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ABSTRACT: 

Introduction: Exploring the brain for optimal locations for deep brain stimulation (DBS) therapy 

is a challenging task, which can be facilitated by analysis of DBS efficacy in a large number of 

patients with Parkinson’s disease (PD). The Unified Parkinson's Disease Rating Scale (UPDRS) 

scores indicate the DBS efficacy of the corresponding stimulation location in a particular patient.  

The spatial distribution of these clinical scores can be used to construct a functional model which 

closely models the expected efficacy of stimulation in the region.  

Designs and Methods: In this study, different interpolation techniques were investigated that can 

appropriately model the DBS efficacy for Parkinson’s disease patients. These techniques are 

linear triangulation based interpolation, ‘roving window’ interpolation and ‘Monopolar inverse 

weighted distance’ (MIDW) interpolation. The MIDW interpolation technique is developed on 

the basis of electric field geometry of the monopolar DBS stimulation electrodes, based on the 

DBS model of monopolar cathodic stimulation of brain tissues. Each of these models was 

evaluated for their predictability, interpolation accuracy, as well as other benefits and limitations. 

The bootstrapping based optimization method was proposed to minimize the observational and 

patient variability in the collected database. A simulation study was performed to validate that 

the statistically optimized interpolated models were capable to produce reliable efficacy contour 

plots and reduced false effect due to outliers. Some additional visualization and analysis tools 

including a graphic user interface (GUI) were also developed for better understanding of the 

scenario. 

Results:  The interpolation performance of the MIDW interpolation, the linear triangulation 

method and Roving window method was evaluated as interpolation error as 0.0903, 0.1219 and 



xii 

 

0.3006 respectively. Degree of prediction for the above methods was found to be 0.0822, 0.2986 

and 0.0367 respectively. The simulation study demonstrate that the mean improvement in outlier  

 handling and increased reliability after bootstrapping based optimization (performed on Linear 

triangulation interpolation method) is 6.192% and 12.8775% respectively. The different 

interpolation techniques used to model monopolar and bipolar stimulation data is found to be 

useful to study the corresponding efficacy distribution. A user friendly GUI (PDRP_GUI) and 

other utility tools are developed.   

Conclusion: Our investigation demonstrated that the MIDW and linear triangulation methods 

provided better degree of prediction, whereas the MIDW interpolation with appropriate 

configuration provided better interpolation accuracy. The simulation study suggests that the 

bootstrapping-based optimization can be used as an efficient tool to reduce outlier effects and 

increase interpolated reliability of the functional model of DBS efficacy. Additionally, the 

differential interpolation techniques used for monopolar and bipolar stimulation modeling 

facilitate study of overall DBS efficacy using the entire dataset.  
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CHAPTER 1 : Introduction and Background 

 

1.1 Parkinson’s Diseases  

Parkinson's disease (PD) [1] [2, 3]is a neurodegenerative disorder characterized by progressive 

loss of muscle control and coordination. This leads to variety of movement problems such as 

shaking of the limbs and head (tremors), muscle stiffness (rigidity), slowness in movement 

execution (Bradykinesia), difficulty with walking and impaired balance. Later in the course of 

the disease, cognitive and behavioral problems may arise. As symptoms worsen, it may become 

difficult to walk, talk, and complete simple tasks[1]. PD is more common in the elderly with 

most cases occurring after the age of 50 years. Sometimes PD occurs in younger adults. It affects 

both men and women. 

 

Causes: 

PD occurs when by some unknown causes, dopamine-producing nerve cells are slowly 

destroyed, which reduces dopamine levels in the parts of the brain.  Dopamine acts as a chemical 

messenger between two brain areas - the substantia nigra and the corpus striatum - to produce 

smooth, controlled movements. When the amount of dopamine is too low, communication 

between them becomes ineffective impairing the movement. This leads to the loss of muscle 

function. The damage gets worse with time. Other cells in the brain also degenerate to some 

degree and may contribute to non-movement related symptoms of Parkinson's disease. The 

cause[4] of PD or dopamine destruction is still unknown but many researchers suspect it may be 

caused by a combination of genetic factors and environmental factors. 

Symptoms: 

http://www.azilect.com/Consumer/About-Parkinson-s-Disease/Parkinson-s-Symptoms.aspx
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The 3 key symptoms of Parkinsonism are tremor, bradykinesia and rigidity[5]. The disorder may 

affect one or both sides of the body. How much function is lost can vary. The symptoms of PD 

are mild at first and will progress over time. Characteristic motor symptoms include the 

following: 

1. Tremors[6]: Tremor is an involuntary muscle contraction and relaxation of body parts, 

which includes trembling in fingers, hands, arms, feet, legs, jaw, or head. Tremors most 

often occur while the individual is resting. Tremors may worsen when an individual is 

excited, tired, or stressed. 

2. Rigidity: Rigidity is the stiffness of the limbs and trunk, which may increase during 

movement[7]. It may produce muscle aches and pain. Rigidity results when there is an 

increase in muscle tone that causes resistance to passive movement throughout the whole 

range of motion.  

3. Bradykinesia[8]: It is characterized by slowness of voluntary movement. Rather than 

being slowness in initiation (akinesia), bradykinesia describes slowness in the execution 

of movement. Over time, it may become difficult to initiate movement and to complete 

movement. Bradykinesia together with stiffness can also affect the facial muscles and 

result in an expressionless, "mask-like" appearance.  

4. Postural instability 

5. Parkinsonian gait 

While the main symptoms of Parkinson's disease are movement-related, progressive loss of 

muscle control and continued damage to the brain can lead to secondary symptoms. These vary 

in severity, and not every individual will experience all of them. Some of the secondary 

symptoms include anxiety, insecurity, stress and increased sweating; confusion, memory loss, 

http://www.medicinenet.com/script/main/art.asp?articlekey=504
http://www.medicinenet.com/script/main/art.asp?articlekey=42985
http://www.medicinenet.com/script/main/art.asp?articlekey=63314
http://www.medicinenet.com/script/main/art.asp?articlekey=63547
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and dementia; constipation; difficulty swallowing and excessive salivation; diminished sense of 

smell; skin problems; slowed, quieter speech, and monotone voice; and urinary urgency[1]. 

 

Diagnosis:  

The diagnosis of PD is based on the patient’s symptoms and a physical examination. A 

neurological exam may include an evaluation of coordination, walking, and fine motor tasks 

involving the hands. Several guidelines have been published to assist in the diagnosis of PD, 

which include the Unified Parkinson's Disease Rating Scale (UPDRS) [9, 10]. Tests are used to 

measure mental capacity, behavior, mood, daily living activities, and motor function. They can 

be very helpful in the initial diagnosis, to rule out other disorders, as well as in monitoring the 

progression of the disease to make therapeutic adjustments. Brain scans and other laboratory 

tests are also sometimes carried out, mostly to detect other disorders resembling Parkinson's 

disease. 

The Unified Parkinson's Disease Rating Scale is a rating scale used to follow the longitudinal 

course of Parkinson's disease. The UPDRS has long been the major rating scale that is used to 

assess severity of symptoms of Parkinson's disease. The original version of the scale assessed 

daily activities, motor skills and mental capacity (including behavior and mood). When 

administering the scale, a neurologist observes your performance when moving your arms or legs 

or body and then scores your performance from 0 (normal) to 4 (severe). Therefore, the higher 

the UPDRS score, the greater the disability from PD. An updated version of the scale was 

recently developed by specialists from the Movement Disorder Society. The updated version 

adds new assessments of non-motor symptoms of PD. The UPDRS is a scale that was developed 

http://www.medicinenet.com/script/main/art.asp?articlekey=9090
http://www.medicinenet.com/script/main/art.asp?articlekey=331
http://en.wikipedia.org/wiki/Rating_scale
http://en.wikipedia.org/wiki/Parkinson%27s_disease
http://parkinsons.about.com/od/glossary/g/pd.htm
http://parkinsons.about.com/b/2009/01/13/revised-unified-parkinsons-disease-rating-scale.htm
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as an effort to incorporate elements from existing scales to provide a comprehensive but efficient 

and flexible means to monitor PD-related disability and impairment 

Treatment: 

There is currently no treatment to cure Parkinson's disease. Several therapies are available to 

delay the onset of motor symptoms and to ameliorate motor symptoms. All of these therapies are 

designed to increase the amount of dopamine in the brain either by replacing dopamine, 

mimicking dopamine, or prolonging the effect of dopamine by inhibiting its breakdown. Studies 

have shown that early therapy in the non-motor stage can delay the onset of motor symptoms, 

thereby extending quality of life [11].  

The most effective therapy for Parkinson's disease is levodopa (Sinemet), which is converted to 

dopamine in the brain. However, because long-term treatment with levodopa can lead to 

unpleasant side effects, its use is often delayed until motor impairment is more severe. In earlier 

stages of Parkinson's disease, substances that mimic the action of dopamine (dopamine agonists), 

and substances that reduce the breakdown of dopamine (monoamine oxidase type B (MAO-B) 

inhibitors) can be very efficacious in relieving motor symptoms. Unpleasant side effects of these 

preparations are quite common, including swelling caused by fluid accumulation in body tissues, 

drowsiness, constipation, dizziness, hallucinations, and nausea.  

For some individuals with advanced, virtually unmanageable motor symptoms, surgery may be 

an option. In deep brain stimulation (DBS), the surgeon implants electrodes to stimulate areas of 

the brain involved in movement. In another type of surgery, specific areas in the brain that cause 

Parkinson's symptoms are destroyed.  

In addition to medication and surgery, general lifestyle changes (rest and exercise), physical 

therapy, occupational therapy, and speech therapy may be beneficial. 

http://www.medicinenet.com/script/main/art.asp?articlekey=331
http://www.medicinenet.com/script/main/art.asp?articlekey=97800
http://www.medicinenet.com/script/main/art.asp?articlekey=24732
http://www.medicinenet.com/script/main/art.asp?articlekey=42552
http://www.medicinenet.com/script/main/art.asp?articlekey=56640
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1.2 Deep Brain Stimulation 

DBS Techniques: 

Deep brain stimulation (DBS) [12] is an established surgical procedure used to treat a variety of 

neurological symptoms, especially Parkinson’s disease (PD) symptoms, such as tremor, rigidity, 

bradykinesia, slowed movement, and walking problems.  At present, the procedure is used only 

for patients whose symptoms cannot be adequately controlled with medications. DBS uses a 

surgically implanted, battery-operated electro-medical device called a neurostimulator to deliver 

electrical stimulation to specified areas in the brain that control movement, blocking the 

abnormal nerve signals that cause PD symptoms.   

Before the procedure, a neurosurgeon uses magnetic resonance imaging (MRI) or computed 

tomography (CT) scanning to identify and locate the exact target within the brain where 

electrical nerve signals generate the PD symptoms.  Some surgeons also use microelectrode 

recording (MER), which involves a small wire that monitors the activity of nerve cells in the 

target area, to more specifically identify the precise brain target that will be stimulated.  The 

DBS system consists of three components:  the lead, the extension, and the neurostimulator.  The 

lead or electrode is inserted through a small opening in the skull and implanted in the brain.  The 

tip of the electrode is positioned within the targeted brain area. The extension is an insulated wire 

that is passed under the skin of the head, neck, and shoulder, connecting the lead to the 

neurostimulator.  The neurostimulator (the "battery pack") is the third component and is usually 

implanted under the skin near the collarbone.  In some cases it may be implanted lower in the 

chest or under the skin over the abdomen. Once the system is in place, electrical impulses are 

sent from the neurostimulator up along the extension wire and the lead and into the brain.  These 

impulses interfere with and block the electrical signals that cause PD symptoms. 
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Ideal targets for DBS that shows clinical benefits and minimal adverse effect after stimulation 

through the DBS electrode are the thalamus, subthalamic nucleus, and globus pallidus.  

 

Mechanism 

DBS injects electrical charge into the brain, mediated by ions. The therapeutic benefit of DBS is 

related to adequate neuronal activation which requires generation of electrical impulse across the 

cell membrane and its transmission to next neuron. DBS tend to depolarize the cell membrane 

i.e. open the ion channels that create electric impulse to transmit. Many factors are involved in 

this activation and stimulation effect, which include the volume of brain stimulated and the 

number of neuronal elements activated within that volume. Generally, the volume of brain 

activated is related to the size of the electric field generated by DBS. The number of neuronal 

elements within the volume activated is related to the current density, which is the concentration 

of electrons (ions) within the electric field. We can manipulate the size of the electric field by 

adjusting the voltage and the combinations of active DBS contacts. We can manipulate the 

current densities within the electrical field by changing the configuration of the active DBS 

contacts. For example, monopolar stimulation where a single contact on the DBS lead acts as the 

cathode (negative contact) and the impulse generator case acts at the anode (positive contact) 

generates less concentrated current densities compared to bipolar where the anodes and cathodes 

are on the DBS lead. 

 

Benefits and Risks of DBS: 

Many PD symptoms including tremor, rigidity, bradykinesia and festinating gait shows 

significant improvement with DBS surgery. While symptoms like speech, dementia and state of 
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mind (depression, anxiety, obsessive or compulsive) may not improve or even worsen after DBS. 

Simultaneous attention needs to be given to these symptoms also. Patients with normal memory 

function show no significant post operative decline in most routine memory tests. However 

Patients with dementia however do experience a decline which may or may not represent the 

natural history of dementia   

 

1.3 Brain Atlas [13]: Schaltenbrand-Wahren/Talairach-Tournoux brain atlas registration 

Brain atlas is a number of records of human brain structure accompanied with coordinates used 

in study of brain anatomy. The digital atlas system provides several tools for registration, 3D 

display and real-time manipulation, object extraction/editing, quantification, image processing 

and analysis, reformatting, anatomical index operations, and file handling. The two main 

stereotactic atlases provided by the system are electronic and enhanced versions of Atlas of 

Stereotaxy of the Human Brain by Schaltenbrand and Wahren and Co-Planar Stereotactic Atlas 

of the Human Brain by Talairach and Tournoux.  

 

1.4 Visual Representation of Clinical Scores and Description of Problem:  

In case of DBS, the effects of electrical stimulation on PD symptoms are clinically scored on the 

basis of UPDRS. Each of the observed point recorded from various patients during the DBS 

surgery indicates the efficacy distribution of DBS in the brain. The visual representation of these 

clinical scores in the form of contour maps requires constructing a function which closely fits 

those data point. The superimposition of these functional contours over the anatomical brain atlas 

slides can help us locate the high yield anatomical regions which are functionally efficacious for 

DBS therapy. The major limitation is the loosely distributed data set. The unevenly distributed 

clinical data points with a low sampling density makes it difficult to model the function and 



8 

 

visualize it. Another challenge here is to measure the reliability of the developed model. Since 

the data set required to support the efficacy estimation of a particular location is very less, we are 

required to find methods to optimize the estimation and reliability of the interpolated model.   

 

1.5 THESIS OVERVIEW: 

Deep brain stimulation (DBS) is an established clinical therapeutic method for the treatment of 

movement disorders, especially for patients with advanced Parkinson's disease. The therapeutic 

effects of DBS are significant in alleviating Parkinsonian motor symptoms and reducing 

dependence on dopaminergic drugs. The
 
subthalamic nucleus (STN) is accepted

 
target for this 

procedure. However, researchers have found variations in efficacy and side-effects of DBS 

therapy within and around the STN. Various investigative groups have proposed diverse optimal 

sites for the stimulation in this region, which includes the dorsolateral parts of STN[14] [15], 

dorsal/dorsomedial to the STN in the region of the pallidofugal fibres,  the caudal zona inceta 

(GILL), the preleminscal radiation (Velasco) and the rostral zona incerta (rZI) [14] [16] and at 

the junction between the dorsolateral part of the STN and the region dorsal/dorsomedial to it [17] 

[18]  [19]. In addition to the debate about the optimal target within the STN region, variations 

within the patient population further complicate matters [20, 21].    Microeletrode recording 

(MER) is the gold standard in determining the anatomic location of an electrode and can reliably 

identify the motor portion of the STN. However, the proposition of other sites requires not only 

identification of the site by MER but also assessment of the effect of stimulation in these areas. 

Additionally the various cardinal symptoms of Parkinson’s disease, namely tremor, rigidity, 

bradykinesia and voice status may differ in the location of their optimal treatment target. 

Considering these factors, it becomes necessary to study the functional effects of the DBS in a 

patient’s population across all these target areas in order to optimize and evaluate various DBS 
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targets for each of the cardinal symptoms of PD. The improvement in patient’s Parkinson’s 

symptoms are qualitatively measured and scored during the DBS surgery by assessing the
 

Unified Parkinson's Disease Rating Scale (UPDRS). In order to locate the optimal location of the 

DBS electrode, the surgeon needs to assess different electrode tracks and locations during the 

surgery. The location of the permanent electrode implantation is based upon the physiology 

assessed through MER and stimulation induced changes in the patient's PD symptoms as 

measured by the UPDRS during the DBS surgery. The change in UPDRS scores collected over 

number of patients for different Parkinsonian motor symptoms; along with the MER identified 

location of the electrode constitute a large database of dispersed AC-PC location in the STN 

region. This database of efficacy tied to anatomic and physiologic data obviously contains 

random variation and outliers making conclusions about efficacious areas difficult. Statistical 

analysis and modeling of efficacy distribution and variation in 3D space is required.  

In this study, we will explore various interpolation methods and other analysis tools for the 

accurate spatial realization of this type of data. We will study ‘Tessellation-based linear 

Delaunay triangulation interpolation’, ‘roving window interpolation’ (RWI)  [22] [23]and 

‘modified monopolar inverse distance weighted interpolation’ technique (MIDW) in context of 

our data type. The other challenge is to statistically optimize the data set and measure the 

reliability and robustness of the constructed maps. The effect and performance of the estimator, 

i.e. the bootstrapping outcomes will be verified by Monte-Carlo’s simulation.   

    

Objective:    

The overall objective of this study was to develop computational and analytical tools that help 

model the STN and surrounding region in the brain for their efficacy or side effects for DBS 
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therapy with respect to its boundaries and obtain an optimized topographical map of the brain 

region, reconstructed from clinical scores, based upon UPDRS. A systematic approach has been 

employed to develop the functional model, handle the variability issue, optimize the model and 

representation of the distribution contours. For instance for various interpolation techniques were 

studied and analyzed to find out the most appropriate technique that model the unique data-type 

with high predictability and accuracy. On the other hand various measures and tools are also 

explored and developed to handle the data variability and optimize the model.   

Description of Chapters 

This project involves developing various tools that facilitates better analysis of the DBS efficacy 

distribution and variations.  Chapter 2 provides a brief description of the patient, surgical 

methods and data collected for analysis. Chapter 3 and 4 focus on the development of techniques 

for functional modeling and interpolation of the data points. Here chapter 3 deals with the 

general UPDRS data points while chapter 4 deals with the specialized requirement for different 

modeling techniques for monopolar and bipolar stimulation data sets.  Chapter 5 focuses towards 

the different types of variability present in the database and techniques to measure and optimizes 

it in the model. Chapter 6 explains the additional tools and GUI that could help study the specific 

functional property of the region of interest.    The statistically optimized and interpolated 

realizations were used to develop a functional model for DBS locations, with optimal reliability 

and accuracy. This will help DBS practitioners to locate the most promising site for stimulation. 

 

A systematic step-by-step description of the methods is provided for each chapter. Additional 

details about the methods have been included separately in an Appendix at the end of the 

dissertation. A separate section in Appendix is dedicated to the user manual prepared for the 
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PDRG_GUI which facilitates endpoint users to easily study and analyze the DNS efficacy 

distribution using the developed tools and techniques described in this paper.  
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CHAPTER 2: Patients and Data 

 

This Chapter provides a brief description the patients, stereotactic and surgical method employed 

for DBS therapy and data collected for analysis. It also describes the calculation to change score 

values which serve as the functional data for the modeling in next chapters. At the end of the 

chapter a short description of the data distribution is given. 

 

2.1. Surgical Methodology and Data Collection 

During the placement of 69 deep brain stimulators in the subthalamic region for the treatment of 

Parkinson’s disease, 657 points were evaluated for their MER identity and the effect of 

stimulation on the intraoperative UPDRS score. Surgeries were performed at the Medical 

College of Virginia Hospital (MCVH) or McGuire Veterans Affairs Medical Center using the 

CRW frame or a frameless stereotactic system (NexFrame).   

 The stereotactic target was identified on a MRI merged to a CT with either the CRW localizer or 

bone fiducials.  All stereotactic targets and locations were described in relation to the midpoint of 

a line drawn from the midline of the anterior commissure (AC) and the midline of the posterior 

commissure (PC) after correction of roll, pitch, and yaw. The initial target for the subthalamic 

nucleus (STN) was 12 mm lateral, 4 mm posterior, and 4 mm deep to the mid AC-PC point.   A 

burr hole was created 2.5 - 3.5 cm off the midline anterior to the coronal suture.  A cannula was 

placed through the stereotactic device and advanced into the brain.  A microelectrode (ME) was 

then advanced with a microdrive to the target.  Prior to the development of the MacroStim 

Interface (MSI) (FHC Inc., Bowdoinham, Me., USA), the ME was exchanged with the DBS for 

test stimulation. A bipolar configuration with the most distal contact being negative and next 

contact being positive at 3 volts was employed. After the introduction of the MSI, 
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macrostimulation was performed with the macro contact ring of the microelectrode.  The MSI 

connects the Medtronic screener box (stimulation generator) to FHC’s microTargeting™ 

differential recording electrodes, thus routing the current to the macro contact ring. In order to 

provide matching current density to the DBS, the MSI is set at 6 volts.  Macrostimulation was 

conducted at a pulse width of 60 µs and 185 Hz at 2 mm intervals starting 10 mm above target 

and extending a variable distance below planned target depth.   

Intraoperative efficacy assessment was based on change from baseline score on a modified 

Unified Parkinson Disease Rating Scale (UPDRS) scale as well as assessment of side effects at 

twice therapeutic voltage at the planned final depth.  

A modified UPDRS score was obtained utilizing the components of the UPDRS that can be 

tested while the patient is on the operating table (see table x). Only the affected side is assessed. 

Change in subscores for tremor, rigidity, limb bradykinesia, and voice were calculated for each 

location. In addition the overall efficacy at each location was assessed as a percentage change 

from the baseline total score. The intraoperative macro-stimulation efficacy was  determined by 

change from baseline UPDRS exam with stimulation and was expressed as a percentage.  

 

 After MER and test stimulation, a conclusion was reached by the operative team as to the 

location of the electrode within the target region, and a decision was made to implant the DBS or 

move to another track.  If another track was chosen, the direction and distance of the move was 

recorded. This process was repeated until the team felt that one of the tracks was located at an 

appropriate location. This decision was based on MER, macrostimulation efficacy, and a lack of 

significant macrostimulation-induced side effects at a low voltage. No attempt was made to fully 
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map the nucleus; the number of tracks was a reflection of the least number required to identify a 

therapeutic target.  

Once a final track was chosen, the ME was replaced with the DBS lead. The lead was secured 

using the Medtronic burr hole cap or the StimLoc device (Image-Guided Neurologics, Inc. 

Melbourne, FL, US) (Medtronic, Inc., Minneapolis, Minn., USA) under fluoroscopic monitoring.  

At the end of the surgical procedure the patient was taken to the CT scanner and a CT at 1-2 mm 

intervals was obtained.  This CT was then fused to the preoperative CT and MRI in the Stealth 

Station to obtain the AC-PC coordinates and angles of trajectory of the final DBS location.   

The AC-PC coordinates and trajectory of the DBS lead is determined by post-operative imaging. 

The MER tract locations are then identified by their distance from the final trajectory. The AC-

PC location of each stimulation point is calculated and each point is labeled as STN, SNR, or ZI 

based on the microelectrode sampling at that location.  

 

2.2. Score Coordinates and Change Score Values: 

The data obtained during the surgery (as explained above) are the intraoperative assessment of 

change in the clinical symptoms of Parkinson patients while undergoing DBS surgery. The 

clinical scores are the qualitative rating given by the surgeon and clinical staff during the 

surgery, by assessing the
 
Unified Parkinson's Disease Rating Scale (UPDRS),

 
while patients 

were receiving deep brain stimulation. Each of its components is rated on the scale of 0 (normal) 

to 4 (worst). These clinical sub-scores reflect improvement or worsening in one or more 

characteristic Parkinson disease’s symptoms in the patient, which includes tremor, bradykinesia, 

rigidity and voice assessment. Each assessment is compared with the baseline score obtained 

without stimulation. The sum of various sub-scores obtained after stimulation at a particular spot 

in deep brain, reflects the overall efficacy and sensitivity of that location for DBS therapy. All 
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electrode positions were defined by their stereotactic Cartesian coordinates, referenced to the 

AC-PC midpoint (Schaltenbrand-Wahren Atlas).  For each location stimulated, a clinical score is 

assigned to its location. The overall efficacy can be assessed as a percent change from the 

baseline score as represented by the following formula:  

Percentage Change Score, P =   
Cbase  −  Cscore

Cbase
 × 100   

Where Cbase  is the baseline value and Csc ore  is the change score value. 

In addition, change scores can be assessed for each symptom subscore, like 

Subscore Percentage Change Score, P =   
CSubS −base  −  CSubS −score

CSubS −base
 × 100   

 

2.3 Data Description and Categorization  

This study involves the data obtained from 50+ patients during their DBS surgery, in past 10 

years, in Medical College of Virginia, Richmond (VA) and VA Hospital, Richmond (VA). A 

total of 662 data points and their corresponding change score values were collected from above 

patients. Figure 1a and 1b shows the distribution of the change scores and percentage change 

scores in the database respectively. More the change score value of the data point more is the 

level of its efficacy towards the DB stimulation. Figure 2 shows the 3D distribution of the most 

efficacious data points (hot spots) for DBS in the ROI. Here the percentage change scores 

(Percch) of 70% or above are taken as the most efficacious (hot) observations.  About 371 of the 

data points are from left side and 291 from right side of the brain. Anatomically, out of the 662 

observations, 244 data points corresponds to the Sub-thalamic nuclei; 357, 50 and 11 data points 

corresponds to White matter, GPi and thalamus respectively.  The region of interest is limited to 

a very specific region in brain defined in lateral direction [4 20] apc= [-14 6] and vertc= [-14 12].   
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Figure 1: The distribution observation points of the and percentage change scores values in the 

database 

Figure 1 indicates that most of the data in the dataset has functional change scores in between 0 

to 80%. Clinically the functional scores of more than 70% efficacy are considered as high 

efficacy 

 

Figure 2: The 3 Dimensional distribution of the most efficacious data points (hot spots) for DBS 

in the R.O.I.  (percentage change scores >  60%) 

 

data. The final tracks have more efficacious data then rest of the tracks. Comparison of final 

tracks and rest of the tracks, would provide an better understanding for track selection. 
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The sum of various sub-scores obtained after stimulation at a particular spot in deep brain, 

reflects the efficacy and sensitivity of that spot for DBS therapy. These spots are defined by their 

Cartesian coordinates, with respect to the AC-PC line (refer: SW Atlas). The obtained data can 

further be sub-categorized on the basis of anatomical location of the stimulating electrode; 

stimulation techniques (DBS and micro-canula based); tracks or passes into the brain on each 

side; and final tracks where electrodes are  implanted permanently because of the identified 

efficacy  
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CHAPTER 3: Interpolations and Computational Modeling 

INTRODUCTION 

Background  

Interpolation is a method of estimating functional values of new data points within the range of 

a discrete set of known data points by taking a weighted average of known functional values at 

these neighboring points. The output of sampling or experimentations in science and engineering 

yields functional values for a number of dispersed data points. The task of spatial interpolation is 

to construct a function that closely fits those points and approximate the functional values of the 

unexplored points. Fig 3.1 shows a simple example to understand interpolation method employed 

to model data points in 1D space.  In this example (Mathworks, Natrick, MA), a signal is setup at 

y = [0 .5 1 1.5 2 1.5 1 .5 0 -.5 -1 -1.5 -2 -1.5 -1 -.5 0]; refer figure 3.a. Interpolation is then 

performed, using MATLAB 1D FFT interpolation function ' interpft', over this signal to produce 

other data points in the range of given data points, refer figure 3.b.   Figure 4 shows interpolation 

applied in 2D and 3D space. 

Figure 3: Interpolation in 1D. (a) Original signal; y (b) Interpolation over y. 



19 

 

 

Figure 4: Interpolation applied in 2D and 3D space. Source: en.wikipedia.org 

There are two main factors which govern the suitability of any interpolation technique in a 

particular discipline, namely, interpolation error and predictability. The interpolation tends to 

approximate a complex function (defining real spread of the functional values in ROI) by a 

simpler function, which yield an error depending upon the type of interpolation and level of 

assumptions. The interpolation methods having smaller interpolation errors produce smoother 

interpolants those are well fitted for the given data set, for instance polynomial interpolation are 

more smoother than linear one, but have increased complexity. Additionally, a method that fits 

well with some data can be unsuited for a different set of data points, or if measured in different 

locations of the same surface (Caruso). Hence, another criteria predictability or degree of 

prediction is important while considering interpolation reliability. The degree of prediction 

indicates the robustness of the produced model for new data sets.      

There are many interpolation methods used to model randomly spaced point data. Some of the 

commonly used interpolation methods are linear triangulation interpolation, Inverse distance 

weighted method (IDW), Kriging, polynomial interpolation, tension finite difference method, 
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nearest triangle-based nearest neighbor interpolation, tetrahedron based linear interpolation, 

Hardy’s interpolation, least square quadratic interpolation, or their modified forms. The selection 

of the most appropriate interpolation technique is based on the specific aim of the interpolation 

and the type and properties of the input data. Interpolation techniques utilizes various 

mathematical, physical and biological weighing factors to create the appropriate function, 

depending upon the type of data and the properties of the region. These factors may include 

electromagnetic field effects, impedance; geographical and environmental factors etc.    

Applications to Interpolation: These various interpolation provides methods for transformation of 

values representing landscape phenomena measured at scattered points in a geographical region; 

3D activation mapping in ventricular muscles; modeling biopotentials;  image reconstruction 

from CT and MRI scans; texture synthesis; in digital signal processing, interpolation converts a 

sampled digital signal to a higher sampling rate using various digital filtering techniques.  

Interpolation in DBS efficacy visualization: 

For the visual representation of DBS clinical scores it is required to construct a function which 

closely fits those data point. Since the data type used to analyze the efficacy distribution and 

mapping is very unique, which consist of rating scores assigned to random scattered points in the 

ROI, the data analysis tools including the interpolation methods used to explore these efficacy 

scores haven’t been studied systematically. In this study, we addressed this need by exploring 

and comparing various interpolation methods, effects of variation in various parameters involved 

in these methods and other analysis tools for the accurate spatial realization of this type of data. 

In general interpolation is a method of constructing new data points within the range of a discrete 

set of known data points. The objective of this study was to develop computational and analytical 

http://en.wikipedia.org/wiki/Discrete_set
http://en.wikipedia.org/wiki/Discrete_set
http://en.wikipedia.org/wiki/Discrete_set
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tools that help model the STN and surrounding region in the brain for their efficacy or side 

effects for DBS therapy with respect to its boundaries and obtain an optimized topographical 

map of the brain region, reconstructed from clinical scores, based upon UPDRS. 

In this study, we explored and compared various interpolation methods, effects of variation in 

various parameters involved in these methods and other analysis tools for the accurate spatial 

realization of this type of data. We studied ‘Tessellation-based linear Delaunay triangulation 

interpolation’, ‘roving window interpolation’ (RWI)  [22] [23]and ‘modified monopolar inverse 

distance weighted interpolation’ technique (MIDW) in context of our data type. The MIDW 

interpolation technique is a modified form of RWI,  developed on the basis of electric field 

geometry of the DBS monopolar electrode [24]. The developed model is intended to represent 

the high efficacy deep brain region, stimulation of which provides considerable improvement in 

PD symptoms. 

METHODS 

 

Interpolation Techniques  

Three interpolation techniques for functional DBS mapping were investigated and the 

corresponding accuracy in estimating optimum efficacy level at unassigned locations within the 

ROI was evaluated. The techniques were the Tessellation-based ‘linear Delaunay triangulation’ 

interpolation,  the ‘Roving window’ (RW) interpolation [22] and the modified monopolar 

Inverse-distance weighted method (MIDW) based on the point source approximation DBS model 

[24].  

a. Tessellation-based ‘Linear Delaunay Triangulation’ Interpolation 

2.4.1. Tessellation-based ‘linear Delaunay triangulation’ interpolation:  
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We used MATLAB griddata3 function which fits a hyper-surface of the form W = F(X,Y,Z) to 

the data in the (usually) nonuniformly-spaced vectors  (X,Y,Z,V).  GRIDDATA3 interpolates 

this hyper-surface at the points specified by (XI,YI, ZI) to produce three dimensional 

interpolation matrix, W. The method is based on Delaunay triangulation of the data that returns a 

set of simplices such that no data points are contained in any circumspheres of the simplices. The 

set of simplices forms the Delaunay tessellation. Then closest simplex is searched for the 

enclosing simplex of the Delaunay tessellation for each point in ROI. The function that defines 

the efficacy level at each point in ROI is given as:  

𝑍𝑖 𝑖 = 𝑝 𝑖, :  × (𝑡𝑟𝑖(𝑡 𝑖0, :  ) 

The purpose is to identify a neighborhood of nearby observation points to be used in the 

interpolation. Two options are available to perform the interpolation. The simplest method is a 

linear interpolation of the vertices of the triangulation. In this case, the barycentric coordinates of 

the point are used to take a weighted average of the three observation values (associated with the 

three vertices of the triangle). The resulting interpolation function is continuous, but not 

differentiable across an edge. 

 

Figure: A 3-D Delaunay triangulation produces tetrahedra that satisfy the empty circumsphere 

criterion. Source: Mathworks, Natrick, MA 
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b. Roving window (RW) interpolation (Shenai et al.) 

In this method, the whole ROI is modeled as a 41 X 33 X53 point grid system which divides it 

into 71709 voxels of size 0.125 cubic mm (0.5X0.5x0.5). Here the 3D region was selected to 

encompass the STN, GPI and the white matter around it. point grid, with points (x i , y j ) is 

constructed in the AC-PC plane of interest at z = Z (the numerical instance along the vertical 

coordinate, z). A 3-dimensional iterative process is executed, with each point (x i , y j, zi ) 

serving as the center of a mathematical sphere with radius (r) = 2 mm. At each of these points the 

observations are searched from the databases that are contained within this sphere centered at the 

particular grid point. The change score values of these observations are averaged and saved as 

‘mean (v)’. The assignment of the final scores for that point is calculated on the basis of 

following function: 

Zi =  mean (v) ;     if number of observations found within the sphere is greater than or equal to 

5 AND standard deviation of the change scores of these observations are 

less than 1.5.  

 No score;       else  

 

c. MIDW Interpolation Techniques 

The MIDW interpolation method is similar to the RW interpolation method except that the 

inverse distance- weighted score is assigned to the selected grid point instead of the simple 

average of the score values of the observation points within the sphere. The sphere surrounding 

the point location, where the new interpolated score needs to be calculated, is termed as search 

window with radius ‘r’.   

The algorithm employed for the MIDW interpolation is as follows:- 
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1. The whole ROI was modeled as a 41 X 33 X53 point grid system which divided it into 

71709 voxels of size 0.125 cubic mm (0.5X0.5x0.5 mm
3
), in which the 3D region was 

selected to encompass the STN, thalamus and the white matter around STN.  

2. At each of these grid points in the ROI, the observation points were searched from the 

point centered at the selected grid in a sphere (search window) with the radius, r = 2 mm 

in the databases. 

3. Each observation points present in the search window contribute its efficacy effect at the 

selected interpolant point by inverse distance weight [25-27]. Here, the property at each 

unknown interpolant location for which a solution is sought is given by: 

𝑃𝑖 =

 
𝑃𝑗
𝐷𝑖𝑗

𝑛
𝐺
𝑗=1

 
1
𝐷𝑖𝑗

𝑛
𝐺
𝑗=1

 

Where Pi is the efficacy score calculated at interpolant location i given by coordinate (xi, 

yi, zi) ; Pj is the change score value at sampled location j; Dij is the distance from the point 

location i to the point location j; G is the number of sampled locations (those which are 

within the sphere centered at point location i); and n is the inverse-distance weighting 

power. 

4. Repeated calculated for all the grid points in R.O.I. 

5. The output of the above 3D iterative process is the estimate of DBS efficacy distribution 

in the ROI. The produced interpolations were than visualized using MATLAB 2D 

plotting function ‘counterf’ providing a 2D map of the selected plane in ROI.    

 

The two important varying parameters involved in the calculations of MIDW interpolation were 

the search window radius (r) and inverse-distance weighting power (n). The inverse-distance 



25 

 

weighting power is the exponent of inverse distance (D) in MIDW formula (step 3 above). The 

weighting power defines the rate at which weights fall off with distance between the 

interpolated and the sample locations. A typical value of range is 1-4. To analyze the effect of 

both of these parameters we performed MIDW interpolation of the dataset using the 

combinations of ‘r’ and ‘n’. Then we compared their interpolation errors and predictability to 

deduce the optimum combination for suitable realization.  

 The value of n, in effect, controls the region of influence of each of the sampled locations. As n 

increases, the region of influence decreases until, in the limit, it becomes the area which is closer 

to point I than to any other. When n is set equal to zero, the method is identical to simply 

averaging the sampled values. As n gets larger, the method approximates the Voronoi 

tessellation procedure (Watson and Philip, 1985). Usually, the value of n is set arbitrarily. Values 

of 1.65 and 2 were used for n by Kelway (1974) and NOAA (1972), respectively, for 

interpolating rainfall, while the ARMOS model (Kaluarachchi et al., 1990) recommends the use 

of values ranging from 4 to 8 for interpolating oil pressure heads. 

 

Figure: (a)Result of searching observation points in search window (b)Efficacy Distribution due 

to Single Electrode Stimulation' 
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Comparison of the performance interpolation methods 

The performance of the interpolation method was characterized by the normalized interpolation 

errors, i.e. the normalized root mean square error [28] for the interpolation:  

Normalized RMSE =  
   VR − WI 

2N
i=1

N
Rn

 

Where VR is the observed sample value and WI is the interpolated value at a selected coordinate 

point in ROI. N is the number of the observation points and Rn is the range of score values (in 

case of percentage change value, Range = (100 – (-100)) = 200). 

Cross-Validation of Developed Model: Find out Predictability of the interpolation method. 

The robustness of the investigated interpolated methods was evaluated by the cross-validation 

methods. The ‘Leave one patient out cross-validation’ (LPOCV) and ‘Leave one observation out 

cross-validation’ (LOCV) ([29], Andrew and W. Moore) techniques were employed. For 

LPOCV, a single patient was arbitrarily selected and all his/her related observations were 

temporarily removed from the dataset. The rest of the dataset was used to construct the 

interpolations using the interpolation methods employed. The models then were cross-validated 

using the data from the excluded patient. The above process was repeated for every patient and 

the mean error was measured. Similarly, for LOCV, one observation was left out from the whole 

data set and the rest data was used to interpolate. The left out observation was used to cross-

validate. This procedure was repeated for every observation in the dataset. 

The performance to cross-validation was measured by the degree of prediction of the constructed 

mathematical model with respect to the new or the excluded data. The predictability or the 

degree of prediction of the interpolated model was determined by the expected variance denoted 

by R
2
 [30]. The more the R

2
 is near to 1, better the calculated data fits the measured one.  
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Degree of Prediction, R2 =  1 −  
 (wi −  VR)2

N

 (VR −  VAV )2
N

 

Where VR is the observed sample value and wi is the interpolated value at a coordinate point in 

ROI; VAV is the average of all observations.  

 

RESULTS 

Interpolations of Data 

Figure 1depicts the contour maps constructed from the 3 different interpolation techniques, 

namely Tessellation-based ‘linear Delaunay triangulation’ interpolation (fig. 1a,d,g), ‘Roving 

window’ interpolation (fig. 1-b,e,h) and Monopolar Inverse-distance weighted interpolation (fig. 

1-c,f,i) in lateral (fig. 1-a,b,c), coronal (fig. 1-d,e,f) and transverse planes (fig. 1-g,h,i). The 

figures 1-c,f,i shows the contour maps produced using MIDW interpolation method with search 

window radius 2 mm and power of inverse distance as 3.  

We can easily locate the red spot in lateral plane, near point (-3, -5) in all three interpolation 

realizations. The presence of poor efficacy spot (blue spot) at (-5,-5) is most prominent in Linear 

triangulation map, a little faded in MIDW map, but almost absent in RW map. The extent of the 

map boundaries (region covered) is more in RW and MIDW interpolations than Triangulation 

interpolation. Also, from transverse plane maps, the triangulation and MIDW maps show gradual 

gradation of hot and poor spots which helps locating the center of major spots.    
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Figure 5: the contour plots comparing the three interpolation techniques on three different 

planes. Figure 1a-b-c, 1d-e-f and 1g-h-i shows the interpolated contour plots in lateral plane at 

a coordinate point 8 mm right from the center of AC-PC, coronal plane at a coordinate point 10 

mm posterior to the AC-PC and transverse plane at a coordinate point 4 mm inferior to the AC-

PC respectively . Figure 1a shows the Triangulation interpolation, Figure 1b shows the Roving 

window maps and figure 1c shows the MIDW contours for monopolar stimulation. The 

percentage change in score value (or percentage efficacy) are represented by color bars, where 

dark red color indicates the highest efficacy region (hot spot) while blue color shows poor 

efficacy towards DBS.  

 

Comparison of Interpolation Methods and Interpolation Errors  

Table 1 depicts the results of comparison among 3 different interpolation methods described 

above. First column shows the Normalized root mean square error for the above categories 

whereas the second column depicts the interpolation error with respect to the original value. The 
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results are shown for two different categories of datasets. First the entire dataset of all the 

patients who had undergone DBS is used for modeling and error calculation. Secondly, the part 

of monopolar DBS dataset is considered which is collected from subthalamic nucleus only.  For 

both the dataset groups, there is sufficient evidence that the Linear Triangulation interpolation 

method models the database with better accuracy than RW interpolation. However, MIDW 

interpolation with optimized parameter values (r=2 mm, r
3
) shows much improved accuracy as 

compared to LT and RW method.  Additionally, the interpolation errors were less when 

observations from only STN are modeled.  

Table 1 

Interpolation Errors 

 Normalized Root Mean Square Error (RMSE)  

Data Modified MIDW 

(D
3
) 

Linear Triangulation Roving Window 

Interpolation 
 

Entire data 0.0903 0.1219 0.3006 

Data from STN 

region. 

0.0913 0.1943 0.3032 

 

Table 2 shows the effect of varying parameters the search window radius (r) on the interpolation 

accuracy.  The roving window technique is shown as a case of MIDW Interpolation where 

inverse distance weight has zero power. Linear Triangulation results are also included for 

reference. From these comparisons and by observing the continuum of the produced maps in 

each case (reference my thesis) the optimum search window radius is found to be 2 mm. As we 

reduce the radius, the interpolation error reduces to a nadir at 2mm and then it increases slightly 

at 1mm.  Table 3 shows the effect of varying power parameter of inverse distance weight in 
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MIDW interpolation method. A value of 1-4 is typical for the power factor. It is found that as the 

power factor increases the accuracy of the interpolation increases.  

Table 2  

Effect of varying radius in MIDWI:  

Normalized RMSE 

Data Triangulati

on  

RW I  MIDW (varying radius of search window) for r
2
. 

 -- -- r =1 r =2 r =3 r = 4 

Entire data 0.1219 0.3006 0.1323 0.1297 0.1459 0.1581 

Data from 

STN  

0.1943 0.3032 0.1296 0.1267 0.1324 0.1394 

 

Table 3  

Effect of varying power of inverse distance weight in MIDWI:  

Normalized RMSE 

 

Data 

Trian-

gulation  

Roving 

Window  

Modified MIDW (varying power of inverse 

distance) for r = 2mm 

 -- D
0 

D D
2 

D
3 

Entire data 0.1219 0.3006 0.2140 0.1304 0.0903 

Data from 

STN region. 

0.1943 0.3032 0.2170 0.1274 0.0913 

Table 4 depicts the result of cross validation (in terms of predictability for new set of 

observations) of the above described interpolation methods with varying parameters in case of 

MIDW interpolation. It is found that Linear Triangulation interpolation method has the best 
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predictability (nearer to 1) as compared to any other interpolation method, in both the data 

categories. The MIDW has better predictability than RW method. 

Table 4  

Cross Validation: Degree of Prediction  

Prediction R
2
 (Expected Variance or degree of Prediction) 

Leave one patient out CV 

 

Data 

Trian-

gulation  

Roving 

window   

Modified Monopolar 

(varying power parameter of 

inverse distance) 

Modified Monopolar (varying radius 

of search window) for r
2
. 

  D
0 

D D
2 

D
3 

r =1 r =2 r =3 r = 4 

Entire data 0.2986 0.0367 0.0441 0.0822 0.1420 0.0535 0.0822 0.0437 0.0447 

Data from 

STN  

0.7629 0.2768 0.3151 0.4056 0.5088 0.2320 0.4056 0.1216 0.1456 

Leave one observation out CV 

 Triangulation  Mahesh (RW)  Modified Monopolar Interpolation 

(r
3
) 

Entire data -0.2032 -0.0460 -0.1492 

 

Figure 2a shows a plot of Interpolation Error and predictability as a function of power of inverse 

distance weight in MIDW interpolation method. From this graph, as the power increases from 

the factor of 3, the increment slope in predictability and decrement slope of interpolation error 

both tends to become straight. Thus, power factor of 3 can be considered as optimum in case of 

MIDW interpolation. Figure 2b shows a plot of Interpolation Error and predictability as a 

function of radius of search window in MIDW interpolation method.  From this graph, it is clear 

that the optimum search radius is at r = 2mm.  

 



32 

 

 

Figure 6. (a) Predictability and RMSE versus Power of IDW; (b) Predictability and RMSE 

Versus radius of search window 

DISCUSSION: 

This study indicates that the MIDW interpolation is most suitable technique to model the DBS 

efficacy among the explored methods, in terms of a balance between interpolation accuracy, 

predictability and electro-physical considerations. This methodology was used to create a visual 

representation of DBS efficacy distribution by constructing a function which closely models the 

efficacy levels of previously observed data point and generate a reliable and robust estimation for 

new locations in the ROI.  

Since the data type used to analyze the efficacy distribution and mapping is very unique, which 

consist of rating scores assigned (efficacy for DBS) to random scattered points in the ROI, the 
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data analysis tools including the interpolation methods used to explore these efficacy scores 

haven’t been studied systematically. This type of data needs suitable interpolation tools that fit 

the requirements to construct new data points within the range of a discrete set of known data 

points. Tessellation-based ‘linear Delaunay triangulation’ interpolation is an established 

technique for interpolation that proved to be a well suited for estimating new data points where 

the known data points are randomly scattered in the ROI. It fits a hyper-surface in the non-

uniformly spaced vectors and interpolates this hyper-surface to produce three dimensional 

interpolation matrixes. It shows an acceptable predictability (R
2
 = 0.2986 for entire ROI and R

2
 = 

0.7629 for the sub-thalamic nucleus) and accuracy (Normalized RMSE = 0.1219 and 0.1943 for 

entire ROI and the sub-thalamic nucleus respectively). However, this technique has limitation of 

inability to correctly interpolate concave objects [31].  Additionally, it doesn’t consider 

representation of ROI in terms of the distribution of electrical potential of the DB stimulation. 

[32] and [31] used linear triangulation along with surface smoothing techniques like mesh cubes 

(also used in [33]), but to develop deformable brain atlas modeling the anatomical sub-structures. 

Due to the fact that MIDW interpolation considers the electric field geometry and has better 

interpolation accuracy (Normalized RMSE = 0.0903 and 0.0913 for entire ROI and the sub-

thalamic nucleus respectively), MIDW also proves to be a reliable tool for analysis. IDW 

interpolation was used previously in [34] to develop a continuous and smooth variation maps on 

sampling data. Considering the effect of varying power of radius, the interpolation error 

(Normalized RMSE) and the degree of prediction (R
2
) becomes better as the power increases. 

Similarly, if the radius of activation sphere around the point is varied, the optimum radius comes 

out to be r = 2 mm. Increasing or decreasing radius from 2 mm, results in worst output.   The 

roving window interpolation method [22] [35] also analyzes the collection of neighboring data 

http://en.wikipedia.org/wiki/Discrete_set
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points around the interpolant points, but do not consider the effect of distance from the 

stimulation spot on the tissue activation.  

The MIDW interpolation is a modification of roving window technique which tends to exploits 

the electric field geometry of the stimulating electrodes [22]. The UPDRS value at a stimulation 

spot indicates the efficacy level of that spot for DBS therapy in terms of improvement in PD 

symptoms. The functional configuration of this spot and its surrounding region is based on the 

activation field generated by the DBS electrodes during the stimulation. The tissues present at 

the electrode-tissue interface experience significant electric field effect which shows the relevant 

improvement in the external PD symptoms. However as the distance from the electrode 

increases, the strength of electric field and thus the tissue activation level reduces (inverse square 

proportionality), and so the contribution of far tissues toward the observed improvement (or 

worsening). Hence, a high UPDRS value (considerable improvement in PD symptoms) at a 

particular spot in the brain demonstrates high sensitivity of the tissues present at that spot for 

DBS therapy which decreases as we move away from the spot. MIDW Interpolation method is 

adapted based on the of point source approximation DBS model of monopolar cathodic 

stimulation of brain tissues [24]. Although, factors like tissue impedance and conductivity, 

internal neuronal connections and anatomical inconsistencies were not considered in the model. 

The roving window and MIDW interpolation methods open the path towards development of 

better modeling techniques for the DBS efficacy, with lesser processing time [35].  

 

 

 

 



35 

 

CHAPTER 4: Monopolar and Bipolar DBS Modeling 

 

Introduction 

The therapeutic efficacy of DBS in PD is associated with the appropriate activation of neuronal 

elements, which depend upon the volume of stimulated region and number of neuronal elements 

activated within that region (Montgomery).  These factors are related with the size of electric 

field and current density within the stimulated region respectively and can be manipulated by 

controlling DBS voltage and configuring active DBS contacts. By controlling the voltage and 

electrode configurations, an enormous number of electric fields can be generated with different 

sizes and strengths. This has the advantages of allowing the DBS electrical field to be tailored to 

the unique regional anatomy of each patient and the unique relationship of the DBS lead to the 

patient’s regional anatomy.        

The monopolar and bipolar DBS generate different electric field in the deep brain tissues and 

thus activate them in different manner. In order to get a better picture of the scenario, we need to 

analyze both the data type altogether, handling them with different interpolation techniques, that 

mathematically and electrostatically fit their activation geometry. The proposed adaptive 

interpolation technique appropriately maps the efficacy level of the entire region of interest and 

functionally models the hot spots for DBS therapy.  

 

Monopolar versus Bipolar DBS 

Monopolar and bipolar are the two possible electrode configurations used in DBS therapy. 

Monopolar stimulation where a single contact on the DBS lead acts as the cathode (negative 

contact) and the impulse generator case acts at the anode (positive contact) generates less 
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concentrated current densities compared to bipolar where the anodes and cathodes are on the 

DBS lead. The monopolar and bipolar DBS creates different electric field in the deep brain 

tissues. In the case of monopolar DBS, the lines of electrical force radiate outwards from the 

cathode on the DBS lead and the activation region (~ isosurfaces) around the electrode are 

concentric spheres equidistance from the electrode location. The strength of electric field (effect) 

decreases (inverse proportionality) as we go away from the source. The effect of DBS (UPDRS 

scores) at any stimulation spot indicates the efficacy level of that spot for DBS. This also 

indicates the activation level of the spot and the surrounding tissues, which decreases with the 

distance from the electrode location. the factors like tissue impedance, regional anatomy, 

orientation plays important role in formation of activation region around the electrode. On the 

other hand, bipolar stimulation creates electric field lines radiating from positive electrode to the 

negative one, forming an elliptical shape. The system generates isosurfaces around each 

electrode (positive and negative), depending upon its strength and the distance between the two 

electrodes. monopolar stimulation the widest spread of the electrical field at the same relative 

voltages than bipolar DBS. 

 

 

Figure 7. monopolar and bipolar electrode leads   



37 

 

Specifications and configurations of DBS leads: commercially available Medtronic DBS lead 

3387 and 3389 specifications: (Medtronic model 3387, Medtronic Inc., Minneapolis, MN) 

1. Distance from tip to  electrode 'o'  positions (which I guess is the negative electrode) is 

(1.5+1) ~ 2.5 mm.  

2. Similarly distance from tip to electrode '1' position (Positive Electrode)  is ~ 5 mm (4 

mm in case of 3389). 

3. If we consider that  the negative electrode has larger amplitude we can approximate the 

location of activation centre in this case to be ~ 2.22mm from the tip data. 

4. However, more realistically we can consider the activation centre to be somewhere in 

between the large negative and small positive electrodes, which comes out to be ~ 3.75 

mm (for 3387) or ~ 3.2 mm (for 3379). 

 

Figure 8. Medtronic DBS lead 3387 and 3389.  

Source: ttp://professional.medtronic.com/products/ 

 

Concept of Inverse Distance Modeling: 

This technique explores the electric field geometry of the stimulating source. The UPDRS score 

at a stimulation spot indicates the efficacy level of that spot for DBS therapy in terms of 

improvement in PD symptoms. The functional configuration of this spot and its surrounding 

region is based on the activation field generated by the DBS electrodes during the stimulation. 

The tissues present at the electrode-tissue interface experience significant electric field effect 

which shows the relevant improvement in the external PD symptoms. However as the distance 

from the electrode increases, the strength of electric field and thus the tissue activation level 

reduces (inverse distance proportionality), and so the contribution of far tissues toward the 
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observed improvement (or worsening). Hence, a high UPDRS value (considerable improvement 

in PD symptoms) at a particular spot in the brain demonstrates high sensitivity of the tissues 

present at that spot for DBS therapy which decreases as we move away from the spot.  

 

Monopolar Vs Bipolar Stimulation Modeling: 

Monopolar Interpolation method is based on the of point source approximation DBS model of 

monopolar cathodic stimulation of brain tissues (Zhang and Grill). The stimulation spot is 

considered as a monopole and the corresponding efficacy distribution is calculated based upon 

the inverse weighted distance interpolation method (Lam, 1983).  However, in case of bipolar 

stimulation, the electric field effect and thus the activation geometry are different than that of 

monopolar. The stimulation spot is model as 2 separate monopoles. The system generates 

isosurfaces around each of the monopole (positive and negative), depending upon its strength. 

The resultant efficacy at a point location is the weighted efficacy due to the combined dipole. 

The calculation of weight factor here is based upon the vector resultant of the activation level (or 

the electric field) of the two monopoles at that point.  The weight factor considers both the 

distance and orientation of dipoles with respect to the point location.  
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METHODS 

Monopolar Versus Bipolar Inverse Distance weighted Interpolation  techniques. 

Compensation of the effect of mono-polar and bipolar electrode stimulation techniques. 

In order to compensate the difference in activation region and iso-surface produced by 

monopolar and bipolar stimulations with respect to their electrode tip location respectively, we 

tried the following separate interpolation techniques. Detail description of the interpolation  are 

as follows:-  

For Bipolar simulation Interpolation:  

1. Consider a point in the meshgrid 

2. For each point in the region of Interest, search for bipolar observation points located 

within a sphere of radius 2 mm around the selected point. 

3. For each of them locate the positive and negative electrode coordinates. 

4. Locate the midpoints of the dipoles and the distance of selected point from them and the 

angle it makes with the dipole axis. 

 

5. Calculate EF dues to these dipoles at the selected point. Take the mean of all the values. 

 Activation contribution α 
V (1 + 3 cos θ)

r3
 

Where, V = score value.  

6. This is calculated for all the points in R.O.I. 

7. Apply boundary conditions. 
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RESULTS 

 

 

Figure 9: monopolar VS bipolar interpolation 

 

 

 

 

 

 



41 

 

DISCUSSION 

 

A differential interpolation technique is developed that can treat appropriately treat the data on 

the basis of stimulation type, namely monopolar and bipolar stimulation. The two types of 

electrode stimulations, monopolar and bipolar stimulations generate different type of electric 

field in the neighboring tissues and thus activate/ affect them in different manner. In order to get 

a better picture of the scenario, we tried to analyze both the data type altogether, handling them 

with different interpolation techniques, that mathematically and electrostatically fit their 

activation geometry. The proposed mapping technique offers a scheme to appropriately map the 

efficacy level of the whole region of interest and functionally model the hot spots for DBS 

therapy.  

The activation region (isosurfaces) around the monopolar stimulation electrodes is the concentric 

spheres equidistance from the electrode location.  On the other hand, the electric field due 

uneven bipolar stimulation and the activation region for these electrodes are different [24]. The 

system generates isosurfaces around each electrode (positive and negative), depending upon its 

strength. Since the activation region and electric field produced by both Monopolar and Bipolar 

stimulations are different, we need to employing different interpolation techniques for both. 

These interpolation techniques take under consideration the fact about isosurface and activation 

region for both the devices. In this paper we also discuss the possibility of an adaptive 

interpolation techniques developed to appropriately model these two different modes of DBS 
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CHAPTER 5: Variability and Statistical Optimization 

 

INTRODUCTION 

 

Variability is the tendency of the measurement process to produce slightly different data on the 

same test item, where conditions of measurement are either stable or vary over time, individual 

patient, technique, or the location. In this study, we considered variability issues like the 

observational variability (observation, tracks), inter-patient variability, sub-score variability (i.e. 

variations in efficacy regions of PD symptoms: tremor, rigidity, bradykinesia , voice and overall 

score) and variability due to stimulation parameters (monopolar DBS versus bipolar DBS). The 

measure of precision is a standard deviation. Good precision implies a small standard deviation. 

Here we will try to come up with a formula to develop the error model estimator that would 

include several error components and their variability measures. 

We dealt with this variability in following ways:- 

1. Variation in the efficacy distribution in the created models using monopolar and bipolar 

DBS database separately, were due to the different activation regions created by both the 

devices. This variability was reduced by employing different interpolation techniques 

used to model them separately (discussed in section 4). 

2. The observational and inter-patient variability: To measure and reduce the effect of this 

variability, we employed bootstrapping based optimization to the interpolation or 

modeling techniques (discussed in section 5.2) 

3. The variability among various PD symptoms and anatomical locations have clinical 

significance and is an important criteria for future studies.  The visualization tools and the 
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Graphic User Interface described in Chapter 6 assist in exploring and comparing these 

spatial variability.    

  

Figure 11.Contours comparing efficacy distribution of PD symptoms 

Bootstrapping based optimization and Types 

In order to check the robustness of our interpolated maps and model, we employed bootstrapping 

technique by randomly selecting samples from our observations to form thousand new sets of 

data for interpolation and mapping. Around each region, with higher mean change score values, 

a confidence interval is created by adding the standard deviation to the voxel mean value.  This 

confidence region around the selected voxel, shows the region of agreement, where the effect of 

DBS therapy is likely to be efficient.  Type of bootstrapping: patient-wise & observation wise: In 

order to study and measure the observational variability and inter-patient variability, two 

different type of bootstrapping based optimization techniques were employed. 

The objective of this study was to use bootstrapping based optimization to reduce the effect of 

outlier data that mislead the realization in case of direct interpolation and enhance the reliability 

of the produced model. The optimization of the functional model is needed to make the 

constructed maps more effective and reliable  

METHODS 
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Bootstrapping Based Optimization  

For bootstrapping, we adapted two different techniques to assess the variance of the interpolated 

efficacy distribution of DBS spots: observation-wise bootstrapping and patient-wise 

bootstrapping. In the first technique, we obtained thousand new sets of data by randomly 

selecting Nu observations from our database (Nu is the size of observed dataset) for each dataset 

and then performing interpolation to obtain the 3D model for each. Similarly, for latter, we 

obtained thousand new sets of data by randomly selecting patients and the data obtained from 

them, until the number of observations equals the size of original dataset. Interpolation is 

performed for each of the bootstrapped dataset obtained above. 

The whole region of interest (ROI) for the DBS was theoretically divided into a set of equal 

voxels (0.5mm ×0.5 mm ×0.5mm) and each voxel was correspondingly assigned an efficacy 

score based on the outcomes of the interpolation. For each voxel of the ROI we calculated mean 

and standard deviation of the 1000 bootstrapped interpolations. The set of means of all voxels 

now represents the estimate of the spatial distribution of efficacy level of the DBS targeted ROI. 

The mean contour plots, obtained from bootstrapping, produced at different planes, are the 

estimator of the true efficacy level of that region. Another three dimensional realization of the 

ROI is produced using the variance of the mean of each voxel bootstrapped mean (Standard 

Error of the mean). This indicates the degree of the reliability of the assigned efficacy level of 

the specific mass of the ROI.  

  

 

Simulation: Validate the Performance of Optimization 
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A computer intensive simulation was performed to assess the performance of the bootstrapping 

optimization techniques employed in this study. The simulated data type and the structure of the 

3D region were similar to the real data and the considered region of interest. This simulation 

study involves creating a 3D model of a region similar to that of the region under study and 

generating several independent data sets that assign score values to randomly selected points in 

the specified region (with the help of random number generator in MATLAB). An arbitrary 

portion within the ROI was allocated as high efficacy region. Similarly, a different portion was 

allotted for outlier observations (small number of observations, 48). Outlier data here are high 

efficacy observations that reside at a location other than actual hot spot. It represents err data 

produced due to experimental or patient variability.     

Brief description of the algorithm used to generate simulation data set is as follows:- 

1. Set Boundary Coordinates and limits for STN mass and surrounding region of interest. 

Arbitrarily fix the location and boundaries for high efficacy spots and outlier spots within 

that region.    

2. Create Normally distributed high and low efficacy data sets. 

3. Associate the simulated data set for High/ low efficacy (step 2) with the selected 

coordinates  for Hot, cold and outlier regions (step 1).  the selected  coordinates  were 

uniformly distributed in the specified area. 

4. 3D interpolation of the above data set using interpolation techniques discussed in section 

2.4. 

5. observation-wise bootstrapping (1000 times) is performed over the above data set.  The 

bootstrapped mean and standard deviation of each voxel in the region were calculated 

and stored.   
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6. repeat step 2 to 6, for 100 simulations.   

7. investigation and evaluation.   

In order to evaluate the performance of the statistical optimization, we compared the 

performance of optimized interpolation with that of direct interpolation in terms of degree of 

elimination of outliers. The assigned outlier region was checked for number of high efficacy 

voxels after both direct and optimized interpolation which contributes to their bad score. The 

improvement due to bootstrapping based optimization is calculated by relative reduction in fake 

voxels with respective to the number of fake voxels created by direct interpolation.  

Percentage Improvement =  
Gm − Gd

Gd
 × 100 

Where Gd and Gm are the number of voxels assigned in outlier region genuinely representing the 

real efficacy (and not the fake realization) in direct interpolation and bootstrapping based 

optimized interpolation respectively. 

Additionally, to assess the reliability of the hot spots in the interpolated maps in both the cases, 

we checked for number of high efficacy voxels that lies within the assigned hot spot region. Here 

we checked whether the hot spots represented by the interpolation of data lies in real hot region 

or not. The increment in the percentage reliability of the optimized interpolation method is 

calculated by 

Increment in Reliability =  
RDd − RDm

RDd
 × 100 

Where, RDd and RDm are the relative number of real hot voxel (excluding fake ones) in direct 

interpolation and bootstrapping based optimized interpolation respectively, calculated as  

RD =  
Real Hot data(Hr)

Total Hot data (HT)
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RESULTS 

Bootstrapping based Optimization: 

Bootstrapping Result 

Figure 3 shows the result of observation-wise bootstrapping. The GUI figures below depicts the 

interpolation of original data (Linear triangulation method), the mean of the voxelized 

bootstrapped data and the standard deviation calculated from voxelized bootstrapped data 

respectively.  From the corresponding figures, we can easily notice the reduction in the boundary 

of interpolated mean plot as compared to that of direct interpolated plot. A high efficacy red spot 

near location (12,-10) and a low efficacious blue spot near (9, 0) in direct interpolated map are 

not present in the optimized mean map. The prominent center red (hot) spot persist after 

bootstrapping based optimization. The third map (right) shows the standard deviation of the 

bootstrapped interpolated voxels. The values near to zero in case of standard deviation contour 

maps demonstrate acceptable reliability level of the mean contour. 

Simulation Results  

(Performance Evaluation for Bootstrapping based Optimization) 

The simulation results reveal that the efficacy of bootstrapping improved the immunity of the 

model from the outliers. The percentage improvement in the outlier handling in bootstrapped 

interpolated map from direct interpolated map ranges from 0.00% to 59.26% (mean 

improvement = 6.1922 %). There is a significant improvement in outlier reduction in optimized 

interpolated model (t = 4.46, df = 49, p-value <0.0001).  Additionally the increment in the 

percentage reliability of the optimized interpolation method in representing the real high efficacy 

data ranges from -56.41% to 80.00% (mean improvement = 12.8775%) as compared to direct 

interpolation realization. The reliability of high efficacy data is statistically improved after 

bootstrapping based optimization (t = 3.63, df = 49, p-value = 0.0007).  
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Fig.11. Direct data interpolation (left); Result of bootstrapping: Mean (middle) and standard 

deviation contours (right) 

DISCUSSION 

An  important step in functional modeling of DBS locations is to enhance the reliability and 

robustness of the model and to assign the measures of accuracy to the sample estimates by 

bootstrapping the datasets. Bootstrapping is a computer-based approach to statistical inference 

based on building a sampling distribution by resampling from the observed data (John Fox). It 

helps make a rational decision about the population, when uncertainty (introduced by patient and 

observational variability) is present in our observed data [36]. The main job of bootstrapping 

optimization procedure is to reduce the effect of outlier data that mislead the realization in case 

of direct interpolation. In other words, the optimized model should not represent just the 

observed data but the reliable observed data. The bootstrapping based optimization method 

employed here provides details on the possible variation of the score level of each voxel in the 

ROI. The new contour plot produced using the bootstrapped mean values of each voxel are found 
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to be reliably optimized. We’re 95% confident that the percentage reliability improvement mean 

value is included in the interval [5.7%, 20.0%]. Only those data that are supported by significant 

sample density of similar score level neighbors, are prominently represented in the optimized 

model. This ensures the score level assigned to each voxel in the optimized model has reduced 

effect of outlier data. Additionally, for each voxel, the standard deviation of the calculated means 

score values indicates the spread of the mean of each voxel. This standard deviation is plotted 

separately which indicates the reliability of the produced mean plot. Hence, simultaneous 

analysis of the three contour maps, the direct interpolated, bootstrapped mean and bootstrapped 

standard deviation, provides a better picture of the scenario in terms of  locating the most 

efficacious and reliable regions and also measuring their reliability level. Simulation studies 

examine the properties of the statistical methods in several scenarios. The stored estimates like 

mean and variance after each simulation helps check the consistency and identify any outliers or 

errors. It also enables to explore any trend or pattern if present [37]. Finally, these estimates for 

all performed simulations, the average estimate over the number of simulations performed is 

reported as the true estimate of interest (percentage improvement after bootstrapping based 

optimization = 6.1922 %). We’re 95% confident that the percentage outlier improvement mean 

value is included in the interval [3.4%, 9.0%]. The assessment of the uncertainty in the estimate 

of interest between simulations is the standard deviation of the estimates from all simulations.  

 

Limitations  

factors not considered:  

1. Brain size, anatomical differences, patient position. Instrumental errors. 

2. Dissimilar location of bony landmarks (calibration or transformation required). 
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CHAPTER 6: Additional Tools for Visualization and Analysis 

 

INTRODUCTION 

Exploring the locations of deep brain to find out optimal spots for electrical stimulation therapy 

is a challenging task, which need extensive study of DBS efficacy in large number of patients 

with neuromuscular disorder. In order to find the best location for implanting DBS electrodes, 

the surgeons explore different electrode tracks during the DBS surgery. The track and the 

location selected finally for the permanent electrode implantation is based upon the improvement 

level observed in the patient's PD symptoms during the DBS surgery. Different patients respond 

distinctly towards stimulation at a particular anatomical location. i.e. The efficacy at these 

locations varies with every individual patient, specific PD symptom and anatomical location. We 

already discussed the patient-wise and observational variability in the previous chapters. 

However, the particular PD symptom at particular location can have different efficacy 

distribution than the other PD symptoms. It is helpful to analyze efficacy distribution of different 

symptoms or location at the same time to compare the difference in their high yield regions. 

Additionally, depending upon the requirements, the user may need to study the yield and 

reliability of particular region and  isolate that region of interest for better understanding. In this 

chapter, some additional analytical and visualization tools are introduced, which can enhance the 

understanding and perception of the developed model.  

The objective of this study was to develop additional tools that help explore and visualize the 

STN and surrounding region in the brain for their DBS efficacy. The tools are incorporated into a 

graphic user interface to facilitate easy usage of all the tools.   
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METHODS 

Production of the Region of Agreement 

The aim of this section is to create a confidence region around a high efficacy spot of the 

deep brain. A ‘mouseclick’ program was developed which on called over a high yield 

location in the contour map, highlights the region which follows following conditions:  

(a) the voxel coordinates in vicinity of the selected hot spot ( sphere of radius 4 mm 

around the selected point);  

(b) the locations having percentage efficacy level within the range of + 10 the 

efficacy level of the selected point; and  

(c) with acceptable reliability (+ 5 standard deviation).    

The output is a confidence region with high efficacy score value and acceptable reliability. 

Around each region, with higher mean change score values, a confidence interval is created 

by adding the standard deviation to the voxel mean value. This confidence region around the 

selected voxel, shows the region of agreement, where the effect of DBS therapy is likely to 

be efficient.    

Realization of the highest and lowest efficacy spots in the 3D 

To create the 3D model of the spots that shows extreme efficacy levels, both high and low in the 

ROI, two threshold points were set, to differentiate the middle range and the extreme scores. The 

selected voxels with in the required range were than produced in a 3D figure.  

Comparison of contour realizations to explore variability among different categories of 

data 

We developed a MATLAB Graphic User Interface (GUI) that help in analyzing and comparing 

contour maps of the interpolated data of different categories. The GUI enables to compare the 
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efficacy spots of various PD symptoms (including, Tremor, Bradykinesia, Rigidity) and different 

regions (STN, GPi and surrounding white matter).  We can also compare output of direct 

interpolation realization, resultant of the bootstrapping optimization and their reliability maps 

(standard deviation) at the same point. The complete features and user manual for the 

comprehensive GUI can be found in the appendix.     

 

GRAPHIC USER INTERFACE 

GUI is an program interface that allows user to intuitively interact with the computer resources 

and take advantage of graphics to make the data analysis program more user friendly. In this 

study, a large processed database, which includes various optimized spatial interpolation 

matrices of different data categories, is saved in the computer system.  For 2D and 3D 

Visualization of DBS efficacy distribution and simultaneous comparison of various maps a full 

functional GUI was developed in MATLAB. PDRP_GUI is a user friendly toolbox supporting 

intutive menu based operation. It enables the user to directly load any of the required .MAT file 

from the database for analysis, study the required details and save the plots of interest. 

PDRP_GUI is intended to promote PD DBS efficacy model research and devlopement. The 

PDRP_GUI for data analysis is totally functional for users with limited or no experience of 

programming and MATLAB software. 
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RESULTS 

2.4.3. Three Dimensional Realization of the highest and lowest efficacy voxels in the ROI: 

 

figure.12. Three dimensional realization of high and low yield locations. 
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Figure 13. MATLAB GUI comparing Tremor, Rigidity and Bradykinesia a coronal plane.  

Figure 13, shows the MATLAB graphic user interface (GUI) developed to help study and 

compare various contour plots produced from interpolation of different Parkinson disease 

symptoms, namely Tremor, Rigidity and Bradykinesia. The GUI compares the optimized mean 

contour of each subscore categories.  

 

CONCLUSION AND FUTURE WORKS 

The PDRP_GUI serve the purpose of an interactive tool  for analysis and visualization of 

distribution of DBS efficacy. It shows the particular 3D realization or 2D slices (maps) of the 

generated model of selected category and configuration. The region of agreement around the 

efficacious locations indicates the reliable region where DBS electrodes can be implanted for 

better improvement in PD symptoms. The interpolated contours using MER codes appear to be 

segregated to different areas as they should. They provide interesting contrasts in areas of 

efficacy and worsening function. Sub-scores contours display Hot-spots for different PD 

symptoms separately. Final Vs Rest: We observed that the interpolation of whole data (final with 

other tracks together) nearly represents a region which comes under the region of agreement of 

final group. Most of the efficacious area is in the final tracks and most of the negative efficacy is 

in the other group. 

Overlaying : Overlay and data presentation: to fix the plots, the Morel maps and corresponding 

Contours plots, at correct position and dimensions.  

Matching SW atlas / Moral maps with constructed contours. 

overlay task and software used Overlay Task: Here our challenge is to fix the plots, the Morel 

maps and corresponding Contours plots, at correct position (relative to each-other) and 

dimensions.  
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APPENDIX 1: DBS Intra-operative Rating 

Table 6 

DBS Intra-operative Rating 

 

Patient: _____________________________ Side:  L  /  R  ► Unilateral ►  1
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   /   2

nd
     

Target  GPi/STN 

 

Date: ________Stealth Target Coordinates: ______ A/P    _____Lat    _____Vert 

________Ring    ________Arc                         

   

Track # ______ Change from previous: ______mm A  /  P_____ mm M  /  L    

Microelectrode recording?  Y  /  N 
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Examiner: __________________________________________________ 

 

 

 

APPENDIX 2: GRAPHIC USER INTERFACE (GUI): USER MANUAL 

 

6.1Getting Started 

6.2.1 Hardware Requirements: Computer/Workstation: Personal computer with Windows XT, 

Vista and Win 7, 2G memory and above is recommended. 

6.2.2 Software Requirement: MATLAB, Ver. 7.0 or above, Refer: http://www.mathworks.com/ 

6.2.3 Download: The database and the program files required for the GUI and analysis are not 

yet open to public. 

 

6.1.5 Start up setting 

The PDRP_GUI can be set to directly open when MATLAB opens. Create a new m file in the 

matlab folder in 'my document' folder. specify the path for the PDRP_GUI.m file  

PDRP_GUI; 

cd work; 

 

6.1.6 Screen Setting 

To set or change the size of GUI figure so that all figure element are easily visible on your 

computer screen, following steps should be taken: 

1. Debug and Run the PDRP_GUI.m file to check whether the matlab figure is fitting the 

computer screen.   

2. Type guide in the MATLAB command screen and select PDRP_GUI.fig.  
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courtesy: MATLAB.7.0  

Fig. 15. Guide Quick start window 

3. Set the external boundary of the figure to fit it in the screen. 

4. set the three axis boundaries and other panels and buttons, if required. 

5. save your changes and close the .fig file. 

fig. 

16 snapshot of the matlab figure for screen set. 

6.2.4 Debug and Run the PDRP_GUI.m file 

 

6.3 Selection and Loading the Database 
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The software load the database according to the required task intended by the user. The user can 

select a single category of data set at analyze it direct interpolated model, optimized model and 

the reliability model simultaneously; or the user can select 3 different categories of dataset to 

compare their optimized models; or user can manually enter the specific dataset category 

required for his/her analysis.  

 

6.3.1. Loading Single dataset category: 

1. select the required PD symptom (tremor, Bradykinesia, rigidity or voice) for efficacy 

analysis or select entire data set to study the overall efficacy by clicking the appropriate 

radio button in the symptom panel (upper left corner). 

2. Select the electrode configuration (monopolar DBS, bipolar DBS or both) from technique 

panel (next to symptom panel). 

3. Select the specified location (sub thalamic nucleus, GPi, surrounding white matter or All 

together). 

 

Fig. 17 GUI: selecting, accepting and loading data 

4. Select the score value (percentage change score or absolute change score) 
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5. click the Accept button in data panel to load the selected dataset (fig...).  

6. check selected file text box to verify the correct selected file. 

 

6.3.2 Load comparison datasets: (multiple file selection) 

1. to compare PD symptom efficacy distribution, follow steps 2-4 of section 6.3.1. click 

'compare subscore' button below symptom panel. check selected files text box to verify 

the correct selected files. 

2. to compare electrode configuration efficacy distribution, follow steps 1,3,4 of section 

6.3.1. click 'compare technique' button below technique panel. check selected files text 

box to verify the correct selected files. 

3. to compare efficacy distribution at different location, follow steps 1,2, 4 of section 6.3.1. 

click 'compare locations' button below symptom panel. check selected files text box to 

verify the correct selected files. 

 

Fig. 18. GUI: Comparison of different data categories. 

6.3.3 Load database manually 
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type the required file name  in the 'selected file text box' and click load data button on right of 

GUI. 

 

Fig. 19 load new data set. 

6.4 Plane and Coordinate Selection 

1. Select the intended plane from the three planes,  saggital, coronal or transverse plane.     

2. select the coordinate by typing intended coordinate in the textbox in plane selection 

panel. and clink 'GO' button. 

3. check the coordinate above each axis's. 

 

Fig. 20 select plane and coordinates. 

6.5 Visualization and varying parametrs  

1. after loading the database and selecting the appropriate plane and coordinates, click on 

the slider button which is in front of the selected plane.  

2. three contour maps will appear in the GUI. The description of the maps can be verified 

from the text box above each axes.  

3. at any time the selected plane and coordinates can be varied for differential analysis by 

controlling the three slider buttons. The maximum and minimum limits of the coordinate 

system in the ROI can be check at the ends of sliders. 
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Fig. 21 control panel 

6.6 Clear Plots  

Clear plots clear the recent plots from the GUI. To visualize the plots we need to reselect the 

database category. 

6.7 save plots 

The GUI can save the recent plot in .bmp; .emf and .fig formats. 

6.8 3D visualization 

the 'Explore more' button enable the user to study the 3 D realization of the most efficacious   

 

Fig.22 3D visulaization 
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6.9 Instant Visualization  

 

Fig. 23 instant visualization  

6.10 Hot region 

 

Fig 24. Visualize hot regions 
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The current version of PDRP_GUI is capable of following task:- 

1. select various combinations  

change the plane and coordinates to study specific slide,  

 

 

 

 

 

APPENDIX 3 

1D interpolation. 

Interpolate a triangle-like signal using an interpolation factor of 5. First, set up signal to be 

interpolated: 

y = [0 .5 1 1.5 2 1.5 1 .5 0 -.5 -1 -1.5 -2 -1.5 -1 -.5 0]; 

N = length(y); 

Perform the interpolation: 

L = 5; 

M = N*L; 

x = 0:L:L*N-1; 

xi = 0:M-1; 

yi = interpft(y,M); 

plot(x,y,'o',xi,yi,'*') 

legend('Original data','Interpolated data') 
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