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Abstract 

 

A study of fabricating the first electrospun polymer-fiber solar cell with MEH-

PPV is presented.  Motivation for the work and a brief history of solar cell is given.  

Limiting factors to improvement of polymer solar cell efficiency are illustrated.  

Electrospinning is introduced as a technique that may increase polymer solar cell 

efficiency, and a list of advantages in the technique applied to solar cell is discussed.  

Results of electrospun polymer-fiber solar cell, absorption, and its device parameter 

diagnosis through an equivalent circuit analysis are presented. 
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1.  INTRODUCTION 

1.1 Introduction and Motivation 

There is a strong demand for renewable energy sources in the world today.  The 

IEA (International Energy Agency) has reported that in the year 2006, 87.1% of 

electricity in the world was generated from non-renewable resources (coal, nuclear, gas 

and oil) [1].  Each of these sources can impact the environment in ways such as acid rain, 

radioactive waste, CO2 pollution, and imported greenhouse gasses. 

In 1956, M. King Hubbert created a theoretical model predicting the peak of oil 

production to be around year 1965 to 1970 [2].  Many other models were developed 

predicting the time period of peak oil differing from the Hubbert Peak theory.  However 

all of the models have shown that oil production will decline, and oil is limited in supply.  

The limitation in supply can lead to an increase in price of gasoline with significant 

impact to the economy, and cause strain in the nation’s electricity such as the 2008 spike 

in the price of gasoline.  Considering that petroleum oil makes up 34.4% of the total 

primary energy supply along with all the negative impact of non-renewable resources, it 

is clear that alternatives to non-renewable resources must be investigated. 

In response to the energy crisis we face around the world, solar energy is 

attracting considerable attention as one of next generation energy sources.  It has been 

noted by the U.S. Department of Energy that covering 0.16 % of the earth’s surface by 

10 % efficient solar cells will provide ~20 TW (2x1013 W) of electricity, more than 

enough to cover the energy demand of the whole planet [3].  With the sun emitting 
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energy that is virtually unlimited in supply, solar cells have significant potential as a next 

generation energy source. 

The modern solar cell was first demonstrated in 1954 at Bell Labs.  It was 6 % 

efficient and made from crystalline silicon (c-Si) [4].  C-Si solar cells were further 

developed reaching an efficiency of 14-18 % [5], and more than 95 % of current solar 

cells in use are c-Si solar cells [6].  In 1974, the amorphous silicon (a-Si) solar cell was 

invented at RCA Laboratories as an alternative to c-Si device [7].   An a-Si solar cell 

was made by evaporation of silicon to produce amorphous thin films requiring less 

material that would lower the cost of solar cell production [8].  The a-Si solar cell has a 

relatively low 6-8 % efficiency due to high defect densities from evaporation processing.  

However, the thin film approach used in a-Si solar cell allowed further development 

utilizing multilayer processing to produce multijunction solar cells, and has led to an 

efficiency higher than 40 %[9-11] for GaxIn1-xAs or GayIn1-yP solar cells by stacking 

different materials to absorb a larger portion of the available sunlight. 

Regardless of the significant improvements made in efficiencies of inorganic 

photovoltaics, they continue to struggle in competing against non-renewable resources 

due to their high cost. The primary problem is in high energy processing of silicon, and 

the cost per kilowatt-hour for electricity from Si-based solar cells is as high as $0.25-0.65 

/kWh which is roughly 5 times more than the price of electricity produced using fossil 

fuels [12].  Adding to the high cost of inorganic solar cells, the potential increase in 

demand for crystalline Si can lead to even higher costs for the devices.  One estimate 

has calculated that for a family consuming 20 kWh/day using 15 % efficient solar cells, 



3 
 

 

the amount of silicon needed would 10,000 times more than that in a computer [13].  

Clearly, a low cost alternative to inorganic solar cells is needed. 

Polymer solar cells are a low cost alternative to inorganic solar cells.  In addition 

to the lower cost of polymer solar cells, the use of polymeric materials are known to have 

several advantages such as lighter weight, and less energy used for large scale production, 

thanks to solution based processing.  Polymer solar cells have significant mechanical 

flexibility, and are capable of being directly fabricated onto most surfaces including 

plastics.  However, the efficiency of polymer solar cells is still low compared to 

inorganic solar cells due to poor light harvesting, limited photocurrent generation, and 

poor charge transport.  This dissertation outlines these challenges in polymer solar cells, 

and will discuss a unique approach of utilizing a technique called electrospinning to 

resolve these issues.  The work is to produce the first ever electrospun polymer-fiber 

photovoltaic cells. 

1.2 Objectives 

The objective of this project is to synthesize and characterize polymer-fiber solar 

cells by electrospinning.  It is expected that these new devices will yield increased 

absorption, improved charge transport and improved charge collection.  Increase in 

these parameters can lead to improved efficiency of the device added to potential lower 

cost benefits of polymer solar cells.  The intention of the dissertation outlined in this 

proposal is to demonstrate a functioning electrospun polymer-fiber solar cell and 

characterize its output.  The specific goals of the work are fabrication of the first ever 

polymer-fiber solar cell, and an investigation of triaxial electrospinning as the next step to 

fabrication of quasi-one dimensional solar cells. 
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1.3 Dissertation Outline 

Chapter 2 presents a background and literature review of organic solar cells.  

Information on solar radiation and air mass are introduced.  Basic characteristics of solar 

cells are explained.  History in development of polymer solar cells is followed.  

Properties of polymers in organic solar cells are discussed, and different device 

architectures are discussed with their advantages along with their disadvantages. 

Chapter 3 starts with the history of the electrospinning experiment, and its 

operation.  Electrospinning and its application to solar cells are discussed.  Some 

advantages for solar cells made using electrospining are illustrated. 

Chapter 4 introduces an unusual occurrence of bimodal fibers in electrospinning.  

An experiment using a water soluble PTEBS polymer is discussed, and its applicability to 

solar cells is considered.  Significance in humidity for electrospinning is illustrated 

through an experiment using PTEBS, and its applicability to solar cell synthesis is 

discussed. 

In Chapter 5, three electrospun polymer-fiber solar cell device structures are 

presented.  A bulk heterojunction type polymer-fiber solar cell is considered for its 

conventional metal-semiconductor-metal structure.  Triaxial electrospining is considered 

for its structural advantages along with its simple solar cell fabrication process.  The co-

planar bimetallic interdigitated electrode substrate is then introduced for a simple solar 

cell fabrication process of spin-on device synthesis. 

Chapter 6 explains the development of the co-planar bimetallic interdigitated 

electrode.  An experiment is performed with an MEH-PPV:PCBB film spin-coated on 
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the surface of the electrode.  The new electrode substrate is validated from the spin-

coated film achieving an efficiency of 3.53x10-4 % using an MEH-PPV:PCBM film. 

Chapter 7 presents the choices made for the materials used in synthesis of 

electrospun polymer-fiber solar cell.  P3HT and MEH-PPV are compared based on their 

absorption changes in nanofiber structure, and solvents are chosen from evaluation of 

photoluminescence spectra.  MEH-PPV to PCBM mixture is shown to have better 

performance for a high weight fraction of PCBM.  The amount of PCBM, along with the 

possible use of PCBB is considered and optimized through electrospun polymer 

nanofiber morphology. 

Chapter 8 presents the performance and morphology of the electrospun polymer-

fiber solar cell.  Details of the experiment are explained, and an image is shown to prove 

the fiber morphology of the solar cell.  The Current-voltage characteristics of the device 

are illustrated, and the efficiency of device is estimated from illuminated area of the solar 

cell, and also from the active area of the solar cell.  Based on illuminated area and from 

the active area of the solar cell, energy conversion efficiencies of 7.92 × 10-10 %, and 3.08 

× 10-7 % are achieved, respectively. 

Chapter 9 shows the characteristics of the electrospun polymer-fiber solar cell 

through measurement of absorption.  A series of nanofibers prepared using different 

polymer concentrations are measured for absorption, and show a consistent increase in 

the amount of red shift.  The reason behind this red shift is explained through 

electrospinning, and its effect in polymer chain structures. 

In chapter 10, the device parameters of the electrospun polymer-fiber solar cell are 

discussed.  An efficiency of the device is studied in consideration for the unique device 
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structure which leads us to conclude that the device efficiency is 3.08 × 10-7 % or better.  

An equivalent circuit analysis is performed from the current-voltage characteristic 

equation to understand the relationship between different resistances and fill factor.  

Chapter 11 concludes with the summary of this work, and future work to be considered 

for further research in synthesis of electropsun polymer-fiber solar cell. 
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2.  Background and Literature Review 

2.1 Solar Radiation 

Through series of nuclear fusion reaction of hydrogen and helium, the surface 

temperature of the sun at 5800 K is hot enough to ionize all elements at this temperature, 

and emits wide spectrum of radiation.  This radiated energy is then either scattered or 

absorbed on a clear day, and roughly 76% of the incident energy reaches the earth surface 

(shown in Table 1). 

Table 1 

Absorption and scattering  
under typical clear sky conditions 

Factor Percent 
absorbed 

Percent 
scattered 

Percent of total passing 
through the atmosphere 

Ozone 2% 0% 
Water vapor 8% 4% 
Dry air 2% 7% 
Upper dust 2% 3% 
Lower dust 0% 0% 

 

Total absorbed 
or scattered 

87% 87% 76% 

 

Considering the atmospheric loss of energy in solar radiation, the amount of radiation can 

be classified by the air mass coefficient (AM) defined as 
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AM0 is the extraterrestrial radiation, AM1 is the vertical incidence of sunlight at the 

equator at sea level, and AM1.5 is the sunlight radiating through an air mass 1.5 greater 

than  the vertical case [14].  A standard solar radiation has a spectrum around the 

visible wavelengths from 380 nm to 780 nm as shown in Figure below 

 

 
Figure 1: http://solardat.uoregon.edu/SolarRadiationBasics.html 

 

2.2 Characteristics of Solar Cells 

In characterizing a solar cell, the general interest is in the performance of the 

device, and its efficiency (η).  The efficiency is measured by looking at the ratio 

between the power input of the incoming light, and the maximum power output of the 

device.  The power output of a solar cell is measured, and characterized by observing 

the relationship between its current density and voltage known as the J-U curve.  With a 

working solar cell, a J-U measurement will be a curve similar to a photodiode as shown 

below, 
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Figure 2: Typical J-U curve of a photovoltaic cell with white light illumination. 

 
A J-U curve of a solar cell will then have a current under short circuit conditions (Jsc), 

and a voltage under open circuit conditions (Uoc) where these parameters are used to 

compute the power output, and the power conversion efficiency (η) of a solar cell. 

2.2.1 Open Circuit Voltage and Short Circuit Current 

When there is no external load on a solar cell, there is a built-in electrical 

potential between the two terminals of the device under white light illumination, and this 

is called the open circuit voltage (Uoc).  Uoc is the measure of maximum voltage 

produced by the device, and it is measured when the load is connected to infinite 

resistance.  The built-in electrical potential Voc will then cause a drift in the 

photogenerated charges of the device known as the short circuit current (Jsc).  Jsc is the 

measure of maximum current produced by the device, and it is measured when the load is 

connected to zero resistance.  Using these values, the quality of a device can be 

characterized by looking at a number called the fill factor (FF). 

Uoc 

U 

J 

Jsc 

UMP 

JMP 
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2.2.2 Fill factor 

The ratio between the maximum electrical power, and the theoretical maximum of 

electrical power estimated from the product of Jsc and Uoc gives the fill factor (FF) 

defined as, 

 
 
FF =

PMax

PTheoretical

=
J MPU MP

JSCUOC

 

where JMP and UMP are current density and voltage of maximum electrical power output 

of the device.  Fill factor is essentially a measure of quality of the device, and it can also 

be seen as the ratio between the dark shaded areas of the J-U curve to the lightly shaded 

area of the J-U curve (Figure 2).  With higher fill factor, the device is able to extract 

more electrical power from a constant current source with a maximum voltage. 

2.2.3 Energy Conversion Efficiency 

Solar cell efficiency is a measure of how effectively a device is able to convert the 

energy of the sun to electricity.  Therefore, an efficiency of a solar cell is a ratio between 

the electrical power output of the cell, and the incident optical power.  Solar cell 

efficiency η is then given by, 

 
  
η =

J MPU MP

Plight

=
(FF )JSCUOC

Plight

 [14] 
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2.3 Polymer Solar Cells 

2.3.1 History 

Single organic layer (e.g., tetracene) solar cells were the first reported in the late 

1960s and early 1970s, and consisted of an organic layer sandwiched between a low-

work-function metal layer (aluminum) and a high-work-function metal (gold) as shown in 

Figure 3 [15-19] , 

 
Figure 3: Single organic layer (e.g., tetracene) solar cells. 

 

In 1977, Shirakawa et al introduced doped polyacetylene as a new class of conducting 

polymers in which the electrical conductivity can be systematically and continuously 

varied over a range of eleven orders of magnitude [20].  Since that time, electronic 

devices such as OLEDS and polymer solar cells have been the subject of extensive 

research.  Polymer solar cells utilize two materials working in pairs: a light absorbing 

polymer donating an electron to an electron acceptor. 

For homojunctions, growth of a thin oxide layer on the low-work-function 

material was recognized as an electron acceptor in 1983, where it formed a metal-

insulator-semiconductor (MIS) structure Schottky-type photodiodes demonstrating a 

photovoltaic effect [21].  Extremely low efficiencies of these devices (~10-4%) [16] led 

Glass 

Al 

Semiconductor (tetracene) 

Au 
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to research in testing wide array of materials by different research groups.  However, the 

efficiencies of homojunction organic solar cells remained below 1% [21]. 

Breakthrough advances in organic solar cells were made first by Harima et al in 

1984, and Tang in 1986 with the introduction of two-component organic photovoltaic cell 

[22,23].  A power conversion efficiency of 1% under AM2 illumination was achieved 

through the use of zinc phthalocyanine (ZnPc) and porphyrin derivative (TPyP) thin films 

[22], and also with copper phthalocyanine (CuPc) and a perylene tetracarboxylic (PV) 

derivative [23].  Figure 4 shows the device layout of two-layer organic photovoltaic cell 

by Tang. 

 
Figure 4: Two organic layer solar cells. 

 

Through research on these heterojunction polymer solar cells, the charge transfer at the 

interface between two materials were found to be energetically favorable with distinct 

electron donor and acceptor layers [24]. 

2.3.2  Properties of polymers in Organic photovoltaics 

For organic solar cells, the most common polymers have included the 

poly(phenylenevinylenes) such as MEH-PPV and the polythiophenes such as: poly(3-

Ag 

PV 

CuPc 

In2O3 

Glass 
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undecyl-2,2 '-bithiophene) or P3UBT and poly(3-hexylthiophene) or P3HT.  These 

conjugated polymers have semiconducting characteristics resulting from their alternating 

single (σ-bonds) and double carbon-carbon bonds (σ-bond and π-bond combination).  

With delocalized π-bonds over the entire molecule, the overlapping pz orbitals formulate 

two orbitals that are called a bonding (π) orbital and an antibonding (π*) orbital.  These 

two orbitals are the source of semiconducting properties of conjugated polymers where π-

orbital are the highest occupied molecular orbitals (HOMO) with lower energy, and π*-

orbitals are the lowest unoccupied molecular orbitals (LUMO) of higher energy.  The 

difference in these two orbitals energy levels are the source of a polymers band gap, and 

their optical properties such as photon absorption and emission.  HOMO/LUMO levels 

and band gap of various polymers are summarized in Table 2 below. 

Table 2:  HOMO/LUMO levels and band gaps of various polymers. 
Conjugated polymers LUMO 

(eV) 
HOMO 

(eV) 
Band gap 

(eV) 
Reference 

P3OT -2.85 -5.25 2.4 [25][26] 
MEH-PPV -3 -5.3 2.3 [27] 
MDMO-PPV -2.8 -5.0 2.2 [28] 
PTEBS -2.8 -5.0 2.2 [29-32] 
P3HT -3.2 -5.2 2.0 [33] 
PPE-PPV(DE21) -3.6 -5.6 2.0 [34] 
APFO Green 2 -3.6 -5.6 2.0 [35] 
PPE-PPV(DE69) -3.56 -5.46 1.9 [34] 
PTBTB -3.73 -5.5 1.77 [36,37] 
P3DDT -3.55 -5.29 1.74 [34] 
PBEHTB -3.6 -5.3 1.7 [38] 
PB3OTP -2.75 -4.2 1.45 [39] 
PBEHTT -3.6 -5.0 1.4 [40] 
APFO Green 1 -3.9 -5.14 1.24 [41,42] 
PTBEHT -4.0 -5.2 1.2 [40] 
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2.3.3 Architecture 

2.3.3.1 Bilayer heterojunction devices 

In 1992, Sariciftci et al showed that the MEH-PPV polymer had an ultrafast 

photoinduced electron transfer reaction to C60 [43].  C60 or Buckminsterfullerene, is a 

form of carbon, which stores up to 6 electrons, and is able to work as a strong electron 

acceptor [44].  Other common acceptors include TiO2 [32] and CdSe [45].  Sariciftci et 

al later fabricated an organic solar cell as a planar heterojunction device consisting of 

successive layers of MEH-PPV, C60, and gold deposited onto indium/tin oxide (ITO) 

coated glass substrates as shown in Figure 5 below [46]. 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a) Schematic, and (b) flat band energy-level diagram for ITO/MEH-PPV/C60/Au device. 

 

Polymer solar cells work as follows: when light is absorbed by an organic semiconductor 

(e.g. MEH-PPV), it generates a mobile excited state consisting of a tightly bound 
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electron-hole pair known as the Frenkel exciton [47].  The electron-hole pair for most 

conjugated polymers is generally known to have a binding energy of 0.3 eV – 0.4 eV 

[48,49].  With the energy level offset being greater than the exciton binding energy, the 

electron-hole pair is separated at a polymer (MEH-PPV)/electron-acceptor (C60) interface 

where the holes will then travel through the polymer (µ~ 1.1×10-7 cm2/Vs for MEH-PPV 

[27]) to the anode (ITO), and the electrons will travel through the energetically favorable 

C60 by hopping (µ=2×10-7 m2/Vs [50]) and toward the Au cathode.  This process is 

shown in Figure 6 as a circuit diagram. 
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Figure 6: Bilayer structure device band diagram of an open circuit mode (a), and a short circuit mode (b). 
 

Since its discovery, C60 has been the electron acceptor of choice for polymer solar cells, 

and one of the primary focuses in organic solar cell has been an engineering of interface 

between electron donor polymer, and the electron acceptor. 

2.3.3.2 Bulk heterojunction devices 

A bilayer device is limited by small interfacial area where the electron-hole pair 

separation occurs.  In order to overcome this challenge, the bulk heterojunction device 
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was conceived in 1994 by Yu et al [51] as an alternative.  MEH-PPV sensitized with 

C60(MEH-PPV:C60) in a Xylene solution was fabricated in a sandwich configuration as 

shown in Figure 7. 

 

Figure 7: Bulk heterojunction solar cells schematic drawing (a), band diagram of an open circuit mode (b), 
and of closed circuit mode (c). 
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Yu et al compared their device with a pure poly(3-octyl thiophene), P3OT, homojunction.  

The MEH-PPV:C60 bulk heterojunction device showed slightly higher photosensitivity 

compared to the pure P3OT device.  With the P3OT device, photosensitivity increased 

with light incident through the ITO glass.  This was explained as carrier generation and 

transport dominating the device performance at the cathode interface. 

For a mixture of polymer with C60, a discrepancy was found between calculated 

external quantum efficiency (EQE) and the results suggested from photoluminescence 

(PL) quenching [52].  This indicated a problem in charge transport through the active 

layer for bulk heterojunction devices, and the concentration of polymer and C60 becomes 

important in establishing two percolation networks for the generated electron/hole pairs 

of the active layer. 

The first step in processing light into electric current in organic solar cells is the 

absorption of a photon to produce an exciton.  However, organic solar cells suffer from 

poor light harvesting since they tend to be only efficient in the blue region of the solar 

spectrum, and not in the red.  Most organic semiconductors have relatively large 

bandgaps (> 2 eV) [53], and 1.4 eV has been reported to be the optimal value for better 

light harvesting [54].  Development of low bandgap polymer has been proven to be 

difficult [40] although recent efforts have made progress in this area [37].  Instead, other 

approaches to increase light harvesting have been demonstrated such as increasing 

absorption of fullerene component of the organic solar cell by replacing C60-PCBM with 

C70-PCBM [40]. 
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 Excitons formed through light absorption in organic solar cells have a lifetime of 

approximately 10-9 s [55].  If an exciton fails to dissociate within its diffusion length of 

4-20 nm [56], the energy is lost due to charge recombination.  This loss in energy can be 

avoided through the use of bulk heterojunction structure where it has been shown that the 

charge transfer from conducting polymers to C60 is 103 times faster than the decay of 

photoexcitations [57]. However, with C60 dispersed throughout the bulk heterojunction 

medium, the concentration of the electron acceptor becomes a critical factor in formation 

of interpenetrating network for efficient collection of carriers.  Yu et al [57] studied the 

performance of their MEH-PPV:PCBM device for 1:1, 1:3, and 1:4 weight ratio 

respectively.  The resulting carrier collection efficiency (ηc), and energy conversion 

efficiency (ηe) are shown in the figure below. 
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Figure 8: ηc (Carrier collection efficiency) (A) and ηe (Energy conversion efficiency) (B) of Ca/MEH-
PPV:[6,6]PCBM(1:4)/ITO (solid squares);  Ca/MEH-PPV:[6,6]PCBM(1:1)/ITO (open squares);  
Al/MEH-PPV:[6,6]PCBM(1:1)/ITO (diamonds);  Ca/MEH-PPV:[5,6]PCBM(1:1)/ITO (open circles);  
Ca/MEH-PPV:C60(3:1)/ITO (triangles); and Ca/MEH-PPV/ITO (solid circles) [57]. 
 

Bulk heterojunction devices made from a 1:4 ratio by weight for MEH-PPV:PCBM 

mixtures had the highest ηc and ηe among other mixtures.  Later studies by Kim et al 

showed that below 20% PCBM in the MEH-PPV:PCBM mixture by weight (4:1) was 

below the percolation threshold, and an interpenetrating networks for PCBM form at 50% 

(1:1) and above [52]. 

In summary, the challenges to improvement of polymer solar cells include, charge 

transport through the active layer, light harvesting, and charge recombination.  In a 

conjugated polymer solar cell, these challenges can be met by decreasing the length of 

charge transport, red shifting the absorption spectrum, and by providing an 

interpenetrating network of an electron acceptor.  All of these maybe accomplished by 

transforming the conventional solar cells of two-dimensional structure to a quasi-one-
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dimensional structure.  A technique for producing a quasi-one-dimensional structure is 

discussed in Chapter 3. 
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3.  ELECTROSPINNING 

3.1 History 

The fundamental concept of electrospinning otherwise known as “electrostatic 

spinning,” dates back to as early as 1934, when Formhals published a series of patents for 

an experimental setup in production of polymer filaments using electrostatic force [58].  

His setup consisted of an electrode placed inside a polymer solution, with the charged 

solution then jetting out of a metal spinnerette, and evaporating to form polymer 

filaments at the grounded collector.  Through continued research and development of 

electrospinning, the technique has found its way into filtration, biomedical, protective 

clothing, electrical and optical, and many other applications [58].  With its ability to 

produce nanoscale fibers, due to a surge of interest in nanotechnology over the recent 

years, the number of publications in the area of electrospinning has continued to grow as 

can be seen from Figure 9 below. 

 

 
Figure 9: Comparison of the annual number of scientific publications since the term of “electrospinning” 
was introduced in 1994.  (Data analysis of publications was done using the SciFinder Scholar search 
system with the term “Electrospinning”, as at 18 October 2002) [58].  
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In addition to the ability to produce electrospun nanofibers, advances in the experimental 

setup have been made in producing with aligned nanofibers, and utilizing multi capillary 

techniques[59]. 

3.2 Operation 

In electrospinning, a polymer solution is charged with an AC or DC voltage, and 

the polymer solution forms a jet of polymer fibers which will be collected at the nearest 

grounded object (Figure 10). 

 

Figure 10: Schematic diagram of the Electrospinning set up. 

 

In some cases, a grounded object can be a conductive rotating drum.  With control of the 

drum speed, it has been demonstrated that the velocity of the reel surface can be adjusted 

to closely match the speed of the drawing fiber to assist in alignment of the nanofibers 

[60].  A sample substrate can then be mounted on top of the rotating drum to form 

aligned polymer-fiber photovoltaics.  Other methods of fiber alignment include the use 
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of an auxiliary field, a thin wheel collector with a sharp edge, frame collector, and etc 

[58]. 

Not all materials can be electrospun.  In 1987, Hayati et al showed the 

significance of liquid conductivity for an electrospinning solution.  As opposed to 

insulating liquids, conducting liquids have produced unstable streams, and have been 

proven difficult to electrospin [61].  For this reason, the majority of research in 

electrospinning has been done with non-conducting polymeric solutions.  Table 3 below 

shows a list of polymers and the corresponding solvents used in previous research done in 

electrospinning. 

Table 3: Electrospun Polymers and its corresponding solvents [62]. 
Polymer Solvent 
Cellulose acetate Acetone 
Acrylic resin (96% 
acrylonitrille) 

DMF 

a) Polyethylene oxide 
b) Polyvinyl alcohol 
c) Cellulose acetate 

a) Water/chloroform 
b) Water 
c) Acetone 

a) Poly(2-hydroxy 
ethyl methacrylate) 

b) Polystyrene 
c) Poly (ether amide) 

a) Formic acid and 
Ethanol 

b) Dimethyl 
Formamide and 
Diethyl Formamide 

c) Hexa fluoro 2-
propanol 

Polyethylene oxide (PEO) Water 
Polyethylene terephthalate Mixture of dichloromethane 

and trifluoroacetic acid 
Polyaniline / PEO blends Chloroform 
Polyether urethane Dimethyl acetamide 
Poly-L-lactide (PLLA), 
Polycarbonate (PC), 
Polyvinylcarbazole 

Dichloromethane 

Polystyrene Tetrahydrofuran (THF) 
Polybenzimidazole (PBI) N, N_Dimethyl Acetamide 

(DMAc) 
Nylon 6 and Nylon 6 + 
montmorillonite (NLS) 

1,1,1,3,3,3-hexa fluoro-2-
Propanol (HFIP) and DMF 
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a) Polyethylene oxide 
(PEO) 

b) Polycarbonate (PC) 
c) Polyurethane (PU) 

a) Isopropyl alcohol 
(IPA) 

b) DMF and THF 
c) DMF 

Polyvinyl chloride THF, DMF 
Polyurethane DMF 
Polycaprolactone Acetone 
Styrene-Butadiene-Styrene 
(SBS) triblock copolymer 

75% THF and 25% DMF 

Poly-L-Lactide Dichloromethane 
Poly (methyl methacrylate-
random) PMMA-r-TAN 

Mixed solvent of Toluene 
and DMF 

Polyethylene-co-vinyl 
acetate (PEVA), Poly lactic 
acid (PLA) and blend of 
PEVA and PLA 

Chloroform 

Poly (p-phenylene 
terephthalamide) (PPTA) 
(Kevlar 49 from Dupont) 

95-98 wt % Sulphuric acid 

Polyethylene terephthalate 
(PET) and Polyethylene 
naphthalate (PEN) 

 

Silk like polymer with 
fibronectin functionality 
(SLPF) 

Formic acid / hexafluoro 
isopropanol 

Polyurethane and PEO Tetrahydrofuran and 
Dimethylformamide 

 

Electrospinning is able to produce nanofibers only for viscoelastic materials that can 

undergo strong deformations while being cohesive enough to support the stresses 

developed during pulling [58].  However, various methods have been applied to 

materials which are difficult to electrospin such as the conjugated polymers commonly 

used for fabrication of solar cells.  In the development of nanofiber structured electronic 

devices which require these non-electrospinnable materials, other polymers are 

incorporated into the electrospinning process through mixing or co-axial electrospinning. 

Conjugated polymers used to make solar cells and conducting liquids are 

generally not viscoelastic enough for electrospinning.  One method often employed to 
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allow electrospinning of these otherwise non-electrospinnable materials is the mixing an 

electrospinnable polymer to the non-electrospinnable solution.  P3HT is a conjugated 

polymer which is difficult to electrospin because it crystallizes quickly and blocks the 

electrospinning nozzle.  In order to electrospin P3HT, Lee et al prepared a series of 

samples with an electrospinnable high molecular weight poly (ε-caprolactone) (PCL) 

polymer mixed into P3HT solution dissolved in anhydrous chloroform (CHCl3, 

Aldrich)[63].  The weight ratio of the P3HT:PCL blended solution was varied from 

90:10 to 50:50 (w/w), and PCL content of the P3HT:PCL nanofibers was completely 

removed by dipping a sample into trifluoro-ethylene (TFE) for 20 min.  Nanofiber 

morphology was retained when the mixing ratio of PCL was more than 90:10 as can be 

seen from the SEM images shown in Figure 11. 
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Figure 11: SEM images of blended fibers of P3HT and poly(ε-caprolactone) (PCL) using a single nozzle:  
(A)  P3HT:PCL (80:20, w/w) and  (B) P3HT:PCL (50:50, w/w).  The insets are higher magnification 
images of the fibers[63]. 

 

Also for nanofibers after removal of PCL, 
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Figure 12: SEM images of Electrospun blend fibers of P3HT and PCL taken after selectively removing 
PCL: (A,C) P3HT:PCL (80:20, w/w) and (B,D) P3HT:PCL (50:50, w/w)[63]. 

 
After the removal of PCL, the electrospun P3HT nanofiber was able to maintain not only 

its nanofiber structure, but also its electrical properties.  The mobility measurement for a 

20 wt% PCL nanofiber showed degradation of one order of magnitude, µ = 0.0012 cm2V-

1s-1, while a 50 wt% PCL nanofiber showed two-order of magnitude degradation with µ = 

0.00047 cm2V-1s-1[63].  Although there was some level of degradation in their electrical 

properties, mixing of a high molecular weight electrospinnable polymer has proven itself 

to be a good method for nanofiber structured electronic devices. 

Coaxial electrospinning (Figure 13) is another method that is able to produce 

nanofibers from conjugated polymer solutions of low viscoelasticity. 
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Figure 13: Schematic of Coaxial Electrospinning device (inset is a photograph of the needle). 

 

To prevent mixing of solutions A and B, it is favorable to use two immiscible solvents for 

the two solutions.  An electric field is applied for an electrospinnable outer solution B to 

form a coaxial jet, and inner solution A is fed through the jet with an infusion pump.  If 

solution B is chosen to be a spinnable polymer solution and solution A is a conjugated 

polymer solution, the collected coaxial fibers can be immersed in the same solvent used 

to prepare solution B to wash away the outer polymer to leave a conjugated polymer 

nanofiber.  Successful nanofibers have also been synthesized with solution B as a pure 

solvent for conjugated polymer solution A.   To electrospin pure P3HT nanofibers, Lee 

et al used Chloroform as solution B to prevent fast crystallization of P3HT solution from 

the solution A nozzle [63].  Figure 14 below shows the SEM image of P3HT nanofibers 

produced from Chloroform/P3HT coaxial electrospinning experiment. 
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Figure 14: SEM images of P3HT fibers with a coaxial nozzle with solvent assistance.  The inset is a 
higher magnification of the fiber [63]. 

 

Using coaxial electrospinning with solvent assistance, good nanofiber morphology is 

maintained using the conjugated polymer P3HT.  Whether with an electrospinnable 

polymer or with a pure solvent, coaxial electrospinning is a powerful technique for 

synthesizing conjugated polymer nanofibers. 

There are other ways to utilize coaxial electrospinning such as making solution A 

an electrospinnable polymer solution B the non-electrospinnable conjugated polymer.  

This method of inverted coaxial electrospinning has an advantage in that it does not 

require the removal of the electrospinnable polymer to access the electronic properties of 

conjugated polymer because it is exposed at the surface of the coaxial nanofiber.  Zhao 

et al in 2007 were successful in using this inverted coaxial electrospinning method with 

PVP as the core, and the conjugated polymer MEH-PPV as shell in synthesizing a 

conjugated polymer nanofiber[64].  Figure 15 below are images of the MEH-PPV shell 

coaxial nanofiber. 
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Figure 15: (a) A fluorescence microscope image of PVP/MEH-PPV fibers (inset is the spin cast MEH-PPV 
film), (b) TEM image of PVP fiber and (c) TEM image of the PVP/MEH-PPV fiber[64]. 

 

Good morphology was observed in MEH-PPV shell coaxial nanofiber.  However, a 

significant blue shift was observed in the PVP/MEH-PPV nanofiber which can be 

damaging for its use in polymer electronics.  Possible causes for the blue shift include 

nano-effect of the thin MEH-PPV fiber, and also the possibility of PVP diffusing into 

MEH-PPV shell to serve as a nanospacer to prevent π-π stacking [64]. 

As it is evident from coaxial electrospinning, the nozzle tip used for 

electrospinning is often a main factor in determining the morphological structure of the 

electrospun nanofiber.  By incorporating a multi-channel nozzle in electrospinning, 

Zhao et al successfully prepared nanofibers of multi-channel multi-tubular structures [65].  

Their multi-channel nanotubes were prepared from electrospinning Ti(OiPr)4 with 

poly(vinyl pyrrolidone) for their outer shell, and paraffin oil for their inner fluid.  Figure 

16 below is an SEM image of the multi-channel tube nanofibers. 
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Figure 16: SEM images of multi-channel tubes with variable diameter and channel number.  (a-d)  
Corresponding to tube with channel number from two to five.  The inset in each figure shows the cross 
section illustration of spinneret that was used to fabricate the tube.  The as-prepared tubes accord very 
well with the corresponding spinneret.  Scale bars are 100 nm[65]. 

 

The collected fibers were calcined to remove the organics from the nanofibers, and the 

SEM image shows how multi-tubular structure was able to form according to the 

electrospinning spinneret.  Other forms of electrospinning spinneret are the multi-axial 

structures such as those prepared by Joo et al [66].  The TEM image below is a cross 

section of triaxial nanofibers where both the innermost and outermost layers are silica, 

and the middle layer is the self assembling PS-B-PI block co-polymer with isoprene 

volume fraction of 0.28 (SI-28). 
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Figure 17: TEM images of cross sections of triaxial nanofiber with least (Top image) to highest (Bottom 
image) loads of SI-28/magnetite nanoparticles sandwiched between two silica layers.  The samples are 
annealed at 150°C for 72 h.  The scale bar is 100 nm [67]. 

 
The TEM image clearly shows the triaxial structure of the nanofiber.  Electrsopinning 

proves to be a highly customizable technique with multi-tubular to multi-layered 

nanofiber structures.  Its ability to mold nanofibers into different structures presents it 

self with a possibility for applications such as diodes, drug delivery systems, and etc. 
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3.3 Application of Electrospinning to Solar Cells 

Most solution-based electronics can be electrospun into nanofiber structures.  

This is because a non-electrospinnable solution can be electrospun simply by the addition 

of an electropinnable polymer, and this allows for various possibilities in nanofiber 

electronics.  Polyaniline is a conductive polymer widely used for electrodes, capacitors, 

and batteries.  An experiment was carried out by Norris et al [67], where a conductive 

solution of Polyaniline mixed with 10-camphorsulfonic acid (PAn.HCSA) was used for 

electrospinning.  Electrospinning failed to produce pure PAn.HCSA nanofibers due to 

low viscosity and surface tension not allowing for a stable drop at the capillary tip.  

However, electrospinning of PAn.HCSA nanofiber was made possible by adding a small 

fraction of PEO to the chloroform based solution.  Figure 18 below is an SEM image of 

the PEO doped PAn.HCSA electrospun nanofiber. 
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Figure 18: SEM micrographs of the Electrospun fibers from a 2 wt.% PAn.HCSA/2 wt.% PEO solution 
dissolved in chloroform at 25 kV at (a) 192 and (b) 2440 magnification [67]. 

 

PAn.HCSA being a conductive solution, the change in its conductivity by the formation 

of the nanofiber structure was studied.  Figure 19 compares the conductivity of a cast 

film to electrospun nanofibers with increasing concentration of PAn.HCSA in a blended 

solution. 
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Figure 19: Electrical conductivity of the PAn.HCSA/PEO blend Electrospun fibers and cast films prepared 
from the same solution [67]. 

 

The graph shows that there is a similar trend in conductivity with increasing PAn.HCSA 

concentration.  However, the conductivity of the electrospun fibers is significantly lower, 

and this is attributed to the four point probe system measuring the conductivity by the 

volume and not by individual fibers.  By measuring individual fibers, it is expected that 

the conductivity of electrospun fibers will be comparable to conductivity of cast film.  

Synthesis of conductive nanofiber has been demonstrated.  However, no significant 

change was observed in electronic properties of the PAn.HCSA nanofibers as opposed to 

its cast film. 

Chuangchote et al observed some advantages in using a TiO2 

nanoparticle/nanofiber electrode for their dye sensitized photoelectrochemical cell [68].  

An electrospinnable PVP polymer was added to the methanol solution with Titanium 

butoxide, and acetylacetone for electrospinning.  SEM images along with its UV-visible 
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absorption spectra for both TiO2 nanoparticle and nanoparticle/nanofiber eletrode are 

presented below. 

 

 
Figure 20: SEM images of (a) nanoparticle electrode and (b) nanoparticle/nanofiber electrode.  (c) 
Connection part between nanoparticles and nanofibers in nanoparticle/nanofiber electrode.  (d)  UV-
visible absorption spectra of both types of electrodes [68]. 

 

As opposed to the PAn.HCSA nanofibers, TiO2 nanoparticle/nanofiber showed an 

increase in absorption. Performance of both TiO2 nanoparticle and nanoparticle/nanofiber 

solar cells are summarized in Table 4 below. 
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Table 4: Photovoltaic properties of the DSCs investigated [68]. 

  

With increased light absorption, dye sensitized photochemical cells of TiO2 

nanoparticle/nanofiber electrodes improve efficiency when compared with a nanoparticle 

device.  Depending on the solution used for electrospinning, nanofiber structure of a 

solution can bring positive effect in electronic properties of the fabricated device. 

 Sundarrajan et al recently reported photovoltaic cells from conjugated polymer 

nanofibers [69].  A coaxial electrospinning technique was utilized with a blend solution 

of P3HT/PCBM in chloroform/toluene (3.5/1 wt.-%) for the core, and 10 wt.-% PVP in 

chloroform/ethanol (1/1 wt.-%) for the shell.  The coaxial fibers were collected on 

fluorine-doped tin oxide (FTO) plate.  After etching away the PVP shell by soaking in 

an ethanol solution for ~20 min, the nanofiber mat was then covered with an aluminum 

(Al) sputtered FTO substrate and clamped using binder clips as shown in Figure 21. 

 

 

 

Figure 21: Sundarajan et al Solar cloth device structure. 

Figure 22 shows the morphology of the electrospun nanofiber after PVP etching. 

Al 

ITO 
nanofiber 
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Figure 22: SEM images of the fibers after washing the PVP template [69]. 

 

Similar to the TiO2 nanofibers of Chuangchote et al [68], the observed P3HT/PCBM 

nanofibers showed a slight redshift in their absorption spectrum as shown in Figure 23 

below. 
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Figure 23: Traces a and b in Panel A show the absorption spectra of the solutions of pure P3HT and 
PCBM, respectively.  Traces a and b, respectively, in panel B show the corresponding spectra of their thin 
films.  Absorption spectrum of the solar cloth is depicted in trace c [69]. 

 

The absorption spectra of P3HT/PCBM nanofibers showed the most red shift with respect 

to P3HT of other structures.  The red shift is explained as a result of stretching of the 

polymer chains [70], and an extra 10 nm red shift from electrospinning in comparison to 

P3HT thin film shows how electrospinning can be a very effective method for increased 

absorption.  However, even with a structurally increased light harvesting ability, the 

electrospun P3HT/PCBM nanofiber yielded a relatively low photovoltaic efficiency of 
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8.7×10-8.  Current to voltage characteristic of Sundarrajan’s electrospun nanofiber solar 

cell is shown below in Figure 24. 

 
Figure 24: J – V graph of the P3HT/PCBM solar cloth measured under 1 Sun conditions.  Inset shows a 
picture of the solar cloth fabricated using electrospinning [69]. 

 

Short circuit current Jsc, open circuit voltage (Uoc), and fill factor (FF) of the electrospun 

solar cell were measured at 3.2×10-8 mA/cm2, 0.12 V and 22.1 respectively.  A 

significant drawback in Sundarrajan’s electrospun solar cell comes from its device 

structure, where the P3HT/PCBM nanofiber serving as the active layer of the device is 

actually a thick mat of ~5 µm.  Because of low charge carrier mobility of P3HT/PCBM, 

a 5 µm active layer is too thick for an efficient charge transfer for its sandwiched device 

structure between Aluminum and FTO.  For better implementation of nanofibers to solar 

cells, different device structures needs to be taken into consideration. 

3.4 Advantages of Electrospun Nanofibers for Solar Cells 

There are several advantages to conjugated polymer nanofibers formed through 

electrospinning.  Studies of changes in the optical properties of conjugated polymer 
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nanofibers were performed by Babel et al [71].  Blends of MEH-PPV/poly(3-

hexylthiophene) (P3HT), and MEH-PPV/poly(9,9-dioctylfluorene) (PFO) were coaxially 

electrospun with poly(vinylpyrrolidone) (PVP) as their shell in the core-shell structure of 

nanofibers.  For each solution, series of binary blends weight percentage of MEH-PPV 

with P3HT (20, 30, 40, 50, 60, and 70 wt % MEH-PPV) and PFO (5, 14, 28, 44, and 55 

wt % MEH-PPV) were prepared.  The resulting absorption and photoluminescence 

measurements for the MEH-PPV/P3HT solution are shown in figure below. 

 

Figure 25: Optical absorption (A, B) and photoluminescence emission (C, D) spectra of MEH-PPV/P3HT 
blend nanofibers (B, D) and spin-cast thin films (A, C). The number on each curve is the wt % of MEH-
PPV [71]. 
 

Comparing the thin films to electrospun nanofibers, a red shift in the MEH-PPV 

absorption peaks from 520 nm to 550 nm were observed.  As explained earlier, the red 

shift is considered to be an effect due to stretching of the polymer chains leading to 
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extension of the π-conjunction length [72].  In studying the PL spectra, intensity 

decrease with increase in P3HT concentration was observed suggesting an efficient 

energy transfer from MEH-PPV to P3HT.  Clear differences observed between the 20 

wt % blend thin film and the 20 wt % nanofiber imply an enhanced interaction between 

MEH-PPV and P3HT from their confined nanostructures compared to bulk thin film. 

Similar results were obtained with MEH-PPV/PFO blend but with a larger red 

shift of 50 nm for the MEH-PPV peak.  However, due to structural nature of the MEH-

PPV/PFO nanofibers, no significant increase in energy transfer from MEH-PPV to PFO 

was observed.  Figure 26 are SEM, and TEM images of MEH-PPV/PFO blend 

nanofibers with different concentration of MEH-PPV. 
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Figure 26: Morphology of Electrospun MEH-PPV/PFO blend nanofibers SEM images (A-D) and TEM 
images (E,F) with different concentrations of MEH-PPV.  The scale bars in the inset are 500 nm [71]. 

 

The MEH-PPV/PFO blend nanofibers maintained core-shell structures or continuous 

bundles of individual nanofibers resulting in less interfacial surface area between the two 

polymers, and this explains the lack of significant increase in energy transfer in 

comparison to MEH-PPV/P3HT nanofibers.  However, the reduced interfacial surface 

area can cause restriction in orientation of the polymer chains, and thus the most amount 

of red shift observed for the PFO polymer.  Unlike electrospun MEH-PPV and PFO 

fibers, no red shift in the P3HT absorption peak was observed in their experiment. 

One unique feature of photovoltaic device fabrication from electrospinning is in 

its application of electric field.  Application of an electric field is an essential part of the 

electrospinning technique, and a study was done by Padinger et al [73] showing the 

effects of electric current in preparation of a photovoltaic device.  Figure 27 are current 

to voltage curves of P3HT/PCBM solar cells prepared in different fabrication process. 
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Figure 27: Current-voltage (I-V) curves of P3HT-PCBM solar cells under illumination with white light at 
an irradiation intensity of 800 Wm-2: as-produced solar cell (filled squares), annealed solar cell (open 
circles), and cell simultaneously treated by annealing and applying an external electric field (open triangles) 
[73]. 

	
 

Annealing, and simultaneous application of an external voltage have shown to improve 

the efficiency of P3HT/PCBM solar cell.  Increase in open-circuit voltage can be 

explained by burning of the shunt resistance, and an increase of short-circuit current 

shows mobility enhancement of charge carriers in the photoactive layer.  Annealing of 

the polymer film has been known to help crystallize the polymer structure for better 

device performance [74].  With an electric field, there is an additional orientational 

effect that takes place, which is presumed to help in enhancement of mobility.  

Considering this orientational effect with an electric field, electrospinning could be a 

simple way to implement mobility enhancement for bulk heterojunction photovoltaics. 
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4.  Electrospinning of water soluble polymer PTEBS 

Sodium poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] (PTEBS) is a water-soluble 

thiophene polymer semiconductor, which has been used as electron donor to prepare 

environmentally friendly water-soluble polymer thin film solar cells [32].  For an initial 

attempt in fabrication of an electrospun polymer-fiber solar cell, PTEBS was combined in 

an aqueous solution with PEO and then electrospun into fibers in order to study its 

electrospinning properties and the effect of fiber diameter on optoelectrical properties.  

The result was the discovery of a new method for producing bimodal fibers via 

electrospinning [75]. 

While electrospun mats exhibiting varying and even bimodal size distributions 

have been produced [76-78], chemically and physically distinct fibers have not been 

previously electrospun from a single homogeneous solution.  Gupta and Wilkes reported 

“bi-component” fibers of poly(vinyl chloride)/segmented polyurethane (PVC/Estanew) 

and poly(vinyl chloride)/poly(vinylidiene fluoride) (PVC/PVDF), but the bi-component 

fibers were produced from two different polymer solutions using side-by-side technology 

[79]. 

PTEBS solutions were prepared both with and without ammonium hydroxide 

(NH4OH).  Both solutions were dissolved in deionized water at a concentration of 

1.5%.  The PTEBS solution without NH4OH was then magnetically stirred for 14 days. 

For the PTEBS solution with NH4OH, 20 mg of NH4OH was added per 1 ml of PTEBS 

solution immediately after the DI water was mixed with PTEBS.  Because the NH4OH 

accelerates the dissolution, the PTEBS solution with NH4OH was magnetically stirred for 

only 3 days.  PEO with molecular weight of 2,000,000 g/mol was then added to these 
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two PTEBS solutions at a concentration of 20 mg per 15 mg PTEBS and stirred for one 

day. 

Following preparation, both solutions were electrospun using a high voltage DC 

power source (Spellman CZE 1000R) [80,81].  The infusion rate of the solution was 

controlled using a Harvard Apparatus PHD 2000 syringe pump.  The electrospun fibers 

were collected on a substrate mounted on a rotating hexagonal drum with a speed of 

~1725 rotations per minute.  All of the fibers were electrospun at an infusion rate of 1 

µl/min and with a needle tip to substrate distance of 10 cm.  The electrospinning voltage 

was set at a value slightly above that required to get stable jet: 4.5 kV for the solution 

without NH4OH and 6.5 kV for the solution with NH4OH.  The morphology was 

characterized using an optical microscope (Olympus BX60) and transmission electron 

microscopy (TEM) (Jeol JEM-1230).  The absorption spectra were measured with 

UV/VIS spectrometer (Perkin Elmer Lambda 40).  A high speed video camera (Photron 

FASTCAM-PCI R2) was used to observe the formation of the Taylor cone and jet. 

Figure 28 show the typical morphology of the electrospun fibers made from the 

PTEBS/PEO solution without and with NH4OH. 

 
Figure 28: Microscope photo of the electrospun PTEBS/PEO fibers: (a) The unimodal PTEBS/PEO 
nanofibers without NH4OH.  (b) The bimodal PTEBS/PEO fibers with NH4OH. 
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The PTEBS/PEO fibers prepared without NH4OH show a unimodal morphology where 

all the fibers have almost the same diameter and color (Figure a).  By contrast, the fibers 

made from the PTEBS/PEO solution with NH4OH produced two different kinds of fibers 

in a bimodal morphology: large diameter white fibers and small diameter black fibers.  

Regardless of the infusion rate, the electrospinning voltage, and the distance between the 

needle and the substrate, and even if PEO with different molecular weights (400k, 1M 

and 2M) were used, the fibers made from PTEBS/PEO solution with NH4OH always 

produced a bimodal distribution. 

Figure 29 shows TEM images of the unimodal and bimodal fibers. 

 
Figure 29: TEM images of the unimodal and bimodal fibers.  (a) Unimodal (the inset is the highest 
definition TEM image).  (b) Bimodal (the top left inset is the highest definition TEM image of the big 
fiber, the bottom right inset is the highest definition TEM image of the small fiber). 

 

The insets are the highest definition TEM images.  The diameter of the unimodal fibers 

(Figure a) is around 60 nm.  The highest definition TEM image reveals a composite 

morphology consisting of tiny irregular dark domains embedded in a white fiber. 
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For the bimodal fibers (Figure b), the diameter of the small fibers is about 200 nm while 

the diameter of the large fibers is more than 1 µm.  The high definition TEM image of 

the small fibers is still very dark under the same contrast and brightness. It has been 

shown that the presence of sulfur in a polymer can result in a darker contrast under TEM 

[71].  PTEBS contains sulfur and therefore, the TEM images of the bimodal fibers 

suggest that the small black fibers contain more PTEBS in comparison to the 

4 large white fibers. 

PEO is also soluble in chloroform [62] whereas PTEBS is not.  This was 

confirmed by spinning PEO fibers and then annealing them at 80 °C in a chloroform 

atmosphere.  The pure PEO fibers were completely dry-washed away.  By contrast, a 

thin film of PTEBS showed no change under the same conditions.  In order to verify that 

the small fibers contain more PTEBS, the bimodal fibers were annealed at 80 °C in 

chloroform atmosphere.  As shown in Figure30, the large white fibers disappeared after 

annealing for 20 hours, while the small black fibers were left intact on the glass substrate. 
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Figure 30: Microscope photo of bimodal PTEBS/PEO fibers taken after annealing at 80°C in chloroform 
atmosphere.  The large white fibers have disappeared. 

 

These results are consistent with the TEM observations and confirm that the small and 

large diameter fibers are chemically as well as physically distinct. 

A high speed CCD camera was used to observe the Taylor cone during the 

electrospinning process.  We observed that only one Taylor cone was formed and only 

one jet emerged from the tip of the Taylor cone in both the unimodal and bimodal cases.  

When NH4OH was replaced with NaOH, bimodal fibers were also obtained.  Therefore, 

we believe the formation of bimodal fibers of chemically distinct polymers may be 

related to the presence of OH- radicals in the electrospinning solution.  We also found 

that the conductivity of a pure PTEBS thin film was increased by about one order of 

magnitude when made from a solution containing NH4OH.  The higher electrical 

conductivity indicates that more PTEBS molecules were ionized when using NH4OH.  

The negatively charged PTEBS ions, unlike PEO, should move against the direction of 

the electric field.  We believe that the different polarity and electrophoretic mobility of 

PTEBS and PEO leads to separation within the cone-jet region and the formation of 

chemically distinct fiber segments.  The electric fields employed in the electrospinning 

process are comparable to the fields used in electrokinetic processes such as gel 

electrophoresis, but to our knowledge electrokinetic chemical separation has not been 

previously reported in electrospinning. 

Figure 31 shows the absorption spectra of the unimodal PTEBS/PEO nanofibers. 
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Figure 31: Absorption spectra of a pure PTEBS thin film, a PTEBS/PEO thin film, and unimodal 
PTEBS/PEO nanofibers. 

 

In order to eliminate the influence of the absorption of the substrate in the UV region, 

quartz slides were used as substrates to collect the electrospun fibers.  Moreover, a 

quartz slide was used as the reference for the absorption measurement.  The absorption 

spectrum was significantly changed with the structure change from thin film to 

nanofibers.  Unlike the spin coated thin films of pure PTEBS and PTEBS/PEO, the 

absorption spectrum of the unimodal PTEBS/PEO fibers does not have an obvious peak 

around 460 nm. 

The observed difference in the optical absorption spectra of the 60 nm composite 

fibers may be produced by the nanoscale PTEBS domains disorderly embedded in PEO 

(Figure a).  The nanoscale PTEBS domains (with a band gap of 2.0 eV) are embedded 

within the transparent wide band gap PEO forming an assembly of organic quantum dots.  
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It is well-established that the optical properties of semiconducting quantum dots can be 

different than the optical properties of bulk material and the PTEBS/PEO composite 

nanofibers appear to have unique optical characteristics in comparison to their bulk or 

thin film counterparts. 

The optical absorption of the larger bimodal PTEBS/PEO fibers was almost the 

same as that of a spin coated PTEBS/PEO composite thin film .  We believe that this is 

due to the much larger (200 nm and 1 µm) diameters of the bimodal fibers, which are too 

large to produce any optical changes in the polymers. 

4.1 Humidity and Electrospinning 

Electrospinning from an aqueous PTEBS/PEO solution without NH4OH resulted 

in the formation of a mat of composite nanofibers with relatively uniform size 

distribution and an optical absorption spectrum different than that of the bulk material.  

Electrospinning from an aqueous PTEBS/PEO solution with NH4OH resulted in the 

formation of a mat of chemically and physically distinct fibers; large diameter white 

(PEO) fibers and small diameter black (PTEBS) fibers.   

However, composite nanofibers are known to show a blue shift in their  optical 

emission spectrum.  For example, the electronic properties of MEH-PPV/SBA-15 

composite nanofibers were characterized by Madhugiri et al where the emission spectra 

of the nanofibers are shown in Figure 32 [82]. 



53 
 

 

 
Figure 32: Comparative emission spectra of (a) MEH-PPV film, (b) MEH-PPV fibers, (c) MEH-PPV 
solution (10-7 M solution in 1,2-dicholorethane), and (d) MEH-PPV/SBA-15 composite fibers [82]. 

 

A blue shift of an emission spectrum for a MEH-PPV/SBA-15 composite fibers was 

observed with respect to MEH-PPV film and MEH-PPV fibers.  Although the composite 

fiber still shows a red shift in comparison to the MEH-PPV solution due to less spatial 

separation of the polymer chains, preventing polymer chain aggregation can lead to a 

decrease in π-π stacking, and interchain electron delocalization for higher emission 

energies.  By mixing the surfactant SBA-15, the polymer aggregation of MEH-PPV is 

reduced, and a blue shift for the MEH-PPV/SBA-15 is observed. 

In preparation of an organic solar cell, a blue shift of the polymer absorption can 

decrease its performance.  In contrast to the blue shift shown in composite nanofibers, 

coaxial electrospinning can be used to avoid a decrease in π-π stacking, and to cause a red 

shift in PTEBS nanofibers.  To demonstrate this, coaxial PTEBS fibers were fabricated. 

For this experiment, a 1.5% concentration of PTEBS in de-ionized water was used 

as a core solution, and a 2.5% concentration of 200000 g/mol PEO dissolved in 
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Chloroform was used as the outer solution to perform coaxial electrospinning.  The 

coaxial electrospinning was performed with the PTEBS solution infusion rate at 4.5 

µl/min, and the PEO solution infusion rate at 40 µl/min.  The distance from the coaxial 

needle tip to the grounded substrate was kept at 28 cm with a DC voltage of 16 kV, and 

the collected fibers were washed using an ethanol vapor in a 65°C oven for an hour to 

remove the PEO coatings of the collected coaxial nanofibers.  Figure 33 is an image of 

PTEBS/PEO coaxial nanofibers taken from an optical microscope at 100× magnification. 

	 	 
Figure 33: 100× Optical microscope image of (Left image) PTEBS/PEO coaxial nanofibers, and (Right 
image) PTEBS nanofiber extracted from ethanol vapor washing of PTEBS/PEO coaxial nanofibers. 

 

The contrast in the coaxial nanofiber image shows a clear coaxial structure of the 

PTEBS/PEO nanofibers. After washing in ethanol vapor, the residual nanofibers are those 

of PTEBS due to insolubility of PTEBS in ethanol as opposed to high solubility of PEO.  

Although no extensive steps to characterize the collected nanofibers were taken, the role 

of humidity in electrospinning was clearly demonstrated.  This experiment was 

performed under 14.1% humidity.  Figure 34 below shows an experiment performed 

under the same electrospinning condition, but with 27 cm distance for the left image, and 

29.5 cm distance for the right image where the humidity was recorded as high as 47%. 



55 
 

 

  

Figure 34: 100× Optical microscope image of (Left image) PTEBS/PEO coaxial nanofibers with 27 cm 
needle to substrate distance, and (Right image) PTEBS/PEO coaxial nanofibers with 29.5 cm needle to 
substrate distance with 47% humidity. 

 

In the high humidity condition, the image shows a discontinuous nanofiber structure 

where the outer PEO solution is unable to contain the core PTEBS solution.  PTEBS 

being dependent in atmospheric humidity, coaxial electrospinning of PTEBS proves to be 

a difficult experiment due to its inconsistency of collected nanofibers.  Through our 

research in other donor materials, MEH-PPV has shown to have much more stability in 

coaxial electrospinning, and the following chapters will discuss the fabrication of 

electrospun polymer-fiber solar cells based on MEH-PPV/PCBM mixture. 
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5.  Electrospun polymer-fiber solar cell structure 

The objective of this project is to take advantage of the qualities of electrospun 

nanofibers in order to improve the performance of polymer solar cells.  If a solution of 

donor/acceptor mixture is fabricated into a nanofiber structure with electrospinning, 

anode and cathode metals of different work functions are the pieces needed in preparation 

of a solar cell device.  To demonstrate the feasibility of this idea, three different 

placements of electrodes have been considered for fabrication of electrospun polymer-

fiber solar cells. 

5.1 Bulk heterojunction type polymer-fiber solar cells 

Within a history of organic solar cells, its device structure has typically consisted 

of a two dimensional sandwich structure where an active layer was deposited onto a 

transparent conducting substrate, and a counter electrode was evaporated on an exposed 

surface of the active layer.  With electrospinning, an active layer fibers may be collected 

onto a transparent conducting electrode, and a counter electrode evaporated on the 

exposed surface of electrospun nanofibers.  This device structure is shown in Figure 35 

where FTO is used for the transparent conductor, and gold is the counter electrode metal 

is evaporated onto the electrospun nanofiber surface.  This is essentially the device 

structure fabricated by Sundarrajan et al [69] and described in Chapter 3.  
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Figure 35: Schematic diagram of FTO/MEH-PPV:PCBM nanofiber/Au device. 
 

For an active layer film deposited onto a transparent conductor, one structural advantage 

to this design is in its ability to incorporate a hole blocking layer between a conductor and 

an active layer which has been shown to significantly increase the performance of organic 

solar cells.  To add a hole blocking layer between a conductor and an electrospun 

polymer-fiber active layer, a hole-blocking layer must be prepared prior to the polymer 

fiber collection.  However, coaxial electrospinning often requires washing of outer shell 

polymer to establish a connection between the conjugated polymer of the core, and this 

process can often interfere with the hole blocking layer film.  In addition, there is a 

possible short circuit from an evaporated metal piercing through the polymer fiber 

openings.  To avoid the short circuit of the two electrodes, thicker fiber matt of active 

layer nanofiber maybe considered, yet this will only produce a repeated problem 

encountered by Sundarrajan where a thicker fiber matt leading to poor performance of the 

device due to low charge carrier mobility of the active layer [69].  Due to these 
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problems encountered in for sandwich structure of electrospun polymer-fiber solar cells, 

other structures are considered for the fabrication of electrospun polymer-fiber device. 

5.2 Triaxial electrospinning of polymer-fiber solar cells 

Triaxial electrospinning has been reported for organic LEDs [83], and the same 

structure offers several potential advantages for organic solar cells.  Triaxial nanofiber 

organic solar cells would consist of a conductive core, semiconducting mid-layer, and a 

conductive outer shell as shown in Figure36. 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Schematic diagram of Triaxial nanofiber device. 

One of the challenges with the polymer-fiber solar cells is in establishing good electrical 

contact with the conjugated polymer to the two electrodes, and the triaxial fiber has the 

potential to eliminate the challenges experienced in establishing good electrical contact. 
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In addition, the device will not require washing for conjugated polymer exposure, will be 

readily made with true reel-to-reel processing, and it will be significant step from a 

conventional two-dimensional structure to quasi-one-dimensional devices. 

To test the stability of triaxial electrospinning, the core and shell component of the 

triaxial nanofibers were selected to be an electrospinnable solution of 10% PVP polymer 

by weight dissolved in 8.5 parts ethanol, and 1.5 parts DI water, and 1:2 ratio of MEH-

PPV:PCBM dissolved in chloroform at 1.4% concentration by weight.  For the infusion 

rate, the inner core PVP was set to 10 µl/min, the middle layer MEH-PPV:PCBM 

solution at 5µl/min, and outer shell PVP solution at 0.3 µl/min.  The humidity was 

recorded at 47.5%, needle tip to substrate distance was 11 cm, and triaxial 

electrospinning were carried out with a stable polymer fiber jet found at 10.5 kV.  

Figure 37 shows an optical microscope image of the collected nanofibers at 100× 

magnification.   
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Figure 37: Optical microscope image of a triaxial nanofibers. 

 

From seeing an optical contrast in the triaxial nanofiber, an additional experiment was 

carried out with the addition of 50.4 mg Aluminum nanoparticles in 1 milliliter of inner 

core PVP solution, and 59.6 mg Indium Tin Oxide nanoparticles in 1 milliliter outer shell 

PVP solution.  For this experiment, the electrospinning conditions were modified with 

changes in infusion rate with the inner core solution at 8.5 µl/min, middle layer at 8.5 

µl/min, and outer shell solution at 45 µl/min.  The humidity was at 46.1%, and a stable 

fiber jet was observed at 12 kV.  The collected nanofibers were observed under a 

Hitachi scanning electron microscope to further verify the triaxial structure of the 

collected nanofibers. 
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Figure 38: Cross sectional image of triaxially electrospun Al/PVP-MEH-PPV:PCBM-ITO/PVP nanofiber. 

From the cross sectional image of the triaxial nanofiber, three different layers from 

different components of the nanofibers are visible.   

For a functional triaxial nanofiber solar cell, the outer shell solution must be 

conductive, and also transparent for the active middle layer light absorption.  In addition, 

good electrical contact must be established between the active layer, and the two 

conductive layers.  Two other criteria for a functional triaxial nanofiber solar cell are the 

light absorption, and the work function of the conductive nanofibers.  Through our 

extensive research in synthesis of conductive nanofibers, mixing of Aluminum and 

Indium tin oxide nanoparticles in a PVP polymer did not result in sufficient conductivity 

to fabricate a working solar cell.  In addition, synthesis of conductive nanofiber has 
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proven difficult with a work function suitable for the MEH-PPV:PCBM active layer.  

Because of these challenges encountered in Triaxial electrospinning, other device 

structure for an electrospun polymer-fiber solar cell have been studied. 

5.3 Co-planar bimetallic substrate for electrospun polymer-fiber 

device 

Our first device was successfully prepared with a very simple structure where two 

metal-coated microscope glass slides were glued adjacent to each other onto another glass 

slide.  Such a device structure allowed easy access to collected nanofibers for nanofiber 

processing, and mobility of the device will be dependent on electrode separation rather 

than the fiber matt thickness.  A sample image is shown below. 

(a) 

 

 

 

  

 

 

 

 

 

 

 

 

Al Au  Polymer nanofibers 
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(b) 

 

Figure 39: (a) Simple substrates used to produce initial photodiodes.  Microscope slides were broken, 
gold and aluminum were deposited, and the two halves were glued back together with gaps ranging from 3 
to 50 µm.  (b)  Optical microscope image of Electrospun fibers between gold and aluminum gap at 50×. 

  

Aluminum was evaporated onto a glass slide to match the LUMO of PCBM, and gold 

was sputter coated onto a glass slide to match the HOMO of MEH-PPV.  Separation 

between the two electrodes was reproducible where tight placement of the two slides 

along side each other always resulted in 3-50 µm separation.   

For the first devices, poly[2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene] 

(MEH-PPV) was used as an electron donor, and [6,6]-phenyl-C61 butyric acid methyl 

ester (a soluble form of C60 known as PCBM) was used as an electron acceptor.  In 

preparation of MEH-PPV for electrospinning, it was first diluted in a solvent CHCl3 

(chloroform) to a concentration of 0.8 %, under continuous stirring for two weeks.  

PCBM at a concentration of 5.5-8.5% in chloroform was then added to the diluted 

solution of MEH-PPV for a 1:2 weight ratio mixture of MEH-PPV to PCBM respectively. 
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For the shell of the coaxial fibers, a polymer solution that is immiscible to 

chloroform was chosen.  Poly(vinylpyrrolidone) (PVP) at a concentration of 10 % in 1.5 

parts DI water to 8.5 parts Ethanol is immiscible to chloroform, and was used as an 

electrospinnable outer solution B.  The two solutions were then fed through a coaxial 

needle, and the PVP coated MEH-PPV/PCBM nanofiber was collected onto an 

electrically grounded substrate.  The collected coaxial nanofibers were then soaked in an 

ethanol bath for 2 hours to wash away the electrically insulating PVP coating to allow 

electrical contact between the MEH-PPV/PCBM, and the substrate electrodes. 

For these devices, the resulting current-voltage characteristics are shown in Figure 40 

below. 

 
Figure 40: J-U curve for the electrospun fibers on aluminum and gold substrates. The devices demonstrate 
photodiode characteristics. 

 

The two break-down voltages which are also sensitive to light exposure demonstrate that 

photodiode were characteristics obtained from an electrospun device prepared with co-
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planar bimetallic substrates.  In addition, small open circuit voltage (Uoc) was recorded 

at 0.020 V.  Based on this successful device fabrication using co-planar bimetallic 

substrate, it was felt that additional improvements could be made to the device structure 

to improve the output.  We considered reducing the metal separation for more efficient 

charge collection, and the use of multiple two metal junctions to increase the charge 

collection area.  Such device structure is further discussed in the next chapter for use in 

electrospun polymer-fiber solar cells. 
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6.  Interdigitated Electrode Substrate 

Polymer solar cells typically take the form of a sandwich structure with the active 

layer placed in between the anode and cathode electrodes.  There are several challenges 

with this design.  For example, at least one of the electrodes must be an optically 

transparent material such as Indium Tin Oxide (ITO) or Fluorinated Tin Oxide (FTO) 

[84].  These materials typically have lower conductivity than metal electrodes and are 

often deposited using high temperatures which can be harmful to the polymer.  In 

addition, the device fabrication requires a two-layer coating (at a minimum) with 

fabrication of the active layer, and the counter electrode. 

For use with electrospun fibers, one possible design would make use of co-planar 

interdigitated electrodes of dissimilar materials.  This chapter describes the development 

of such a structure through photolithography onto a heavily oxidized Si wafer.  This 

device structure offers some potential advantages in comparison to the conventional 

multilayered sandwich configuration.  For example, because transparency is not 

required, co-planar interdigitated electrodes in organic solar cells allow the use of a wider 

variety of electrode materials.  In addition, the interdigitated structure has an inherent 

reliability due to the incorporation of multiple junctions for charge collection.  

Interdigitated electrodes of a single metal have been used in sensors [81], transistors [85], 

and even in photovoltaic devices [85].  There are limited reports of the use of vertically-

oriented two-metal interdigitated electrodes in polymer solar cells [87] ���. 
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6.1 Experiment 

 The co-planar two-metal electrode substrates were fabricated on the oxidized 

surface of silicon wafers using photolithography.  Two photomasks were prepared and 

the masks were used to pattern photoresist using UV light and standard photolithographic 

techniques.   

Aluminum and nickel electrodes with a separation distance of between 1 and 3 

µm were deposited at a thickness of approximately 100 nm.  Figure 41 shows a 

schematic and microscope image of a completed interdigitated two-metal electrode 

substrate.  The total device area was 0.11 cm2. 
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Figure 41: (a) Interdigitated two-metal substrate wafer patterns after two-step photolithography.  (b) Side 
view of interdigitated electrodes showing that electrodes do not block the incident light. 

 

The minimum electrode separation in these devices was limited by our photolithographic 

capabilities (about 1 µm) and we estimated, based on the short diffusion length of the 

donor material, that the separation between the two metal electrodes should be closer to 

100-200 nm for efficient charge collection.  Therefore, relatively poor device efficiency 

was expected due to incomplete charge collection.  However, the primary goal of this 
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work was to introduce and demonstrate the feasibility of new co-planar electrode 

geometry and no effort was made to optimize the device efficiency. 

A solution was prepared from a mixture of poly[2-methoxy-5-(2-ethylhexyloxy)-

1,4-phenylenevinylene] (MEH-PPV) as the electron donor, and [6,6]-phenyl-C61 butyric 

acid butyl ester (PCBB) as the electron acceptor.  MEH-PPV was diluted to 0.72 % 

concentration in chlorobenzene, and stirred for a minimum of 2 weeks.  PCBB was then 

added to the MEH-PPV solution with an additional amount of chlorobenzene to adjust the 

solution concentration.  MEH-PPV:PCBB in a 1:3 wt ratio at 2.44 % total concentration 

of donor:acceptor solution was prepared, and stirred overnight.  The solution was spin-

coated over the interdigitated two-metal electrode at 2000 rpm for 40 seconds. 

Devices were tested in dark and under AM1.5 illumination of 80 mW/cm2 

intensity.  The current density-voltage (J-U) curve was measured using a Keithley 236 

source generator by varying the applied voltage from -2 to 2 V in 0.04 V steps across 

nickel and aluminum electrodes.  In addition, the resistance of the silicon dioxide 

substrate film was tested by measuring the illuminated J-U characteristics of the 

electrodes prior to depositing the polymer film in order to make sure the current response 

was due to that of the donor:acceptor film and not the silicon substrate. 

6.2 Results 

The actual electrode separations of the co-planar interdigitated bi-metallic 

substrate used for the experiment were 1.21 µm on one side and 2.42 µm on the other.  

The electrode fingers were roughly 10 µm wide.  Figure 42 shows a 100× magnified 

image of the co-planar interdigitated bi-metallic electrode used for this experiment. 
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Figure 42: 100x magnified image of the interdigitated 2 metal electrode substrate. 

Figure 43 is a plot of the J-U curves with cubic interpolation, obtained from the device 

after spin coating of MEH-PPV:PCBB donor:acceptor solution.  A best-fit line through 

the experimental data is also included. 

Figure 43: J-U characteristic on 1:3 wt ratio of MEH-PPV:PCBB on interdigitated two metal substrate.  
The solid line represents a curve fit through the experimental data. 
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The device showed no response under dark conditions, while a relatively strong 

response was obtained upon illumination.  The typical thickness of the active layer in 

bulk heterojunction solar cells is near 100 nm, and the separation of our interdigitated bi-

metallic electrodes is very large by comparison.  Therefore only a very small fraction of 

the photon generated excitons (i.e. those within about one diffusion length – 20 nm of an 

electrode) can potentially contribute to the external current.  However the device 

generated a measurable photovoltaic effect even under these less than optimum 

conditions.  The open circuit voltage of the device was 0.704 V, and the short circuit 

current was 0.252 µA. 

The device efficiency was calculated in two ways.  It was first calculated using 

the total area of the co-planar interdigitated electrode device (approximately 0.11 cm2).  

By this method, the efficiency was determined to be 3.53x10-4 %.  However, the 

majority of this total area is occupied by the electrode pads and only the fractional area 

between the cathode and anode electrodes is expected to contribute to the photocurrent.  

Neglecting the area of the electrode metal surfaces, the active area of the device was 

determined to be approximately 15 % of the total illuminated area of the device 

(approximately 0.017 cm2), and from this, the estimated total device efficiency was found 

to be 0.0023 %.  It is expected that this efficiency could be further increased by reducing 

the electrode separation distance and by optimizing the properties (e.g. weight fractions) 

of the organic solution.  With respect to the electrospun polymer-fibers, co-planar bi-

metallic interdigitated electrode substrate offers a simple alternative for electrospun 

polymer-fiber solar cells.
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7.  Electrospun Polymer-fiber solar cell materials 

optimization 

Co-planar bi-metallic interdigitated electrode substrates were used for testing all 

electrospun polymer-fiber solar cells.  A variety of different materials, solvents, and 

coaxial shell extraction methods have been tested.  The aim of this chapter is to further 

understand the characteristics of different materials, and compatibility of each experiment 

for electrospun polymer-fiber solar cells device synthesis.

7.1 P3HT and MEH-PPV 

Earlier we have introduced P3HT and MEH-PPV as popular choices for a 

fabrication of organic photovoltaics due to their good solubility, processability, 

environmental stability, electroactivity, and other interesting properties [58].  Taking 

these properties into consideration, P3HT was tested for synthesis of electrospun 

polymer-fiber solar cells.  At 44.8% humidity, the needle tip to substrate distance was 

set at 11 cm. A 45:55 weight ratio of P3HT:PCBM was dissolved in Chlorobenzene at 

1% concentration, and was coaxially electrospun as core solution with an infusion rate of 

4µl/min.  The infusion rate of the outer 10 wt% PVP solution dissolved in 8.5 parts 

ethanol and 1.5 parts DI-water was set to 26 µl/min, and a rather unstable jet of coaxial 

nanofiber jet was found at 7.7 kV.  The collected fibers were annealed in 60ºC oven for 

30 minutes to promote crystallization of P3HT, and were further washed in ethanol for an 

immediate removal of PVP shell.  The device was then transferred to 130ºC hot plate, 

and were heated for 2 minutes for improved metal to polymer contact.  Figure 44 shows 

a 50× optical microscope image of the synthesized solar cell device. 
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Figure 44: Optical microscope image at 50× magnification for P3HT:PCBM nanofiber after ethanol 
washing. 

 

As can be seen from the figure, P3HT failed to maintain its nanofiber structure with PVP 

extraction.  Additional experiments were performed using ethanol vapor for the PVP 

removal in hopes of avoiding destruction of the P3HT nanofibers..  Figure 45 shows the 

collected coaxial nanofibers of P3HT:PCBM with PVP shell.  For this experiment, 

coaxial nanofiber jets were stable at 7.7-8.5 kV, and the fibers were washed in ethanol 

vapor at 80ºC. 
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Figure 45: (Left image) Coaxially electrospun P3HT:PCBM nanofibers.  (Right image) Coaxially 
electrospun P3HT:PCBM nanofibers washed in ethanol vapor at 80ºC oven. 

 

Regardless of different PVP extraction methods, P3HT failed to maintain its nanofiber 

structure.  For this reason, MEH-PPV was chosen for further research on electrospun 

polymer nanofiber solar cells.

7.2 Solvents 

Organic photovoltaics are known to have better performance with good film 

morphology where a choice of solvent is a contributing factor [88].  In electrospinning, 

undissolved particles can lead to clogging, and particle accumulation that can cause an 

unstable jet.  For electrospinning of a MEH-PPV:PCBM mixture, Chloroform and 

Chlorobenzene are are known solvents [89].  To determine an ideal solvent for 

electrospinning, two solutions of 0.5% by weight MEH-PPV dissolved in chloroform and 

chlorobenzene were prepared for comparison.  Figure 46	
 is a normalized 

photoluminescence spectrum for comparison of MEH-PPV film using two different 

solvents.	
 



75 
 

 

Figure 46: Normalized Phtoluminescence spectrums of 0.5% by weight MEH-PPV in Chloroform and 
Chlorobenzene. 

 

The photoluminescence spectra compared shows a 4 nm red shift in MEH-PPV solution 

prepared from chlorobenzene.  It has been previously stated that stretching of the 

polymer chains causes a red shift in MEH-PPV solution.  The result indicates better 

MEH-PPV solution morphology from chlorobenzene solution where more stretching of 

the polymer chains was observed from low viscosity and spin-coating process.  In 

addition, a study of MEH-PPV in different solvents done by Alsalhi et al shows better 

quantum yield in a chlorobenzene solution, where quantum yield is a ratio from a number 

of photons emitted over a number of photons absorbed [90]. 
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Table : Quantum yield of MEH-PPV in different solvents at 1 µM [90]. 

 
 

For bulk heterojunction solar cell, more charge generation is expected for higher quantum 

yield, which will lead to better efficiency for a device.  Due to the morphology and 

overall characteristics of MEH-PPV film, chlorobenzene is a better choice for fabrication 

of electrospun polymer-fiber solar cell. 

 

7.3 MEH-PPV to PCBM ratio 

For bulk heterojunction systems, PCBM has two roles for organic photovoltaics to 

properly function.  One is in its role as an electron acceptor assisting in charge 

separation from the excitons generated from the donors, and the other with the transport 

of charge to the anode using its percolation network.  To understand the ability of 

PCBM as a charge acceptor, photoluminescence of MEH-PPV:PCBM mixtures were 

studied as shown in Figure47. 
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Figure 47: Photoluminescence spectrum of 80:1 MEH-PPV:PCBM, and 1:1 MEH-PPV:PCBM films 
prepared from chlorofom solution. 

 

Several MEH-PPV:PCBM ratios were tested, and all MEH-PPV fractions less than 80:1 

ratio resulted in 586nm MEH-PPV Photoluminescence quenching as indicated for the 1:1 

MEH-PPV:PCBM spectra.  This shows that PCBM is a strong electron acceptor, and is 

an indication of efficient charge collection taking place at the PCBM/MEH-PPV interface.  

As for charge transport to the anodes, a higher PCBM fraction is necessary for the 

formation of percolation network.  The highest performance of a bulk heterojunction 

film has been observed for a device prepared from 1:4 MEH-PPV:PCBM solution [57].  

However for coaxial electrospinning, the electrospun fiber jet loses its stability after 1:3 

MEH-PPV:PCBM ratio, and a more stable 1:2.5 MEH-PPV:PCBM solution has been 

used in synthesis of electrospun polymer-fiber solar cells. 
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7.4 PCBM and PCBB 

PCBB is a PCBM derivative that is known to have slightly better solubility and 

has resulted in higher performing organic photovoltaic devices [91].  The co-planar bi-

metallic interdigitated substrate was tested with an MEH-PPV:PCBB mixture, and 

demonstrated a photovoltaic characteristics as shown in Chapter 6.  However, contrary 

to its success in thin film structures, PCBB-doped solutions failed to maintain nanofiber 

structure during coaxial electrospinning.  Conjugated polymer solutions of 1.06% 

concentration of 1:1 MEH-PPV:PCBB, and 1.45% concentration of 1:3 MEH-

PPV:PCBB by weight were coaxially electrospun in attempt to synthesize electrospun 

polymer-fiber solar cells.  After multiple experiments with these solutions, a similar 

morphology was observed after ethanol washing of MEH-PPV:PCBB.  The 1:3 MEH-

PPV:PCBB nanofibers were collected and were washed through ethanol soaking, and 

ethanol vapor.  In all of these experiments, the collected nanofibers resulted in 

morphology shown in Figure 48. 
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Figure 48: Optical microscope image of a sample MEH-PPV:PCBB solution after ethanol vapor washing 
at 100× magnification. 

 

Similar to P3HT experiments, PCBB did not maintain its nanofiber structure after PVP 

extraction.  We speculate that due to the improved solubility of PCBB, the polymer is 

not able to maintain its nanofiber structure.  For the purpose of maintaining a nanofiber 

structure, PCBM is used for synthesis of electrospun polymer-fiber solar cells. 
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8.  Electrospun Polymer-fiber solar cell 

Through testing of numerous different materials and electrospinning conditions, 

an electrospun polymer-fiber solar cell was synthesized using 2.28% by weight 

concentration of 1:2.5 weight ratio MEH-PPV:PCBM solution prepared from 

chlorobenzene.  In preparation of the MEH-PPV:PCBM solution, a base solution of 

0.9% by weight of MEH-PPV in chlorobenzene was first prepared, and stirred for 10 

days.  Then 24.8 mg of PCBM was added to 1 ml of the 0.9% MEH-PPV base solution 

to prepare a 1:2.5 weight ratio MEH-PPV:PCBM of 2.28% concentration.  The prepared 

solution was pumped through the inner core syringe, and a 10% by weight concentration 

of PVP in 8.5 parts ethanol and 1.5 parts DI water was pumped through the outer shell 

syringe for coaxial electrospinning.  The infusion rate for the inner core was at 4 µl/min, 

and infusion rate of outer shell was set to be at 25 µl/min.  Needle to substrate distance 

was kept at 11 cm, and the humidity was measured to be 16.9%.  The electrospun fibers 

were collected on a gold and aluminum co-planar bi-metallic interdigitated electrode, and 

the electrode separation between the two gold and aluminum junctions were measured 

with an optical microscope to be 1.61 µm and 2.34 µm.  The collected fibers were 

quickly dipped in ethanol and taken out after removal of PVP shell, and were dried on a 

130ºC hot plate.  This resulted in a thin PVP film coating, insulating the surface of 

electrode contacts.  The PVP coatings were further removed by scratching the surface 

with a wooden stick, and a silver paste was added prior to testing of the electrospun 

polymer-fiber solar cell device.  The current voltage (J-U) characteristics were 

measured using a Keithley 236 source generator by varying the applied voltage from -1 to 

1 V in 0.0222 V steps across gold and aluminum electrode. 
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In our attempt to accurately characterize the performance of electrospun polymer-

fiber solar cell, the amount of fibers collected were kept to a minimum with a countable 

amount of fibers for total active area calculation, while also maintaining the device 

functionality.  Figure 49 is an optical microscope image of the collected coaxial 

nanofibers at 100×. 

  
 

Figure 49: Optical microscope image of the collected coaxial nanofibers on co-planar bi-metallic 
interdigitated electrode substrate at 10× (Left image), and 100× (Right image). 

 

Before ethanol washing, the collected coaxial nanofibers show some beaded structures 

from unstable electrospinning jet.  Figure 50 below is an optical micrscope image of the 

collected nanofibers after PVP extraction. 
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Figure 50: Optical microscope image of the collected coaxial nanofibers on co-planar bi-metallic 
interdigitated electrode substrate after ethanol washing at 10× (Left image), and 100× (Right image). 

 

The wavy structure observed in the 10× image shows a PVP film, and after ethanol 

washing, good nanofiber structure is maintained along with some conjugated polymer 

spots.  However, under the dark field, we observe a good nanofiber structure throughout 

the whole suface of the co-planar bi-metallic interdigitated substrate as shown in 

Figure51. 

  
Figure 51: Optical microscope image MEH-PPV:PCBM nanofibers after Ethanol washing in Dark field at 
10× (Left image), and at 100× (Right image). 

 

The dark field under an optical microscope filters out directly transmitted light, and is a 

technique known to be free of artifacts.  From this dark field image, we conclude that a 

good nanofiber morphology is preserved after the ethanol washing of the MEH-

PPV:PCBM nanofibers. 

The electrospun polymer-fiber solar cell was further evaluated by measuring its J-

U curve as shown in Figure 52. 
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Figure 52: J-U curve measured for MEH-PPV:PCBM nanofibers on co-planar bi-metallic interdigitated 
electrode.  Red squares are the device response with AM1.5 illumination of 80 mW/cm2, and green 
squares show the response with the device placed in the dark. 

 

The J-U curve shows a photovoltaic response with a Uoc recorded at 0.11 V, and a 

photovoltage Isc at 3 × 10-7 mA where the total efficiency is then estimated to be 7.92 × 

10-10 % based on the total area of the co-planar bi-metallic interdigitated electrode.  

However, as discussed in detail in Chapter 10, the total area can also be estimated from 

the number of gold-nanofiber-aluminum junctions given the thickness of electrospun 

nanofibers.  The thickness of the nanofibers are measured to be around 1 µm from 

optical microscope, and thus the actual efficiency for the electrospun polymer-fiber solar 

cells may be estimated to as 3.08 × 10-7 % or better considering the potential failure of 

the nanofibers to establish contact with the electrode junctions.  Similar to the earlier 

device synthesized from MEH-PPV:PCBB film on co-planar bi-metallic interdigitated 

electrode, the electrospun polymer-fiber solar cells leaves room for improvement with a 
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smaller electrode separation.  With proper adjustments made for electrospun polymer-

fiber solar cells, this device may bring significant impact in the field of organic 

photovoltaics. 
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9.  Characterization of Electrospun Fibers 

9.1 Absorption 

The electrospun polymer-fiber solar cells were further tested through series of 

optical characterization methods.  The UV-vis spectrometer was used to study the 

change in absorption of MEH-PPV nanofibers.  Various concentrations of MEH-PPV 

with 0.24, 0.35, 0.47, and 0.7 weight % in chloroform were coaxially electrospun, and 

their absorptions were measured after PVP extraction with Ethanol.  Results of these 

absorption measurements are presented below. 
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Figure 53: (a) MEH-PPV absorption of 0.24 % (), 0.35% (), 0.45 % (), and 0.7 % () concentration 
in chloroform.  (b)  MEH-PPV absorption peak vs MEH-PPV concentration.  0% is for thin film 
absorption. 

 
The absorption peak of the MEH-PPV thin film was measured at 514 nm.  A significant 

redshift was observed for all concentrations of MEH-PPV nanofibers.  The nanofiber 

made using a 0.7 % concentration solution was the highest recorded redshift.  In 

addition to this experiment, 1.45% solution of 1:3 weight ratio MEH-PPV:PCBB in 

chlorobenzene were similarly electrospun and tested for absorption.  Figure 54 shows 

the morphology of the collected nanofibers after PVP extraction with ethanol vapor. 
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Figure 54: Bright field (Left), and dark field (Right) image of MEH-PPV:PCBB coaxial nanofibers washed 
with ethanol vapor. 

 

 

As it was discussed earlier, nanofiber structure is poorly maintained for PCBB mixed 

MEH-PPV.  However, the dark field still exhibits some nanofiber morphology and more 

importantly, the UV-Vis absorption measurement of the sample showed an absorption 

peak at 520 nm.  This is a small red shift as compared to the MEH-PPV thin film.  This 

experiment shows that the MEH-PPV red shift in nanofiber structures are observed even 

after a change in its solvent, and it agrees with the explanation that the red shift is mainly 

due to the stretching of the polymer chains from electrospinning [71]. 

9.2 Photoluminescence 

In this work, MEH-PPV solutions 0.24, 0.30, 0.47, 0.70, 1.00 weight % in 

chloroform have been studied for absorption changes.  From a series of absorption 

measurements, a red shift in MEH-PPV has been observed.  However, these 

experiments have not been repeated for MEH-PPV in a chlorobenzene solution, and an 

explicit verification of absorption red shift in MEH-PPV with chlorobenzene needs to be 
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studied.  In addition, photoluminescence(PL) measurementd have been performed for 

the same chloroform based MEH-PPV nanofibers where Figure 55 below shows a series 

of measured PL spectra. 
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Figure 55: PL of MEH-PPV nanofibers with varying concentration of MEH-PPV solution. 

The collected coaxial fibers on microscope glass slide were all soaked in Ethanol for 2 

hours to remove the PVP shell followed by PL measurement of the MEH-PPV nanofibers.  

A consistent increase in PL intensity has been observed excluding nanofibers of 0.7 % 

MEH-PPV solution.  We notice a potential correlation to the low PL intensity of 0.7 % 

MEH-PPV solution with its absorption measurement resulting in the largest red shift of 

76 nm.  The cause of inconsistency in 0.7 % PL is not yet understood, and needs further 

investigation. 
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10.  Discussion and Analysis 

The efficiency of the synthesized Electrospun polymer-fiber solar cells has been 

estimated to be 7.92 × 10-10 %, based on the total substrate area.  The unique device 

structure with the Co-planar bimetallic interdigitated electrode substrate allows further 

evaluation of its efficiency from the total active nanofiber area.  For this chapter, a 

detailed analysis of an actual efficiency extracted from the electrospun polymer-fiber 

solar cells is presented. 

10.1  Active area of electrospun polymer-fiber solar cells 

In preparation of the electrospun polymer-fiber device with the co-planar 

bimetallic interdigitated electrodes, an increased number of nanofibers on surface of the 

interdigitated electrodes will yield greater I-V curve response with higher numbers of 

active electrode-nanofiber-electrode junctions.  However, one of the aims for this 

project is the characterization of the performance of a single electrode-nanofiber-

electrode junction.  To account for this measurement, a limited amount of nanofibers 

were collected for statistical analysis of a number of active nanofiber junctions. 

There are a total of 638 electrodes in co-planar bimetallic interdigitated electrodes, 

and this implies 637 bimetallic solar cell junctions.  Therefore, an active electrospun 

polymer-fiber solar cell exists for every nanofiber to bridge the bimetallic electrode 

separation.  To get an estimate for a number of active electrospun polymer-fiber solar 

cells, the number of nanofibers bridging the electrode separation was recorded for every 

10 electrode separation columns under an optical microscope of 100× magnification.  

An average number of electrode-nanofiber-electrode junctions per 10 electrode separation 
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columns were estimated after 18 of the 10 electrode separation columns, and the total 

number of electrode-nanofiber-electrode junctions on the co-planar bimetallic 

interdigitated electrodes were calculated with a weighted average estimate for every 50 

electrode separation columns.  As a result, we count a total of 28957.6 electrode-

nanofiber-electrode junctions on the surface of the co-planar bimetallic interdigitated 

electrode.  Based on the dimension of the fibers and the electrode separation, the actual 

efficiency of the electrospun polymer-fiber solar cells is estimated to be 3.08 × 10-7 %. 

10.2  Efficiency Validation 

With the unique device structure of co-planar bimetallic interdigitated electrode 

substrate, the 3.08 × 10-7 % efficiency of the electrospun polymer fiber solar cells has 

been shown to be better than the 8.7 × 10-8 % efficiency of Solar cloth presented by 

Sundarrajan [69].  Some assumptions have been made in evaluation of the total active 

area of the electrospun polymer-fiber solar cells, but these assumptions actually yield an 

overestimate of electrospun polymer-fiber area. 

The first assumption made is with regard to the alignment of the nanofibers.  For 

every nanofiber counted, it is assumed to be aligned orthogonally to the electrode surface.  

For every charge generated from MEH-PPV, charge collection is more likely for a 

shortest distance to the collector considering the effect of recombination.  With this 

assumption, the active area for a single electrospun nanofiber is a product of 1 µm 

nanofiber diameter, and the average electrode separation of 1.97 µm.  In addition, due to 

the cylindrical structure of the electrospun nanofibers, the actual point of nanofiber to 
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electrode contact can be much smaller compared to the diameter of the electrospun 

nanofiber as indicated in Figure 56 below. 

 

 

 

 

 

 

Figure 56Figure : Cross sectional image of an electrospun polymer-fiber solar cells. 

 

The efficiency is inversely proportional to the active area of the device, and this 

overestimate of an electrospun polymer-fiber solar cells implies the device efficiency to 

be 3.08 × 10-7 % or better. 

Another source of error can be considered from insufficient contact of electrospun 

polymer-fiber solar cell.  The number of electrode-nanofiber-electrode junctions was 

evaluated from top-down view of the optical microscope, where an electrode to electrode 

contact was assumed for every nanofiber to bridge the electrode separation.  However, if 

the electrode-nanofiber-electrode junction is viewed in cross section, there is a possibility 

where even with an apparent nanofiber bridge, no contact will be established as shown in 

Figure57. 
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Figure 57: Schematic of electrospun nanofibers at one electrode-nanofiber-electrode junction.  The 
orange cylindars indicate nanofibers with insufficient contact. 

 

Without alignment of electrospun nanofibers, the random orientation of the collected 

nanofibers will result in nanofiber stacking, and this will prevent the complete 

formulation of electrode-nanofiber-electrode junctions.  However, this incomplete form 

of electrode-nanofiber-electrode junctions will appear to be complete from the optical 

microscope, but this potential lack of contact will lead to an over estimate in total number 

of complete electrode-nanofiber-electrode junctions.  With all considerations for errors 

in the active area measurement, a more likely overestimate of our active area allows us to 

conclude that the efficiency of our electrospun polymer-fiber solar cell is 3.08 × 10-7 % or 

better. 

 

10.3  Equivalent Circuit 

To further understand the performance of our device, an equivalent circuit 

analysis has been performed.  In a typical solar cell, series resistance (Rs) of a device is 

the sum of limited conductivity of the material, contact resistance between semiconductor 

and the electrodes, and other contact resistance with the electrodes to the external circuit.  

In addition, a solar cells will have shunt resistance (Rsh) which is lowered by the leakage 
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current, and charge carrier recombination.  An equivalent circuit for a solar cell is as 

shown in Figure 58. 

 
Figure 58: Solar cell Equivalent circuit. 

 

From this equivalent circuit, the current-voltage characteristic for a solar cell is a sum of 

a diode current, shunt resistance current, and the photo-induced short circuit current that 

can be expressed as, 

 

where J0 is the diode saturation current, q the elementary charge, n the ideality factor, k 

the Boltzman constant, T is the temperature, A for the active area, and Jph is the photo-

induced short circuit current.  For an ideal solar cell, Rs would be 0 Ω with an infinite 

Rsh. 
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10.3.1 Influence of ideality factor 

Ideality factor describes how closely a diode follows the theoretical prediction of 

an ideal diode.  The number typically ranges in 1<n<2 where n=1 is considered for an 

ideal diode.  For our device, assuming Rs=0 Ω and substituting all necessary parameters 

in the current-voltage characteristic equation with J0=1.74852×10-7 µA/cm2, T=295.75 K, 

A=0.057 mm2, Rsh=10 TΩ and Jph= 0.525 µA/cm2, the voltage is dependent on the 

ideality factor as shown in Figure59. 

 

 

 

 

 

 

 

 

 

Figure 59: Current voltage characteristics of the electrospun polymer-fiber solar cell with varying Ideality 
factor.  The dots are actual data points collected from the electrospun polyer-fiber solar cell under 
illumination. 

 

It is evident from figure above that the voltage of the current-voltage characteristic 

equation is dependent on the ideality factor. With consideration for an open circuit 

voltage error estimate of 10%, an ideality factor was found to be in the range of 2.84 ≤ n 

≤ 3.4.  However in comparison with the electrospun polymer-fiber solar cell data, n=3.4 
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resulted in the best fit for an open circuit voltage Uoc of 0.11 V.  An estimated ideality 

factor of n=3.4 has been found to be unusually high for a typical solar cell.  High 

ideality factor generally is an indication of multilevel charge recombination sites.  In 

addition, electrospun nanofibers are known to reduce the depletion width resulting in an 

increased probability of tunneling along with thermionic emission at the electrode 

nanofiber junction [92], and thus the ideality factor of n=3.4 for the electrospun polymer-

fiber solar cell. 

 

10.3.2 Influence of shunt resistance 

To understand the influence of shunt resistance in our eletrospun polymer-fiber 

solar cell, series resistance Rs= 0 Ω is chosen.  Figure 60 are current-voltage 

characteristics of the elctrospun polymer-fiber solar cell with increasing shunt resistance. 

 

 

 

 

 

 

 

 

 

Figure 60: Current-voltage characteristic equation of electrospun polymer-fiber solar cells with increasing 
shunt resistance where Rs=0. 
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When the current-voltage characteristic equation is applied in the electrospun polymer-

fiber solar cell, all graphs converge at the short circuit current density Jsc= -0.525 µA/cm2, 

while the open circuit voltage and the Fill factor appears to be proportional to the shunt 

resistance.  After reaching a value of Rsh=10 TΩ, further increase in shunt resistance has 

been found to cause no further improvement in open circuit voltage and fill factor.  

Applying the current-voltage characteristic equation to the collected data, the shunt 

resistance of the electrospun polymer-fiber solar cell is found to be approximately 10 TΩ. 

 

10.3.3 Influence of series resistance 

To understand the influence of series resistance, we assume infinite shunt 

resistance.  Figure 61 are current-voltage characteristics of the elctrospun polymer-fiber 

solar cell with increasing series resistance. 
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Figure 61: Current-voltage characteristic equation of electrospun polymer-fiber solar cells with increasing 
series resistance where Rsh=∞. 

 

Applying the current-voltage characteristic equation for the electrospun polymer-fiber 

solar cell shows that the short circuit current and the fill factor is inversely proportional to 

the series resistance while all current-voltage curve converge at the open circuit voltage 

of 0.12 V for the ideality factor of 3.4.  From careful analysis of our current-voltage 

characteristics, we find that further decrease in series resistance below 1 MΩ gives no 

further improvement in short circuit current and fill factor of the device.  In application 

of the current-voltage characteristic equation, we find the series resistance of electrospun 

polymer-fiber solar cell to be approximately 1 MΩ. 

 

10.3.4 Characteristic of electrospun polymer-fiber devices 

From the equivalent circuit analysis, n of 3.4, Rsh of 10 TΩ assuming Rs=0, and an 

Rs of 1 MΩ or less assuming Rsh=∞ have been found.  The high ideality factor for the 

device has been attributed to the nanofibers structurally induced multi-level 

recombination sites.  An interesting characteristic in the device is the overestimate of its 

1 MΩ series resistance.  Solar cells are generally known to have better performance 

under low series resistance, and this is evident from inverse proportionality of series 

resistance to the fill factor of solar cells.  The electrospun polymer-fiber solar cell fill 

factor reached a limit in its improvement with the series resistance as high as 1 MΩ.  

The series resistance of the device is 1 MΩ or less, and this is also an implication that an 

electrospun polymer-fiber solar cells are functional under high series resistance.  
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Similarly, high shunt resistance of the device implies stable device performance of the 

circuit.  However, the efficiency of the device is relatively small compared with other 

organic solar cell devices, and further research is needed for better power extraction for 

an electrospun polymer-fiber solar cell.   

Although there is some uncertainty in the exact value of the device parameters, 

our calculation shows that the device has a high ideality factor because of defects leading 

to recombination.  It also has a high shunt resistance because of limited leakage current 

to the silicon dioxide substrate, and it has a relatively high series resistance due to long 

fiber length and poor contact with the electrodes. 
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11.  Conclusion and Future Studies 

11.1 Conclusion 

In this work, MEH-PPV:PCBM based electrospun polymer-fiber solar cells have 

been studied.  Organic solar cells synthesized with electrospinning offers improved 

carrier transport, charge transfer, shunt resistance, charge collection, mobility 

enhancement, and absorption tuning.  Improvement in these parameters with proper 

power extraction will potentially improve device performance, and will add a new device 

structure to organic solar cells. 

Electrospinnable polymer mixing, and multi-layer electrospinning have been 

discussed for electrospinning of conjugated polymers.  MEH-PPV, P3HT, and PTEBS 

were all considered for electrospun polymer-fiber solar cell device synthesis.  

Electrospinnable polymer mixing of PTEBS resulted in Bimodal fibers, while P3HT 

maintained its electrical properties with some degradation.  Coaxial electrospinning of 

PTEBS were unstable showing sensitivity to humidity, and MEH-PPV showed good 

nanofiber structure and electrical response when coaxially electrospun as a core solution. 

Different device structures for an electrospun polymer-fiber solar cell have been 

considered.  A conventional metal-semiconductor-metal device structure was limited by 

low charge carrier mobility, and a triaxial nanofiber device structure lacked in good 

conductor solution for the core and outer layer of the conjugated polymer-fiber solar cell.  

The Co-planar bimetallic interdigitated electrode substrate was developed for simple 

electrospun polymer-fiber device fabrication.  Preliminary tests of the co-planar 

bimetallic interdigitated substrate using an MEH-PPV:PCBB film resulted in a working 
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solar cell of 3.53x10-4 % neglecting non-active area from the electrodes.  Successful 

synthesis of electrospun polymer-fiber solar cells was done with coaxially electrospun 

fibers collected onto the co-planar bimetallic interdigitated electrode, and further 

extraction of electrically insulating shell of the coaxial nanofibers. 

Materials used for the electrospun polymer-fiber solar cell synthesis were selected 

based on their electrospinnability, and their absorption properties.  Reports of red shift 

are often observed for MEH-PPV rather than the P3HT polymer, and this is verified from 

the 76 nm red shift observed in our solution concentration based MEH-PPV nanofiber 

absorption experiments.  In addition, nanofiber morphology after polymer shell 

extraction was maintained for coaxial electrospinning of MEH-PPV:PCBM mixture 

instead of P3HT:PCBM mixture.  The use of PCBB as an electron acceptor has failed to 

maintain nanofiber morphology after polymer shell extraction, while a PCBM mixture in 

MEH-PPV was consistently able to maintain nanofiber morphology.  The use of 

chlorobenzene for MEH-PPV has shown to be a better solvent in comparison to 

chloroform with a slight red shift in its Photoluminescence spectrum, and from better 

quantum yield reported from other references.  Therefore, an MEH-PPV:PCBM mixture 

in chlorobenzene solution was chosen for the electrospun polymer-fiber solar cell 

synthesis.  Optimum device performance for the MEH-PPV:PCBM mixture bulk 

heterojunction solar cell is observed for a weight ratio of 1:4 respectively.  However, the 

MEH-PPV:PCBM solution mixtures were limited to a weight ratio of 1:2.5 due to an 

induced instability in its coaxial electrospinning for higher PCBM concentrations. 

Finally, an electrospun polymer-fiber solar cell was synthesized from an MEH-

PPV:PCBM mixture in chlorobenzene solution using coaxial electrospinning.  From 
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acareful estimate of the active area in an electrospun polymer-fiber solar cell, the device 

achieved a power conversion efficiency of η=3.08 × 10-7 %, a short circuit current of Jsc= 

0.525 µA/cm2, an open circuit voltage of Uoc= 0.11 V, and a fill factor of ff= 0.43.  From 

the equivalent circuit analysis, an ideality factor of n=3.4, shunt resistance of Rsh=10 TΩ, 

and a series resistance of Rs= 1 MΩ has been estimated.  These parameters show 

stability with the device being functional under high series resistance, and an advantage 

of electrospinning leading to a burning of the shunts [73] is also verified with high shunt 

resistance of the device. 

11.2 Future Studies 

The electrospun polymer-fiber solar cell prepared in this work is the first device to 

be prepared from MEH-PPV.  The unique device structure, and its device parameters 

needs further investigation through experiments with absorption, Photoluminescence, and 

mobility measurements.  In addition, other optimization processes may be introduced for 

better performance, and stability of the device. 

 

11.2.1 Mobility measurement 

From generation of excitons, the holes travel to the cathode, and high hole 

mobility is required for efficient charge transfer in an organic solar cell.  Increase in 

mobility of the generated charges are often reported in electrospinning experiments.  

With successful synthesis of electrospun polymer-fiber solar cell, change in mobility 

from the structural change in organic solar cell needs to be investigated.  Hall effect is 

often used for mobility measurements, but low mobility of polymers are often difficult 
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for measurement [93].  Instead for low mobility materials, Time-of-flight (TOF) [94], 

field-effect transistor (FET) measurement [95], space-charge limited current (SCLC) 

measurement [34], and pulse radiolysis time-resolved microwave conductivity (PR-

TRMC) [96] technique may be used. 

 

11.2.2 Device optimization 

11.2.2.1 Co-planar bimetallic interdigitated electrode 

Our electrospun polymer-fiber solar cell was synthesized by nanofiber collection 

on the surface of Co-planar bimetallic interdigitated electrode.  The electrode 

separations of 1.61 µm and 2.34 µm has been achieved for a functional device using 

MEH-PPV:PCBM nanofibers.  However, this electrode separation much greater than the 

MEH-PPV exciton diffusion length of 20 ± 3 nm, and this will result in greater charge 

recombination, and decreased charge collection [27].  By reduction of co-planar 

bimetallic interdigitated electrode separation, an improved charge collection, increased 

short circuit current, and an overall improvement in device efficiency are expected.  The 

co-planar bimetallic interdigitated electrode was prepared using photolithography, but a 

Scanning electron Microscope technique is expected to provide better resolution resulting 

in smaller electrode separation. 
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11.2.2.2 Control of fiber diameters 

The electrospun polymer-fiber solar cell had a fiber diameter of ~1 µm.  This 

fiber diameter is too large for efficient charge collection to consider for the MEH-PPV 

hole mobility.  With a reduction in the polymer fiber diameter, there will be an 

improved charge collection.  Control of the fiber diameter in electrospinning may be 

achieved through changing the solution concentration, and other parameters which may 

effect the resulting nanofiber diameter. 

11.2.2.3 P3HT for electrospun polymer-fiber solar cells 

P3HT is a conjugated polymer that has been a popular choice for fabrication of 

organic solar cells with its ability to produce high efficiency organic solar cells.  

Although the P3HT polymer has shown good photoelectric activity in our experiments, 

electrospinning of P3HT has continued to fail in maintaining its nanofiber structure 

through the PVP polymer extraction process of coaxial electrospinning.  However with 

proper optimization of the electrospinning experiment, P3HT nanofibers has been 

synthesized with it electronic properties maintained [63].  A mixture of PCBM in such 

polymer may produce a nanofiber of good solar cell performance collected over the co-

planar bimetallic interdigitated electrode, and the device parameter maybe compared with 

those synthesized by Subramanian et al for the difference in their device structure [69]. 
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11.2.2.4 Triaxial nanofiber solar cell 

In the earlier chapter, an electrospun polymer-fiber solar cell of triaxial nanofiber 

structure has been discussed.  Synthesis of such device proves to be difficult due to 

limited choices for the conductive solutions, a need for transparent outer electrode layer, 

and establishment of electrical contact between the core electrode layer, and the outer 

electrode layer.  However, the triaxial nanofiber structure for a solar cell has many 

advantages such as its as-spun device preparation process, nanoscale active layer for low 

polymer diffusion length of polymers, potentially improved mobility, and red shift.  

Further investigation in synthesis of conductive nanofibers may further the research in 

triaxial organic solar, and such device will introduce a new device structure to organic 

solar cells. 
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