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 Lysophosphatidic acid (LPA) is a bioactive lipid with a plethora of biological functions, 

including roles in cell survival, proliferation, and migration. Although high-performance liquid 

chromatography electrospray ionization tandem mass spectrometry (HPLC ESI-MS/MS) 

technology has been used to measure the levels of LPA in human blood, serum and plasma, 

current methods cannot readily detect the minute levels of LPA from cell culture. In this study, a 
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novel HPLC ESI-MS/MS method with enhanced sensitivity was developed which allows 

accurate measurements of LPA levels with a limit of quantitation at approximately 10 

femtomoles. The method was validated by quantitation of LPA levels in the media of previously 

characterized cell lines ectopically expressing autotaxin. Autotaxin overexpression 

induced an increase in several subspecies of LPA while others remained unchanged. Lastly, this 

HPLC ESI-MS/MS method was validated via biological assays previously utilized to assay LPA 

production. Hence, this new HPLC ESI-MS/MS will allow researchers to measure in vitro LPA 

levels and also distinguish between specific LPA subspecies for the delineation of individual 

biological mechanisms. 
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Introduction 

 

1.1 Discovery of the Biological Activity of LPA 

 Lysophosphatidic acid (LPA) is a glycerophospholipid is composed of a single, variable 

length acyl chain, a glycerol backbone and a phosphate head group.1 LPA had been known as a 

key lipid precursor for several decades, but the importance of LPA as a signaling molecule was 

not discovered until the mid-1980s. It was at this time when exogenous LPA was found to be the 

best and most potent Ca
2+

 mobilizing agonist and mitogen for quiescent fibroblasts.2 In 1990, 

Jalink et. al., showed that LPA concentrations in the low nanomolar range were sufficient to 

initiate the mobilization of Ca
2+

 across the plasma membrane.3 These studies showed the growth-

factor-like characteristics of LPA and that LPA had characteristics of a receptor ligand in that it 

was active well below its critical micelle concentration and displayed a dose-response 

relationship.2,3 The study also demonstrated that the functions of LPA were cell-type specific, 

could not be recapitulated by other glycerolipids, and that LPA acted on the outer portion of the 

plasma membrane.2,3 These observations led to the conclusion that extracellular LPA interacts 

with specific receptors on the plasma membrane to initiate downstream signaling cascades.  

 

1.2 LPA Receptors 

 In 1996, the first G-protein coupled receptor (GPCR) specific for LPA was discovered. 4 

In this study, Hecht et. al. showed the overexpression of the vsg-1 gene resulted in increased cell 

rounding when treated with serum or LPA alone but did not increase when treated with other 

phospholipids.4 This lead to the classification of the protein product of vsg-1 as a LPA specific 

GPCR and the subsequent designation of this protein as LPA1. Shortly thereafter, two other LPA 

GPCRs were discovered based on sequence homology and were subsequently named LPA2 and 
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LPA3.
5-7 LPA1-3 are classified as members of the 'endothelial differentiation gene' (EDG) family. 

More recently, two additional GPCR specific for LPA have been discovered and named LPA4 

and LPA5.
7-9 LPA4 and LPA5 only share roughly 20% sequence homology to the EDG family 

receptors and are more closely related to the members of the purigenic receptor family. 

Therefore, they have been classified as members of the 'purinergic' (P2Y) receptors.10 Although 

the LPA receptors have varying sequence homologies, they are all Type1, rhodopsin-like GPCRs 

that contain seven transmembrane alpha helices and couple to distinct heterotrimeric G-protein 

subtypes.7 It is currently believed that there may be up to four more LPA specific receptors, but 

more research is necessary to properly characterize these receptors. The distinct coupling of the 

established LPA receptors and G-protein subtypes is depicted in Figure 1. 

 All of the established LPA receptors play important physiological roles. By activating 

GPCRs, LPA initiates the downstream signaling cascades depicted in Figure 1. These signaling 

cascades have important physiological functions that are outlined in Table 1 and Figure 1. As 

these figures clearly demonstrate, LPA plays a variety of important roles that affect normal 

biological functions. Since LPA plays many vital roles in human physiology, the dysregulation 

of LPA production or binding ability to LPA receptors can result in a variety of pathological 

conditions, a sampling of which are listed in Table 2.  
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Figure 1: LPA Receptors and Signaling Pathways 
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Table 1: Physiological Roles of LPA Signaling (adapted from 11) 

  

System Phenotype Roles for LPA signaling

Immune Dentritic cell function Maturation, chemotaxis

T cell functions Chemotaxis, apoptosis, trafficking, 

cytokine production

Vascular Vasoregulation Hypertension, endothelial cell death, loss 

of vascular integrity

Vasculogenesis, Angiogenesis Vasculature maintenance

Reproductive Embryo implantation Timing and spacing of implantation

Spermatogenesis Sperm motility, survival factor for germ 

cell

Nervous Growth/development Proliferation and differentiation of neural 

progenitor cells, neuronal survival, 

astrocyte proliferation, neurogenesis

Morphology Synapse formation, morphological 

changes in neurons and astrocytes

Myelination Differentiation of oligodendrocytes, 

Schwann cell proliferation, survival, and 

morphological changes
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Table 2: Pathophysiological Conditions Associated with LPA Dysregulation (adapted from 11) 

 

  

Cancer invasion and migration

Osteoarthritis

Pulmonary fibrosis

Renal fibrosis

Hepatic fibrosis

Impaired wound healing

Atherosclerosis

Obesity

Asthma

Nerve injury

Neuro-inflammation

Human pathological conditions associated with LPA dysregulation

Schizophrenia

Developmental delay

Bipolar disorder
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1.3 LPA Synthesis 

 There are several methods of LPA synthesis (Figure 2), but the major pathways of LPA 

production are the cleavage of an acyl chain from phosphatidic acid (PA) via a phospholipase or 

the removal of a choline from lysophosphatidylcholine (LPC) by autotaxin.12-14 PLA1 can cleave 

an acyl chain from the sn-1 position of PA to produce LPA while PLA2 can cleave an acyl chain 

from the sn-2 position of PA to produce LPA.13 Although PLA1 and PLA2 can synthesize LPA, 

the major source of LPA production  is the cleavage of a choline group from LPC by the enzyme 

autotaxin. Autotaxin is synthesized a prepro-enzyme that is proteolyzed by furin-mediated 

cleavage and secreted as an activated glycoprotein.15,16 Originally identified as an autocrine 

motility factor secreted by melanoma cells, the discovery of the lyso-PLD function of autotaxin 

led to a better understanding of LPA production and function. 15, 17-19 The generation of LPA by 

autotaxin occurs by the hydrolysis of the choline group at the sn-3 position of 

lysophosphatidylcholine (LPC). The human gene that encodes autotaxin, ENPP2, contains 27 

exons and has been shown to form three alternatively spliced products.16,20 ATXα, also referred 

to as ATXm, is a 915 amino acid protein that lacks exon 21 from ENPP2 gene that was 

originally cloned from human melanoma cell line A2058.21 ATXβ, also referred to as ATXt, is a 

863 amino acid protein that lacks both exons 12 and 21 from ENPP2 gene and was originally 

reported in human tetracarcinoma cells.22 A third, less prominent isoform, ATXγ, also known as 

PD-1α, lacks exon 12 and seems to be brain-specific.23 While the ability of autotaxin to produce 

LPA has been widely established, the specific LPA species produced by autotaxin isoforms is 

not well understood. Furthermore, the differential biological functions for the individual LPA 

subspecies have not been examined, mainly due to a lack of reliable method to analyze and 

quantitate LPA subspecies in vitro.  
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Figure 2: Routes of LPA Production. (H - head group, P - phosphate) 
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1.4 Lipid Extractions 

 Due to their wide variety of characteristics, no single extraction technique is sufficient for 

the separation of lipids from biological samples. Extractions protocols should be optimized to 

achieve most accurate and highest recovery for the individual lipid of interest.  The classical lipid 

extraction protocols are liquid-liquid extractions in which lipids separate into the more apolar 

solvent. The most common lipid extraction technique was originally devised by Folch, et. al., in 

1956 and involves a liquid-liquid extraction using a 2:1 ratio of chloroform:methanol.24 Most 

lipids, due to their hydrophobic character, will separate into chloroform phase since it is less 

polar than the methanol phase. Bligh and Dyer developed an adaptation of the Folch method to 

reduce solvent consumption with the separation again based on the polar character of the 

solvents.25 The Bligh-Dyer technique utilizes a chloroform:methanol:water extraction in the ratio 

of 1.25:2.5:1 with a centrifugation step to aid in phase separation. Lipids will again separate into 

the less polar, chloroform layer.  

 Numerous adaptations have been made to the Folch and Bligh-Dyer methods for the 

extraction of particular lipid classes. One such adaptation was made by Merrill et. al., for 

efficient extraction of sphingolipids. This method utilizes a single phase 

chloroform:methanol:water solvent combination and an overnight incubation at 48°C in order to 

account for the differing polarity among sphingolipids.26 Although lipid-specific adaptations of 

the Folch and Bligh-Dyer methods have been the common standard for multiple generations, 

many other lipid extractions have recently been popularized, including supercritical fluid 

extractions, single solvent extractions, and solid phase extractions (SPE). 

 Supercritical fluids are gases that approach the density of liquids but have the ability to 

diffuse like a gas. Due to its apolar character, supercritical carbon dioxide has been used 
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efficiently for the extraction of lipids.27 Although supercritical liquid extractions are 

environmentally friendly and can be easily established with simple laboratory apparatus, the 

extraction protocol has yet to become a widely used method of lipid extraction. Single solvent 

extraction techniques using solvents such as methanol, ethyl acetate, acetonitrile, and methyl 

tert-butyl ether have gained popularity because of the simple dilution and centrifugation protocol 

they entail.28 These extractions, however, may not provide significant lipid recovery from 

samples that contain very low levels of the lipid being analyzed, particularly in vitro samples. 

SPE extractions are based on principles of column chromatography where sample is separated 

based on its interaction with a stationary phase. SPE lipid extractions typically entail silica-based 

columns as stationary phases in order to separate lipids from the more hydrophilic molecules 

based on the hydrophobic interactions with the stationary phase.29 While SPE can provide 

remarkable recovery of certain lipid classes, the necessity of a separate SPE column for each 

sample can become economically unfeasible. As detailed above, no single extraction is sufficient 

for all lipids and therefore, several techniques should be tested for the optimal extraction of the 

specific lipid of interest. 

 

1.5 Lipidomics  

 Numerous detection and quantitation methods have been utilized for lipid analysis. After 

lipids have been extracted from samples, they must be further separated for accurate analysis. A 

classical technique for lipid separation is thin layer chromatography (TLC), a method that 

separates compounds based on capillary action in response to their interaction with the stationary 

phase.30. High-performance liquid chromatography (HPLC) has replaced TLC as the preferred 

method of lipid separation in recent generations.29 HPLC is similar in principle to TLC, as both 
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techniques separate lipids based on interaction with a stationary phase, but HPLC has proven to 

be a more versatile and more efficient method of separation. One advantage of HPLC separation 

of lipids is the ability to quickly and easily utilize different types of stationary phases for 

different categories of separation. In normal phase HPLC, lipids are separated based on head 

group interaction with a polar stationary phase and elution with a solvent gradient shifting from 

apolar to polar. This combination of stationary phase and solvent conditions allows for effective 

separation of lipid classes based on the charge of the molecule. Reverse phase chromatography 

separates lipids using apolar stationary phase and a solvent gradient that shifts from polar to 

apolar. This allows for accurate separation of lipid species based on the degree of hydrophobic 

interaction of the sample with an apolar stationary phase. The combination of normal and reverse 

phase HPLC in tandem allows for even greater discrimination of lipids based first on the charged 

head group and then on hydrophobic acyl chain length.31 The flexibility, increased sensitivity, 

and greater technical ease have led to HPLC becoming the preferred method of lipid separation. 

 Following extraction and separation, lipids can be detected using ultraviolet detection, 

immunoassays, radiolabelling, and mass spectrometry. If a lipid contains a chromophore, such as 

a conjugated double bond system, it can be measured using ultraviolet detection. In this detection 

method, chromatographic solvents selected must not absorb in the ultraviolet range. Although 

ultraviolet detection can be extremely sensitive, its limitations include the fact that it is more 

qualitative than quantitative in nature and the limitations on chromatographic solvent 

conditions.32 Immunoassays for specific lipid species are used, but are limited because they are 

not a direction detection method, are time-consuming and expensive, and are not available for all 

lipids. Radiolabelling using 
32

P has long been a common method of lipid measurement.33 TLC or 
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HPLC coupled to a radiation detector has been effectively used to analyze lipids, but 

radiolabelling is labor intensive and is of a more qualitative than quantitative nature. 

 The rapid advances in mass spectrometric technology in the past two decades have 

revolutionized the quantitative analysis of lipids. Mass spectrometry provides analysis of 

compounds based on the mass-to-charge ratio (m/z) of charged particles. The general schematic 

of mass spectrometric analysis of lipids proceeds in the following manner: the sample of interest 

is ionized and vaporized, then separated based on m/z by electromagnetic fields. The ions are 

then detected and processed to produce mass spectra that are used to provide accurate analysis. 

Although there are many instrument variations of mass spectrometers, the equipment necessary 

consists of a ion source, a mass analyzer, and a detector. The ion source is responsible for 

producing ions from the vaporized sample which then proceed to the mass analyzer for sorting 

by electromagnetic fields. A detector then measures the amount of ions present to produce a 

mass spectrum.31 

 There are several ionization sources and mass spectrometer combinations commonly used 

for lipid analysis. Matrix-assisted laser desorption ionization coupled to a time-of-flight 

spectrometer (MALDI-TOF) is one method commonly used for lipid analysis.. During MALDI-

TOF analysis, samples are mixed with a chemical matrix and dried onto a plate. A laser is then 

used to ionize the sample, and the ions are introduced into a TOF mass spectrometer. The TOF 

mass spectrometer measures the amount of time it takes from injection until the ions reach the 

detector to produce a mass spectrum. Although MALDI-TOF provides very high sensitivity and 

rapid sample analysis, matrices can often produce high background signal, making quantitative 

measurements unreliable.34 MALDI-TOF is therefore used primarily for qualitative analysis. 
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 The most widely regarded methods for quantitative lipid analysis are direct injection into 

a mass spectrometer, also called shotgun lipidomics, or injection into a mass spectrometer 

following HPLC separation.31 A shotgun lipidomics approach involves a direct injection of 

sample into the mass spectrometer, commonly using a syringe which is placed into a syringe 

pump to introduce the sample into the spectrometer at a steady rate in order to provide a steady 

signal.29 The sample then undergoes mass spectrometric analysis as outlined in the preceding 

paragraph. While shotgun lipidomics is simple and quick, it is inappropriate for many samples 

because it may cause mass spectrometer contamination, signal reduction, and ion interference. It 

also does not efficiently separate lipid species and causes other issues that would make 

quantitative analysis of specific species unreliable. Thus, shotgun lipidomics has primarily been 

used as a screening tool for identification of lipids in a sample rather than for quantitation of 

lipid species.34 

 The preferred method of lipid quantitation is injection into a mass spectrometer following 

HPLC separation.29 Samples undergo extraction and HPLC separation as detailed previously and 

are introduced into the mass spectrometer. This provides a sample which contains few 

contaminants and thereby increases sample throughput for the instrument. It also provides the 

ability to distinguish lipid species based on the retention time on the HPLC column.31 Coupling 

of HPLC to a mass spectrometer capable of performing tandem mass spectrometric analysis has 

become the common standard for accurate lipid quantitation. Tandem mass spectrometry 

(MS/MS) is method of analysis that detects compounds based on the principle of measuring the 

transition of a precursor ion of interest to a product fragment. A schematic demonstrating HPLC 

ESI-MS/MS using a triple quadrupole mass spectrometer in multiple reaction monitoring mode 

(MRM) is depicted in Figure 3. In this method of lipid quantitation, HPLC separation is 
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performed and then the sample is introduced into the mass spectrometer. Ionization is performed 

by an electrospray source which then focuses a tight beam of ions for progression into the Q0 

quadrupole. The ions are taken via vacuum into the Q0 quadrupole where they are trapped for 

progression into the Q1 quadrupole mass filter. The Q1 quadrupole scans and selects for a 

precursor ion. The selected precursor ions progress from Q1 quadrupole mass filter into the Q2 

collision cell where they are fragmented to create a product ion that is selected in the Q3 mass 

filter. These product ions are then measured by the detector, and a spectrum is generated. 

MS/MS uses the measurement of the distinct transition from precursor to product ion to provide 

accurate quantitation for compounds of interest. By selecting the transitions corresponding to 

individual lipid species and subspecies, HPLC ESI-MS/MS provides the most sensitive and 

accurate lipid quantitation method commonly used in modern research. 
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Figure 3: HPLC ESI-MS/MS Diagram 
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1.6 HPLC ESI-MS/MS Analysis of LPA 

 A variety of HPLC ESI-MS/MS methods have been developed to undertake LPA 

measurements from tissue, blood, plasma, and serum samples, but most are specific for 

separation and detection of LPA with little to no application in the detection of other lipid 

classes. Additionally, most of these methods demonstrate poor quality peaks or inadequate 

separation.35,36 Some methods have even required pre-separation of LPA using thin-layer 

chromatography.37,38 There are also methodological issues for the extraction of LPA in these 

reported protocols as most have relied on adapted Bligh-Dyer techniques with the use of very 

low pH conditions, which may lead to the degradation of LPC to LPA and provide artificially 

inflated LPA measurements.36, 39 Even after acidic extractions, the limit of quantitation for LPA 

using these mass spectrometric methods have been in the low picomole or high femtomole range. 

37,39 While this sensitivity is adequate for quantitation for the high LPA levels of in vivo 

biological samples, greater sensitivity as well as a reliable, non-volatile pre-separation and 

accurate extraction protocol are required for in vitro LPA measurements. 

 

1.7 Project Objective 

 The objective of this study was to develop a HPLC ESI-MS/MS method for in vitro LPA 

quantitation  while avoiding the induction of artificially enhanced LPA levels from acidic 

extraction protocols. Additionally, the separation and detection utilized for LPA was designed 

for capability with the separation and detection of many other lipid classes. The method was 

validated for in vitro use by demonstrating increased levels of LPA in autotaxin overexpressing 

ovarian cancer cell lines. The biological role of these increased LPA levels was further validated 

using previously established proliferation and migration assays for measuring the levels of this 
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bioactive lipid. This novel HPLC ESI-MS/MS method will provide researchers with the ability to 

measure in vitro LPA levels as well as provide a more sensitive and accurate method for LPA 

quantitation in biological samples.  
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Materials and Methods 

 

2.1  Materials  

 SKOV3-Zeo, SKOV3-ATX, DOV13-Zeo, and DOV13-ATX cell lines were established 

by transfection of SKOV3/DOV13 cells with pcDNA3.1/Zeo or pcDNA3.1/Zeo-ATX (kindly 

provided by J Aoki, Kawasaki Medical School, Okayama, Japan) The transfected cells were 

selected with zeocin (500 ng/ml). Individual zeocin-resistant colonies were isolated by ring 

cloning and expanded sequentially in 24-well, 6-well and 60-mm plates. Expression of ATX 

protein was confirmed by immunoblotting. The ATX-positive clones were maintained as stable 

lines in RPMI (Gibco) supplemented with 10% fetal bovine serum (Gibco) and 2% 

penicillin/streptomycin (BioWhittaker). SKOV3-Zeo and SKOV3-ATX clonal cell lines were 

cultured under 5% CO2 at 37°C with routine passage every 2-3 days. LPA standards (14:0, 16:0, 

17:0, 18:0, 18:1, 20:4) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). 

Ammonium formate (Fluka) were purchased from Sigma-Aldrich (St. Louis, MO, USA).  HPLC 

grade methanol, HPLC grade chloroform and ACS grade formic acid (EMD Chemicals) were 

purchased from VWR (Bridgeport, NJ, USA).  Cellular Proliferation Reagent WST-1 was 

purchased from Roche (Indianapolis, IN, USA). 

 

2.2  HPLC ESI-MS/MS Conditions 

 LPA subspecies were separated using a Kinetex 2.6u C18 100Å 50 x 2.1 mm reverse 

phase column on a Shimadzu 20-AD Series HPLC and subjected to mass spectrometric analysis 

using a ABSCIEX 4000 QTRAP. Mass spectrometry parameters were as follows: Polarity-

Negative, Ion Source: Electrospray, Q1 Resolution: Low, Q3 Resolution: Unit, Collision 

Activated Dissociation: High, MCA: No, Curtain Gas: 15.0 psi, Ion Source Temperature: 
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400.0°C, Nebulizer Gas: 30.0 psi, Turbo Gas: 70.0 psi, Interface Heater: On, Ion Spray Voltage - 

4500.0 V, Collision Cell Exit Potential: -9.0. MRM transitions with corresponding declustering 

potentials, collision energies and collision exit potentials are listed in Table 3. 

  HPLC conditions were as follows: Total Flow: 300 µl/min, Injection Volume: 10 µl, 

Column Oven: 50.0°C. Solvents for reverse phase HPLC separation were: Solvent A, 58:41:1 

methanol:water:formic acid and solvent B, 99:1 methanol:formic acid. Both solvents contained 5 

mM ammonium formate. Solvent conditions for HPLC separations were: 100% Solvent A from 

0-1 minute, linear increase in minutes 1-7 from 100% Solvent A to 100 % Solvent B, 100% 

Solvent B from minutes 7-8, immediate switch from 100% Solvent B to 100% Solvent A at 

minute 8, 100% A for minutes 8-10. 

 

2.3 1% FBS Experiments 

 SKOV3-Zeo, SKOV3-ATX, DOV13-Zeo, and DOV13-ATX cells were plated in 10 cm 

dishes and grown to 80% confluency in 10% FBS supplemented RPMI. Cells were transferred to 

1% FBS supplemented media overnight. Media was aliquoted into glass screw-top vials and 

stored at -20°C  until HPLC ESI-MS/MS analysis and biological assays could be performed. 

Cells were harvested in 200 µl cold PBS. Results for HPLC ESI-MS/MS analysis were 

normalized to microgram protein from harvested cells using a Bradford assay. 

 

2.4 LPA Extraction Procedures 

 A modified Bligh-Dyer method was used to extract LPA from sample media. The 

extraction protocol was as follows: 100 µl of sample media, 1 ml chloroform, 500 µl methanol, 

250 µl dH2O and 100 fmol 17:0 LPA standard were combined, vortexed, sonicated, and then 
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centrifuged at 4000 rpm for 10 minutes. The aqueous (top) layer was transferred to a clean glass 

tube, dried and resuspended in 100 µl methanol for mass spectrometry analysis and  is 

represented as "Bligh-Dyer Aqueous". Organic (bottom) layer from the same extraction was 

transferred to a separate clean glass vial, dried and resuspended in 100 µl methanol for mass 

spectrometry analysis and is represented as "Bligh-Dyer Organic".  After a separate Bligh-Dyer 

extraction was performed, the aqueous and organic layers were combined, dried and resuspended 

in 100 µl methanol for mass spectrometry analysis and are represented as "Bligh-Dyer" 

 A modified Folch method was also utilized for LPA extraction. The protocol was as 

follows: 200 µl sample + 2.5 ml chloroform + 1.25 ml methanol + 250 µl dH2O and 100 fmol 

17:0 LPA standard were combined, vortexed, sonicated, and then centrifuged at 4000 rpm for 10 

minutes. The aqueous (top) layer was transferred to a clean glass tube, dried and resuspended in 

100 µl methanol for mass spectrometry analysis and is represented as "Folch Aqueous". Organic 

(bottom) layer from the same extraction was transferred to a separate clean glass vial, dried and 

resuspended in 100 µl methanol for mass spectrometry analysis and is represented as "Folch 

Organic".  After a separate Folch extraction was performed, the aqueous and organic layers were 

combined, dried and resuspended in 100 µl methanol for mass spectrometry analysis and are 

represented as "Folch" 

 

2.5 Cellular Migration Assay 

 Cellular migration was measured in transwell chambers (pore size 8.0 µm; Corning 

Incorporated, Corning, NY) according to protocol in previous literature.40 In short, transwells 

were coated with 0.1 mg/ml collagen and placed in lower chamber containing media from 1% 

FBS experiments detailed above. SKOV3-Zeo cells suspended in serum-free RPMI containing 
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0.1% fatty acid-free BSA were added to the upper chamber at 2.5  x 10
4
 cells/well. Cells were 

allowed to migrate for 6 hours under 5% CO2 at 37ºC. Top of insert filter surface was washed 

with PBS and then stained with 0.1% crystal violet in methonal for 10 minutes. Filter surface 

was washed three times with PBS, and non-migrated cells were removed from the top filter 

surface with a cotton swab. Migrated cells were stained by the crystal violet and counted under a 

microscope. 

 

2.6 Cellular Proliferation Assay 

 Cellular proliferation was measured using WST-1 based colorimetric assay. SKOV3-Zeo 

cells (5 x 10
5
) were plated in five six-well plates and allowed to attach for 12 hours. 12 hours 

after plating, WST-1 reagent (200 µl) was added to four wells of one plate for reading of 

baseline attachment of SKOV3-Zeo cells. WST-1 reagent was allowed to incubate for 1 hour and 

absorbance was read at 450 nm with blank media absorbance used as background subtraction. 

After allowing cells to attach to the plate overnight, wells were washed once with PBS and 2 ml 

of conditioned media from the 1% FBS experiments was added to wells. Absorbance at 450 nm 

was measured using WST-1 reagent at 36 and 48 hours post-baseline reading. Cellular 

proliferation was calculated by subtracting the absorbance of blank media and average 

absorbance of 12 hour baseline measurement. 
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Results 

 

3.1 Retention Time Markers and Linear Signal Response Show Increased HPLC ESI-

MS/MS Sensitivity for LPA Quantitation 

  

 Previous HPLC ESI-MS/MS methods have been limited in sensitivity allowing only for 

quantification of LPA from biological samples such as tissue, blood, plasma, or serum. The goal 

of this study was to produce an HPLC ESI-MS/MS method with a high degree of sensitivity to 

quantify LPA levels from cell culture. In this regard, distinct fragmentation patterns were 

required for determination of optimal mass spectrometer parameters for the detection of LPA 

subspecies (Figure 4). Quantitative optimization for the transition of precursor to product ions 

supplied the optimal ABSCIEX 4000 QTRAP parameters that are detailed in Table 3. There 

were three common product ions produced upon fragmentation of LPA subspecies: 79 m/z - 

representing the fragmentation of the phosphite (PO3
-3

) from the sn-3 position, 97 m/z - 

representing the fragmentation of the phosphate (PO4
-4

) from the sn-3 position, and 153 m/z - 

representing the cyclical glycerol backbone produced upon fragmentation. The 153 m/z product 

ion was chosen for method development as it is the product ion common to all subspecies that 

was produced with the highest intensity (Figure 4). 

 Reverse phase HPLC separation prior to ESI-MS/MS provided the ability to easily and 

accurately distinguish LPA subspecies in relation to specific retention times. Several HPLC 

solvent conditions were investigated for accurate separation. The traditional HPLC solvents for 

LPA analysis provided insufficient elution from the fused-core column and insufficient 

separation among subspecies (data not shown).37, 39, 41, 42 In order to increase sample throughput, 

the HPLC solvent system used by the Chalfant laboratory for sphingolipid analysis was 

investigated for LPA analysis. Multiple variations of HPLC solvent gradients for this system 



22 

 

were attempted, but the best separation was provided by the solvent system and gradient detailed 

in Figure 5. Distinct chromatograms were produced (Figure 6) to allow accurate identification of 

LPA species related to specific HPLC retention times (Table 3). Peak assignments were initially 

determined by the analysis of indicated LPA standards using the MRM transitions and mass 

spectrometry parameters detailed in Table 3. Since there are no commercially available standards 

for 18:2 LPA and 22:6 LPA, relative retention times were calculated based upon the retention 

times for experimentally validated standards.   

 To investigate the sensitivity limits of this novel HPLC ESI-MS/MS method, a standard 

mixture of 14:0 LPA, 16:0 LPA, 17:0 LPA, 18:0 LPA, 18:1 LPA and 20:4 LPA was analyzed in 

concentrations from 10 fmols to 1 pmol per injection, and the signal response was measured as 

the area under the peak. When the results were plotted as signal response versus LPA 

concentration, a linear relationship was generated with correlation coefficients above 0.999 

(Figure 7A). When the results were plotted as a log-log plot of signal response versus LPA 

concentration, a linear relationship was generated with correlation coefficients above 0.997 

(Figure 7B).  Intra-day and inter-day precision and accuracy of QC samples were within 

acceptable range (Table 4). The method produced a lower limit of quantitation (five times signal 

to noise ratio) of 10 fmol per injection for each chain length. This lower limit of quantitation 

represents a minimum of a five-fold increase in sensitivity from the most recent HPLC ESI-

MS/MS LPA method and fifteen-fold increase in the remaining mass spectrometric reports in the 

literature for LPA analysis.37,43 
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Figure 4: Fragmentation patterns are required for development of a mass spectrometric method 

for the analysis of LPA subspecies. Direct infusion of dilute standards into ABSCIEX 

4000QTRAP provides distinct fragmentation patterns of precursor to product ions for each LPA 

subspecies. The 153.0 m/z product ion represents the cyclical glycerol backbone produced by 

fragmentation of precursor LPA ions and is common to all LPA subspecies. The 153.0 m/z 

product ion is therefore used during MRM analysis. 
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Table 3: ABSCIEX 4000 QTRAP mass spectrometer settings and retention times for reverse 

phase chromatographic separation of LPA species as described in Materials and Methods. DP - 

declustering potential, CE - collision energy, EP - entrance potential.  

 

 

Precursor Ion 

(m/z) 

Product Ion 

(m/z) DP CE EP 

Retention Time 

(min) 

14:0 LPA 381.3 152.7 -70.0 -26.0 -11.0 5.47 

16:0 LPA 409.3 152.7 -60.0 -30.0 -12.0 6.44 

17:0 LPA 423.3 152.7 -80.0 -30.0 -11.0 6.81 

18:2 LPA 433.3 152.7 -80.0 -30.0 -10.0 6.14 

18:1 LPA 435.3 152.7 -80.0 -30.0 -10.0 6.67 

18:0 LPA 437.3 152.7 -60.0 -30.0 -12.0 7.15 

20:4 LPA 457.3 152.7 -70.0 -30.0 -12.0 6.20 

22:6 LPA 481.3 152.7 -70.0 -30.0 -12.0 6.14 
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Figure 5: A novel solvent system allows for reverese phase HPLC seperation of LPA subspecies 

at distinct retention times. A Kinetex 2.6u C18 100A 50 x 2.1 mm reverse phase column on a 

Shimadzu 20-AD Series HPLC provides optimal separation using the following HPLC 

parameters: Total Flow: 300 µl/min, Injection Volume: 10 µl, Column Oven: 50.0°C. Solvent 

conditions for reverse phase HPLC separation are: Solvent A, 58:41:1 methanol/water/formic 

acid and Solvent B, 99:1 methanol/formic acid. Both solvents will contain 5 mM ammonium 

formate. Solvent gradient for HPLC separation is: 100% Solvent A from 0-1 minute, linear 

increase in minutes 1-7 from 100% Solvent A to 100 % Solvent B, 100% Solvent B from 

minutes 7-8, immediate switch from 100% Solvent B to 100% Solvent A at minute 8, 100% A 

for minutes 8-10. 
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Figure 6: Retention time standards are required for unambiguous peak assignment in the 

quantitation of LPA species during reverse phase HPLC ESI-MS/MS analysis. An internal 

standard mixture of commercially available LPA standards produces distinct MRM 

chromatograms for 14:0 LPA, 16:0 LPA, 17:0 LPA, 18:1 LPA, 18:0 LPA and 20:4 LPA for the 

purpose of unambigious peak assignment during HPLC ESI-MS/MS data analysis.  
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Panel A 

 

Panel B 

 

Figure 7: The method of detection for LPA species shows a linear response in the range from 10 

fmol to 1 pmol for LPA standards. An internal standard mixture of 14:0 LPA, 16:0 LPA, 17:0 

LPA, 18:0 LPA and 20:4 LPA was made in concentrations varying from 10 fmol/injection to 1 

pmol/injection. (A) . The results were plotted as signal response (area under the peak) versus 

amount standard in fmol/injection.  Data is the average of four separate sample injections ± 

SEM. (B) The results were plotted as log10 of signal response (area under the peak) versus log10 

fmol of standard per injection in a log-log plot. Data is the average of four separate sample 

injections ± SEM. 
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Table 4: Intra-day and Inter-day Precision and Accuracy  

Nominal

LPA Species Concentration (nM) Mean (n = 4) (nM) Mean accuracy (%) CV (%) Mean (n = 4 days) (nM) CV (%)

14:0 LPA 20 20.7 103.7 2.3 21.4 7.0

40 41.8 104.5 6.8 42.1 10.0

80 85.4 106.7 2.7 81.9 8.1

100 101.8 101.8 10.3 98.4 11.7

16:0 LPA 20 21.4 107.2 3.3 20.5 8.8

40 40.6 101.5 5.8 41.4 7.5

80 75.1 93.8 4.9 76.0 7.2

100 96.9 96.9 7.1 97.2 8.3

17:0 LPA 20 21.7 108.7 6.6 21.7 4.8

40 42.3 105.9 4.1 42.4 6.1

80 80.1 100.1 6.3 81.8 5.5

100 103.4 103.4 3.2 101.0 6.6

18:1 LPA 20 20.7 103.3 1.9 20.6 9.3

40 39.8 99.4 5.5 41.2 5.6

80 76.3 95.4 3.8 82.0 6.9

100 95.8 95.8 3.6 103.9 8.3

18:0 LPA 20 22.3 111.7 4.1 21.6 6.4

40 43.5 108.7 3.5 42.1 5.6

80 79.9 99.9 3.7 82.5 4.3

100 100.3 100.3 3.9 100.2 4.7

20:4 LPA 20 21.4 107.2 10.3 20.0 11.7

40 40.4 101.1 5.6 41.3 10.7

80 75.2 94.1 6.0 83.2 10.6

100 91.2 91.2 3.0 99.3 9.8

Inter-day precisionIntra-day precision and accuracy



29 

 

3.2 Non-acidified Extraction Methods Produce Quantifiable LPA Levels Without LPC 

Degradation 

 

Most reported HPLC ESI-MS/MS methods for quantitation of LPA have relied on 

extraction methods that required highly acidic treatments. These acidic conditions may 

contribute to the artificial conversion of LPC to LPA, and thereby lead to LPA measurements 

that are not characteristic of actual sample levels.36, 39 To address this issue, a number of 

extraction techniques without acidic treatment were tested on conditioned media samples. First, a 

direct media sample injection into the HPLC following polarity adjustment to starting HPLC 

conditions was tested. This extraction method proved to be insufficient due to a lack of sample 

concentration step during extraction (data not shown). Next, a simple lysophospholipid 

extraction that consists of a single methanol solvent dilution and single step of centrifugation was 

utilized as previously reported.44 While this extraction was suitable for LPA extraction of in vivo 

samples, it was unsuccessful at providing sufficient recovery of the minute levels of LPA from in 

vitro samples because this protocol also lacked a sample concentration step (data not shown). A 

solid-phase extraction protocol utilizing a reversed phase silica based column was also tested but 

did not provide sufficient results due to an inability to efficiently remove LPA from the column 

during the final elution step (data not shown). Finally, two non-acidified liquid-liquid extractions 

termed modified Bligh-Dyer and modified Folch extractions were tested and showed to provide 

reliable recovery of LPA at levels above the limits of quantitation (Figure 8). Importantly, the 

Folch extraction technique demonstrated a more reliable recovery of LPA with the combined 

organic and aqueous fractions approximately equaling the total Folch recovery (Figure 8). 

Therefore, the total Folch extraction was used throughout the remainder of the manuscript due to 
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its consistent recovery, simple protocol, and lack of producing artificial LPA contamination 

under acidic conditions. 
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Figure 8: Non-acidic extraction methods for in vitro LPA quantitation show that organic-

aqueous phase break protocols provided sufficient recovery for HPLC ESI-MS/MS analysis for 

1% FBS overnight treated DOV13-Zeo cells. BD - combined layers of Bligh-Dyer, BD Aqueous 

- aqueous layer of Bligh-Dyer, BD Organic- organic layer of Bligh-Dyer, Folch - combined 

layers of Folch, Folch Aqueous - aqueous layer of Folch, Folch Organic - organic layer of Folch. 

Extraction protocols are detailed in Materials and Methods. Data represents n = 3 ± SEM.  
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3.3 Autotaxin Overexpression Induces an Increase in Specific LPA Species  

  

 With the optimal extraction procedure for LPA determined, the protocol was fully 

operational for validation using biological applications. In this regard, we chose to examine the 

production of LPA in autotaxin-overexpressing cells as compared to vector control cells. Since 

ovarian cancer has been widely established to have increased LPA dysregulation, ovarian cancer 

cell lines SKOV3 and DOV13 and their corresponding autotaxin clones were analyzed. Figure 

9A shows that the 16:0, 18:1, 18:2, 18:0, and 20:4 LPA subspecies were significantly increased 

in the media from SKOV3-ATX cells, but importantly, the 22:6 LPA subspecies remained 

relatively unchanged. Similarly, comparison of LPA subspecies in media from  DOV13-Zeo and 

DOV13-ATX showed an increase in the 16:0, 18:1, and 18:0 LPA subspecies with little or no 

change among the 14:0, 20:4, and 22:6 LPA subspecies (Figure 10A). Hence, autotaxin increases 

the levels of specific chain lengths of LPA. Furthermore, the total levels of LPA increased two-

fold in media from autotaxin-overexpressing cells in both cell lines studied, as indicated in 

Figures 9B and 10B. 

 Prior to the development of this HPLC ESI-MS/MS method for quantitation of LPA from 

cell culture, quantitation of LPA production have relied on comparisons to the effect of 

exogenously introduced LPA on biological assays such as cellular migration and 

proliferation.40,45 Therefore, the observed increases in LPA levels produced by autotaxin 

overexpression as assayed by HPLC ESI-MS/MS were compared to the biological effect of these 

increased levels of LPA cellular migration and proliferation. Specifically, media from either 

SKOV3-Zeo or SKOV3-ATX was used as a chemoattractant in cellular migration assays. Media 

from SKOV3-ATX produced a two-fold increase in cellular migration when compared to media 

from SKOV3-Zeo, which correlated to the increase in LPA levels measured by HPLC ESI-
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MS/MS (Figure 11). To further validate the increase in LPA levels in SKOV3-ATX media, the 

effect of SKOV3-ATX and SKOV3-Zeo media on cellular proliferation was measured. Media 

from autotaxin overexpressing cells induced an increased in cellular proliferation as compared to 

SKOV3-Zeo media, which also correlated to the total increase in LPA levels measured by HPLC 

ESI-MS/MS (Figure 12).  

 Migration and proliferation studies were also done with conditioned media from DOV13-

Zeo and DOV13-ATX cells to validate the HPLC ESI-MS/MS analysis detailed in Figure 10. 

The approximate two-fold increase of cellular migration of SKOV3-Zeo cells using conditioned 

media from DOV13-Zeo and DOV13-ATX as chemoattractants correlated to the two-fold 

increase of total LPA levels as determined by HPLC ESI-MS/MS analysis (Figure 13). However, 

the SKOV3-Zeo cellular proliferation assays using conditioned media from DOV13-Zeo and 

DOV13-ATX showed no increase in cellular proliferation (Figure 14). This result shows that the 

HPLC ESI-MS/MS method developed in this study is superior to biological assays currently in 

use. 
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Panel A 

 

Panel B 

 

Figure 9: Comparison of control vector SKOV3 cells versus autotaxin-overexpressing clones 

show increased levels of LPA in autotaxin-overexpressing cell lines. (A) HPLC ESI-MS/MS 

analysis of LPA subspecies shows increases in 16:0, 18:2, 18:1, 18:0, and 20:4 LPA levels, but 

not 22:6 LPA. Data represents n = 3 ± SEM. (B) HPLC ESI-MS/MS analysis detailed in (A) 

shows an approximate two-fold increase in total LPA levels between control vector and 

autotaxin-overexpressing cells. Data represents n = 3 ± SEM. p-values were calculated as 

student's t-test using SigmaPlot v. 12.0 (SyStat). 
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Panel A 

 

Panel B 

 

Figure 10: Comparison of control vector DOV13 cells versus autotaxin-overexpressing clones 

show increased levels of LPA in autotaxin-overexpressing cell lines. (A) HPLC ESI-MS/MS 

analysis of LPA subspecies shows increases in 16:0, 18:1, 18:0, and 20:4 LPA levels, but not 

14:0 or 22:6 LPA. Data represents n = 3 ± SEM. (B) HPLC ESI-MS/MS analysis detailed in (A) 

shows an approximate two-fold increase in total LPA levels between control vector and 

autotaxin-overexpressing cells. Data represents n = 3 ± SEM. 
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Panel B 

 

Figure 11: Conditioned media from SKOV3 autotaxin-overexpressing clones correspond to 

increased cellular migration of SKOV3-Zeo cells when compared to conditioned media from 

control vector cell lines. Media from overnight 1% FBS experimental protocol was used as a 

chemoattractant for cellular migration assay as detailed in Materials and Methods. (A) Images of 

migrated cells show increased SKOV-Zeo cellular migration using conditioned media from 

autotaxin-overexpressing cell line. (B) Calculations show that increases in migration correspond 

to total LPA levels measured by HPLC ESI-MS/MS analysis. Data represents n = 4 ± SEM. p-

values were calculated as student's t-test using SigmaPlot v. 12.0 (SyStat).  

SKOV3 –
Zeo Media

SKOV3 –
ATX Media
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Panel B 

 

Figure 12: Conditioned media from SKOV3 autotaxin-overexpressing clones is associated with 

increased SKOV3-Zeo cellular proliferation when compared to conditioned media from control 

vector cell line. (A) Images of cell growth at corresponding time points show increased SKOV-

Zeo cellular proliferation. (B) Calculations show that increases in proliferation correspond to 

total LPA levels measured by HPLC ESI-MS/MS analysis. Data represents n = 5 ± SEM. p-

values were calculated as student's t-test using SigmaPlot v. 12.0 (SyStat). 

SKOV3 –
Zeo

Media

SKOV3 –
ATX 

Media

36 Hour 48 Hour
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Panel B 

 

Figure 13: Conditioned media from DOV13 autotaxin-overexpressing clones correspond to 

increased cellular migration of SKOV3-Zeo cells when compared to conditioned media from 

control vector cell lines. (A) Images of migrated cells show increased SKOV-Zeo cellular 

migration using conditioned media from autotaxin-overexpressing cell line. (B) Calculations 

show that increases in migration mimic the increased total LPA levels measured by HPLC ESI-

MS/MS analysis. Data represents n = 4 ± SEM. p-values were calculated as student's t-test using 

SigmaPlot v. 12.0 (SyStat). 

DOV13 –
Zeo Media

DOV13 –
ATX 

Media
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Panel A 

 

Panel B 

 

Figure 14: Conditioned media from DOV13 autotaxin-overexpressing clones does not 

correspond to increased SKOV3-Zeo cellular proliferation when compared to conditioned media 

from control vector cell line. (A) Images of cell growth at corresponding time points show no 

increase in SKOV-Zeo cellular proliferation. (B) Calculations show that, unlike SKOV3-ATX 

conditioned media, DOV13-ATX conditioned media does not cause an increase in SKOV13-Zeo 

cellular proliferation. Data represents n = 5 ± SEM. p-values were calculated as student's t-test 

using SigmaPlot v. 12.0 (SyStat).  
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Discussion  

 

4.1 Necessity for this Novel HPLC ESI-MS/MS Method 

 The few reported methods for measuring endogenous LPA in vitro have suffered from a 

multitude of problems, such as inability to distinguish LPA species, a labor intensive nature, and 

high limits of detection. For example, some previous studies have even relied on thin-layer 

chromatography for pre-separation, a highly labor intensive and mainly qualitative protocol, for 

measuring autotaxin activity and subsequent LPA production in vitro.38 Recently, HPLC ESI-

MS/MS has been established as a reliable method for LPA quantitation from biological samples, 

but the significant limitations of these methods have made in vitro analysis unfeasible. In this 

study, we have developed a HPLC ESI-MS/MS method with increased sensitivity to resolve 

these issues and provide researchers the ability to make in vitro LPA quantitation possible in 

conjunction with quantitative measurements of other lipid classes.  

  

4.2 Advantages of HPLC Conditions Utilized in this Study 

 Prior to this study, many of the publications utilizing HPLC ESI-MS/MS method 

development for LPA measurement suffer from undesirable HPLC conditions. For example, one 

report demonstrated what was termed "unidentified peaks" during chromatographic separation.37 

The HPLC conditions reported here allow for a more reliable identification of LPA species by 

the elimination of these unidentifiable peaks. This HPLC method also does not utilize 

undesirable solvent conditions. For example, the highly acidic solvents used by some methods 

may result in on-column degradation of LPA and artificial conversion of LPC to LPA.35 Also, the 

highly organic solvents reported by other groups can affect the lifetime of the HPLC seals and 

are not functional for analysis of other lipid classes in the same sample run.36,39 Use of such lipid 
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class specific HPLC methods significantly reduces the amount of data acquired from a single 

sample. The solvent system used in this study has previously been established for the study of 

sphingolipids, particularly ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-

phosphate.46 Other HPLC solvent systems reported for LPA, including the most recent HPLC 

ESI-MS/MS method with highest sensitivity until this report, have the potential for ion 

suppression due to the inclusion of triethyl ammonium acetate as a modifier.43 This suppression 

will produce the requirement of regular and thorough cleaning of the instrument before further 

analysis of other lipid classes. The need to change solvent systems to analyze the different lipid 

species also significantly increases valuable instrument time, thereby decreasing sample 

throughput. The HPLC ESI-MS/MS method in this study also utilizes solvent conditions that do 

not cause contamination and are capable of being used for sphingolipid analysis. Hence, this new 

HPLC ESI-MS/MS method for LPA not only overcomes the undesirable HPLC conditions but 

also uses chromatographic separation that allows for other lipids to be efficiently analyzed 

during the same sample run. 

  

4.3 Advantages of LPA Extraction Method Utilized in this Study 

 An easy and reliable extraction method for LPA analysis was determined. Prior to this 

study, numerous extraction protocols have been published for the separation of LPA from 

biological samples, but early methods used thin-layer chromatographic separation as the initial 

basis of separation, and subsequent protocols have utilized a modified form of Bligh-Dyer lipid 

extraction where the optimal recovery is obtained using highly acidic conditions.37,38 These acidic 

conditions have been shown to cause conversion of LPC to LPA during extraction and thereby 

provide inaccurate and artificial measurements.36,47 Water-saturated butanol liquid-liquid 
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extraction methods have proven to be efficient, but are quite labor intensive.39,47. The extraction 

method utilized in this study is a simple, efficient, organic-aqueous phase break separation that 

requires minimal labor, minimizes artificial LPA measurements, and provides sufficient recovery 

for LPA quantitation. 

  

4.4 Increased Sensitivity Provides the Ability for Quantitation of in vitro LPA Levels 

 The method described herein provides a highly sensitive assay for the quantification of 

LPA levels from in vitro experiments. An increase in HPLC ESI-MS/MS sensitivity was 

necessary to quantify LPA subspecies levels from in vitro samples as other in vitro LPA 

quantitation methods had significant sensitivity limitations. The most sensitive HPLC ESI-

MS/MS method previously reported for LPA subspecies quantitation has a lower limit of 

quantitation of 54 femtomoles on-column.43 The method described in this study achieves a lower 

limit of quantitation of 10 femtomoles on-column . Hence, this represents a five-fold increase in 

sensitivity levels for HPLC ESI-MS/MS analysis. Furthermore, other reported studies could only 

assay one subspecies of LPA even when attempting to artificially induce LPA production by 

LPC treatment.48 This reported method also suffered from the same acidic extraction conditions 

as previously published protocols, limiting even conclusions for this one LPA subspecies.48 The 

increased sensitivity of the HPLC ESI-MS/MS method developed in this study will provide 

researchers with the ability to easily and accurately quantify all LPA subspecies levels in vitro. 

Furthermore, the method described in this study was the first to be validated by traditional 

biological assays. 
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4.5 Conclusions and Future Directions 

 Measurement of LPA in vitro has proven to be unreliable until the development of the 

HPLC ESI-MS/MS method described herein. Previous HPLC ESI-MS/MS methods have 

focused on biological samples, which contain high levels of LPA, and which have also suffered 

from unfavorable HPLC conditions, hazardous and inaccurate extraction protocols, and 

inadequate sensitivity levels. This new HPLC ESI-MS/MS method will offer researchers a 

valuable tool for determination of the activities of LPA subspecies for the purpose of delineating 

biological mechanisms and pre-clinical drug development for diseases such as diabetes, 

atherosclerosis, and cancer. The increased sensitivity levels will also provide clinicians with 

better ability to quantitate LPA with the goal of early detection of disease states. Overall, the 

HPLC ESI-MS/MS method presented in this study supplies a new tool for further exploration of 

the biological functions of LPA.   
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