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THE EFFECTS OF HYPOTHERMIA ON STATUS EPILEPTICUS-INDUCED ACQUIRED 
EPILEPSY 
 

By Kristin F. Phillips, B.S. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2011 
 

Major Director: Robert J. DeLorenzo, M.D., Ph.D., M.P.H. 
Professor, Departments of Neurology, Pharmacology & Toxicology, and Biochemistry & 

Molecular Biophysics 
 
 
 

Status epilepticus (SE) is a type of neurological injury characterized by continuous seizure 

activity and can lead to molecular and pathophysiological alterations leading to plasticity 

changes. SE can lead to the development of AE by the process of epileptogenesis, which is a 

phenomenon that describes the transformation of normal brain tissue into a hyperexcitable 

neuronal population. It has been demonstrated both in vivo and in vitro that calcium (Ca2+) 

dynamics are severely altered during and after SE, and these changes play a major role in the 

progression of epileptogenesis. It has also been reported that preventing the rise in intracellular 

Ca2+ ([Ca2+]i) immediately following injury (the Ca2+ plateau) prevents the plasticity changes and 

ultimate development of epilepsy. Currently, there are no treatments available that can be 

administered following an injury to prevent the development of AE. Therefore it is clinically 

important to develop a therapy that can be administered after an injury to block epileptogenesis. 
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Hypothermia is a potential therapeutic intervention. Hypothermia is used clinically to provide 

neuroprotection following various neurological insults such as stroke and traumatic brain injury 

(TBI). However, no studies have been performed to evaluate the therapeutic potential of 

hypothermia following SE. Hypothermia provides protection via multiple mechanisms, one of 

which includes modulating excitotoxic neurotransmission. It is believed to reduce Ca2+ influx by 

reducing NMDA receptor activation. It is unclear how hypothermia affects Ca2+ through other 

modes of entry. This dissertation evaluates the effects of hypothermia on the Ca2+ plateau and 

demonstrates the novel finding that hypothermia induced post-SE blocks the development of the 

Ca2+ plateau and reduces the development of AE.  
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Chapter 1: Introduction 

 

Acquired Epilepsy and Status Epilepticus 

Epilepsy is a common neurological condition characterized by recurring spontaneous seizures. It 

affects 1 to 2 percent of the population worldwide [1-3] and approximately 2.7 million 

Americans [3]. At least 40 percent of epilepsy cases are the result of a previous neurological 

insult and are classified as acquired epilepsy (AE) [1, 4-5]. The remaining epilepsy cases are 

considered idiopathic, meaning there is no known cause for the development of epilepsy [6]. In 

AE a known cause or injury damages the brain and produces a plasticity change that leads to the 

development of epilepsy [1-2, 20]. The transformation of normal brain tissue into a 

hyperexcitable neuronal population manifesting spontaneous recurrent epileptic discharges, or 

seizures, is called epileptogenesis [1-2, 7]. Epileptogenesis is the process responsible for the 

development of spontaneous seizures following a neurological insult [8]. 

 

The most common brain injuries that lead to AE are stroke, traumatic brain injury (TBI), and 

status epilepticus (SE) [9]. SE is a common neurological emergency that affects 102,000-

152,000 people in the United States each year and is associated with approximately 55,000 

deaths annually [10]. Epidemiological studies indicate that up to 43% of all SE patients develop 

epilepsy [11], and at least 10% of all acquired epilepsies develop after SE [1, 12-13], thus 

making SE-induced AE important to study. Therefore, the studies performed in this dissertation 

will utilize SE-induced AE models to study SE-induced epileptogenesis.
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Seizures are typically short-lived events lasting 20-120 seconds that terminate on their own and 

have been shown to not cause brain damage. However, some seizures do not stop on their own. 

Seizures that continue for a duration of greater than 30 min or multiple seizures that occur 

without regaining consciousness are classified as SE [9]. SE is defined by the International 

League against Epilepsy as a seizures that persists “for a sufficient length of time or is repeated 

frequently enough that recovery between attacks does not occur” [10]. SE can be caused by acute 

processes such as metabolic disturbances, infection of the central nervous system (CNS), stroke, 

head trauma, or hypoxia. Chronic conditions that can precipitate SE include preexisting epilepsy, 

chronic ethanol abuse, and discontinuation of anti-epileptic drugs (AEDs) [14]. In this study the 

rat pilocarpine and the hippocampal neuronal culture models of SE will be used to study the 

effects of SE on epileptogenesis. These models have been well characterized and are ideally 

suited to study how SE-induced neuronal injury causes AE [15, 16]. 

 

Considerable research has been done to study the effects of brain injury on producing AE. There 

are typically three phases underlying injury-induced epileptogenesis [9]. The first phase is the 

injury phase where some cells die and some cells survive. This is followed by the latent phase, 

where seizure activity is absent and neuronal plasticity changes are initiated. Epileptogenesis is 

believed to occur during the latent period. The latency phase varies in duration among various 

models of epileptogenesis and in humans. The neurons that survive the injury phase are the 

neurons which can undergo epileptogenesis. Thus, the latent phase serves as a window of 

opportunity for anti-epileptogenic interventions. The last phase is the chronic epilepsy phase, 

where recurring spontaneous seizures are present [17-18]. The presence of a latent period 
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preceding epilepsy is a cardinal feature of injury-induced epilepsy in humans [19]. These phases 

of AE can be replicated in various models of SE-induced AE. 

 

Models of SE-induced AE 

In vivo models: The Pilocarpine Model. 

Animal models have greatly improved our understanding of epileptic disorders [21]. Several 

animal models exist that have provided insight into the various mechanisms of neuronal injury 

following SE. The most common methods of inducing SE in animals include producing SE by 

using chemoconvulsants and direct electrical stimulation (Figure 1-1). The pilocarpine model is a 

well established animal model commonly used to study temporal lobe epilepsy (TLE) because it 

is highly isomorphic to human TLE [22]. The chemoconvulsant pilocarpine, a muscarinic 

receptor agonist, induces SE by causing over-activation of muscarinic receptors, leading to the 

excessive release of neurotransmitters including glutamate. This causes overwhelming neuronal 

excitation leading to SE. The pilocarpine model is commonly used to study epileptogenesis due 

to its ability to produce SE in a similar presentation as that seen in human as well as similar 

pathophysiological consequences. Following SE-induced injury, there is a latent period 

characterized by the absence of seizures. This is followed by development of spontaneous 

recurrent seizures, or chronic epilepsy [23-24, 37]. In addition to sharing a similar progression in 

the development of AE, the third phase in the pilocarpine model closely resembles the seizure 

phenotype and pathology seen in human TLE. Some of these characteristics include widespread 

lesions associated with neuronal network reorganization in the hippocampus, such as mossy fiber 

sprouting and interneuron loss [25], and poor control of seizures with the use of anti-epileptic 
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drugs (AEDs) [26]. The in vivo studies performed for this dissertation utilized the pilocarpine 

model of AE. 

 

In vitro model: The Hippocampal Neuronal Culture Model. 

While the pilocarpine model has the advantage of presenting a clinical disorder in an intact 

animal, it is difficult to control many of the variables necessary to study the molecular 

mechanisms associated with SE and epileptogenesis. Therefore, developing an in vitro correlate 

of SE has provided us with a useful tool to investigate the molecular mechanisms underlying 

epileptogenesis in an in vivo preparation that is more suitable to molecular biological and 

biophysical studies. Our laboratory has developed an in vitro model of SE and SE-induced AE 

called the “low magnesium” hippocampal neuronal culture model [16]. Hippocampal neurons are 

cultured in vitro and used to study epileptogenesis. This model uses hippocampal neuronal 

cultures placed in a buffer solution containing no added magnesium (Mg2+) to trigger 

epileptiform discharges, the in vitro correlate of SE. The low Mg2+-induced electrographic SE 

induced in the cultures is essentially identical to the electrographic features of SE in humans 

[16]. These cultures are treated with low Mg2+ for 3 h. During this time, the cultures manifest 

continuous epileptiform discharges with a frequency greater than 10 Hz consistent with 

characteristics seen in clinical electrographic seizure activity in humans. After 3 h of low Mg2+, 

Mg2+ is returned to the buffer solution and the neurons no longer exhibit SE-like epileptiform 

discharges and return to baseline activity. After 12 h (latency phase) following the low Mg2+ 

treatment, the neurons manifest spontaneous recurrent epileptiform discharges (SREDs). The 

SREDs share the same electrophysiological characteristics seen in human seizure activity. The 

neurons continue to manifest SREDs for the life of the neurons in culture [27]. In addition to 
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using an injury similar to SE to cause the development of SREDs, this model also shares other 

characteristics seen in the in vivo models and the clinical condition such as changes in Ca2+ 

homeostasis, cell death, and resistance to AEDs [16, 28].  

 

Although these models are powerful tools to investigate the molecular mechanisms of AE and 

screen potential anti-epileptogenic drugs, both models of epileptogenesis have limitations. 

Differences from the human condition include the latency period following SE, the percentage of 

cases that develop AE following SE, and co-morbities associated with the conditions [29]. 

Despites these limitations, both the animal and in vitro models are useful tools in studying SE and 

AE. 

 

Calcium dynamics of SE-induced AE 

The use of in vivo and in vitro models of SE-induced AE has provided tremendous insight into 

the molecular mechanisms responsible for the development of AE following a brain injury such 

as SE [9]. Characterizing these mechanisms allows us to develop therapies that target 

epileptogenesis and prevent the development of AE. Several studies have implicated intracellular 

Ca2+ ([Ca2+]i) as a major player in mediating many of the pathophysiological consequences 

observed in AE following an injury such as SE, stroke, and TBI [30-32]. These studies provided 

evidence that following SE, [Ca2+]i is elevated compared to naïve controls, and this elevation is 

persistent for the life of the neuron. This persistent elevation in [Ca2+]i is called the calcium 

plateau, and this plateau is responsible for many of the plasticity changes observed during 

epileptogenesis. The neurons that survive an injury such as SE serve as the substrate for 

epileptogenesis. Targeting the molecular alterations observed in epileptogenesis such as elevated 

[Ca2+]i may offer new approaches to developing anti-epileptogenic approaches [9].  
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Calcium plays an important role in neuronal function under normal physiological conditions 

[33].  Ca2+ is a divalent, cationic charge carrier that acts as a second messenger in many cell 

signaling pathways [34]. Under normal conditions, [Ca2+]i  is maintained at low concentrations 

(100 nM), whereas extracellular Ca2+ is significantly higher (1-2 mM) [35]. The large 

concentration gradient between intracellular and extracellular spaces allows Ca2+ to act as a 

second messenger even upon small changes in intracellular concentration. Neuronal 

depolarization or receptor activation allows extracellular Ca2+ to move down its concentration 

gradient and enter the neuron and produce second messenger effects. Brief elevations in [Ca2+]i 

are necessary for basic neuronal processes such as neurotransmitter release as well as higher 

functions such as long-term potentiation that occurs in learning and memory consolidation [36]. 

However, prolonged and overwhelming elevations in [Ca2+]i, such as that seen in glutamate 

excitotoxicity, lead to acute and delayed cell death [9]. Neurons have several homeostatic 

mechanisms that work to maintain the low [Ca2+]i. However, neurons that survive an injury such 

as SE exhibit marked alteration in their ability to handle elevations in [Ca2+]i, indicating an 

alteration in homeostatic mechanisms (Fig 1-2). This led to the development of the calcium 

hypothesis of epileptogenesis. The calcium hypothesis postulates that: 1) During the injury 

phase, Ca2+ reaches high levels, but not high enough to induce cell death; 2) During the latency 

phase, Ca2+ remains elevated and initiates second messenger effects that lead to long-lasting 

plasticity changes (epileptogenesis); and 3) During the chronic epilepsy phase, the persistent 

elevations in [Ca2+]i that are associated with the epileptic phenotype play a role in initiating and 

maintaining recurring spontaneous seizures [9]. Several studies have demonstrated the changes 

in [Ca2+]i dynamics during all three phases of AE [30-31, 37-40]. 
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One study used the pilocarpine model to demonstrate the changes in [Ca2+]i in hippocampal 

neurons at different time points following SE [37]. Rats remained in SE for 1 h before SE was 

terminated with diazepam. The rats were sacrificed immediately following SE (acute injury 

phase), and at various time points following SE (latency and chronic phases). Hippocampal 

tissue was dissected, neurons were acutely dissociated, and [Ca2+]i of the hippocampal neurons 

was evaluated using the Ca2+ indicator Fura-2. Immediately after SE, during the acute injury 

phase, hippocampal neurons exhibited significant elevations in [Ca2+]i not seen in vehicle 

controls. 100% of the neurons isolated from pilocarpine-induced SE rats had abnormally 

elevated [Ca2+]i with mean neuronal [Ca2+]i values of 850 ± 59 nM compared to vehicle controls 

who exhibited mean neuronal [Ca2+]i values of 90 ± 22 nM. This demonstrated a significant 

increase (9.4-fold increase) in [Ca2+]i from SE neurons compared to control neurons, suggesting 

that [Ca2+]i is significantly elevated during and immediately following SE. 

 

This paper also evaluated [Ca2+]i at later time points following SE to determine if the changes in 

Ca2+ were transient or more long-lasting. [Ca2+]i from acutely isolated hippocampal neurons was 

measured at 1, 2, 6, 10, and 30 days and 1 year post-SE. [Ca2+]i remained significantly elevated 

at all time points compared to control. [Ca2+]i remains elevated to high levels for the first six days 

after SE. This has been designated the calcium plateau [9].  In addition, even though [Ca2+]i 

drops after the seventh day after SE it still remains significantly elevated compared to control 

neurons (Fig 1-3). This study identified the presence of the calcium plateau that is maintained 

long after the initial injury. 
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Studies have also explored the effects of epileptogenesis on the homeostatic mechanisms that 

regulate [Ca2+]i.[30, 37, 39-40]. In one study, hippocampal neurons isolated from rats in the 

injury, latency, and chronic phases were challenged with glutamate to investigate whether Ca2+ 

homeostatic mechanisms were intact [37]. Glutamate is an excitatory transmitter that stimulates 

the NMDA receptor, allowing Ca2+ influx into the neuron. Under normal conditions, neurons are 

able to buffer the increase in [Ca2+]i back to baseline levels. However, epileptic neurons exhibit 

deficits in their ability to buffer the excessive influx of Ca2+ and return [Ca2+]i back to baseline 

concentrations, indicating altered homeostatic mechanisms. In these experiments, control 

neurons returned to pre-glutamate levels in less than 6 min following 1 min exposure to 10 µM 

glutamate. However, [Ca2+]i in neurons from the SE group at all three phases exhibited a 

significant delay in returning to baseline (Fig 1-4). Neurons from SE animals were unable to 

restore [Ca2+]i back to baseline levels, suggesting alterations in homeostatic mechanisms during 

all three phases of epileptogenesis. These studies demonstrated that elevated [Ca2+]i and altered 

Ca2+ homeostatic mechanisms remain long after the initial injury from SE, suggesting that these 

changes play a role in the development and maintenance of AE.  

 

Alterations in [Ca2+]i have also been demonstrated in the in vitro model of epileptogenesis. This 

model induces electrographic SE in hippocampal neuronal cultures by treating neurons with 3 h 

of low Mg2+ solution. The low-Mg2+ treatment (SE) produces long-term plasticity changes that 

result in the development of SREDs that persists for the life of the neuron (“epilepsy”). During 

SE in this model, [Ca2+]i rises significantly during low-Mg2+ treatment compared to controls 

neurons [41]. Calcium homeostasis has also been shown to be affected in this model. Thus, the in 

vitro model manifests the same Ca2+ plateau as in the pilocarpine model [9]. 
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Evidence that Ca2+ in necessary for the development of AE 

Glutamate, a major excitatory neurotransmitter, mediates the neuronal injury that occurs during 

SE. SE triggers the release of large amounts of glutamate which causes excessive stimulation of 

glutamate receptors including the Ca2+-permeable NMDA receptor. Although glutamate acts at 

several receptors including NMDA, kainic acid, AMPA, and metabotropic glutamate receptors, it 

is the activation of the NMDA receptor that most significantly contributes to the pathology that 

occurs following injury and during epileptogenesis. The hippocampal neuronal culture model of 

AE has been used in several studies to demonstrate that epileptogenesis is a Ca2+-dependent and 

NMDA receptor-mediated phenomenon [37, 41-42]. 

It has been shown that increased [Ca2+]i during SE was necessary for the development of SREDs. 

[41]. SE was induced using low Mg2+ treatment in the presence of low extracellular Ca2+ (0.2 

mM) or the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N’-N’-N’-N’-tetraacetate (BAPTA). 

The development of SREDs was evaluated 48 h post-SE. The presence of both low extracellular 

Ca2+ and the Ca2+ chelator during SE prevented the development of SREDs, indicating that Ca2+ 

is necessary for the development of epilepsy. To further prove that Ca2+ was necessary for 

epileptogenesis, Ca2+ was replaced with barium (Ba2+), a divalent cation that has been shown to 

be unable to substitute for many of the second messenger effects produced by Ca2+ [43]. 

Replacing Ca2+ with Ba2+ during SE also prevented the development of SREDs. These results 

demonstrated that elevated [Ca2+]i during SE is responsible for the plasticity changes the lead to 

the development of epilepsy [41].  

 

 



10 
 

NMDA receptor activation is required for the development of AE 

After demonstrating that increased [Ca2+]i during SE causes SREDs, it was important to 

determine whether the source of Ca2+ was selective. The increase of Ca2+ inside the cell during 

SE could be mediated by several different channels [44-45]. Activation of NMDA receptors by 

glutamate allows Ca2+ to enter the cell. Activation of AMPA, kainic acid, and metabotropic 

receptors depolarizes the cell and activates voltage-dependent calcium channels (VDCCs) [44]. 

Ca2+ can also enter the cell upon activation of specific AMPA receptor subtypes [44-45]. 

To investigate the contributions of these receptors and channels in the induction of 

epileptogenesis, several pharmacological inhibitors were used [41]. The AMPA and kainic acid 

receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the more selective 

AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX) [46] 

were able to partially block the rise in [Ca2+]i during SE, reducing [Ca2+]i from 577nM to 433 nM 

and 422 nM, respectively. Inhibition of L-type VDCC by the antagonist nifedipine [47] was also 

effective at partially reducing [Ca2+]i during SE. However, none of these pharmacological 

inhibitors were effective at preventing the development of SREDs. The NMDA receptor 

antagonists 2-amino-5-phosphonovaleric acid (APV) and MK-801 [48-49] were more effective 

at blocking the rise in [Ca2+]i during SE, reducing [Ca2+]i levels from 577 nM to 293 nM and 287 

nM, respectively. The NMDA receptor antagonists were also able to completely block the 

induction of epilepsy in the hippocampal culture model. These results provide direct evidence 

that NMDA receptor-mediated Ca2+ entry is responsible for the rise in [Ca2+]i that leads to the 

development of epilepsy. 
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Several animal models have shown that NMDA antagonism blocks or delays the development of 

seizure activity and epileptogenesis [37, 42, 50-52]. One study has also shown that NMDA 

receptor activation in required for the development of AE [42]. In this study rats were treated 

with pilocarpine to induce SE. In one group, rats were pre-treated with MK-801, an NMDA 

receptor antagonist. Rats from both groups exhibited comparably severe electrographic SE 

following pilocarpine injection, suggesting that blockade of the NMDA receptor does not 

prevent the development and progression of SE. Following SE in both pilocarpine and MK-801 

pre-treated groups, EEG activity was monitored for the presence of spontaneous recurring 

seizures. EEG recordings from control and MK-801 pre-treated pilocarpine rats displayed normal 

activity with no electrographic seizure activity present. In contrast, EEG patterns from 

pilocarpine rats exhibited spontaneous electrographic seizures corresponding to behavioral tonic-

clonic seizures. Thus, MK-801 pre-treatment prior to SE blocked the development of 

spontaneous recurring seizures, or epilepsy. The results indicate that NMDA receptor activation 

is required for the development of AE.  

 

Calcium Homeostasis 

Understanding how Ca2+ dynamics are altered following SE may lead to better understanding of 

the mechanisms that contribute to the Ca2+ plateau. Elucidating how the Ca2+ plateau contributes 

to epileptogenesis may lead to different therapeutic approaches to blocking the persistent 

elevation in [Ca2+]i and thus preventing the development of epilepsy. Several studies have 

established that the homeostatic mechanisms regulating [Ca2+]i  are altered following SE [30, 37-

40, 53-54]. The following presents an overview of Ca2+ homeostatic mechanisms and how they 

are altered following SE. Figure 1-5 provides an illustration of the homeostatic mechanisms. 
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Calcium entry across the plasma membrane 

Calcium can cross the plasma membrane through three main channels: ligand-gated cation 

channels, voltage-dependent calcium channels (VDCCs), and store-operated Ca2+ channels 

(SOCs). Ligand-gated cation channels include NMDA, AMPA, and KA channels. Multiple 

forms of VDCCs have been characterized [55-57] and are categorized based on their voltage 

sensitivities, voltage-dependent inactivation rates, and selective sensitivity to various inhibitors 

[58]. SOCs are activated when intracellular Ca2+ stores are depleted [59].  

 

The NMDA receptor mediates the majority of Ca2+ influx into the cell [60]. NMDA receptors, as 

well as AMPA receptors and kainic acid (KA) receptors, are classified as ionotropic glutamate 

receptors. Unlike AMPA and KA receptors, NMDA is highly permeable to Ca2+. In addition to 

glutamate binding, NMDA receptor activation requires the binding of a co-agonist, glycine. The 

binding of glycine is necessary for the NMDA receptor to enter the open state [60]. Activation of 

the NMDA receptor is not only ligand-gated but also voltage-dependent. A magnesium (Mg2+) 

blockade is present within the pore and prevents conductance even in the presence of both 

glutamate and glycine. Large depolarizations are necessary to expel the Mg2+ from the pore. The 

depolarization is partially mediated by AMPA and KA receptor conductance [61]. 

 

NMDA receptor-mediated Ca2+ entry has been shown to play a major role in excitotoxic 

neuronal injury and death. In stroke models, NMDA receptor antagonists reduce the ischemic 

infarct volume [62] and protect neurons from excitotoxicity [63-64]. In models of SE, NMDA 

antagonists provide neuroprotection against neuronal death that occurs with the injury from SE 

[37, 65]. While it is clear that NMDA receptor activation is linked to epileptogenesis, there is no 
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clear evidence of altered NMDA receptor function in AE from animal models or humans [66]. 

Thus, NMDA receptor activation accounts for Ca2+ entry during the SE injury phase, and this 

Ca2+ has been shown to play an important role in the induction of epileptogenesis in the neurons 

that survive the injury. 

 

Calcium extrusion 

Two major transport systems are responsible for pumping free intracellular Ca2+ out of the 

neuron. These transport systems act against a large concentration gradient and therefore are 

energy dependent. The dependence on energy makes these pumps vulnerable to ischemic injury 

[67]. The ATP-driven Ca2+ pump (Ca2+-ATPase) uses 1 ATP for every Ca2+ ion extruded across 

the membrane. The Na+- Ca2+ exchanger relies on the concentration gradient maintained by the 

ATP-dependent Na+-K+ exchanger. This exchanger extrudes 1 Ca2+ ion for every 2 or 3 Na+ ions 

that enter the cell [67]. So far, there is no evidence implicating altered Ca2+ extrusion 

mechanisms in SE or epilepsy [9]. 

 

Ca2+ binding proteins 

Ca2+ binding proteins play an important role in maintaining low basal [Ca2+]i. These binding 

proteins, such as calbindin and calmodulin, buffer the vast majority of intracellular Ca2+ 

following Ca2+ influx [68]. Calbindin-D28K (CB), an important calcium binding protein, is 

normally expressed in high levels in the dentate granule cell layer of the hippocampus. Several 

studies have shown that CB expression is altered in animal models of epilepsy [69-72] and in 

human temporal lobe epilepsy [73]. These studies show that in epilepsy, CB expression is 

decreased in the dentate granule cells, and this loss of CB is associated with the loss of calcium 
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binding capacity [69]. In the pilocarpine model of SE, this decreased expression of CB persists 

for as long as two years, suggesting that the alteration is permanent [72]. These data suggest that 

the elevated [Ca2+]i observed during epileptogenesis may contribute to the down-regulation of 

CB protein and mRNA expression. The decrease in the presence of Ca2+ binding proteins may 

mediate the maintenance of the Ca2+ plateau.  

 

Intracellular Ca2+ storage and release 

Particularly important for maintaining low [Ca2+]i  is the ability of the endoplasmic reticulum 

(ER) to operate as a dynamic Ca2+ store, which is able to actively sequester cytosolic Ca2+ ions 

and store them in the ER lumen [74]. Under normal conditions, the ER is able to sequester large 

amounts of Ca2+. The ER accumulates Ca2+ via uptake by the sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA). One study using the hippocampal neuronal culture model of epilepsy 

demonstrated that SERCA activity is decreased in epileptic neurons [40]. Impaired SERCA 

activity would lead to a decreased capacity to remove elevated intracellular Ca2+, thus 

contributing to the Ca2+ plateau.  

 

Not only is the ER responsible for storing Ca2+, it also releases Ca2+ from its internal stores into 

the cytosol. Release of Ca2+ from ER stores is evoked by stimulation of two receptors on the ER. 

One is the ryanodine receptor (RyR), named for its affinity for the plant alkaloid ryanodine [75]. 

The RyR is activated by Ca2+, resulting in Ca2+-induced Ca2+ release (CICR) [33]  that amplifies 

the Ca2+ signal in a positive feedback loop [76]. Pharmacological stimulation of RyR can be 

achieved using ryanodine and caffeine. At low micromolar concentrations (1 uM), ryanodine 

stabilizes channels in an open sub-conductive state [77]. Caffeine has proven to be a powerful 
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pharmacological tool in studying CICR [78-79] due to its ability to sensitize RyR to low 

cytosolic Ca2+ [77]. The other class of receptor that releases Ca2+ from ER store is the inositol 

(1,4,5)-triphosphate receptor (IP3R). The IP3R is activated by the second messenger IP3, which is 

produced by the cleavage of phosphatidyl 4,5-bisphosphate (PIP2) by phospholipase C (PLC). 

 

Studies have provided evidence that IP3 and RyR-mediated CICR play a role in the changes in 

[Ca2+]i seen in epilepsy [40, 80]. In the HNC model of epilepsy, IP3-mediated Ca2+ release is 

increased [40]. In addition, RyR mRNA is up-regulated in the KA model of epilepsy [80]. 

Furthermore, studies have shown that Dantrolene, a RyR antagonist, is neuroprotective in both in 

vivo and in vitro models [81-82]. These studies demonstrate that epileptic neurons show an up-

regulation in CICR mechanisms, which contribute to the Ca2+ plateau, and that blocking CICR 

with the RyR antagonist Dantrolene provides protection against neuronal death, presumably by 

inhibiting Ca2+-mediated pathways. 

 

It has also been shown that Ca2+ entry following SE is mediated by RyR activation and not 

NMDA receptor activation [83]. This study utilized the low-Mg2+ HNC model of AE to 

investigate the effects of Dantrolene on [Ca2+]i when administered after 3 h of in vitro SE. The 

results demonstrated that following SE, Dantrolene was able to lower [Ca2+]i to baseline levels 

whereas MK-801, an NMDA receptor antagonist, did not significantly lower [Ca2+]i following 

SE (Fig 1-6). This study also showed that Dantrolene was able to maintain [Ca2+]i at baseline 

concentrations for at least 48 h in vitro, suggesting that the effects were long-lasting. Thus, 

although Ca2+ entry during SE is mediated by NMDA receptor activation [37,41-42], NMDA 

receptors are not the source of the prolonged elevated Ca2+ following SE. Intervention with 
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Dantrolene following SE lowered [Ca2+]i and blocked the Ca2+ plateau, suggesting that RyR play 

a major role in maintaining the Ca2+ plateau [83].  

 

Not only did Dantrolene reduce elevated [Ca2+]i when administered following SE, it also 

significantly reduced the development of SREDs in vitro. In neurons treated with 3 h low Mg2+, 

84% and 100% exhibited SREDs at 24 and 48 h after SE, respectively. In contrast, only 10% and 

20% of neurons treated with Dantrolene following SE showed SREDs at 24 and 48 h following 

SE, respectively. In addition, Dantrolene reduced cell death when administered after SE. 

Neuronal death was assessed using propidium iodide (PI) and annexin V conjugated to 

fluorescein isothiocyanate (FITC). The results suggest that inhibiting the RyR following SE is 

neuroprotective [83]. Thus, blocking CICR from RyR following SE reduces [Ca2+]i and blocks 

the development of the Ca2+ plateau, when may prevent the Ca2+-mediated second messenger 

effects that lead to the development of epileptogenesis. Therefore, blocking CICR is a promising 

anti-epileptogenic target. 

 

Mossy Fiber Sprouting 

The hippocampus is highly vulnerable to a variety of neurological insults including SE. Plasticity 

changes observed in the dentate gyrus are considered to be important in the pathogenesis of 

temporal lobe epilepsy (TLE) [84]. A particular form of synaptic plasticity observed in both 

animal models and human cases of TLE is mossy fiber sprouting [85-90]. Mossy fiber sprouting 

describes a phenomenon that occurs when mossy fibers, which are axons of dentate granule cells, 

aberrantly grow and form synapses with dentate granule cells in the inner molecular layer (IML). 

Normally, mossy fibers arise from dentate granule cells and project across the dentate hilus to the 
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dendrites of pyramidal neurons in the CA3 region. Very few mossy fibers are normally present in 

the IML. However, following SE, these mossy fibers grow and sprout across the granule cell 

layer and form synapses with dendritic spines of dentate granule cells found in the IML [91-92] 

that normally lack recurrent excitatory synapses [93]. This creates a recurrent excitatory circuit, 

which may be a mechanism of hyperexcitability observed in epilepsy [84, 94-95]. Epileptic 

seizures are presumably caused by a disturbance in the balance between excitation and 

inhibition. The formation of recurrent excitatory synapses may enhance neuronal excitability and 

lead to epilepsy [84]. The abnormal sprouting of mossy fibers into the IML may serve as a 

source of a positive feedback loop among granule cells in the dentate gyrus [96-98]. 

 

Mossy fiber sprouting can be visualized with a Timm stain, which stains the zinc-containing 

axon terminals of mossy fibers. Mossy fiber boutons contain a high concentration of zinc, which 

is sequestered in synaptic vesicles and is co-released with glutamate. The precise effects of zinc 

release from the mossy fibers are unclear, but it appears to enhance excitability. One possible 

mechanism by which zinc enhances excitability is by acting as an antagonist to the GABAA 

receptor, which mediates the majority of inhibitory transmission. GABAA receptors appear to be 

unusually sensitive to the presence of zinc in the dentate gyrus [84]. The aberrant sprouting of 

mossy fibers can be detected one to two weeks following SE and appear to increase in intensity 

over several months [93, 99]. Although mossy fiber sprouting is a hallmark characteristic of SE-

induced epilepsy, it is not required for the development of epilepsy. However, mossy fiber 

sprouting has been associated with an increase in both seizure frequency and duration [100-101]. 

Thus, treatments that block the development of mossy fiber sprouting may prevent the formation 

of this recurring excitatory synaptic circuit, thus reducing neuronal excitability. In addition, 
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preventing mossy fiber sprouting may reduce the severity of seizures that develop, thus 

improving the quality of life for the patient. 

 

Over the last several decades, considerable progress has been made in developing anti-epileptic 

drugs (AEDs) which treat the symptomology of epilepsy [102]. However, there are no treatments 

available that prevent epileptogenesis following an injury [103-104]. Thus, one of the major 

goals in studying the mechanisms of epileptogenesis is to investigate different therapeutic 

approaches to prevent the development of epilepsy. One possible alternative to pharmacological 

agents is the use of therapeutic hypothermia.  

 

Clinical Uses of Hypothermia 

Hypothermia is defined as cooling the core body temperature below 35°C. Hypothermia can be 

classified as mild (33-34.9°C), moderate (30-32.9°C), and deep (below 30°C). The 

neuroprotective benefits of hypothermia have long been recognized. Hypothermia was used 

clinically 1940’s through 1960’s [105-112] to improve neurological outcomes after cardiac arrest 

and TBI. At the time, it was believed that the protective benefits of hypothermia were solely 

caused by decreasing brain metabolism and oxygen demand, and deep levels of hypothermia 

were necessary to achieve sufficient neuroprotection [113-114]. However, deep hypothermia was 

associated with severe side effects such as life-threatening arrhythmias and ventricular 

fibrillation. The high risk of side effects combined with a lack of controlled cooling methods and 

an intensive care unit (ICU) to monitor patients led clinicians to abandon further studies of 

hypothermia. Interest in hypothermia was rekindled in the 1980’s when several animal 

experiments reported improved neurological outcomes with mild to moderate hypothermia that is 
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associated with far fewer side effects [113-114]. Since then, a number of animal studies and 

clinical trials have been initiated to determine the effects of hypothermia in various neurological 

disorders. Currently, therapeutic hypothermia is used clinically to prevent neurological 

complications associated with out-of-hospital cardiac arrests [115, 116], neonatal hypoxic-

ischemia encephalopathy [117], TBI [118-119], and stroke [120-121]. 

 

Mechanisms of Hypothermia 

The neuroprotective effects of hypothermia are not completely understood. It is likely that 

hypothermia offers neuroprotective through multiple mechanisms. The mechanisms of 

hypothermia are complex, but they principally act to attenuate the cascade of events that occur 

during secondary injury [122]. Secondary injury is injury that occurs following a primary insult 

such as TBI or stroke. The initial injury initiates a cascade of events that can lead to further 

neuronal injury and death [123-124]. Most studies investigating hypothermia have been 

performed in animal models of ischemic injury following stroke or TBI. Some of the various 

mechanisms will be briefly described below. 

 

Reduction in metabolic rate 

It was originally believed that hypothermia’s sole protective benefit was due to its ability to 

reduce cerebral metabolism. For every 1°C reduction in body temperature, there is a 6 to 10% 

decrease in cerebral metabolism [125-131]. This temperature dependent decrease in metabolism 

results in a decreased demand for oxygen and glucose in the brain [114]. The decrease glucose 

and oxygen consumption helps prevent injury caused by a limited supply of oxygen (i.e. stroke). 
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While there is a decrease in metabolism with hypothermia, we now know that this is only one of 

the many mechanisms of hypothermia. 

 

Apoptosis and mitochondrial dysfunction 

Following neuronal injury such as ischemia, cells may recover, become necrotic, or enter a 

pathway leading to programmed cell death, or apoptosis. Several studies have shown that 

hypothermia can interrupt the early stages of the apoptotic pathway, thereby preventing cellular 

injury from progressing to cell death. Hypothermia appears to reduce apoptosis by inhibiting 

caspase enzyme activation [132-136] and preventing mitochondrial dysfunction [137]. 

 

Inflammation 

Many types of brain injury lead to a significant inflammatory response. Following ischemia-

reperfusion, large amounts of pro-inflammatory mediators such as tumor necrosis factor-± (TNF-

±) and interleukin-1 (IL-1) are released by astroglia and microglia [125, 138]. These 

inflammatory responses are accompanied by the production of free radicals. A persistent 

production of cytokines, particularly IL-1, increases the risk and extent of brain injury. Several 

studies using animal models as well as some clinical evidence have shown that hypothermia 

reduces ischemia-induced inflammatory reaction [139-142]. Interrupting the inflammatory 

cascade can significantly attenuate the extent of brain injury and infarct size [143]. 

 

Excitotoxicity 

The neuroprotective effect of hypothermia has partially been attributed to its capacity to 

modulate excitotoxic transmission. Traumatic or ischemic insults, as well as SE, induce a 
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massive release of glutamate which leads to the activation of NMDA receptors and concomitant 

influx of Ca2+ into the cell. This initiates the excitotoxic cascade. Several studies have provided 

evidence that hypothermia reduces extracellular concentrations of both glutamate and glycine 

[144-145]. Therefore, hypothermia may be exerting its neuroprotective properties by preventing 

increases in extracellular concentrations of excitatory transmitters that activate the NMDA 

receptor, thereby reducing excitatory transmission associated with traumatic injury. Reducing 

NMDA receptor activation prevents the excessive influx of Ca2+ into the cell, thereby preventing 

Ca2+-mediated neuronal damage. However, no studies have been conducted to investigate the 

effects of hypothermia on other routes of Ca2+ entry or release such as CICR. It is possible that 

hypothermia attenuates the disruption in Ca2+ homeostasis via mechanisms other than reducing 

NMDA receptor activation. It will be interesting to evaluate the effects of hypothermia on Ca2+ 

homeostasis.  

 

Hypothermia attenuates seizure susceptibility in TBI 

Few studies have been performed to evaluate the effects of hypothermia on development of AE. 

One study investigated the effects of hypothermia on seizure susceptibility after TBI [146]. TBI 

and SE share a similar pathology that includes the development of aberrant mossy fiber sprouting 

[86-87, 90, 147-148] and the development of epilepsy following injury [149-150]. In this 

experiment, TBI was induced in rats using moderate fluid percussion pulse, and mild 

hypothermia (33.0-33.6°C) was initiated 30 min post-injury and maintained for 4 h. At 12 weeks 

post-injury, the rats were monitored for seizure susceptibility using electrocorticography (ECoG) 

recordings. The results of the study indicated that mild hypothermia following fluid percussion 

injury decreased seizure susceptibility. The study also investigated the effects of hypothermia on 
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mossy fiber sprouting. The results showed mossy fiber sprouting was present at 12 weeks post-

injury, and this pathological abnormality was attenuated in rats that received hypothermia. 

Therefore, hypothermia treatment may be reducing seizure susceptibility following TBI by 

reducing the formation a recurrent excitatory circuit associated with mossy fiber sprouting [146]. 

The results of this study provided promising results that hypothermia may be a potential 

alternative therapy for preventing AE.   

 

Summary and Rationale 

Epilepsy is a common neurological condition affecting 1 to 2% of the population worldwide [1-

3]. Approximately 40% of all epilepsy cases are the result of a neurological insult and is termed 

acquired epilepsy (AE) [1, 4-5]. SE is a common type of injury that can lead to the development 

of AE by the process of epileptogenesis [9]. The transformation of normal brain tissue into a 

hyperexcitable neuronal population is called epileptogenesis [2, 7, 9]. Epileptogenesis is divided 

into three phases: the injury phase (such as SE), followed by a latency period characterized by an 

absence of seizure activity, and finally the chronic epileptic phase. The latency phase is believed 

to be the time where pathophysiological and neuroplasticity changes occur in the neuron that 

leads to the epileptic phenotype [17-18]. The latency phase represents the window of opportunity 

to introduce therapeutic interventions with the hopes of preventing epileptogenesis and the 

ultimate development of AE [17-18]. While advances have been made in the development of 

AEDs to treat seizures in epileptic patients, there are currently no treatments available that can be 

administered following an injury to prevent the development of AE [103]. Furthermore, 

approximately half of all cases of AE are refractory to the current anti-epileptic drugs available 

[1] underscoring the importance of preventing the development of AE after SE. Therefore, 
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developing a therapy that can be administered after an injury to block epileptogenesis is of 

paramount importance.  

 

Several studies have provided evidence that implicates Ca2+ as being a major player in 

epileptogenesis. These studies have demonstrated in models of SE, TBI, and stroke-induced AE 

that surviving neurons exhibit a significant elevation in [Ca2+]i during the injury phase and this 

elevation persists for the life of the neurons in both animal and in vitro models. Moreover, these 

neurons exhibit alterations in Ca2+ homeostatic mechanisms [37-38, 40]. The neurons that 

survive an injury and exhibit this persistent elevation in [Ca2+]i, or the Ca2+ plateau, serve as the 

substrate for epileptogenesis. The persistent elevation in [Ca2+]i initiates several Ca2+-mediated 

second messenger effects that lead to the plasticity changes associated with epileptogenesis. This 

Ca2+ plateau serves as a target for further therapies to prevent AE. Interventions that prevent the 

Ca2+ plateau may prevent the progression of epileptogenesis and the eventual development of 

AE.  

 

One potential therapeutic intervention that may block the Ca2+ plateau is therapeutic 

hypothermia. Hypothermia is defined as lowering core body temperature below 35°C. It is used 

clinically to improve neurological outcome following cardiac arrest [115-116], neonatal hypoxic-

ischemic encephalopathy [117], ischemic stroke [120-121], and TBI [118-119]. The 

neuroprotective benefits have long been recognized, but the mechanisms of hypothermia have 

only been evaluated in the last few decades. Hypothermia appears to exert its beneficial effects 

through several effects which include a reduction in cerebral metabolism, prevention of cell 

death pathways and mitochondrial dysfunction, reduction in inflammation, and attenuation of 
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excitotoxic transmission [113-114]. Several studies performed in models of ischemia 

demonstrated that hypothermia reduces extracellular concentrations of glutamate [144-145], 

thereby reducing NMDA receptor activation and subsequent Ca2+ influx. The ability of 

hypothermia to decrease excitotoxic transmission and therefore reduce Ca2+ entry makes it a 

promising therapy for preventing epileptogenesis. One study demonstrated that inducing mild 

hypothermia after TBI attenuated seizure susceptibility and reduced mossy fiber sprouting, 

which is one type of plasticity change associated with epileptogenesis [146]. Hypothermia has 

not been evaluated in models of SE, so it will be interesting to investigate the therapeutic 

potential of hypothermia in models of SE-induced AE.  

 

Experimental models of SE-induced AE have provided valuable insight into some of the 

mechanisms of neuronal plasticity and epileptogenesis. The pilocarpine model of SE-induced AE 

is a powerful tool for investigating pathologies associated with SE and AE and for evaluating the 

therapeutic potential of various interventions. Pilocarpine-induced SE produces a condition that 

is similar in presentation to that in humans [22] which includes the presence of a latency period 

after injury followed by chronic spontaneous seizures [23-24]. However, it is challenging to 

discern molecular mechanisms in an intact animal model. Therefore, the well characterized in 

vitro low Mg2+ model of SE-induced AE will be utilized to elucidate the effects of hypothermia 

on Ca2+ dynamics.  

 

Central Hypothesis 

Several studies have demonstrated that injury such as SE leads to a persistent elevation in [Ca2+]i 

and blocking this Ca2+ plateau can prevent the development of epileptogenesis. Studies have also 



25 
 

showed that hypothermia reduces excitotoxic neurotransmission and thus reduces [Ca2+]i. Based 

on this evidence, we developed the CENTRAL HYPOTHESIS that hypothermia administered 

following SE can block the SE-induced calcium plateau, the subsequent plasticity changes such 

as mossy fiber sprouting, and the ultimate development of AE. To test this hypothesis we have 

utilized both the in vivo pilocarpine and the in vitro low Mg2+ models of SE-induced AE to 

investigate how hypothermia affects the Ca2+ plateau and the eventual development of AE. In 

order to address this hypothesis, we focused on the following aims: 

1) Evaluate the effects of hypothermia on the development of the Ca2+ plateau 

2) Determine the effects of hypothermia on the development of mossy fiber sprouting 

3) Investigate the effects of hypothermia on Ca2+-induced Ca2+ release 

4) Determine if hypothermia reduces the development of AE 

 

The experiments performed in this dissertation utilized both the in vitro and in vivo models of SE 

to demonstrate that hypothermia blocks the development of the Ca2+ plateau. Based on these 

results, we hypothesized that hypothermia would be effective at preventing the progression of 

epileptogenesis to the development of epilepsy. The in vivo rat pilocarpine model was used to 

demonstrate that hypothermia induced post-SE reduced the development of risk of epilepsy. In 

addition, hypothermia attenuated the formation of mossy fiber sprouting. The effects of 

hypothermia on different modes of Ca2+ entry were investigated using various pharmacological 

agents to stimulate Ca2+ entry in the in vitro neuronal culture model. The conclusions reached 

from this dissertation demonstrate that hypothermia effectively reduces the progression of 

epileptogenesis by blocking the Ca2+ plateau and associated plasticity changes.  
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 Inciting Agent  Model Name  

IN VITRO MODEL    

Hippocampal Neuronal 
Culture  

3 hr low Mg2+  treatment to 
mimic SE  

Low Mg2+ model  

IN VIVO MODELS    

Chemical  SE induced by pilocarpine 
injection  

Pilocarpine model  

 SE induced by kainic acid 
injection  

Kainic acid model  

Electrical  Repeated application of short 
electrical stimulation  

Kindling model  

 

Figure 1-1. Models of SE-induced AE. SE is commonly induced in the whole animal using 
chemoconvulsants such as pilocarpine and kainic acid or through electrical stimulation in the 
kindling model. Epileptogenesis can also be studied in vitro by inducing SE in hippocampal 
neuronal cultures by placing the hippocampal neurons in a solution containing low Mg2+ for 3 
hours. 
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Figure 1-2. Effects of [Ca2+]i on neurons. Brief elevations in [Ca2+]i are necessary for normal 
physiological processes such as LTP. Mild to moderate injuries causes prolonged elevations in 
[Ca2+]i that cause plasticity changes in neurons, leading to epileptogenesis. Severe and sustained 
elevations in [Ca2+]i initiate cell death pathways, leading to neuronal death.  
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Figure 1-3. [Ca2+]i in CA1 hippocampal neurons acutely isolated during acute, latent, and 
chronic phases of epileptogenesis following pilocarpine-induced SE. CA1 hippocampal 
neurons were acutely isolated to measure [Ca2+]i following SE during the acute phase 
(immediately after SE), latent phase (1, 2, 6, and 10 days post-SE), and chronic phase (30 days 
and 1 year post-SE). The mean [Ca2+]i during the acute phase was 850 ± 59 nM, which was 
significantly elevated compared to sham controls (90 ± 22 nM). [Ca2+]i remained elevated 
compared to control during the latency phase. During the chronic phase, [Ca2+]i was still 
elevated, with mean [Ca2+]i values of 305 ± 27 nM for 30 days post-SE and 325 ± 35 nM for 1 
year post-SE. *p<0.01 compared to controls. Data presented as mean ± SEM. From Raza M, et 
al. PNAS, 2004 [37]. 
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Figure 1-4. Epileptogenesis is associated with alterations in Ca2+ homeostatic mechanisms. 
[Ca2+]i decay curves for hippocampal neurons isolated during acute (A), latent (B), and chronic 
(C) phases of AE. Values were normalized to the peak value after glutamate exposure (time=0). 
The epileptic neurons showed a statistically significant delay in returning [Ca2+]i back to baseline 
levels following 10 µM glutamate exposure compared to control neurons. *p<0.05, student’s t-
test. From Raza M, et al. PNAS, 2004 [37].  
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Figure 1-5. Calcium Homeostasis. The majority of calcium enters the neuron across the plasma 
membrane via voltage-dependent calcium channels and ligand-gated ion channels. Inside the 
neurons, calcium is buffered by calcium binding proteins. The mitochondria also takes up excess 
cytosolic calcium via the mitochondria uniporter. The ER serves as a dynamic calcium store. 
Calcium enters the ER through the sarco/endoplasmic reticulum calcium ATPase (SERCA). 
Calcium ions can be released from the ER into the cytosol by activation of the IP3 and ryanodine 
receptors present on the ER membrane. When ER intralumenal calcium concentrations are 
depleted, store-operated calcium channels are activated, allowing calcium to enter the cell and be 
taken up into the ER to replenish ER stores. Calcium extrusion is accomplished via Na+/Ca2+ 
exchangers and Ca2+ ATPases. 
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Figure 1-6. Dantrolene lowers [Ca2+]i to baseline following in vitro SE. Following 3 h SE 
(time=0), cells were washed with Dantrolene (50 µM, clear triangles), MK-801 (black squares), 
or pBRS (black circles). 340/380 ratios were recorded every 30 seconds for 40 minutes and 
normalized to percentage of the peak ratio observed at time=0. n=6 plates per treatment group 
with ~60 neurons imaged per condition. From Nagarkatti N, et al. EJN, 2010 [83]. 
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Chapter 2: The effects of hypothermia in the in vitro hippocampal neuronal 

cultures 

 

Introduction 

Epilepsy is a common neurological condition affecting 1-2% of the population worldwide [1-3]. 

Approximately 40% of all epilepsy cases are the result of a previous neurological injury such as 

stroke, status epilepticus (SE), or traumatic brain injury (TBI). Epilepsy that results from an 

injury is called acquired epilepsy (AE) [1, 4-5]. Epileptogenesis is defined as the transformation 

of healthy brain tissue into a hyperexcitable neuronal population that manifests epileptiform 

discharges [2, 7, 9]. Currently there are no anti-epileptogenic agents that can be administered 

following a neurological insult to prevent the process of epileptogenesis. Only anti-epileptic 

drugs (AEDs) exist, which treat the occurrence of seizures in epileptic patients [103]. Therefore 

developing an anti-epileptogenic therapy that can be administered following an injury is an 

important therapeutic goal.  

 

It has been demonstrated in both in vivo and in vitro models of stroke, TBI, and SE that Ca2+ 

dynamics are severely altered following injury [30-31, 37-38, 40]. Persistent elevations in 

intracellular calcium concentrations ([Ca2+]i), termed the Ca2+ plateau, as well as changes in Ca2+ 

homeostatic mechanisms have been implicated in playing a major role in the development of AE. 

As a ubiquitous second messenger responsible for an array of cellular effects including gene 

transcription and neurotransmitter release, alterations in a neuron’s ability to regulate Ca2+ could 
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have huge implications in terms of plasticity changes that lead to epileptogenesis. Therefore 

preventing the development of the Ca2+ plateau may prevent the progression of epileptogenesis 

and the development of AE. 

 

One study provided evidence that Ca2+ entry during SE is mediated via NMDA receptor 

activation and is responsible for initiating the Ca2+ plateau [37]. Excessive stimulation of NMDA 

receptors by glutamate leads to excessive influx of Ca2+ into the neuron. Blocking NMDA 

receptor activation through the use of the NMDA receptor antagonist MK-801 during SE 

prevented the development of the Ca2+ plateau and the ultimate development of epilepsy. 

However, administration of MK-801 following SE did not lower [Ca2+]i or prevent the 

development of AE [37, 83]. Therefore, other modes of Ca2+ entry may be contributing to the 

maintenance of the Ca2+. 

 

Another study demonstrated that ryanodine receptor (RyR) activation plays a role in mediating 

the post-SE Ca2+ plateau [83]. RyR are part of the Ca2+-induced Ca2+ release (CICR) system 

which is activated by the influx of Ca2+ into the neuron through the NMDA receptors. Excessive 

intracellular Ca2+ activates the RyR present on the surface of the endoplasmic reticulum (ER). 

Ca2+ is sequestered in the ER and is released upon activation of either RyR or inositol 

triphosphate receptors (IP3R). The in vitro low magnesium (low Mg2+) model of SE was utilized 

to demonstrate that administration of the RyR antagonist Dantrolene following 3 h of low Mg2+-

induced SE rapidly reduced [Ca2+]i back to baseline levels and maintained this reduction for up to 

48 h after SE, suggesting that RyR inhibition blocks the formation of the Ca2+ plateau. Not only 

did Dantrolene reduce elevated [Ca2+]i, it also prevented the development of spontaneous 
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recurring epileptiform discharges (SREDs) following SE. These results suggest that RyR 

activation contributes to the maintenance of the Ca2+ plateau following SE and inhibiting Ca2+ 

release via the RyR system blocks the Ca2+ plateau and the ultimate development of AE. 

Therefore finding an intervention that reduces [Ca2+]i following SE is important clinically.  

 

One possible treatment is therapeutic hypothermia. Hypothermia is currently used to prevent 

neurological injury following a variety of insults including TBI [118-119] and stroke [120-121]. 

Hypothermia exerts its neuroprotective benefits through a variety of mechanisms. One of these 

mechanisms includes reduction of glutamatergic stimulation of NMDA receptors. Inhibiting 

NMDA receptor activation reduces the influx of Ca2+, thereby reducing Ca2+-mediated damage 

[144-145]. Although it has been demonstrated that hypothermia reduces Ca2+ influx via NMDA 

receptors, it is unknown how hypothermia affects other modes of Ca2+ entry and the Ca2+ 

plateau. The purpose of these studies is to investigate how hypothermia affects other modes of 

Ca2+ entry including CICR and whether hypothermia blocks the Ca2+ plateau. 

  

Although changes in Ca2+ dynamics are observed following different neurological insults, 

models of SE-induced AE are the most widely used and best characterized models of 

epileptogenesis. These models produce epilepsy that closely resembles the pathology observed in 

human cases of AE. The in vivo models have provided important information regarding the 

pathophysiological changes associated with epileptogenesis. However, the whole animal model 

is too complex for studying the molecular mechanisms that lead to the Ca2+ plateau. The in vitro 

model is well suited for studying the effects of various treatments at a molecular level. 

Therefore, these studies will utilize an in vitro hippocampal neuronal culture (HNC) model of 
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SE-induced AE. The HNC model is a well characterized model that stimulates SE by placing 

cells in a low Mg2+ solution for 3 h. After 3 h, SE is terminated by placing the cells in Mg2+-

containing physiological basal recording solution (pBRS). The SE-like activity leads to the 

development of SREDs, the in vitro correlate of epilepsy. The SREDs manifested in the HNC 

model are similar to the electrographic features of human epilepsy. Thus, the in vitro model of 

SE-induced AE is a powerful tool for evaluating the effects of various treatments on Ca2+ 

dynamics.  

 

In these studies, hippocampal neurons will be exposed to 3 h of SE by placing them in low Mg2+ 

solution. The Ca2+ indictor dye Fura-2AM will be used to evaluate [Ca2+]i at the end of SE. At 

this point, SE will be terminated by washing cells with pBRS at either physiological temperature 

(37°C) or moderate hypothermic temperature (31°C) and [Ca2+]i will be measured. In addition, 

the effect of hypothermia on Ca2+ entry through NMDA receptors, voltage-dependent Ca2+ 

channels (VGCC), IP3R, and RyR will be investigated by stimulating each receptor at either 

31°C or 37°C. The results will provide a better understanding of how hypothermia affects Ca2+ 

dynamics. 

 

Materials and Methods 

All reagents were purchase from Sigma Chemical Co. (St. Louis, MO) unless otherwise 

specified. Cell culture media was purchased from Invitrogen (Carlsbad, CA). All animal use 

procedures were in strict accordance with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and approved by Virginia Commonwealth University’s 

Institutional Animal Care and Use Committee. 
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Hippocampal Neuronal Culture Preparation 

Hippocampal neurons were harvested from 2-day postnatal Sprague–Dawley rats (Harlan, 

Indianapolis, IN, USA) in phosphate buffered saline (PBS) with sucrose, N-[2-

Hydroethyl]piperazine-N’[2-ethanesulfonic acid] (HEPES) and penicillin (10,000 units/ml). 

Hippocampal tissue was dissected using a dissection microscope and subjected to 0.25% trypsin 

at 37°C for 30 min, followed by trituration using fire polished Pasteur pipettes. Cells were 

counted on a hemocytometer (Scientific Apparatus, Philadelphia, PA). The concentration of cells 

in suspension was estimated using the trypan blue exclusion method. The single cell suspension 

was diluted to a concentration of 1x105 cells/mL in either glial feed (minimal essential media 

(MEM) with Earle’s salts (Invitrogen, Carlsbad, CA), 25 mM HEPES, 2 mM L-glutamine, 3 mM 

glucose, and 10% fetal bovine serum (FBS)) or neuronal feed (MEM with Earle’s salts, 25 mM 

HEPES, 2 mM L-glutamine, 3 mM glucose, 100 µg/mL transferrin, 5 µg/mL insulin, 100 µM 

putrescine, 3 nM sodium selenite, 200 nM progesterone, 1 mM sodium pyruvate, 0.1% 

ovalbumin, 0.2 ng/mL triiodothyroxine, and 0.4 ng/mL corticosterone) supplemented with 5% 

horse serum (HS). 

 

Hippocampal neurons are grown on a glial support layer. To grow glial cultures, 5x104 cells in 

glial feed were plated onto poly-L-lysine (0.05 mg/mL) coated Lab-Tek 2-well glass chambers 

(Nunc, Naperville, IL). The cultures were maintained at 37°C in a 5% CO2/95% air atmosphere. 

Culture media was replaced with fresh glial feed three times per week. The glia were grown until 

confluent and then treated with 5 µM cytosine arabinoside for two days to halt cell division. The 

culture media was replaced with glial feed supplemented with 5% HS instead of FBS on the 10th 
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day in vitro (DIV). On the 13th DIV, the glial feed was replaced with neuronal feed 

supplemented with 5% HS. 

 

Cells suspended in neuronal feed plus 5% HS (8.75x104) were plated onto confluent glial beds 

on the 14th DIV. The cultures were maintained at 37°C in a 5% CO2/95% air atmosphere and 

were fed twice a week with neuronal feed containing 20% conditioned media (CM). Neurons 

were allowed to mature for 14 days to allow for adequate neuronal maturation, formation of 

networks, and NDMA receptor development. Experiments were performed on days 14-18.  

 

In vitro SE in hippocampal neuronal cultures 

SE was generated in the in vitro cultures using the low Mg2+ model developed in the DeLorenzo 

lab [16]. Neuronal feed plus conditioned media was replaced with a low Mg2+ solution 

containing (in mM) 145 NaCl, 2.5 KCl, 10 HEPES, 10 glucose, 2 CaCl2, and 0.002 glycine, 

adjusted to pH 7.3, and osmolarity adjusted to 325 mOsm with sucrose, or physiological basal 

recording solution (pBRS) without Mg2+. The cells were maintained at 37°C under 5% CO2/95% 

air for 3 hours (h). After 3 h of SE, the low Mg2+ solution was removed and replaced with a 

Mg2+-containing pBRS to terminate SE and restore Mg2+.  

 

The duration of 3 h of SE was selected because it was previously determined that this treatment 

duration produced an epileptic state in 95% of neurons in culture. Exposure to low Mg2+ for 1 or 

2 h did not produce consistent degrees of epileptogenicity and did not produce permanent 

changes in more than 90% of the neurons. Exposure for 4 h or longer produced a large degree of 
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neuronal death. Therefore, 3 h exposure to low Mg2+ was the optimal duration for producing 

spontaneous recurring epileptiform discharges (SREDs) [16]. 

 

Calcium microfluorometry 

Changes in neuronal calcium were measured using the high-affinity (Kd=145 nM), ratiometric 

fluorescent Ca2+ indicator Fura-2-acetoxymethyl ester (AM) (Molecular Probes, Invitrogen, 

Eugene, OR, USA). The membrane permeable Fura-2AM passes through the cell membrane. 

Once inside the cell, the AM moiety is cleaved by intracellular esterases, leaving the cell 

impermeable Fura-2 inside the cell. Once the dye binds to Ca2+, it can be excited by the 

excitation wavelength 340 nm. Unbound Fura-2 is excited at 380 nm. The emission generated by 

these wavelengths can be measured at 510 nm. Therefore, alternating excitation wavelengths of 

340 nm and 380 nm can be used to determine the relative concentration of Ca2+-bound and Ca2+-

free Fura-2. Thus, the resulting ratio of 340/380 corresponds directly to the total [Ca2+]i. 

Utilizing the ratio is important because it accounts for confounding variables such as unequal 

Fura-2 loading and variable cell thickness.  

 

Hippocampal neurons were loaded with 1 µM fura-2-AM dissolved 0.1% DMSO and incubated 

for 20 minutes (min) at 37˚C in 5% CO2/95% air. The dye loading was terminated with three 

washes with pBRS. The neurons were incubated for an additional 15 minutes to allow for the 

complete cleavage of the AM moiety from Fura-2. The neurons were then transferred to a heated 

stage (Harvard Apparatus, Holliston, MA) which maintained the temperature of the cultures at 

either 31°C or 37°C. Neurons were visualized on an inverted microscope (Olympus IX 70, 

Olympus America, Melville, NY, USA) using a 20x, 0.7 numerical aperture, fluorite water-
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immersion objective (Olympus America). Fura-2 was excited with a 75-W xenon arc lamp 

(Olympus America) with alternating wavelengths of 340 and 380 nm filtered through a Sutter 

Filter Wheel (Sutter Instruments Co., Novato, CA USA). Fluorescent emission at 510 nm was 

captured through a Fura filter cube (Olympus America) with a dichroic mirror at 400 nm using a 

Hamamatsu ORCA-ER camera (Hamamatsu Photonics, Japan).  

 

MetaFluor (Molecular Devices, Downington, PA, USA) was used to control image acquisition 

and processing. Specific regions of interest were designated for each neuron in the microscopic 

field. Image pairs were captured and corrected for non-specific background fluorescence by 

subtracting images acquired from non-indicator-loaded plates. Ratio measurements for individual 

neurons were taken at 5 s intervals for 30 min. Ratio values correlate directly with [Ca2+]i.  

 

Data analyses 

For Ca2+ imagine experiments, a sample size (n) of at least 6 plates per treatment group were 

used. Experiments were performed over several weeks so that results were representative of 

multiple cultures. Individual neurons from multiple experiments were pooled to calculate 

average and standard error of the mean (SEM). Data is presented as mean ±SEM. To determine 

statistical significance between treatment groups, student’s t-test or one-way analysis of variance 

(ANOVA) were used followed by Tukey post-hoc analysis when appropriate. A p-value of less 

than 0.05 (p<0.05) was considered statistically significant. Statistical analysis was performed 

using SigmaStat and graphs were drawn using SigmaPlot (Systat Software, San Jose, CA). 
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Results 

Hypothermia rapidly reduced [Ca2+]i and blocked the development of the Ca2+ plateau in 

the in vitro hippocampal neuronal culture model of SE 

In order to determine if hypothermia blocked the development of the Ca2+ plateau in an in vitro 

model of SE-induced AE, neurons were exposed to 3 h of low Mg2+ treatment. [Ca2+]i was 

measured at the end of the 3 h treatment to get a measurement of [Ca2+]i during SE. SE was 

terminated by replacing the low Mg2+ solution with pBRS. The low Mg2+ solution was washed 

off with either 31°C (hypothermia) or 37°C (physiological temperature) pBRS, and [Ca2+]i was 

measured every 30 sec for 20 min. Data is presented as a percent decay from peak values 

obtained during SE (in low Mg2+ solution).  

 

As illustrated in Fig 2-1, following 3 h of low Mg2+ treatment (time 0 on the x-axis), 

hippocampal neurons exhibited elevated 340/380 ratios, indicating that [Ca2+]i was elevated after 

in vitro SE. These ratios were normalized to the peak ratio. At the end of 3 h of low Mg2+ 

treatment, neurons were washed with either 31°C or 37°C pBRS. After 5 min post-treatment, 

neurons washed with 37°C pBRS showed a slight decrease in 340/380 ratios. However, cells 

washed with the hypothermia treatment exhibited a larger decrease in 340/380 ratios that were 

62% of the peak observed at the end of in vitro SE. At 10 min post-treatment, the 340/380 ratio 

values were 59% and 74% of the post-SE peak in cells washed with 31°C and 37°C pBRS, 

respectively. At 15 min post-treatment, the ratio values were 56% of the post-SE peak for cells 

washed with 31°C pBRS and 70% of the peak for cells washed with 37°C solution. After 20 min, 

the cells treated with hypothermia were 58% of the peak. This is significantly lower than the 

cells washed with 37°C solution whose 340/380 ratio values were 71% of the peak. Within 20 
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min of  hypothermia treatment, [Ca2+]i returned to baseline ratio values observed in naïve control 

neurons (data not shown), whereas [Ca2+]i remained significantly elevated in cells washed with 

37°C pBRS. The ratio values of neurons not treated with hypothermia fell by only 29% after 20 

min compared to hypothermia treated cells whose ratio values fell by 42%. There was a 

significant difference in the 340/380 ratio values between the two groups at each time point after 

5 min of treatment. This experiment demonstrated that hypothermia markedly enhances the cell’s 

ability to reduce elevations in [Ca2+]i. In addition, hypothermia lowered [Ca2+]i back to control 

levels, indicating that hypothermia treatment prevents the development of the Ca2+ plateau in an 

in vitro model.  

 

Hypothermia reduced NMDA receptor-dependent Ca2+ entry 

Previous studies have demonstrated that hypothermia reduces the concentration of extracellular 

glutamate, thereby reducing NMDA receptor activation and Ca2+ entry through the NMDA 

channel [144-145]. The goal of this experiment was to determine what effect hypothermia had on 

NMDA-mediated Ca2+ entry in an in vitro model. Hippocampal neurons were loaded with Fura-2 

and incubated for 20 min at 37°C. Fura-2 was washed off, and neurons were incubated for an 

additional 10 min at 37°C to allow for sufficient cleavage of the AM moiety by cellular 

esterases. At this point, neurons were incubated at either 31°C or 37°C for 5 min to allow for the 

cells to acclimate. They were then placed on a temperature controlled stage at either 31°C or 

37°C prior to Ca2+ imaging.  

 

To determine if hypothermia affected NMDA receptor-mediated Ca2+ entry, hippocampal 

neurons were stimulated with either 31°C or 37°C 50 µM glutamate. Baseline 340/380 ratio 
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values before stimulation were similar between the two treatment groups with values of 

0.30±0.01 for neurons in the 31°C group and 0.31±0.02 for neurons in the 37°C group. Upon 

stimulation with 37°C glutamate, the ratio values peaked to 0.636±0.04. However, stimulation 

with 31°C glutamate resulted in a diminished response, with ratio values only peaking to 

0.38±0.01, as shown in Fig 2-2A. Pseudocolor images further illustrate that 37°C glutamate 

causes a dramatic increase in [Ca2+]i whereas 31°C glutamate causes a lesser response (Fig 2-

2B). Hypothermia reduced the height of the calcium transient by 74.6% (Fig 2-6). These results 

indicate that hypothermia significantly reduced Ca2+ entry through the NMDA receptor. 

 

Hypothermia did not affect Ca2+ entry through voltage-dependent Ca2+ channels 

Ca2+ entry through voltage-dependent Ca2+ channels (VDCC) was stimulated using a high 

potassium solution composed of 105 mM NaCl, 40 mM KCl, 10 mM HEPES, 10 mM glucose, 2 

mM CaCl2, 1 mM MgCl2, and 0.002 mM glycine. The high potassium solution depolarizes the 

neuronal membrane, thus allowing an influx of Ca2+ through VDCCs. As demonstrated in Fig 2-

3A, the baseline ratio values for neurons in the 31°C group and 37°C group were not 

significantly different from each other at 0.27±0.01 and 0.27±0.02, respectively. When neurons 

were stimulated with 37°C high potassium, 340/380 ratio values peaked to 0.54±0.02. Neurons 

stimulated with high potassium at 31°C exhibited a similar peak of 0.51±0.01. Fig 2-3B further 

illustrates the similar rises in [Ca2+]i upon stimulation with 31°C and 37°C high potassium 

solution with the use of pseudocolor images. Hypothermia reduces Ca2+ entry through VDCCs 

by only 13.4%, as illustrated in Fig 2-6. However, the peak values were not statistically different 

from each other. In contrast, the peaks of both groups were significantly higher when compared 
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to 37°C baseline values (One way ANOVA, p<0.001). These results show that high potassium 

causes a rise in [Ca2+]i and that hypothermia does not affect Ca2+ entry through VDCCs. 

 

Hypothermia did not affect IP3 receptor-mediated Ca2+ entry  

Bradykinin–induced Ca2+ release is mediated by stimulation of IP3 receptor [151]. Binding of 

bradykinin to its receptor activates phospholipase C (PLC), which cleaves PIP2, producing 

diacylglycerol (DAG) and IP3. In order to investigate how IP3 receptor-mediated Ca2+ release is 

affected by hypothermia, hippocampal neurons were stimulated with either 31°C or 37°C 

bradykinin (1 µM). Before stimulation with bradykinin, similar baseline ratio values of 

0.27±0.01 in 31°C group and 0.27±0.01 in the 37°C group were observed, as shown in Fig 2-4. 

Upon stimulation with 37°C bradykinin, neurons exhibited a significant rise in [Ca2+]i with ratio 

values increasing to 0.65±0.03. When stimulated with 31°C bradykinin, neurons also exhibited a 

significant increase in [Ca2+]i with ratio values increasing to 0.60±0.01 (Fig 2-4A). Pseudocolor 

images illustrate the similar rises in [Ca2+]i following stimulation with 31°C and 37°C bradykinin 

(Fig 2-4B). Both peak values were significantly elevated compared to baseline ratio values. 

Hypothermia resulted in a 15.8% reduction in the height of the Ca2+ transient (Fig 2-6). 

However, there was no significant difference between the peak values of the two treatment 

groups. These results indicate that hypothermia does not affect IP3 receptor-mediated Ca2+ 

release. 

 

Hypothermia reduced ryanodine receptor-mediated Ca2+ release 

Ca2+ release through ryanodine receptors (RyR) can be evaluated pharmacologically with the use 

of caffeine [152-153]. Thus, caffeine (10 mM) was used to stimulate RyR-mediated Ca2+ release. 
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Prior to caffeine stimulation, both 31°C and 37°C groups exhibited similar 340/380 ratio values 

of 0.28±0.01 and 0.34±0.01, respectively. Upon stimulation with a 37°C caffeine solution, 

neurons exhibited a marked increased in [Ca2+]i with peak ratio values of 0.72±0.05 (Fig 2-5A). 

When stimulated with 31°C caffeine solution, neurons exhibited a diminished response with a 

peak ratio value of 0.44±0.04. Fig 2-5B illustrates the differences in peak [Ca2+]i through 

pseudocolor images. Stimulation with 31°C caffeine solution results in a diminished response 

compared to the peak in [Ca2+]i observed following 37°C caffeine stimulation. The peak value in 

the hypothermia condition is significantly lower than the peak response in the 37°C group 

(p<0.001). There was also a significant difference between the peak values of both treatment 

groups compared to 37°C baseline. However, hypothermia inhibited the height of the caffeine-

induced Ca2+ transient by 57.1% (Fig 2-6). These results suggest that hypothermia reduces the 

release of Ca2+ from intracellular stores by inhibiting the RyR. 

 

Caffeine stimulates Ca2+ release through ryanodine receptors 

Several studies have demonstrated that non-physiological concentrations of caffeine (in the 

millimolar range) function similarly on the RyR as nanomolar concentrations of ryanodine [152-

155]. In order to prove that caffeine stimulates Ca2+ release from the RyR, neurons were 

stimulated with 10 mM caffeine in the presence of Dantrolene (1 µM), a known RyR antagonist. 

Neurons were loaded with Fura-2AM and allowed to incubate at 37°C for 20 min. Baseline 

340/380 ratios were obtained in the presence of and the absence of 1 µM Dantrolene. There was 

no significant difference between these values (data not known), which demonstrated that 1 µM 

Dantrolene did not affect baseline [Ca2+]i. When neurons were stimulated with caffeine in the 

presence of Dantrolene, there was not a significant spike in [Ca2+]i (Fig 2-7). This provided 
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evidence that caffeine was stimulating Ca2+ release from intracellular stores by acting on the 

RyR. Furthermore, the effects of Dantrolene were reversible. Hippocampal neurons were 

subjected to 3 h low Mg2+ treatment and then washed with 1 µM Dantrolene. Elevated [Ca2+]i 

rapidly declined in the presence of Dantrolene. When Dantrolene was replaced with 37°C pBRS, 

[Ca2+]i immediately spiked, suggesting that the antagonistic properties of Dantrolene were 

reversible (Fig 2-8).  

 

Discussion 

This study demonstrated that hypothermia can reduce the development of the Ca2+ plateau 

following in vitro SE. In both in vivo and in vitro models of SE, [Ca2+]i remains elevated 

following injury, and this persistent elevation in [Ca2+]i is believed to contribute to the 

pathological consequences associated with epileptogenesis. Blocking the development of the 

plateau has been shown to prevent the development of epilepsy in both in vivo and in vitro 

models of SE-induced AE. The novel finding that hypothermia reduces elevated [Ca2+]i and can 

prevent the formation of the Ca2+ plateau in an in vitro model offers an alternative intervention to 

pharmacological agents in preventing epileptogenesis. 

 

Furthermore, this study also demonstrated that hypothermia reduces Ca2+ entry into the neuron 

by inhibiting both NMDA and ryanodine receptors. Evidence has shown that the NMDA 

receptor mediates the majority of Ca2+ influx during SE. Inhibition of the NMDA receptors 

during SE blocks the formation of the Ca2+ plateau and prevents the development of AE [37]. 

The excessive entry of Ca2+ into the cell during SE stimulates Ca2+-induced Ca2+ release (CICR) 

via activation of RyR. Evidence has suggested RyR may be responsible for maintaining the Ca2+ 
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plateau following SE [83]. Inhibition of NMDA receptors after the injury does not provide 

neuroprotection against the Ca2+ plateau or development of AE. However, the administration of 

Dantrolene, a RyR antagonist, following in vitro SE blocks the Ca2+ plateau and prevents the 

development of SREDs.  

 

Although previous studies have demonstrated that hypothermia modulates Ca2+ transmission, it 

is not know how hypothermia exerts its effects on Ca2+ transmission. One study showed that 

hypothermia reduces NMDA receptor activation by reducing glutamate concentrations, thereby 

reducing Ca2+ entry [144-145]. However, no studies have provided evidence that hypothermia 

reduces Ca2+ entry through the NMDA receptor independent of glutamate concentrations, nor 

have any studies investigated the effects of hypothermia on other modes of Ca2+ entry. This study 

utilized pharmacological agents to stimulate various modes of Ca2+ entry. Ca2+ influx following 

stimulation of VDCC with the use of a high potassium solution was unaffected by hypothermia. 

In addition, hypothermia did not significantly reduce Ca2+ entry through bradykinin-mediated 

IP3R stimulation. However, hypothermia did have a significant effect on NMDA receptor-

mediated Ca2+ entry. Hippocampal neurons stimulated under hypothermic conditions exhibited a 

markedly diminished response to glutamate. This provides evidence that hypothermia reduces 

Ca2+ entry through NMDA receptors despite the presence of extracellular glutamate.  

 

Interestingly, hypothermia also significantly reduced the height of the Ca2+ transient upon 

caffeine induced-RyR stimulation, thereby reducing CICR. Caffeine is an established 

pharmacological tool for activating RyR-mediated Ca2+ release [78-79, 152-155]. Non-

physiological concentrations of caffeine have been shown to function similarly to nanomolar 
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concentrations of ryanodine with the advantage of having faster kinetics and rapid reversibility 

upon washout [153]. Caffeine at concentrations greater than 5 mM leads to activation of the RyR 

that is independent of cytosolic Ca2+ [156]. Thus, this study employed 10 mM caffeine to study 

the effects of hypothermia on CICR. To further prove that caffeine was acting on the RyR, 

neurons were stimulated with caffeine in the presence of the RyR blocker Dantrolene. Caffeine 

did not elicit a significant peak in [Ca2+]i in the presence of Dantrolene, which further 

demonstrated that caffeine stimulates Ca2+ release through RyR activation. 

 

The results of this study suggest that hypothermia is a viable therapeutic intervention that can be 

administered following SE to prevent the development of the Ca2+ plateau and possibly the 

subsequent development of epilepsy. The ability of hypothermia to modulate two important 

modes of Ca2+ entry provides novel information regarding one of hypothermia’s mechanisms of 

action. Hypothermia is presumed to exert its neuroprotective benefits via a variety of actions, and 

its ability to modulate excitatory transmission, specifically Ca2+, is thought to be one its main 

mechanisms of action. These experiments were performed in the highly relevant hippocampal 

neuronal culture model of SE-induced AE. However, in vitro cultures do not represent true 

anatomical connections. Moreover, there are distinct differences between the in vitro model and 

human epilepsy including the duration of time between the injury and the development of AE as 

well as co-morbidities associated with epileptogenesis [29]. The cultures provide a powerful tool 

for studying molecular mechanisms of SE and hypothermia in a controlled environment. 

However, it will be essential to study the effects of hypothermia in a whole animal model in 

order to determine if hypothermia truly is neuroprotective following SE.  
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Figure 2-1. Hypothermia blocked the Ca2+ plateau after in vitro SE. Following 3 h of in vitro 
SE (time=0), cells were washed with either 31˚C or 37˚C pBRS. 340/380 ratios were recorded 
every 30 seconds for 20 minutes and normalized to percent of the peak ratio observed at time=0. 
n=6 plates per treatment group with 40-60 neurons imaged per group. *p<0.05, Student’s t-test 
for all time points after 5 min. 
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Figure 2-2. Hypothermia reduced NMDA receptor-dependent Ca2+ entry. (A) Prior to 
stimulation with 50 µM glutamate, hippocampal neurons exhibited similar 340/380 baseline 
ratios of 0.30±0.01 for neurons in the 31°C group and 0.31±0.02 for neurons in the 37°C group. 
Upon stimulation with 37°C glutamate, 340/380 ratios peaked to 0.636±0.04, which is 
significantly elevated compared to baseline. When neurons were stimulated with 31°C 
glutamate, 340/380 ratios peaked to 0.38±0.01. *p<0.001 compared to baseline; #p<0.001 
between 31°C and 37°C peaks, one way ANOVA, n=7 plates per condition. (B) Representative 
pseudocolor images obtained from baseline neuron (left panel), neuron stimulated with 37°C 
glutamate (top right panel), and neuron stimulated with 31°C glutamate (bottom right panel). 
Neurons exhibited elevated [Ca2+]i upon 37°C stimulation and a diminished response to 31°C 
stimulation.  
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Figure 2-3. Hypothermia did not affect Ca2+ entry through VDCCs. (A) Prior to stimulation 
of VDCCs with high potassium solution, hippocampal neurons from both treatment groups 
displayed similar 340/380 baseline ratios of 0.27±0.01 in the 31°C group and 0.27±0.02 in the 
37°C group. When stimulated with 37°C high potassium solution 340/380 ratios peaked to 
0.54±0.02. Stimulation with 31°C high potassium resulted in a similar 340/380 peak ratio of 
0.51±0.01. *p<0.001 compared to 37°C baseline, one way ANOVA, n=6 plates per condition. 
(B) Representative pseudocolor images obtained from baseline neuron (left panel), neuron 
stimulated with 37°C high potassium (top right panel), and neuron stimulated with 31°C high 
potassium (bottom right panel). Neurons from both groups exhibited elevated [Ca2+]i upon 37°C 
and 31°C stimulation.  
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Figure 2-4. Hypothermia did not affect IP3 receptor-mediated Ca2+ entry. (A) Prior to 
bradykinin-mediated stimulation of IP3 receptors, neurons from 31°C and 37°C treatment groups 
displayed similar 340/380 baseline ratios of 0.27±0.01 and 0.27±0.01, respectively. Stimulation 
with 37°C bradykinin resulted in a peak 340/380 ratio of 0.65±0.03. Similarly, when stimulated 
with 31°C bradykinin, 340/380 ratios peaked to 0.60±0.01. *p<0.001 compared to 37°C baseline, 
one way ANOVA, n=5 plates per condition. (B) Representative pseudocolor images obtained 
from baseline neuron (left panel), neuron stimulated with 37°C bradykinin (top right panel), and 
neuron stimulated with 31°C bradykinin (bottom right panel). Neurons in both groups exhibited 
elevated [Ca2+]i upon stimulation with 37°C and 31°C bradykinin.  
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Figure 2-5. Hypothermia reduced ryanodine receptor-mediated Ca2+ induced Ca2+ release. 
(A) Prior to caffeine-mediated RyR stimulation, baseline 340/380 ratio values from both 
treatment groups were not significantly different with values of 0.28±0.01 in the 31°C group and 
0.34±0.01 in the 37°C group. Upon stimulation with 37°C caffeine, 340/380 ratios peaked to 
0.72±0.05. When stimulated with 31°C caffeine, neurons exhibited a diminished response with a 
peak ratio of 0.44±0.04. *p<0.001 compared to 37°C baseline, **p<0.05 compared to 37°C 
baseline, #p<0.001 between 31°C and 37°C peaks, one way ANOVA, n=10 plates per group. (B) 
Representative pseudocolor images obtained from baseline neuron (left panel), neuron stimulated 
with 37°C caffeine (top right panel), and neuron stimulated with 31°C caffeine (bottom right 
panel). Neurons exhibited elevated [Ca2+]i upon 37°C stimulation and a diminished response to 
31°C stimulation.  
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Figure 2-6. Percent reduction in Ca2+ transient caused by hypothermia. Hypothermia causes 
a 13.4% reduction in high potassium-induced Ca2+ transient, a 15.8% reduction in bradykinin-
induced Ca2+ transient, a 57.1% reduction in caffeine-induced Ca2+ transient, and a 74.6% 
reduction in glutamate-induced Ca2+ transient. 
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Figure 2-7. Dantrolene inhibits caffeine-induced Ca2+ release. Prior to caffeine stimulation, 
baseline 340/380 ratio values were 0.27±0.02. When stimulated with caffeine in the presence of 
1 µM Dantrolene, ratio values remained at 0.27±0.02. Data presented as mean ratio ± SEM, n=5 
plates per group. 
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Figure 2-8. Antagonistic properties of Dantrolene are reversible. Following 3 h low Mg2+ 

treatment, cells were washed with 1 µM Dantrolene (time=0). 340/380 ratios were recorded 
every 30 seconds for 15 minutes. At 15 min post-wash, Dantrolene was removed and replaced 
with 37˚C pBRS.  
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Chapter 3: Effects of hypothermia in the in vivo rat pilocarpine model of SE 

 

Introduction 

Epilepsy is a common neurological condition affecting approximately 1 to 2% of the population 

worldwide [1-3]. Acquired epilepsy (AE) results from a previous neurological insult such as 

stroke, TBI, or SE, and accounts for at least 40% of all epilepsy cases [1, 4-5]. In AE, a known 

injury leads to plasticity changes that transform normal brain tissue into a hyperexcitable brain 

tissue, giving rise to epilepsy. This phenomenon is called epileptogenesis [2, 7, 9].  

 

Several studies have implicated Ca2+ as a major player in mediating many of the 

pathophysiological consequences associated with AE. Ca2+ is a ubiquitous second messenger that 

is highly regulated to maintain low intracellular concentrations. One study demonstrated using 

the in vivo rat pilocarpine model of SE-induced AE that Ca2+ dynamics are significantly altered 

during SE and following injury [37]. This study showed that hippocampal neurons acutely 

isolated from rats immediately following SE exhibited significantly elevated [Ca2+]i. Over time, 

the [Ca2+]i gradually fell but reached a plateau that was significantly elevated 1 year after SE, 

demonstrating that this Ca2+ plateau is a long-lasting consequence of SE. As an important second 

messenger, Ca2+ plays a role in synaptic plasticity and gene expression. Thus, altered Ca2+ 

dynamics could have significant implications in terms of plasticity, leading to the development 

of AE. This study suggests that the Ca2+ plateau plays a role in the pathophysiology of 
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epileptogenesis. Therefore, modulating the rise in [Ca2+]i immediately after SE may prevent the 

Ca2+-mediated effects that lead to the development of AE. 

 

Besides elevated [Ca2+]i, epilepsy resulting from neurological insult is also associated with the 

plasticity change called mossy fiber sprouting. Mossy fiber sprouting is a hallmark characteristic 

of temporal lobe epilepsy (TLE) and has been observed in both animal models and human cases 

of TLE [85-90]. It is a process where mossy fibers abnormally grow and form synapses with 

dentate granule cells in the inner molecular layer (IML) of the hippocampus [91-92], forming a 

recurrent excitatory circuit in the dentate gyrus [84, 94-95]. Although mossy fiber sprouting is 

not required for the development of AE, it is associated with an increase in both seizure 

frequency and duration [100-101]. Therefore, treatments following injury that block the 

development of mossy fiber sprouting may prevent the formation of this recurring excitatory 

synaptic circuit, thus reducing neuronal excitability. 

 

One potential intervention is hypothermia. Hypothermia is used clinically to prevent neurological 

complications associated cardiac arrests [115-116], neonatal hypoxic-ischemia encephalopathy 

[117], TBI [118-119], and stroke [120-121]. The neuroprotective effects of hypothermia are not 

completely understood, but it is likely that protection is conferred through multiple mechanisms. 

One of these mechanisms is attenuating excitotoxic transmission and modulating intracellular 

Ca2+. Studies have demonstrated that hypothermia reduces extracellular glutamate 

concentrations, thereby reducing NMDA receptor activation and thus, preventing the excessive 

influx of Ca2+ into the cell [144-145].  
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Few studies have been performed to evaluate the effects of hypothermia on epileptogenesis. One 

study demonstrated that mild hypothermia induced following moderate TBI decreased seizure 

susceptibility and reduced mossy fiber sprouting [146]. No studies have been performed to 

examine the potential of hypothermia in a model of SE-induced AE. Therefore, it will be 

clinically relevant to determine if hypothermia has any promise in preventing epileptogenesis 

and the development of AE.  

 

The purpose of these studies was to determine the effects of hypothermia in the in vivo model of 

pilocarpine-induced SE. The studies evaluated the ability of hypothermia to block to 

development of the Ca2+ plateau and reduce the occurrence of mossy fiber sprouting. These 

studies also sought to determine if hypothermia induced following SE reduced or prevented the 

development of AE. There are currently no treatments available that can be administered 

following an injury to prevent the development of AE [103]. Therefore, developing a therapy 

that can be administered after an injury to prevent the development of AE is clinically important. 

Hypothermia may be a promising alternative to pharmacological agents.  

 

Materials and Methods 

Sprague–Dawley male rats (Harlan) weighing 200–250 g were used in strict accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by 

Virginia Commonwealth University’s Institutional Animal Care and Use Committee. Animals 

were housed in single cages on a 12-h/12-h light/dark cycle and were provided food and water ad 

libitum.  
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Reagents 

All the reagents were purchased from Sigma Chemical Co. (St. Louis, MO) unless otherwise 

noted. 

 

Pilocarpine preparation 

Prior to pilocarpine injections, rats were administered methyl scopolamine nitrate (1 mg/kg) 

intra-peritoneally (i.p.) to minimize peripheral, parasympathetic effects of pilocarpine treatment. 

The muscarinic agonist pilocarpine nitrate (375 mg/kg, i.p.) was administered 30 min later. Both 

scopolamine and pilocarpine were dissolved in 0.9% saline and filter-sterilized. Onset of SE 

typically occurred within 20–30 min after pilocarpine injection and was determined when the 

animal displayed continuous moderate-to-severe behavioral seizures characterized by forelimb 

clonus, rearing, and falling. Sixty minutes after the onset of SE, rats were administered diazepam 

(5 mg/kg, i.p.) followed by additional diazepam injections at 3 and 5 h after the onset of SE to 

control further seizure activity. Control groups were composed of naïve animals and sham 

control animals that received methyl scopolamine nitrate and diazepam injections only. 

 

Induction of moderate hypothermia 

Moderate hypothermia was rapidly induced by gently spraying rats with chilled ethanol (17°C) 

to speed the process of cooling. They were then placed in a cold room (5-8°C) for 8-10 minutes. 

Surface cooling methods were used because they are non-invasive and cost-effective. Core body 

temperature was determined every 2-3 min using a rectal probe (2100 Tele-thermometer; YSI, 

Inc., Yellow Springs, OH USA). Rectal temperature regarded clinically as a valid estimate of 

core temperature and is most often used in inducing hypothermia [157]. Once core temperatures 
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reached a 32-33°C, the rats were returned to their home cages in a room temperature 

environment. Core temperatures were continuously monitored and maintained between 30-33°C 

(moderate hypothermia range) with the intermittent use of ice packs and heating pads. 

 

Acute isolation of hippocampal neurons 

Hippocampal CA1 neurons were acutely isolated using methods established in our laboratory. 

Rats with injected with MK-801 (1 mg/kg i.p.) 15 min prior to anesthesia to inhibit NMDA 

receptor activation and increase neuronal call viability. Following anesthesia via isoflurane 

inhalation, the rats were decapitated and the brains rapidly removed, dissected, and placed in a 

4°C oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid (aCSF) [composed of (in mM) 

201 sucrose, 10 glucose, 1.25 NaH2PO4, 26 NaHCO3, 3 KCl, 7 MgCl2, and 2 CaCl2]. MK-801 (1 

µm) was added to all solutions to increase neuronal viability and was removed 15 minutes prior 

to recording. Hippocampal slices of 450 µm were cut with a vibratome sectioning system (Series 

2000, Technical Products International, St. Louis, MO) and placed in an oxygenated dissociation 

medium [composed of (in mM) 13 NaCl, 10 glucose, 1.25 NaH2PO4, 26 NaHCO3, 3 KCl, 7 

MgCl2, and 0.2 CaCl2] for 30 min. The CA1 region was then visualized with a dissecting 

microscope and 1 mm2 thick slices were excised in the presence of an oxygenated PIPES buffer 

medium [containing (in mM) 120 NaCl, 25 glucose, 20 piperazine-N, N’-bis[2-ethanesulfonic 

acid] (PIPES), pH adjusted to 7.2 with NaOH]. Slices were then treated with 8 mg/ml Protease 

XIV (Sigma Chemical Co.) in PIPES-containing medium for 6-8 minutes and then thoroughly 

rinsed. The tissue preparations were then triturated in the PIPES-containing medium containing 

the calcium indicator Fura-2-AM at 4°C. During the trituration process, the hippocampal slices 

were passed through a series of Pasteur pipettes of decreasing diameter, resulting in an even 
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suspension of acutely isolated CA1 hippocampal cells plated on poly-l-lysine and Cell-Tak (BD 

Biosciences, Franklin Lakes, NJ) coated 2-well chambers allowing appropriate adherence for 

Ca2+ imaging. The culture dishes were immediately placed in a humidified oxygenated dark 

chamber at 37°C (5% CO2/95% air atmosphere) and allowed to incubate for 30 minutes. The 

Fura-2 was then washed off using the PIPES buffer without the presence of MK-801 and allowed 

to incubate for an additional 15 minutes to allow the cellular esterases to cleave the dye from its 

AM moiety. 

 

Calcium microfluorometry 

The calcium indicator Fura-2-AM (1µM) was used to measure [Ca2+]i in acutely isolated 

neurons. Cells were loaded with Fura-2-AM in a PIPES buffer and allowed to incubate for 30 

min at 37°C in 5% CO2/95% air atmosphere. The cells were then washed to terminate the dye 

loading and allowed to incubate for an additional 15 min to maximize esterase cleavage of AM 

moiety.  

 

Neurons were visualized on an inverted microscope (Olympus IX 70, Olympus America, 

Melville, NY, USA) using a 20x, 0.7 numerical aperture, fluorite water-immersion objective 

(Olympus America) maintained at 37°C with a temperature-controlled stage (Harvard Apparatus 

Inc., Holliston, MA, USA) maintained at 37°C. Fura-2 was excited with a 75-W xenon arc lamp 

(Olympus America) with alternating wavelengths of 340 and 380 nm filtered through a Sutter 

Filter Wheel (Sutter Instruments Co., Novato, CA USA). Fluorescent emission at 510 nm was 

captured through a Fura filter cube (Olympus America) with a dichroic mirror at 400 nm using a 

Hamamatsu ORCA-ER camera (Hamamatsu Photonics, Japan).  
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MetaFluor (Molecular Devices, Downington, PA, USA) was used to control image acquisition 

and processing. Specific regions of interest were designated for each neuron in the microscopic 

field. Ratio measurements for individual neurons were taken at 5 s intervals for 30 s. Image pairs 

were captured and corrected for non-specific background fluorescence by subtracting images 

acquired from non-Fura-loaded plates. Individual neurons from multiple experiments were 

pooled to calculate mean and ±SEM. The resulting 340/380 ratios correspond directly to the total 

concentration of Ca2+ inside the cell.  

 

Video monitoring 

Rats were monitored for spontaneous behavioral seizure activity using multi-camera video 

acquisition system (GeoVision, Inc., Irvine, CA). Rats were monitored at various time points 

following SE for 5 days at a time for the presence of spontaneous behavioral seizures. 

Spontaneous seizures are characterized by unprovoked behavior characteristic of seizure activity 

that includes forelimb clonus, rearing, and falling. 

 

Timm stain 

Rats were briefly anesthetized by isoflurane prior to injection of a ketamine/xylazine cocktail 

(75 mg/kg/7.5 mg/kg; i.p.). Once fully anesthetized, rats were transcardially flushed with saline, 

then perfused with 1.2% sodium sulfide and 4% paraformaldehyde in a 0.1 M phosphate buffer 

(pH 7.4). Perfusion was continued until full body fixation was observed. Brains were removed 

and post-fixed in the same fixative.  The brains were then placed in a 30% sucrose solution in 

sodium phosphate buffer for cryoprotection for 3-4 days until fully saturated.  Brains were frozen 

at -80°C until sliced. 40 µm coronal sections were cut on a Leitz cryostat (Leica Microsystems, 
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Wetzlar, Germany) maintained at -20°C and mounted onto gelatin-subbed slides and allowed to 

air dry. 

 

Timm staining was used to detect mossy fiber sprouting due to its ability to label intracellular 

zinc located in the axon terminals of mossy fibers. The method of Timm staining used was 

adapted from Mello et al. [89]. Mounted sections were immersed in developing solution 

consisting of 180 mL 50% gum arabic and 30 mL aqueous solution of 7.65 g citric acid and 7.05 

g sodium citrate to which 5 g hydroquinone (dissolved in 90 mL water) and 1.5 mL 15% silver 

nitrate aqueous solution were added in darkness just prior to use. The slides were developed in 

the dark for 30 min, and then washed in distilled water for 5 min in the dark room. Slides were 

removed from the dark room, washed again in distilled water, dehydrated and cover-slipped.  

 

Subjective scoring was adapted from Tauck and Nadler [94]. Sections were assigned a score 

from 0 to 3. Scoring was performed by a reviewer blind to the treatment groups. A score of 0 

indicated no presence of mossy fiber sprouting in the IML of the dentate gyrus; a score of 1 

indicated light and scattered staining in the IML; a score of 2 indicated patches of heavy staining 

or a continuous band of intermediate intensity in staining in the IML; and a score of 3 indicated a 

dense, continuous band of mossy fiber staining in the IML.  

 

Electrode implantation and EEG monitoring 

Under general anesthesia (5% isoflurane), rats were stereotaxically implanted with three skull 

surface electrode screws with teflon-insulated stainless steel wire (Plastics One, Roanoke, VA). 

Electrode screws were positioned through burr holes above the right and left frontal cortices 
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(anteroposterior, 3 mm, and mediolateral, ±3 mm from bregma). A third surface electrode screw 

was positioned over the cerebellum to serve as reference, and two additional (non-electrode) 

skull screws were inserted for structural support. The electrode screws were seated to contact but 

not penetrate the dura mater. Female amphenol terminals connected to the electrode wire were 

seated into an electrode pedestal (Plastics One), and was secured to the skull with Cerebond 

adhesive (Plastics One). Rats were allowed 1 week of recovery time before the start of the EEG 

monitoring. Wire leads were securely connected into the threaded electrode pedestal on the rat 

and connected to an electrical-swivel commutator (Plastics One) to allow for free movement of 

the rat while maintaining continuity of EEG signals. EEG signals were amplified using a Grass 

model 8-10D (Grass Technologies, West Warwick, RI) and digitized with Powerlab 16/30 data 

acquisition system (AD Instruments, Colorado Springs, CO). Evaluation of digitally acquired 

EEG was performed with Labchart (AD Instruments). EEG acquisition occurred simultaneously 

with video surveillance.  

 

Electrographic seizures were identified by having discrete epileptiform events characterized by 

episodes of high frequency (more than 2 per second) and increased voltage multi-spike 

complexes and/or synchronized spike or wave activity lasting for 10 seconds or longer. Interictal 

spikes or epileptiform discharges that lasted less than 10 seconds were not included.   

 

Seizure severity classification 

Behavioral seizures were scored using the Racine scale for seizure severity. Seizures were 

assigned a score between 0 and 5 based on the observed characteristics. A score of 0 indicates no 

detectable seizure activity; a score of 1 is assigned for behavioral such as immobility and facial 
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clonus; a score of 2 for head nodding, rigid posture, and tail extension; a score of 3 for repetitive 

movements and forelimb clonus; a score of 4 for rearing, forelimb clonus with rearing, and 

rearing and falling; and a score of 5 for continuous rearing and falling and general tonic-clonic 

seizure activity. Scoring was performed by a reviewer blind to the treatment condition. 

 

Data analyses 

Data was statistically analyzed using SigmaStat and graphed using SigmaPlot (Systat Software, 

San Jose, CA). To determine statistical significance, student’s t-test or one-way analysis of 

variance (ANOVA) were used followed by post-hoc Tukey test when appropriate. A p-

value<0.05 was considered statistically significant. Data is presented as mean ±SEM.  

 

Results 

In order to determine the effects of hypothermia on the Ca2+ plateau, mossy fiber sprouting, and 

the development of AE, hypothermia was induced 1 hr post-SE and was maintained for 4 h. 

Animals were classified as either pilocarpine, hypothermia, or control. Pilocarpine and 

hypothermia rats received pilocarpine, scopolamine, and diazepam injections. Hypothermia rats 

received hypothermia following SE, whereas rats in the pilocarpine group did not receive 

hypothermia intervention. Control rats did not receive pilocarpine or hypothermia. There was no 

difference between naïve controls and sham controls, nor was there a difference in controls 

compared to naïve rats who received hypothermia (results not shown). Therefore, control group 

rats are naïve controls.  
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Pilocarpine-induced SE caused significant elevations in [Ca2+]i 

The Ca2+ indicator Fura-2AM was used to determine [Ca2+]i following SE. Alternating excitation 

wavelengths of 340 nm and 380 nm produced fluorescent ratio values. The 340/380 ratios 

correspond directly to [Ca2+]i. Therefore, the data is presented as a ratio of 340/380 nm. Similar 

to previously published results from our laboratory [37], hippocampal neurons isolated 24 h after 

pilocarpine-induced SE (n=13) exhibit significant elevations in [Ca2+]i compared to naïve 

controls (n=13). The average ratio values increased from 0.65±0.04 in controls neurons to 

0.86±0.07 in neurons isolated from pilocarpine-treated rats (Fig 3-1). The ratios obtained from 

pilocarpine-treated rats were significantly higher than those obtained from naïve controls.  The 

results confirm that pilocarpine-induced SE results causes significant elevations in [Ca2+]i 24 h 

after SE. 

 

Hypothermia prevented the development of the Ca2+ plateau 

We tested whether moderate hypothermia (31-33°C) was able to lower hippocampal neuronal 

[Ca2+]i when induced 1 h after SE and maintained for 4 h. Hippocampal neurons were acutely 

isolated 24 h after SE to evaluate [Ca2+]i. As previously stated, pilocarpine-induced SE causes a 

rise in [Ca2+]i. Hypothermia appears to block this elevation in [Ca2+]i. Neurons isolated from 

hypothermia-treated rats (n=12) exhibit an average ratio value of 0.65±0.07, which is the similar 

to control neurons. This value is significantly lower than ratios obtained from pilocarpine-alone 

treated groups (one-way ANOVA, p < 0.05) (Fig 3-2). Therefore, hypothermia induced 

following SE appears to block the development of the Ca2+ plateau.  
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Hypothermia reduced the occurrence of spontaneous behavioral seizures 

Rats from both pilocarpine (n=9) and hypothermia groups (n=16) were monitored using video 

surveillance over a period of 5 consecutive days for the presence of spontaneous behavioral 

seizures, or epilepsy. Monitoring took place at 3 months and 1 year post-SE. Rats experiencing 

spontaneous behavioral seizures exhibit unprovoked behavior characteristic of seizure activity 

that includes forelimb clonus, rearing, and falling. 

 

At 3 months post- SE, 33.3% (±16.67) of rats from the pilocarpine group exhibited spontaneous 

behavioral seizures. In comparison, only 18.75% (±10.08) of the rats that received hypothermia 

experienced this spontaneous seizure activity. Although statistical significance was not found 

(Student’s t-test, p=0.43), hypothermia caused a 43.7% reduction on the occurrence of epilepsy 

at 3 months after injury (Fig 3-3).  

 

The rats were re-monitored at 1 year. At this time point, 66.9% (±16.6) of the rats in the 

pilocarpine group were classified as epileptic. This rate of AE is similar to the rate in previous 

studies using the pilocarpine model of AE. Of the rats who received hypothermia following SE, 

only 31.25% (±11.9) exhibited spontaneous seizures (Fig 3-4). Although the results were not 

statistically significant (Student’s t-test, p=0.16), hypothermia caused over a 50% reduction in 

the development of AE following SE.  

 

Hypothermia reduced mossy fiber sprouting 

After animals were monitored for seizure activity at the 1 yr post-SE time point, they were 

sacrificed for the purpose of histological stains. Timm stains were performed on slices from each 
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group to detect for the presence of mossy fiber sprouting. Slices from each animal were assigned 

a score ranging from 0 to 3 based on the degree of Timm staining present. The scorer was blind 

to the treatment group. A full explanation of the scoring guidelines can be found in the Materials 

and Methods section (page 67). 

 

Of the animals in the pilocarpine group (n=7), 85.7% demonstrated the presence of mossy fiber 

sprouting (Fig 3-5). The average score of Timm staining intensity was 2.43±0.43, indicating that 

pilocarpine-induced SE led to robust mossy fiber sprouting in the majority of the animals. In 

contrast, only 28.6% of rats in that received hypothermia following SE (n=7) exhibited any 

degree of Timm staining. The average score in intensity of Timm staining from this group was 

0.8571 ± 0.5530 (Fig 3-6). The average score for the hypothermia group was significantly lower 

than the average score from the pilocarpine group (t-test, p < 0.05). Figure 3-7 illustrates a 

representative slice of the mossy fiber sprouting present in a pilocarpine rat compared to the lack 

of sprouting observed in a control and hypothermia treated rat. A distinct dark line is visible in 

IML in the slice obtained from a pilocarpine-treated rat, which indicates the presence of mossy 

fiber sprouting. This dark staining is not present in the slices obtained from control and 

hypothermia rats. These results demonstrate that hypothermia reduces the occurrence of mossy 

fiber sprouting following SE.  

 

Inducing hypothermia earlier was more protective 

The window of opportunity following an injury is unclear, but it is generally agreed upon that 

earlier intervention provides more protection. The goal of this study was to determine if inducing 

hypothermia 30 min earlier provided more protection against the development of AE. In this 
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study, hypothermia was induced 30 min post-SE instead of 1 h post-SE and was maintained for 

4.5 h. The rats were monitored for 5 consecutive days at 3 months and 1 year post-SE for the 

presence of spontaneous behavioral seizures. 

 

At 3 months post-SE, 30.7% (±13.32) of pilocarpine-treated rats (n=13) exhibited spontaneous 

seizures, which is similar to the rate seen in our previous group (33.3% ±16.67) at this time point 

(Fig 3-8). No rats receiving hypothermia (n=10) in this group demonstrated spontaneous 

behavioral seizures at this time point. The difference in the development of AE at 3 months was 

statistically significant (Student’s t-test, p<0.05). 

 

To determine if this hypothermia protocol delayed the development of or abolished AE, rats 

were re-monitored at 1 yr post-SE. At this time point, 76.9% (±12.16) of the rats in the 

pilocarpine group were epileptic, which is not significantly different from the rate of epilepsy in 

the previous group or previously published results. In contrast, only 20.0% (±13.33) of the rats 

that received hypothermia 30 min post-SE exhibited spontaneous behavioral seizures (Fig 3-9). 

In this group, hypothermia significantly reduced the occurrence of spontaneous behavioral 

seizures (t-test, p <0.05). These results suggest that earlier induction of hypothermia is more 

protective against the development of AE. In addition, the results also suggest that earlier 

intervention with hypothermia delays the development of AE.  

 

Hypothermia reduced the severity of seizures 

Video surveillance only allows us to detect behavioral seizures; seizure activity may still be 

present but not easily visible. However, EEG analysis allows us to detect seizure activity that is 
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not normally visible during video monitoring. Thus, animals from both pilocarpine and 

hypothermia groups were implanted with electrodes for EEG analysis. EEG monitoring occurred 

simultaneously with video surveillance to allow us to analyze the behavioral characteristics of 

each seizure and grade the seizure intensity. Animals were implanted with electrodes and 

allowed a minimum of one week to recover before EEG monitoring began. Rats were monitored 

for a period of five consecutive days. Seizure activity was detected on the EEG and compared 

with video surveillance to score the behavior. A representative trace of baseline and seizure 

activity can be found in Fig 3-10.  

 

Seizures were graded using the modified Racine scale, which ranges from a score of 0 for no 

observed seizure activity to a score of 5 for severe seizure activity. Rats in the pilocarpine group 

(n=4) had an average Racine score of 3.75 (±0.25), indicating that pilocarpine treatment led to 

the development of severe seizures. Rats treated with hypothermia 30 min following SE (n=7), 

however, had an average Racine score of 2.14 (±0.26) which is significantly lower than the 

pilocarpine group (t-test, p<0.005) (Fig 3-11). Figure 3-12 illustrates the distribution of the 

scores. The rats treated with hypothermia received a score between 1 and 3, with the majority of 

the animals receiving a score of 2. However, rats in the pilocarpine group exhibited more severe 

seizures, with the majority of the animals receiving a score of 4. The results demonstrate that 

hypothermia treatment after SE reduces the severity of seizures in epileptic rats. Reducing the 

severity of seizures in epileptic patients vastly improves their quality of life. Therefore finding a 

treatment that improves seizure intensity would be especially useful in epilepsy patients who are 

refractory to current AEDs. 
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Hypothermia reduced seizure frequency 

High seizure frequency is also associated with reduced qualify of life for epileptic patients. 

Therefore reducing the frequency of seizures is a necessary goal. Seizure frequency describes the 

average number of seizures observed per day over a 5 day monitoring period. Seizure frequency 

is illustrated in Fig 3-13. Animals in the pilocarpine group exhibited an average seizure 

frequency of 15.75 (±3.68) per day. Rats treated with hypothermia displayed a reduced 

frequency of seizures, with an average seizure frequency of 9.6 (±2.14) seizures per day. Fig 3-

14 illustrates the distribution of the frequency. The majority of the rats treated with hypothermia 

exhibited between 6 and 10 seizures per day and never more than 16 seizures per day. However, 

the majority of the rats in the pilocarpine displayed at least 17 seizures per day. Although the 

results were not statistically significant (Student’s t-test, p=0.21), these results demonstrate a 

trend in decreasing seizure frequency with hypothermia treatment after SE.  

 

Discussion 

The results of this study demonstrate that hypothermia administered following SE is effective at 

blocking the development of the Ca2+ plateau and reduces the development of AE. Moderate 

hypothermia induced 1 h after SE was able to block the rise [Ca2+]i that is typically observed 

following pilocarpine-induced SE as well as reduce the rate of epilepsy at 1 yr post-SE. These 

results confirm the similar observation that hypothermia blocks the Ca2+ plateau in the in vitro 

model of SE. Furthermore, these studies demonstrated that hypothermia reduced the formation of 

mossy fiber sprouting, a plasticity change commonly associated with SE-induced AE. These 

results provide evidence that hypothermia is a beneficial intervention in preventing 

epileptogenesis. 
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It has been demonstrated in the pilocarpine model of SE-induced AE that SE caused a significant 

rise in [Ca2+]i and these elevations persist in animals that eventually develop epilepsy [37], which 

suggests that the  Ca2+ plateau is involved the progression of epileptogenesis to the epileptic 

phenotype. Blocking the formation of the Ca2+ plateau with the use of NMDA receptor 

antagonists prior to and during SE prevents the development of AE [37, 42], further suggesting 

that elevations in [Ca2+]i are involved in the pathophysiology associated with epileptogenesis. 

However, NMDA antagonists are ineffective at preventing epilepsy if administered after the 

injury. Currently, there are no anti-epileptogenic drugs that can be administered following a 

neurological insult [103]. Therefore, it is clinically important to develop a therapy that can block 

epileptogenesis when administered post-injury.  

 

Hypothermia has been shown to attenuate Ca2+ influx by reducing the activation of NMDA 

receptors by reducing extracellular glutamate concentrations [144-145]. A previous study also 

demonstrated using the in vitro model of SE that hypothermia rapidly reduced elevated [Ca2+]i 

and prevented the formation of the Ca2+ plateau (see Chapter 2 Results). This current study 

provided novel evidence that hypothermia induced 1 hour after pilocarpine-induced SE blocks 

the formation of the Ca2+ plateau. Ca2+ is a common second messenger responsible for initiating 

an array of effects ranging from neurotransmission to plasticity changes to neuronal death. 

Blocking the rise in [Ca2+]i following injury is a major aim for preventing the development of 

epileptogenesis and AE. Therefore developing new treatment strategies that target the Ca2+ 

plateau and inhibit the Ca2+-mediated second messenger effects associated with epileptogenesis 

remains an important clinical goal.  
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Hypothermia is a promising therapeutic alternative. It has been shown to reduce neurological 

injuries associated with cardiac arrest [115-116], ischemic stroke [120-121], and TBI [118-119]. 

However, very few studies have evaluated the potential benefits of hypothermia following SE. 

Although they have different inciting injuries, stroke, TBI, and SE share the common pathology 

of elevated [Ca2+]i and the eventual development of epilepsy [9]. Therefore it stands to reason 

that hypothermia would provide similar neuroprotection after SE as it does with stroke and TBI. 

The results of these studies indicate that hypothermia induced 1 hour after SE was protective 

against the development of epilepsy. Animals were monitored up to one year post-injury. The 

results demonstrated that hypothermia reduced the percentage of animals exhibiting spontaneous 

behavioral seizures, or epilepsy, thus providing the first line of evidence that hypothermia may 

prevent SE-induced AE. 

 

In addition to elevated [Ca2+]i, mossy fiber sprouting is commonly seen in animal models of 

stroke, TBI, and SE, as well as in human cases of TLE [85-90]. This form of synaptic plasticity 

is believed to produce a recurrent excitatory circuit in the dentate gyrus of the hippocampus, 

which enhances neuronal excitability and may lead to the development of AE [84, 94-95]. 

Preventing the abnormal sprouting of mossy fibers may prevent the excitatory circuitry that leads 

to a hyperexcitable neuronal population, thus preventing epileptogenesis. One study 

demonstrated that hypothermia reduced mossy fiber sprouting in the animal model of TBI. In 

addition, seizure susceptibility was attenuated [146]. In these studies, hypothermia induced 1 

hour after SE was effective at reducing the development and severity of mossy fiber sprouting.  

These findings suggest the hypothermia is effective at reducing a major plasticity change 

associated with epileptogenesis. One possible way that hypothermia reduces the risk of 
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developing epilepsy may be by preventing the aberrant sprouting of mossy fibers, thereby 

blocking the formation of recurrent excitatory synapses and this reducing the risk of epilepsy.  

 

The therapeutic window of opportunity is an important consideration when developing new 

treatment strategies. The period between the initial neurological insult and the development of 

epilepsy is called the latency period. This time frame represents the potential window of 

opportunity to inhibit the plasticity changes associated with epileptogenesis. The duration of this 

window is unclear and differs among various neurological injuries, but it is generally agreed 

among clinicians and researchers that earlier hypothermia intervention produces a greater degree 

of neuroprotection. Therefore, we evaluated the effects of earlier hypothermia induction. 

Hypothermia was induced 30 min after the start of SE instead of 1 hr post-SE. The earlier 

intervention resulted in a greater degree of protection against the development of epilepsy. There 

was a significant reduction in the percentage of rats displaying spontaneous behavioral seizures. 

In addition, earlier hypothermia appeared to delay the appearance of spontaneous seizures based 

on the results that no rats exhibited spontaneous seizures at 3 months post-SE compared to the 

group that received hypothermia 1 hr after SE, in which 19% exhibited seizure activity. These 

results offer promising evidence that hypothermia is effective at reducing epileptogenesis.  

 

The seizure activity of the hypothermic rats that developed epilepsy was analyzed to determine if 

hypothermia had any effect on the severity and frequency of the seizures. Seizures were detected 

using EEG analysis and analyzed for behavioral seizure characteristics which were scored using 

the Racine scale. The results indicate that hypothermia significantly reduced the severity of the 

seizures. The epileptic rats that did not receive hypothermia following SE exhibited severe 



79 
 

seizures characterized by rearing, falling, and general tonic-clonic activity. In comparison, the 

rats that received hypothermia did not display these robust seizures. Instead, the majority of their 

seizures were characterized by mild forelimb clonus and facial contractions that were often 

difficult to detect visually. In addition, the frequency of seizures per day was reduced in the 

animals that received hypothermia following SE. The animals in the pilocarpine experienced a 

seizure on average of once an hour during the wake cycle. The rats that received hypothermia 

exhibited far less seizures per day. These results demonstrate that not only is hypothermia 

capable of reducing the development of AE, it is effective at reducing the severity and frequency 

of seizures in rats that do develop epilepsy. Reducing seizure severity and frequency would 

provide a greater quality of life for patients that do develop epilepsy.  
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Figure 3-1. Pilocarpine caused significant elevation in [Ca2+]i 24 h post-SE. (A) Hippocampal 
neurons isolated from control rats (n=13) exhibited 340/380 ratio values of 0.65±0.04. Neurons 
acutely isolated from pilocarpine rats 24 h post-SE (n=13) exhibited significantly elevated ratios 
of 0.86±0.07 (data presented as mean ± SEM). *p<0.05, Student’s t-test. 
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Figure 3-2. Hypothermia blocked the Ca2+ plateau following SE in vitro. (A) Hippocampal 
neurons acutely isolated from rats 24 h after hypothermia (n=12) was induced post-SE displayed 
340/380 ratio values of 0.65±0.07, which were similar to control neurons (n=13). These values 
were significantly lower than the ratio values of neurons isolated from rats in the pilocarpine 
group (0.86±0.07). Data presented as mean ratio ± SEM. No significant difference observed 
between neurons acutely isolated from control and hypothermia-treated rats. *p<0.05 compared 
to control, **p<0.05 compared to pilocarpine, one-way ANOVA followed by post-hoc Tukey 
analysis 
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Figure 3-3. 4h of hypothermia reduced development of epilepsy 3 months post-SE. 
Behavioral monitoring demonstrated that 33.3% ±16.67 of the rats in the pilocarpine group (n=9) 
exhibited spontaneous behavioral seizures compared to only 18.75% ±10.08 of the rats who 
received hypothermia 1 hour post-SE (n=16). Data presented as percent epileptic ± SEM. Results 
not statistically significant (student’s t-test). 
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Figure 3-4. 4 h of hypothermia reduced development of epilepsy 1 yr post-SE. At one year 
post-SE, 66.9% ±16.6 of rats in the pilocarpine group (n=9) exhibited spontaneous behavioral 
seizures. Rats who received hypothermia 1 hour post-SE (n=16) displayed a lower rate of 
31.25% ±11.9. Data presented as percent epileptic ± SEM. Results not statistically significant 
(student’s t-test). 
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Figure 3-5. Hypothermia reduced the occurrence of mossy fiber sprouting. At one year post-
SE, 85.7% ±14.3 of pilocarpine rats (n=7) displayed Timm staining. Rats that received 
hypothermia 1 hr post-SE (n=7) displayed a significantly lower rate with 28.6% ±18.4 of the rats 
exhibiting any degree Timm staining. Data presented as percent displaying Timm staining ± 
SEM. *p<0.05, Student’s t-test.  
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Figure 3-6. Hypothermia reduced the intensity of mossy fiber sprouting. Timm staining 
intensity was scored on a scale of 0 to 3. A score of 0 was assigned for no staining present; a 
score of 1 for light and scattered staining in the IML; a score of 2 for darker but patchy staining 
in the IML; and a score of 3 for continuous and robust staining in the IML. Rats in the 
pilocarpine group (n=7) had an average score 2.43 ± 0.43, which was significantly higher than 
the average score of 0.86 ± 0.55 in the hypothermia group (n=7). Data presented as mean score ± 
SEM. *p < 0.05, Student’s t-test. 
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Figure 3-7. Timm stain images. Representative images of Timm staining in slices from control 
(top row), pilocarpine (middle row), and hypothermia rats (bottom row). Column A depicts the 
hippocampus (3X magnification). Column B depicts the dentate gyrus (10X magnification). 
Column C represents a high magnification image of the mossy fiber sprouting (40X 
magnification). Mossy fiber sprouting is not present in the IML of control or hypothermia slices, 
but robust sprouting is present in the IML of the pilocarpine slice. IML, inner molecular layer, 
GCL, granule cell layer. 
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Figure 3-8. Earlier induction of hypothermia significantly reduced development of epilepsy, 
3 months post-SE. At 3 months post-SE, 30.7% ±13.32 of the rats in the pilocarpine group 
(n=13) displayed spontaneous behavioral seizures. This was significantly higher than the rate of 
0% in the animals treated with hypothermia 30 min post-SE (n=10). Data presented as percent 
epileptic ± SEM. *p<0.05, Student’s t-test.  
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Figure 3-9. Earlier induction of hypothermia significantly reduced development of epilepsy, 
1 yr post-SE. At 1 yr post-SE, 76.9% ±12.16 of the rats in the pilocarpine group (n=13) 
displayed spontaneous behavioral seizures. This was significantly higher than the rate of 20.0% 
±13.33 in the animals treated with hypothermia 30 min post-SE (n=10). Data presented as 
percent epileptic ± SEM. *p<0.05, Student’s t-test. 
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Figure 3-10. Representative EEG trace. (A) EEG trace from baseline does not exhibit seizure 
activity. (B) EEG trace representing seizure activity.  
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Figure 3-11. Hypothermia reduced the severity of seizures following SE. Seizure severity 
was scored from 0, for no detectable seizure activity to a 5, for severe tonic-clonic seizure 
activity based on the Racine scale. Rats in the pilocarpine group (n=4) displayed an average 
seizure severity score of 3.75±0.25. Rats in the hypothermia group (n=7) exhibited a 
significantly lower score of 2.14±0.26. Data presented as average score ± SEM. *p<0.005, 
Student’s t-test. 
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Figure 3-12. Seizure severity distribution. Bar graph depicting the distribution of seizure 
severity scores across the pilocarpine (n=4) and hypothermia (n=7) groups. 100% of the rats in 
the pilocarpine group exhibited a minimum average seizure severity score of 3 with 75% 
exhibiting a score of 4. In contrast, the highest score exhibited by rats in the hypothermia group 
was a 3, with 71% exhibiting a seizure severity score of 2 or less.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



92 
 

A
ve

ra
g

e 
se

iz
u

re
 f

re
q

u
en

cy
 (

p
er

 d
ay

)

5

10

15

20

25
Pilocarpine
Hypothermia

 
Figure 3-13. Hypothermia reduced seizure frequency. Rats in the pilocarpine group exhibited 
an average of 15.5±3.9 seizures per day. Hypothermia rats exhibited a reduced number of 
seizures per day with an average of 9.6±2.1. Data presented as average seizure frequency ± SEM. 
Results not statistically significant (student’s t-test). 
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Figure 3-14. Seizure frequency distribution. Bar graph illustrating the distribution of seizure 
frequency among pilocarpine (n=4) and hypothermia (n=7) rats. 75% of the rats in the 
pilocarpine group exhibited at least 15 seizures per day. In comparison, 71.4% of the rats 
receiving hypothermia exhibited 10 or less seizures per day.  
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Chapter 4: Discussion 

 

The purpose of these studies was to find a suitable treatment to be administered following an 

injury such as SE that can prevent epileptogenesis. Hypothermia is considered to be a potential 

intervention based on extensive literature supporting its neuroprotective effects. The use of 

hypothermia following SE has significant clinical ramifications because it is currently used to 

improve neurological outcome following stroke and TBI [118-121], two neurological injuries 

that can lead to the development of AE [9].  

 

The results from these studies suggest that hypothermia is a potentially useful clinical 

intervention that can be induced following injury such as SE to prevent the progression of 

epileptogenesis. Both in vivo and in vitro models of SE-induced AE demonstrate that SE causes 

a persistent elevation in [Ca2+]i, and this plateau may be responsible for the long-term plasticity 

changes that ultimately lead to the development of AE. Developing new therapies aimed at 

blocking the Ca2+ plateau may provide neuroprotection and prevent epileptogenesis. These 

studies provided evidence that hypothermia blocks the Ca2+ plateau in both in vitro and in vivo 

models, making hypothermia a possible alternative intervention to pharmacological agents in 

reducing the development of AE. 

 

The rationale behind studying the effects of hypothermia following SE is based on the fact that 

the cellular cascade of events following ischemic stroke and TBI are very similar to what occurs 
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during SE. Despite differing in the type of inciting insult, all these injuries share a common 

pathology of elevated [Ca2+]i after injury followed by the development of epilepsy. Hypothermia 

is currently used clinically to reduce neurological injury associated with both ischemic stroke 

and TBI. Therefore, it stands that hypothermia may be effective at reducing neuronal injury 

associated with SE. Furthermore, fever has been shown to further potentiate the events following 

any brain injury, whereas hypothermia has been shown to prevent or interrupt the excitotoxic 

cascade [114]. 

 

The neuroprotective benefits of hypothermia have long been known, but its mechanisms of 

actions are still unclear. It is assumed that hypothermia protects against neuronal damage through 

a myriad of factors including reducing cerebral metabolism, decreasing inflammation, and 

modulating excitatory transmission and intracellular Ca2+. The studies performed in this 

dissertation focused on the effects of hypothermia on intracellular Ca2+ as the role of 

hypothermia on Ca2+ dynamics in not well understood. These studies specifically focused on the 

ability of hypothermia to block the Ca2+ plateau. Studies have demonstrated that hypothermia 

prevents Ca2+-mediated neuronal damage by reducing extracellular glutamate accumulation, 

thereby reducing NDMA receptor activation and concomitant Ca2+ influx [144-145]. However, 

no studies have examined the effects of hypothermia on other regulators of Ca2+ dynamics. 

Intracellular Ca2+ is regulated by a variety of other mechanisms including membrane Ca2+ 

channels, Ca2+ binding proteins, and regulators of intracellular Ca2+ storage and release. Studies 

have demonstrated that various regulators of intracellular Ca2+ are altered, and the alterations in 

Ca2+ dynamics contribute to the development and maintenance of the Ca2+ plateau. Ca2+ is a 

ubiquitous second messenger involved in a variety of cellular processes including 
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neurotransmitter release and transcription, as well as long-term potentiation. Excessive 

elevations in [Ca2+]i activate several downstream effectors leading to plasticity changes and 

eventually activation neuronal death pathways. Therefore modulating the rise in [Ca2+]i may be 

effective in blocking the Ca2+-mediated cascade that leads to plasticity changes associated with 

epileptogenesis, thus preventing epilepsy. 

 

The in vitro hippocampal neuronal culture model is a powerful tool for determining which 

systems contribute to the Ca2+ plateau. It provides a controlled environment that allows for 

manipulation of the systems without the presence of confounders found in the intact brain. The in 

vivo model is a more complex model that allows us to further test the effectiveness of various 

pharmacological and non-pharmacological treatments following injury. The in vivo pilocarpine 

model produces a pathology similar to that seen in human TLE [22]. It has been instrumental in 

providing a further understanding of epileptogenesis. The studies performed in this dissertation 

utilized both models to better understand the mechanisms and applications of hypothermia 

following SE. The results of these studies demonstrated that hypothermia blocked the 

development of the Ca2+ plateau following SE in both in the vitro and in vivo models. The novel 

finding that hypothermia blocked the Ca2+ plateau led to the hypothesis that hypothermia may 

block the plasticity changes associated with epileptogenesis and reduce or prevent the 

development of epilepsy. 

 

Studies have demonstrated that NMDA receptors are responsible for the majority of Ca2+ influx 

during SE, and pre-treatment with NMDA receptor antagonists prior to SE inhibited the 

formation of the Ca2+ plateau and the eventual development of AE. Blocking the NMDA 
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receptors after injury, however, does not offer neuroprotection against epileptogenesis [37, 42]. 

Therefore, the Ca2+ plateau must be maintained by other mechanisms following SE. One study 

demonstrated that the RyR system may be involved. The RyR is part of the CICR system, and it 

releases Ca2+ from intracellular stores in ER by gauging cytosolic Ca2+ concentrations. This study 

demonstrated in the in vitro model that administration of the RyR blocker Dantrolene 

immediately following SE rapidly reduced the elevation in [Ca2+]i, blocked the formation of the 

Ca2+ plateau, and prevented the development of SREDs, the in vitro correlate of epilepsy. These 

results suggest that the RyR may be involved in the maintenance of the Ca2+ plateau following 

SE and may be partially responsible for the progression of epileptogenesis [83].  

 

The studies performed in this dissertation evaluated the effects of hypothermia on different 

modes of Ca2+ entry. The in vitro hippocampal neuronal culture model was utilized to investigate 

if hypothermia affected Ca2+ entry through various channels. The results demonstrated that 

hypothermia does not affect Ca2+ entry through VDCCs on the cell membrane or IP3R-mediated 

Ca2+ release from ER. However, hypothermia did reduce Ca2+ entry via NMDA receptor 

activation independent of extracellular glutamate, and it reduced RyR-mediated Ca2+ release 

from intracellular stores. This provided the first piece of evidence that hypothermia directly 

impacts intracellular Ca2+ through multiple means.  

 

The pilocarpine model of SE-induced AE is a well established and commonly used model in 

studying epileptogenesis based on its ability to produce a condition that is highly similar to the 

pathology observed in human TLE [22]. The in vivo pilocarpine model has provided powerful 

evidence supporting our hypothesis that hypothermia may reduce or prevent the development of 
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epilepsy. Hypothermia was rapidly induced in rats 1 hour after SE began and maintained for 4 

hours. Epilepsy typically begins to develop around 2 months post-SE, but can be as early as 1 

week post-SE and as late at several months. Therefore, the rats were monitored for the presence 

of spontaneous behavioral seizures at both 3 months and 1 year post-SE. Our observations 

showed that the rats treated with hypothermia had a reduced rate of spontaneous behavioral 

seizures. These promising results demonstrated that hypothermia was effective at inhibiting the 

progression of epileptogenesis in the pilocarpine animal model.  

 

The therapeutic window of opportunity is unclear, and it differs vastly depending on the type of 

injury. For example, in cases of stroke, there is evidence that the most effective window of 

opportunity is before the start of secondary injury [158]. It is generally agreed upon that earlier 

intervention provides a greater degree of neuroprotection. Therefore, we investigated whether 

earlier induction of hypothermia was more beneficial in preventing epilepsy. Monitoring at 3 

months and 1 year post-SE provided exciting results that earlier hypothermia appears to delay to 

development of AE and further reduces the rate of developing spontaneous behavioral seizures.  

 

The results from these studies provide important information regarding the mechanisms of 

epileptogenesis. As previously stated, the NMDA receptors are largely responsible for the influx 

of Ca2+ during SE, but the RyR system is at least partially responsible for the maintenance of 

Ca2+ plateau. The first treatment paradigm induced hypothermia at the end of 1 hour of SE, 

where the RyR system is assumed to dominate. The results from a previous study that blocking 

the RyR after SE prevented SREDs, combined with the results from these studies that 

hypothermia reduces RyR-mediated Ca2+ release, allows us to deduce that hypothermia is 
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blocking the Ca2+ plateau and reducing epileptogenesis by inhibiting the RyR. However, when 

hypothermia was induced during SE, it had an even greater effect at preventing epilepsy. 

Hypothermia is most likely reducing Ca2+ entry through NMDA receptors during SE and is 

acting on the RyR after SE. This double impact on Ca2+ entry appears to provide a greater degree 

of protection.  

 

Not only did hypothermia block the Ca2+ plateau, it also reduced the occurrence of mossy fiber 

sprouting. Mossy fiber sprouting is a unique form of synaptic plasticity commonly observed in 

animal models of AE and human cases of TLE [85-90] Mossy fiber sprouting describes the 

abnormal sprouting of the axons of dentate granule cells (mossy fibers) into the inner molecular 

layer of the dentate gyrus which form synapses with dentate granule cells [91-92]. These 

connections are excitatory, thus creating a recurrent excitatory circuit in an area that normally 

lacks this circuitry. This is believed to contribute to the excitability observed in epilepsy [84, 93-

95]. Although the presence of sprouting is not required for the development of AE, studies have 

correlated mossy fiber sprouting with increased seizure frequency and duration [100-101]. Thus, 

finding a treatment that blocks the formation of this aberrant sprouting may reduce neuronal 

excitability, as well as reduce the severity of the seizures, thereby improve the quality of life for 

the epileptic patient. One study demonstrated that hypothermia induced following TBI attenuated 

the development of mossy fiber sprouting in the dentate [146]. In our model of pilocarpine-

induced SE, hypothermia reduced the development of mossy fiber sprouting as well as 

diminished the degree of intensity of sprouting. These results demonstrate that hypothermia 

reduces this form of plasticity change associated with epileptogenesis, which may be 

contributing to the decreased occurrence of epilepsy.  
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The molecular determinants for mossy fiber sprouting are not known. Therefore, understanding 

how hypothermia affects mossy fiber sprouting is still unclear. One possible mechanism is that 

hypothermia affects the expression of semaphorins, which are secreted proteins that guide neural 

development by dictating axon growth based on repulsive and attractive signals. Semaphorin are 

considered a stop signal for growing axons, thereby producing repulsive axonal guidance signals 

which leads to growth cone collapse [159].  Following SE and in TLE, mRNA levels of various 

semaphorin molecules are decreased [160-161], which may allow for the growth of aberrant 

axons of granule cells and facilitate the development of recurrent excitatory networks.  

Hypothermia has been reported to regulate transcription factors in the hippocampus [162], 

although it is not known if hypothermia has a direct effect on semaphorins. Thus, hypothermia 

could possibly be regulating the transcription of semaphorins.  

 

Although hypothermia did not completely abolish epilepsy in our animal model, it did reduce the 

severity and frequency of seizures present in the small percentage of rats that did developed 

epilepsy. Rats exhibited a significant reduction in the severity of seizures and showed a trend 

towards reduced frequency. It is possible that the reduced severity and frequency is associated 

with the attenuation of mossy fiber sprouting. High seizure severity and frequency negatively 

affects the quality of life for epileptic patients. Reducing these two characteristics could vastly 

improve their quality of life, and these aspects should be taken into consideration when 

developing therapies for AE [163].  

 

Further studies will be directed at determining the best window of opportunity to induce 

hypothermia after SE and the optimal duration of treatment. In human cases, hypothermia ranges 
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anywhere from a few hours to several days [121]. Rat models of ischemia have shown that 

prolonged hypothermia provides persistent neuroprotection [164-165]. Our model utilized a 

treatment duration of 4 and 4.5 hours. It is highly likely that a longer duration of hypothermia 

will yield a higher degree of protection against epileptogenesis. It is important to better define 

the treatment paradigm in terms of window of opportunity and treatment duration before 

hypothermia can be successfully translated to human application. 

 

It is important to note that the Ca2+ plateau is not solely responsible for the development of AE. 

In addition to Ca2+ dysfunction, epilepsy is also associated with inflammation [166]. Most types 

of brain injury produce a significant inflammatory response [114]. Glial cells contribute to 

epileptogenesis through a variety of mechanisms including mediating an inflammatory response. 

Upon insult to the brain, microglia and astrocytes commonly undergo activation which is 

accompanied by the release of pro-inflammatory cytokines including interleukin (IL)-1² , IL-6, 

and TNF-± [125, 138, 167-170]. This is often followed by a cascade of downstream events 

including activation of NFº B and chemokines [171-173]. The inflammatory response is 

accompanied by free radical production, which can cause significant additional damage [114]. 

Furthermore, the degree of brain inflammation has been shown to be positively correlated with 

seizure frequency and severity in both patients and animal models [174-176]. Therefore reducing 

inflammation caused by brain injury is another approach in preventing epileptogenesis. Not only 

does hypothermia reduce elevations in [Ca2+]i, it also modulates the inflammatory response. 

Several animal studies and some clinical evidence have demonstrated that hypothermia 

suppresses the induction of inflammatory reactions and the release of pro-inflammatory 
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cytokines [139-142]. Attenuating the inflammatory response significantly reduces the degree of 

brain injury [143].  

 

Metallomatrix proteinases (MMPs) are a family of highly homologous neutral proteases that 

regulate cell-matrix composition [177-178]. MMPs have been implicated in various neurological 

diseases including epilepsy. Injuries that lead to the activation of an inflammatory response, such 

as stroke, TBI, and SE, stimulate the activation of various MMPs, including MMP-9 [173, 179-

181]. Animal models of AE including the pilocarpine and kainic acid models of SE-induced AE 

have demonstrated that MMP-9 mRNA and activity are selectively up-regulated [182-184]. 

Furthermore, emerging evidence has implicated MMP-9 in contributing to processes involved in 

epileptogenesis, including neuronal death, abnormal synaptic plasticity, and inflammation [185]. 

The effects of MMP-9 appear to be temperature-dependent, and thus are inhibited by 

hypothermia [186]. Therefore, not only does hypothermia block the Ca2+ plateau, it is also 

effective at reducing inflammation associated with brain injury and epileptogenesis. Further 

exploration of how hypothermia affects the inflammatory process in models of SE-induced AE 

could provide valuable insight into the mechanisms of epileptogenesis and hypothermia. 

 

Hypothermia’s effects are multi-factorial, making it a powerful technique. Because hypothermia 

does not simply target one specific cascade or mechanism, it has the advantage over 

pharmacological interventions that only target specific events. It would be interesting to 

investigate whether the combination of hypothermia and a pharmacological agent would be more 

effective at preventing epileptogenesis. One possible combination is Dantrolene plus 

hypothermia. In vitro studies have demonstrated the Dantrolene prevents the development of 
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SREDs. However, its anti-epileptogenic effects have yet to be demonstrated in vivo. It is 

possible that hypothermia may work synergistically with Dantrolene in preventing Ca2+-

mediated plasticity changes and may be more effective at blocking the development of AE. In 

addition, Dantrolene and hypothermia are both FDA-approved treatments; Dantrolene is 

approved for the treatment of malignant hyperthermia, and hypothermia is approved for cardiac 

arrest, neonatal hypoxic-ischemic encephalopathy, TBI, and stroke. Therefore, it may be easier 

to translate both interventions to clinical applications.  

 

Several studies have demonstrated that a variety of pharmacological agents can prevent 

epileptogenesis when administered prior to an injury. However, there are currently no anti-

epileptogenic agents that can be administered following a neuronal injury. Clinically, it is not 

feasible to treat a patient prior to an injury such as SE with the hopes of preventing 

epileptogenesis. Although advances have been made in developing effective AEDs, 

approximately 40% of all epileptic patients are refractory to currents AEDs [1], which further 

underscores the importance of developing new strategies of preventing epileptogenesis. 

Therefore, developing a novel therapy that can be administered after an injury to block 

epileptogenesis is clinically important. In addition, it is important to define the window of 

opportunity in which therapeutic treatment would be most effective. The results the studies 

performed in this dissertation suggest that hypothermia is a viable intervention for preventing 

epileptogenesis. It is a clinically relevant therapeutic technique in that it can be effective when 

induced after the injury. Furthermore, the results provide additional evidence that supports the 

theory that earlier intervention is more protective.  
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