approximately 5 times compared to MKL which is in the reasonable range based

on the performance comparison of matrix-matrix multiplication between MKL and

CUBLAS shown in [32].

Table 4.1: Performance comparison of symmetric Euclidean distance matrix calcula-
tion.

Input matrix Naive Efficient Chang et al.’s Generalized
n C C (MKL) CUDA CUDA

4096 11.9 2.40 (4.96x) 0.36 (33.06x) 0.47 (25.32x)
8192 48.4 8.49 (5.70x) 1.42 (34.08x) 1.79 (27.04x)
12288 108.8 18.26 (5.96x) 3.16 (34.40x) 3.82 (28.48x)

Time unit is second and the size of feature space is 1024. Speed up is related to the
naive C implementation. Value n is number of data points.

Table 4.2 shows the performance comparison of calculating generalized distance
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matrix between any two input datasets. Chang et al.’s method is not listed because

of the unsuitability. CUBLAS 3.0 based implementation comes at the top and the

proposed generalized CUDA implementation is very close to the GPU matrix oper-

ation based method. Other distances matrices, e.g. Manhattan distance and cosine

distance, cannot be efficiently transformed to matrix level operations. However, they

still can be easily implemented by modifying the proposed method.

Table 4.2: Performance comparison of asymmetric Euclidean distance matrix calcu-
lation.

Input matrices Efficient Generalized CUBLAS 3.0 MAGMA 0.2
n n C (MKL) CUDA CUDA CUDA

4000 2000 0.92 0.20(4.60x) 0.21(4.38x) 0.22(4.12x)
4000 4000 1.82 0.38(4.79x) 0.37(4.92x) 0.42(4.33x)
12000 6000 7.98 1.75(4.56x) 1.56(5.12x) 1.72(4.64x)
12000 12000 15.86 3.52(4.51x) 2.96(5.36x) 3.33(4.76x)

Time unit is second and the size of feature space is 1000. Speed up is related to the
efficient C implementation. Value n is number of data points.

4.4 Data Partitioning and Distributed

Computation

Considering scenarios with large datasets, all data points can neither be loaded into

the system memory at one time, nor is there enough space for storing the complete

distance matrix. It would be necessary to break down the complete distance matrix

into many small distance matrices and calculate them individually in parallel. Figure

4.4 shows the approach of how to split the input datasets to chunks and calculate

the generalized distance matrices between any two chunks. Each chunk is assigned

an index from 1 to k. The final distance matrix contains k by k small distance



34

matrices. Due to the symmetric property of the complete distance matrix, there are

only k(k + 1)/2 small distance matrices required to be calculated in a total of k2

ones. The rest of them can be acquired by simply doing transpose operation on the

calculated ones, e.g. D(1, 2) is the transpose of D(2, 1). The performance gain g can

be roughly computed by

g =
k − 1

2k
· 100%. (4.13)

For example, if the input dataset is split to 4 chunks, only 10 small distance matrices

Figure 4.4: Mapping between data chunks to the related distance submatrices.

out of 16 are required to be computed. This roughly saves 37.5% of total compu-

tations. These small distance matrices can be calculated using the method, which

is accelerated by GPU, introduced in the previous section. The amount of physical

GPU devices determines how many grids can be launched simultaneously.

The Map-Reduce [33] pattern has been proposed to handle large data processing

problems in a cluster environment. The merits of this programming pattern is adopted

and modeled to do the large distance matrix calculation job. As shown in Figure 4.5,



35

Figure 4.5: Map-Reduce pattern for large distance matrix calculation.

the input reader first reads multiple chunks into the system memory. Then the mapper

generates a list of key/value pairs, which correspond to these active chunks currently

loaded in the system memory. For each key/value pair, both key and value store the

indices of the chunks. The reducers iteratively load pairs of chunks with the same

key and search for any available GPU device to launch the distance kernel function.

There is a list which stores the IDs of the available GPUs. Any GPU device which

is taken by a reducer will be removed from the list and appended back after it is

released by that reducer. Each reducer only calculates the small distance matrices

whose keys are smaller than or equal to their values. The final distance matrix is

in the form of its upper triangular. After all small distance matrices with the same

key are calculated by the reducer, the results are grouped together and passed to the

output writer. The output writer concatenates the results from every reducer and

writes them to a distributed file system if available. A drawback of this approach is

that different reducers may have different workloads. This can be solved by fixing the

number of small distance matrices calculation job to each reducer. For example, the

first reducer calculates D(1, 1) to D(1, 5), the second calculates D(1, 6) to D(1, 10)

and so on. However, the key value must still be kept the same in each reducer. In this

way, only certain reducers might have less jobs. But in a general view, the distance

calculations are distributed equally among reducers. When each reducer finishes its
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job, it will notify the mapper to update the key/value pairs list and refresh the system

memory by loading in new chunks and deleting used ones.

The complete model requires a GPU cluster environment and extra communi-

cation support, e.g. MPI, from different nodes as well as a proper distributed file

system. Our test is done on a workstation with three Tesla C1060 GPU devices.

This is much simpler compared to the GPU cluster environment. Multi-threading is

used for implementing different functions for input reader, maper, reducer and out-

put writer. Since all reducers will be competing for the GPU device resources on the

same computer, whether they have an equal amount of jobs does not matter anymore.

Because all three cards will be used for distance matrices calculations all the time,

an approximately performance increase of 3x is achieved compared to using one card

to do the same job sequentially.

Table 4.3 shows the performance of finalized chunking method tested on the real-

world datasets. File I/O time is excluded because both CPU and GPU implementa-

tions share the same procedure. The time cost is counted for calculating submatrices

only. The data transferring time for GPU is reduced because in certain cases some

datasets can be reused. For example, if the same GPU is assigned to the job calcu-

lating D(1, 1) and D(1, 2), only chunk 2 needs to be loaded into the device memory

in the second distance matrix calculation. The speedup is close to 15 times when

utilizing three GPU devices together on a dataset containing more than half million

data points.

4.5 Parallel Sorting Using CUDA

Once the distance matrix is acquired, the parallel sorting algorithm can be applied

to locate the k-NNs. There are many classic sequential sorting algorithms available

such as insertion sort, quick sort, shell sort, merge sort and radix sort. Although all
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Table 4.3: Performance result of chunking method on real-world large datasets.

Dataset n m
Xeon

c Tesla C1060 3 X Tesla C1060
4-core

Mnist 60,000 780 203.82s 4
48.43s 19.39s
(4.21x) (10.51x)

Covertype 581,012 54 54.21m 39
10.84m 3.62m
(5.00x) (14.98x)

Value n is the number of data points. Value m is the size of feature space. Value c is
the number of chunks. Time unit is second and minute. Speed up is related to CPU
implementation.

of them can be simply implemented using CUDA, some of these algorithm may not

be able to fully utilize the power of GPU and they might be slower than the highly

optimized versions using CPU. To achieve better performance, it is important to map

the algorithm to the CUDA programming model and break down the problem to

small pieces. Most classic sorting algorithms are covered in this section. However,

only three major sorting algorithm are introduced to present the power of GPU. The

first one is radix sort. It is part of the CUDA library. The detail of the implementation

is given in [34]. An efficient merge sort is also introduced in the same paper. The

second one is a modified insertion sort and the third one is a modified shell sort.

They both have original implementations from the author and they are considerably

fast for sorting arrays in certain scenarios. They compose part of the contribution

for this dissertation. Because k-NNs search requires finding the indices of the nearest

neighbors, all sorting algorithms discussed here sort with indices.

4.5.1 Sequential Sort

Sorting algorithms such as quick sort and merge sort are classified as comparison sort.

Comparison sort are based on comparison operations for finding the correct order of
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the input sequence. The time complexity O(n lg n) is the best that comparison sorts

can achieve in the worst case. However, sorting algorithms which are not comparison

based are not limited by this lower bound. For example, counting sort and bucket sort

both can perform linear time sorting. These sorting algorithms usually have certain

restraints for the input sequence which make them less popular for solving general

sorting problems.

Merge Sort

Merge sort uses the typical divide and conquer technique. The merge operation

assumes two input sequences being in either ascending or descending order. It merges

the two input sequences into one piece with the correct order. The complete input

sequence is broken down to multiple pairs of one element sequence. Then all of these

sequences are merged starting from the bottom. The algorithm sample code is shown

below.

template <class T>

void merge(T* array , int p, int r, int q) {

T* newArray = new T[r - p + 1];

int idx = 0;

int i = p;

int j = q;

while (i <= q-1 || j <= r) {

if (i == q) {

newArray[idx++] = array[j++];

continue;

}

if (j == r) {

newArray[idx++] = array[i++];

continue;

}
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if (array[i] < array[j]) {

newArray[idx++] = array[i++];

} else {

newArray[idx++] = array[j++];

}

}

copy(newArray , newArray + (r - p + 1), array + p);

delete [] newArray;

}

template <class T>

void mergeSort(T* array , int p, int r) {

if (p < 0 || r < 0) {

return;

}

if (r <= p) {

return;

} else if (r - p == 1) {

if (array[p] > array[r]) {

swap(array[p], array[r]);

}

return;

} else {

int q = p + (int)floor((r - p + 1) / 2);

mergeSort(array , p, q - 1);

mergeSort(array , q, r);

merge(array , p, r, q);

}

}

The advantage of merge sort is the stable O(n lg n) performance in both average case

and the worst case. However, the disadvantages are the recursive operation and the

extra temporary memory space taken. Unluckily, both of them are very critical for
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utilizing GPU power. Therefore, merge sort is not deep researched in this dissertation.

Quick Sort

Quick sort is probably the most popular and beautiful sort in many applications. It is

the default sorting implementation in C++ standard template library. It is also the

built-in sorting algorithm for many other programming language such as Java and

Matlab. Unlike merge sort, quick sort is an in place sorting algorithm which requires

only constant temporary memory space. The drawback of quick sort is that it has a

quadratic time complexity in the worst case. However, the worst case rarely happens.

The sample code of quick sort is given below.

template <class T>

int partition(T* array , int p, int r) {

T pivot = array[r];

int i = p - 1;

for (int j = p; j < r; ++j) {

if (array[j] <= pivot) {

++i;

if (i != j)

swap(array[i], array[j]);

}

}

swap(array[i + 1], array[r]);

return i + 1;

}

template <class T>

void quickSort(T* arr , int p, int r) {

if (r == p)

return;

if (p < r) {

int q = partition(arr , p, r);
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quickSort(arr , p, q - 1);

quickSort(arr , q + 1, r);

}

}

Quick sort uses similar divide and conquer technique as merge sort does, which is

the recursive operation. Therefore, quick sort is not considered as an efficient im-

plementation candidate for GPU. The latest CUDA platform supports the recursive

operations on the GPU which makes it possible to implement a faster GPU based

quick sort. Some useful ideas can be found in [35].

Counting Sort

Counting sort is a typical non-comparison based sorting algorithm. It assumes the

input sequences are integers in the range of 0 to k. When k = O(n), counting

sort has a linear complexity. Although counting sort has a simple form, it is used

for composing the more advanced sorting algorithm such as radix sort. The sample

implementation of counting sort is given below.

void countingSort(const int* array , int* sortedArray ,

int* cntArray , int length , int max) {

for (int i = 0; i < max + 1; ++i) {

cntArray[i] = 0;

}

for (int i = 0; i < length; ++i) {

++ cntArray[array[i]];

}

for (int i = 1; i <= max; ++i) {

cntArray[i] += cntArray[i - 1];

}

for (int i = length - 1; i >= 0; --i) { // stable

sortedArray[cntArray[array[i]] - 1] = array[i];
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--cntArray[array[i]];

}

}

The counting sort is introduced as an example to show that certain sorting algorithm

with limitations can run in linear time. Due to its simplicity and restrictions, counting

sort does not have any practical usage besides its introductory purpose.

4.5.2 Parallel Sort

Both merge sort and quick sort mentioned above have their own GPU implementation

now. Various speed improvements are reported in [34] and [35]. The problem is finding

the k-nearest neighbors in a distance matrix. This k value can be as small as 1 and

as large as the order of the matrix. It indicates that the problem can be either a

partial sorting case when k is less than the order of the matrix or a complete sorting

case when k is equal to the order of the matrix. When it comes to partial sorting

scenario, both insertion sort and selection sort outperforms other sorting algorithms.

As an example, when k = 1, both insertion sort and selection sort performs a linear

scan to find the smallest value. And it would make no sense to introduce the sorting

algorithm and sort the complete sequence just for finding the smallest value. However,

when k grows up to certain value, the inefficiencies of insertion sort and selection

sort appear. The radix sort introduced below comes from the library which is good

for sorting complete sequence. The modified insertion sort is introduced for sorting

partial sequences. Selection sort has close performance compared to insertion sort,

thus shell sort which is another interesting sorting algorithm is chosen for performance

comparison.
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Radix Sort

The most efficient sorting algorithm on GPU has been proven to be radix sort [34].

The classic radix sort sorts a sequence by its digits. It usually starts with the lowest

digit and moves toward the highest digit. It uses counting sort or bucket sort to sort

each digits. After performing the sort on all digits, the complete ordered sequence will

be given. Radix sort implemented for GPU highly utilizes the hardware capability

on floating point operations. The highlight point of radix sort is that it is extremely

efficient on ultra long sequences, which is not the exact case of k-NNs search. K-NNs

search sorts a distance matrix instead of vector. Therefore, the final output will be

a k by number of sequences matrix containing k-nearest neighbors in each sequence.

The length of these sequences is not very long. In the experimental test, loops are

used for executing the radix sort on each sequence one by one.

Insertion Sort

The insertion sort looks for the k smallest keys and it only sorts part of the sequence.

This becomes surprisingly efficient when k is small. However, it is very inefficient to

sort the complete sequence since it has a time complexity of O(n2). The sequential

insertion sort maintains a sorted sequence in the front of the input sequence. It scans

through every element and insert it into the proper position in the sorted part. Thus,

it has the time complexity of O(kn) if it stops at the kth element. When k is small and

not related to n, insertion sort can be considered as having the linear time complexity.

The parallel version of insertion sort can be implemented in a way that each CUDA

thread sorts one or more rows/columns in the distance matrix. Because the k-NNS is

interested in the index of the data points, the sorting algorithm must sort the distance

matrix while maintaining the correct order of the index matrix. Both the distance

matrix and the index matrix are parsed into the routine. When any element in the
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distance matrix is moved, the related element in the index matrix is moved similarly.

The sorting procedure is divided into two steps. The first step sorts the first k keys.

The second step scans through the rest part of keys. If a neighbor’s distance value

is found bigger than the i-th neighbor’s distance value and smaller than the i + 1-

th neighbor’s distance value where (i + 1) ≤ k, it shifts the sequence starting from

i+1-th element to k-th element one position to the right. Then it puts that neighbor

into the i + 1-th position. In this way, it is not necessary to move all elements in the

sequence which saves the device memory accessing time. There are at most k shifting

operations in one insertion operation. When the routine terminates, the k-nearest

neighbors will be placed into the first k positions in an ascending order.

4.5.3 Shell Sort

Another popular sorting algorithm is shell sort. It has an O(nlog2n) time complexity.

It is not like insertion sort because it sorts the complete sequence. Its performance

is slightly slower than radix sort on long sequences but it is faster for small distance

matrices. Compared to the insertion sort, it is faster in general case when the k value

is large enough. The increment sequence [1 4 13 40 ...] is used in the shell sort

because of its efficiency. The sorting mechanism is the same as insertion sort where

each CUDA thread sorts one or more rows/columns and adjusts the index matrix at

the same time.

4.5.4 Speed Comparison Test of Sorting Algorithms

Figure 4.6 and Figure 4.7 show the time efficiency of the above sorting algorithms

by changing both k value and dimension of the distance matrix. The solid lines are

fitting curves using the collected data. The fitting function is a Gaussian function
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shown in

y = f(x) = ae−(x−b
c

)2 , (4.14)

where a, b, c are coefficients. Figure 4.6 shows the time cost comparison for a small

fixed k value (k = 50). Insertion sort demonstrates the best performance among all

sorting algorithms. Out of the two possible ways of insertion sort, sorting by row

is slightly faster than sorting by column for small k value. It is opposite for shell

sort algorithm on GPU because sorting column elements is significantly faster than

sorting row elements. The radix sort comes in between shell sort and insertion sort.

In the second comparison test, shown in Figure 4.7, the dimension of the distance

matrix is fixed at 10,000 by 10,000. In both insertion sort and shell sort, sorting

by column outperforms sorting by row. This is expected considering the CUDA

memory coalesce. Because both shell sort and radix sort sort the full sequence,

they have a fixed performance regardless what k value is used. Insertion sort starts

getting extremely slow when k is bigger than 120. In sum, insertion sort has better

performance by doing partial sort for smaller k value whereas shell sort and radix sort

have close performances on the medium size data sequence. Radix sort is the best

choice to sort the very long sequence.

4.6 K-Nearest Neighbors Search using GPU

The brute force k-NNS is a combination of distance calculation and sorting. This is

proven to be efficient for GPU implementation instead of using complex data struc-

tures such as Cover Tree [26]. The implementation introduced in [26] is referred

as VG-KNN. The proposed GPUKNN method picks up different sorting algorithm

depending on the input and k value. When k is smaller than 120, insertion sort is

used. If k is 120 or bigger, the shell sort is used. This threshold is found under our
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Figure 4.6: Speed performance comparison of sorting algorithms for fixed k and var-
ious matrix dimension.

system configuration and it needs to be tuned for other system and application con-

figurations. The radix sort is used when the sequence is very long. Table 4.6 shows

the performance between CPU and GPU. Since comparisons between CPU and GPU

have been made in [26], Matlab is used as a reference of CPU performance instead

of using the fastest CPU k-NNs search algorithm. Comparison between VG-KNN

and GPUKNN shows that GPUKNN is much better handling different size of input

dataset and it supports simple usage of multi-GPU environment.



Figure 4.7: Speed performance comparison of sorting algorithms for various k and
fixed matrix dimension.

Table 4.4: K-NNS performance comparison on MNIST (60,000 data points, 576 fea-
tures).

Processor Method k= 50 k = 100 k = 500 k = 1000

Xeon 4-core Matlab-KNN 454.45s
Tesla C1060 VG-KNN 59.06s 68.70s 352.95s 1088.93s
Tesla C1060 GPUKNN 54.02s 62.15s 152.42s

2 X Tesla C1060 GPUKNN 30.27s 35.81s 86.80s

47



Chapter 5

Parallel Support Vector Machine

Implementation Using GPUs

Chapter 5 starts with posing classification problem as the distribution-free learning

implemented in SVM, which is based on the idea of maximizing the margin between

the two classes. This setting converts the learning procedure into solving a QP prob-

lem with both linear inequality constraints and on linear equality constraint. The

Hessian matrix of the QP problem for an SVM is dense and usually badly condi-

tioned. In addition, it scales with the number of data and such problems cannot be

solved by standard off-shelves QP solvers. It is more efficient to solve such problems

by using decomposition approaches. Sequential Minimal Optimization (SMO) is one

popular approach developed by Platt [7]. It has been proven to be very successful

in solving QP problem. Keerthi et al. [8] developed an improved version of SMO.

Cao et al. [15] continued the research and developed the parallel SMO which is the

fundamental of the proposed GPUSVM.

48
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5.1 Two-Class SVM

SVMs are constructive algorithms of statistical learning theory developed by Vapnik

and Chervonenkis in late 1960s and early 1970s [3]. They have been developed in

present form as the L1 SVMs by Vapnik and Cortes [36]. SVM and its variants,

a.k.a. kernel-based methods, have been studied extensively and applied to various

pattern classification (making predictions) and regression (curve fitting) problems.

Training a classifier requires maximizing the classification accuracy on the training

dataset. However, if a classifier is too fit for the training dataset, it might lose the

classification capability for unknown datasets. This is usually called overfitting. There

is a trade off between the generalization ability and fitting the training dataset. Two-

class nonlinear SVM is trained in a way that the original input space is mapped to a

higher dimensional feature space by the so called kernel functions and the quadratic

programming problem is then solved by finding the optimal separation hyperplane

which separates the two classes. SVM usually controls the overfitting issue better than

other machine learning tools. In general, SVM is a supervised learning algorithm that

infers a function which takes new examples as input and produces predicted labels as

output from a set of known labeled examples. As such the output of the algorithm

is a mathematical function that is defined on the space from which our examples

are taken, and takes on one of two values at all points in the space, corresponding

to the two class labels that are considered in binary classification. The standard

derivation of the SVM begins with possibly the simplest class of decision function:

linear function.

5.1.1 Hard-Margin SVM

Hard-margin SVM forms a hyperplane that separates a set of data points with label

“+1” from a set of data points with label “-1” using the maximum margin. The
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graphic presentation is shown in Figure 5.1. The output of a training data point �xi

can be computed by

Figure 5.1: A graphic representation of linear SVM.

o(�xi) = �wT�xi + b, (5.1)

where �w is the normal vector to the separation hyperplane and �xi is a training data

point. The term b is called a bias. In the case of linearly separable dataset, no training

data point satisfies o(�xi) = 0. Thus, to control separability, the following inequalities

�wT�xi + b =

⎧⎨
⎩

≥ 1 for yi = 1;

≤ −1 for yi = −1
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are used. They are equivalent to

yi(�wT�xi + b) ≥ 1. (5.2)

All hyperplanes which satisfy

o(�xi) = �wT�xi + b = c ∀c : −1 < c < 1 (5.3)

can separate the dataset correctly. They are called feasible solutions. When c = 0,

the hyperplane is in the middle of two hyperplanes with c = −1 and c = 1. The

margin is defined as the distance, multiplied by 2, from a hyperplane to its nearest

positive and negative points. The margin m can be calculated by

m =
2

‖�w‖ . (5.4)

A hyperplane is considered as optimal if it is a feasible solution and it has the max-

imum margin. Equation 5.4 shows that the maximum margin can be found when

the Euclidean norm of �w, which satisfies Equation 5.2, is minimized. The following

optimization problem

min
�w

1

2
‖�w‖,

s.t. ∀i : yi(�wT�xi + b) ≥ 1 (5.5)

can be formulated to find the optimal hyperplane. �xi is the ith training data point,

and yi is the corresponding label of �xi. The value of yi is either +1 or −1. This
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optimization problem can be transformed to a dual form

min
�α

Ld(�α) = min
�α

(
1

2

n∑
i=1

n∑
j=1

yiyj(�x
T
i �xj)αiαj −

n∑
i=1

αi),

s.t. ∀i : αi ≥ 0 and
n∑

i=1

yiαi = 0 (5.6)

using Lagrangian multipliers. It is a quadratic programming problem where the

objective function Ld solely depends on Lagrangian multipliers �α. The value of n is

the total number of training data points. There is an one-to-one relationship between

each Lagrangian multiplier and each training data point. Those training data points

whose α is bigger than zero are referred as support vectors. S describes the set which

contains all support vectors. Once the QP problem is solved and the �α is found, the

normal vector �w and the bias b can be computed by

�w =
∑

i:�xi∈S

yiαi�xi (5.7)

and

b =
1

|S|
∑

i:�xi∈S

(yi − �wT�xi). (5.8)

The classification function uses the following sgn function

d(�x) = sgn(o(�x)) = sgn(�wT�x + b), (5.9)

d(�x) =

⎧⎨
⎩

+1 ⇒ �x ∈ Positive Class;

−1 ⇒ �x ∈ Negative Class,

which assigns the correct label to an input query.
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5.1.2 L1 Soft-Margin SVM

In hard-margin SVM, the training dataset is known as linearly separable. However,

most datasets collected from the real-world problems are linearly inseparable. There

is obviously no feasible solution which can separate the positive data points from

the negative data points without errors. Thus the hard-margin SVM cannot be used

here. In order to make SVM functional for overlapped datasets, Cortes [36] proposed

an extension to the Equation 5.5 by adding a set of slack variables ζi, which allows

certain degree of misclassifications. This is shown in

min
�w,�ζ

1

2
‖�w‖ + C

n∑
i=1

ζi,

s.t. ∀i : yi(�wT�xi + b) ≥ 1 − ζi, (5.10)

where ζi permits some potential misclassifications. This is known as a soft-margin

SVM, more precisely L1 soft-margin SVM in the above formulation. The penalty

parameter C determines the trade off between the maximization of the margin and

the minimization of the misclassification. The dual form of the L1 soft-margin SVM

optimization problem is as follows

min
�α

Ld(�α) = min
�α

(
1

2

n∑
i=1

n∑
j=1

yiyj(�x
T
i �xj)αiαj −

n∑
i=1

αi),

s.t. ∀i : 0 ≤ αi ≤ C and
n∑

i=1

yiαi = 0. (5.11)

The difference between Equation 5.6 and Equation 5.11 is that the Lagrangian multi-

pliers αi now have an upper bound. The original constraint becomes a box constraint

in L1 soft-margin SVM shown in Equation 5.11.

In order to guarantee the existence of an optimal solution for a positive definite

QP problem, the Karush-Kuhn-Tucker (KKT) conditions should be satisfied. The



54

KKT conditions for the QP problem described in Equation 5.11 are met when

∀i : αi(yio(�xi) − 1 + ζi) = 0,

(C − αi)ζi = 0,

αi ≥ 0, ζi ≥ 0.

(5.12)

There are three different cases for αi:

1. αi = 0. Then ζi = 0. Thus �xi is correctly classified.

2. 0 < αi < C. Then yio(�xi) − 1 + ζi = 0 and ζi = 0. Therefore, yio(�xi) = 1 and

�xi is called unbounded support vector. Denote set U containing all unbounded

support vectors.

3. αi = C. Then yio(�xi)−1+ζi = 0 and ζi ≥ 0. Thus, �xi is called bounded support

vector. If 0 ≤ ζi ≤ 1, �xi is correctly classified. If ζi ≥ 1, �xi is misclassified.

Denote set B containing all bounded support vectors such that U ∪ B = S,

where set S contains all support vectors.

After the Lagrangian multipliers are found, the bias term b is averaged over all un-

bounded support vectors by

b =
1

|U |
∑

i:�xi∈U

(yi −
∑

j:�xj∈S

αjyj(�x
T
j �xi)). (5.13)

An input query can be classified using

o(�x) =
∑

i:�xi∈S

αiyi(�x
T
i �x) + b, (5.14)

d(�x) = sgn(o(�x)). (5.15)
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5.1.3 Nonlinear SVM

The optimal hyperplane found in a soft-margin SVM can classify overlapped datasets

with certain degree of tolerance on misclassifications. The outcome might not be

as good as what people expect. To further improve the classification accuracy of

soft-margin SVM, the original input feature space can be mapped to a new feature

space which has a much higher dimensionality. The mapping is done through some

nonlinear functions, a.k.a. kernel functions. The dual form of the nonlinear SVM is

very similar to Equation 5.11. It is shown in

min
�α

Ld(�α) = min
�α

(
1

2

n∑
i=1

n∑
j=1

yiyjK(�xi, �xj)αiαj −
n∑

i=1

αi),

s.t. ∀i : 0 ≤ αi ≤ C and
n∑

i=1

yiαi = 0. (5.16)

The kernel function maps the original input feature space to a higher dimensional

dot-product space. Several popular kernel functions are listed in Table 5.1. The bias

Table 5.1: List of popular kernel functions.

Type of Classifier Kernel Function

Linear Kernel K(�xi, �xj) = �xT
i �xj

Polynomial Kernel K(�xi, �xj) = (�xT
i �xj + 1)d

Radial Basis Kernel K(�xi, �xj) = e−γ‖�xi−�xj‖2 , γ = 1
2σ2

term b can be computed by

b =
1

|U |
∑

i:�xi∈U

(yi −
∑

j:�xj∈S

αjyjK(�xj, �xi)). (5.17)
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And the classification function is

d(�x) = sgn(
∑

i:�xi∈S

αiyiK(�xi, �x) + b). (5.18)

5.2 Multiclass SVM

Support vector machines are formulated to solve two-class problems. Because SVMs

employ direct decision functions, it is not straightforward to generalize and extend the

SVM to solve multiclass classification problems directly. Crammer et al. proposed a

direct method to solve the multiclass classification task in [37]. The direct multiclass

SVM solver is not very popular due to its numeric complexity. However, a multiclass

classification problem can be broken down to several two-class problems which are

solvable by SVM.

5.2.1 One-Versus-All

An n-class (n ≥ 3) problem can be converted to n two-class problems. In each of

these two-class problems, one class is marked with positive label “+1” and the rest

classes are combined together and marked with negative label “-1”. This method

is commonly known as One-Versus-All (OVA) or One-Against-ALL. However, this

method raises a problem that some regions will be left unclassified whereas some

other regions will be claimed by more than one class. In Figure 5.2, Region 2 is an

unclassified region and Region 1 are claimed by both Class 1 and Class 2. To address

this issue, Winner-Takes-All strategy is used. The query point is classified using all

classifiers. The outputs of each binary classifier are not processed by sgn function.

Instead, they are compared with each other and the classifier which gives the biggest

output value will assign its own class label to the query point. The result of such a

classification is shown in Figure 5.3.
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Figure 5.2: One-Versus-All SVM classification.

5.2.2 One-Versus-One

One-Versus-One (OVO) is originally proposed by Kreßel in [38]. He converts the

n-class problem to n(n − 1)/2 binary class problems, which cover all pair of classes.

However this method still has the unclassified region issue similar in OVA. The com-

mon way to address this issue is using Max-Wins voting strategy. Decision tree can

also be utilized to address this issue. The advantages and disadvantages between

OVA and OVO and their performance accuracies are discussed in [39]. LIBSVM uses

OVO described in [40] and the proposed GPUSVM in this dissertation uses OVA due

to its accurate performance and implementation simplicity.



58

Figure 5.3: One-Versus-All SVM classification using Winner-Takes-All strategy.

5.2.3 Comparison between OVA and OVO

GPUSVM uses OVA for solving the multi-class classification problems due to its

mathematical simplicity as well as the simplicity of the implementation on CUDA

platform. Rifkin et al. points out that OVA is as accurate as other approaches such

as OVO or direct SVM solution for multi-class problems in [41]. Furthermore, OVA

uses all training examples of the input dataset compared to OVO which only uses a

portion of it in each binary class problem. Considering the speed improvement, GPU

can benefit more from the larger size of the training problems.

5.3 N-Fold Cross Validation

N-fold cross-validation is a mean to measure the generalization error of classifiers for

a limited number of gathered data. The input dataset is partitioned into n folds.
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It is recommended to shuffle the dataset so that the data points from all classes are

uniformly distributed in every fold. During the training phase, one fold is used as

the testing dataset whereas the rest of data are used as the training dataset. The

training procedure is repeated n times. All misclassified data points are accumulated

to compute the final accuracy. The complete cross-validation training is repeated

for every set of different training parameters to determine the most proper training

parameters for the input dataset. This set of training parameters are used for training

the complete dataset and generating the final model. A Leave-One-Out (LOO) is a

special case of cross-validation. In LOO, one data point is used for testing purpose

and all other data points are used for training. The procedure is repeated for every

data point. This gives an unbiased estimate for test error. In general, N-fold cross-

validation is a very time consuming task. GPUSVM can utilize the multi-GPU for

cross-validation, which is implemented in this dissertation.

5.4 Platt’s SMO

The QP problem described in Equation 5.16 can be solved by the well known Se-

quential Minimal Optimization algorithm originally proposed by Platt [7] and later

improved by Keerthi et al. [8]. Cao et al. proposed a parallel SMO using Message

Passing Interface in [15] to accelerate the training procedure. The GPU based imple-

mentation of Parallel SMO introduced in [17] and [18] are also becoming more and

more popular. In the following part, SMO methods will be explained and one of the

most efficient parallel SMO implementation of using multi-threading and multi-GPU

will be introduced.

There are several standard techniques to solve the QP problems. If there is no

inequality constraint, the QP problem for the so called L1 SVM can be solved equiv-

alently by solving a system of linear equations, e.g. Least-Square SVM. Otherwise,
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methods such as Active Set and SMO can be used. The original SMO is proposed by

Platt and implemented in [7]. SMO does not need extra matrix storage nor numerical

QP optimization steps since it decomposes the overall QP into small QP subproblems,

using Osuna’s theorem [5].

SMO chooses to solve the smallest possible QP at each step, which involves two

Lagrangian multipliers because of the linear equality constraint. At each step, two

Lagrangian multipliers will be chosen jointly for optimization to update the SVM and

reflect the new optimal values. The advantage of this is that it can be done analyti-

cally. In addition, SMO does not use any matrix operations which avoids the cost of

large memory space and it is less susceptible to numerical precision issues. Two major

parts of SMO are the analytic method for solving QP of two Lagrangian multipliers

and the heuristic for choosing which two Lagrangian multipliers to optimize.

Figure 5.4: A graphic representation when both Lagrangian multipliers fulfill the
constraints.
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The box constraint makes both Lagrangian multipliers lie in the box and the

equality constraint makes them lie on a diagonal line in the box as shown in Figure

5.4.

1. When y1 
= y2, α1 − α2 + k = 0. The bounds are L = max(0, α1 − α2) and

H = min(C, C + α1 − α2).

2. When y1 = y2, α1 + α2 + k = 0. The bounds are L = max(0, α1 + α2 − C) and

H = min(C, α1 + α2).

Starting from the second Lagrangian multiplier α2 and s = y1y2, α1 can be expressed

in terms of α2 using

α1 = sα2 + k′, (5.19)

and the objective function is reduced to

min
α1,α2

Ld(α1, α2) = min
α1,α2

1

2
(K(�x1, �x1)α

2
1 + sK(�x1, �x2)α1α2 + K(�x2, �x2)α

2
2)

−(α1 + α2). (5.20)

Plug Equation 5.19 into Equation 5.20 and compute the second derivative

η = K(�x1, �x1) + K(�x2, �x2) − 2K(�x1, �x2). (5.21)

The objective function is positive definite in normal scenario and a minimum exists

along the direction of the linear equality constraint. η is greater than zero. Define the

error function ei =
n∑

j=1

αjyjK(�xj, �xi) − yi, thus the updated αnew
2 can be calculated

along the diagonal line by

αnew
2 = α2 +

y2(e1 − e2)

η
. (5.22)
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The constraint minimum can be found by clipping to the end of the line segment:

αnew
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H if αnew
2 ≥ H;

αnew
2 if L ≤ αnew

2 ≤ H;

L if αnew
2 ≤ L.

The updated αnew
1 is computed from αnew

2 by

αnew
1 = α1 + s(α2 − αnew

2 ). (5.23)

Under some rare scenarios, the η could be non-positive value. When η < 0, it means

the kernel K does not obey Mercer’s condition which causes the objective function

to become indefinite. A zero η can occur even with the correct kernel, if the input

training dataset has duplicate data points. Both of these two situations can be solved

by evaluating the objective function at each end of the line segment. The αnew
2 is

computed by

slope = y2(e1 − e2), (5.24)

change = slope(H − L), (5.25)

αnew
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H if |change| > 0 and slope > 0;

L if |change| > 0 and slope < 0;

α2 if |change| < 0 .

And αnew
1 is computed by Equation 5.23.

SMO moves the Lagrangian multipliers to the end point which has the lowest value

of objective function. If the objective function is the same at both ends then SMO

cannot make progress. When this is happening, two heuristics are utilized to choose

the new Lagrangian multipliers. As long as two multipliers are altered at each step



63

and at least one of them violates the KKT conditions, then the value of the objective

function will be decreased according to Osuna’s theorem [5]. Therefore, convergence

is guaranteed. Two heuristics are used in order to speed up the convergence. One

is for how to choose the first multiplier and the other one is for how to choose the

second multiplier. The first multiplier is chosen by the following rules:

1. Loop through �α, ∀i 0 < αi < C, if ∃αi violates KKT within ε, then choose αi;

2. Loop through �α, ∀i 1 ≤ i ≤ n, if ∃αi violates KKT within ε, then choose αi.

The search for the first multiplier starts with a single pass using Rule 2, then it runs

multiple passes using Rule 1 until Rule 1 fails. It continues switching between Rule

1 and Rule 2. The KKT condition is checked within ε of fulfillment and the typical

value is set to 0.001. This value has high impact on the speed of the convergence.

The smaller it is, the slower the convergence goes. The second multiplier is chosen to

maximize the joint optimization. However the cost of evaluating the kernel function is

high, the step size is approximated by using |e1 − e2|. So if e1 is positive, the smallest

e2 is chosen; if e1 is negative, the biggest e2 is chosen. All these errors of non-bounded

examples can be stored in a cache for the sake of algorithm performance. It is possible

that the second multiplier chosen cannot make positive progress. When this happens,

three rules are used:

1. Loop through �α, ∀i 0 < αi < C, check if ∃αi can make positive progress;

2. Loop through �α, ∀i 1 ≤ i ≤ n, check if ∃αi can make positive progress;

3. Skip the first chosen multiplier and continue.

Starting from the rule 1, if it fails then rule 2 is applied. If rule 2 fails again then rule

3 is applied. The value of bias b is evaluated in each step so that the KKT conditions
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are fulfilled for both optimized examples. The following equations are used.

b1 = e1 + y1(α
new
1 − α1)K(�x1, �x1) + y2(α

new
2 − α2)K(�x1, �x2) + b; (5.26)

b2 = e2 + y1(α
new
1 − α1)K(�x1, �x2) + y2(α

new
2 − α2)K(�x2, �x2) + b (5.27)

If both α1 and α2 are not at bounds, b1 and b2 are valid and equal. When both

Lagrangian multipliers are at bound and L 
= H, any value between b1 and b2 will

meet the KKT conditions and SMO chooses b = (b1 + b2)/2.

5.5 Keerthi’s SMO

An improved version of SMO is proposed by Keerthi et al. and it is more efficient on

speeding up the convergence compared to Platt’s SMO. The earlier versions LIBSVM

tool is partially based on this idea. The later implementations of LIBSVM uses

working set technique with second order heuristic shown in [9].

Define the following index sets at a given α and y:

I0 = {i : 0 < αi < C},

I1 = {i : yi = 1, αi = 0},

I2 = {i : yi = −1, αi = C},

I3 = {i : yi = 1, αi = C},

I4 = {i : yi = −1, αi = 0},

Iup = I0 ∪ I1 ∪ I2,

Ilo = I0 ∪ I3 ∪ I4.
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The KKT conditions can be rewritten as

∀i ∈ Iup : b ≤ ei,

∀i ∈ Ilo : b ≥ ei,

where

ei =
∑

j:�xj∈S

αjyjK(�xj, �xi) − yi, (5.28)

thus the KKT conditions will hold if and only if

bup = min{ei : i ∈ Iup},

blo = max{ei : i ∈ Ilo},

blo ≤ bup. (5.29)

An index pair (i, j) violates the KKT condition if

i ∈ Ilo, j ∈ Iup and ei > ej, (5.30)

thus the objective is eliminating all (i, j) pairs which violate the KKT condition.

However, it is usually not possible to achieve the exact optimality conditions. Thus,

it is necessary to define the approximate optimality conditions. This is shown in the

following equation:

blo ≤ bup + 2τ, (5.31)

where τ is a positive tolerance parameter. It is usually set to 0.001 for general

applications recommended in [7]. The bias value can be computed by

b =
blo + bup

2
. (5.32)
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In each iteration of the training phase, the α values are updated by

s = yupylo, (5.33)

η = K(�xlo, �xlo) + K(�xup, �xup)

−2K(�xlo, �xup), (5.34)

αnew
up = αup +

yup(elo − eup)

η
, (5.35)

αnew
lo = αlo + s(αup − αnew

up ). (5.36)

After new α values are computed, the error vector for all training data must be

updated by

enew
i = ei + (αnew

lo − αlo)yloK(�xlo, �xi)

+(αnew
up − αup)yupK(�xup, �xi). (5.37)

Most kernel values are cached in the GPU device memory, which depends upon the

available memory space. In general, the larger the device memory is, the better the

performance should be.

5.6 Parallel SMO Using Clusters

One practical and efficient parallel implementation of SMO is proposed by Cao et

al. in [15]. This is a very fundamental idea of how to distribute the computations

to multiple machines. The complete training dataset is broken down to k subsets.

Each of these subsets are processed by one single machine. In each iteration, every

slave node updates the error ek
i and computes the local version of bk

up, b
k
lo, I

k
up, I

k
lo.

Then the master node collects the results and computes the global bup, blo, Iup, Ilo. It

updates the αup, αlo and continues to the next iteration. Cao et al. claims that 90%
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of the total computation time of the sequential SMO is used for updating ek
i . Thus,

this approach can quickly gain speed improvement by distributing the operation to

multiple slave nodes. Besides, the reduction technique can be used for accelerating

the procedure of finding global bup, blo, Iup, Ilo. Detailed algorithm pseudo code and

experimental results can be found in [15].

5.7 Parallel SMO Using GPU

The GPUSVM package developed in this dissertation uses a similar parallel SMO

implementation which adapts Cao et al.’s idea as well as it improves the speed per-

formance by encapsulating both data level parallelism and task level parallelism in

GPU computing.

5.7.1 Kernel Computation

Three different kernels are implemented including linear, radial basis function and

polynomial which are described in Section 5.1.3. The computations of the linear and

polynomial kernel are straight forward by using theses equations

K(�xi, �xj) = �xT
i �xj, (5.38)

K(�xi, �xj) = (�xT
i �xj + 1)d. (5.39)

Radial basis function kernel can be optimized as

K(�xi, �xj) = e−γ‖�xi−�xj‖2

= e−γ(�xT
i �xi+�xT

j �xj−2�xT
i �xj). (5.40)
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Since kernel values are always computed from one support vector to all data points,

matrix-vector multiplication can be used for calculating the value of �xT
i �xj. This step

takes a great portion of time in the total training. A bad design of algorithm could

spend more than 90% of time on calculating kernel values. It is known that error

vector must be recomputed by using newly found support vectors which leads to the

computation of kernel values. Thus if the kernel matrix has been precomputed, then it

is only necessary to fetch the data from the memory. However, not all support vectors

used will appear as the final support vectors after training. Every data point has a

certain chance to become support vector during the training. Assuming a dataset with

50,000 training samples, the complete kernel matrix requires approximately 9.3GB

storage in single floating points. It might be feasible on some workstations with large

memory, but there is no single GPU device which has this type of capacity in device

memory. Besides, it would make no sense to compute the complete kernel matrix since

some of the data points will never appear as support vectors. Therefore, maintaining

a submatrix of the complete kernel matrix in memory is the best strategy. During

the training procedure, the most recently used support vectors are more likely to

appear again in the later iterations [18]. For multiclass classification, support vectors

are more likely to be shared among different tasks [18]. This could also be true in

n-fold cross-validation. Although the training parameters vary, the support vectors

are likely to stay the same. The Least-Recently-Used (LRU) list is the best data

structure to implement the cache in order to take the above advantages.

5.7.2 Cache Design

Cache is designed for minimizing the number of computations for the kernel functions.

There are two layers in the cache shown in Figure 5.5. They are the abstract layer and

the physical layer. The abstract layer is used as a programming interface to maintain
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the LRU list which is on the CPU side. The physical layer is the GPU device memory

layout. A 2D array referred to as cache array on the GPU device is used as the storage

of kernel matrix. Each row stores a kernel vector containing kernel values from one

support vector to all data points. Thus the number of columns is fixed to the number

of all data points and the number of rows is the size of the cache, which depends

upon the available memory on the GPU device. The abstract layer contains a vector

of nodes and a LRU list. Each nodes includes information about status, location and

lrulistpos. The abstract contains a vector of nodes and these nodes have the following

Figure 5.5: The design structure for cache.

structure:

class node{

public:

enum{OUT , IN};

int status;

int location;

std::list <int >:: iterator lrulistpos;
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node(){};

~node(){}

}

Each node represents a data point, status indicates whether the node is in the LRU

list; location stores the row number of cache array on the GPU device; lrulistpos stores

the position of the node in the LRU list. The LRU list has the same size as the cache.

There are two different scenarios of doing operations on the cache:

1. The new support vector is in the cache. If lrulistpos points at the head of LRU

list, do nothing and return its location. If not, remove it from the LRU list and

append it back to the head of LRU list. Update the its lrulistpos and return its

location. The GPU fetches the kernel vector from the location directly.

2. The new support vector is not in the cache.

(a) If the cache is not full, append the new support vector at the head of the

LRU list and update its lrulistpos. Increase the size of the LRU list by 1

and set the new support vector’s location to the value of LRU list’s size

after the increment. Set its status to IN, return its location and ask for

kernel computation. The GPU computes the kernel vector and stores it

in the location on the GPU device memory. This operation overwrites a

blank space.

(b) If the cache is full, retrieve the support vector from the end of the LRU

list and assign its location value to the new support vector’s location. Set

the expired support vector’s status to OUT. Remove the expired support

vector from the LRU list and append the new support vector at the head

of the LRU list. Update the lrulistpos of the new support vector and set

its status to IN. Return its location and ask for the kernel computations.
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The GPU computes the kernel vector and stores it in the location on the

GPU device memory. This operation overwrites the memory space used

by the expired support vector.

By carrying out the above operations, the most recently used support vector will

always appear at the head of the LRU list. Whenever the cache is full, the erased

point is always the least recently used support vector. This cache design minimizes

the unnecessary kernel computations within one single binary task as well as multitask

cross-validation. If the cache size is large enough, kernel vectors of all support vectors

appeared during training are only computed once.

5.7.3 GPU Acceleration

To maximize the performance of GPUs, the core consideration is about how to map

the computations to the CUDA programming model. This includes two parts. The

first part is data level parallelism and the second part is task level parallelism.

Data Level Parallelism

Data level parallelism is considered within one single binary classification task. Al-

gorithm 3 shows the procedure of doing one binary classification task.

Algorithm 3 Parallel SMO using CUDA for one binary task.

αi = 0, ep
i = −yi (device)

compute bp
up, b

p
lo, i

p
up, i

p
lo (device)

compute bup, blo, iup, ilo (host)
while blo > bup + 2τ do

obtain kilo,ilo , kiup,iup , kiup,ilo (device)
update αiup , αilo (device)
compute bp

up, b
p
lo, i

p
up, i

p
lo (device)

compute bup, blo, iup, ilo (host)
end while
return αi
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The training sample is split into P subsets, which are mapped to P blocks on the

GPU. The initialization of αi and ep
i are done on the device. After the initialization,

each block computes their local bp
up, b

p
lo, I

p
up, I

p
lo using reduction technique. Then the

global bup, blo, Iup, Ilo is computed on CPU. Notice that these global values can also be

computed on the GPU using single block structure, but it is much more efficient to

do it using CPU because of its small scale. Then the algorithm proceeds to the while

loop. Each while loop is one iteration to minimize the objective function and the

optimality condition is set the same as the sequential algorithm. Although the update

α function is executed on GPU, there is no parallelism when doing only one binary

classification. The obtain kernel value function takes the most of the time when the

kernel values are not cached in the memory. GPU computes the missed kernel value

and saves it in the cache. This is the core acceleration part of the whole algorithm.

Task Level Parallelism

The kernel computations are expensive in terms of time cost, which has been men-

tioned before. Even the simplest linear kernel requires a matrix-vector multiplication

for each support vector. On the other hand, it is unwise and impossible to compute

the complete kernel matrix in advance, because the order of the square kernel matrix

is equal to the total number of training samples. There is neither enough memory

space for storing the complete kernel matrix in general, nor will all training samples

become support vectors. Many SVM applications tend to compute the kernel values

during the training and store a portion of complete kernel matrix in the system mem-

ory for later access. They do cross-validation as independent tasks one by one in a

sequential manner as shown in the upper part of Figure 5.6. In this way, when each

training task is completed, its cached kernel values are removed from the memory.

This causes duplicated kernel computations across different tasks for different hyper-
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parameters. Figure 5.7 shows a binary SVM problem trained with different C. The

dataset used is an artificial dataset which has two overlapped classes with normal

distribution. The linear kernel is used in this example and the penalty value C is the

only hyperparameter. It is easy to observe from the figure that all four tasks with

different C values share certain support vectors. These shared support vectors are

shown in Figure 5.8. The kernel computations for these shared support vectors are

redundant and calculated at least four times in total assuming they are all cached in

the memory. The more C values are used for training the same dataset, the more

duplicated kernel computations are involved. This is the exact case of running cross-

validation procedure. However, all these cached kernel values can be shared across

different tasks to remove the duplicated kernel computations if they are trained to-

gether. A parallel mechanism for GPU accelerated cross-validation is shown in the

lower part of Figure 5.6.

In Chapter 7, the speed performance comparison between sequential and parallel

cross-validation is given. The sequential one is referred to as GPUSVM-S, which uses

GPUSVM to run cross-validation through the independent tasks. It trains and tests

every fold of each different combination of hyperparameters one by one. The parallel

counterpart is referred to as GPUSVM-P, which is a modified GPUSVM. It runs

several tasks with different penalty value simultaneously on single GPU card. The

algorithm of GPUSVM-P is derived from Algorithm 3 and it is shown in Algorithm

4. Every task shares the same input sequences and the kernel matrix cache but they

keep their own support vectors and α values. All the tasks are synchronized in every

iteration of SMO procedure. The violators are examined in the end of each iteration.

It is very likely that some of these tasks share the same violators thus the duplicated

kernel computation can be eliminated.



Figure 5.6: 5-fold cross-validation steps for Gaussian kernels.
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Figure 5.7: Binary linear SVM training on the same dataset with four different C.

Figure 5.8: Same support vectors shared among the four tasks in Figure 5.7.
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Algorithm 4 Parallel Cross Validation.

αk
i = 0, ek,p

i = −yk
i (device)

compute bk,p
up , bk,p

lo , ik,p
up , ik,p

lo (device)
compute bk

up, b
k
lo, i

k
up, o

k
lo (host)

while bk
lo > bk

up + 2τ do
∀p, q ∈ [1, k] and p, q ∈ Z

if ipup = iqup ‖ ipup = iqlo ‖ iplo = iqup ‖ iplo = iqlo then
fetch kernel values from GPU memory

else
compute Kiklo,iklo

, Kikup,ikup
, Kikup,iklo

(device)
end if
update αikup

, αiklo
(device)

compute bk,p
up , bk,p

lo , ik,p
up , ik,p

lo (device)
compute bk

up, b
k
lo, i

k
up, i

k
lo (host)

end while
use αk

i to test the testing set
return number of misclassified testing samples in a vector for this task C =
[C1, ..., Ck]



Chapter 6

A Glance of GPUSVM

This chapter gives the overview of the GPUSVM tool and discusses the implementa-

tion of the software architecture.

6.1 GPUSVM Overview

GPUSVM has three layers. The top layer is a Graphic User Interface (GUI) written

in Java. The GUI offers the user easy access to the tools and parameter setting. It

has three main tabs which are for cross-validation, training and predicting purposes.

They are shown in Figure 6.1, Figure 6.2 and Figure 6.3. The cross-validation interface

allows the user to choose the training file and configure various parameters such as

kernel type and scaling method. User can enter the specific GPU device id in a list to

run the cross-validation procedure on multiple GPUs if available. Our Tesla system

has two Tesla C2070s and six Tesla C2050s, thus the user can use all eight GPUs to

accelerate the cross-validation at the same time. The results of the cross-validation

will be returned as a table showing both number of support vectors and number of

misclassifications for all different combinations of the training parameters. It draws

a 2D surface for Gaussian/polynomial kernel and a curve for linear kernel. Because
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there is only one hyperparameter needed for tuning linear SVM which is the penalty

value C.

Figure 6.1: GPUSVM: cross-validation interface.

6.2 GPUSVM Implementation

The training interface lets the user choose the training file and enter the specific

parameters for a particular kernel. The user is also able to specify a GPU device

to run the training task. After the training procedure is done, a model file will be

generated which contains all the necessary information for making predictions on the

testing datasets. The training file could also be scaled before it is used. Three scaling

methods are offered. Two of them scale the dataset to a value range of [0, 1] or [−1, 1].

The third one scales the dataset with zero mean and standard deviation equal to one.

The scaling information are stored in a separated file, which is used for scaling the

query, i.e. testing, datasets so that the input feature space can be aligned. The
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Figure 6.2: GPUSVM: training interface.

Figure 6.3: GPUSVM: predicting interface.

predicting interface requires the user to choose the query datasets and the model file

as well as the scaling file. If the scaling is not performed during the training phase,
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the scaling file will be an empty file. The user can specify the GPU device id for

predicting phase. The result shows the number of misclassifications and the actual

predicting accuracy.

The middle layer of GPUSVM package are several script files written in Python.

Their major tasks are doing file manipulations. The shuffling tool rearranges the

input data sequences randomly which is critical in cross-validation. In each fold

of cross-validation, if the training part does not have equal distributions from all

different classes, it could lead to some bad results. The scaling tool scales the input

dataset according to a particular scaling method or an existing scaling file. The cross-

validation tool slices the input data file to multiple folds and prepare the training

dataset and verification dataset for the SVM solver and predictor. The SVM solver

tool and predictor tool call the actual routine in the bottom layer for training and

predicting purposes.

The bottom layer of GPUSVM package contains only two executable files written

in C on top of CUDA. One is an SVM solver which solves the QP problem in SVM

and generates the model file using GPU. The other one is a predictor which takes in

the query file and a model file generated by the SVM solver to make predictions.



Chapter 7

GPUSVM Accuracy and Speed

Performance on Real World

Datasets

This chapter presents the experimental results achieved by using GPUSVM. The state

of the art LIBSVM tool is used for comparison as the CPU counterpart. The system

hardware configuration is given first and then the characteristics of the benchmarking

datasets used in the tests are listed. The experimental tests focus on the comparison

in terms of both the accuracy and speed performance. They are performed on different

scale of datasets ranging from small number of examples to large number of examples.

The shared kernel cross-validation performance is given in the end of the chapter.

7.1 Host and Device

The GPUSVM tool is developed using CUDA in C/C++. All the experimental tests

are carried out by our latest Tesla server equipped with two Intel Xeon X5680 3.3GHz

six-core CPUs, 96GB ECC DDR3 1333MHz main memory, six Tesla C2050 with 3GB
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GDDR5 memory each and two Tesla C2070 with 6GB GDDR5 memory each. The

storage device is a 128GB SSD with Fedora Core Linux 14 x64 installed. The CUDA

driver and runtime version are both 3.2.

7.2 The Experimental Datasets

This section gives the information of datasets used in the experimental tests. All

datasets used are downloaded either from official LIBSVM [10] website or LIBCVM

[42] website. These datasets can be roughly divided into three different scales de-

pending upon their sample sizes. Datasets which have less than 1000 samples are

classified as small datasets. If the sample size of a dataset is ranging from 1000 to

100000, it is classified as a medium dataset. Datasets are classified as large datasets

if their sample sizes are bigger than 100000. The characteristics of these datasets and

the hyperparameters for the Gaussian RBF kernel are listed in Table 7.1. Several

of them are binary class datasets and the rest are multiclass datasets. Glass, iris,

wine, sonar, breast-cancer, adult datasets are from UCI [43] and heart, letter, shuttle

datasets are from Statlog [44]. Usps is a hand written dataset [45] for text recognition.

Web is web pages text categorization used in [7]. Mnist is another hand written text

recognition dataset used in [46]. There are three large datasets listed at the bottom

of Table 7.1. Usps-ext is the extension dataset of usps. Covtype is from UCI and

face-ext is from MIT. The hyperparameter C is the penalty value and γ is the shape

value of RBF kernel. The best C and γ are found out by using 5-fold cross-validation

on C ∈ {2i, i ∈ [−10, 10]}, γ ∈ {2i, i ∈ [−5, 5]} and they are listed in Table 7.1. The

accuracy and speed performances shown in the following sections use these C and γ

values. The default ε value used in these tests is 0.001.
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Table 7.1: The experimental datasets and their hyperparameters for the Gaussian
RBF kernel.

Scale Dataset
# of # of # of # of

C γtraining testing feature class
data data

small

glass 214 N/A 9 6 512 2
iris 150 N/A 4 3 16 0.5
wine 178 N/A 13 3 1 0.25
heart 270 N/A 13 2 0.5 0.0625
sonar 208 N/A 60 2 4 0.125

breast-cancer 683 N/A 10 2 0.25 0.125

medium

adult 32561 16281 123 2 1 0.0625
usps 7291 2007 256 10 128 0.015625
letter 15000 5000 16 26 16 8
shuttle 43500 14500 9 7 1 1
web 49749 14951 300 2 64 8

mnist 60000 10000 780 10 16 0.003906

large
usps-ext 266079 75383 675 2 1 0.03125
covtype 500000 81012 54 7 1 1
face-ext 489410 24045 361 2 0.001 1

7.3 The Accuracy Comparison Test on Small and

Medium Datasets

Table 7.2 shows the accuracy performance between GPUSVM and LIBSVM on small

and medium datasets. In this test, both methods have very close accuracy perfor-

mance compared to each other. GPUSVM offers as good accuracy as LIBSVM does.

Their final accuracies are slightly different from each other. This is because their

model do not posses exact number of support vectors. Besides, LIBSVM uses double

precision floating points and GPUSVM uses single precision floating points. This

will cause some minor differences in their final α values. GPUSVM does not support

double precision because the speed performance of floating points operations using
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Table 7.2: The accuracy performance comparison between GPUSVM and LIBSVM
on small and medium datasets.

dataset SVM
Training Predicting # of
Accuracy Accuracy support vector

glass
LIBSVM 98.5981%

N/A
133

GPUSVM 98.1308% 144

iris
LIBSVM 98%

N/A
25

GPUSVM 98% 27

wine
LIBSVM 99.4382%

N/A
68

GPUSVM 99.4382% 75

heart
LIBSVM 85.1852%

N/A
146

GPUSVM 85.1852% 146

sonar
LIBSVM 100%

N/A
150

GPUSVM 100% 150

breast-cancer
LIBSVM 97.2182%

N/A
91

GPUSVM 97.2182% 91

adult
LIBSVM 85.7928% 85.0132% 11647
GPUSVM 85.7928% 85.0193% 11587

usps
LIBSVM 99.9863% 95.6153% 1785
GPUSVM 99.9863% 95.715% 1923

letter
LIBSVM 100% 96.82% 10726
GPUSVM 99.8467% 97.38% 11936

shuttle
LIBSVM 99.5149% 99.6069% 3109
GPUSVM 99.4736% 99.5655% 3667

web
LIBSVM 99.4553% 99.4515% 35231
GPUSVM 99.4553% 99.4515% 35220

mnist
LIBSVM 99.5917% 98.03% 9738
GPUSVM 99.4617% 98.27% 12919

double precision on GPU is significantly lower than using single precision. Using

double precision also requires twice of memory storage space for the same amount of

data compared to using single precision. And this will bring memory limits to the

GPUSVM on solving large datasets problems. The accuracy performance of LIBSVM

has shown that it does not benefit from using double precision. Thus the GPUSVM

is designed using single precision which achieves similar accuracy performance and
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emphasizes more on speed and solving large scale problems. For binary class datasets,

GPUSVM has almost identical number of support vectors as LIBSVM does. LIB-

SVM implements OVO and GPUSVM uses OVA approach for multiclass datasets

thus their number of support vectors differ from each other. LIBSVM uses a working

set method which solves a QP problem with the size larger than two. GPUSVM also

uses an analytic method to iteratively solve the QP problem with the working set size

fixed at two.

7.4 The Speed Performance Comparison Test on

Small and Medium Datasets

The following tests shown in Table 7.3 and Table 7.4 are the speed performance

between LIBSVM and GPUSVM in both training and predicting phases for small and

medium datasets. Small datasets do not have testing set therefore only the training set

is used for prediction. The performance of LIBSVM using one core of Xeon processor

is set as the base line. It is compared with LIBSVM using all 12 cores from two

Xeon CPUs with LIBSVM’s built in OpenMP feature enabled. The total number

of threads is set at 12 to extract the maximum performance of multi-core CPU.

GPUSVM using one Tesla C2050/C2070 is also listed as the comparison reference

to show the speedup. All GPU devices used for tests have the Error Correction

Code (ECC) function disabled. This will free more device memory to the application

programs. It is easy to see that whether using GPU or multi-core CPU does not

bring any performance gain for solving small SVM classification problem due to the

overhead of using OpenMP and CUDA. Besides, the training time and predicting

time on small datasets are trivial. On the other hand, GPUSVM shows much better

performance on medium datasets and it achieves a speedup of 2.27x - 77x compared
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to standard LIBSVM. Tesla C2070 is generally faster than Tesla C2050 because of

the doubled device memory.

Table 7.3: The speed performance comparison between GPUSVM and LIBSVM on
small datasets.

dataset SVM Processor
Training

Speedup
Predicting

Speedup
Time Time

glass
LIBSVM

Xeon 1-core 0.008s 1x 0.004s 1x
Xeon 12-core 0.010s 0.8x 0.005s 0.8x

GPUSVM
Tesla C2050 3.759s 0.0021x 0.009s 0.4444x
Tesla C2070 2.32s 0.0035x 0.008s 0.5x

iris
LIBSVM

Xeon 1-core 0.002s 1x 0.002s 1x
Xeon 12-core 0.003s 0.6667x 0.004s 0.5x

GPUSVM
Tesla C2050 1.305s 0.0015x 0.006s 0.3333x
Tesla C2070 1.284s 0.0016x 0.006s 0.3333x

wine
LIBSVM

Xeon 1-core 0.003s 1x 0.003s 1x
Xeon 12-core 0.004s 0.75x 0.005s 0.6x

GPUSVM
Tesla C2050 1.567s 0.0019x 0.008s 0.375x
Tesla C2070 1.055s 0.0028x 0.007s 0.4286x

heart
LIBSVM

Xeon 1-core 0.006s 1x 0.005s 1x
Xeon 12-core 0.005s 1.2x 0.006s 0.8333x

GPUSVM
Tesla C2050 1.03s 0.0058x 0.01s 0.5x
Tesla C2070 1.048s 0.0057x 0.01s 0.5x

sonar
LIBSVM

Xeon 1-core 0.014s 1x 0.011s 1x
Xeon 12-core 0.011s 1.2727x 0.011s 1x

GPUSVM
Tesla C2050 1.383s 0.0101x 0.009s 1.2222x
Tesla C2070 1.645s 0.0085x 0.009s 1.2222x

LIBSVM
Xeon 1-core 0.008s 1x 0.006s 1x

breast Xeon 12-core 0.006s 1.3333x 0.012s 0.5x
cancer

GPUSVM
Tesla C2050 1.352s 0.0059x 0.025s 0.24x
Tesla C2070 1.395s 0.0057x 0.022s 0.2727x

The speed performance of OpenMP enabled LIBSVM is quite good on medium

size datasets. This is due to the shared memory system setting. All threads resided

in the CPU can access the large main memory. And most of the kernel values can

be cached in the main memory. However, this performance is strictly limited by the
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Table 7.4: The speed performance comparison between GPUSVM and LIBSVM on
medium datasets.

dataset SVM Processor
Training

Speedup
Testing

Speedup
Time Time

adult
LIBSVM

Xeon 1-core 60.634s 1x 20.273s 1x
Xeon 12-core 8.998s 6.7386x 2.216s 9.1485x

GPUSVM
Tesla C2050 8.644s 7.0145x 0.697s 29.0861x
Tesla C2070 7.636s 7.9405x 0.649s 31.2373x

usps
LIBSVM

Xeon 1-core 4.901s 1x 2.113s 1x
Xeon 12-core 1.331s 3.6822x 0.446s 4.7377x

GPUSVM
Tesla C2050 3.005s 1.6309x 0.088s 24.0114x
Tesla C2070 2.158s 2.2711x 0.081s 26.0864x

letter
LIBSVM

Xeon 1-core 37.768s 1x 4.666s 1x
Xeon 12-core 11.902s 3.1712x 1.88s 2.4819x

GPUSVM
Tesla C2050 11.318s 3.3370x 0.465s 10.0344x
Tesla C2070 10.554s 3.5785x 0.445s 10.4854x

shuttle
LIBSVM

Xeon 1-core 9.379s 1x 2.402s 1x
Xeon 12-core 2.047s 4.5818x 0.642s 3.7414x

GPUSVM
Tesla C2050 3.267s 2.8708x 0.573s 4.192x
Tesla C2070 2.238s 4.1908x 0.526s 4.5665x

web
LIBSVM

Xeon 1-core 1450.933s 1x 59.278s 1x
Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x

GPUSVM
Tesla C2050 94.317s 15.3836x 1.267s 46.7861x
Tesla C2070 71.291s 20.3523x 1.217s 48.7083x

mnist
LIBSVM

Xeon 1-core 256.579s 1x 86.559s 1x
Xeon 12-core 64.04s 4.0065x 10.183s 8.5003x

GPUSVM
Tesla C2050 58.308s 4.4004x 1.154s 75.0078x
Tesla C2070 39.552s 6.4871x 1.124s 77.0098x

number of CPUs and the cores of each CPU on the motherboard. That means the

maximum performance of CPU in this workstation is achieved. Using any number

of threads other than 12 will not gain any benefit. On the other hand, the potential

of using GPU is huge since there is only one GPU device involved in the current

testing. Properly developed multi-GPU model is expected to bring dramatic speed

improvement.
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7.5 Experimental Results for Different Epsilon on

Medium Datasets

In this part of tests, various ε values are used to find out the impacts on both accuracy

and speed performance of changing the value of ε. The ε value is used as the converging

criteria during the iterative learning process in the SMO procedure. In theory, the

smaller the ε value is, the longer time the convergence will be likely to take for each

iteration. The recommended ε value is 0.001 which has been mentioned in Section 5.

In the following tests, the ε values used are 0.0001, 0.001, 0.01 and 0.1. The accuracy

is measured for predicting datasets. The time cost is measured for training phase.

The medium datasets are used due to their varieties.

Figure 7.1 shows that all datasets have close accuracy performance on different ε

values except the usps dataset. The accuracy of usps dataset has a drop on both very

small and very large ε values. The largest ε value used on usps dataset produces an

accuracy which is significantly lower than any other ε values do.

Figure 7.2 presents the total number of support vectors found during the training

phase for different ε values. The web dataset is the only one which has much smaller

number of support vectors when it is trained by using the largest ε value. All other

datasets get close number of support vectors by using different ε values. Considering

the accuracy performance shown in Figure 7.1, web dataset actually requires less

number of support vectors to achieve its best accuracy.

Figure 7.3 shows the time cost in seconds for the training phase by using different

ε values. All datasets shows a decline of time cost when the ε increases except usps.

Usps has slight increase of time cost when ε increases. It is expected that a larger

epsilon value should make the converging procedure faster.

It is obvious that different ε values do bring some impacts for both accuracy
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Figure 7.1: The accuracy performance for different ε values on medium datasets.

and speed performances. These impacts vary case by case on individual datasets.

However, it is also clear to see that the default ε value can always produce good

enough results.

7.6 Experimental Results on Large Datasets

In this test, both the accuracy performance and speed performance comparison be-

tween GPUSVM and LIBSVM are measured on large datasets. Table 7.5 shows the

accuracy comparison and the number of support vectors acquired during the training

phase. The hyperparameters used in the tests are listed in Table 7.1. These accura-
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Figure 7.2: The number of support vectors for different ε values on medium datasets.

cies are for testing data given in Table 7.1. For the binary class usps-ext and face-ext

datasets, GPUSVM and LIBSVM achieve exactly the same accuracy. LIBSVM per-

forms slightly better on the multiclass covtype dataset, which might be due to the

performance difference between OVO and OVA.

Table 7.6 shows the training time cost, the predicting time cost and the relative

speedups compared to the LIBSVM using 1 core. The training time cost is also

shown as a graphic representation in Figure 7.4. GPUSVM outperforms standard

LIBSVM approximately two orders of magnitude and OpenMP enabled LIBSVM

about one order of magnitude. This is very impressive speed improvement and it

shows that GPUSVM is more suitable for large scale datasets. Figure 7.5 is the time
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Figure 7.3: The speed performance for different ε values on medium datasets.

Table 7.5: The accuracy performance comparison between CPU and GPU on large
datasets.

Dataset SVM
Testing # of

Accuracy support vector

usps-ext
LIBSVM 99.2332% 39570
GPUSVM 99.2332% 38598

covtype
LIBSVM 80.5028% 246444
GPUSVM 80.3362% 267373

face-ext
LIBSVM 98.037% 52488
GPUSVM 98.037% 34992
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cost comparison of predicting phase. GPUSVM is blazing fast which is about 16 times

faster than OpenMP enabled LIBSVM and 380 times faster than standard LIBSVM.

Table 7.6: The speed performance comparison between CPU and GPU on large
datasets.

Dataset SVM
Training

Speedup
Testing

Speedup
Time Time

usps-ext
LIBSVM (Xeon 1-core) 1511.9m 1x 190.7m 1x
LIBSVM (Xeon 12-core) 66.4m 22.8x 8.4m 22.7x
GPUSVM (Tesla C2070) 8.4m 180x 0.5m 381.4x

covtype
LIBSVM (Xeon 1-core) 1347.7m 1x 198m 1x
LIBSVM (Xeon 12-core) 59m 22.84x 8.7 22.76x
GPUSVM (Tesla C2070) 19.4m 69.5x 0.7m 282.9x

face-ext
LIBSVM (Xeon 1-core) 6522.8m 1x 195m 1x
LIBSVM (Xeon 12-core) 286.5m 22.77x 8.5m 22.9x
GPUSVM (Tesla C2070) 5.3m 1230.7x 0.3m 650x

Figure 7.4: Training time comparison between GPUSVM and LIBSVM on large
datasets.
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Figure 7.5: Predicting time comparison between GPUSVM and LIBSVM on large
datasets.

7.7 The Cross Validation Performance Compari-

son Using Single GPU

One of major contributions of this dissertation is using shared kernel matrix across

multiple training tasks during the cross-validation procedure. Each training task with

its own hyperparameter shares the kernel matrix cached in the GPU memory. Thus

many duplicated kernel computations can be eliminated so that the training time

cost can be shortened. Adult and web datasets are used for measuring the shared

kernel cross-validation speed performance. Table 7.7 shows the comparison of the

training time cost between GPUSVM-S, GPUSVM-P and LIBSVM. GPUSVM-S is

the single task training as mentioned before and it trains a pair of C and γ one by

one on GPU. It basically calls GPUSVM tool directly. GPUSVM-P is a modified

GPUSVM tool which uses the shared kernel matrix to train all C and one γ to-
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gether. LIBSVM trains a pair of C and γ one by one which is the same as what

GPUSVM-S does. For adult dataset, the training parameters are γ = 0.0625 and

C ∈ {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64}. For web dataset, the training parameters

are γ = 8 and C ∈ {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64}. The performance of LIBSVM

is set as the benchmark baseline. GPUSVM-P is 10 times faster on adult dataset and

almost 100 times faster on web dataset for SVM training.

Table 7.7: The speed performance comparison among GPUSVM-S, GPUSVM-P and
LIBSVM.

Dataset SVM Training time Speedup

adult
LIBSVM 1601.37s 1x

GPUSVM-S 309.91s 5.2x
GPUSVM-P 155.42s 10.3x

web
LIBSVM 12198.3s 1x

GPUSVM-S 564.16s 21.6x
GPUSVM-P 123.36s 98.9x

In order to analyze the performance result in more detail, Figure 7.6 shows the

independent task comparison between LIBSVM and GPUSVM-S. Both of them are

measured with 10 pairs of different combinations of C and γ values in 10 tasks.

GPUSVM-S shows good speed improvement on every independent task. The total

number of support vectors of GPUSVM-S and LIBSVM is very close in each task,

which guarantees the accuracy performance. The support vectors and their related

α obtained by GPUSVM-P are identical to GPUSVM-S. The total number of ker-

nel computations are shown in Figure 7.7. The duplicated kernel computations in

GPUSVM-S lead to a longer training time compared to GPUSVM-P.



Figure 7.6: Independent task comparison on speed performance and number of sup-
port vectors between GPUSVM and LIBSVM.

Figure 7.7: Total number of kernel computations for GPUSVM-S and GPUSVM-P.
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Chapter 8

Conclusions and Future Work

This dissertation covers the fields of machine learning, i.e. data mining. In particular,

it contributes to the speeding up the approaches, algorithms and software for learning

from large datasets. It is focused primarily on the classification (pattern recognition)

algorithms but the ideas and software developed can readily be extended to solving

regression (high-dimensional functions approximation) tasks too. All the algorithms

are implemented on GPGPUs but they can be extended to other parallel computing

environment.

The first, massive calculation, problem to be solved was a calculation of distance

matrix for large datasets. A general CUDA based distance calculation method is

proposed which works for three different distance kernels including weighted Euclidean

distance, cosine similarity and weighted Manhattan distance. It achieves roughly

5 times speedup on Euclidean distance calculation compared to the fastest CPU’s

algorithms. Several parallel sorting algorithms are also compared and they have their

own advantages and disadvantages according to different scenarios. By combining

the parallel distance matrix computation and parallel sorting algorithms together, an

efficient CUDA based parallel k-NNs search tool, GPUKNN, is developed to accelerate

the time consuming k-NNs search procedure. The results obtained have shown that
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GPUKNN is faster than VG-KNN, which has been considered as being many times

faster than other CPU based k-NNs search algorithms.

A parallel processing algorithm for SVM training on GPGPUs, which uses a paral-

lel SMO is also proposed and implemented in this dissertation. The related software

package GPUSVM is developed on top of CUDA platform. Although GPUSVM

does not have a rich feature set like LIBSVM does, it offers enough capability to

process real-world datasets. It supports multiclass classification, three popular ker-

nel functions for SVM training, cross-validation and double (nested) cross-validation.

GPUSVM achieves very close accuracy performance as LIBSVM does since they both

use working set technique for solving QP problem. For small datasets, GPUSVM does

not benefit from its parallel architecture since the training time is trivial. However,

when it comes to the medium and large datasets, GPUSVM shows the superior per-

formance in terms of speed. The time cost by using GPUSVM is from one order of

magnitude to three orders of magnitude (10 to 1000) times smaller compared to LIB-

SVM’s one. The novel cross-validation tool implemented in GPUSVM using shared

kernel matrix has much better speed performance than standard cross-validation pro-

cedure due to the heavily reduced amount of kernel computations. This method may

be less capable of solving large datasets compared to the standard one because of the

memory limitations. The cross-validation can always be accelerated by using multiple

GPU devices.

GPUs have brought an opportunity of accelerating many applications to solve

various problems. Although GPUs can generally improve the speed performance

compared to classic sequential algorithms, there are many different factors which all

have more or less impacts on how much improvement one can achieve with the help

of GPUs. For example, the Amdahl’s law decides the maximal possible acceleration

brought by parallel processing for a certain problem. Thus, it is important to dive
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deeper into understanding both how CUDA model works and what special features

are offered by CUDA. It is even more important to discover the parallelism in a

certain problem and how to use the features offered by CUDA to solve it. The major

future work of this dissertation can be extending the current algorithm to solving

problems with ultra-large datasets. The recent release of CUDA 4.0 introduces new

features like Unified Virtual Addressing. This feature can connect all the devices

memory from different GPU cards together, and in this way every GPU card can

bypass the CPU and main memory to access the global memory from other cards.

Thus, an ultra-large dataset will be able to fit into the memory of multiple GPU

cards and the memory limitation of one single card will be resolved. There are

a few more possible extensions of this dissertation in future such as tuning cross-

validation and adding support of solving regression problems. Tuning cross-validation

is an important procedure because people always use cross-validation to find the

best hyperparameter for the training dataset and these hyperparameters are used

for generating the SVM model. Standard cross-validation performs a grid search on

a series of hyperparameters. This could lead to a very long training time due to

the improper combinations of hyperparameters used. One possible method which

can accelerate the search of the best hyperparameters is automatic tuning. Adding

regression support is another good extension because SVM is not only very popular for

its classification performance, but it also has good performance in solving regression

problems. It is expected that GPUs can bring significant speed improvement in

solving regression problems.
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