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Metabolites consumed and produced by microorganisms for mass and energy 

conservation may cause changes in a microorganism’s environment. The microorganisms 

are unable to tolerate a particular environment for a long period. They may leave their old 

existence to find a new environment to sustain life. Essentially, organisms need to 

maintain their metabolic processes to survive in the new environment. Limitations of 

experimental studies to explore cell functions and regulations in detail result in 

insufficient information to explain processes of metabolic expressions under 



 x

environments of organisms. Consequently, mathematical modeling and computer 

simulations have been conducted to combine all possible cellular metabolic fluxes into 

single or multiple connected networks. Metabolic modeling based on linear programming 

(LP) subjected to constraints with an optimization approach is often applied metabolic 

reconstruction. The LP objective function is maximized to obtain an optimal value of 

biomass flux. Optimal solutions in LP problems can be used to explain how metabolites 

function in metabolic reactions. As an LP problem may have many optimal solutions, this 

study proposes a method for enumerating all alternate optimal solutions to evaluate 

important reactions of metabolic pathways in microorganisms. The algorithm for 

generating alternate optimal solutions is implemented in MetModelGUI, a Java-based 

software for creating and analyzing metabolic reconstructions. The algorithm is applied 

to models of five microorganisms: Trypanosoma cruzi, Thermobifida fusca, Helicobacter 

pylori, Cryptococcus neoformans and Clostridium thermocellum.  The results are 

analyzed using principal component analysis, and insight into the essential and non-

essential pathways for each organism is derived. 

 
 



 1

 

 

CHAPTER 1 INTRODUCTION 

 

 

In evolutionary theory, metabolites consumed and produced by microorganisms 

for mass and energy conservation may cause changes in a microorganism’s 

environments. Internal and external effects related to the microorganisms and their 

environments may be another reason of these changes. They are unable to tolerate a 

particular environment for a long period of time. Similarly, when they are isolated from 

their natural environment, their living capabilities are rather restricted (1,2).  A lack of 

energy resource is an example that the microorganisms deal with environmental changes 

to sustain life. This can be determined by higher survival rates of staying in appropriate 

environment than staying in a particular environment for a long time (2).  

Generally, wild-type genes in a living cell are anticipated to perform their 

functions well and optimize their growth rates in a normal environment, whereas genes 

with mutations and evolutions may contribute to the internal and external environmental 

changes. Cellular functions for metabolisms regulated by those mutated genes are 

interrupted and affected by the environmental limitation. Essentially, organisms need to 

maintain their metabolisms to survive in the altered environment (3). 

In the past decade, as high-throughput and biological technologies have greatly 

advanced, genomes studies have been increasingly developed. The developments 

generate new knowledge and provide systematic strategies to understand phenotypic 



 2

characteristics of microorganisms and cellular systems. Cell architectures and their 

products in the cell system were separately described based on their functions and 

locations rather than the entire genome system (4, 5).  Therefore, it is essential to 

understand interrelationships between all of the cell elements and their related functions 

over the system. It is also important to connect the prior biocellular knowledge to the 

novel one and support claims made by scientific discoveries or advances of technologies. 

Since the potential benefits gained depend on prior knowledge, several researches 

involved cellular functions and metabolisms in both experimental and non-experimental 

studies have been widely published (3, 5).    

Limitations of experimental studies to explore cell functions and regulations in 

details result in insufficient information to explain processes of metabolic expressions 

under environments of organisms (4, 6). Meanwhile, annotations of genome sequences 

are more available in the past decade and it becomes possible to reconstruct artificial 

biochemical networks (2). Consequently, mathematical modeling and computer 

simulations have been conducted to combine all possible cellular metabolic fluxes into 

single or multiple connected networks. Nowadays, there are several mathematical 

applications existing for analysis of metabolic fluxes. Mathematical theories used for 

supporting the applications are also developed and verified by experimental and 

observational studies. Most of the mathematical methods involved concentrations of 

substrates, products and co-factors related to the metabolic fluxes in the cellular 

pathways. Once the information of the mathematical models is known, the metabolic 

reconstruction can be built to predict the entire metabolic networks of the system. 

Additionally, we can analyze dynamic flux distributions, flux steady states and flux 
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variability by the mathematical models in order to interpret the whole functions and 

activities in the living cell (4, 5).   

Mathematical models have been developed to describe characters of problems 

defined from several areas to be convenient for solving and analysis. The mathematical 

models play important roles in many aspects in biological sciences such as atomic 

models, genomic models, proteomic models, etc. They support us to decide and clarify 

situations of the problems. Such models are presented in terms of mathematical symbols 

and expressions. The models are related to quantifiable decisions called as an objective 

function, e.g. 321 23 xxxZ ++= . The decisions are assigned as variables with restrict 

values to measure performances under given conditions, e.g. 1025 321 ≤+− xxx . The 

mathematical expressions for the restrictions are known as constraints of the models.  

Constraints and coefficients in the objective functions are determined as parameters of 

the models. Thus, in order to accomplish mathematical models with genetic and 

molecular functions, the restricted values of the decision variables are investigated to 

optimize the objective functions, conditional upon specific constraints. By the 

investigation, small variations of the parameters have possibly occurred. We propose the 

better the models, the better the functions are clarified (7, 8, 9).  

 To accomplish applications of mathematical models in various decision problems, 

theories of linear models are developed. An approach of the linear models to obtain 

optimal solutions in such problems is linear programming (LP). LP originated from 

mathematical programming or mathematical modeling paradigm, where variables 

represent quantifiable decision.  Linear programming is also called linear objective 

function or linear inequalities-equalities for constraints. LP is typically applied in 



 4

operations research as a technique to evaluate problems of concern, to derive solutions of 

the problems, and to obtain optimal results. The optimization refers to both maximize and 

minimize of objective functions. The operations research involves conducting and 

coordinating operations. The operations research has been extensively applied in business 

and public service fields. However, they resemble the operation in conducting scientific 

research (7, 8, 9).   

Although, not all decisions of problems are represented by a linear programming 

method, a number of important components in the problems are approximated by linear 

functions. Compared to non-linear programming, the linear program is less complicated 

as their linear functions consist of a single variable in each component and they have 

powers of 1 for each variable. The objective functions based on linear programming are 

more likely to accomplish the problem solving than those based on complex models or 

non-linear programming. They facilitate the overall structures of the problems making it 

more comprehensible and enable investigation into the interrelationships of the entire 

problem.  With the goal of maximization of objective functions, linear programming is 

currently used to provide suitable resulting decisions on the problems of concern 

worthwhile (7, 9).  

In general, cellular metabolic networks and metabolic capabilities in particular 

conditions can be explained by modeling and simulations in biological analysis. A study 

defined the modeling and simulations in two approaches: dynamic and static approaches 

(10). The dynamic approach is composed of kinetic equations, their parameters, and 

reaction rate conditions. The static approach consists of stoichiometric reactions in 

metabolic networks, used in large-scale metabolic analysis to present particular states 
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under genotypic and environmental conditions in organisms. These two approaches play 

a vital role in reconstructing genome-scale metabolic networks. The reconstruction 

becomes available when using gene annotation to explain the stoichiometric reactions of 

cellular metabolisms, setting linear mass balance equations for metabolites, completing 

the networks by the literature and experiment data, and then validating the results of 

modeling and simulations by comparing results from real experiments (5, 11).  

Several algorithms for metabolic network reconstructions have substantially 

developed based on purposes in identifications targets and cell functions. A summary of 

algorithms with their corresponding mathematical methods for metabolic simulations can 

be obtained in Park JM et al. (2009) (11). In this study, we present a genome-scale 

network reconstruction based on flux balance analysis with constraint-based modeling.  

 

 

1.1. Flux balance analysis 

 

Flux balance analysis (FBA) is an approach based on linear optimization 

principles. It has been used to determine metabolic characteristics of genotypic and 

metabolic conditions with their environments. It also has been applied to predict 

metabolic flux distributions after genes, pathways, or regulatory circuits in microbial 

cells have been modified. Typically, metabolic fluxes take a few minutes to adapt 

themselves to altered environments.  Thus, complex regulatory features of the dynamic 

fluxes are required to complete descriptions of the adaptations. This can occur when 

metabolic flux balances are assumed. As the nature of metabolic systems has limited 
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information for reconstruction, the FBA under given constraints has been developed to 

analyze the metabolic pathways in a steady state and to reduce flux solution spaces in real 

organisms. The flux balance analysis is particularly appropriate to study the complex 

system in cell metabolism. The FBA can be compared to genome experiments in order to 

verify the complex information and improve accuracy of appropriate constraints used 

under specific and investigated circumstances (3, 4, 6).   

 

 Edwards SJ and et. al, (2002) suggested six basic steps to implement flux-balance 

analysis in studying activities of elements in a cell system.  First, a metabolic network 

that will represent cellular activities is reconstructed.  In the metabolic network, 

metabolites or components along with their internal and external fluxes are drawn as a 

diagram with a system bound to understand the relationships of those elements. Second, 

balance equations, serving as dynamic mass balance of each component or metabolite 

and containing internal and external fluxes, such as nutrient intake and uptake rates of 

substrate and product concentration in biosynthesis, are built. Given, S is a stoichiometric 

matrix containing coefficients of flux balance equations and v is a vector of internal and 

external metabolic reaction rates. vS ∗  obtains a total net of metabolic consumptions and 

productions in the cell. In other word, linear programming enables dimension reduction 

of flux balance equations. Different organisms required different biosynthesis and 

different metabolic maintenances. The requirements can be obtained from experimental 

studies and previous knowledge of the organisms. Third, steady state mass balances are 

assumed to continue flux-balance analysis when information in some kinetic reactions is 

limited. Then, physicochemical constraints involving the internal and external fluxes are 
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conditioned using the circumstance information and certain factors related to the systems. 

Thus, the internal fluxes, such as rates of changes or growth rates are limited because of 

the steady state and the constraints gained. Due to the internal fluxes unknown and the 

number of possible fluxes is greater than the number of metabolites in the metabolic 

system; therefore, an objective function containing unknown parameters of the internal 

fluxes is defined to solve the problems of balance equations.  Linear programming 

subjected to the constraints with an optimization approach is created to estimate 

maximum rates of change or other similar rates, such as maximum growth rates, 

minimum waste products, and maximum product formations. Each step provides scopes 

of information in which the possible solution spaces are narrower and more convenient to 

understand how the metabolites function.  In addition to finding the set of optimized 

values, alternate methods are also considered to interpret all possible activities over the 

complex cell system. The altered methods may be to add or remove the metabolic 

reactions, change the internal and external flux parameters, and define different 

constraints and objective functions (3). Some strategies with utilizing the linear 

programming have been developed to create all possible alternative optimizations e.g. a 

mixed-integer linear programming (MILP), CoI-based weighted fluxes (CoI: Coefficient 

of Importance), quadratic programming (QP). The altered methods generate some 

hypothesis which can be verified using computer simulation (3, 4, 12, 13, 14).  

 Although, flux-balance analysis is applied in several aspects in physical and 

biological sciences, there are some limitations caused by gene mutations and evolutions. 

When genes are mutated, their functions are possibly changed. Their metabolites and 

other proteins may be decreased. The dynamic fluxes of those genes in the system are 
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ceased intermediately. The FBA may fail due to the absent and nonfunctional genes. For 

instance, E.coli MG1655 in silico was mutated by gene deletions. The metabolic network 

of the E.coli mutant was examined using FBA. Given the reason of gene mutation, the 

FBA failed to analyze in the part of the network in which toxic metabolic intermediates 

appeared. Apart from the mutation, the FBA may be restricted due to unknown or 

improper constraints or algorithms for conduction of flux balance systems and 

insufficient information for completion of metabolic pathways. These cannot improve 

accuracy of in silico experiments and lead to misinterpretation of flux results. (1, 3, 4).  

 

 

1.2. Constrained-based modeling 

 

 Constraints are applied in genome-scale models to control limitation of cell 

function and consequences of cell behaviors (5). Constraints are used to allow 

possibilities of steady states in metabolic flux balance analysis so that we can obtain 

substantial information in biological reactions which lead to defining cell functions. The 

constrains-based approaches provide biochemically and genetically consistent 

frameworks to generate a hypothesis for testing microbial cell functions. They are often 

used in metabolic engineering experiments in order to predict metabolic capabilities in 

real an organism, which cannot be studied in reality (1). They are also created flux 

balance equations or basic functions for in silico analysis of microorganisms (2).   

In silico is a computer representation of cellular metabolic simulation 

constituents, their interactions and their integrated functions as a whole. This phase was 
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coined in 1989 as an analogous word to in vivo. The in silico can be inferred as an 

experiment study of living organisms that takes place outside organisms. This analysis 

method enables stimulations of microbial growths and behaviors. The in silico 

representation can be formed as an in silico organism using metabolic network 

reconstructions based on genomic data as a backbone. Flux balance analysis and refined 

information of genotypic and phenotypic characteristics of genome on genome-metabolic 

network reconstructions are easily to study when in silico modeling and analysis of 

microbial metabolism in organisms were developed. (15, 16, 17) 

 Constraint-based modeling and simulations was often implemented using 

optimization techniques with various constraints to improve simulation results (1). 

Structures of constraint-based modeling are important to mention in these six parts: 

general structure, type of objective function, type of constraints, selection of algorithms, 

flux solution spaces, model validation and simulations.   

 

1.2.1. General structure of constraint-based models is composed of variables, 

constraints and objectives. 

 

Variable is a changeable value with respect to the given information under 

different conditions. 

Decision variable or control variable is a value under the control of decision 

maker. 
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Constraints are the conditions that must be satisfied during the simulation to 

obtain an optimal solution. The constraints are classified into equality and inequality 

constraints. This is an example of constraints. 

 

                              iii yay ⋅≤≤⋅ βα                     { }1,0∈iy                             (1.1) 

 

α  and β  are constraints that indicate the upper and lower limits 

ia  is a continuous variable  

iy  is a discrete variable having a binary value of 0 and 1 

 

Objectives are described by mathematical functions composed of decision 

variables, representing the purpose of decision marker. The equation of objective 

function is presented as follows: 

 

Maximize/Minimize ( ) ( )knnrrr xbxbxbxf ,22,11, ...+++=  , for all r             (1.2) 

 

( )xf  is the form of objective presents types of simulation.  

Number of objectives ( )xf  determines whether the system can have a 

single or multiple objectives.  

b and k are constants.  

k determines whether the system are linear or non-linear 
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Steps for solving optimization problems are the following: 

1. Determine the decision variables 

2. Formulate all proper objectives  

3. Formulate constraints 

4. Maximize/minimize the objective functions 

 

In genome-scale metabolic models, substrates and products are converted to each 

other according to the stoichiometric reactions in their metabolic network. For metabolic 

flux balance, difference between rate of consumption and production for a specific 

metabolite equals to the change of metabolite concentration over a period of time. The 

equation of metabolic flux balance can be presented by  

 

                                                    jij
i vs

dt
dX .=           where jjj v βα ≤≤                    (1.3) 

X denotes concentration of metabolite 

i and j denote the indices of metabolites and reaction 

S denotes the stoichiometric nm×  metrix   

m is number of metabolites 

n is number of reactions 

v is a vector representing the fluxes of reactions that consume and produce 

the metabolites 

 

If concentration X is a substrate of the reaction, the stoichiometric coefficients 

will be negative values. v is subjected to upper and lower bound constraints presented by 
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α  and β . When assuming a steady state reaction, the time derivative can be eliminated. 

Then the equation of metabolic flux balance results in a system of linear equations as 

follow:  

                                                  0. =jij vs         where jjj v βα ≤≤                   (1.4) 

 

 

1.2.2. Type of objective function  

 

The form of objective functions or the method for solving the optimization 

problems is diverse with respect to metabolic purposes. The metabolic purpose may be 

maximizing growth rate, maximizing by-product formation, or maximizing ATP and 

reducing power. The type of objective function can be linear programming, quadratic 

programming, mixed integer linear programming, or others (1).  

Single and multiple objective functions in constraint-based model were 

determined by number of objective functions )(xf  in the metabolic system. The single 

objective function is often used for maximizing growth rate and the multiple objective 

functions are applied for many features of biochemical formations in the metabolic 

system. The multiple objective functions are more useful for implementing these cases in 

ecological system: cell-to-cell interactions or two different organisms with two in silico 

models (1).  

Linear programming (LP) is applied to solve the optimization problems in flux 

balance analysis under a pseudo-steady state as equation (4) including flux variability 

analysis (FVA), flux coupling analysis (FCA), and flux sensitivity analysis (FSA). The 
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FVA performs testing of maximize and minimize fluxes and comparing difference of flux 

solution spaces of each reaction. The FCA evaluates relationships of pairwise 

combinations in the network. Also, the FSA compares changes of objective functions to 

the changes in other fluxes (1).   

For other desired purposes, minimization of metabolic adjustment (MOMA) and 

regulatory on/off minimization (ROOM) were used to examine physiological 

characteristics of organisms under gene knockout conditions. MOMA uses the same 

constraints with FBA but defines flux distributions with quadratic programming (QP). 

MOMA has a purpose to find a flux distribution that is unique and similar to the wild-

type flux distribution.   ROOM uses mixed integer linear programming (MILP) to 

minimize number of significant flux changes. Additionally, alternative pathways may 

take place when cell metabolisms were changed by gene deletions or mutations. The 

conventional methods, restricted to essential genes and reactions, need to be modified to 

support their changes. The summation of incoming and outgoing fluxes (flux-sum) at 

around particular metabolite was applied to evaluate in such case. In addition, if 

organisms have complex regulatory systems then steady-state regulatory flux balance 

analysis (SR-FBA) with MILP were applied to take into account regulatory mechanisms 

of a binary condition of genes, proteins and reactions. If flux balance analysis were 

performed based on thermodynamics then thermodynamics-based metabolic flux analysis 

(TMFA) was considered. In intracellular cytoplasm, enzymes catalyzing in a particular 

reaction were compared with other enzymes in a limited space. FBA with molecular 

crowding (FBAwMC) was applied to predict rate of each reaction in this case, which 

provide the results correlated to the data that was evaluated by experiments.  
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Furthermore, a bilevel optimization algorithm (OptKnock) allows for identifying gene 

knockout and overproduction of metabolites. OptReg is another multiple objective 

function, derived from the steady-state fluxes with upward and downward departures, and 

linear programming with several constraints. The OptReg optimizes a framework to 

examine multiple activations/inhibitions and drop-out of target candidates. OptGene, an 

extension of OptKnock, uses genetic algorithms and applies genetic modification to in 

silico genome-scale model. Lastly, an optimal metabolic network identification (OMINI) 

produces flux distribution and explores minimization of discrepancies between 

experimental and in silico data. Table 1 presents objective functions for particular 

algorithms used for analysis in genome-scale network reconstructions (1).  

 

Table 1. Frameworks of algorithms and description of objective functions  

Algorithm Objective function Solver Descriptions 

FBA max/min jv  LP Usually maximizing the growth rate 

MOMA min ∑
=

−
M

j
jj xw

1

2)(  QP Minimizing the Euclidian distance from a wild 
type flux distribution under knockout condition 

ROOM min jy  MILP 
Minimizing the number of significant flux 
changes from a wild type flux distribution under 
knockout condition 

OptKnock max lbiochemicav  MILP Bilevel optimization framework: biomass, 
biochemical 

OptReg max lbiochemicav  MILP Determining the activation/inhibition and 
elimination  

OptStrain 
Step1: 

 max j

M

j
iji vsMW ∑

=1

,  i = p LP, MILP 

Determining the maximum yield of the desired 
biochemical and minimizing the number of non-
native reactions needed to meet the maximum 
yield of desired biochemical production 

 
Step2:  
min ∑

−∈ naivenonMj
jy    

OMNI Min exp
j

opt
jj j vvwe −∑  MILP Identifying the reaction set that leads the best 

agreement between prediction and experiment 



 15

 

Note:  The symbols for explaining each algorithm. i: index of metabolites, j: index of reactions, d: 

index of deleted reaction, N: the set of metabolites, M: the set of reactions, R: the set of 

substrates, P: the set of desired biochemical, A: the set of deleted reactions, E: the set of 

experimentally measured reactions, S: nm× stoichiometric matrix (m: number of metabolites; n: 

number of reactions), v: fluxes of reactions, lbiochemicav : fluxes of biochemical production, 

optv and ecpv : optimal and experimentally measured fluxes, MW : molecular weight of 

metabolites, we weight for measured fluxes. 

 

 

1.2.3. Type of constraints 

 

Types of constraints are different based on their cell functions. Physico-chemical 

constraints are constraints acting on mass, charge and energy conservations, such as 

biochemical reactions or local concentration rates inside cell. These constraints could not 

be destroyed from the cell systems. Topobiological constraints are constraints affecting 

both forms and functions. The topobiological constraints works depend on size, 

movement and interactions of cells, e.g. DNA physical arrangement or molecular 

distribution. Environment constraints are time and condition environmental constraints. 

The examples of the environmental constraints are nutrient availability, pH, or 

osmolarity. The last type of the constraint is the regulatory constraint. This constraint is 

self-imposed and works under evolutionary changes, such as gene expression or enzyme 

inhibitors (2, 5).  

 Apart from biological types of constraints, constraints can be defined in terms of 

mathematical forms for two basic types: balance and bound constraints. Balances are 
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constraints related to conserved quantities, such as mass, energy, momentum, 

electroneutrality, or osmotic pressure.  Bounds are the greatest possible degree of 

numeric ranges of mathematical variables and parameters. The examples of bound 

constraints are concentrations, fluxes, or kinetic constants. In a genome-reconstruction 

model, balance constraints are applied in a steady state of fluxes in a metabolic network, 

no accumulation or metabolite quantities, while bounds are upper and lower limits of 

enzyme reactions, concentration values, collision frequency, or transmembrane potentials 

in the individual fluxes. The balances and bounds together are allowable to describe 

possible solution spaces of fluxes in a reconstructed network. Genome-scales network 

reconstructions with constrain-based approach were typically crated for a particular 

organism, which allow studying capabilities and phenotypic characteristics of organisms 

(2, 5). 

Algorithms of constraint-based modeling and simulations are important for 

reconstructing genome-scale metabolic models. Typically, flux solution spaces by in 

silico simulations are too wide, while the flux solution spaces by experiment data are 

rather small, such as fluxes of cellular regulation, robustness, and homeostasis. Suitable 

constraints can provide flux solution spaces closer to the flux solution spaces in real 

organisms. Thus, appropriate constraints or relative constraints enable to reduce also 

solution spaces of simulation (1, 11).  
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1.2.4. Selection of algorithms of constraint-based modeling 

 

Constraint-based model conductions are depended on study objectives and given 

conditions. Algorithms for the conductions are also selected based on these reasons. 

Incorrect algorithms may cause model errorless and misconception (1). Park JM et al 

(2009) provides a flowchart to select algorithms and objective functions using the study 

purposes and model conditions (figure 1).  

 

 

Figure 1. A flowchart to select algorithms by purposes of simulation and given conditions 

 

 The guideline to find appropriate algorithms was started by choosing a study 

purpose to describe cellular physiology or predict metabolic capabilities after genetic 

perturbations. In real organisms, several algorithms and constraints can be concurrently 

In Sillico Algorithms and Purpose of Simulation 

To Describe Cellular Physiology  To Predict Metabolic Capabilities 

Experimental Flux Data  
- OMNI 

Molecular Crowding 
- FBAwMC  

Transcriptional 
Regulation 

Thermodynamics 
- TMFA 

Gene Knockout 
- MOMA   - OptGene 
- ROOM    - OptKnock 
- Flux-sum 

Gene Amplification 
- OptReg  (FVA, FCA,FSA)

Insertion of Foreign Genes 
-OptStrain 
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selected such as regulation, robustness, and homeostasis as they were used to support in 

describing the cellular physiology simultaneously.  In metabolic engineering studies, 

some algorithms, such as gene knockout, gene amplification, gene expression, or 

conduction of foreign genes are concurrently considered to find knockout candidates and 

describe metabolic properties.  In drug discoverers, flux-sum is applied for metabolic 

modeling of new drug developments on gene targets in the conditions of gene 

perturbation and gene knockout. Other algorithms with different objectives were applied 

as provided in the guideline (Figure 1) (1). 

 

1.2.5. Flux solution spaces 

 

Flux solution spaces represent all possible states in metabolic networks in 

constraint-based modeling under genetic and environmental conditions. Flux solution 

space calculates maximum rate of biochemical and by-product productions under a 

specific growth rate and other objective rates. Given information by the flux solution 

spaces are also used to design metabolic engineering experiments and examine existences 

of engineering organisms whether they have satisfied design criteria. Overall, the flux 

solution spaces provide useful information to determine metabolic capabilities. 

Moreover, the flux solution spaces can become more realistic by adding some constraints, 

adding new metabolic reactions for expanding metabolic aspects in the network or 

removing some interrupted reactions for increasing correctness of predictions (1).  
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1.2.6. Validation of constraint-based modeling  

 

The purposes of genome-scale metabolic network reconstruction are to conduct 

metabolic network systems consisting of sophisticated information of all elements and 

functional activities in the cellular systems and to make more realistic predictions of 

metabolic characteristics and their activities. One way to accomplish the purposes are to 

validate successful results by the reconstructed networks to real results by experimental 

studies for an acceptance of numbers to confirm whether the metabolic modeling are 

appropriate under given constraints (1).     

There are two possible ways for validation of genome-scale metabolic network 

reconstructions. First, we can measure numbers of true positive (TP), true negative (TN), 

false positive (FP), or false negative (FN) results, where one assumes an experiment is a 

standard method and a genome metabolic reconstruction is an alternative method. The TF 

determines the number of results found in both experiment and simulation and the TN 

determines the number of no results in both sources. In contrast, the FP indicates results 

found in the simulation, but not in the experiment and the FN shows results found in the 

experiment, but not in the simulation. Both FP and FN indicates false predictions and 

inconsistency of the constraint-based modeling and genome-scale metabolic network 

reconstructions. The false predictions are also considered for the reconstructions with 

each condition or overall conditions of a full model (15). Alternative method for the 

validations is using a literature review. With limitations of experiments, several 

reconstructed genome-scale studies uses direct physical evidences from the literature 

review to ensure their discovered knowledge in their studies (1, 16, 17).  
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1.3. Linear programming 

 

1.3.1. History of linear programming 

  

 Linear programming is a short name of “Linear programming problems” or “LP 

problems”, which is a field of applied mathematics concerned with problems. For 

example, diet problems are required for satisfying between energy and sources of 

nutrients involving other factors, such as serving size and price per serving. This problem 

can be stated by linear programming with requirements of equalities or inequalities 

between the satisfactions in order to get all energies needed in everyday life (7).    

 Linear programming was known by G. B. Dantzig in 1947. He designed a simplex 

method to solve the linear programming formulation of U.S. Air Force planning 

problems. However, the field of linear programming was studied as early as 1947 for the 

duality theorem of linear programming; a restricted class of LP; the system of linear 

inequalities, investigated by Fourier in 1826; and rudimentary algorithms for their 

solutions in 1939. The studies were about an essence of mathematical theories. The linear 

programming was also applied in other unrelated problems of production managements. 

In economic field, the LP was applied in the renowned system by L. Walras in 1847. At 

the same time, T.C. Koopmans recommended that the LP was an effective framework in 

analysis of classical economic theories. The LP led to pure mathematical theories, such as 

geometry of convex sets and theory of two-person games. Afterwards, it became popular 

in several areas and was increasingly considered as an efficient way for the entire 

operational system.  
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At important periods, the linear programming was well-known when L.V 

Kantorovich and T.C. Koopmans received the Novel Prize award in economic field for 

their contributions to the theory of optimum allocation of resources by the Royal Sweden 

Academy of Sciences in 1975. However, in academic areas, G. B. Dantzig was 

universally recognized to be the father of linear programming as he provided the first-

known contribution.  The second period, mathematicians made an attempt to create a 

solution to solve linear programming. The simplex method was finally discovered as an 

efficient algorithm, satisfied in both theoretical and practical. Nowadays, modern 

computation technologies have made linear programming easier in applying in real work. 

Problems could be remarkably presented by linear programming and solved by the 

simplex method with information based on experience and intuition (7, 20).  

 

1.3.2. Theory of linear programming 

 

Definition  

A linear programming problem is the problem of maximizing (or minimizing) a linear 

function subject to a finite number of linear constraints.  

 

Examples  

Example 1:           Maximize         321 345 Xxx ++  

Subject to      532 321 ≤++ xxx  

                     1124 321 ≤++ xxx             (1.5) 

                    8243 321 ≤++ xxx  
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                               0,, 321 ≥xxx  

Example 2:           Minimize         213 xx −  

Subject to     56 4321 ≤+−+− xxxx  

                              1127 42 ≤++ xx     (1.6) 

                         5321 =++ xxx  

                                          243 ≤+ xx  

                                             0, 32 ≥xx  

 

Linear function 

If nccc ,...,, 21  are real numbers, then the function of f of real variables nxxx ,...,, 21   

defined by  

                  j

n

j
jnnn xcxcxcxcxxxf ∑

=

=+++=
1

221121 ...),...,,(                        (1.7) 

This function is called a linear function. 

 

Linear equation 

If f  is a linear function and if b is a real number, then the equation is called a linear 

equation 

                 bxxxf n =),...,,( 21                                                                           

 

And these equations are called linear inequalities  
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     bxxxf n ≤),...,,( 21  

     bxxxf n ≥),...,,( 21  

 

Linear constraints 

Linear equations and linear inequalities are both referred to as linear constraints. 

 

Standard form  

Several authors call the standard form of linear programming as canonical or symmetric 

forms. These are the examples of standard forms of linear programming.  

 

Maximize      j

n

j
j xc∑

=1

 

Subject to     ij

n

j
ji bxa ≤∑

=1

          ( mi ...,,2,1= )    (1.8) 

                     0≥jx                     ( nj ...,,2,1= ) 

 

Where i  are different subscripts to different constraints and j  are different subscripts to 

different variables 

 

The standard form is different from other LP forms, such as the example in (1.5) and 

(1.6) that all of their constraints are linear inequalities and the last n  of nm +  constraints 

(1.8) are very special. In other words, none of the n  variables are assumed negative 

values and such constraints are called nonnegativity constraints. Obviously, the 
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constraints in 1.6 are two linear equations and the variable 41, xx  may assume negative 

values.  

 

Objective function 

The objective function is the linear function that is to be maximized or minimized in an 

LP problem. For example, the function z  of variables 654321 ,,,,, xxxxxx  is the objective 

function, defined by  

 

654321621 1920913243)...,,,( xxxxxxxxxz +++++=  

 

Feasible solution 

Number nxxx ...,,, 21  that satisfy all the constraints of an LP problem are set to a 

feasible solution. Some LP problems may have many feasible solutions in some senses. 

Some may not have any feasible solutions at all. The latter LP problems are call 

infeasible  

 

Optimal solution 

An optimal solution is a feasible solution that maximizes or minimizes the objective 

function. For the maximizing or minimizing, it depends on the form of the problem. The 

corresponding values in the objective function maximized are called the optimal values 

of the problem.  
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For example, the unique optimal solution of a LP problem is 

665544332211 ,,,,, cxcxcxcxcxcx ======     ; where ic are any constants, or 

simply ( 654321 ,,,,, cccccc ) 

 

There are three possibilities of optimal solutions for a LP problem  

1. Unique optimal solution 

2. Many different optimal solutions 

3. No optimal solutions. 

 

The third possibility may have resulted from non-feasible solutions or too many different 

feasible solutions of the LP problem (or unbounded solution). The LP problem with the 

unbounded solution has many feasible solutions but none of them is the optimal solution 

or the best solution. These are the examples of the LP problem without optimal solutions.  

 

The LP problem with infeasible solutions:  

  Maximize               213 xx −  

Subject to             221 ≤+ xx  

                        1022 21 −≤−− xx                 (1.9) 

                               0, 21 ≥xx  

The LP problem with unbounded solutions:  

  Maximize                21 xx −  

Subject to           12 21 ≤+− xx  
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                             22 21 −≤−− xx                 (1.10) 

                                0, 21 ≥xx  

 
In summary, there are three categories of linear programming problems.  

1.  The LP problem has an optimal solution or many solutions 

2. The LP problem has infeasible 

3. The LP problem is unbounded  

 

 

1.4. Simplex method 

 

1.4.1. Examples of using simplex method in LP problem 

 

The simplex method for solving the LP problem can be described as 

 

1. A linear programming problem can be stated by these following. 

Maximize                            321 345 xxx ++  
 
Subject to                            532 321 ≤++ xxx  

                                            1124 321 ≤++ xxx                                                   (1.11) 

                                            8243 321 ≤++ xxx  

                                                     0,, 321 ≥xxx  
 

2. Slack variables which are analogous to each constraint and the z  function are defined. 

Every feasible solution 321 ,, xxx , the value of the left-hand side is at most value of the 
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values of the right-hand side for each constraint. The slack variables and z  function are 

as follows: 

                                             3214 325 xxxx −−−=  

                                             3215 2411 xxxx −−−=         (1.12) 

                                             3216 2438 xxxx −−−=  

                                              321 345 xxxz ++=  
 

321 ,, xxx are called decision variables, while 654 ,, xxx are called as slack variables 

The LP problem can be restated as  

minimize    z    subject to     0,,,,, 654321 ≥xxxxxx .    (1.13) 

 

The relationships among (1.11), (1.12), and (1.13) can be described in that. 

- Every feasible solution 321 ,, xxx of (1.11) can be extended into a feasible 

solution 621 ...,,, xxx of  (1.13). 

- Every feasible solution 621 ...,,, xxx of (1.13) can be restricted into a 

feasible solution 321 ,, xxx of  (1.11). 

- The feasible solutions of (1.11) and (1.13) carries optimal solutions of (1.11) 

onto the optimal solutions of (1.13) and vice versa. 

 

3. The core of the simplex method is the successive improvement having found some 

feasible solution 621 ...,,, xxx of (1.13). We should find the feasible solution of 
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621 ...,,, xxx and repeat the process a finite number of times. We can find the optimal 

solution eventually. The feasible solution of 621 ...,,, xxx can be stated 

                                        321321 345345 xxxxxx ++>++  

 

4. According to the core of simplex method, we find some feasible solution by setting the 

decision variables 321 ,, xxx at zero and evaluate the slack variable 654 ,, xxx  

8,11,5,0,0,0 654321 ====== xxxxxx    (1.14) 

yields 0=z  

 

5. Find the next solution to obtain a higher value of z . We keep 032 == xx , increase 1x  

to obtain z and each result of slack variables 654 ,, xxx  

 

5,7,3,0,0,1 654321 ====== xxxxxx , which obtain 5=z  

2,3,1,0,0,2 654321 ====== xxxxxx , which obtain 10=z  

1,1,1,0,0,3 654321 −=−=−==== xxxxxx , which obtain 15=z  

 

However, we cannot increase 31 =x  because it requires that 0≥ix . Thus, the strategies 

are that increasing ix  up to the bound, keeping 032 == xx , still maintain feasibility 

that  0,, 654 ≥xxx  
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6. We evaluate the conditions or constraints to find bounds of 1x . Given these condition,  

0325 3214 ≥−−−= xxxx  implies 
2
5

1 ≤x ;  

05 ≥x  implies 
4

11
1 ≤x  

06 ≥x  implies 
3
8

1 ≤x  

Thus, the next solution is  

2
1,1,0,0,0,

2
5

654321 ====== xxxxxx  for 
2
25

=z  (1.15) 

In this case, z is increased from the maximum of z we have evaluated so far.  

 

7. As we still do not know that 
2
25

=z  is the highest value of z, we should continue in a 

similar way to look for a feasible solution to better the feasible solution in the above 

section. Thus, we should conduct a new system of linear equations that relates to (1.15), 

such as the system (1.12) relates to (1.14).  

 

The new system should present the variables that assume positive values ( 651 ,, xxx ) in 

(1.15) in terms of the variables that equal zero ( 432 ,, xxx ) in (1.15). Notice that the 

variable 1x  was changed from zero in (1.14) to positive values in (1.15). This implies that 

for the new system, we can express 1x  in the left-hand side and ,, 32 xx  and 4x  in the 

right-hand side. We still evaluate the same constraint in (1.12). However, to express 
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65 , xx in terms of 432 ,, xxx , we also need to replace 1x  by 432 ,, xxx in the second 

and third constraints in (1.12). Thus, the new system is  

4321 2
1

2
1

2
3

2
5 xxxx −−−=  

425 251 xxx ++=      (1.16) 

4326 2
3

2
1

2
1

2
1 xxxx +−+=  

432 2
5

2
1

2
7

2
25 xxxz −+−=  

   

We find the next solution to obtain a higher value of z . In the new system, the values of 

z can be increased only by the increment of 3x . If we keep 042 == xx , then increase 3x  

by considering the first, second, and third constraints together. It implies that 53 ≤x   

for 01 ≥x ; no 3x  values for 05 ≥x ; 13 ≤x   for 06 ≥x . Among the possible ranges 

of 3x  , the highest value of 3x  should be 1. By the new system, when 

keeping 042 == xx , the results of other variables will be 13 =x , 15 =x , 06 =x . 

Therefore, the new feasible solution is  

 

0,1,0,1,0,2 654321 ====== xxxxxx   , obtain 13=z  (1.17) 

 

The new system improves the z value from 12.5 to 13  

 

8) The new solution (1.17) can obtain the highest value of z. However, this solution 

should present along with their system of linear equations. To construct the new system, 
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we use the information in (1.17). 642 ,, xxx are the zero variables, while 531 ,, xxx are  

the positive-value variables. The zero variables should be in the right-hand side and the 

positive-value variable should be on the left-hand side in the new system of linear 

equation. As the number of 3x  variables in the linear equations in (1.16) is smaller than 

the other variables, we start with the third constraints and substitute for 3x  in the first and 

second constraints. Therefore, the new system of linear equation is presented as follows:  

                                             6423 231 xxxx −++=  

                                             6421 222 xxxx +−−=        (1.18) 

                                             425 251 xxx ++=  

                                              642331 xxxz −−−=  

 

9) After we have the new system of linear equations, we should do iteration to increase 

the value of z as we did in (1.12) and (1.16). However, there are no values that can 

increase z. If we increase any variables of 642 ,, xxx , it will decrease the value of z 

instated. Also, by the constraints, the values of 642 ,, xxx cannot be negative values. It 

seems that we are able to obtain the highest value of z ( 13=z ).  The solution (1.17) is 

the optimal solution among all feasible solutions which satisfied the inequality 13≤z .  

 

1.4.2. Dictionary for solving linear programming 

 

1. Given a LP problem in general  
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Maximize      j

n

j
j xc∑

=1

 

Subject to     ij

n

j
ji bxa ≤∑

=1

          ( mi ...,,2,1= )    (1.19) 

                     0≥jx                     ( nj ...,,2,1= ) 

 

2. We first introduced the slack variables mnnn xxx +++ ...,,, 21  and denote the objective 

function by z . The standard form in (1.19) is defined as follow: 

 

inx +    =   ib  -  j

n

j
ji xa∑

=1

      ( mi ...,,2,1= ) 

 z   =  j

n

j
j xc∑

=1

                   (1.20) 

 

3. To be convenient, we can associate a system of linear equations with each of the 

feasible solutions to find the improved solutions. In each iteration, the simplex method 

moves from some feasible solution mnxxx +...,,, 21  to another feasible solution 

,...,,, 11 mnxxx +   which is      

∑
=

n

j
jj xc

1

   ≥     ∑
=

n

j
jj xc

1

       (1.21) 

 

4. The improved feasible solutions are translated in choice of values of right-hand side 

variables into the corresponding values of the left-hand side variable and of the objective 

function. J.E.Strum (1972) refers to the systems as dictionaries. Thus, every dictionary 
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associated with (1.19) will be a system of linear equations in the variables 

mnxxx +...,,, 21  and z . However, not every system of linear equations in the variables 

constitutes a dictionary (7).  

 

5. We have defined mnnn xxx +++ ...,,, 21  and z  in terms of nxxx ...,,, 21 , and so the n + 

m +1 variables are interdependent. For example, the three dictionaries in the first 

example are as follows: 

654321 ,,,,, xxxxxx and z constitute a solution of (1.12) 

654321 ,,,,, xxxxxx and z constitute a solution of (1.16) 

654321 ,,,,, xxxxxx and z constitute a solution of (1.18) 

 

These three dictionaries contain the same information of the seven variables. However, 

they present the seven variables in their own ways. For instance, the system of (1.12) the 

variables 321 ,, xxx are independent and the slack variable 654 ,, xxx and z are 

dependent on them. In addition, every solution of (1.12) is a solution of (1.16) and (1.18), 

and vice versa.  

 

We can define properties of dictionaries in these following: 

1. Every solution of the set of equations comprising a dictionary must be also a 

solution of (1.20) and vice versa.  

2. The equations of every dictionary express m of the variable mnxxx +...,,, 21  and 

the objective function z in terms of the remaining n variables.  
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3. When setting the right-hand side variables at zero and evaluating the left-hand 

side variables, we can obtain a feasible solution. This property is call feasible 

dictionaries.  

 Every feasible dictionary has a feasible solution.  

 Not all feasible solution is described by a feasible dictionary, e.g.  

 3,5,2,1,0,1 654321 ====== xxxxxx   of (1.5) 

 

The feasible solutions that can be described by dictionaries are called basic. In other 

wards, the variable jx  on the left-side of a dictionary are the basic, while the variable jx  

on the right-side of a dictionary are nonbasic. The important characteristic of the simplex 

method is that it work properly with basic feasible solutions and neglect all other feasible 

solutions. 

 

1.4.3. Revised Simplex Method    

 

1.4.3.1. Standard and revised simplex method 

 

The revised simplex method is known as recreating a new solution directly from the 

original data and the new solution was found without any reference to dictionaries. In 

each iteration, the old solution is represented by a dictionary and the new solution can be 

easily found. For each iteration, the revised simplex method will solve two systems of 

linear equations, used some device to update their solutions. The device is referred to the 

product form of the inverse, created by G.B.Dantig and W.Orchrd-Hays (1954). 
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Conversely, the standard simplex method is the implementation of the simplex method 

that updates the dictionary in each iteration.  The capabilities of implementations between 

the revised simplex method and the standard simplex method depend on a particular 

purpose of implementation and the nature of the data. The period of implementations may 

be different because of the reasons. However, the revised simplex method works faster 

than the standard simplex methods in the general large and dense LP problems. Thus, the 

modern computational programs always use the concepts of the revised simplex method 

to solve the LP problems (7).  

 

1.4.3.2. Matrix Description of Dictionaries or the standard simplex method 

 

1. We consider the dictionary, which was developed from the relationship between 

dictionaries and the original data.  

   

                                           65421 5.05.05.05.054 xxxxx +−−−=  

                                           65422 5.15.05.05.063 xxxxx ++−−=   (1.22) 

                                           65427 5.25.05.05.015 xxxxx ++−+=  

                                          ------------------------------------------------------ 
                                           6542 5.85.35.15.21782 xxxxz −−+−=  

 

arising from the linear programming problem, 
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Maximize                            4321 17121319 xxxx +++  
 
Subject to                              255223 4321 ≤+++ xxxx  

                                              1174321 ≤+++ xxxx    (1.23) 

         4204334 4321 ≤+++ xxxx  

                                                                0,,, 4321 ≥xxxx  
 

2. The top three equations in the dictionary are modified to add three slack variables of 

the LP problem.  

 255223 54321 =++++ xxxxx  

                       11764321 =++++ xxxxx               (1.24) 

                         4204334 74321 =++++ xxxxx  

 
 
 
3. The three equations in (1.24) are converted to matrix terms. The matrixes of the 

dictionary (1.24) are bAx = . 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

0
1
0

0
0
1

4
1
2

3
1
1

3
1
2

4
1
3

A ,           
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

420
117
225

b ,  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

7

6

5

4

3

2

1

x
x
x
x
x
x
x

x  

 
 



 37

4. Solving the LP problem with the standard simplex method, we found the basic 

variables of the dictionary are 731 ,, xxx . Thus we should take these three variables in an 

unknown matrix.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3
1
1

3
1
2

4
1
3

BA  ,            
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
1
0

0
0
1

4
1
2

3
1
2

NA ,         
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

7

3

1

x
x
x

Bx ,         

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6

5

4

2

x
x
x
x

Nx  

 

5. The bAx =  can be converted to NNBB xAbxA −=  . Also, the square matrix 

BA  is a nonsingular matrix. The nonsingular matrix has their inverse matrix and their 

determinant is not equal to zero. BA and NA  contain coefficients of basic and coefficient 

of non-basic variables, respectively. NB xx and  contain basic and non-basic variables. 

Thus, we can solve the linear equations in terms of matrix to find a feasible solution that 

included the unknown variables ( 731 ,, xxx ).  

 

Let    bAx =   and  NNBB xAxAAx += , we obtain     

    bxAxA =+ NNBB  

NNBB xAbxA −=     (1.25) 
 
Given   1−

BA    is an inverse matrix of  BA , we multiplied by 1−
BA   on the lift.  

 
 

NNBBBBB xAAbAxAA 111 −−− −=  
 
 NNBBB xAAbAx 11 −− −=    (1.26) 
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6. We should also obtain the objective function z as cx  and NNBB xcxc +  matrix 
 
 
                                                 [ ]00017121319=c  

                                                 [ ]01219=Bc  

                                                 [ ]001713=Nc  

 

7. We substitute for Bx  and express z as the matrix terms. 

z  =  cx   

z  =  NNBB xcxc +  

z  =  NNNNBBB xcxAAb(Ac +− −− )11  

z  =  NNNNBBBB xcxAAcbAc +− −− 11  

z  =  NNBBNBB )xAAc(cbAc 11 −− −+  

 

8. We can summarize the dictionary of the LP problem in (1.23) in the matrix terms as  

 

NNBBB xAAbAx 11 −− −=      

z  =  NNBBNBB )xAAccbAc 11 ( −− −+   (1.27) 

  

9. According to the dictionary, we record the standard from of a LP problem in (1.19) as  
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Maximize      j

n

j
j xc∑

=1

       cx  

Subject to     ij

n

j
ji bxa ≤∑

=1

          ( mi ...,,2,1= )   bAx =  

                     0≥jx                     ( nj ...,,2,1= )                0x ≥j  

 

Each matrix has number of rows and columns in these following:  

1)( ×+mnc ,  )(1 mn+×x , m)(nm +×A , and   m1 ×b  

 

10. Another purpose to use matrixes to describe the dictionary 

 

We can use partitions of matrix to distinguish between basic and non-basic variables. We 

have the partition of A  is BA  and NA , the partition of x  is NB xx and , and the 

partition of c is NB cc and . At this moment, we can present  

 

BA is a nonsingular matrix     (1.28) 

 

We assume ∗x  is the basic feasible solution and partitions mnxxx +...,,, 21 in m  basic 

and n  non-basic variables.  

As the basic feasible solution ∗x  satisfies bAx =∗  and  0x =∗
N  ,  

 

bxAAxxA =−= ∗∗∗
NNBB  
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bAxxA == ∗∗
BB  

 

where ∗
Bx is the current values of the basic variables 

Likewise, an arbitrary vector  x~  satisfies bxA =BB
~   

 

bxAxAxA =+= NNBB
~~~  

 

As 0x =N
~ , implies  ∗= BB xx~ , the results proof that  BA is a nonsingular matrix. 

We call BA as the basis matrix or simply the basis. To correspond with the name of basis, 

we assume the matrix BA  by the matrix B  in (1.27).   

 

NNB xABbBx 11 −− −=      

z  =  NNBNB )xABccbBc 11 ( −− −+   (1.29) 

 

1.4.3.3. The Revised Simplex Method   

 

The revised simplex method is the alternative methods of the standard simplex method. 

To illustrate, we shall apply the revised simplex method to the feasible dictionary (1.22). 

The main steps of the revised simple method are  

1. Choose the entering variable 

2. Find the leaving variable 
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3. Update the current basic feasible 

 

1. Choose the entering variable 

 

To begin with, the entering variable is the basic feasible solution  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= ∗

∗

15
63
54

*
7

3

1

x
x
x

*
Bx              and        

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

134
011
013

B  

 

The entering variable may be any non-basic variable with a positive coefficient in the last 

row of the dictionary. 

In (1.29), the last row column is a vector of coefficients  NBN ABcc 1−−   or   

6542 5.85.35.15.2... xxxxz −−+−=          (1.30) 

In the revised simplex method, the vector NBN ABcc 1−−  is computed in two steps:  

1. Find  1−= Bcy B        from       BcyB =       

For example, in (1.22)                 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

134
011
013

321 yyy     =    [ ]01219  

             [ ]321 yyy=y      =  [ ]05.85.3     

2. Calculate NN yAc −   to fine the vector feature in (1.30). 

      [ ]001713   -   [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

0043
1011
0122

05.85.3     =   [ ]5.85.35.15.2 −−−   
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As the second component of the vector [ ]T4321 xxxxN =x  in (1.29) is a 

positive component, the second component enters the basis. Thus, the entering variable 

can be the non-basic variable. In addition, if a non-basic variable jx  corresponds to a 

component jc  of Nc  and to a column a  of NA  then the corresponding component of 

NN yAc −  equals to yac −j . Thus, if jc<ya , the entering variable can be any non-

basic variable jx . The corresponding column a  of A  is called the entering column. 

  

2. Find the leaving variable 

 

We assume the value t  as a value in the entering variable, which ranges from zero to 

some positive numbers. To find the leaving variable, we increase t , while maintaining 

the remaining non-basic variables at their zero levels and adjust the value of basic 

variables to maintain the constraints bAx = .  We increase t  until a value in the basic 

variables is first dropped below zero. The t  value that the basic variable is dropped to 

zero is the largest admissible value of t  and the basic variable is the leaving variable. 

 

In the standard simplex method, determining the leaving variable is applied as  

...5.0...54 41 xx −=                    tx 5.0...541 −=  

...5.0...63 43 xx −=     as            ...5.0...633 tx −=     (1.31) 

...5.0...15 47 xx −=                    ...5.0...157 tx −=  
 

or in terms of the matrixes (1.29)   NNBB xABxx 1−∗ −= . Thus  

    dxx tBB −= ∗    
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, where  d   =  NAB 1−   or d   =  aB 1−    

 

If the revised simplex method, information is available only ∗
Bx , while the values in 

matrix  d   can be obtained by aBd =  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4
1
2

134
011
013

d   ,      so       
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

5.0
5.0
5.0

d  

 
From dxx tBB −= ∗ ,          395.054 =− t  
                                               485.063 =− t  
                                               05.015 =− t  
 
We find easily that the largest values of t  is 30 and 7x  is the leaving variable.  

 

Obviously, we may spend some time to manually update the entire dictionary in the 

standard simplex method, while we can create computations to update the values in the 

dictionary for the next iteration in the revised simplex method. For example, the next 

iteration of basic variables and the basis matrix B is updated to  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= ∗

∗

30
48
39

*
4

3

1

x
x
x

*
Bx              and        

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

434
111
213

B  

For these computations, the order of rows of ∗
Bx and column of B are not restricted. It 

needs only  ∗
Bx  should correspond to B in the computations. Also, the actual order of the 

m  columns of B that was specified by the order list of the basic variable is called basis 
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heading. To be convenient, we replace the leaving variable by the entering values in each 

update of the basis heading.  

 

This is a summary of the revised simplex methods by Chvatal V (1983) 

 

Step 1: Solve the system BcyB =   

Step 2: Choose an entering column. This is may be any column  a  of NA  that ya  is less 

than the corresponding component of Nc . If there is no such column, then the 

current solution is optimal. 

Step 3: Solve the system aBd =  

Step 4: Find the largest t  such that 0=≥−∗ dx tB . If there is no such t  then the 

problem is unbound; otherwise at least one component of dx tB −∗ equals zero 

and the corresponding variable is leaving the basis. 

Step 5: Set the value of the entering variable at t  and replace the values ∗
Bx of the basic 

variable by dx tB −∗ . Replace the leaving column of B by the entering column 

and, in the basis heading, replace the leaving variable by the entering variable. 

 

The firs-two steps in each iteration are to check whether there is a current feasible 

solution ∗x in the dictionary, while the step 1 and step 3 make the revised simplex 

method more effective. The efficiency of the implementation in the step 1: BcyB =  and 

the step 3: aBd =  depends on the solutions or devices for solving the two systems. We 

describe typically ideas of two devices, which are the simplest and popular ones in the 
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revised simplex method. Further information of the devices is described in Chvatal V 

(1983).  

 

1.4.4. Explicit bounds on individual variables 

 

 Many linear programming problems involve explicit upper bounds on individual 

variables. The revised simplex methods can be made to work on directly in such a way 

that the size of each basis matrix is only m x m (7.1). This technique can be applied in the 

more general context of problems 

Maximize      j

n

j
j xc∑

=1

        

Subject to     ij

n

j
ji bxa ≤∑

=1
          ( mi ...,,2,1= )    

                     jjj uxl ≤≤             ( nj ...,,2,1= )                 

Each jl  is an earlier number or symbol -α , meaning that no lower bound is imposed on 

jx , and each ju is either a number or the symbol +α , meaning that no upper bound is 

imposed on jx , We need only add the slack variables ,,...,, 21 mnnn xxx +++ with 0=+inl  

and α+=+inu for all i. This is a convenient way to admit variable jx with jj ul = . 

In addition, we need only observe that minimizing  jj xc∑  is tantamount to maximizing 

jj xc∑ − )( and that every inequality constraint can be converted into an equation by the 

introduction of an appropriate slack variable.  

 



 46

An iteration of the revised simplex method to handle explicit bound  

 

Step 1. Solve  the system   yB Bc= . 

Step 2. Choose an entering variable jx . This may be any nonbasic variable jx such that, 

with a standing for the corresponding column of A, we have either ya < ,, *
jjj uxc <  or 

ya > jjj lxc <*,  If there is no such variable then stop; the current solution *x is optimal. 

Step 3. Solve the system Bd = a.  

Step 4. Define txtx jj += *)(   and  tt −= *
Bx)(Bx d    in case   ya < jc  and txtx jj += *)( , 

tt += *
Bx)(Bx d    in case   ya > jc  . If the constraints 

jjj utxl ≤≤ )( ,   BBB uxl ≤≤ )(t  are satisfied for all positive t  then stop; the problem is 

unbounded. Otherwise set t  at the largest value allowed by these constraints. If the upper 

bound imposed on t  by the constraints BBB uxl ≤≤ )(t  is sticker than the upper bound 

imposed by jjj utxl ≤≤ )(  alone is as strict as the upper bound imposed by all the 

constraints in  BBB uxl ≤≤ )(t  

Step 5. Replace *
jx  by )(tx j  and *

Bx  by )(tBx . If the value of the entering variable jx has 

just switched from one of its bounds to the other, then proceed directly to step 2 of the 

next iteration. Otherwise, replace the leaving variable ix  by the entering variable jx in 

the basis heading, and replace the leaving column of B by the entering column a.
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1.4.5. Dual revised simplex method 

 

Each LP problem, called as primal, is associated with its counterpart known as 

dual LP problem. Instead of primal, the dual LP problem has fewer constraints than the 

primal and involves maximization of an objective function. The dual LP problem is 

constructed by defining a new decision variable for each constraint in the primal 

problems and a new constraint for each variable in the primal. The dual problem consists 

of coefficients of decision variables in the primal objective function. The coefficients 

matrix of the dual is the transpose of the primal coefficient matrix. Maximizing the 

primal problem is equivalent to minimizing the dual and their optimal values are exactly 

equal. The dual simplex method is similar to the simple method except for the criteria for 

selecting the entering and leaving basic variables and for stopping the algorithm. The first 

step of iteration is to determine entering basic variables, which is equivalent to determine 

the leaving basic variable in the simplex method. The negative coefficient with the largest 

absolute value of the dual problem corresponds to the negative variable with the largest 

absolute value in the simple method The second step is determine the leaving basic 

variable which is equivalent to determining entering variables in the simplex problem. 

The variable in the dual problem that reaches zero first corresponds to the coefficient that 

reaches zero first. These two criteria for stopping the algorithms are also complementary. 

The dual simplex method is useful for solving large linear programming problems 

because less artificial variables are introduced to construct the initial basis solutions and 

required fewer number of iteration (7, 22). 
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In a large sparse problem, the standard simplex method takes more time than the 

revised simplex method for execution in each iteration.  Total estimate time per iteration 

is approximately nm 1032 +  for the revised simplex method versus 4/mn for the 

standard simplex method, where m is the number of columns and n is the number of 

rows. Typically, n is usually considered more than m as mn 2≥  for a LP problem. In 

practical, the large sparse problem is assumed as at least 2000 rows per a LP problem. 

When, the large sparse problem is analyzed, the memory spaces are also considered as 

another problem related to the executed time. Thus, the time for execution estimated by 

the core memory may need to be adjusted from the peripheral memory as well. In 

addition to time for execution and memory spaces, mathematical algorithms applied in 

the revised simplex method are also a factor related to this consideration. For these 

reasons, the revised simplex method is applied in computer programs for solving the LP 

problems.  In some cases, the revised simplex method may take more time than the 

standard simplex method when the bases kB are completely dense and mn 2< .  

 

Zero tolerances ( iε ) are important for selecting an entering variable. If small 

negative numbers or zeros are rounded to small positive numbers, the corresponding 

component of non-basic variable NN yAc −  for entering the basis may cause some errors. 

We may define the zero tolerances in advance. For example, the component of NN yAc −  

is considered positive if its computed value exceeds 1ε . Results of nominators, divided 

by an extremely small numbers are valid when its value is less than 2ε , e.g diagonal 

elements in the eta columns. Also, the zero tolerance is used for comparing between two 

different numbers or vectors. The zero tolerances are defined based on prior knowledge 
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for particular issues. Murtagh B.A. (1981) suggested appropriate choices of the zero 

tolerances of 5
1 10−=ε , 8

2 10−=ε , or 6
3 10−=ε for computed values of 15 decimal digit 

numbers (7).  

 

 

1.5. MetModel and MetModel GUI 

 

1.5.1 MetModel 

 

MetModel is a Python-based framework for flux balance analysis of cellular 

metabolism. MetModel applies the algorithm of optimization-based linear programming 

for analyzing metabolic reconstruction models of cellular organisms. The MetModel 

stands for Metabolic Modeling and was first developed in the Python-based framework 

and was modified to MetModelGUI by Burns W, Roberts S, Brooks P, Fong S. at VCU 

(24, 25, 26). Both versions have been applied for many cellular metabolic reconstruction 

projects at VCU. These packages were used to evaluate effects of genes/proteins deletion 

and genes knockout analysis in organism cell and also investigate gap analysis or gap 

filing to build the flux balance models based on the optimization of linear programming. 

In some previous studies, MetModel was applied to build an initial genome-scale 

metabolic model of Cryptosporidium hominis, in which 52 essential metabolic reactions 

were found and used to predict fluxes for each reaction of C. hominis (25). The 

MetModel was also applied in the field of metabolic engineering, such as increasing of 

enzymes activities to produce biofuel products. In such case, the MetModel enabled to 
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investigate metabolic pathways of Thermobifida fusca. The FBA of T.fusca model found 

320 unique reactions, approximately 50% of the true reactions and metabolites in the 

entire pathways. The final reactions for T.fusca metabolic model are anticipated to be 

used for conducting a novel biofuel agent (26).  In addition to C. hominis and T.fusca, the 

MetModel was applied to study a genome-scale metabolic model of the fungal pathogen, 

Cryptococus neoformans. The software performed the in silico gene deletion simulation 

to create metabolic pathways to understand how individuals infect with the 

cryptococcosis (27).  

Basically, mathematical representation of metabolic reconstruction was used to 

obtain accuracy of subsequent computations of biochemical transformation (28). The first 

part of MetModel investigates specificity of metabolites and correctness of substrates, 

gene products, enzymes, or coenzymes and identity the molecular formula of the 

metabolites. The chemical formulae estimate stoichiometric coefficients of the reaction, 

balances of the elements and charges of the reactions. Directionality of reactions and 

cellular compartment where the reaction takes place was determined in the primary 

process of the MetModel (28). 

 

MetModel consists of two tab-delimited text input files and twelve Python-based 

programs. There following are information of each program and Figure 2 is a summary of 

MetModel structure.   

1. Reactionsnew.txt is a database of reactions storing in a tab-delimited file with six data 

columns as follows:  
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- Types of reaction, e.g. transport, extracellular, NAD metabolism, fatty acid  

biosynthesis, etc… 

- Enzyme Commission or EC number is the enzyme identifier of KEGG database 

(Kyoto Encyclopedia of Genes and Genomes) for linking the same enzymes 

outside databases, such as IUBMB, ExplorEnz, BRENDA, ExPASy, UM-BBD, 

ERGO. For example, EC 3.1.3.36 is referred to phosphoinositide 5-phosphatase. 

- Names of reactions used for calling in programming, e.g. R_NAGAly or 

R_ATPS. 

- True/False directions: true for both irreversible and reversible directions and false 

for irreversible directions.   

- Chemical name of reactions, name of catalysts and/or location of the reaction, 

such as ATPase,cytosolic, Glycolatedehydrogenase(NAD) or IMPdehydrogenase. 

 

2. LowCostMetabolites.txt is a database of low-cost exchanges also storing in a tab-

delimited file with 6 data columns:  

- ID: sign of metabolites used for programming, e.g. ala-L[e], h2o[e] 

- Name of metabolites: L-Alanine, L-Aspartate, Inosine, and etc… 

- Charges ranged from -13 to 4  

- Sources: yes/no for substrates 

- Escapes: yes/no for products 

- Category: types of metabolite, such as amino acid or nucleotides  

 



 52

3. Builddb.py is a Python program used for updating reaction database by combining 

reactions in the previous database and the reactions in the model of each organism into a 

new database with the same structure as the previous database, named reactionsnew.txt.  

 

4. BooleanParser.py is a custom Python module to match the name of genes or proteins 

with the gene-protein reaction statement, such as “alphas” matched with “alphanums” by 

eliminating “(“, “)”, “&”, “|”, whitespace, or extensions (e.g. 6733.1 become 6733), and 

ignoring with providing an error message for the arguments with more than 255 

characters. 

 

5. Eq_current.py was used to parse reaction statement to a data structure that will be 

used in computations: “True” indicates both irreversible and reversible reactions and 

“False” indicates irreversible reaction. Coefficients were adjusted to an integer number. 

Signs of direction were categorized in the reversible and irreversible groups. Reactants or 

products with no compartments, single compartments, or multiple compartments were 

evaluated and converted to a new form in order to add in that structure. Special characters 

in the name of metabolites were changed to alphabet characters with unique and readable 

names. For example, e.g leu-L[c]' was converted to 'M_leu_DASH_L_c. Lower alphabets 

in the parenthesis indicate the cellular compartments where the reaction takes place. That 

conversion can be interchangeable as internal and external representations. These are the 

list of cellular compartments and signs used in referring to the compartments (Reed JL, 

et.al, 2006). 
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[b]: extraorganism, [c]: cytoplasm, [e]: extracellular, [g]: golgi aparatus, [h]: chloroplast 

or flagellum, [l]: lysosome or reservosome, [m]: mitochondria, [n]: nucleus, [p]: 

periplasm or between inner and outer mitocondria, [r]: endoplasmic reticulum, [v]: 

vacuole or acidocalcisome, [x]: peroxisome or glycosome, and [y]: glycosome. 

 

6. MapGPR_current.py is a custom Python module, which has functions similar to the 

eq_current.py program but was used to classify different levels of genes and proteins 

expressions: high (1), moderate (0), low (-1) expressions, suggested by Shlomi T, et.al 

(2008) for the tissue-specific activity of metabolic disease-causing genes. The disease-

causing gens may be more likely to be expressed in a specific tissue than genes not 

associated with the disease. Their study presented different metabolic functions in 

different tissues.   

 

7. Rxn.py is a custom Python module used for defining components for a chemical 

formula, balancing the components, and expressing of reaction equations. In this file, csv 

and pyparsing, kegg modules were imported. The csv file was used to read data files in 

the CSV format The CSV file contains a number of rows, each row containing a number 

of columns, separated by commas. The pyparsing module provides a library of classes 

that parses input names to constructed grammar and expresses results of the grammar 

directly in Python code like regular expression in Perl. The kegg module were retrieved 

the codes of KEGG compound, a collection of small molecules, biopolymers, and other 

chemical substances that are relevant to biological systems to linl to other KEGG 

databases.  
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8. Metmodel_current.py is the main Python program for creating and analyzing 

metabolic models.  The program was implemented with importing four standard Python 

modules: os, re, time, and pickle, three special Python modules: glpsol, libSBML, 

pyparsing, and three custom Python modules: mapGPR_current.py, eq_current.py and 

booleanParser.py. These are descriptions of functions of each module. 

 

os - this module provides miscellaneous operating system interfaces, a portable way of 

using operating system dependent functionality, such as manipulation of  paths (29).  

re - this provides regular expression that matches with operations (29) 

time - this provides a number of functions to deal with dates and the time within a day. 

(29) 

pickle - this module implements a basic but useful algorithm for serializing and de-

serializing a Python object structure. Pickling is the process that a Python object 

hierarchy is converted into a byte stream and unpickling is the inverse operation (29).  

glpsol - this is the free optimization model engine of glpk package (GNU Linear 

Programming Kit). This package was used to solve linear programming (LP), mixed 

integer programming (MIP), and other related problems. GLPK uses the revised simplex 

method and the primal-dual interior point method for non-integer problems and the 

branch-and-bound algorithm together with Gomory's mixed integer cuts for (mixed) 

integer problems. This package was developed in several computer languages such as C, 

Java, or Python. The glpsol stands for GLPK linear programming/MIP solver, which can 

be used for a wide variety of optimization problems (30). 
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libSBML - is an application programming interface (API) library for reading, writing and 

manipulating files and data streams containing Systems Biology Markup Language 

(SBML) content. One of the features of libSBML is used for manipulating mathematical 

formulas at differences SBML Level and in both text-string and MathML forms, 

including presenting mathematical formulas regardless of their original format. The 

libSBML is also used to validate input files and data streams to verify correctness of the 

models (31).  

pyparsing – this module was used to import names, define grammar, use the grammar to 

parse the input text, and process the results from parsing the input text. This is an 

alternative approach of using traditional lex/yacc approach, or regular expressions (32).  

mapGPR_current.py – this was used to read, parse, and evaluate boolean GPR 

statements 

eq_current.py – this works on parsing reaction equations, metabolites, compartments, 

and other elements to create a data structure prepared for computations.   

booleanParser.py – this module matches the name of genes or proteins with the gene-

protein reaction statement.  

 

This program is used to analyze a constraint-based metabolic model with a data 

structure that contains model ID, model name, compartments, species, reactions and 

coefficient of reactions derived by eq_current.py. The main class (“cb”) of the program 

performed these following: 

- Create and manipulate the information, such as setting, adding, deleting, 

updating each element in the species’s constraint-based model and reactions in the model, 
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selecting minimize or maximize objectives, setting default flux limits, and writing the 

constraint-based metabolic model of the species into *.lp file, which consists of problem 

header (FBA), objective functions (minimize or maximize), subject to (lists of mass 

balance equations), and bound (flux constraints).  

- Call “glpsol” to solve the linear programming problems using optimization 

method, find the solutions, retrieve the values of objective functions and write them to 

*.xls or temp file.    

- If the problem was solved, print the reactions from the current model into *.wil 

file. The information in that file contains reaction ID, name of reactions, EC numbers, 

true/false for reverse reaction, name and location of metabolites, chemical reactions of 

gene-protein reactions or protein-reaction-relation, pathway, and confidence. 

- Use pickle to write a pickled object containing current model reaction 

constraints. Load model constraints from the pickled object. Overwrite any existing 

constraints if there is a constraint in the pickled object. 

- Add source fluxes for all sources, escape fluxes for all escapes, exchange fluxes 

for all exchanges. Read and build initial model by defining biomass equation, source, 

escape, exchange metabolites, constraints, and gene-protein reaction.  

- Build model from model text files downloaded from mm2  

- Calculate gene presence/absence, calculate reaction presence/absence 

- Write an *.xml output file for a flux distribution to build a map of the model by 

CellDesigner program.  

- Write a SBML format file for the constrain-based metabolic model. This SBML 

file can be used to work with Cytoscape program.  
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- Write a *.dat file for the constrain-based metabolic model in a data structure of 

"S * v, which consists of 'mets': keys for metabolites, values for (reactionID, coef), and 

skip boundary metabolites if metabolite ends in '_b'.  

- Delete specified set of genes. Check constraints. Solve unchanged model. 

Record default constraints. Make sure if genes were from gene-protein reactions of the 

model. Check whether gene deletion affects to reactions. 

 

9. Metmodel_gurobi.py was used as a subclass of “cb” class in the metmodel_current.py 

and when deletions functions in the “cb” class was called. The Metmodel_gurobi.py can 

be alternatively used of glpk.py to do deletions of current basis. These are some modules 

used in metmodel_gurobi.py:  

deepcopy – this module provides generic (shallow and deep) copying operations. 

matrix and linalg – this provides from numpy for numerical computing in terms of 

matrix and linear algebra.  

scipy.linalg – this module was used for solving linear systems of equations 

scipy.sparse – this module was used for sparing two-dimension matrix in rows, columns, 

diagonals, or others. 

sys - this module was used for accessing to some variables used or maintained by the 

interpreter and to functions that interact strongly with the interpreter. 

string – this module was used for string operations 

math – the module was used for the mathematical functions and used with complex 

numbers. 
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defaultdict – this is a part of the collections module. defaultdict is similar to regular 

dictionaries except for taking an extra first argument and when a dictionary key is 

encountered for the first time, the default factory function is called and the result used to 

initialize the dictionary value. 

yaml – is a data serialization format designed for readability and interaction with 

scripting languages such as Perl and Python. yaml is optimized for data serialization, 

formatted dumping, configuration files, log files, Internet messaging and filtering.  

gurobipy - This is a script used to run Gurobi Python programs within Python 

environment (33).  

“gurobicb” was the main class in this program and was prepared for applying 

Gurobi optimizer, a state-of-the-art solver for linear programming (LP), quadratic 

programming (QP) and mixed-integer programming (MILP and MIQP) (33). The 

“gurobicb” class was used as a subclass of the “cb” class in the metmodel_current.py and 

has functions such as building a model from a yaml file, solving a model with Gurobi 

package, finding a minimum-cost and -size sets of sources, escapes, and reactions, 

finding the set of un-producible metabolites, generating all alternate optimal solutions.  

 

10. Wil2metmodel.py was used to read all reaction models of each organism in *.wil file 

and generate each part of the models to different file types: *.biomass, *.reaction, 

*.source, and *.escape. 

 

11. Bouncertest.py is a driver program to call each program to function and analyze the 

constraint-base metabolic model. Begin with metmodel_current.py, wil2metmodelpy.py, 
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metmodel_gurobi.py, or input file of organism (*.wil), and can be called functions from 

each imported program to evaluate results such as build_from_textfiles, set_escapes, 

bouncer2, functions in the metmodel_gurobi.py. 

 

 

Figure 2. Summary of MetModel-based Python framework 
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1.5.2. MetModel GUI 

 

MetModel GUI is Java-based Graphical User Interface for creating and analyzing 

linear programming-based models of cellular metabolism. The software allows users to 

build network-based models of cellular metabolism. The purpose of the program is to 

reconstruct models that the cells can make the most benefits of their resources such as 

metabolites to support their needs. For example, glucose is the element essential for 

microorganisms. The MetModelGUI can maximize the metabolic flux through reactions 

producing amount of glucose appropriate for the needs of the organisms. The MetModel 

GUI is composed of 22 java processed files. 

 

Table 2. Twenty-two Java-based programs in MetModel GUI and imported programs for 

implementing in each program. 

Item Java programs Item of imported program  

1 BiomassObjective.java 7, 9, 11  
2 Controller.java 7, 9, 11, 13, 18 
3 EssentialityFrame.java 6, 7, 15, 16, 18  
4 EssentialityOutputFrame.java 7, 10 
5 GapFrame.java 7, 9, 11, 18 
6 GeneNode.java 7 
7 Handler.java 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15,16, 17, 18, 19, 20, 21  
8 Menu.java 1, 2, 3, 5, 7, 8, 11, 12, 13, 19 
9 MetaboliteNode.java 7 
10 MetModel.java 1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 20, 21 
11 Model.java 6, 9, 11, 15, 16, 18, 21 
12 MyOptionPane.java 7 
13 Optimization.java 7, 9, 11, 13, 18 
14 OutputFrame.java 7 
15 ProteinNode.java 6 
16 ReactionDatabase.java 9, 11, 18 
17 ReactionDetails.java 7, 9, 18 
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18 ReactionNode.java 9 
19 ReadGPRFrame.java 7 
20 SortableTable.java 5, 7, 11, 17, 16, 18 
21 TransportFrame.java 7, 9, 11, 21 
22 VisualizationFrame.java 7, 11 

 

 
These following are explanation for the programs in Table 2.  
 
 

1. BiomassObjective.java: creates “Biomass Objective” frame, read animo acids, 

nucleotides, cofactors, and biomass equations from reaction nodes, protein nodes, 

metabolite nodes and reactions nodes, and display the data in the window. This program 

allows user to update coefficients of the genes, proteins, metabolites, and a biomass 

equation. Changes in coefficients in this window will not change coefficients in the 

reaction database. 

2. Controller.java: creates functions of menu bar such as opening reaction 

database and reading line information, setting gene transportation, updating biomass 

metabolites, saving biomass equations to the same and new files, closing current 

database, and exiting the program.      

3. EssentialityFrame.java: creates “Gene Essentiality” frame. The program checks 

whether gene or protein knockouts affect to reactions. The program will knockout the 

reactions by deletions of one gene for single reaction at a time and double genes or 

double proteins out of a reaction at a time and then will evaluated biomass fluxes values. 

If the biomass fluxes less than -1.0, the genes or proteins are unessential for the reactions 

and pathways. If the biomass flux results close to zero values in both positive and 

negative directions, the genes and proteins are essential for pathways. Selections between 

single and double relations are based on cellular metabolic information of each organism. 
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4. EssentialityOutputFrame.java: creates “Output” frame that provides essential 

outputs of MetModelGUI and contains results of coefficients of biomass fluxes, reaction 

fluxes, and transport fluxes. The results will be displayed when selecting “Run Model” 

from menu bar. The results were performed by processing of Handler program. 

5. GapFrame.java: creates “Gap Analysis” frame. Gap analysis will be performed 

when biomass fluxes present a result of zero value. Gap data (*.-gap.dat) will be 

exported. The program allows user to select some sources and escapes to fill in gaps. The 

program will fill in the gaps by searching for sources and escapes in database and 

calculating cost of metabolites using data in LowCostMetabolites.txt. 

6. GeneNode.java: get gene names and checks whether the genes are presented in 

the database. The program will return “true” if the names are present and “false” if the 

names are absent.  

7. Handler.java. This is a child class for handling steps of MetModelGUI. For 

examples, closing of all java programs, adding of modules, setting of biomass equations, 

adding of model rows for LP analysis, updating of metabolites, adding of reactions from 

a reaction database, updating of biomass metabolites, updating of reactions, removing of 

metabolite rows, showing of reaction details. This file provide sub-functions used for 

each main function, such as setting of biomass coefficients, showing and hiding of 

biomass objectives, receiving and returning biomass equations, adding of model rows, 

receiving of lists of metabolites, reactions, adding of the lists to databases, getting file 

names, paths of gene-protein reactions, metabolite paths, executing of metabolite models, 

executing of gene-protein reaction models, printing outputs and essentiality output, 

retuning the lists of reactions, reaction names, fluxes, transport name, transports and 
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fluxes to optimization modules, saving gene names, protein names, reactions, sources, 

escapes, transports and fluxes of metabolic model.  

8. Menu.java: creates menus and submenus in the menu toolbars using functions 

created by Handler.java, Controller.java, Optimization, Handler,java, and 

MyOptionPane.java. There are four main menu types: “File”, “Build”, “Tool”, and 

“GPR” menus. “File” menu works for creating a new file (*.wil file), opening, saving, 

and closing the *wil file. “Build” menu works for modifying for transports, setting of 

biomass equations, and running the model to file the optimization solution. “Tool” menu 

works for gap analysis or gap filling, exporting a map file for visualizing the essential 

reactions. “GPR” menu works for reading gene-protein reaction data, evaluating gene 

essentiality in pathways and eliminating genes or proteins unnecessary in the pathways. 

Each menu provides working control-keys as shown in the right-side for each menu.  

9. MetaboliteNode.java: sets metabolite values such as ATP, NAD, and substrates 

and product bounds, sets compartments, number of reactions, and coefficients of 

reactions,  

10. MetModel.java: create a driver program for running the MetModel 1.0. This 

program call to other java programs of the MetModel 1.0 for creating and analyzing the 

metabolic models based on the optimization-based linear programming.  

11. Model.java: create functions for setting a metabolic model, which consists of 

list of reactions, metabolites, compartments, sources, escapees, and gene, protein as well 

as setting and removing transporsts, getting reactions, adding, and updating metabolites.  

12. MyOptionPane.java: creates “Biomass equation” window to view current 

biomass reactions.  
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13. Optimization.java: provides linear programming solving. The program 

imports qs java library, QSopt's Java Callable function library. This library is a port of an 

alpha version of the C callable function library and compatible with the java runtime 

environment version 1.4 and up (28). The “qs” provide functions to read and write a LP 

problem from and to a file, build a LP problem and solve LP problems.  

  Arguments were declared, including waiting time from java runtime class. Lists 

of model information: metabolites, metabolite names, reactions, sources and escapes 

were assigned. Matrix rows and columns of linear programming problem were created 

using one-dimensional arrays. Metabolite and reaction data were read from the 

ReactionNode list and MetaboliteNode list. Lower and upper bounds of each metabolite 

were set.  A massage error will be reported if the LP cannot be completely set up. The LP 

problem was solved by “opt_dual” function, dual simplex algorithm in the “QSopt” 

library. If the LP is flux, the “opt_dual” function returns solutions of the LP and 

“get_status” function obtains the solution status that found an optimization solution by 

the “QS.LP_OPTIMAL” function and printout of the optimization solution by Handler 

file. If the LP is GPR, the get_objval function will return a current objective function. 

However, if no optimal solutions are found, a massage of error in getting an optimal 

solution and the LP unable for solving is appeared. Row names and constraint names 

were listed to the outputs. Reaction names, reaction fluxes, metabolite names, metabolite 

fluxes were printed to the output window created by OutputFrame.java file. 

14. OutputFrame.java: create “Output” frame to present results of the 

MetModelGUI. The outputs are provided from the Handler.java file such as lists of 

updated reactions, fluxes, metabolite names, metabolite fluxes, sources and escape names  
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15. ProteinNode.java. This file creates functions for adding protein names to the 

list of genes and checking whether the proteins are presented in the list of genes  

16. ReactionDatabase.java: This file reads data in the reaction database, and 

reactions in a current model, adds new reactions and removes duplicated reactions, works 

with ReactionNode.java, and Model programs. It returns specific reactions, list of 

reaction nodes, metabolite nodes and length of reactions that will be used in analysis 

processes.  

17. ReactionDetails.java: This program works for linking information of reaction 

nodes and metabolite nodes and updating the reaction information. The program displays 

reaction details in “Reaction Database” and “Current Model” frame. These following are 

the information: pathway, EC numbers, short reaction names, chemical reaction names, 

irreversible or revisable relations, pattern of reactions. This file will call sorttableTable 

program, when users click at header columns to sort data in columns. Fucntions in 

JInternalFrame class were applies to develop the frame and create layouts of the outputs 

in the frame.   

18. ReactionNode.java: This file creates functions for making reaction nodes. 

Each reaction node contains path, ecNum, reaction name, irreversible and revisable 

directions, gene/protein names, metabolites names, coefficients, compartments, position, 

lower and upper bound, including functions for updating coefficients, metabolites, 

compartments, and reactions. This file creates some functions to check the data with the 

database data, print output of coefficients, irreversible or revisable reactions, reset 

bounds, lower bounds and upper bsound and knockout reaction the bounds   
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19. ReadGPRFrame.java: create “GPR Data” frame to provide functions to use 

for creating and updating frames such as buttons for browsing, adding, exiting, and layout 

of reactions, and adding constraints for analyzing gene-protein reactions. This program 

reads genes and proteins in gene-protein reactions and provides the information to the 

Handler file.  

20. SortableTable.java: provide sort functions to order data displayed in program 

frames and model analysis. Indexes of rows are served as row numbers or model numbers 

of the database.   

21. TransportFrame.java: create “Transports” frame, called by “Modify 

Transports” menu. The program allow user to add and remove metabolites from the 

analysis and to re-set lower and upper limits of bounds. A total number of metabolites 

will be printed to screen output when running this file. 

22. VisualizationFrame.java: create “Visualization” frame to export a *-map.xml 

file containing essential genes and proteins to create pathways in CallDesigner program 

or in KEGG website. The functions in this program are to create layouts, buttons, and 

functions to create that file. This program applies functions in JInternalFrame to develop 

the frame as other frame programs do.  
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Figure 3. Summary of MetmodelGUI - based java framework 

 

Figure 3 displays a general process of 22 java classes in MetModelGUI. 

MetModel.java was worked as a driver program and stated by importing information of 

reactions and metabolites in the databases to the process. Then the other programs in the 

same block of the information and the Model.java were called to built components of the 

model, while the Menu.java was functioned by users and send requirements to 

Controller.java and Handler.java to perform process as required. Meanwhile, 

Optimization.java was called to solve problems by Handler.java and then alternate 

optimal solutions were reported to a tab-delimited file by OutputFram.java. 

This study is a continue project for MetModelGUI to enumerate alternate optimal 

solutions in which microorganisms make optimal use of their resources in metabolic 

pathways.  

BiomassObjective.java 
ReactionDatabase.java 
ReactionDetail.java 
ReactionNode.java 
MetaboliteNode.java 
ProteinNode.java 
GeneNode.java 

 
Model.java 

Menu.java 
Controller.java 

Handler.java 

ReactionGPRframe.java 
sortableTable.java 
TransportFrame.java 
VisualizationFrame.java 
GapFrame.java 
EssentailityFrame.java 
 

Optimization.java 

MyOptionPane.java 
OutputFrame.java 

EssentialityOutputFrame.java 

MetModel.java 
Input Files 

reaction.txt   reactionnews.txt 
  *.wil   lowCostMetabolites.txt 
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CHAPTER 2 ALGORITHM 

 

 

2.1. Steps of an algorithm 

  

To alternate optimal solutions, MetModelGUI was modified by adding another 

program, BouncerFrame.java. The BouncerFrame class was a subclass of MetModel, 

Menu, and Handler classes. In the MetModel class, we created an object to call the 

BouncerFrame class and implement two methods in this class to open and close the 

Bouncer window. In the Menu class, we added an object to create a Bouncer menu in the 

menu bar to access the BouncerFrame class to open the Bouncer window and implement 

methods in the BouncerFrame class. In the Handler class, after we created a Bouncer 

object, we created a Bouncer constructor as a module of Handler functions and added two 

methods to call open and cancel methods in the MetModel class.  

In the BouncerFrame class, five public methods were created with names: 

BouncerFrame, init, initLayout, setFilename. These classes were used to construct 

templates of the Bouncer window and to access methods from other classes. A location of 

the output file and limitation of execute time was used to generate the solutions inputted 

by users. In addition, another three public methods were created to implement the 

simplex method and alternate optimal solutions named as: bouncers, getActiveReaction, 



 69

and actionPerformed. The dual simplex method by QS java language was applied to solve 

the problem. QS library was imported and used to provide a set of functions for creating, 

manipulating, and solving linear-programming problems (28).  

 

In this study, there are two important parts. The first part is to get active reactions. The 

active reactions are defined as the set of reactions that can have non-zero flux. We 

evaluated the active reactions by using QSopt to maximize the flux through each reaction. 

If the optimal values are positive numbers, the reactions are active.  If the optimal values 

equal zero, the reaction are inactive.. Then we removed the inactive reactions from the 

LP problem and reset a new problem. The new problem consists of the active reactions, a 

biomass reaction, sources or substrates, escapes or products, coefficients of metabolites in 

each reaction, and lower and upper bounds of solutions. We created matrix A, matrix c, 

matrix of lower and upper bounds. The matrix A of size mxn  contained coefficients of 

metabolites (rows) for each reaction (columns). The matrix c of size xn1  contained 

coefficients of an objective function. In our study, our aim was to maximize the biomass 

reaction so the coefficient of biomass equal one and the others equal zero values. In other 

words, the optimal value ( z ) of the problem equals the optimal value of biomass reaction 

that is subject to each constraint and bounds.  The lower and upper bounds were imported 

from the reaction database in the form of an input file or were entered by users to their 

matrices. The lower and upper bounds were determined by reversible and irreversible 

reactions. The upper bound of all reactions was limited at 1000, whereas the lower bound 

was -1000 for reversible reactions and zero for irreversible reactions. In the second part, 

that information was restructured to be a LP problem to import to the QSopt java 
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application. By the QSopt application, we obtained indexes of basic and non-basic 

reactions, indexes of zero-cost values, index of basic metabolites, and a set of optimal 

solutions. We began to enumerate alternate optimal solutions. We created another matrix 

containing coefficients of metabolites of basic reactions, matrix B. This is a non-singular 

matrix with the row and column sizes equal to the size of indexes of basic metabolites 

and indexes of basic reactions. Indexes of non-basic variables that reduced cost to zero 

were assigned for new entering variables in further iterations.  Leaving variables were 

also defined as conditions in page 47.  In each iteration, the list of entering variables, the 

lists of vectors of basic reaction indexes, the lists of solution vectors were pushed into 

three stack objects. We retrieved the last element of each stack and used it to implement 

the algorithm in each iteration until the stack was empty or the time ran out. After the 

iterations were stopped all alternate optimal solutions stored in a stack were printed to an 

output file. These following are implementation of the algorithm in BouncerFrame.java.  

 

 
2.1.1. An Outline of the Algorithm. 
 
1. The original biomass in the model is stored as a temporary reaction. 
2. The original biomass in the model is removed from the model. 
3. The temporary biomass reaction is added in the list of reactions.  
4. Each reaction is transformed into an LP problem and each problem is solved at a time. 
5. The reactions with non-zero flux are added in the list of active reaction. 
6. The temporary biomass reaction is removed from the list of regular reactions.   
7. The LP problem is restructured. The active reactions are included in the problem instead of all 

reactions. The new problem is solved to obtain a set of optimal solutions. 
8. The indexes of basic rows and columns are stored.   
9. The nonbasic variables with reduced cost zero are stored as possible entering variables. 
10. A matrix A with coefficients of active reactions, biomass equation, sources, and escape is created.  
11. A matrix c with coefficients of an objective function (biomass) is created.  
12. Matrices of lower and upper limits of x solution are created. 
13. The indexes of entering variables, lists of basic variables and solutions are added to stacks  
14. The additional two stacks are created to store unique solutions and unique basis. 
15. The process of iteration to alternate optimal solutions is started. 

- The last elements of each stack in 13 are popped out.  
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- The index of entering variable, lists of basic columns and solutions are prepared. 
- A leaving variable in the basis is determined 

- A matrix B with the corresponding basic columns of A is created  
- A matrix ‘a’ with the corresponding column of entering variable of A is created.  
- Determine entering direction 
- Find the minimum t that the x + td is in the bounded interval. If there is such t in the 

basic variables, there is a leaving variable  
- The list of x solutions and basic columns are updated for the entering and leaving variables 
- Determine if the current basis and solution are the new basis or new solution.  
- If the current basis is new, the current basis is added to their stack in 14.  
- If the current solution is new, the current solution is added to their stack in 14.  
- Determine if there are new entering variables or non-basis with reduced cost zero.  
- If there are the new entering variables, they are added to the stack of entering variable. 
- If there are the new entering variables, the current basis and new solution are added to their 

stack in 13. 
- Iteration is executed until the stacks in 13 are empty or time ran out. 

16. The list of solutions in 14 are printed to an output file 
 
 

These following are all of the details of the algorithm 

 
Bouncer() method: 
 
1. Initialize run time and user input time to implement the algorithm.  

2. Store biomass reaction (“BiomassTemp”) to a string object  

3. Delete the original biomass reaction using a removing method in the Handler class 

4. Add biomass as a regular reaction by creating a reaction node and using an adding 

reaction method in Handler class  

5. Get active reaction method:  getActiveReaction();  

6. Delete the temporary biomass reaction (“BiomassTemp”)    
 

7. Delete inactive reactions using the removing reaction method in the Handler class 

8. Add original biomass equation back using  set biomass method in Handler class 

9. Solve new problem without inactive reactions 

Call QSopt functions in Optimization class to solve LP problem 

10. Set a LP new problem 
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11. Assign an epsilon equal to 0.000001   

12. Apply QSopt functions to obtain basic reaction indexes, basic metabolite indexes, and 

non-basic index with reduced cost zero for new entering variables. 

13. Use indexes of basic metabolite to get name of basic metabolites 

14. Set matrix B by the list of indexes of basic metabolites (r) and basic reactions (c) 

 For (each reaction)  

If (c [i] == ‘1’) 

The indexes were added into the list of basic reaction indexes 

  Else if (c [i] != ‘1’) 

The indexes were added into the list of non-basic reaction indexes 

 For (each constraint) 

If (r [i] == ‘1’) 

   The indexes were added into the list of basic metabolite indexes 

 For (each element in rc [])               //reduced cost zero 

  If (abs(rc[i]) <= epsilon) 

The indexes were added into the list of reduced cost zero variables 

For (each element in c [i] and rc []) 

If (col [i] != ‘1’ && (abs(rc[i]) <= epsilon)) 

  The indexes were added into the list of entering variables 

        
15. Get coefficients of active reactions in matrix A with columns for active reactions, 

containing biomass reaction and rows for basic metabolites.   

16. Create two vectors for lower and upper bounds with column sizes equal to column 

sizes of matrix A.  
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For (each basic reaction)  

For (each basic metabolite)  

   A[i][j] = 0.0; 

For (each active reactions) { 

Set biomass equation for each reaction 

low[i] = lower bound of each reaction 

upp[i] = lower bound of each reaction 

names[i] =reaction names 

For (each metabolite) { 

Get metabolite names in the reaction  

Find indexes of basis metabolites by matching the metabolite name with 

the basic metabolite names. 

If (the index >= 0) { 

A[index][i] = get coefficient of the basic metabolite for this 

reaction 

   } 

   } 

  }           

17. Get coefficients of sources and escapes for Matrix A 

For (each source} { 

low[i] = lower bound of the source 

upp[i] = lower bound of the source 
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For (each metabolite) { 

Find indexes of basis metabolites by the metabolite name and the basic 

metabolite names. 

  If (the index >= 0)  

   A[i][j] = 1.0; 

} 

An increment for a column size 

} 

For (each escape} { 

low[i] = lower bound of the escape 

upp[i] = lower bound of the escape 

For (each metabolite) { 

Find indexes of basis metabolites by the metabolite name and the basic 

metabolite names. 

If (the index >= 0)  

A[i][j] = -1.0; 

} 

                 An increment for a column size 

         } 

18. Enumerate alternate optimal solution 

     
For (each entering variable) 

Push entering variable to a stack for entering variables (enterX) 

For (each index of basic reaction) 
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Add indexes of basic reactions to an array list (vParent_) 

         Push vParent_ to the stack of basic variables vParent 

For (each x solution) 

  Add x values to an array list (xSol_) 

Push xSol_ to the stack of basic variables (xSol) 

For (number of entering variable - 1) { 

  Push xSol_ to xSol 

Push vParent_ to vParent 

          } 

For (each x solution)  

Add x values to an array list (solutions_) 

Push solutions_ to the stack of alternate optima solutions (solutions). 

For (each index of basic reaction)  

  Add basic reaction indexes to an array list (vBases_) 

Push vBases_ to the stack of unique basic reaction (vBases) 

 

While (the stack of enter variable is not empty) { 

Pop the last element in the stack of index of entering variables (enter) 

If (vParent stack is not empty) { 

Pop the last vector in the stack of the indexes of basic variables (basic 

reactions) 

Convert the list of basic variable to an array (vB) 

  } 
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If (xSol stack is not empty) { 

Pop the last vector in the stack of the x solutions (solutions) 

Convert the list of basic variable to an array (x) 

 

//Create Matrix B by the list of vB 

For (each row in Matrix A) 

For (each column in Matrix A) 

    Bmatrix[i][j] = Amatrix[i][vB[j]] 

 

// determine if entering variable is at lower or upper bound 

If (absolute of differences of x values and its lower bound is less than epsilon)  

Lower bound = 1 

 

// Find entering direction and solve Bd = a 

For (each row in AMatrix) 

  a[i][0] = AMatrix[i][entering variable] 

 

// Find entering direction and solve Bd= a 

  Convert the Bmatrix[][] to Matrix object call B_m 

                     Convert the a[][] to Matrix object call a_m 

                     Apply JAMA function to solve d 

                     Convert Matrix d to an array object d 
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    // Find the minimum t that x + td is less than ratio of upper to lower bounds 

Leave = enter  

Diff = upp[enter] - low[enter]  

For (each vB array) { 

   If (absolute value of d < epsilon) {increment for-loop and skip else-if) 

   Else if (lower bound & d > 0) then find t; x – lower bound = t d 

   Else if (lower bound & d < 0) then find t; x – upper bound = t d 

   Else if (upper bound & d > 0) then find t; upper bound – x = t d 

   Else if (upper bound & d < 0) then find t; lower bound – x = t d 

            If (t less than diff) {diff= t, leaving variable index = e, and increase m} 

     } 

 

  // Update new X 

 For (each a in x solution) { 

 If (a in vB_)  

   If (lower bound) then newX = x – td 

   Else newX  = x + td 

  Else newX  = x  

 }  

 // Update xnew_ list  

 For (each newX) 

  Add newX in an array list, newX_  
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 // Compare  basis lists and solution lists to their previous lists 

 If (enter = leave)  

  Newbase == 0 

 Else { 

  Find indexes of leaving variable in vB (b) 

  Assign vB[b] = indexes of entering variable 

Update basic reaction index in Matrix B 

Sort elements of basis reaction array 

For (each row in Matrix A)  

 B = A[i][entering variable] 

 Copy stack of vBases to a new stack of (vBaseslists) 

  While (vBaseslists is not empty) { 

   Pop vBaseslist into an array list (vBaseslists_) 

   For (each basic variable) { 

    Get new basic variables to basis [] 

    If (basis [] = vB[]) { 

     Newbase = 0 

              Stop this while-loop 

     } 

   } 

  } // end while 

 }// end else 
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  // Create a new list of new basic variable 

  For (each basic variable) 

   Add vB in the new list (vB2_) 

 

// Check new solutions 

Copy stack of array list of solutions to a new stack (tempsols) 

While (tempsols is not empty) { 

 Pop the last vector of x solutions to array list (tempsols_) 

 For (each x solution) 

  Get element of x solution 

 Convert newX[] to matrix object newX_m 

 Convert solution[] to matrix object, solutions_m 

 Find differences between newX_m and solutions_m 

 Convert the difference to matrix objects and get array of the difference 

 For (each column)  

Sum of absolute values of the difference  

 If (Sum < epsilon) { 

  New solution = 0; 

  Stop while-loop; 

 } 

  } 

 // Add new basic variables to vBases stack 

 If (new basis) { 
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  Push vB2_ to vBases stack 

 } 

 If (new solution)  

  Push xnew_ to solutions stack 

 If (new basis or new solution) { 

  // Solve  y; where yB = c 

  Create matrix c;  

  If (biomass index in vB_) 

   c = 1.0; 

  Convert B to matrix object B_m 

  Convert c to matrix object c_m 

  Use solve function in JAMA java class to find y 

  Convert matrix y to array y  

  For (each j column of A) 

   If (absolute of y < epsilon) 

    Add j to an array list (zero_cost) 

  For (each j column of A) 

   If (j not in vB_)  

    If (j in zero_cost) {    

     Push j into enterX stack 

     Push vB_ into vParant stack 

     Push newX_ into xSol stack 

    } 
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    } // end if 

          Call system current time function to take end time in seconds 

     Calculate runtime if less then user-input time then stop while-loop 

 } // end while-loop; where entering variable empty and runtime less than input time 

    

//Print solutions stack to output file 

Copy solutions stack to a new stack (h) 

try { 

      Initialize PrintWriter object and specify filename included organisms name and 

current date time of execution (file) 

   Print variable names (reaction names) 

    while (h is not empty){ 

     Pop h to an array list (k) 

     For (each k) 

    Print k element to the output file  

    } 

      } 

      Close output file  

      } catch (throw Exception) { } 

 Print run time used and number of iterations. 

 

Void getActiveReaction(): 

 For (each reaction) 
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  Get each reaction (w) from the list of reactions 

  Set biomass equation for each w 

  Find optimal value (z) for each w 

  If z > epsilon then add w to a list of active reactions 

  Else if w is reversible reaction then reverse the reaction 

Set biomass equation for each w 

   Find optimal value (z) for each w 

If z > epsilon then add w to a list of active reactions   

  If z <= epsilon then add w to a list of inactive reactions 

 

  Void actionPerformed (Get event):   

 Get user command  

 If (“Browse”) 

  Get direction for the output file 

 Else if ( “Run”)  

  Bouncer() 

 Else if ( “Cancel”) 

  Close Bouncer Frame() 
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2.1.2. Program Testing  

 

We checked the program in two parts. The first part is to check correctness of the 

method of getting active reactions and creating matrix A. We used print statements to 

extract information such as number of all reactions, sources or escapes, coefficients of 

biomass reactions, reaction and metabolite names when each statement was executed 

step-by-step before, during and after getting active reactions. We then export matrix A to 

oversee whether the reactions (variables in columns) correspond to the metabolites 

(constraints in rows). Each coefficient in the matrix was multiplied by itself and the 

results for each row and each column was summed to see whether there are any rows or 

columns containing all zero values. Results of checking this part was provided in the 

results section.     

 The second part is to test the algorithm in enumerating alternate optimal solutions. 

We applied two small LP problems that were manually solved on papers to test in the 

Bouncer program. 

 

Example 1:  Maximize       212 xx +  

  Subject to      824 21 ≤+ xx  

                01 ≤x   , 02 ≤x    
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⎥
⎦

⎤
⎢
⎣

⎡
=

1011
0124

A
            

⎥
⎦

⎤
⎢
⎣

⎡
=

3
8

b
           

C [ ]0012=             L   =   [0    0    0    0]              

X [ ]1002=             U    =   [10 10 10 10]             
 

 

Entering variable is 2x  and basis variables 1x  and 3x . The alternate optimal solution for 

this problem was [ ]0021=x  

 

Example 2:  Maximize       4321 xxxx ++−+  

  Subject to      22222 4321 =+++ xxxx  

               01 ≥x         11 2 ≤≤− x   

               03 ≥x             04 ≥x  

[ ]12222=A             [ ]2=b            
C    = [1   -1   1    1   0]            L [ ]00010 −=  
 X   = [0   -1   0    0   4]            U [ ]04414=  
      
 

Entering variable is 1x , 3x , 4x  and basis variables 5x . The alternate optimal solution for 

this problem were 

    x  =  [2 -1  0  0  0]  for entering variable 1x  
    x  =  [0 -1  2  0  0]  for entering variable 3x  
    x  =  [0 -1  0  2  0]  for entering variable 4x
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2.2. Instructions for MetModelGUI 

 

 MetModelGUI have four main sections on menu bar: File, Build, Tool, and GPR. We can 

obtain information of biomass equations, reactions, sources and escapes of a microorganism 

using the open button. Save, save as, and exit buttons are available for user to save data file in 

other locations and exit program. The build button has functions to modify transport, set or 

update biomass equations, the run model (solve LP) to find optimal solutions and optimal values 

of biomass equation. The tool button contains options to view biomass equation, implement gap 

analysis, and create a file to visually evaluate metabolic pathways. The bouncer option was 

added in the Tool menu. Users can specify locations of solutions, and input time in seconds to 

execute the while-loop. The number of iterations of while-loop is depended on the input time, 

computer memory spaces, type and size of LP problems or number of variables and constraints. 

The GPR button has two options, read gene-protein reaction data (GPR) and delete some 

repeated reactions of genes and proteins. When a gene functions for more than one protein on its 

pathway users can select single or double deletions to analyze only a unique and essential 

pathway.   

To enumerate alternate optimal solutions, users open an organism file (*.wil file) and may 

first run model to find the solution of all reactions to check if information in the *wil file is 

correctly structured. Then, users can open Bouncer window on Tool menu, specify location of 

the output file, input time of iterations in second and press run button. If not the specific location, 

the output file is located in the same directory as the organism file.  Total execution time and 

total number of iterations of while-loop including total number of solutions can be obtained from 

the output filenames. Note that the current version of this program is unavailable for organism 
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having boundary metabolites. These metabolites have a linage across cell barriers which exist 

both inside and outside cells. In this version, we may convert those metabolites to the 

metabolites functioning outside cells and treat them as sources and escapes to balance equations 

to enumerate the alternate optimal solutions from the existing reactions. 

 

 

Figure 4. Bouncer window on MetModelGUI 
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CHAPTER 3 APPLICATION 

 
 
 
 
3.1 Implementation 
 
 

We applied MetModelGUI with the proposed “bouncer” algorithm to analyze the 

existing metabolic reconstructions with data available for five microorganisms: 

trypanosoma cruzi, thermobifida fusca, helicobacter pylori, cryptococcus neoformans 

and clostridium thermocellum. Data input files and results obtained from Java-based 

MetModelGUI are summarized in Table 3.  

In analysis, principal component analysis (PCA) was used to reduce a number of 

variables (reactions) into a smaller number of artificial variables called principal 

components. The principal components can be defined as a linear combination of 

optimally-weighted variables as some of variables may be correlated with one another. 

The smaller number of principal components account for most of the variance in the data 

sets. The first components tend to explain relatively larger amounts of variance, while the 

later components are prone to explain relatively smaller amounts (37). The aim of the 

analysis is to present the reactions in a small dimensional space so that we can understand 

how variable the optimal solutions are among the reactions and the pathways. The 

analysis was preformed using proc factor statement with principal method and promax 

rotation in SAS 9.2 (SAS Institute, Cary, NC, USA). Number of components, 

eigenvalues, and rotated factor patterns were presented. The eigenvalue represents the 
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amount of variance that is accounted for by a given components. The rotated factor 

patterns are correlations between the variables and the factor. We imported the alternate 

optimal solutions obtained by MetModel and MetModelGUI and constructed the first and 

second principal components. Bi-plots of the first two components were created to 

describe linear combinations of the original variables to summarize a variety of the 

reactions and evaluate differences between the reactions. Reactions in the first principal 

component with rotated factor patterns higher than or equal 0.9; and less than or equal -

0.9 were considered as important variables (reactions). The reactions at extreme ends of 

the bi-plots are highly variable among the alternate optimal solutions generated. The 

reactions with high correlations would be essential reactions that play critical rules in 

metabolic pathways of the microorganisms. In addition to the essential reactions, we 

evaluated reactions and pathways consistently remaining in a specific level or inactive 

while other reactions function, including flux directions of the essential reactions that 

were determined by mean values of the reactions in each solution group.  

The data input file for an organism includes a biomass equation, a list of 

reactions, sources, and escapes. The data file was directly imported to MetModelGUI, 

except for H. pylori which contains a number of boundary metabolites. We converted 

those metabolites to extracellular metabolites and treated them as sources and escapes in 

the data input file. The T. cruzi data contained 146 reactions and C. neoformans 

contained 706 reactions. The other organisms had similar number of reactions in the input 

file. Each organism had fewer than 15 sources and escapes, except for H. pylori 

containing 74 sources and 74 escapes. The number of metabolites were little more than 

number of reactions. The H. pylori model produced the highest biomass flux (71.5) while 
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the C. neoformans model produced the lowest biomass flux (2.4). T. cruzi, T. fusca and 

C. thermocellum models provided biomass flux equal to 8.3, 15.7 and 11. The number of 

active reactions in T. cruzi and H. pylori model was not much different from the total 

number of reactions, while T. fusc, C. neoformans, and C. thermocellum models had high 

numbers of inactive reactions (196, 295, and 161, respectively). The size of matrix A (see 

Chapter 2) corresponds to the number of active reactions, sources, escapes, and basic 

metabolite indexes. The initial number of entering variables is the number of nonbasic 

reaction indexes that have reduced cost zero.  We had 140 initial entering variables for H. 

pylori data, and 9 initial entering variables for T. cruzi data. The number of iterations for 

generating alternate optimal solutions may depend on the size of basic reaction indexes, 

basic metabolites indexes, and time input. Allowing the program longer time produces 

more iterations and solutions. In considering for number of iterations, T. cruzi data 

performed the highest iteration, whereas H. pylori data provided the lowest iteration. 

However, the H. pylori had the highest rate of generating new solutions (50.7%). Based 

on the same time interval, T. fusca data provided the most number of solutions. In 25-

minute execution, T. fusca, H. pylori, C. neoformans C. thermocellum data provided 

2547, 1185, 1436, and 1227 solutions. In the same memory capacities, T. fusca and C. 

neoformans model can be analyzed longer than H. pylori and C. thermocellum models. 

Those solutions are unrepeated and satisfied the lower and upper bounds on reaction 

fluxes. The values of vS ∗  for all models are equal or less than the epsilon value. Among 

five metabolic models, the T. cruzi model contained the highest number of turn-on 

reactions (54/131, 41.2%). The C. neoformans model contained 116 turn-on reactions 

(28.4%) and the other models contained 10-15%. In PCA results, 116 and 84 reactions in 
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C. neoformans and H. pylori data accounted for the first component, whereas the number 

of important reactions as defined was 28 and 43 reactions, respectively. T. cruzi and C. 

thermocellum data presented a few important reactions. More details can be seen in 

Tables 4, 6, 8, 10, and 12.  

 

3.2. Validation of Implementation 

 

The bouncer algorithm and alternate optimal solutions between MetModel and 

MetModeGUI were compared. We tested the two programs using the same data input file 

of T. cruzi. The same number of epsilon (0.000001) was used to protect distinct 

precisions due to rounding in floating point arithmetic in the bouncer algorithm and 

between the two programming languages.    Numbers of all reactions, sources, escapes, 

metabolites were the same. Both biomass fluxes were equal to 8.265146. The solutions 

before getting active reactions in the two programs were different for 26 and 30 variables 

in twice testing. The Gurobi python module and QSopt java library may use different 

methods of selections of entering variables to the basis. The numbers of active reactions 

and sizes of matrix A were the same.  The coefficients in matrix A in MetModel and 

MetModelGUI were correctly created for reactions, biomass, sources, escapes and their 

metabolites. We multiplied the first solution back to the coefficients in matrix A after we 

had active reactions and solved the LP problem to check whether ii vS ∗  of each constraint 

equal to zero as the condition set for the LP problem ( ii vS ∗ ; where i = 0 to n, n is 

column size of matrix A). The summation of each constraint should be zero and we found 

all the summations in 120 constraints equal to zero in both programs. In finding alternate 
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optimal solutions, number of entering variables, basic reaction indexes, and basic 

metabolite indexes between the two programs were the same. MetModel provided 183 

unique solutions from 24,182 iterations for ten minute of execution, while MetModelGUI 

provided 720 unrepeated solutions from 16,849 iterations within the seven-minute 

execution time. It seems that the MetModel may generate alternate optimal solutions 

faster than the MetModelGUI. All of the 183 solutions in MetModel appear in the 720 

solutions in MetModelGUI. In the 183 solutions by MetModel, 38 reactions from 16 

pathways were considered as important reactions by PCA analysis. Conversely, among 

720 solutions by MetModelGUI, 5 reactions from 3 pathways were important reactions in 

T. cruzi metabolism.  Possibly larger numbers of solutions may increase variations in the 

data on the factor spaces.  
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Table 3. Application of MetModelGUI for Trypanosoma cruzi. Thermobifida fusca, Helicobacter pylori, Cryptococcus neoformans and 
Clostridium thermocellum 
 

Information T. cruzi T. fusca H. pylori C.neoformans C. thermocellum 

1. N of all reactions 146 423 479 706 560 
2. N of sources 4 11 74 5 13 
3. N of escapes 3 1 74 4 9 
4. N of metabolites 160 485 485 839 569 
5. Biomass flux 8.265146 15.722562 71.4681328 2.380329 11.360386 
6. N of active reactions 124 286 413 400 399 
7. Size of matrix A 120 x 131 252 x 298 383 x 561 354 x 409 350 x 420 
8. Correctness of matrix A Yes Yes Yes Yes Yes 
9. SV of each constraint  0 0 0 0 0 
10. N of entering variables  9 33 140 47 35 
11. N of basic reaction indexes 120 252 383 354 350 
12. N of basic metabolite indexes 120 252 383 354 350 
13. N of iterations for 10 minutes - 5298 1924 3931 3329 
14. N of solutions for 10 minutes - 2187 970 936 1014 
15. Time at last execution (minutes) 6.8 86.5 25.7 50.7 26.1 
16. N of iterations at last execution 16849 6684 2337 6891 4123 
17. N of solutions at last execution 720 2792 1185 1698 1231 
18. Solutions for each iteration Unrepeated, in bounds Unrepeated, in bounds Unrepeated, in bounds Unrepeated, in bounds Unrepeated, in bounds 
19. N of turn-on reactions  54 43 84 116 44 
20. N of turn-off reactions at 0 37 87 200 237 110 
21. N of turn-off reactions at a 

specific level 40 168 277 56 267 

22. N of variable contribute to the 
first component 54 43 84 116 15 

23. N of important reactions 5 16 43 28 5 

24. N of pathway in #23 3 9 15 8 3 
 
Note: Executions were stopped with out of memory for the results in No.15, 16, and 17, except for T. cruzi model which was completely executed.
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Trends in obtaining new optimal solutions by the bouncer algorithm are different 

among the five complex metabolic models. All models are more likely to highly 

enumerate new optimal solutions in the beginning period of executions. The T. cruzi 

model seems to rapidly alternate optimal solutions in the first-fifteen seconds. The H. 

pylori and C. thermocellum models had highly producing new solutions in the first-ten 

minutes. Meanwhile, the T. fusca and C.neoformans models are more likely to enumerate 

well new solutions in the first-fifteen minutes.  The rate of obtaining new solutions in the 

T. cruzi, T. fusca H. pylori, C. thermocellum and C.neoformans models are 

approximately 29, 3, 2, 2, and 1 solution per second. After the early period of executions, 

the identification of new solutions in the complex models tends to decrease.  The number 

of new solutions was found less than those found in the early period. The T. cruzi model 

was completely executions, which can be used to represent the tendency of enumerating 

alternate optimal solutions in the bouncer algorithm. When no new solutions are 

generated, number of entering variables in the stack collection is decreased until the 

collection is empty. Concurrently, the bouncer algorithm in the other models presents 

new solutions are consistently generated when new entering variables are consistently 

added into the collection. In addition, we found number of iterations corresponds to the 

time of execution. The number of new solutions frequently increases by numbers of 

iterations for all models. More details of these results can be seen in Figure 5-9. 
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Figure 5. Line plots of number of solutions and number of entering variables over execution time 

(A and B) and number of iterations (C and D) in Trypanosoma cruzi model analysis 
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Figure 6. Line plots of number of solutions and number of entering variables over execution time 

(A and B) and number of iterations (C and D) in Thermobifida fusca model analysis 
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Figure 7. Line plots of number of solutions and number of entering variables over execution time 

(A and B) and number of iterations (C and D) in Helicobacter pylori model analysis 
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Figure 8. Line plots of number of solutions and number of entering variables over execution time 

(A and B) and number of iterations (C and D) in Cryptococcus neoformans model analysis 
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Figure 9. Line plots of number of solutions and number of entering variables over execution time 

(A and B) and number of iterations (C and D) in Clostridium thermocellum model analysis 
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3.3 Detailed Analysis of Alternate Optimal Solutions for Five Microorganisms 
 

Alternation optimal solutions generated by MetModelGUI with complete 

executions for T cruzi model and at last executions for T. fusca, H. pylori, C. neoformans 

and C. thermocellum model were analyzed by PCA. The PCA results are presented in 

details as follows: 

 

1. Eigenvalues and proportions of variance accounted for  

2. List of essential reactions and their pathways 

3. List of reactions with very little variability 

4. Characters of solutions obtained by PCA analysis 

5. Directions of essential reactions on the characters of solutions  

 
 
1. Trypanosoma cruzi 

 

Trypanosoma cruzi is a species of parasitic euglenoid trypanosomes. T.cruzi is 

known as a cause of the Chagas' disease, which is a major public health problem in 

endemic countries. Understanding the biology and biochemistry of t.cruzi can help 

improvement antichagasic agents to treat the Chagas's disease (38).  

There were nine components with an eigenvalue greater than one. The 

eigenvalues for the component 1, 2, and 3 were 15.023, 9.656, and 6.284. The last 

component displays an eigenvalue of 2.428. The first, second, and third components 

account for 27.8%, 17.9% and 11.6% of the total variance. The eigenvalues and the 

proportions of variance accounted for in this analysis appear in Figure 10. 
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Figure 10. Scree plot of eigenvalues from principal component analysis of 124 active reactions, 4 

sources, and 3 escapes in the Trypanosoma.cruzi model 

 

The following are associations of reactions in the first and second principal 

components.  

 
 
Figure 11. Bi-plot of the rotated factor pattern in the first and second components of the 

metabolic reactions in Trypanosoma cruzi by alternate optimal solutions conducted by 

MetModelGUI.  
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In Figure 11, we can see the metabolic reconstruction of T.cruzi consists of many 

metabolic reactions (54 reactions from 30 pathways). Reactions correlated to other 

reactions were closely presented to same dimensions on the factor spaces e.g. 

R_13DPGtg, R_PGK, and R_PIt2p. It seems that there are six groups of reactions. The 

reactions in each group may have some relationships or functions together in the 

pathways. The reactions presented in the figure exist in these pathways: ATP synthesis,  

alanine and aspartate metabolism,  citric acid cycle, glutamate metabolism, glycolysis and 

gluconeogenesis, oxidative phosphorylation, pyruvate metabolism, and transportation in 

extracellular,  glycosomal and mitochondrial.  

 

Table 4. Essential reactions and their pathways in Trypanosoma cruzi in the first principal 

component by alternate optimal solutions generated from MetModelGUI  

Pathways Reaction names (Enzymes) Reactions  Rotate factor 
Pattern 

Glutamate metabolism Glutamatedehydrogenase (NAD) R_GLUDx -0.98677 

Glutamate metabolism Glutamatedehydrogenase (NAD) 
(Mitochondrial) R_GLUDxm 0.98677 

Oxidative Phosphorylation19 NAD hdehydrogenase R_NADH2_DASH_u6cm -0.98490 

Transport, Mitochondrial H2O transport in mitochondrial R_H2Otm 0.97994 

Transport, Mitochondrial NH3 mitochondrial transport R_NH4tm -0.98677 

 
 

Two reactions were found at the extremely right side: R_GLUDxm, and 

R_H2Otm, and three reactions found at the extremely left side: R_GLUDx, 

R_NADH2_DASH_u6cm, and R_GLUDx. These reactions may provide the major 

energy sources of metabolism for T.cruzi (Figure 11, Table 4). Our results are similar to a 

study that suggested some glutamate metabolic pathways could effect on survival of 

T.cruzi as the glutamate pathways were inhibited, which led to stress conditions such as 
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nutritional starvation and oxidative stress. Specially, NADP+-link glutamate 

dehydrogenase was a catalyst of the activities (39).   

We also listed the reactions with very little variability in the first component in 

Table 5. These reactions may relate to the reactions with high variability in Table 4.  

Table 5. Reactions with very little variability in Trypanosoma cruzi model 

Pathways Reaction names (Enzymes) Reactions  

Citric Acid Cycle19 Fumarase,mitochondrial R_FUMm 
Glycolysis/Gluconeogenesis11 Aldose1epimerase-Likeprotein R_A1Eg 
Glycolysis/Gluconeogenesis12 Glucokinase R_GLUKg 
Glycolysis/Gluconeogenesis13 Hexokinase(D-Glucose:atp) R_HEXg 
Glycolysis/Gluconeogenesis15 Glucose-6-Phosphateisomerase,glycosome R_PGI1 
Glycolysis/Gluconeogenesis16 Glucose-6-Phosphateisomerase,glycosome R_PGI3 
Glycolysis/Gluconeogenesis17 Glucose-6-Phosphateisomerase,glycosome R_PGI2 
Glycolysis/Gluconeogenesis46 Fumarase,glycosome R_FUMg 
Glycolysis/Gluconeogenesis47 Fumaratereductase,nad,glycosome R_FRDgr 
Transport, Glycosomal Cytoplasm2glycosome,succ R_SUCCtgi 
Transport, Mitochondrial Cytoplasm2mitochondrion,succ R_SUCCtrm 

 
Note: Rotated pattern factor < 0.01 or > - 0.01 and not included the zero value. 

 

 

Figure 12. Bi-plot of PCA scores on the first two principal components for 720 solutions in the 

Trypanosoma cruzi model.  
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Table 6. Flux directions of five essential reactions for each solution group in Figure 12.  

Solution Groups 
Essential Reactions 1 

(n = 180) 
2 

(n = 120) 
3 

(n = 110) 
4 

(n = 60) 
5 

(n = 100) 
6 

(n = 100) 

R_GLUDx 586.68 222.13 -35.04 546.35 222.13 14.76 

R_GLUDxm -44.21 320.34 577.51 -3.88 320.34 527.71 

R_H2Otm -699.26 -428.73 -233.56 -729.16 -465.73 -297.69 

R_NADH2_DASH_u6cm 623.87 255.90 0.00 580.12 255.90 48.07 

R_NH4tm 44.21 -320.34 -577.51 3.88 -320.34 -527.71 
 
Note: Mean values of each solution group were presented 

 

 It seems that the PCA scores of the first two components of 720 solutions in the T 

cruzi model were categorized to six groups (Figure 12). The flux directions of all the five 

essential reactions have the same high and low fluxes in Group 1 and 4; Group 2 and 5. 

Four in five essential reactions have the same fluxes in Group 3 and 6, except for 

R_GLUDx presenting low fluxes in Group 3 but high fluxes in Group 6 (Table 6).  
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2 Thermobifida fusca 
 

Thermobifida fusca is a rod shaped and thermophilic organism found in decaying 

organic matter and is a major degrader of plant cell wall. Its former name is 

Thermomonaspora fusca. This organism produces multiple extracellular enzymes for the 

decomposition of cellulose and lignocellulose residues, which are important for the 

breakdown of agricultural and urban wastes. T. fusca usually presents in plant materials 

and bioplolymer substrates of natural origin. It contributes to the environment by 

decomposing organic matter (40, 41, 42).  

There were 14 components with an eigenvalue greater than zero, and of these, 12 

components with an eigenvalue greater than one. The eigenvalues for the component 1, 2, 

and 3 were 16.628, 4.015, and 3.261. The last component displays an eigenvalue of 

0.305. The first, second, and third components account for 38.7%, 9.3%, and 7.6% of the 

total variance. The eigenvalues and the proportions of variance account for in this 

analysis appear in Figure 13. 

 
Figure 13. Scree plot of eigenvalues from principal component analysis of 286 active 

reactions, 11 sources, and 1 escapes in the Thermobifida.fusca model 
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These following are associations of the reactions in the first and second principal 

components.  

 

Figure 14. Bi-plot of the rotated factor pattern in the first and second components of the 

metabolic reactions in Thermobifida fusca by alternate optimal solutions conducted by 

MetModelGUI.  

 

 The first two principal components of T. fusca metabolic reactions can be 

partitioned into six groups. There are 43 reactions from 15 pathways contributed to the 

components. The majority of the reactions with low correlations to the first factor are 

nucleotides: cytidylatekinase, nucleoside-diphosphatase, and umpkinase.   
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Table 7. Essential reactions and their pathways in Thermobifida fusca in the first principal 

component by alternate optimal solutions generated from MetModelGUI  

Pathways Reaction names (Enzymes) Reactions Rotate factor 
Pattern 

Alanine and Aspartate Metabolism Argininosuccinatelyase R_ARGSL -0.99973 
Alanine and Aspartate Metabolism Aspartatetransaminase R_ASPTA 0.999728 
Amino Acid Metabolism Acetylornithinetransaminase R_ACOTA -0.99973 
Amino Acid Metabolism Acetylglutamatekinase R_ACGK 0.999728 
Arginine and Proline Metabolism Ornithinetransacetylase R_ORNTAC 0.999728 
Arginine and Proline Metabolism Argininosuccinatesynthase,reversible R_ARGSSr -0.99973 
Arginine and Proline Metabolism Ornithinetransaminase R_ORNTA 0.999728 
Arginine and Proline Metabolism 1-Pyrroline-5-Carboxylatedehydrogenase R_P5CD 0.999728 
Argininedeiminase Argininedeiminase R_ARGDr -0.99973 
Central Metabolism Pyruvate,phosphatedikinase. R_PPDK 0.988718 
Citric Acid Cycle Malatedehydrogenase R_MDH -0.99973 
Citric Acid Cycle Fumarase R_FUM -0.99973 
Glutamate metabolism Glutamatedehydrogenase(Nadp) R_GLUDy 0.999728 
Glycolysis/Gluconeogenesis Pyruvatekinase R_PYK 0.988718 
Urea Cycle N-Acetyl-G-Glutamyl-Phosphatereductase R_AGPR -0.99973 

Urea cycle/amino group metabolism L-Glutamate5-
Semialdehydedehydratase(Spontaneous) R_G5SADs 0.999728 

 

Of the 43 reactions, 16 reactions from 9 pathways were the important reactions in 

T. fusca metabolism. These pathways of the reactions were in the extremely right side: 

alanine and aspartate metabolism, amino acid metabolism, central metabolism, glutamate 

metabolism, glycolysis/gluconeogenesis, and urea cycle/amino group metabolism; and in 

the extremely left side: alanine and aspartate metabolism, amino acid metabolism, 

arginine and proline metabolism, citric acid cycle, and urea cycle (Figure 9, Table 7). As 

described, source of energy of T. fusca may depend on several metabolic pathways as 

said in the study of proteomic analysis of T fusca for metabolic pathways of cellulose 

utilization (43).   
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Below the list of reactions with very little variability was in the first component. 

This information may be useful to evaluate how the reactions and pathways function.  

 

Table 8. Reactions with very little variability in Thermobifida fusca model 

Pathways Reaction names (Enzymes) Reactions 

Fatty Acid Metabolism Formatedehydrogenase R_FDH 
Glyoxylate Metabolism Formatedehydrogenase R_FDHr 
IMP Synthesis 7 Phosphoribosylaminoimidazolecarboxylase R_AIRC2r 
Methionine Metabolism Adenosylhomocysteinase R_AHCi 
Methionine Metabolism Adenosylhomocysteinase R_AHC 

 
Note: Rotated pattern factor < 0.01 or > - 0.01 and not included the zero value. 

 
 

 
 
Figure 15. Bi-plot of PCA scores on the first two principal components for 2792 solutions in the 

Thermobifida fusca model. 
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Table 9. Flux directions of 16 essential reactions for each solution group in Figure 15.  

Essential Reactions Group 1 
(n = 24) 

Group 2 
(n = 2768) 

R_ACGK 16.00 21.53 
R_ACOTA -16.00 -21.53 
R_AGPR -16.00 -21.53 
R_ARGDr -994.47 -1000.00 
R_ARGSL -991.69 -997.22 
R_ARGSSr -991.69 -997.22 
R_ASPTA 972.65 978.18 
R_FUM -979.26 -984.79 
R_G5SADs 13.22 18.76 
R_GLUDy 895.79 901.33 
R_MDH -979.26 -984.79 
R_ORNTA 13.22 18.76 
R_ORNTAC 16.00 21.53 
R_P5CD 11.07 16.60 
R_PPDK 871.73 877.31 
R_PYK 833.47 839.05 

 
Note: Mean values of each solution group were presented 

 

In figure 15, 2792 solutions for in the T fusca model were categorized to two 

groups by PCA scores of the first two components. Flux directions of all the 16 essential 

reactions in the two groups have the same fluxes directions: 9 high fluxes and 17 low 

fluxes (Table 9).  
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3 Helicobacter pylori 
 

Helicobacter pylorus is a gram-negative, microaerophilic bacterium that causes 

chronic inflammation of the stomach or the peptic ulcers diseases in human. This 

bacterium is transmitted by ingesting contaminated food and water from H pylorus 

.infected people. It requires oxygen at low concentration. It contains a hydrogenase which 

can be used to obtain energy by oxiding molecular hydrogen produced by intestinal 

bacteria. It also produces oxidase, catalase, and urease and capable of forming biofilms 

(44).  

There were 24 components with an eigenvalue greater than zero and of these, 10 

components had an eigenvalue greater than one. The eigenvalues for the component 1, 2, 

and 3 were 48.607, 9.475, and 4.925. The last component displays an eigenvalue of 

0.156. The first, second, and third components account for 57.9%, 11.3%, 5.9% of the 

total variance. The eigenvalues and the proportions of variance accounted for from this 

analysis appear in Figure 16. 

 

Figure 16. Scree plot of eigenvalues from principal component analysis of 413 active reactions, 

74 sources, and 74 escapes in the Helicobacter pylorus model 
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Figure 17 are associations of the reactions in the first and second principal 

components. In H. pylorus data, we found 37 reactions, 20 sources and 27 escapes 

contributed to the principal components. 35 reactions, 4 sources and 4 escapes were 

considered as important metabolic reactions, substrates and products in H. pylorus 

metabolism (Table 8). The 35 reactions were in these pathways: alanine and aspartate 

metabolism, citric acid cycle, glutamate metabolism, glycine and serine metabolism, 

glycolysis/gluconeogenesis, pentose phosphate pathway, respiratory chain, respiratory 

chain, tricarboxylic acid (TCA), tryptophan metabolism, transport, and extracellular 

transport. This study found some reactions involved in H. pylorus metabolism as similar 

as reported in the study of citric acid cycle in H. pylorus: aconitase, isocitratede 

hydrogenase (HADP), fumarase, 2-oxoglutaratereversible transport via symport, NADH 

dehydrogenase (menaquinone) (Complex), malate dehydrogenase (menaquinone-6 

acceptor), succinate, and fumarate antiporter (45). 
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Figure 17. Bi-plot of the rotated factor pattern in the first and second components of the 

metabolic reactions in Helicobacter pylorus by alternate optimal solutions conducted by 

MetModelGUI.  

 

Table 10. Essential reactions and their pathways in Helicobacter pylorus in the first principal 

component by alternate optimal solutions generated from MetModelGUI  

Pathways Reaction names (Enzymes) Reactions Rotate factor 
Pattern 

Tryptophan metabolism Acetyl-Coac-Acetyltransferase R_ACACT1r -0.9993 
Transport, Extracellular Acetoacetatetransportviaprotonsymport R_ACACt2 0.9993 
Citric Acid Cycle Aconitase R_ACONT 0.9993 
Transport, Extracellular 2-Oxoglutaratereversibletransportviasymport R_AKGt2r -0.9993 
Alanine and Aspartate 
Metabolism L-Aspartase R_ASPT 0.9993 

Alanine and Aspartate 
Metabolism Aspartatetransaminase R_ASPTA -0.9993 

Citric Acid Cycle Citratesynthase R_CS 0.9993 
Transport, Extracellular L-Cysteinetransportviaabcsystem R_CYSabc 0.9993 
Transport, Extracellular L-Cysteine/L-Glutaminereversibleexchanger R_CYSGLUexR -0.9993 
Pentose Phosphate  2-Dehydro-3-Deoxy-Phosphogluconatealdolase R_EDA 0.9993 
Pentose Phosphate  6-Phosphogluconatedehydratase R_EDD 0.9993 
TCA cycle 6 Fumaratereductase R_FRD5 0.9993 
Respiratory chain Frdo R_FRDO 0.9993 
Citric Acid Cycle Fumarase R_FUM 0.9993 
Transport Fumaratetransportoutviaprotonantiport R_FUMt3 0.9993 
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Table 10. Essential reactions and their pathways in Helicobacter pylorus in the first principal 

component by alternate optimal solutions generated from MetModelGUI (cont.) 

Pathways Reaction names (Enzymes) Reactions Rotate factor 
Pattern 

Pentose Phosphate  Glucose6-Phosphatedehydrogenase R_G6PDH2 -0.9993 
Glutamate metabolism Glutaminesynthetase R_GLNS -0.9993 
Pentose Phosphate  Phosphogluconatedehydrogenase R_GND -0.9993 
Respiratory chain Hyda R_HYDA1 0.9993 
Citric Acid Cycle Isocitratedehydrogenase(Nadp) R_ICDHyr 0.9993 

Transport, Extracellular L-Malatereversibletransportviaprotonsymport R_MALt2r 0.9993 

TCA cycle 8 
Malatedehydrogenase 
(Menaquinone6asacceptor) R_MDH4 0.9993 

Respiratory chain 1 
Nadhdehydrogenase(Menaquinone) 
(Complexi) 

R_NDH_DASH
_1 -0.9993 

TCA cycle 5 
3-Oxoacidcoa-Transferase(Succinyl-
Coa:acetoacetate) R_OCOAT1 0.9993 

TCA cycle 4 Ferredoxinoxidoreductase R_OOR 0.9993 
Glycolysis/Gluconeogenesis Glucose-6-Phosphateisomerase R_PGI 0.9993 
Pentose Phosphate  _6-Phosphogluconolactonase R_PGL -0.9993 
Pentose Phosphate  Ribulose5-Phosphate3-Epimerase R_RPE -0.9993 
Pentose Phosphate  Ribose-5-Phosphateisomerase R_RPI 0.9993 
Glycine and Serine 
Metabolism L-Serinedeaminase R_SERD_L -0.9993 

Transport, Extracellular L-Serinereversibletransportviaprotonsymport R_SERt2r -0.9993 
Transport, Extracellular Succinate:fumarateantiporter R_SUCFUMt 0.9993 
Pentose Phosphate  Transaldolase R_TALA -0.9993 
Pentose Phosphate  Transketolase R_TKT1 -0.9993 
Pentose Phosphate  Transketolase R_TKT2 -0.9993 
Escape  R_ESC_fum_e -0.9993 
Escape  R_ESC_mal_l_e -0.9993 
Escape  R_ESC_ser_l_e 0.9993 
Escape  R_ESC_succ_e 0.9993 
Source  R_SRC_acac_e 0.9993 
Source  R_SRC_akg_e -0.9993 
Source  R_SRC_gln_l_e 0.9993 
Source  R_SRC_h2_e 0.9993 
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Below the list of reactions with very little variability was in the first component.  

Table 11. Reactions with very little variability in Helicobacter pylorus model 

Pathways Reaction names (Enzymes) Reactions 

Transport, Extracellular  Notransport (Diffusion) R_NOt 
Source   R_SRC_lys_l_e 
Source   R_SRC_met_l_e 
Source   R_SRC_thymd_e 
Escape   R_ESC_lys_l_e 
Escape   R_ESC_met_l_e 
Escape   R_ESC_ni2_e 
Escape   R_ESC_no_e 
Escape   R_ESC_thm_e 
Escape   R_ESC_thymd_e 
Escape   R_ESC_uri_e 

 
Note: Rotated pattern factor < 0.1 or > - 0.1 and not included the zero value. 

  
 

 
 
Figure 18. Bi-plot of PCA scores on the first two principal components for 1185 solutions in the 

Helicobacter pylorus model. 
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Table 12. Flux directions of 43 essential reactions for each solution group in Figure 18.  

Essential Reactions Group 1 (n = 1061) Group 2 (n = 116) Group 3 (n = 8) 
R_ACACT1r -402.31 -403.33 -414.22 
R_ACACt2 402.31 403.33 414.22 
R_ACONT 586.80 588.85 610.62 
R_AKGt2r 853.54 852.00 835.68 
R_ASPT 4.70 5.21 10.65 
R_ASPTA -29.51 -30.03 -35.47 
R_CS 586.80 588.85 610.62 
R_CYSabc 0.69 1.20 6.64 
R_CYSGLUexR -5.22 -5.73 -11.17 
R_FRDO 404.28 405.31 416.19 
R_FUM -820.34 -819.83 -814.39 
R_G6PDH2 885.55 883.50 861.74 
R_GLNS 19.50 18.98 13.54 
R_GND 419.63 416.55 383.90 
R_HYDA1 0.00 2.82 32.75 
R_ICDHyr 586.80 588.85 610.62 
R_MALt2r 640.04 642.09 663.86 
R_MDH4 616.31 618.88 646.08 
R_NDH_DASH_1 928.80 926.74 904.98 
R_OCOAT1 402.31 403.33 414.22 
R_OOR 404.28 405.31 416.19 
R_PGI -889.37 -887.32 -865.55 
R_PGL 885.55 883.50 861.74 
R_RPE 899.92 897.87 876.10 
R_RPI 480.89 481.92 492.80 
R_SERD_L 368.08 367.05 356.17 
R_SERt2r -487.25 -488.27 -499.16 
R_SUCFUMt -50.61 -46.25 0.00 
R_TALA 450.55 449.52 438.64 
R_TKT1 452.95 451.92 441.04 
R_TKT2 446.97 445.95 435.06 
src_acac_e 402.31 403.33 414.22 
src_akg_e 853.54 852.00 835.68 
src_gln_l_e 5.22 5.73 11.17 
src_h2_e 0.00 2.82 32.75 
esc_fum_e 279.93 276.60 241.23 
esc_mal_l_e 359.96 357.91 336.14 
esc_ser_l_e 487.25 488.27 499.16 
esc_succ_e 949.39 953.75 1000.00 

Note: Mean values of each solution group were presented 
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In PCA analysis of the 1185 solutions for the H. pylorus model, the majority of the 

solutions were grouped together in the left side in the figure 18, which were the highly 

negative scores of the first principal component. Some other solutions display PCA 

scores far away from the majority group. We categorized those solutions into three 

groups according to the PCA scores of the first principal component (Group 1: PCA 

scores < -9000, Group 2: PCA scores -2000 to -9000, and Group 3: PCA scores > -2000). 

Almost all of the essential reactions had similar flux directions. Only a small difference 

of some reaction fluxes was found among the three groups. For instance, H2 and Hyda 

reactions had zero flux in the Group 1, while they showed non-zero fluxes in the Group 2, 

and 3. More details of flux directions of other essential reactions in the H. pylorus model 

can be seen in Table 12.      

 
 
4  Cryptococcus neoformans 
 
 

Cryptococus neoformans is a fungal pathogen that causes respiratory and 

neurological infections in immunocompromised individuals and HIV/AID patients. C. 

neoformans is currently reported as the most common opportunistic infection in 

HIV/AIDS patients in sub-Saharan Africa more than tuberculosis and as a critical disease 

in some countries such as India. We may see C. neoformans in the environments such as 

soil, water, milk, fruits, bird nests, bats, and etc but when they are inhaled in human or 

animal body, they disseminate the infection to their host via bloodstream and cause 

meningoencephalitis. It grows well in alkaline, neutral, and acidic environments of 

human body. C.neoformans infections can be treated by antifungal but there is an 

increase of drug resistance (46, 47). Better understanding the metabolic reactions and 
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pathways of this pathogen would help to decrease morbidity and mortality in the endemic 

areas. 

 

Figure 19. Scree plot of eigenvalues from principal component analysis of 400 active reactions, 5 

sources and 4 escapes in the Cryptococus neoformans model 

 

There were 20 components with an eigenvalue greater than zero, 19 of them with 

an eigenvalue greater than one. The eigenvalues for the component 1, 2, and 3 were 

31.714, 14.045, and 8.422. The last component displays an eigenvalue of 0.816. The first, 

second, and third components account for 27.3%, 12.1%, and 7.3% of the total variance. 

The eigenvalues and the proportions of variance accounted for from this analysis appear 

in Figure 19. 
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Figure 20. Bi-plot of the rotated factor pattern in the first and second components of the 

metabolic reactions in Cryptococcus neoformans by alternate optimal solutions conducted by 

MetModelGUI. 

 

In the analysis of Cryptococus neoformans, we found 116 reactions from 31 

pathways contributed to the first component and it seems they were organized to 5 

groups. However, 28 essential reactions from 8 pathways were extracted from the list of 

the reactions.  17 in the 28 reactions exist in the extremely right side and 11 exist in the 

extremely left side. The essential reactions contained in these pathways: fructose and 

mannose metabolism, galactose metabolism, glycolysis/gluconeogenesis, pentose 

phosphate pathway, pyruvate metabolism, extracellular transport, sources and escape 

fluxes. 
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Table 13. Essential reactions and their pathways in Cryptococcus neoformans in the first 

principal component by alternate optimal solutions generated from MetModelGUI  

Pathways Reaction names (Enzymes) Reactions 
Rotated 
Factor 
Pattern 

Fructose and Mannose Metabolism Hexokinase (D-Fructose:atp) R_HEX7 0.99751 
Galactose metabolism Sucrosehydrolyzingenxyme,extracellular R_SUCRe 0.99751 
Glycolysis/Gluconeogenesis Aldehydedehydrogenase (Acetaldehyde,nadp) R_ALDD2y 0.99751 
Glycolysis/Gluconeogenesis Enolase R_ENO 0.99751 
Glycolysis/Gluconeogenesis Fructose-Bisphosphatealdolase R_FBA 0.99751 
Glycolysis/Gluconeogenesis Glucose-6-Phosphateisomerase R_PGI 0.99751 
Glycolysis/Gluconeogenesis Glyceraldehyde-3-Phosphatedehydrogenase R_GAPD 0.99751 
Glycolysis/Gluconeogenesis Hexokinase (D-Glucose:atp) R_HEX1 0.99751 
Glycolysis/Gluconeogenesis Phosphofructokinase R_PFK 0.99751 
Glycolysis/Gluconeogenesis Phosphoglyceratekinase R_PGK -0.99751 
Glycolysis/Gluconeogenesis Phosphoglyceratemutase R_PGM -0.99751 
Glycolysis/Gluconeogenesis Pyruvatekinase R_PYK 0.99751 
Glycolysis/Gluconeogenesis Triose-Phosphateisomerase R_TPI 0.99751 
Pentose Phosphate Pathway 6-Phosphogluconolactonase R_PGL -0.99751 
Pentose Phosphate Pathway Glucose6-Phosphatedehydrogenase R_G6PDH2 -0.99751 
Pentose Phosphate Pathway Phosphogluconatedehydrogenase R_GND -0.99751 
Pentose Phosphate Pathway Ribose-5-Phosphateisomerase R_RPI 0.99751 
Pentose Phosphate Pathway Ribulose5-Phosphate3-Epimerase R_RPE -0.99751 
Pentose Phosphate Pathway Transaldolase R_TALA -0.99751 
Pentose Phosphate Pathway Transketolase R_TKT1 -0.99751 
Pentose Phosphate Pathway Transketolase R_TKT2 -0.99751 
Pyruvate Metabolism Pyruvatedecarboxylase R_PYRDC 0.99751 
Transport, Extracellular Acetatereversibletransportviaprotonsymport R_ACt2r -0.99751 
Transport, Extracellular D-Fructosetransportinviaprotonsymport R_FRUt2 0.99751 
Transport, Extracellular Glucosetransport (Uniport) R_GLCt1 0.99751 
EscapeFlux EscapeFlux R_ESC_h2o_e -0.99751 
EscapeFlux EscapeFlux R_ESC_ac_e 0.99751 
SourceFlux SourceFlux R_SRC_sucr_e 0.99751 

 
 

In Table 13, we found pentose phosphate pathway is an important pathway for C. 

neoformans metabolism. This result is similar to a study which suggested some cellular 

processes such as cell wall maintenance, stress and virulence were important for target 

genes of C. neoformans (48). The pentose phosphate pathway was a highly conserved 

pathway and was important for reductive biochemistry during oxidative stress in many 
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organism. For C. neoformans, the pentose phosphate pathways were essential for the 

ability of resistance and adaptation to high levels of oxidative stress. Another study 

suggested that gluconeogenesis and glycolysis metabolic pathways for carbon utilization in C. 

neoformans, which restricted for growth of lactate and glucose (49). The pathwars were also 

found as important pathways for energy sources in this analysis. In addition, the pyruvate 

decarboxylase was a reaction found in the process of conversion from pyruvate to acetate. 

The acetate production was relevant to the pathogenesis of C. neoformans. It was 

presented as one of the major metabolites present in infected tissue (50).  

 

Below the list of reactions with very little variability was in the first component.  

 

Table 14. Reactions with very little variability in Cryptococcus neoformans model 

Pathways Reaction names (Enzymes) Reactions 

Alanine and Aspartate Metabolism Homocysteines-Methyltransferase R_HCYSMT 
Alternate Carbon Metabolism Glycogenphosphorylase R_GLCP 
Alternate Carbon Metabolism Glycogensynthase(Udpglc) R_GLCS2 
Cholesterol Metabolism Acetyl-Coac-Acetyltransferase R_ACACT1 
Cofactor and Prosthetic Group 
Biosynthesis Nicotinicacidmononucleotidepyrophosphorylase R_NAMNPP 
Fatty Acid  Biosynthesis Fatty-Acid--Coaligase(Hexadecanoate) R_FACOAL160 
Fatty Acid  Biosynthesis Fatty-Acid--Coaligase(Tetradecanoate) R_FACOAL140 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydratase(3-Hydroxydecanoyl-Coa) R_ECOAH4 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydratase(3-Hydroxyhexadecanoyl-Coa) R_ECOAH7 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydratase(3-Hydroxyhexanoyl-Coa) R_ECOAH2 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydratase(3-Hydroxyoctanoyl-Coa) R_ECOAH3 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydratase(3-Hydroxytetradecanoyl-Coa) R_ECOAH6 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxodecanoyl-Coa) R_HACD4 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxododecanoyl-Coa) R_HACD5 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxohexadecanoyl-Coa) R_HACD7 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxohexanoyl-Coa) R_HACD2 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxooctanoyl-Coa) R_HACD3 
Fatty Acid Degradation _3-Hydroxyacyl-Coadehydrogenase(3-Oxotetradecanoyl-Coa) R_HACD6 
Fatty Acid Degradation Acetyl-Coac-Acyltransferase(Butanoyl-Coa)(R) R_ACACT2r 
Fatty Acid Degradation Acetyl-Coac-Acyltransferase(Hexanoyl-Coa)(R) R_ACACT3r 
Fatty Acid Degradation Acetyl-Coac-Acyltransferase(Octanoyl-Coa)(R) R_ACACT4r 
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Table 14. Reactions with very little variability in Cryptococcus neoformans model (cont.) 

Pathways Reaction names (Enzymes) Reactions 

Fatty Acid Degradation Acetyl-Coac-Acyltransferase(Tetradecanoyl-Coa)(R) R_ACACT7r 
Fatty Acid Degradation Acyl-Coadehydrogenase(Butanoyl-Coa) R_ACOAD1 
Fatty Acid Degradation Acyl-Coadehydrogenase(Hexanoyl-Coa) R_ACOAD2 
Fatty Acid Degradation Acyl-Coadehydrogenase(Octanoyl-Coa) R_ACOAD3 
Fatty Acid Degradation Acyl-Coadehydrogenase(Tetradecanoyl-Coa) R_ACOAD6 
Fatty acid elongation B-Ketoacylsynthetase(Palmitate,n-C16:0) R_KAS8 
Fatty acid elongation Fattyacyl-Coasynthase(N-C10:0coa) R_FAS100COA 
Fatty acid elongation Fatty-Acyl-Coasynthase(N-C12:0coa) R_FAS120COA 
Fatty acid elongation Fatty-Acyl-Coasynthase(N-C14:0coa) R_FAS140COA 
Fatty acid elongation Fatty-Acyl-Coasynthase(N-C16:0coa) R_FAS160COA 
Fatty acid elongation Fattyacyl-Coasynthase(N-C8:0coa),lumpedreaction R_FAS80COA_L 
Galactose metabolism Utp-Glucose-1-Phosphateuridylyltransferase R_GALU 
IMP Biosynthesis Phosphoribosylaminoimidazolecarboxylase R_AIRCr 
IMP Synthesis 7 Phosphoribosylaminoimidazolecarboxylase R_AIRC2r 
Membrane Lipid Metabolism Acetyl-Coacarboxylase,reversiblereaction R_ACCOACr 
Methionine Metabolism Adenosylhomocysteinase R_AHCi 
Methionine Metabolism Methionineadenosyltransferase R_METAT 
NAD Biosynthesis Naprtase(Rev) R_NAPRTr 
Nucleotide Salvage Pathway Adentylatekinase(Itp) R_ADK4 
Nucleotide Salvage Pathway Uridylatekinase(Dump) R_URIDK2r 
Nucleotides Adenosinekinase R_ADNK1 
Nucleotides Guanylatekinase(Gmp:atp) R_GK1 
Nucleotides Nucleoside-Diphosphatekinase(Atp:dadp) R_NDPK8 
Nucleotides Nucleoside-Diphosphatekinase(Atp:dudp) R_NDPK6 
Nucleotides Nucleoside-Diphosphatekinase(Atp:idp) R_NDPK9 
Nucleotides Nucleoside-Diphosphatekinase(Atp:udp) R_NDPK2 
Purine and Pyrimidine Biosynthesis Dutpdiphosphatase R_DUTPDP 
Purine and Pyrimidine Biosynthesis Guanylatekinase(Gmp:datp) R_GK2 
Purine and Pyrimidine Biosynthesis Phosphoribosylaminoimidazolecarboxylase(Mutaserxn) R_AIRC3 
Threonine and Lysine Metabolism Threoninealdolase R_THRA 
Threonine and Lysine Metabolism Threoninealdolase R_THRAr 
Transport, Extracellular Atpase,cytosolic R_ATPS 
Transport, Extracellular Cytosinetransportinviaprotonsymport R_CSNt2 
Transport, Extracellular Cytosinetransportviafacilateddiffusion R_CSNt 
Transport, Extracellular Pyruvatereversibletransportviaprotonsymport R_PYRt2r 
Transport, Extracellular Pyruvatetransportinviaprotonsymport R_PYRt2 
Transport, Mitochondrial Dicarboxylatetransport,mitochondrial R_DICtm 
Transport, Mitochondrial L-Glutamatereversibletransportviaprotonsymport,mitochondrial R_GLUt2m 
Transport, Mitochondrial L-Glutamatetransportintomitochondriaviahydroxideionantiport R_GLUt5m 
Transport, Mitochondrial Malatetransport,mitochondrial R_MALtm 
Transport, Mitochondrial Phosphatetransporter,mitochondrial R_PIt2m 
Transport, Mitochondrial Phosphatetransportviahydroxideionsymport,mitochondrial R_PIt5m 
Transport, Mitochondrial Succinatetransport,mitochondrial R_SUCCtm 
Tryptophan metabolism Acetyl-Coac-Acetyltransferase R_ACACT1r 
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Table 14. Reactions with very little variability in Cryptococcus neoformans model (cont.) 

Pathways Reaction names (Enzymes) Reactions 

Tyrosine, Tryptophan, and 
Phenylalanine Metabolism Tyrosinetransaminase,irreversible R_TYRTAi 
 _3-Hydroxyacyl-Coadehydratase(3-Hydroxybutanoyl-Coa) R_ECOAH1 
. _3-Hydroxyacyl-Coadehydratase(3-Hydroxydodecanoyl-Coa) R_ECOAH5 
. _3-Hydroxyacyl-Coadehydrogenase(Acetoacetyl-Coa) R_HACD1 

Pathways Reaction names (Enzymes) Reactions 

. Acetyl-Coac-Acyltransferase(Decanoyl-Coa)(R) R_ACACT5r 

. Acetyl-Coac-Acyltransferase(Dodecanoyl-Coa)(R) R_ACACT6r 

. Acyl-Coadehydrogenase(Decanoyl-Coa) R_ACOAD4 

. Acyl-Coadehydrogenase(Dodecanoyl-Coa) R_ACOAD5 

. Acyl-Coadehydrogenase(Hexadecanoyl-Coa) R_ACOAD7 

. B-Ketoacylsynthetase(N-C14:0) R_KAS2 
 
Note: Rotated pattern factor < 0.01 or > - 0.01 and not included the zero value. 

 

 
 
Figure 21. Bi-plot of PCA scores on the first two principal components for 1698 solutions in the 

Cryptococus neoformans model. 
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Table 15. Flux directions of 28 essential reactions for each solution group in Figure 21. 

Solution Groups Essential 
Reactions 1 

(n = 25) 
2 

(n = 12) 
3

(n = 6)
4

(n = 24)
5

(n = 12)
6 

(n = 6) 
7 

(n = 922) 
8

(n = 461)
9

(n = 230)
R_ACt2r -16.56 -18.03 -16.71 -18.68 -18.68 -18.68 -18.68 -18.68 -18.68
R_ALDD2y 126.59 128.07 126.75 128.72 128.72 128.72 128.72 128.72 128.72
R_ENO 400.34 401.81 400.49 402.46 402.46 402.46 402.46 402.46 402.46
R_FBA 239.13 240.11 239.23 240.55 240.55 240.55 240.55 240.55 240.55
R_FRUt2 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
R_G6PDH2 2.13 0.66 1.97 0.00 0.00 0.00 0.00 0.00 0.00
R_GAPD 403.91 405.39 404.07 406.04 406.04 406.04 406.04 406.04 406.04
R_GLCt1 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
R_GND 2.13 0.66 1.97 0.00 0.00 0.00 0.00 0.00 0.00
R_HEX1 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
R_HEX7 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
R_PFK 239.13 240.11 239.23 240.55 240.55 240.55 240.55 240.55 240.55
R_PGI 163.39 165.11 163.58 165.87 165.87 165.87 165.87 165.87 165.87
R_PGK -403.91 -405.39 -404.07 -406.04 -406.04 -406.04 -406.04 -406.04 -406.04
R_PGL 2.13 0.66 1.97 0.00 0.00 0.00 0.00 0.00 0.00
R_PGM -400.34 -401.81 -400.49 -402.46 -402.46 -402.46 -402.46 -402.46 -402.46
R_PYRDC 125.30 126.78 125.46 127.43 127.43 127.43 127.43 127.43 127.43
R_RPE -91.48 -92.46 -91.58 -92.89 -92.89 -92.89 -92.89 -92.89 -92.89
R_RPI -93.60 -93.11 -93.55 -92.89 -92.89 -92.89 -92.89 -92.89 -92.89
R_SUCRe 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
R_TALA -45.27 -45.76 -45.32 -45.97 -45.97 -45.97 -45.97 -45.97 -45.97
R_TKT1 -45.27 -45.76 -45.32 -45.97 -45.97 -45.97 -45.97 -45.97 -45.97
R_TKT2 -46.21 -46.70 -46.26 -46.92 -46.92 -46.92 -46.92 -46.92 -46.92
R_TPI 212.02 213.00 212.12 213.43 213.43 213.43 213.43 213.43 213.43
esc_ac_e 16.56 18.03 16.71 18.68 18.68 18.68 18.68 18.68 18.68
esc_h2o_e 832.79 832.54 832.76 832.43 832.43 832.43 832.43 832.43 832.43
src_sucr_e 167.21 167.46 167.24 167.57 167.57 167.57 167.57 167.57 167.57
 
Note: Mean values of the solutions of each group were presented 

 

In PCA analysis on solutions for the C. neoformans model, PCA scores of the first-

two components classified 1698 solutions into 9 groups (Figure 21). The majority groups 

were displayed in the same level of the first principal component scores (Group 3, 6, and 

9). However, when considering flux directions, most of the essential reactions had the 

similar flux directions. 20 essential reactions had high fluxes, whereas 8 had low fluxes. 
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Small differences of the mean solution values were found among Group 1, 2, and 3. More 

details in the analysis can be found in Table 16.  

 
 
 
5. Clostridium thermocellum 
 
 

Clostridium thermocellumc is one of the cellulolytic microorganisms and 

classified as a gram-positive bacterium. This bacterium is unable to convert cellulose 

biomass into ethanol and hydrogen.  It is useful for the production of biofuel from 

biomass. The waste products of the process are generated such as hydrogen, carbon 

dioxide, acetate, and primarily ethanol.  

In PCA analysis, there were 13 components with an eigenvalue greater than one 

and 3 component with an eigenvalue in between zero and one. The eigenvalues for the 

component 1, 2, and 3 were 12.241, 5.573, and 3.726. The last component displays an 

eigenvalue of 0.171. The first, second, and third components account for 27.8%, 12.7%, 

and 8.5% of the total variance. The eigenvalues and the proportions of variance 

accounted for from this analysis appear in Figure 22. 
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Figure 22. Scree plot of eigenvalues from principal component analysis of 399 active 

reactions, 13 sources and 9 escapes in the Clostridium thermocellum model 

 
These following are reactions associated with C. thermocellum. 
 

 
 

Figure 23. Bi-plot of the rotated factor pattern in the first and second components of the 

metabolic reactions in Clostridium thermocellum by alternate optimal solutions 

conducted by MetModelGUI.  
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 Thirty-nine reactions, two sources, and three escapes contribute to the first two 

components. Of the 39 reactions, 5 reactions were listed as important reactions found in 

methionine and cysteine pathways. Cysteine and methionine are sulfur-containing amino 

acids. The cysteine was synthesized from serine in different pathways and metabolized to 

pyruvate with multiple routes. The methionine was an essential amino acid, which 

animals could not synthesize. In bacteria, methionine was synthesized from aspartate and 

produces S-Adenosylmethionine and ATP. The S-Adenosylmethionine was a methyl 

group in many important transfer reactions such as DNA methylation for regulation of 

gene expression (51). The reactions possibly release a number of energy for C. thermocellum.  

 

Table 16. Essential reactions and their pathways in Clostridium thermocellum in the first 

principal component by alternate optimal solutions generated from MetModelGUI  

Pathways Reaction names (Enzymes) Reactions Rotated Factor 
Pattern 

Methionine Metabolism O-Acetyl homoserine(Thiol)-Lyase R_AHSERL2 0.97715 

Methionine Metabolism Metb1(REV) R_METB1r -0.97715 

Methionine Metabolism O-Succinyl homoserinelyase(Elimination), reversible R_SHSL4r 0.97715 

Cysteine biosynthesis Cystathionineg-Lyase R_CYSTGL -0.97715 

Methionine biosynthesis O-Succinyl homoserinelyase (H2S) R_SHSL2r -0.97715 
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Below the list of reactions with very little variability was in the first component.  

 

Table 17. Reactions with very little variability in Clostridium thermocellum model 

Pathways Reaction names (Enzymes) Reactions 

Nucleotides Cytidylatekinase(Cmp,ctp) R_CYTK6 

Pyrimidine metabolism Nucleoside-Diphosphatekinase(Atp:cdp) R_NDPK3 

Transport, Extracellular Glycoaldehydyereversibletransport R_GCALDt 

EscapeFlux  R_ESC_co2_e 

EscapeFlux  R_ESC_gcald_e 

EscapeFlux  R_ESC_h2o_e 

SourceFlux  R_SRC_co2_e 

SourceFlux  R_SRC_h2o_e 
 
Note: Rotated pattern factor < 0.01 or > - 0.01 and not included the zero value. 

 

 

Figure 24. Bi-plot of PCA scores on the first two principal components for 1231 solutions in the 

Clostridium thermocellum model. 
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Table 18. Flux directions of five essential reactions for each solution group in Figure 24. 

Essential 
Reactions 

Group 1 
(n = 456) 

Group 2 
(n = 343) 

Group 3 
(n = 96) 

Group 4 
(n = 224) 

Group 5 
(n = 112) 

R_AHSERL2 0.00 0.00 501.27 501.27 501.27 

R_CYSTGL 501.27 501.27 0.00 0.00 0.00 

R_METB1r 0.00 0.00 -501.27 -501.27 -501.27 

R_SHSL2r -497.58 -497.58 -998.85 -998.85 -998.85 

R_SHSL4r -497.04 -497.04 4.22 4.22 4.22 
 
Note: Mean values of each solution group were presented 

 

In PCA analysis on solutions for the C. thermocellum model, 1231 solutions can be 

classified into 5 groups by the PCA scores in the first-two components (Figure 24). The 

number of solutions classified in each group was not much different. We found some 

different flux directions of the five essential reactions. R_AHSERL2 and R_SHSL4r had 

high fluxes in the Group 3, 4, and 5, while they had low fluxes in other groups. It seemed that 

R_CYSTGL had opposite functions with the R_AHSERL2, that is, the R_CYSTGL had high 

fluxes in Group 1 and 2, but low fluxes in Group 3, 4, and 5. Meanwhile, R_SHSL2r reaction 

showed low fluxes direction in all groups. More details in the analysis were presented in 

Table 19.  
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CHAPTER 4 CONCLUSION 

  

 

This study applied linear programming subjected to constraints with an 

optimization approach in metabolic modeling. We implemented flux-balance analysis to 

study steady state metabolic reactions in cell systems of five microorganisms: T. cruzi, T. 

fusca, H. pylori, C. neoformans and C. thermocellum. An LP problem consists of an 

objective function, a list of constraints, upper and lower limits of solutions. The objective 

function was a biomass with a coefficient of one. The optimal value for the objective 

function was the biomass flux. A metabolic reaction was listed as a variable of the 

problem. The constraints require that the metabolites remain at a constant concentration. 

A metabolite may involve more than one reaction. We solved the LP problems using 

Gurobi Python and QSopt Java applications. A list of solutions and an optimal value for 

each problem can be used to explain how the metabolites function in the cell system.  

As an LP problem may have many optimal solutions, the goal of this study is to 

implement and apply a method for enumerating alternate optimal solutions to evaluate 

important reactions of metabolic pathways in the microorganisms.  We modified Java-

based MetModelGUI and added a ”bouncer” algorithm to be convenient for future users. 

In the bouncer algorithm, we created two main processes. The first process was to select 

active reactions of the pathways, defined as the set of reactions that can have non-zero 
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flux. We then restructured the LP and solved the problems. The second process was to 

generate other optimal solutions using the solution of the new LP problem to start the 

algorithm and iterate steps until there was no new solution or finished run time. The 

alternate optimal solutions were analyzed by PCA. A number of variables (reactions) 

were reduced into a smaller number of components. The variables contribute to the first 

components with high variability were considered as important reactions of the pathways.  

Metabolism in microorganisms is a complex biological process. We found five 

important chemical reactions in T. cruzi metabolism. They were chemical reactions 

involved glutamate and electron transports in mitochondrial. In T. fusca metabolism, 

sixteen important reactions involved in producing amino acids alanine, aspartate, 

arginine, and proline, and in the glycolysis pathways, citric acid cycle, urea cycle and 

central metabolism. Important chemical reactions in H. pylori metabolism were found in 

several pathways such as tryptophan metabolism, citric acid cycle, pentose phosphate, 

respiratory chain, glycolysis and gluconeogenesis pathways. For C. neoformans 

metabolism, twenty-eight important reactions were found in fructose and mannose 

metabolism, galactose metabolism, glycolysis/gluconeogenesis, pentose phosphate 

pathway, pyruvate metabolism, extracellular transport. In C. thermocellum metabolism, 

five important reactions were in methionine and cysteine pathways. The essential 

chemical reactions in several pathways indicate that energy sources in microorganisms 

might be contributed by different metabolic pathways. The results were summarized from 

alternate optimal solutions and principal component analysis so we can interpret all 

possible activities over the complex cell systems of the organisms (3, 4). 
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The selection of metabolic reactions with non-zero flux in stead state would 

provide solutions that are more convenient to determine essential metabolic reactions. In 

the total reactions of T. cruzi, T. fusca, H. pylori, C. neoformans and C. thermocellum, 

15%, 32%, 14%, 42% and 28% were inactive reactions. C. neoformans data had higher 

number of inactive reactions than H. pylori and C. thermocellum but provided the similar 

number of alternate solutions. This process is useful to narrow scopes of information in 

the metabolisms and had no effect on number and correctness of alternate optimal 

solutions. It saves time and memory space in iteration algorithm. 

In general, a number of alternate optimal solutions depend on sizes of 

interconnected pathways in their metabolic network (2). In our data, sizes of matrix A in 

H. pylori, C. neoformans, and C. thermocellum were similar to each other but H. pylori 

contained more sources and escapes. Most of them were boundary metabolites converted 

to extracellular metabolites or had lower interconnected pathways. The lower complexity 

of metabolic networks may be the reason that H. pylori had lower number of optimal 

solutions than the other organisms although the metabolism network of H. pylori had a 

larger size. Moreover, the number of optimal solutions in our data had been proved that 

did not depend on the number of entering variables, basic reaction indexes, basic 

metabolite indexes or biomass flux. H. pylori data had high number of entering variables 

but the number of solutions of H. pylori data was close to the number in C. neoformans. 

C. thermocellum. T. fusca data had the similar number of entering variables to the C. 

neoformans and C. thermocellum data but they provided more solutions. Therefore, 

number of alternate optimal solutions would depend on sizes of metabolite network and 
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types of constraints or environmental conditions (2). They may depend on types of 

objective functions but this cannot be proved as we use the same objective functions. 

The bouncer algorithm shows some particular characteristics in enumerating 

alternate optimal solutions. All five models have high rate of generating the new 

solutions in the beginning period of execution. This may be because the early period has 

more suitable of nonbasic variables reduced cost zero than the later period. If new 

entering variables are frequently added to the stack collection, there is a consistent chance 

to obtain new optimal solutions.  When no new entering variables are added into the basis 

for some period, this may predict time out of the execution process. Also, when the time 

of execution passes the early period, number of iterations tends to decrease. It is possible 

that memory capacities in computation are limited by increase of new solutions stored. 

The algorithm and execution process still need more evaluation in details.  

The reduction of a number of reactions to a smaller number of principal 

components would be useful to search for important metabolic reactions. As the smaller 

number of principal components account for most of the variance in the data sets, we 

considered the reactions in the first component, which accounts for as much of the 

variability in the data as possible.  The reduction would decrease uncertainty of actual 

reactions in the metabolic pathways. The important reactions were considered as the most 

informative reactions. However, these results would be validated by an experiment.  

Alternate optimal solutions may vary in different algorithms. Apart from a variety 

of number of optimal solutions in a LP problem, the optimal solutions may vary by types 

and selections entering and basis variables in algorithm obtained. In addition, given the 

property of genome-scale network, a steady state in optimal metabolic networks is 
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assumed. The variation of alternate solutions may differ by the set of reactions used in the 

analysis (2, 52). A study suggested using random sampling of all elementary vectors of 

metabolic networks as we can estimate probability of possible outcomes and expect 

information of the outcomes. In considering possible reduction of state-space, the 

methods satisfied optimal criteria and provide systematic method in studying the set of 

alternate solutions (53). 

Although MetModelGUI is ready for users, testing and applying the program for 

several organisms is necessary. The developed program have been created and 

implemented in five organisms. Results of important metabolic reactions remain 

unproved by an experiment or measuring in vivo fluxes. 

This study can serve as a starting point for applying alternate optimal algorithms 

to metabolic reconstructions. A recursive mixed-integer LP algorithm, another alternative 

algorithm for alternate optimal algorithms with the same objective function and satisfy 

constraints would be applied to compare results to our algorithm.  

Genome-scale network reconstruction has several redundant pathways. Many 

metabolites function both intracellular and extracellular fluxes. In the diverse conditions, 

flux variability analysis would be useful to understand the entire complex system of 

metabolic reconstruction. Also integration of several algorithms and constraints are 

encouraged for more accurate descriptions of the biological system.  
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