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Pharmacometrics is a quantitative science that is rapidly changing the landscape 

of drug development, and particularly so for the pediatric population. The motivation 

behind the research underlying this dissertation is to contribute towards the improvement 

of pediatric drug development by the astute application of pharmacometric methods. Two 

distinct research areas have been focused upon: 1- improving pediatric pharmacokinetic 

(PK) trial design and 2- improving pediatric dosing of warfarin by using a genetics-based 

dosing regimen. 
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The first project examined in detail the feasibility of and simulation-based 

methodology for implementing a recent regulatory PK quality standard. The focus was on 

designing pediatric PK trials that employ sparse sampling and population analysis 

methods, using a simulation-estimation platform. The research provided clarity on the 

impact of various trial design elements, such as PK sampling, adult data inclusion, PK 

variability and analysis method on sample size adequacy to honor the standard. 

The PK quality standard was found to be practically feasible in terms of sample 

size adequacy. Informative sampling schedule for a given number of PK samples per 

subject is assumed during trial design. Recommendations are made to: 1- use prior adult 

or pediatric data for trial design and analysis, wherever possible and 2 - use one-stage 

population analysis methods and biologically feasible covariate models for designing 

pediatric PK studies. 

 

The second project involved derivation of the first ever pediatric warfarin dosing 

regimen, including starting dose and titration scheme, based on pharmacogenetics 

(Cyp2c9 *1/*2/*3 and VKORc1 -1629 G>A polymorphisms). While extensive research 

and several dosing models for warfarin use in adults exist, there is paucity of data in 

pediatrics. A validated adult warfarin population PKPD model was bridged using 

physiological principles and limited pediatric data to arrive at a pediatric PKPD model 

and dosing regimen. Pediatric data (n=26) from an observational study conducted at the 

Children’s Hospital Los Angeles (CHLA) was used to qualify the pediatric model.  

A 2-step pediatric starting dose based on body weight (<20 kg and ≥20 kg) for 

each of 18 (6 Cyp2c9 x 3 VKORC1) genotype categories is proposed. The titration 

 
xv



 
xvi

scheme involves percentage changes relative to previous dose, based on latest patient 

INR. The dosing regimen targets a major (≥ 60%) proportion of INRs within therapeutic 

range of 2.0-3.0, by the second week into warfarin therapy. Simulataneously, bleeding 

and thromboembolic risks are minimized via minimal proportions (≤ 10% and ≤ 20%) of 

INRs > 3.5  and INRs < 2.0, respectively. In simulations, the proposed dosing regimen 

performed better on target INR outcomes than the standard-of-care dosing used in the 

CHLA patients. Given the challeneges in and low likelihood of conducting pediatric 

warfarin clinical studies, the proposed dosing regimen is believed to be an important 

advance in pediatric warfarin therapy. Prospective warfarin studies in pediatrics using the 

proposed dosing regimen are recommended to refine and validate the suggested dosing 

strategy. 

 



 

CHAPTER 1 

Pharmacometrics: Concepts and Applications to Drug 

Development 

 

ABSTRACT 

Pharmacometrics is the science of quantitaive clinical pharmacology that impacts 

decision-making throughouht the drug development and regulatory review process. It is 

based primarily on pharmacokinetic and pharmacodynamic modeling and simulation with 

applications including among others, clinical trial design and dose optimization. Through 

the channel of quantitiative drug, disease and trial models, pharmacometric methods have 

the unqiue ability to leverage all prior and current information from diverse sources 

including clinical pharmacology, pathophysiology and statistics.  

This chapter provides an introduction to the genral applications of 

pharmacometrics as well as concepts and methods employed, including non-linear mixed 

effects modeling and population analysis. Further, several case studies are cited, where 

pharmacometric analyses played a role in drug development and/or regulatory decision 

making. Finally, a future perspective on the field is provided with considerations for 

wider adoption of pharmacometrics to improve the efficiency of drug development 

programs. 
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WHAT IS PHARMACOMETRICS? 

Introduction 

Pharmacometrics is the science of quantitaive clinical pharmacology that influences 

decision-making throughouht the drug development and regulatory review process. It is 

an amalgamation of several research areas, including among others, pharmacokinetics 

(PK), pharmacodynamics (PD), pathophysiology and statistics. Pharmacometrics 

comprises of an array of techniques that are primarily based on modeling and simulation 

of data, which include but are not limited to population pharmacokinetic (PPK) analysis, 

exposure-response (E-R, or PK-PD) determination for drug efficacy and safety, clinical 

trial simulations and disease progression modeling. 

 

Several organizations have discussed the increasing importance of modeling and 

simulation for enhancing drug development [1-4]. The pharmaceutical industry has 

conducted surveys to evaluate the role of pharmacometric analysis in their drug 

development process. A study at Parke-Davis [5] found that in almost half (5 of 12) of 

the cases reviewed, the population analysis provided information that influenced the 

direction of individual development programs and may have facilitated review and 

approval. A similar study at Hoffmann La Roche [6] found that a modeling and 

simulation guided approach contributed toward making clinical drug development more 

rational and efficient, by better dose selection for clinical trials and time savings up to 

several months. 
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The following sections of this chapter describe the general applications of 

pharmacometrics during drug development and regulatory review, as well as different 

concepts and methods employed.  Case studies, which bring out the role that 

pharmacometric analyses have played in various aspects of drug development, and a 

future perspective on the field, are also provided. 

 

Quantitative disease-drug-trial models 

Disease-drug-trial models may be considered mathematical expressions of the time 

course of biomarkers, clinical outcomes, placebo effects, drug effects, and trial execution 

characteristics [7]. Accrual of information from across drug development programs 

enables efficient future planning, for which quantified disease, drug, and trial information 

can serve as a helpful guide. 

 

Disease models quantify the relevant biological system in the absence of drug (detailed 

discussion in Section 2). Drug models characterize the exposure-response relationship for 

both efficacy and safety of drugs. Among other decisions, such models drive the 

determination of optimal dosing regimens. Using drug models early on can reduce 

unexpected safety/efficacy outcomes during the late clinical phase [8;9]. Trial models 

attempt to account for patient characteristics and behaviors such as eligibility criteria, 

baseline variables and their correlation, protocol adherence [10] and dropout rates, which 

may significantly influence outcomes in clinical trials. Trial models have great potential 

contribution towards more efficient and successful future clinical trials. 
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Applications 

Pharmacometrics can be applied at all stages of the drug lifecycle, right from the pre-

clinical phase through clinical development and regulatory review, as well as post-

marketing. Potential applications range from molecule screening and identification of 

biomarkers and surrogates, to dosing regimen and trial design selection and optimization, 

to prognostic factor and benefit/risk evaluation. These methods have the unique ability to 

leverage all prior and current information, providing a rational, scientifically sound 

framework to maximize knowledge and efficiency of drug development programs. The 

many and varied applications of pharmacometrics are illustrated in Figure 1. 

 

Figure 1: Potential applications of pharmacometrics throughout drug development 
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Clinical trial design 

It has been observed over time that registration trials fail to demonstrate effectiveness or 

safety, often due to ignorance of prior knowledge, both drug-specific and non-specific 

(placebo-effect or natural disease progression) and/or employment of one-size-fits-all 

dosing strategies [1;11]. Disease-drug-trial models and clinical trial simulations are 

useful tools that can help reduce such trial failures. Potential benefits include upfront 

comparison of candidate study designs, dose and safety outcomes selection, sample size 

and power determination, and evaluation of drug interactions and co-morbidities [12]. 

The resources needed to perform the pharmacometric analyses are negligible compared 

with the costs of unsuccessful trials.  

 

For instance, nesiritide, developed for the treatment of acute congestive heart failure, was 

initially not approved because the dosing regimen used in the first registration trial was 

sub-optimal. Modeling led to suggestion of a new, optimal dosing regimen, and results of 

simulated trials based on this regimen matched well with those of the second registration 

trial that led to eventual approval of the drug [13]. In retrospect it appears as though an 

early dose optimization could have saved three years of drug development time and one 

failed clinical trial.  

 

Another instance, is for a drug to treat type 2 diabetes mellitus [14], a semi-mechanistic 

model to describe the time course of FPG and HbA1c was developed and extensive 

simulations were performed to evaluate two different trial designs: genotype-stratified 

and biomarker enrichment designs. The biomarker-enrichment design with a bid dosing 
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regimen was proposed for future trials with an understanding that the trial results would 

be used to derive an optimal dosing strategy such as genotype-based dosing. An 

important resulting drug development decision was the need to develop a sustained 

release formulation of the drug. 

 

Dose optimization 

Exploring several dosing strategies in clinical trials is often impractical, costly, and in 

some cases, unethical. Under such circumstances, simulations can be used to explore all 

competing dosing schemes and select an optimal strategy. If no single dosing scheme is 

able to achieve target drug exposures in majority of patients, there may be need for dose 

individualization and therapeutic drug monitoring (TDM).  Modeling and simulation can 

help forecast this need and provide a TDM strategy [1]. This was observed in case of an 

oral suspension product for prophylaxis of invasive fungal infections in high-risk patients 

[15]. E-R analysis revealed very high variability in exposures across patients and the need 

for TDM to maximize effectiveness for all patients, and supported conducting a post-

marketing study to evaluate benefit of proposed TDM. The analysis also supported 

inclusion of administration conditions to optimize drug absorption, emphasizing the 

importance of adequate plasma concentrations, in the drug label.  

 

Usually, only dosing regimens ‘directly’ studied in clinical trials are proposed in drug 

labels. However, a drug model may effectively be used to explore the suitability of 

intermediate doses that are not directly studied but could potentially offer similar 

effectiveness as studied dosing regimens [16;17]. But extrapolating outside the studied 
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dose range may not be feasible. The ability of a well-developed exposure-response 

relationship to support approval of a dosing regimen not directly studied in clinical trials 

is in fact one of the strongest merits of modeling and simulation. Unfortunately, this tool 

is not being fully exploited currently. 

 

Covariate / Prognostic factor determination 

Apart from dose-ranging studies, the clinical pharmacology characterization of a new 

drug involves a number of bridging studies to identify influential covariates or prognostic 

factors such as body size, age, gender, food intake, co-morbidities, co-medications, and 

others. While effectiveness and safety data may not be collected in bridging studies, they 

could be simulated from a previously developed drug model. 

 

For instance, Sular is a once-a-day controlled release formulation of the drug Nisoldipine, 

which is approved in the United States for the treatment of hypertension. Food was found 

to increase the bioavailability (Cmax increases up to 245%) of the controlled release 

product. The influence of these higher drug concentrations on lowering of blood pressure 

was evaluated using simulation of the drug effect under fed condition from a previously 

developed exposure-response model [18]. Even though the Sular label recommends 

administration on an empty stomach for optimal bioavailability, these simulations 

alleviated the safety concern of a large drop in blood pressure, should the drug be 

administered with food. Hence, there is no safety warning in the label for the drug to not 

be administered in a fed condition. 
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Special populations 

Pharmacometric analyses enable the understanding of unique clinical pharmacology 

features in special populations such as pediatrics, geriatrics, renal/hepatic impairment, 

and others. A case in point is docetaxel, where the exposure-response relationship in 

patients with cancer was successful in identifying a sub-population, patients with liver 

impairment, to be more prone to grade 4 neutropenia [19]. This important finding 

improved the safety profile of the drug and was the basis of the dosing recommendation 

for patients with hepatic insufficiency in the label. The drug development program of 

docetaxel exemplifies the value added by prospective modeling and simulation while 

planning clinical trials. 

 

The FDA offers a six month extension on the marketing exclusivity for a new drug, 

should the sponsor fulfill the requirement of a written request to characterize the 

exposure-response relationship of the drug in pediatrics. Hence, one of the most sought 

out special populations to study for labeling changes is pediatrics. A well-defined 

exposure-response relationship of a drug in adults, be it for a biomarker, surrogate or 

clinical endpoint, can facilitate development of the same drug for use in pediatrics. 

Modeling and simulation is a powerful tool that can be used to provide plausible trial 

design, rational dosing recommendations and useful labeling information in pediatrics 

when sufficient understanding of adult and pediatric pharmacology is available [20].  

 

For instance, a pediatric population analysis [21], and further modeling and simulation 

[22], provided the labeled dosing recommendations for the anti-arrhythmic agent sotalol 
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in pediatrics aged 1 month to 12 years. The E-R analysis found drug effects in pediatrics to 

be consistent with adults. In this case, dosing for patients < 2 years of age was selected 

specifically based on modeling, and not studied directly in trials. 

 

Regulatory considerations  

The United States Food and Drug Administration (FDA) routinely utilizes 

pharmacometric methods as an aid in making regulatory decisions during the 

investigational new drug (IND), biologics license application (BLA) and new drug 

application (NDA) review processes. The role of pharmacometric analyses in various 

regulatory decisions are summarized in Table 1. 

 

A survey of 42 NDAs submitted between 2000 and 2004, which included a 

pharmacometric component, revealed that pharmacometric analyses were pivotal in 

regulatory decision making in more than half of the cases. Of the 14 reviews where such 

analyses were key to approval related decisions, 5 identified the need for additional trials, 

while 6 identified reduction in the burden of conducting additional trials [1]. 

 

The proceedings of an advisory committee meeting for cardio-renal (CR) drug products 

are noteworthy [23]. The meeting devoted 50% of the total time to discuss the role of 

exposure-response in CR drug development. The advisory committee concluded that 

model-dependent analysis to learn about the shape of the exposure-response curve and 

more innovative designs to potentially allow both, frequentist and Bayesian types of data 

analysis were needed. 
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Table 1: Summary of the types of regulatory decisions influenced by 

pharmacometric analyses 

 
Regulatory 

Decision 

Role of Pharmacometric Analyses 

 

Trial design 

guidance 

 

• Selection of dose or exposure range for registration trials 

• Derivation of optimal sampling schemes (PK and PD) 

  

Approval • Development of approval criteria 

• Evaluation of: 

o evidence of effectiveness 

o benefit-risk 

o targeted safety studies (ex: QT evaluation) 

o clinical implications of failed bioequivalence studies 

 

Labeling • Recommendation of dosing strategy: 

o dose and regimen 

o individualized doses, where required 

o therapeutic drug monitoring, where required 

o dosing in special populations (ex: pediatrics) 

o drug interactions 

• Evidence for warnings and precautions 

 

Policy • Evaluation of: 

o alternative primary analysis methods 

o competing recommendations for guidances 

o bioequivalence criteria 

 

 
10



The FDA issues guidance to industry to facilitate a smoother drug development and 

approval process. The guidance to industry on population pharmacokinetics [16] 

emphasizes the role of modeling and simulation in designing and analyzing trials. The 

FDA Modernization Act (FDAMA) [17] has a section for “extrapolation from existing 

studies” which emphasizes the ability to use knowledge from previous clinical trials for 

approval of the same drug product for pediatric use, or for establishing equivalence of 

alternative formulations, provided the original trial yielded well-defined exposure-

response relationships. The FDA has also implemented End-of-Phase-IIA (EOP2A) 

meetings with sponsors [24] and published the Critical Path Initiative [25], which again 

emphasize the usefulness of pharmacometrics in enhancing drug development. The 

premise for all these regulatory initiatives is that with efficient planning, sponsors can 

economize valuable drug development time and resources, which is in public health 

interest,  as well as reap full advantage of the resulting incentives. 

 

DISEASE MODELS 

A disease model is a mathematical representation of a given biological (or pathological) 

system in the absence of drug that attempts to quantify the time course of the disease [7]. 

There are three major sub-models that capture the relevant aspects of disease modeling, 

namely, the relationship between biomarkers and clinical outcomes, the natural disease 

progression, and the placebo effect. In addition, there are three general approaches to 

building any disease model: systems biology, semi-mechanistic, and empirical modeling. 

The main features of the three approaches are summarized in Table 2. 
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Biomarkers and clinical outcomes 

In several cases, particularly when clinical endpoints occur after prolonged periods of 

time, biomarkers are used as outcomes in clinical trials rather than the actual clinical 

endpoints. Characterization of the relationship between biomarkers and clinical outcomes 

for both efficacy and safety for a particular disease condition, is thus a very important 

aspect of disease modeling, and can help develop surrogate endpoints. Such models can 

then aid in trial design optimization and risk projection based on biomarker data. Systems 

biology models, although complex, are very useful for this purpose [26]. They are based 

on an understanding of the underlying biological system, much like physiologically-

based models. They represent the system at the molecular level, with an ability to account 

for pathological disturbances. The model parameters are estimated from multiple, 

detailed in-vitro and ex-vivo experiments [7].  

 

On the other hand, semi-mechanistic and empirical models are predominantly data driven 

and tend to disregard details of related diseases [27]. Semi-mechanistic models 

sufficiently simplify the biological system to be able to describe the available data well, 

and could be the first step toward a systems biology model. Empirical disease models are 

essentially mathematical expressions used to interpolate between observed data, and 

seldom relate to the underlying biology. Even so, such models are useful, depending on 

the problem at hand. Empirical models are simple and frequently all that is available, and 

are often invaluable in making go/no-go decisions and designing pivotal trials. The 

empirical parametric hazard model [28] that describes the relationship between the 

change in tumor size and survival is one such example.  
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It may be correct to say that every model will include some empirical component. For 

instance, in the case of diabetes, a detailed systems biology model with more than 50 

parameters [29], as well as a semi-mechanistic model [30] have been proposed. While the 

systems biology model takes into account glucose and HbA1c data, as well as other 

related information such as blood pressure, cardiac output, family history, cholesterol, 

and smoking status, the semi-mechanistic model focuses on just the glucose and HbA1c 

information. Similarly, the outputs of the systems biology model include risks of 

retinopathy, nephropathy, and neuropathy, while the semi-mechanistic model is restricted 

to prediction of changes in glucose and HbA1c. Having said that, the systems biology 

model will still need to establish a relationship between change in blood pressure and/or 

glucose and a binary event such as myocardial infarction, thus incorporating an empirical 

component [7].  

 

Natural disease progression 

The natural disease progression aspect of disease modeling aims at describing the time 

course of changes observed in the clinical outcome. Drug therapy may alter natural 

progression of the disease, and such models can then provide insights into the 

management of several diseases [31]. For this purpose, empirical models have been used 

most commonly. The natural progression of Alzheimer’s disease as measured by the 

Alzheimer’s Disease Assessment Scale – Cognitive score (ADAS-COG) and that of 

Parkinson’s disease using total Unified Parkinson Disease Rating Scale (UPDRS) have 

been described using empirical models [32-34]. However mechanistic models, which are 
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more generalizable, are also being studied. A mechanistic disease progression model for 

arthritis in rats has been proposed [35].  

 

Placebo effect 

The effect in a placebo group refers to the psycho-socially induced biochemical changes 

in a patient’s brain and body that in turn may affect both, the natural course of a disease, 

and response to therapy [36]. Thus, even though the placebo-effect is not directly related 

to the disease, it can significantly impact outcomes. This is particularly true for disease 

conditions that are measured symptomatically, such as pain and depression. Therefore, 

modeling the magnitude and time course of placebo effect has value in discerning true 

drug effects and also aids in estimating sample size during trial design. Recently, a 

Bayesian model that describes the time course of the Hamilton Depression Rating scale 

(HAMD-17) clinical score in the placebo arms of antidepressant trials, combined with a 

dropout mechanism, has been developed [37]. This model provides new insights on the 

validity of the results of several longitudinal registration trials currently used for new 

drug products. A placebo model for Crohn’s disease trials [38] is also available. 
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Table 2: Comparison of systems biology, semi-mechanistic and empirical 

approaches to disease models 

 

      Feature 

 

Approach 

Data source Validation Complexity 

& 

Resources 

Application 

Systems 

biology 

models 

Wide range – 

underlying biology, 

inter-relationships with 

related systems, 

multiple detailed 

experiments etc. 

Extremely 

challenging 

High – 

Diverse 

expertise 

involved. 

• target 

identification 

• dose selection 

• trial design 

optimization 

• risk projection 

based on 

biomarker data 

Semi-

mechanistic 

models 

Limited range – 

one or more 

experiments; related 

systems not considered

Empirical 

models 

Limited range – 

one or more 

experiments; may not 

accommodate  design 

variations and related 

systems not considered

Relatively 

simple 

Low – 

Lesser 

expertise 

involved. 

• go/no-go 

decisions  

• dose selection 

• trial design 

optimization 
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POPULATION ANALYSIS 

Conceptual framework 

A population model typically comprises structural and statistical model components. 

Structural models are deterministic in nature, and account for population or ‘fixed 

effects’ (primary model parameters), but do not account for variability. The typical value 

of systemic clearance (CL) for a 70 kg individual and the mean potency (EC50) of a drug 

are examples of fixed effects. A population model suite would include four structural 

models: PK model, PD model, covariate (or prognostic factor) model and disease 

progression model.  

 

Statistical models are stochastic in nature, and account for the variability or ‘random 

effects’ seen at both, the individual and the observational levels. A population model 

suite would include three statistical models: between-subject variability (BSV) model, 

between-occasion variability (BOV) model, and within-subject variability (WSV) model. 

Random effects models usually assume that the between-subject and between-occasion 

errors (η) are normally distributed with mean zero and variance Ω2, and that the within-

subject or residual errors (ε) are normally distributed with mean zero and variance σ2. 

BSV signifies deviations among different subjects and BOV signifies deviations among 

different occasions. WSV signifies deviation between predicted and observed values for 

each subject, and may be the result of measurement error or even model-misspecification. 

 

Nonlinear mixed effects models are called so because they attempt to account for both, 

fixed and random effects together. The “mixed effects” concept is depicted in Figure 2. 
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Consider a one-compartment PK model where the drug is given as an intravenous bolus 

and the volume of distribution (V) is identical in every individual (no BSV for V). Then, 

the concentration in the ‘ith’ subject at the ‘jth’ time point (Cij) can be described using the 

following equations: 

ij

t
V
CL

ij

i

e
V

DoseC ε+⋅=
⋅−

  Eqn. (i) 

 

iCLPOPi CLCL ,η+=    Eqn. (ii) 

 

where; CLi is the estimated clearance of the ‘ith’ subject, CLPOP is the estimated 

population mean clearance, ηCL,i is the difference between the population mean and 

individual clearances and εij is the residual error of the ‘jth’ sample of the ‘ith’ subject.  

 

Figure 2: Conceptual framework for nonlinear mixed effects modeling 
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Analysis methods 

A primary goal of population analysis is to estimate the mean value of relevant 

parameters (such as CL, V and EC50) in the population of interest, the variances in these 

parameters as well as residual variability of observations. Another goal is to explain the 

observed BSV using patient covariates such as body size, age, genotype etc. In addition, 

estimating individual PK parameters (such as CLi and Vi) is required to impute 

concentrations for performing E-R analysis and any other simulations at a later stage.  

 

The known methods for performing a population analysis are: naïve pooled, naïve 

averaged, two-stage (TS), and nonlinear mixed effects (NM) or one-stage analysis. The 

main features of these analysis methods are summarized in Table 3. 

 

In naïve pooled analysis, individual observations from all subjects are pooled (as though 

all data came from a single, giant subject) to obtain average PK parameters. A minor 

variation of this method is the naïve averaged analysis which involves determination of 

the mean of the data at each time point. Both these methods provide only the central 

tendency of the model parameters and no random effects are estimated. These methods 

are used more often for pre-clinical data and are appealing because of their simplicity. 

However, since between-subject variability is not estimated and cannot be accounted for 

using covariates, the potential applications of naïve pooled or naïve averaged analyses are 

very limited. 
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In two-stage analysis, the first stage involves estimation of the average parameters for 

each subject from their individual observations, while the second stage involves the 

estimation of the population mean and variance of the parameters, after adjusting for 

covariates, if necessary. Estimates of both, the central tendency and the inter-individual 

variability can be obtained reasonably well. The TS method requires collection of rich 

data to have sufficient samples per subject (greater than the number of model parameters 

to be estimated), which is the usual requirement with experimental data. One concern is 

this method assumes that the individual parameters, estimated in stage one, are known 

without any uncertainty. More serious drawbacks include the inability to model sparse 

data and concentration (or dose) dependent nonlinear processes. The conventional PK 

non-compartmental analysis (NCA) is a type of two-stage population analysis approach. 

 

In non-linear mixed effects analysis, data from all subjects are simultaneously modeled to 

yield estimates of both, population mean parameters as well as variance. Since both 

stages of the TS method are performed in one step, the NM technique is also known as 

the ‘one-stage’ method. Individual parameters are calculated post-hoc, subsequent to this 

one-stage optimization. Nonlinear mixed effects modeling is perhaps the most powerful 

technique for analyzing both rich and sparse data, and does not share the drawbacks of 

the other methods discussed earlier. One of the main advantages of the NM method is its 

ability to conduct meta-analyses which enables incorporating all data across a drug 

development program. The primary disadvantage of this method is that sophisticated 

software are required for the analysis, which mandates special training for its use, while 

learning resources are limited. In addition, these analyses can be highly time-consuming. 
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Table 3: Main features of the common population analysis methods 

    Feature 

 

 

Method 

Covariate 

exploration 

Uncertainty at 

observational 

level  

Uncertainty at 

subject level 

Relative 

Complexity 

& Time 

involved 

Naïve 

Pooled 

Indirect – 

A model with known 

relevant covariates 

can be imposed. 

Naïve 

Averaged 

Indirect – 

Subjects can be 

divided into groups 

based on relevant 

covariates. 

Ignored – 

Mean estimates 

will be unduly 

closer to outliers 

(extreme 

observations). 

Two-Stage Convenient – 

A covariate model 

can be estimated in 

stage 2. 

Ignored – 

All subjects are 

weighted 

equally, 

regardless of 

number of 

observations per 

subject. 

Low 

 

One-stage Convenient – 

A covariate model 

can be included in 

the optimization step. 

Accounted – 

Models will not 

be unduly 

influenced by 

extreme 

observations. 

Accounted – 

Subjects with 

more data are 

also weighted 

more. 

High - 

Special 

training is 

required. 
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Model qualification  

All models are required to be qualified and credible for their wider adoption. Validation 

implies a procedure of utmost robustness. However, the fact that the true model and its 

parameters are not known discourages the use of the term ‘validation’ for population PK-

PD models. Hence, qualification may be a better suited term.  

 

The purpose for which the model is being developed should be clearly specified as a pre-

requisite before undertaking any model building. Based on the purpose of the model, 

qualification methods can test either the descriptive capacity or the extrapolation capacity 

of a given model. Developing an acceptable descriptive model is critical for making 

labeling recommendations. However, drug labels, usually, do not extrapolate results 

beyond the range of data observed. 

 

Adequate description of the data at hand will ensure that the proposed model and its 

parameters are qualified to make reliable inferences, within the range of the data studied. 

This can be assessed using the routine diagnostic tests such as goodness-of-fit plots 

(independent variable versus observed and individual/population model predictions), 

summary statistics, and precision of the parameter estimates. A model and its parameters 

may be deemed ‘qualified’ to perform the particular task(s) if they satisfy certain pre-

specified criteria. Application of a predictive check to a model and its parameters along 

with Monte-Carlo simulations [39;40] is an effective method used for qualification of 

population models. 
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Physiological interpretation of model parameters is one of the most important aspects of 

model qualification. A model and its parameters may be deemed ‘credible’ to perform a 

particular task(s) if the conceptual foundation on which the model was proposed is 

satisfactory to a panel of experts. It is important to note that there is no formal means to 

assess whether a model can be used for extrapolation. Hence the credibility of the model 

i.e. whether the model was derived from sound mechanistic principles, which appear 

reasonable to subject matter experts, is important. Thus, a model (and its parameters) may 

be considered qualified to predict beyond the range of the data used for building the 

model if the descriptive capacity of the model is acceptable and the model is credible. 

 

TYPES OF DATA AND TRIAL DESIGNS 

Data 

Pharmacometrics data (referring to PK/PD measurements) that may be collected during 

clinical trials, in general, are of two types – rich data and sparse data. Typically, rich data, 

which refers to several (10-20) samples from each subject, is collected under controlled 

conditions in trials conducted in a small number of patients over a short duration of time. 

Data from each subject can be analyzed independent of the others, in most cases, and 

then summarized. Such kind of data is the best for building structural models. Dose-

escalation studies, bioequivalence studies, and bridging (for prognostic factor effects) 

studies are examples of trials where rich data are collected. 
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On the other hand, late phase clinical trials that are conducted in a large number of 

patients and for relatively longer durations, typically collect sparse data. Few (1-5) 

samples are taken from each individual due to practical limitations, which makes it 

challenging to analyze the data from each subject separately. Sparse data are most suited 

to build statistical models. Pivotal or registration safety-efficacy trials are examples of 

studies that tend to collect sparse data. 

 

Trial Designs 

Broadly, three of the most commonly used trial designs that employ population analyses 

are: parallel, cross-over, and titration. In a parallel study design, subjects are randomized 

to one of several treatment options, for instance, control, dose1, dose2 or dose3. Such a 

design supports the estimation of population exposure-response characteristics well, but 

not that of individual characteristics. In a cross-over design, each subject receives all the 

treatment options. This is the most powerful study design for estimating the individual 

exposure-response relationships. However, such trials are longer in duration and may 

experience carry-over effects from previous treatments. The titration design is one where 

patients are usually initiated at a low dose, which is then gradually increased either until 

no additional benefit is observed, or until dose-limiting toxicity occurs. This design 

resembles clinical practice most closely and individual exposure-response determination 

is possible. However, it may so happen that patients who are less sensitive to the drug 

need higher doses, making it (falsely) appear as though the response decreases after a 

certain dose. In several cases, particularly for the cross-over and titration designs, 

sophisticated data analysis such as mixed-effects modeling is required. 
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Further, based on the assignment of randomized groups in the trial, there are different 

designs possible. Subjects may be randomized to receive a particular dose or 

concentration of the test drug or to a particular effect elicited by the drug. Accordingly, 

such trials are referred to as Randomized Dose Controlled (RDCT), Randomized 

Concentration Controlled (RCCT), or Randomized Effect Controlled (RECT) trials. An 

active control group is used where a placebo control is considered unethical. 

 

In an RDCT, the different doses of the drug to be tested are randomly administered to the 

subjects. Data are then collected throughout the trial and analyzed using an appropriate 

method. Such trials are the most commonly seen design due to the relatively simple 

execution and analysis involved.  

 

In an RCCT, a set of target drug concentration levels are selected based on the exposure-

response relationship established from previous studies. Subjects are then randomized to 

one of these pre-specified target concentrations [41]. Such a design obviates a dose-

titration period during which the dose that ensures achieving concentrations within the 

selected target range (ex.: 5 ± 0.5 μg/L) is identified. A variation of the RCCT design is 

when doses are pre-specified based on a certain demographic variable. For instance, body 

weight adjusted doses are routinely administered in pediatric studies. Similarly, in an 

RECT, subjects are randomly assigned to a pre-specified target effect level. Again, the 

target effects are chosen based on prior knowledge of the drug’s exposure-response, and 

the dose is titrated accordingly. 
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RCCT and RECT designs have similar requirements such as prior exposure-response 

relationship to select the appropriate target concentration or effect ranges, an efficient and 

sensitive analytical assay method with a short turn-around time, and sufficient strengths 

of the formulation to allow for any required dose adjustments. Candidate drugs for such 

trial designs are those where the PK has a large unexplained variability (RCCT) and those 

where the PD has a large unexplained variability (RECT). In addition, when the 

measured effect (desired/undesired) is symptomatic, for instance, effects such as pain or 

nausea that are ‘felt’ by patients, the RECT could be applicable. When the symptoms are 

not obvious, the RCCT may be a better choice. Unfortunately, very few drug 

development programs utilize RCCT or RECT designs, perhaps due to their complicated 

execution and data analysis, relative to the RDCT design, as well as the cost of 

implementing TDM if the drug is approved [42;43]. Notably, trials for 

immunosuppressant drugs used in transplantation generally employ the RCCT design. 

 

CASE STUDIES 

Pharmacometric analyses have been employed at various stages of the drug development 

process. Several case studies where such analyses have had pragmatic value in decision 

making are discussed. Table 4 summarizes all presented cases while a few selected cases 

have been discussed in detail. 
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Tacrolimus – liver, kidney, heart transplantation 

Background: 

Tacrolimus is an immunosuppressive agent indicated for the prophylaxis of organ 

rejection in allogeneic liver, kidney, or heart transplants. A large amount of variability 

has been observed in the PK and PD of this drug. Pharmacometric methods have been 

employed throughout the drug development stages of tacrolimus, to select rational dosing 

regimens and optimize therapy [44]. 

Key questions: 

1. What is a safe and effective dosing regimen for first-time-in-man clinical studies? 

2. What is a rational target therapeutic concentration range for tacrolimus? 

3. What is an optimal initial dose of tacrolimus for late phase clinical trials? 

4. What is an optimal TDM strategy for managing patients on tacrolimus therapy? 

Role of Pharmacometrics: 

The starting dose of tacrolimus (0.15 mg/kg/day IV) used in early phase clinical trials 

was extrapolated from a synthesis of safe doses in two animal models (rat and dog). The 

target concentration range for monitoring the drug therapy during these trials was also 

based on the same animal models, augmented with in vitro PD modeling using the IC50 

values from mixed lymphocyte reactions. Collectively, all the animal models studied 

were also highly predictive of the systemic toxicities observed with tacrolimus in 

humans. A pilot compassionate-use early clinical study in patients with refractory liver 

rejection suggested that the 0.15 mg/kg starting dose was clinically effective, but toxic in 

some patients, and doses had to be individualized to the patient. A reduced starting dose 
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(0.05 mg/kg/day IV) was predicted by simulations before onset of the pivotal trial, and 

the need for this dose reduction was dramatically confirmed during the U.S. and 

European multicenter registration trials. In addition, an Artificial Intelligent Modeling 

System (AIMS) was developed to efficiently guide dosing and monitoring of patients on 

tacrolimus. The AIMS-based TDM led to clinical and pharmacoeconomic benefits in a 

subsequent prospective pilot clinical study. 

Impact: 

Pre-clinical models proved to be a reliable guide for identifying a safe and effective dose 

and a therapeutic concentration range for tacrolimus. Implementation of the AIMS 

improved the TDM strategy by 3-4 fold reduction in number of blood samples drawn and 

a reduction in length of hospitalization after liver transplantation. Thus, modeling and 

simulation enabled more efficient trial design and data analysis of the RCCTs conducted 

during development of tacrolimus and improved the cost-effectiveness of therapy. 

 

Degarelix – prostate cancer 

Background: 

Degarelix is indicated for the treatment of advanced prostate cancer patients. During its 

clinical development, the primary end-point used in trials was suppression of testosterone 

levels (< 0.5 ng/ml) from day 28 of treatment initiation through 1 year of therapy in 90% 

patients. The dosing goals were to achieve this challenging end-point. The sponsor 

conducted five early and late phase dose-finding clinical studies but was unable to derive 
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an optimal dosing regimen. An end-of-phase 2a meeting was arranged between the FDA 

and the sponsor to discuss a better drug development plan for degarelix. 

Key question: 

What is a rational dosing regimen that would maximize the effectiveness of degarelix in 

advanced prostate cancer patients? 

Role of Pharmacometrics: 

Population analysis was conducted to develop an exposure-response model for degarelix 

based on the five dose finding studies conducted by the sponsor [45;46]. The FDA 

suggested alternative dosing strategies and clarified the regulatory expectations of the 

NDA. For initial suppression of testosterone levels by day 28, a higher loading dose 

requirement was explored. A lower maintenance dose was derived to sustain the 

testosterone suppression through 1 year of drug therapy. Using a mechanistic E-R model 

and extensive clinical trial simulations an optimal dosing regimen was derived. All 

pharmacometric analyses were conducted by the sponsor, under the guidance of the FDA. 

The model-based regimen was used in a registration trial that resulted in positive 

outcomes and led to approval of degarelix for this indication.  

Impact: 

Degarelix was approved for use in advanced prostate cancer based on a registration trial 

that employed a modeling and simulation derived dosing regimen, which several prior 

clinical studies failed to derive. Trials in prostate cancer patients are challenging and 

costly and early interaction between the sponsor and the FDA enabled more cost-efficient 

drug development and a smoother review process.  

 
28



Busulfan – bone marrow transplantation 

Background:  

Busulfex, an intravenous formulation of the drug busulfan, is used in combination with 

cyclophosphamide as an immunosuppressive conditioning regimen for bone marrow 

ablation prior to hematopoietic stem cell transplantation. The drug was initially approved 

for use in adults with chronic myelogenous leukemia. The dose-limiting toxicity 

associated with busulfan is potentially fatal hepatic venoocclusive disease (HVOD). 

Clinical studies suggested that a therapeutic window of 900-1500 umol/L/min in adults 

was appropriate to balance safety (occurrence of HVOD and leukemic relapse) and 

efficacy (successful engraftment). The FDA issued a written request (WR) to the sponsor 

to determine the PK of busulfan in pediatrics (aged 4-17 years) and the optimal dosing 

regimen for this population that would achieve target exposures. 

Key question:  

What is the appropriate dosing strategy for busulfex in pediatric patients? 

Role of Pharmacometrics:  

A population PK study was conducted to characterize the PK of intravenous busulfan in 

pediatrics and provide dosing recommendations [47]. Clinical studies indicated that the 

therapeutic window was similar for pediatric and adult patients. However, this was 

confounded by the increased variability in the PK of oral busulfan seen in pediatric 

patients compared with adults. Hence a target therapeutic window with a lower, more 

conservative threshold for toxicity, than in adults, was used for pediatric patients (900-

1350 umol/L/min). Body weight, body surface area, age and gender were explored for 
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their impact on pediatric dosing. Simulations suggested that the mg/kg and mg/m2 based 

dosing regimens were similar in their efficiency. Exposures obtained by different dosing 

regimens, with 1 to 7 dosing steps including various combinations of weights and doses, 

were evaluated. All the dosing regimens explored had, at best, 60% patients achieving 

target exposures after the first dose. Notably, the model revealed that the unexplained 

between-subject variability (25%) was larger than the within-subject variability (6%), 

indicating that BSV is the key determinant of therapeutic success. This finding coupled 

with the narrow therapeutic window for busulfan, supported implementation of 

therapeutic drug monitoring for optimizing drug therapy. 

Impact: 

Based on the modeling and simulation, and practical considerations, a 2-step dosing 

regimen was proposed from this study: 1.1 mg/kg for patients weighing ≤ 12 kg and 0.8 

mg/kg (adult dose) for patients weighing > 12 kg. In addition, considering that about 40% 

patients may not achieve target exposures after the first dose, even with the optimized 

regimen, a TDM strategy was proposed to enhance therapeutic targeting. These dosing 

recommendations, which had not been directly tested in clinical trials, were incorporated 

into the drug label. 
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Table 4: Summary of case studies, where pharmacometric analysis had an impact 

on decision making, during different stages of drug development. 

 

Drug Stage Key Questions Decision 
Impacted 

Comments 
 

5c8, mAb 
[48] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

Perceived impact of model 
developed: 
• optimize sample 

collection in 
experiments 

• anticipate exposure-
response in humans 

• quantify other antigen-
provoked responses 

• project utility of 5c8 in 
treatment of antibody-
mediated autoimmune 
disease 

rPSGL-Ig 
[49] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• developed allometric 
models across animal 
species to predict PK 
and dose range for first-
time-in-man clinical 
trial 

Tacrolimus 
[44] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• derived early phase 
trials starting dose using 
two animal models 

• derived target conc. 
range for RCCT trials 
and TDM using animal 
and in-vitro PD models 

• derived final starting 
dose for pivotal trial 
using simulations 

• improved TDM strategy 
and cost-efficiency 
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Rivoglitazone 
[50] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection

• developed a ‘best-in-
class’ compound using 
modeling and simulation 

• selected biomarker/end-
point, dose, sampling, 
washout, eligibility & 
discontinuation criteria, 
and forecasted trials for 
late clinical phase 

• built disease model from 
related drug information 

Mycophenolate 
mofetil 
[51;52] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• derived dosing regimen 
for a late phase clinical 
trial (RCCT) using E-R 
model based on a pilot 
study 

Degarelix 
[45;46] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation  

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• explored alternative 
dosing strategies based 
on five phase 1/ 2 
studies 

• selected final dosing 
regimen for registration 
trial that eventually led 
to drug approval 

 

Piperacillin/ 
Tazobactam 
[53] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• recommended 2-step 
weight-based PIP/TAZ 
pediatric dosing regimen 
in drug label for patients 
aged ≥ 2 months  

• verified no new safety 
concerns than those in 
adults 
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 Benefit/ 
risk evaluation 

Busulfan 
[1;47] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• recommended 2-step 
weight-based pediatric 
dosing regimen in drug 
label 

• proposed TDM strategy 
in label to enhance 
therapeutic targeting 

Everolimus/ 
Cyclosporine 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• projected likely 
outcomes of altered 
dosing schemes 

• proposed new dosing 
regimen that reduced 
renal toxicity while 
maintaining efficacy 
thus improving 
benefit/risk profile than 
seen in registration trial 

• cardio-renal advisory 
committee 
recommended new 
regimen to be evaluated 
in future trial  

Apomorphine 
[1] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 
 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• demonstrated a 50% 
increase in exposure in 
renal impairment 

• derived maximum 
recommended dose and 
titration strategy and 
dose adjustment in renal 
impairment in drug label 
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Zoledronic acid 
[1] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• suggested a correlation 
between risk of renal 
deterioration and drug 
exposure 

• recommended dose 
adjustments in mild and 
moderate renal 
impairment patients in 
drug label 

Oxcarbeazepine 
[1;54] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation  

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• found no important 
differences in placebo 
and drug effects 
between adults and 
pediatrics 

• supported evidence for 
approving drug as 
monotherpay in 
pediatric patients with 
partial seizures 

• derived dosing 
instructions in drug label

• saved additional 
controlled trials 

Micafungin 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 
 
 
 
 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• derived dosing 
recommendation and 
supported approval of 
drug for esophageal 
candidiasis 

• provided evidence for 
label to indicate greater 
potential for liver 
toxicity at approved 
dose 
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Varenicline 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• showed much higher 
drug exposures in renal 
impairment 

• found baseline smoking 
status and age to be 
prognostic of abstinence 
from smoking 

• found marginal dose 
increase to increase 
effectiveness but also 
significantly increase 
toxicity (nausea) 

• recommended lowering 
dose in case of 
intolerance to adverse 
effects in drug label 

Docetaxel 
[19] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• identified a sub-
population (liver 
impairment patients) 
more prone to grade 4 
and febrile neutropenia 

• recommended reduced 
dose in label for patients 
with liver insufficiency 
to improve safety profile 
of drug 

Nesiritide 
[1;13] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation  
 
 
 
 
 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• explored alternative 
dosing regimens for 
reasonable benefit-risk 
profile 

• proposed dosing 
regimen for use in 
subsequent registration 
VMAC (Vasodilation in 
the Management of 
Acute CHF) trial that 
led to drug approval 
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Sotalol 
[1;21;22] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• found drug effects in 
pediatrics to be 
consistent with adults 

• found sponsor’s dosing 
recommendations to be 
acceptable for patients 
aged ≥ 2 years 

• derived more specific 
dosing for neonates and 
infants aged < 2 years in 
drug label 

Nisoldipine 
[18] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• alleviated safety concern 
of large drop in blood 
pressure upon 
administration of drug in 
fed condition, given 
significant food effect 
on increasing 
bioavailability of 
controlled-release 
product 

Oral suspension 
product for 
prophylaxis of 
invasive fungal 
infections in 
high-risk 
patients 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 
 
 
 
 
 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• revealed need for TDM 
to maximize effect for 
all patients 

• supported inclusion of 
conditions to optimize 
drug absorption and 
importance of ensuring 
adequate plasma 
concentrations in label 

• supported need for post-
marketing study to 
evaluate benefit of 
proposed TDM 
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Drug to treat 
type 2 diabetes 
mellitus 
[14] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• evaluated 2 trial designs: 
genotype-stratified and 
biomarker enrichment 
designs, using semi-
mechanistic model for 
FPG and HbA1c 

• proposed biomarker-
enrichment design for 
future trials that would 
help derive optimal 
genotype-based dosing  

• revealed need to develop 
sustained release drug 
formulation 

Drug to treat a 
life-threatening 
rheumatologic 
disorder 
[1] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• showed that biomarker 
was predictive of 
clinical outcome but a 
65% reduction would 
achieve significance, 
after two failed 
registration trials 

• recommended exploring 
doses that achieve 
greater reduction in the 
biomarker or maximal 
tolerated dose for future 
trials 

Drug to treat a 
debilitating 
neurological 
disorder 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 
 
 
 
 
 
 
  

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• showed that reduction in 
symptoms was related 
with drug dose while 
withdrawal effects were 
significant and 
consistent, after 1 failed 
and 1 successful 
registration trial 

• supported evidence of 
effectiveness for drug 
approval 

• saved additional clinical 
trial 
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Drug to treat a 
mild, moderate, 
or severe life-
threatening 
disease 
[15] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• identified non-responder 
sub-group: patients with 
mild disease 

• showed consistent 
effectiveness in patients 
with moderate and 
severe disease 

• elucidated inconsistent 
results from previous 
trials 

• recommended future 
study in only moderate 
and severe disease 
patients 

New class of 
antivirals 
[14] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation  

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• distinguished QD and 
BID dosing regimens 
using a mechanistic 
viral-dynamic model 
that previous models 
could not achieve 

• allowed assessment of 
impact of variability, 
dosing regimen, patient 
compliance and dropout 
on trial outcomes 

• proposed a lower dose 
BID regimen for future 
trials 

Drug to treat 
insomnia 
[14] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 
 
 
 
 
 
 
 
 
 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• recommended healthy 
subject studies for 
selecting doses for sleep 
onset but not for sleep 
maintenance evaluation 

• recommended patient 
trial durations of more 
than 30 days for reliable 
identification of doses 
and persistent sleep 
maintenance 
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Pro-drug to 
treat a life-
threatening 
disease 
[14] 

 Pre-
clinical 

 Early 
Clinical 

 Late 
Clinical 

EOP2A 
 Post-

marketing 
 

 Molecule 
screening 

 Trial / 
experimental 
design 

 Dose 
selection 

 Covariate 
determination 

 Evidence of 
effectiveness 

 Benefit/ 
risk evaluation 

 Go/no-go 
 Dose 

optimization 
 Improved 

trial design 
 Approval 
 Labeling 
 Special 

population – 
dose selection 
 

• revealed body weight to 
be prognostic for 
toxicity and 
effectiveness and that 
per kg dosing of both 
test and reference drugs 
would allow more 
appropriate investigation 
of non-inferiority 

• indirectly, also derived 
optimal dosing of 
reference drug for wider 
application across other 
development programs 

 

PERSPECTIVE 

Learn-Apply paradigm 

The strongest merit of model-based drug development lies in its ability to incorporate the 

entire base of relevant prior knowledge into decision-focused recommendations for the 

future. A Learn-Apply paradigm is being proposed as an effective means to leverage 

pharmacometric methods and enhance drug development [55]. Accordingly, learning 

refers to transforming information (such as clinical trial data) into knowledge while 

applying refers to utilizing this knowledge to make informed decisions (such as 

confirmation of effectiveness, dose selection etc). This is an extension to the learn-and-

confirm philosophy in modeling that has been promoted by Lewis Sheiner [56]. 

 

Currently, pharmacometric models are typically developed at the end of phase 3. A more 

prudent way to economize time and costs to develop models is by maintaining a 

progressive model building philosophy. The essence of progressive model building is to 

continuously update the current model as new knowledge is accrued. The advantages are 
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at least two-fold: the ability to ‘carry-forward’ knowledge all along the development of a 

given drug product, and the ability to divide a big problem into several small components 

that are easier to solve. For instance, in the case of developing a "best-in-class" 

compound, model-based drug development can use the wealth of knowledge from 

predecessor drugs with a similar mechanism of action [50]. Right from the phase 1 stage, 

efficacy and safety drug models can be developed based on preclinical data of the new 

drug, as well as clinical experience with predecessors. As the clinical development 

advances, the models can be continually updated, and thus the characteristics of the new 

drug would become increasingly well defined. However, implementation of such a 

paradigm calls for more open collaboration of scientists from all disciplines and an 

institutional commitment to use the ‘current’ model while designing the next trial. 

 

Future considerations 

The late-phase attrition rates in drug development are alarmingly high at both, the 

registration trial and the regulatory review stages, and it is believed that timely 

application of pharmacometric methods can enhance future development plans and 

reduce these attrition rates [1-7;11;57].  

 

Quantitative disease-drug-trial model suites can serve as a valuable tool for improving 

future drug development and should be increasingly employed to design trials using 

clinical trial simulations. The FDA has set a target to design 50% of all pediatric trials 

using simulations by 2015 and 100% by 2020. Upon development of and experience with 

a particular disease-drug-trial model suite, a standardized template can be created for the 
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trial design, data analysis and review for all drugs under that indication. Consortia on 

specific topics are perhaps effective means for developing such model suites. 

 

Early-on interaction between the FDA and drug sponsors may help in more efficient 

planning. The End-of-Phase 2A (EOP2A) meetings are a good platform to facilitate this 

goal via more rational dose selection and trial design and reduction in number of cycles 

involved in the NDA review [24].  

 

However, modeling and simulation must not be viewed as a substitute for clinical trials 

altogether, nor seen as a tool to salvage failed trials, which were poorly-designed, for 

regulatory approval. The aim is simply to employ these techniques into a continuous 

learn-apply paradigm, capitalize on prior knowledge, improve trial design, and support 

evidence for approval and labeling of drugs.  

 

Increased collaboration between the industry, academia and the FDA is essential for the 

growth and wider application of pharmacometrics. In addition, increased interaction 

across the board between experts, such as clinicians, pharmacometricians and statisticians 

is a must for better appreciation of this field. Finally, training in this area is currently not 

offered by many academic institutions, and this may be an important step forward in the 

future.  
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CHAPTER 2 

Pharmacometric Analyses Impact Pediatric Drug Approval 

and Dosing 

 

 

ABSTRACT 

The purpose of this article is to review case studies where pharmacometric analyses, also 

known as PK/PD modeling and simulation, have contributed to decision making in 

pediatric drug development and regulatory reviews. Most prominently, pharmacometric 

analyses support dose selection for clinical trials, evidence of effectiveness for regulatory 

approval and dosing recommendations for pediatric labeling. In addition, the article 

provides a future perspective on adopting pharmacometric analyses to improve pediatric 

pharmacotherapy and drug development. 
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INTRODUCTION 

The need to improve pediatric pharmacotherapy and drug development has a long history 

with regulators and public health professionals. As the potential harm of extensive off-

label drug use in pediatrics began to surface, several legislative initiatives were 

undertaken to generate pediatric-specific data. The aim was to ensure that the pediatric 

patient population no longer remained a therapeutic orphan [1]. In the U.S., the Food and 

Drug Administration Modernization Act (FDAMA) in 1997, the Best Pharmaceuticals for 

Children Act (BPCA) in 2002 and the Pediatric Research Equity Act (PREA) in 2003, 

have jointly provided an impetus to pediatric clinical studies and useful pediatric 

prescribing information in drug labels [2;3]. The European Council (EC) and the 

European Parliament have also promoted major regulatory changes in the way pediatric 

studies are planned and conducted in Europe. The regulation provides financial 

incentives, and requires a Pediatric Investigation Plan (PIP) for all new products and 

some existing products (new indication, new formulation, new dosage form, etc.), similar 

to the pediatric Written Request (WR) in the U.S. [4]. 

 

These initiatives have been largely successful in stimulating pediatric investigations. The 

desire to generate prospectively planned data for pediatrics is now being realized. As of a 

recent update, FDA has issued 386 pediatric written requests for several important 

diseases. Thus far, 173 approved drugs have obtained pediatric exclusivity by fulfilling 

the elements of written requests, as agreed upon by the FDA and sponsors. FDA has 

made labeling changes for many drug products (n>160) and the majority of these changes 

resulted in new pediatric safety and effectiveness information [5]. 
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In the early 1990s, it was accepted that pediatric-specific data were either impossible or 

difficult to generate. In recent times, while financial incentives have led to an increase in 

the amount of information available to treat the pediatric population, there still remains a 

concern regarding the generation of good quality data to guide pediatric 

pharmacotherapy.  

• Off-label use of medication continues to be a major concern in pediatrics 

[6;7]. According to a 2005 study (677 patients), prescribing information in all 

age categories was available for less than 35% of commonly prescribed 

medications [7]. There are data from a 2004 survey (7901 patients) to 

indicate that 96% of cardiovascular-renal, 86% of pain, 80% of 

gastrointestinal, and 67% of pulmonary and dermatologic medication 

prescriptions either did not follow the prescribing recommendations or such 

information was not available [6]. Additionally, younger children were more 

likely to be treated with off-label strategies.  For example, 92% (out of 238 

patients) received one or more courses of an unapproved drug [8]. 

• Many pediatric investigations fail to generate useful data due to challenges 

unique to pediatric drug development. A recent study found that about half of 

the pediatric antihypertensive pivotal dose-response trials failed [9]. A 

retrospective analysis of such trials revealed that poor dose selection, lack of 

acknowledgement of differences between adult and pediatric populations and 

lack of pediatric formulations were associated with trial failures [9].  
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These concerns point to the unique nature of pediatric drug development. Such drug 

development programs are typically short (one or two clinical trials) and generally do not 

involve mortality/morbidity end-points. Drug approval is often based on matching 

systemic exposures or effect on pharmacodynamic biomarkers, to those in adults. 

Another major challenge is our understanding of and ability to account for the impact of 

growth and maturation on clinical pharmacology. It is expected that different drug 

exposures and/or altered response to the drug would be achieved in pediatric patients as 

compared with adults [10]. Altered clinical pharmacology along with ethical and 

logistical constraints together pose challenges to the design and analysis of pediatric trials 

as well as to pediatric therapeutics.  

 

Towards that end, there has been a growing interest in exploring means to enhance 

pediatric drug development [4;11]. Pharmacometric analysis methods are an important 

tool to improve the success of pediatric clinical trials and, therefore, pediatric 

pharmacotherapy. As summarized by Manolis and Pons, pharmacometric analyses 

consist of characterization and prediction of pharmacokinetics/pharmacodynamics 

(PK/PD), extrapolation from adults to children, interpolation between pediatric age 

subsets and optimal use of scientific literature and in vitro/preclinical data. 

Pharmacometric analyses can be employed to design informative studies using 

knowledge about disease pathophysiology, drug pharmacology (from adults and/or 

pediatrics), and organ maturation in pediatrics.  
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The focus of the present article is to review case studies where pharmacometric analyses 

have influenced three major areas: pediatric trial design and therapeutics guidelines, 

evidence of effectiveness, and dosing recommendations for pediatric labeling. For each 

of these areas, case studies are grouped according to a best fit scenario and one of the 

case studies is discussed in detail. In addition, the article also provides future perspectives 

for the application of modeling and simulation to improve pediatric trial design and 

therapeutics.  

 

APPLICATIONS OF PHARMACOMETRIC ANALYSES 

Trial Design and Therapeutics Guidelines 

A prospective clinical trial is one of the best ways to generate information to derive 

useful prescribing guidelines for pediatric drug use. For several drugs, however, there are 

either no data from prospectively planned clinical trials or pediatric trials have failed to 

achieve their primary objective. While it is possible that some drugs approved for adults 

may not be effective in the pediatric population, it is important to derive evidence-based 

support. Table provides examples where pharmacometric analyses were used to design 

future pediatric studies based on adult data or studies for drugs where there had been a 

failed pediatric trial for the same drug. 

 

A case in point is the antihypertensive drug esmolol. The pediatric registration trial failed 

to demonstrate effectiveness of the drug [12]. However, an external clinical study of the 

same drug and indication in pediatrics, that was conducted even before the registration 
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trial commenced, found the drug to be effective and reported a distinct exposure-response 

(E-R) relationship for reduction in blood pressure [13]. The registration trial investigated 

125-500 ug/kg/min esmolol doses in spite of the external clinical study showing 700 

ug/kg/min of esmolol to be effective in reducing blood pressure in pediatric patients with 

acute hypertension after cardiac operations. The results of these studies clearly 

demonstrate that the choice of doses studied in the registration trial was a key 

determinant of trial failure. It is unlikely that a pediatric trial of esmolol will be repeated. 

Thus, inefficient trial design led to a potentially effective treatment not being approved 

for use in pediatrics, a common theme among antihypertensive trials conducted in the 

early 2000s.  

 

Pharmacometric analyses can provide a rational basis for making important choices while 

designing pediatric trials using available information. Important trial design aspects such 

as dose range to be studied, sample size and PK sampling, trial duration, and analysis 

methods should be carefully selected [9;14]. A case study to systematically design a 

pediatric clinical trial based on adult data (without pediatric data) for anti-hypertensive 

drugs is available [14]. Presumably, such systematic use of available information may 

have helped appropriate dose selection for a registration trial of esmolol (discussed 

above). 

 

On the other hand, there are several instances of drugs that have been in clinical use for 

years in pediatrics, but optimal dosing strategies were unknown. In many such cases, 

pharmacometric analyses have provided insights to retrospectively derive dosing 
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information or to design subsequent trials to further optimize dosing strategies and 

perhaps guide therapeutic decisions. Such examples are also cited in Table 1.  

 

Table 1: Pharmacometric analyses to design pediatric trials using existing data in 

pediatrics and/or adults 

 

Drug Problem Statement Pharmacometric Analyses 

Contributions 

Topotecan[15], 

Furosemide[16], 

Vancomycin[17], 

Ondansetron [18] 

• Explored competing dosing 

regimens  

• Recommended optimal dosing 

strategy for use in future trials 

and/or clinical practice 

Fluconazole[11;19], 

Actinomycin-D 

(AMD) [20] 

 

Lack of clear guidelines 

for pediatric use despite 

years of clinical 

experience 

• Developed dosing guidelines that 

were successfully employed in 

subsequent trials 

• Examined the success (in terms 

of efficacy and safety) of dosing 

strategies and designed a 

prospective efficacy trial 

Carvedilol[21-23], 

Esmolol [12] 

Failure of pediatric trial 

for drug approved in 

adults 

• Provided insights into failed trial 

• Recommended optimal dosing 

strategy for use in future trials 

• Recommended appropriate end-

point for future trials 

Famciclovir[24], 

Teduglutide[25] 

Prospective clinical 

trial design 

• Recommended prospective study 

design including elements such 

as dose selection, sample size and 

PK sampling 
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Evidence of effectiveness 

The primary analysis methods for drug approval (treatment vs placebo comparison using 

standard hypothesis testing) and some endpoints (mortality/morbidity) used in adult trials 

may not be feasible or practical in pediatrics. Occasionally, a pivotal trial may fail to 

meet its primary endpoint due to avoidable reasons. Model-based endpoints may then be 

used in select instances, along with prior knowledge from adults and related pediatric 

data, to provide primary or supportive evidence of effectiveness for approval in 

pediatrics. Model-based endpoints are expected to be more powerful than standard 

hypothesis testing and hold unique value in pediatric trials due to challenges identified 

above. Table 2 provides a summary of case studies where pharmacometric analyses were 

considered suitable to support evidence of effectiveness for pediatric drug approval. 

 

Under certain circumstances, regulations allow the use of well established exposure-

response knowledge from one population for the approval in another [26]. 

Pharmacometric analysis was useful in bridging consistent drug effect of d,l sotalol 

hydrochloride on a surrogate (heart rate) in pediatrics and adults. Sotalol was originally 

approved in adults to treat life-threatening ventricular fibrillation and tachycardia, and for 

maintenance of sinus rhythm in patients with symptomatic atrial fibrillation and flutter. A 

clinical study assessing the antiarrhythmic and beta blocking effects of sotalol on QTc 

and heart rate in pediatrics ranging from neonates to 12-year-old children formed the 

basis of approval for sotalol’s use in pediatric patients. A biomarker study and ensuing 

pharmacometric analyses led to the judicious dosing recommendation in pediatrics [27].  
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Table 2: Pharmacometric analyses to provide primary or supportive evidence of 

effectiveness 

 

Drug Problem Statement Pharmacometric Analyses Contributions

Oxcarbazepine 

(Trileptal) [28] 

 

• Unethical to conduct a 

monotherapy trial in 

pediatrics 

 

• Provided evidence for approving the 

drug (first ever) as monotherpay in 

pediatric patients with partial seizures 

• Drug approved without additional 

controlled trials and model-derived 

dosing instructions included in label 

Candesartan 

Cilexitil 

(Atacand) [29] 

• Trial in patients aged 

6 to <17 yrs failed 

potentially due to 

poor dose selection 

and primary analysis 

method 

• No other approved 

ARB for patients 

aged <6 yrs and no 

new pediatric trial 

expected 

• Supported evidence of effectiveness in 

patients aged 6 to <17 yrs  

• Provided rational dosing 

recommendations in drug label 

Sotalol 

(Betapace) [27] 

• Impractical to 

conduct a mortality 

trial in pediatrics 

 

• Demonstrated consistent drug effect on 

surrogate (heart rate) in pediatrics and 

adults 

• Proposed dosing for patients aged ≥ 2 

years 

• Derived dosing recommendations for 

neonates and infants in drug label. 
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Dosing Recommendation  

The most successful application of pharmacometric analyses to pediatric drug 

development has been deriving dosing recommendations [30]. In several instances these 

recommendations have been successfully incorporated into the drug label (Table 3). In 

others, such as voriconazole [31] and leflunomide [32], dosing strategies have been 

proposed to guide therapeutic decisions. Occasionally, pediatric doses not directly studied 

in trials have been approved and included in the drug labels (see Table 3 for specific 

examples). In fact, in some therapeutic areas such as anti-virals and anti-infectives, drugs 

are frequently approved for pediatric use by extrapolating effectiveness from adult data. 

Drug exposures that are shown to be safe and effective in adults are typically considered 

target exposures for pediatrics. Suitable pediatric dosing regimens are then derived based 

on matching exposures between pediatrics and adults. In addition, as described 

previously (Table 1) there are several cases of drugs that have already been in clinical use 

for pediatrics where pharmacometric analyses have been used after-the-fact to 

recommend dosing strategies in order to improve therapeutics. 

 

Pharmacometric analyses have been used to optimize dosing recommendations after trial 

results are obtained based on the therapeutic goal. According to the FDA’s pediatric 

study decision tree [33] there are three broad approaches to conduct pediatric studies to 

seek drug approval and dosing recommendations: the PK-Only approach, the PK-

Biomarker approach, and the PK-Efficacy approach. Depending upon the disease, 

expected response to intervention, and prior information available (from adult or related 

pediatric data), one of the three approaches is selected for the pediatric drug development 
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program. Table 3 below provides a summary of case studies, categorized by approach 

used, where pharmacometric analyses were employed to derive pediatric dosing 

recommendations for labeling.  

 

Table 3: Pharmacometric analyses to derive pediatric dosing recommendations for 

labeling 

Drug Pharmacometric Analyses Contributions 

PK-Only Approach 

Piperacillin/ 
Tazobactam 
(Zosyn) [34] 

• Derived a 2-step body weight based dosing regimen to include 
in the label 

 

Busulfan 
(Busulfex) [35] 

• Derived a 2-step, body weight based dosing regimen to include 
in the label  

• Derived therapeutic drug monitoring strategy to enhance 
therapeutic efficiency 

Levofloxacin 
(Levaquin) [36] 

• Recommended dosing regimen to balance efficacy and safety 
that was not directly studied in a pediatric trial 

PK-Biomarker Approach 

Argatroban [37] • Provided dosing strategy for pediatrics that matched therapeutic 
response and risk with adults 

Levetiracetam 
(Keppra) [38] 

• Demonstrated that a higher dose (3 mg/kg) that was not directly 
studied may offer better effectiveness than the lower dose (2 
mg/kg) that was studied in the pivotal trial; Both doses 
incorporated into the label 

Tipranavir 

(Aptivus) [39] 
• Recommended higher dose (of two doses) studied in the trial 

based on benefit/risk evaluation 

• Explored different dosing strategies and recommended a body 
weight-based dosing regimen along with original BSA-based 
dosing 

PK-Efficacy Approach 

Fenoldopam 
(Corlopam) [40] 

• Recommended capping the pediatric dose (at 0.8 mcg/kg/min) 
based on benefit/risk evaluation 
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FUTURE PERSPECTIVE 

There are several areas within the realm of pediatric drug development that could highly 

benefit from future research [41]. Pharmacometric analyses have the potential to 

contribute towards many of these areas. 

• Pediatric dosing decisions will gain much higher success if developmental 

ontogeny is well understood and routinely incorporated. This is particularly true 

for disposition pathways such as non-renal elimination pathways and transport 

systems where effect of maturation is not well established.  

• Pediatric clinical trials will be much more informative with new biomarkers 

(surrogates) that are well suited to the pediatric population and powerful analysis 

methods (such as model based endpoints).  

• Pediatric clinical trials also need a sound rationale for sample size selection. 

Established methods to derive sample size are missing for typical PK and PKPD 

studies because these studies are not designed with a goal to derive statistical 

significance. We are exploring methods such as defining an acceptable precision 

standard to derive an objective basis for sample size selection.  

• Pediatric pharmacotherapy also needs powerful quantitative techniques to identify 

safety signals to optimize treatment strategies. This may involve identification of 

useful biomarkers that are predictive of adverse drug events. It is important to 

enable detection of safety signals even with data from a small number of subjects. 
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CONCLUSION 

In summary, the case studies presented in this article exemplify that pharmacometric 

analyses have had a significant impact on improving pediatric pharmacotherapy. Wider 

adoption of these methods will bring objectivity to decision making during pediatric drug 

development, improve trial success rates, and provide a more rational basis for decisions 

in pediatric therapeutics. 
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CHAPTER 3  

Simulation-based Methodology for using PK Quality Standard 

to Design Pediatric Trials in the Population Analysis setting 

 

 

ABSTRACT 

The objective of this research is to evaluate the feasibility and methodological 

challenges while implementing a pharmacokinetic (PK) quality standard, in the 

population analysis setting. It is important for pediatric trials to yield good quality PK 

data to enable making reliable dosing decisions. The quality standard aims to ensure both, 

rational pediatric PK trial design and consistency in regulatory review. A simulation-

based method for designing pediatric trials to be prospectively powered to meet the 

quality standard is proposed.  

A simulation-estimation platform, aiming to optimize the pediatric sample size 

that met the PK quality standard under different scenarios, was used to explore the impact 

of several trial design elements. In general, reasonable sample sizes (range: 16 - 64 

pediatric subjects) were required to meet the quality standard even with sparse sampling 

schedules (2-3 samples per subject). Increasing sample size and PK samples per subject 



increased the precision of parameter estimates. Sample size requirements to achieve 

target precision progressively increase with increasing between-subject PK variability 

(low-30%, medium-50% and high-70%). Inclusion of rich adult data, in general, reduced 

required pediatric sample sizes (eg. from N=64 to N=48 for 70% variability). However, a 

ceiling effect is observed in the extent adult data can inform the model and reduce 

pediatric sample size adequacy (no additional benefit of 24 vs. 12 adults). A comparison 

of population mean analysis and individual post-hoc analysis methods found the former 

to be more powerful and less biased. Finally, all trends were moreover the same for i.v. 

and oral administration models. 

In conclusion, the PK quality standard is practically feasible in terms of sample 

size adequacy. A simulation-based approach to design pediatric PK trials using the 

standard is described. Informative sampling schedule for a given number of PK samples 

per subject is assumed during trial design. The recommendations are: 1- to use prior adult 

or pediatric data for trial design and analysis, wherever possible and 2- to use one-stage 

population analysis methods with biologically plausible covariate models for designing 

pediatric PK studies. 
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INTRODUCTION 

The pediatric population has been described as a therapeutic orphan [1] because 

historically, pediatric drug development was deprived of the patronage given to drug 

development programs in adults [2;3]. However, over the past decade, concerns and 

actions of health care professionals, researchers and regulators have together led to an 

impetus in pediatric clinical research [4;5]. Recent legislative initiatives in combination 

have dramatically stimulated changes in pediatric drug labeling [6]. The aim is to provide 

useful prescribing information for pediatric pharmacotherapy, such as rational dosing and 

identification of risks of therapies. Eventually, the hope is to amend the long drawn 

deficit in pediatric drug development.  

 

Under any pediatric drug development program, pharmacokinetic (PK) information is a 

key driver of decisions including but not limited to dosing, approval or labeling. 

According to the FDA’s pediatric study decision tree [7], a PK trial, where suitable, may 

serve as the basis for drug approval in pediatrics. In fact in some therapeutic areas, such 

as anti-virals and anti-infectives, regulatory approval of drugs for use in pediatrics is 

primarily based on PK studies. In other areas, PK data from pediatric studies may have a 

crucial role to play in determining the doses to be tested in pivotal safety and 

effectiveness trials. Occasionally, drug doses not directly studied in pediatric trials are 

approved and included in the label for pediatric use based on prior exposure-response 

characterization from adults or pediatrics. PK data is also useful in supporting evidence 

of effectiveness and safety related labeling decisions. Hence it is important that all 

pediatric drug development programs, typically comprising only few (1-2) trials, yield 
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good quality PK data. Trial design elements, particularly sample size and PK sampling 

schedule, have a significant impact on the quality of the resulting PK data. Making 

rational choices during the study design stages itself can save time and costs, ensure good 

quality PK data and safeguard the interpretability of study results as well as pediatric 

exclusivity granted to sponsors. 

 

Despite the recent progress in pediatric drug development, there have been multiple 

unexpected and disappointing results, particularly for pediatric PK studies.  One case in 

point is for the drug metoprolol, where data collected in pediatric trials could not be used 

efficiently. Three pediatric dose levels (0.2, 1 and 2 mg/kg) were studied in the trial with 

single trough PK sampling. However, 60% of the samples for dose group 0.2 mg/kg were 

below LOQ. Firstly, this raised a scientific/regulatory concern due to the (avoidable) 

complexity involved in the exposure-response analysis, which served as the basis for 

approval of the drug. Secondly, collecting unusable data from pediatrics raises ethical 

questions in its own standing.  

 

Another, and perhaps the most important, aspect of pediatric trial design that warrants 

attention is sample size selection. The pediatric PK studies submitted to the FDA have 

vastly variable sample sizes. Often a clear rationale is not provided, which leads to 

inconsistency and introduces subjectivity during regulatory review. There was an 

instance where a pediatric written request stipulated a sample size of 24 pediatric subjects 

to be studied, based on no scientific rationale. But due to challenging recruitment rate, 
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that sample size requirement could not be met, adversely affecting the pediatric 

exclusivity determination.  

 

Heretofore, the choice of sample size for pediatric PK studies seems to have been a 

logistic decision rather than a scientific one. Figure 1 presents the sample sizes used vs. 

variability (%CV) reported on clearance, in eight randomly selected pediatric PK trials, 

for illustration. One can observe that there is no correlation between sample size and 

%CV, which brings out the lack of rationale behind sample size selection. Typically, 

these studies have included a small number of patients, particularly in the lower age 

range, which is inadequate for estimating PK parameters with good precision.  

 

These instances draw attention to the need for rational pediatric trial design. In case of 

pediatric PK studies, there is lack of objective criteria to design a trial, which are 

available for mainstream efficacy trials. The consequences may be detrimental as is 

apparent from the cases cited above. In recognition of need for a uniform criterion to 

define PK data quality, a regulatory requirement has been recently initiated as part of the 

pediatric written request [8]. The FDA recommends using a pre-defined target on the 

precision of primary PK parameter estimates, such as mean clearance and volume of 

distribution, as a quality standard for PK data. The requirement is to prospectively power 

(at least 80%) a pediatric trial to target a 95% confidence interval within 60% and 140% 

of the geometric mean estimate of primary PK parameters, for each pediatric age group 

studied. The aim is to provide guidelines for bringing objectivity into pediatric PK trial 

design. 
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Figure 1: Sample size vs. %CV in 8 pediatric PK studies chosen randomly from the 

literature and submissions to FDA.  
1Studies cover different age groups ranging from 2 days – 18 years.  
2Vertical dashed lines represent different variability levels  

 

 

 

 

An objective criterion, such as the proposed PK quality standard, is one way of ensuring 

more rational pediatric trial design. Implementation of the standard will lead to greater 

consistency and efficiency in analysis of pediatric studies and their regulatory review. 

However, there remain methodological research questions on how to select the optimal 

sample size while designing pediatric trials, so as to prospectively power the study to 
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meet the precision standard. Frequently, pediatric studies collect sparse PK data (1-3 

samples per subject) and population analysis techniques are used for the design and data 

analysis of such trials. Methods on optimizing the PK sampling schedule for population 

analyses have been published previously [9-11]. The current study focuses on simulation-

based methodology to derive sample size, and assess the impact of different elements, 

while designing pediatric studies to meet the proposed PK quality standard, in the 

population PK setting.  

 

METHODS 

A simulation-estimation method was developed for the current study. A pediatric 

population was simulated in terms of demographics and PK observations under different 

trial design scenarios with increasing sample sizes. The parameters of the PK model were 

then estimated using the simulated data and relevant metrics for the estimates of mean 

systemic clearance and central volume of distribution were determined. Figure 2 is a flow 

chart describing all the computations carried out by the tool. The following sections detail 

the steps involved during the simulation-estimation for a base case trial design scenario 

with n=16 pediatric subjects, 2 PK samples per subject (1 and 3 hours), 30% between-

subject variability in clearance and volume, no adult data included, oral drug 

administration, and using population mean estimates for analysis. 250 replicate datasets 

were simulated for the analysis. 
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Figure 2: Flow chart of computations carried out by the simulation-estimation tool 

 

 

 

 

Answers to the following six research questions were sought through the current study: 

1. What are the typical sample sizes for different trial design scenarios that achieve 

80% power for target (60-140%) precision and acceptable bias? 

2. What is the impact of varying the number of samples per subject? 

3. What is the impact of low, medium or high PK between-subject variability? 

4. What is the impact of including adult data for estimation? 

5. What is the impact of the analysis method used? 

6. What is the impact of i.v. vs. oral administration models? 
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Nominal design 

For the present study, the PK model developed previously in pediatrics for Zosyn 

(piperacillin/tazobactam) [12] was adopted. The model drug used follows one-

compartment, dose-proportional PK and has 100% bioavailability with fast absorption 

(Tmax about 2 hrs) and a half-life (t1/2) of 1.5 hrs. A single 100 mg/kg dose was 

administered orally to the simulated pediatric subjects.  

 

Demographics 

A CDC (Center for Disease Control and prevention) database was used for the simulation 

of pediatric demographics that included age, gender and weight. The database contained 

ages from birth-20 yrs, in increments of 1 month, yielding n=240 unique ages. For each 

unique combination of age and each gender (n=480) there are parameters, including a 

variability component, to determine the distribution of body weight. Thus, 100 

individuals of different body weight for each combination of age and gender were 

simulated resulting in a virtual bank of n=48000 unique pediatric subjects.  

 

For this study, the pediatric subjects were divided into four age bins as is commonly done 

during recruitment in pediatric clinical trials. The age bins used were 1 mo to 2 yrs, >2 to 

6 yrs, >6 to 12 yrs and >12 to 17 yrs. Subjects were randomly sampled from this bank of 

pediatrics and evenly distributed into each age bin. All replicate datasets maintained the 

same set of subjects in terms of covariates. 
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The bank was also used to determine the “true” mean clearance and volume for each 

pediatric age bin. Using the covariate model employed for the simulations, the “true” 

individual clearances and volumes for each virtual subject in the bank were determined 

and subsequently the geometric mean (non-parametric) of these parameters for each age 

bin was arrived at. In addition, we also determined the mean (parametric) clearance and 

volume predicted by the model at the median age and weight for each age bin. 

 

Simulation-estimation models 

The one-compartment model used in the present study was parameterized in terms of 

total systemic clearance (CL) and volume of distribution for central compartment (Vc), 

and in case of oral administration scenarios, the first-order absorption rate constant (KA). 

The between-subject variability (BSV) of the model parameters was described using a 

lognormal distribution. 

 

An allometric scaling model was used for body weight effect on clearance and volume 

whereas an Emax-type model was used for age effect on clearance. The covariate models 

were employed for simulation and estimation as well as to determine the true individual 

clearance and volume for each subject in the pediatrics bank. 
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η
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…. Eqn. 3

  
 where; ηCLi is the difference between individual (CLi) and population mean (TVCL) 

clearance on log scale, ηVci is the difference between individual (Vci) and population 

mean (TVVc) volume of distribution on log scale, ηKAi is the difference between 

individual (KAi) and population mean (TVKA) absorption rate constant on log scale, 

alloCL and alloVc are the allometirc exponents that account for the effect of body weight 

(WT) on clearance and volume respectively, A50 is the covariate parameter that accounts 

for the effect of maturation on clearance and reflects the age at which clearance is half of 

its maximal (or adult) value. ηCLi, ηVci and ηKAi were all assumed to follow a normal 

distribution, independent of each other, with mean of zero and variances of Ω2
CL, Ω2

Vc 

and Ω2
KA respectively. 

        

The residual error or within-subject variability (WSV) was described using a proportional 

error model as shown below: 

 

( )Cppredi CpCp ε+•= 1       …. Eqn. 4 

 

where; εCp is the difference between the individual observed plasma concentration (Cpi) 

and the individual model prediction (Cppred) and is assumed to follow a normal 

distribution with mean of zero and variance of σ2
Cp. 
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Truncated simulations were performed in order to contain the simulated parameter values 

within reasonable limits. The distributions of clearance, volume, t1/2 and KA were 

truncated using the generic expression shown below, for each of these parameters: 

( SDLnMeanLOLIM •−= 3exp )

)

      …. Eqn. 5 

( SDLnMeanHILIM •+= 3exp       …. Eqn. 6 

where; LOLIM and HILIM are the lower and upper limits desired for the simulated 

parameters, LnMean is the mean parameter on the log scale and SD is the standard 

deviation of the parameter on the log scale. For clearance, volume and KA the variances 

used for simulations (Table 1) determined SD and for t1/2 the variances of clearance and 

volume were added to determine SD. 

 

The parameter values for the “true” one-compartment model used for simulations, with 

associated covariate effects, are listed in Table 1. During estimation the oral absorption 

parameters, TVKA and Ω2
KA, were fixed, while all remaining model parameters were 

estimated. For the population mean analysis, model predictions of mean clearance and 

volume at the median age and weight, for each of the four age bins, were determined as 

mean parameter estimates.  
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Table 1: Values of the one-compartment model parameters used for the simulations 

Parameter Value Units 

TVCL 3.2 L/h /20kg 

TVVc 6.2 L /20kg 

TVKA 2 (fix) /h 

Ω2
CL (CV) 30, 50, 70 % 

Ω2
Vc (CV) 30, 50, 70 % 

Ω2
KA (CV) 50 (fix) % 

σ2
CP (CV) 10 % 

ALLO_CL 0.75  

ALLO_Vc 1  

A50 0.18 years 
 
TVCL, TVVc, TVKA: typical values of systemic clearance, central volume of distribution and 

first-order absorption rate constant 

Ω2
CL, Ω2

Vc, Ω2
KA: variance in CL, Vc and KA respectively; CV: coefficient of variation 

σ2
CP: variance in individual plasma concentrations 

ALLO_CL, ALLO_Vc: allometric exponent for weight effect on CL and Vc respectively 

A50: covariate parameter for effect of maturation on CL, defined as the age at which clearance is 

half of the adult value 

 

Data analysis 

For each replicate, the precision and bias in the mean clearance and volume parameter 

estimates were computed. The mean bias and power to achieve target precision standard 

were then determined, based on all replicates. 

Precision metrics 

In accordance with the recent regulatory requirement, we assessed precision as a %CV-

like metric but in terms of upper bound of the 95% confidence interval (UCI) rather than 
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standard error (SE). Thus, precision was defined as the ratio of the upper limit of the 95% 

confidence interval to the mean parameter estimate, or relative UCI (RUCI). Values close 

to 1 for this ratio imply high precision (or small standard errors) while higher values 

imply more imprecision (or large standard errors). Then as per the PK quality standard 

defined previously, the target is for this ratio to be ≤ 140%. Given the lognormal 

distribution of the parameters (CL and Vc), it is assumed that if the UCI is within 140% 

of the mean, then the LCI will be within 60% of the mean. Hence we focused only on the 

UCI for assessing precision.  

 

A percentage expression was used to determine precision on clearance and volume 

parameters for every replicate and the mean of this metric for all replicates was the ‘mean 

imprecision’. Thus a value of 100 for the metric represents no imprecision (or a 0 

standard error) and higher the value of the metric, deviant from 100, lower is the 

parameter precision. 

100•⎟
⎠
⎞

⎜
⎝
⎛=

Mean
UCIRUCI        …. Eqn. 7 

The proportion of replicates where RUCI met the target was determined to be the power 

to achieve the precision standard.  A trial design was considered successful if it achieved 

80% power for target precision (i.e. RUCI ≤ 140 for ≥80% replicates). 

 

In order to construct the 95%CI, for each age bin, model estimated mean parameters and 

standard errors were used. Then the 2-sided tdf,α statistic corresponding to the total 

pediatric sample size for estimating eight model parameters (see Table 1) was used (α 

=0.025, n=16, df=8, t= 2.306). 

 
76



Bias metrics  

For the purpose of computing bias on the parameter estimates, reference values that may 

be considered “true” estimates were used. The mean parameter estimates for each age bin 

obtained from the virtual pediatrics bank, as described above were considered as the 

reference values. 

 

The metric used to compute bias in the parameter estimates was the percent deviation 

from the reference value, calculated as follows: 

100% •⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

true

trueest
P

PP
Deviation       …. Eqn. 8 

where; Pest is the estimated value of the parameter by fitting the model to the simulated 

data and Ptrue is the reference value for the model parameter. The mean bias for all 

replicates was determined. A deviation within 20% of the reference value was regarded 

as acceptable bias. A trial design was evaluated not only in terms of precision but also 

acceptable bias, for research purposes. 

 

We also considered the bias in the covariate parameter estimates and variance estimates 

(both BSV and WSV) as well as shrinkage in post-hoc estimates to assess their 

reasonable estimation (results not shown). However these metrics were excluded from the 

power analysis for the trial design. 
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Scenarios explored 

We were interested in exploring the impact of varying different trial design elements on 

meeting the requirements of the PK quality standard. Table 2 provides a summary of the 

different scenarios explored in our simulations. There were 756 unique scenarios 

explored. Different combinations of all the following key design elements were 

evaluated: 

 

1. Between-subject variability (3 scenarios): The base case trial design was with low 

(30%) between-subject variability. Scenarios with medium (50%) and high (70%) 

between-subject variability were also simulated. 

2. Samples per subject (3 scenarios): Three sparse sampling schedules, in terms of 

number of PK samples (1, 2, or 3) per subject, were explored. 

While it is recognized that single trough sampling may be irrelevant for 

population PK analysis and using such sparse sampling schedules is discouarged, 

this scenario has been included for research completion purposes. For the single 

trough sampling scenarios the estimation was carried out differently, based on 

previous recommendations [13]. Accordingly, only the TVCL, alloCL, Ω2
CL and 

σ2
Cp parameters were estimated, when rich adult data was included. In absence of 

adult data, even the residual variability parameter (σ2
Cp) was not estimated. 

3. Adult data inclusion (3 scenarios): The designs were varied in terms of inclusion 

of rich adult data (10 samples per subject) in the estimation, exploring three 

scenarios: pediatric data alone, or with additional rich PK data from 12 or 24 

adults.  
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4. Analysis method (2 scenarios): Two different analysis methods were assessed. 

Thus all metrics were determined on both, population mean estimates (a one-stage 

approach) as well as individual post-hoc estimates (similar to a two-stage 

approach). For the latter analysis method, the geometric means of individual post-

hoc estimates of clearance and volume were empirically determined, for each age 

bin. In order to construct the 95%CI, for each age bin, we used standard errors of 

age- and weight-normalized post-hoc individual estimates and a 2-sided tdf,α 

statistic corresponding to the pediatric sample size for that particular age bin (α = 

0.025, df = n-1) . 

5. Drug administration (2 scenarios): Scenarios were simulated using both i.v. as 

well as oral administration models, for comparison.  

6. Sample size (7 scenarios): For each scenario, trial designs with increasing 

pediatric sample sizes (n = 16, 24, 32, 40, 48, 64 and 80) were simulated, to 

determine the design that met the quality standard.  

 
79



Table 2: Trial design scenarios explored during simulations  

Design element ORAL I.V. 

SAMPLING 

 
• 2 per subject (1, 3 h) 

• 3 per subject (1, 3, 4 h) 

• Single trough (4 h) 

Rich sampling used for adult 

data: 10 per subject  (0.25, 0.5, 

1, 1.5, 2, 2.5, 3, 4, 6, 8 h) 

 
• 2 per subject (0.1, 2h) 

• 3 per subject (0.1, 2, 3 h) 

• Single trough (3 h) 

Rich sampling used for adult 

data: 10 per subject  (0.1, 0.5, 1, 

1.5, 2, 2.5, 3, 4, 6, 8 h) 

VARIABILITY 

 
For Cl and Vc: 

• Low (30%) 

• Medium (50%) 

• High (70%) 

For KA: 50% fixed for all cases 

 
For CL and Vc: 

• Low (30%) 

• Medium (50%) 

• High (70%) 

ADULT DATA 

 
• No adult data 

• Rich data from 12 adults 

• Rich data from 24 adults 

 

ANALYSIS 

METHOD 

 
• Population mean estimates, for each pediatric age bin 

• Individual post-hoc estimates, for each pediatric age bin 

SAMPLE SIZE 

 
• 16 

• 24 

• 32 

• 40 

• 48 

• 64 

• 80 

Distributed evenly across four age bins 
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Software 

An R environment was employed for the simulation-estimation procedure with system 

calls to NONMEM and SAS. For the simulations, random numbers were generated using 

a six digit seed. 250 replicates were simulated for each trial design. NONMEM version 

VI with Compaq Visual FORTRAN 6 compiler was used to conduct the simulations. 

SAS version 9.2. was used for the estimations. The estimation method used in SAS was 

QPOINTS=1 (equivalent to LaPlace in NONMEM). R version 2.9.1. was used to create 

the automated program script and carry out data manipulation, data analysis and graphics 

generation. 

  

RESULTS 

Figure 3 is a comparative display of the impact of all aspects of trial design explored on 

meeting the PK quality standard.  

 

What are the typical sample sizes for different trial design scenarios that achieve 

80% power for target (60-140%) precision and acceptable bias? 

As expected, power increases with increasing sample size. The trends remain similar for 

both clearance and volume estimates and for all scenarios tested. Figure 4 is a 

representation of the trend for power to achieve target precision against sample size, by 

age bin, for a sample scenario (oral, 50% variability, 2 PK samples, no adult data). 
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In general, the bias in the parameter estimates was acceptable - deviation within 20% of 

reference values. This result is expected [13]. The mean bias in most scenarios tended to 

be positive, and was generally higher for age bin 1 (1mo - 2yrs) than other age bins. In 

general, mean bias w.r.t. simulated data was higher (up to +40% for age bin 1) than that 

w.r.t. true data i.e. pediatrics bank. Figure 5 presents the mean bias, by age bin, for the 

same sample scenario (oral, 50% variability, 2 PK samples, no adult data). 

 

Figure 3 displays the smallest sample size that achieves 80% power for target precision 

and acceptable bias, for all age bins, across all trial scenarios. The sample size selected as 

a success for a trial design was one for which the criteria were met for all age bins.  

 

Figure 3: Impact of all trial scenario elements explored on sample size adequacy to 

meet PK quality standard.  
1 Results shown are for all oral administration scenarios; i.v. scenario results were similar. 

2 Where dotted lines are not visible on the graph, they overlap with solid lines. 
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Figure 4: Power to achieve target precision standard (on mean clearance) at all 

sample sizes explored, by age bin, for a sample scenario (oral, 50% variability, 2 PK 

samples per subject, no adult data). 
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Figure 5: Mean bias (in mean clearance) at all sample sizes explored, by age bin, for 

a sample scenario (oral, 50% variability, 2 PK samples per subject, no adult data). 
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What is the impact of varying the number of samples per subject? 

Scenarios with 3 PK samples per subject consistently achieved higher power than that 

achieved with 2 PK samples per subject. However, this translated into lower sample size 

requirements only in a few cases. This can be seen in Figure 3. Mean bias was not 

different for 2 vs. 3 samples per subject. Shrinkage was in general ≤ 20% and was 

consistently greater in cases of 2 samples per subject over 3 samples per subject, as 

expected. 

 

In this study, the results of single trough sampling scenarios are not directly comparable 

to those of scenarios with 2 or 3 samples per subject because the estimation was carried 

out differently for single trough sampling, as described in section 2.5. We assessed 

precision and bias for only the mean clearance estimates. The power trends however 

remain similar as for cases with 2-3 samples per subject. The bias was generally 

acceptable at lower variability scenarios but at high (70%) variability, the mean bias in 

clearance estimates was up to 30% deviation. However, post-hoc estimates are 

susceptible to high shrinkage in case of such sparse data, which was observed in our 

study for single trough sampling scenarios in absence of adult data (30-70% shrinkage).  

 

What is the impact of low, medium or high PK between-subject variability? 

Between-subject variability was the trial design element with maximum bearing on 

power and sample size requirements to meet the precision standard. As would be the case 

in conventional power analyses, higher PK variability resulted in lower power and higher 
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sample sizes, consistently in all scenarios. Variability did not have implications on bias 

estimates.  

 

The residual error estimation was dependent on variability. While a 10% proportional 

residual error was used for simulations, at low and medium variability scenarios (30%, 

50%) this estimate was 15-17% whereas at high (70%) variability scenarios the residual 

error estimates were higher, 20-30%. In addition, the A50 parameter estimate was more 

biased at higher variability.  

 

What is the impact of including adult data for estimation? 

In case of the population mean analysis method, inclusion of adult data (rich sampling) 

from 12 adults significantly improves the power to achieve target precision. This results 

in a smaller number of required pediatric subjects when adult data is included in the 

estimation. For instance, n=64 and n=48 met the precision standard for a 70% variability 

scenario without and with adult data, respectively. However, a ceiling effect was 

observed in the inclusion of adult data. In most cases, including rich data from 24 adults 

did not offer significant increase in power or reduction in sample sizes over including 

rich data from 12 adults.  

 

The inclusion of adult data does not significantly impact the outcomes of the individual 

post-hoc analysis method. The power/sample size to meet the precision standard, in 

general, remains unaffected whether adult data is included or not. Figure 3 presents the 
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impact of inclusion of adult data on minimum sample size requirements to achieve 

precision standard for all scenarios. 

 

Adult data inclusion had no significant impact on mean bias in clearance and volume 

estimates. However, it did significantly reduce the bias in estimation of the A50 

parameter. Shrinkage in single trough sampling scenarios was significantly lowered 

(≤20%) in presence of adult data. Adult data also significantly improved the estimation of 

BSV parameters, in all cases.  

 

What is the impact of the analysis method used? 

The population mean analysis method is a more powerful analysis approach than the 

individual post-hoc method i.e. allows use of smaller sample size to meet precision 

standard, consistently for all scenarios. This observation is clear in Figure 3. Population 

mean analysis also resulted in consistently lower mean bias in estimation, compared with 

individual post-hoc analysis.  

 

For population mean analysis, as far as the covariate parameter estimates, the alloCL and 

alloV were generally well estimated (≤ ±20% deviation), although the alloCL was 

generally under estimated. The A50 parameter was always significantly over predicted 

with 50-300% deviation from the reference value (0.18) used for simulations. As far as 

variance, these parameters were generally reasonably estimated (≤ ± 20% deviation) but 

the tendency was towards underprediction. This is expected, since we used truncated 

simulations to restrict the simulated clearance and volume estimates within reasonable 
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bounds. In case of single trough sampling, the BSV on clearance was considerably under-

estimated (-50 to -80% deviation). Adult data inclusion significantly reduced the bias in 

estimation of variance (-20 to -40% deviation).  

 

For individual post-hoc analysis, as far as shrinkage in parameter estimates, it was 

generally ≤ 20%. As expected, shrinkage was greater with lesser number of PK samples 

per subject and was significant (30-70%) for single trough sampling. However, this 

reduced (to ≤20%) in presence of adult data.  

 

What is the impact of i.v. vs. oral administration models? 

All trends in power, sample size, and bias remained moreover similar between i.v. and 

oral administration scenarios.  

 

DISCUSSION 

What are the typical sample sizes for different trial design scenarios that achieve 

80% power for target (60-140%) precision and acceptable bias? 

The study aimed to address the practical feasibility of implementing the precision 

standard, in terms of sample size.  Hence the inferences are focused on the estimates of 

sample size adequacy and trends across different scenarios explored, and not on the 

specific numbers arrived at for sample size. They are intended to serve as guidelines 

while designing pediatric trials in keeping with the quality standard. 
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In general, reasonable sample sizes were found to be adequate to meet the proposed 

quality standard, ranging from 16-64 subjects, even with sparse sampling and high 

between-subject variability. Hence we consider the proposed quality standard to be 

practically feasible. Further, the estimation bias with these sample sizes was also found to 

be acceptable (deviation from true values within 20%). While bias cannot be assessed in 

real trials, it is re-assuring that the simulations do not suggest major bias in the estimates.  

 

In absence of adult data, the sample size for trial design success was driven by both the 

extreme age bins, bin 1 (1mo-2yrs) and bin 4 (12-17yrs). In presence of adult data, the 

sample size was mainly driven by bin 1. Bins 2 (2-6 yrs) and 3 (6-12 yrs) invariably 

complied with the criteria, for a given sample size, as long as bins 1 and 4 did. This result 

is expected given the covariate model we have used, where body weight is the main 

driver for clearance and volume estimates. Estimation precision is always lower at the 

extreme ends of the data range. Hence precision on parameter estimates was consistently 

found to be poorest for age bin 1 (also lowest body weight group), and in absence of adult 

data, even for age bin 4 (also highest weight group). Thus, the total sample size that can 

be used in a pediatric trial in order to be powered to meet the quality standard may be 

lowered by recruiting fewer subjects in the middle age bins 2 and 3, and more subjects in 

age bins 1 and 4. However, this decision is more of a regulatory issue than a research 

focus of the current study.  
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What is the impact of varying the number of samples per subject? 

Sparse sampling schedules are most common in pediatric trials. While we explored 

scenarios with either 2-3 or single trough PK sample per subject, the results are 

generalizable. Increasing the number of PK samples per subject, even within the realm of 

sparse sampling schedules, adds information to the model to aid better precision. If rich 

pediatric PK data are available, non-compartmental analysis (NCA) may be considered, 

in which case the sample size determination is fairly straightforward using variability 

estimates from adult data or relevant prior pediatric data [8]. 

 

Of note is the fact that apart from number of samples, the sampling time schedule is of 

critical importance during study design and has bearing on parameter precision as well. 

However, several researchers have proposed methods to optimize PK sampling schedules 

while designing a population study [9-11], and a thorough account of this aspect of 

optimal trial design is beyond the scope of the present research. It is assumed that optimal 

sampling time points for a given number of samples are pre-determined based on a 

previous method.  

 

As mentioned previously, we do not encourage the use of single trough sampling for 

population PK studies, in recognition of its limitations. With only single trough data, 

estimating volume parameters at all, let alone with good precision, is an unreasonable 

expectation. Previous research has shown that the bias in estimation may be higher with 

single trough sampling and that both between-subject as well as residual variability 

parameters together may not be well estimated [13]. However, there still are cases where 
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pediatric PK studies collect only single trough samples. At times practical restrictions, for 

instance anemia or other health conditions in pediatric patients would only permit single 

trough data to be collected. Further, large registration trials frequently collect only single 

trough PK samples.  Hence we incorporated this scenario in our simulations. Only 

clearance parameters may be estimated within the precision standard with reasonable 

sample sizes, given the assumption that prior information on the structural model is 

available. 

 

What is the impact of low, medium or high PK between-subject variability? 

PK variability is the predominant determinant of sample size as would be expected in any 

power analysis. This parameter may differ considerably across drugs. We explored three 

levels of between-subject-variability in order to generalize the methods to a wide range of 

drugs. With sophisticated analytical methods and assays available today, we do not 

anticipate the residual variability to be significantly high. Also structural PK models are 

seldom severely mis-specified. Hence we did not explore the impact of varying this 

parameter.  

 

What is the impact of including adult data for estimation? 

While designing a pediatric study, it is important to leverage prior information that may 

be available in the form of either adult data for the same drug in question, or as relevant 

adult or pediatric data from related drugs or indications. Most pediatric drug development 

programs occur after the drug is approved in adults. Hence during pediatric trial design, it 

is likely that a population PK model of the drug based on adult data would be available.  
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For the analysis, sparse pediatric PK data may then be combined with the rich adult data 

in order to estimate the relevant PK parameters in pediatrics. Hence inclusion of rich 

adult data is also an important consideration while designing pediatric studies.  

 

Rich adult data would additionally inform the structural model, leading to improved 

estimation precision. Accordingly, we did observe an increase in precision and lowering 

of pediatric sample size requirements, upon inclusion of adult data in the simulations. 

However, the concern with including rich adult data in design or analysis of pediatric 

trials would be the undue influence of the adult data on estimation, leading to perhaps 

falsely high precision, simply by virtue of the large possible adult sample size. This 

concern was addressed in our simulations. Importantly, we used a tdf,α statistic 

corresponding to only total pediatric sample size while constructing the 95% CI on 

parameter estimates, avoiding an undue impact of adult sample size on precision. We 

found a ceiling effect in terms of amount of adult data included. In most cases, rich data 

from 24 adults did not offer a pediatric sample size advantage over using rich data from 

12 adults. In the few cases this did happen, the gradient was reduced, and with more adult 

data (48 adults) there was no added benefit (results not shown).  

 

Both observations made with regard to adult data inclusion are useful. The first one re-

iterates the importance of using prior information where available, while the latter 

alleviates the concern of adult data driving the parameter precision and leading to 

unrealistically low pediatric sample size requirements.  
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What is the impact of the analysis method used? 

There could be different ways to assess whether the precision standard is met. For 

instance, in the case of clearance, one option is to estimate the population mean clearance 

for each pediatric age group to be studied while the other option could be to use the 

geometric mean of individual post-hoc clearance estimates, for each pediatric age group. 

Hence both analysis methods were explored. Given rich PK sampling, conventional 

NCA, which is a two-stage analysis method, is comparable with the post-hoc analysis 

approach used in our study. However, the body weight and age effect on post-hoc 

individual estimates were normalized while determining precision so as to make the 

precision assessment comparable with the population mean method. NCA and post-hoc 

methods yield similar sample size outcomes at equivalent variability levels. The 

population mean analysis was more precise and less biased than post-hoc analysis, which 

is in fact a merit of mixed-effects modeling. Thus, the population-mean or one-stage 

approach is the most powerful analysis method for pediatric data. 

 

What is the impact of i.v. vs. oral administration models? 

While an i.v. administration model is the simplest simulation template in terms of 

parameters, most pediatric drugs are oral formulations. Hence both scenarios were 

evaluated. However, since PK samples during the absorption phase would rarely be 

available in pediatrics we chose to fix the absorption parameters (KA and BSV_KA) 

based on adult values. Thus in terms of parameters estimated, the i.v. and oral scenarios 

were the same. The only difference was additional variability (50%) contributed to the 
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model by the KA parameter in the oral scenarios. As expected then, the outcomes and 

trends were similar for both i.v. and oral cases. 

 

Metrics used 

The quality standard specifies the 95% confidence interval (CI) rather than standard error 

(SE) for the precision standard. Using CI takes the combined effects of both SE and tdf,α 

into consideration for calculating precision. In case of small sample sizes (<30), which 

are commonly used for pediatric studies, this is an important consideration for precision, 

rather than using SE alone. Under an asymptotic normal distribution assumption, the 

precision standard specified would be equivalent to achieving a relative standard error 

(RSE) on the mean parameter estimate within 20%. In our study, we empirically 

constructed the 95% CI using model-generated SE estimates and tdf,α values 

corresponding to the pediatric sample size used, avoiding undue influence of adult data 

on precision. A non-parametric bootstrap would be the alternative way to construct the 

required 95% CI, but this technique would be computationally very intensive and was not 

considered justified for the scope of this study. 

 

The bank of virtual pediatric subjects generated may be considered the true population of 

interest for this study. Hence the non-parametric mean clearance and volume parameters, 

for each age group, derived from the bank were used as reference values or true mean 

estimates. These estimates matched well with the parametric mean estimates derived 

using the covariate models for clearance and volume with median demographic values, 

for each age group. Hence, we elected to use the same approach to determine the 
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population mean parameter estimates, for each age group, under the population mean 

analysis scenarios.  

 

Scenarios 

The aims of the study were to address the simulation methodology to design a pediatric 

trial, along with the impact of different trial design elements, while targeting the 

precision quality standard.  Hence a simple one-compartment PK model was used in the 

simulations. However, the methods used can also be applied for scenarios that differ 

based on the underlying PK model, the covariate model used, the dose administered or 

the number of and division into age bins, even though such scenarios were not explored 

in this study. Scenarios were chosen to assess the impact of what we believe are the key 

pediatric trial design elements. 

 

Conclusions 

The following are the salient findings of this research: 

1. Plan well at the design stage to ensure an informative pediatric trial.  

2. The PK quality standard of 60-140% precision with 80% power is practically 

feasible. Reasonable sample sizes are adequate to comply with the standard and it 

may be implemented using a simulation-based approach. 

3. Pre-determined optimal sampling times for a given number of PK samples per 

subject is important during trial design. 
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4. Use prior adult data or pediatric data for trial design and analysis, wherever 

possible. Inclusion of adult data will not unduly drive precision and sample size to 

achieve the quality standard.  

5. Use one-stage population mean analysis methods, with biologically plausible 

covariate models, for pediatric PK studies.  

6. Allometric and Emax-type age-effect covariate models are feasible to use in 

simulations, while designing pediatric trials to achieve the PK quality standard. 
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CHAPTER 4  

Covariate models – do not center at values outside the data 

range 

 

 

ABSTRACT 

The purpose of this paper is to draw attention to a seemingly obvious concept during 

centering of covariate effects in a population analysis. A simulation-estimation platform 

with pediatric data was used to assess the impact of the choice of reference body weight 

value at which the body weight effect on clearance and volume parameters is centered. It 

was found that the reference value chosen for centering had implications for not only 

parameter interpretation but also their precision.  Absence of centering or in effect using 

1 kg as a reference value led to 20-30% lower mean precision than centering at the 

median of body weight range. In addition, centering at the upper end of the body weight 

range led to 5-10% lower mean precision than centering at the median. The results can be 

generally applied to all covariates underlining the recommendation that covariate effects 

should be centered at an appropriate value of the covariate. Usually, using the median of 

the covariate data range as the reference value will lead to most relevant interpretation of 

model parameters and highest possible precision. 
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INTRODUCTION 

While developing covariate models in population analyses, it is good practice to center 

the effect of a covariate on a model parameter at a particular reference value of the 

covariate in order to make the parameter interpretable.  It is perhaps a known issue, at 

least among modelers, that when centering is done at a value outside the present data 

range there could be instability in estimation and poor parameter precision. However, a 

systematic study that accounts this phenomenon has not been published previously and 

we believe it is of value to modelers in general. We used covariate models with body 

weight effect centered at different reference values to demonstrate two key implications 

of centering on: 1- parameter precision and 2- parameter interpretation. 

 

METHODS 

As part of a larger project, we conducted extensive simulation-estimation of pediatric 

data. A pediatric population was simulated in terms of demographics and 

pharmacokinetic (PK) observations under scenarios with increasing sample sizes. The 

parameters of the PK model were then estimated using the simulated data and precision 

and bias metrics for the estimates of mean systemic clearance and central volume of 

distribution were determined. For each sample size scenario, 250 replicate simulation-

estimations were carried out. 
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Nominal Design 

A single 100 mg/kg dose of a hypothetical drug was administered intravenously (bolus) 

to the simulated pediatric subjects. The drug follows one-compartment, dose-proportional 

PK and has a half-life of about 1.5 hrs. A sparse sampling schedule design with 3 samples 

per subject (0.1, 2 and 4 hrs) was employed. The different sample size scenarios used 

were 16, 24, 32, 48 and 72 pediatric subjects. 

 

Demographics 

We used a CDC database for the simulation of pediatric demographics that included age, 

gender and a relationship to determine body weight. Using this information we generated 

a bank of n=48000 unique virtual pediatric subjects. The subjects were divided into four 

age bins (1 mo to 2 yrs, >2 to 6 yrs, >6 to 12 yrs and >12 to 17 yrs) as is commonly done 

during recruitment in most pediatric clinical trials. The weight range of simulated 

subjects was 5 kg - 80 kg (median = 20 kg). For each scenario, the desired total number 

of subjects was randomly sampled from this bank of pediatrics, with equal number of 

subjects into each age bin. 

 

Simulation Models 

The one-compartment model used in the present study was parameterized in terms of 

total systemic clearance (CL) and volume of distribution for central compartment (Vc). 

The between-subject variability (BSV) of the model parameters was described using a 
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lognormal variance model. The allometric exponential covariate model was used to 

account for effect of body weight on both clearance and volume. 

iCLCL eWTTVCLCL allo
ii

η
••=       … Eq. 1 

iVcVc eWTTVVcVc allo
ii

η
••=        … Eq. 2 

where; ηCLi is the difference between individual (CLi) and typical value or population 

mean (TVCL) clearance on log scale, ηVci is the difference between individual (Vci) and 

typical value or population mean (TVVc) volume of distribution on log scale, alloCL and 

alloVc are the allometric exponents for the effect of individual body weight (WTi) on 

clearance and volume respectively. ηCLi and ηVci were both assumed to follow a normal 

distribution independent of each other, with mean of zero and variances of ω2
CL and ω2

Vc 

respectively. The residual error or within-subject variability (WSV) was described using 

a proportional error model as shown below: 

( )Cppredi CpCp ε+•= 1        … Eq. 3 

where; Cpi is the individual observed plasma concentration, Cppred is the individual 

model prediction and εCp is the residual error assumed to follow a normal distribution 

with mean of zero and variance of σ2
Cp. 

 

The parameter values for the “true” one-compartment model and associated covariate 

effects used for simulations are listed in Table 1. 
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Table 1: The one-compartment model parameters used for simulations 

Parameter Value Units 

Mean Clearance 3.2 L/h/20kg 

Mean Volume 6.2 L/20kg 

BSV_Clearance  30 % CV 

BSV_Volume 30 % CV 

Residual error 10 % CV 

alloCL 0.75  

alloV 1  

 
BSV: between-subject variability; CV: coefficient of variation 

alloCL, alloV: allometric exponent for weight effect on clearance and volume respectively 

 

Estimation models 

For the current study, for every simulated replicate, three estimation cases were carried 

out, based on the centering of the body weight effect in the covariate model: 

• Case 1: Covariate effect not centered (effective reference value = 1 kg) 

• Case 2: Covariate effect centered at upper end of data range (reference value = 70 kg) 

• Case 3: Covariate effect centered at median of data range (reference value = 20 kg) 

Accordingly, one of the following three covariate models was employed: 

( ) CLallo
CL iWTTHETATVCL •=       … Eq. 4 

CLallo

iCL WTTHETATVCL
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
•=

70
      … Eq. 5 

CLallo

iCL WTTHETATVCL
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
•=

20
      … Eq. 6 
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Correspondingly, covariate models were also applied for TVVc, using the alloVc 

parameter. All model parameters were estimated. 

 

Metrics 

We assessed the resulting precision and bias of mean parameter estimates (clearance and 

volume) for each replicate. The mean precision, power to achieve a target precision and 

mean bias, based on all replicates, were then computed for each sample size scenario.  

 

In accordance with a recent regulatory requirement of a precision standard on primary PK 

parameter estimates [1], we assessed precision as a %CV-like metric but in terms of 

upper bound of the 95% confidence interval (UCI) rather than standard error (SE). Using 

CI takes the combined effects of both SE and tdf,α into consideration which is important 

in case of small sample sizes (<30) that are commonly used for pediatric studies rather 

than considering SE alone. Thus, precision was defined as follows: 

100•⎟
⎠
⎞

⎜
⎝
⎛=

Mean
UCIprecision        …. Eq. 7 

Values close to 100 for this ratio represent high precision (or small standard errors) while 

higher values, deviant from 100, represent more imprecision (or large standard errors). 

We determined precision on clearance and volume parameters for every replicate and the 

mean of this metric for all replicates was the “Mean Imprecision” for a particular sample 

size scenario.  
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In order to assess power, we used a pre-determined target on parameter precision, again 

based on the regulatory requirement [1], defined as precision ≤ 140%. Under an 

asymptotic normal distribution assumption, the precision target specified would be 

equivalent to achieving a relative standard error (RSE) on the mean parameter estimate 

within 20%. The proportion of replicates where the mean precision met the target was 

determined to be the power to achieve target precision for that sample size scenario. In 

order to construct the 95%CI, we used model estimated mean parameters and standard 

errors and a tdf,α statistic corresponding to the total pediatric sample size used at a 2-sided 

α =0.05.  

 

For the purpose of computing bias on the parameter estimates, the model parameters used 

for simulation (Table 1) were considered to be the “true” estimates. The percent deviation 

from the true value was the metric used, calculated as follows: 

100•⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

true

trueest
P

PP
bias        …. Eq. 8 

where; Pest is the estimated value of the parameter by fitting the model to the simulated 

data and Ptrue is the true value for the model parameter. 

 

Software 

We employed an R environment for the simulation-estimation platform with system calls 

to NONMEM. For the simulations, random numbers were generated using a six digit 

seed. The estimation method used was FOCEI. NONMEM version VI with Compaq 

Visual FORTRAN 6 compiler was used to conduct the simulations and estimations. R 
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version 2.9.1. was used to create the automated program script and carry out data 

manipulation and analysis.  

 

RESULTS 

Precision and bias of mean parameter estimates 

We found a dramatic improvement in the precision of the estimates of primary model 

parameters (mean clearance and volume) when the body weight effect in the covariate 

model was centered at the median (Case 3, reference value = 20 kg) as compared to at an 

extreme value outside the data range (Case 1, reference value = 1 kg). Absence of 

centering, or in effect using a 1 kg reference value, led to 20-30% lower mean precision 

and up to 85% lower power, than centering at the median of body weight range. The 

outcomes are less dramatic for centering at the upper end of the body weight range (Case 

2, reference value = 70 kg), which led to 5-10% lower mean precision and up to 6% 

lower power than centering at the median (refer Table 2). 

 

As we can see in Table 2, when body weight effect is centered at the median of the 

simulated data the precision on clearance and volume is high (100% power) at all sample 

sizes. However, when 1 kg is used for centering the mean precision is poor (<50%) at 

lower sample sizes and reasonable precision is obtained only at much higher sample sizes 

(n>50) than would be expected.  
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The bias in parameter estimates was unaltered by the choice of reference value used for 

centering body weight effect on clearance and volume. 

 

Table 2: Mean and power for precision on clearance and volume estimates in 

absence and presence of appropriate centering. 

 
       Reference Value = 1 kg Reference Value = 20 kg Reference Value = 70 kg 

Sample Size Mean Imprecision  Power Mean Imprecision  Power Mean Imprecision  Power 

  (%) (%) (%) (%) (%) (%) 

Clearance          

16 156 15 114 100 125 94 

24 149 22 112 100 122 98 

32 142 46 110 100 120 100 

48 136 78 108 100 116 100 

72 131 98 107 100 114 100 

           

Volume          

16 157 15 116 100 126 94 

24 150 15 115 100 122 96 

32 143 42 111 100 120 100 

48 137 74 109 100 117 100 

72 132 98 107 100 114 100 

 
Age range: 1 month – 16 years;   Body weight range: 5 – 80 kg 

Mean imprecision = (95% UCI/Mean parameter)•100;    

Power=% replicates where mean imprecision ≤ 140  
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DISCUSSION  

Impact of centering on parameter precision 

In most population analyses, the precision of model parameters, usually in the form of 

standard error (SE), is used as a diagnostic tool for the model. A lower SE indicates 

higher precision on parameter estimates, which is desirable and reflects well on the model 

itself.  

 

However, caution must be exerted while making this interpretation. The precision on a 

parameter estimate is sensitive to both, sample size and the available data range, and in 

turn to the reference value that a covariate effect is centered at. It is expected that any 

software will run into difficulties while estimating a parameter in a data range where little 

or no information is available. Hence, for instance, if a reference value of 1kg is used to 

model the body weight effect on primary parameters then the parameter estimate may be 

very imprecise because it will require the model to extrapolate to an extreme covariate 

range relative to the data present. However, if the sample size is sufficiently large, the 

imprecision may not be significant. Similarly, if centering at 70 kg (commonly used in 

adult population analyses) is applied while modeling pediatric data [2-4], then the mean 

parameter estimates could again have misleadingly lower precision because the observed 

data would be concentrated at a lower weight range than the reference value. 

 

Accordingly, as we found in Case 1, the precision on population mean clearance and 

volume estimates was unexpectedly poor (refer Table 2) for a population analysis given 

low between-subject-variability (30%) and residual variability (10%). We can attribute 
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the poor precision to inappropriate choice of centering at 1 kg, which is an extreme low 

value outside of the available of body weight range. In Cases 2 and 3 the parameter 

precision was as expected for a population analysis. However, Case 3 (centering at the 

median of the body weight range) had higher mean precision relative to Case 2 (centering 

at the upper end of the weight range). 

 

Thus, if a poor choice of reference value is made for centering a covariate effect, it may 

adversely affect the parameter precision. In turn, dosing decisions can potentially be 

affected - either if the parameter precision is subsequently used in simulations to derive 

dosing regimens, or by erroneously rejecting reasonable model parameter estimates based 

on precision. Some researchers use both mean parameter point estimate as well as 

precision to conduct simulations to derive dosing recommendations, and caution must be 

exerted while selecting reference values for centering covariate effects in such cases. 

However, the choice of centering is irrelevant when the allometric exponent is fixed to a 

constant during modeling or when sampling covariance between parameter estimates is 

ignored during simulation. 

 

We also found in our study that the choice of centering does not affect the overall model 

significance (OFV) nor the precision or significance of other covariate effects. We 

simulated a categorical covariate (gender) effect on clearance using a proportional model, 

along with body weight effect, and then estimated the gender effect using the three 

different reference values for body weight effect. Reference value had no impact on the 

precision or statistical significance of the gender effect. This result is expected since in 
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this case the gender effect parameter is estimated for all levels of body weight. However, 

in a case where a different mean clearance parameter is estimated for each gender and the 

determination of a significant gender effect depends on the difference between mean 

clearance estimates, and their respective precision (95% CI), an erroneous decision about 

gender effect may be made if inappropriate centering of body weight effect is used.  

 

Interpretation of parameter estimates 

The primary reason for centering covariate effects used in a population PK model is to 

make the model parameters interpretable. In our study, in Case 1, absence of appropriate 

centering limited the interpretability of resulting mean parameter estimates because 

according to the models used (Eq. 4) the parameters represented the mean clearance and 

volume for a non-existing individual weighing 1 kg. On the other hand in Cases 2 and 3, 

when centering of the body weight effect was done at realistic body weight values (Eq. 5 

and 6), the resulting model parameters were interpretable.  

 

Further, if a proportional model is used to incorporate a covariate effect, for instance age 

[5], according to the model depicted below (Eq. 9) then Aeff is a parameter that represents 

the effect of age on clearance and TVCL would be interpreted as the typical value of 

clearance for an individual with age = 0 years. Again, this is an unrealistic population 

mean clearance estimate that is not interpretable. The interpretation of model parameters 

becomes even more complicated when multiple covariates are involved for a single 

model parameter.  
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)1( ieffCL AgeATHETATVCL •+= •      … Eq. 9 

Hence it is good practice to center the individual covariate effects at a reference covariate 

value that would make the model parameter interpretable and plausible. The proportional 

model for age effect (Eq. 9) used above can be modified as follows to make TVCL 

meaningful: 

))50(1( −+= •• ieffCL AgeATHETATVCL      … Eq. 10 

TVCL now represents the typical value of clearance for an individual aged 50 years, 

which is a useful interpretation of the parameter since 50 years is a plausible age for an 

adult.  

 

For most relevant interpretability of model parameter estimates, the choice of the 

reference value to be used for centering covariate effects should depend not only on the 

range of covariates present in the data being analyzed but also the population of interest.  

For instance, in Case 2 in this study, 70 kg is a reasonable reference value for centering 

body weight effect in an adult population model but, in terms of parameter interpretation, 

not so suitable for pediatrics [2-4] or an adult obese population. Therefore, typically the 

median or mean of the covariate range in the data available serves as a good choice for 

the reference value [6-9]. In Case 3, the mean parameter estimates were for a 20 kg 

pediatric subject making their interpretation most relevant for the population of interest to 

this study. However, we do recognize that the advantage of using a uniform centering 

reference value for all populations is the convenience of comparing mean parameter 

estimates across all studies, pediatric and adult. 
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In some population PK analyses, model parameters may be expressed per kg (e.g. 

clearance is reported as L/h/kg), even when a centered model is used and the allometric 

exponent is not 1 [10;11]. Per kg parameter expression is also implied when centering of 

body weight effect is omitted [5;12]. Both these approaches not only limit the 

interpretability of the clearance parameter but can also lead to erroneously determining 

clearance values at higher body weights.  

 

Other covariate effects 

The choice of reference value for centering body weight effect in a population model is 

perhaps most critical since it is the most commonly used covariate. However, the same 

rationale applies to any continuous covariate used in the model. For categorical 

covariates too, a similar rationale holds true. For instance, in case of a categorical 

covariate with multiple levels, such as genotype, a mean clearance parameter for a 

particular genotype category may be estimated, along with different effect parameters for 

the remaining genotype categories. In such cases, the choice of genotype category for 

which the mean clearance parameter (or intercept) is estimated will dictate its precision. 

This is similar to choice of reference value for a continuous covariate. The genotype 

category with highest number of subjects in the available data will have a mean clearance 

estimate with highest precision. However, the precision of the different genotype effect 

parameters (or slope) remains independent of the choice of reference genotype category.  

The interpretation of a model parameter is also based on defining the reference covariate 

category (or typical population) that it represents. In case of genotype, it would perhaps 
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be most advisable to use the genotype with highest prevalence in the population of 

interest as the reference category. 

 

Conclusion 

Centering covariate effects used in population models is important. While doing so the 

choice of the reference covariate value at which its effect is centered is critical for both, 

model parameter interpretation and precision. However, interpretation and presentation 

may always be altered by re-parameterizing the model in terms of covariate values, as 

applicable for the circumstance at hand. The model applied for estimation may not 

always directly produce the parameters desired for interpretation. A final 

recommendation would be to use model parameterization that yields stable and precise 

estimation, and also parameters with relevant interpretation, for which the median or 

mean of continuous covariate data is an ideal choice.  
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CHAPTER 5 

A Genetics-based Pediatric Warfarin Dosing Regimen derived 

using Pharmacometric Bridging 

 

 

ABSTRACT 

The objective of this research was to derive a genetics-based pediatric dosing 

regimen for warfarin, including starting dose and titration scheme, using modeling and 

simulation. 

Whilst several algorithms have been suggested for warfarin dosing in adults, 

pediatric specific dosing algortims are absent. Even so, warfarin continues to be 

extensively used as an anticoagulant in the pediatric population. A model-based approach 

was used to arrive at a proposed pediatric dosing regimen that was based on warfarin 

dosing in adults and pharmacokinetic/pharmacodynamic (PK/PD) principles. Pediatric data 

on warfarin dosing and INR came from a study conducted at the Children’s Hospital of 

Los Angeles (CHLA). The dosing regimen targeted a major (≥ 60%) proportion of INRs 

within therapeutic range of 2.0-3.0, by week two into warfarin therpay. Simulataneously, 
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the target was to minimize bleeding and thromboembolic risk by minimizing the 

proportions of INR > 3.5 (to ≤ 10%) as well as those of INR < 2 (to ≤ 20%). The targets 

were set as used in adults as well as in pediatric studies. 

A 2-step pediatric starting dose is proposed based on body weight (<20 kg and ≥20 

kg) for each of 18 genotype categories, using differet possible combinations of individual 

CYP2C9 (*1/*2/*3) and VKORC1 (-1639 G>A) genotypes. The titration scheme involves 

percentage changes relative to previous dose, based on the latest patient INR. In 

simulations, the propsed dosing regimen performed better than the empricial dosing used 

in the CHLA patients, based on consistently maintaining target INR outcomes. To our 

knowledge, this is the first ever proposed dosing regimen for using warfarin in pediatric 

patients. However, the research is limited by the small sample size of available pediatric 

PK/PD data and absence of prospective validation of the dosing regimen. Hence 

prospective clinical studies with warfarin in pediatrics using the proposed dosing regimen 

are recommended. 
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INTRODUCTION 

Warfarin is the most widely used oral anticoagulant. It has been used for over 50 years in 

adults for the treatment and prevention of venous thromboembolism, pulmonary embolism, 

and thromboembolic events associated with atrial fibrillation, myocardial infarction, 

cardiac valve replacement and stroke [1;3;4]. The drug is currently not approved for 

pediatric indications [1]. Management of warfarin therapy is complicated owing primarily 

to two reasons – its narrow therapeutic index and high inter- and intra- individual 

variability in drug response. The individualized treatment goal is to maintain patient INR 

(international normalized ratio) within a therapeutic range, usually 2.0-3.0. Therapy 

involves potentially fatal thromboembolic risk at lower INRs and hemorrhagic risk at 

higher INRs [2-5].  

 

Various known warfarin pharmacokinetics (PK) and pharmacodynamics (PD) factors 

contribute to the observed INR variability. Figure 1 is a schematic of the PK-PD of S-

warfarin, the potent enantiomer in the raceimic warfarin product administered. Most 

importantly, polymorphisms in two genes – cytochrome p450 2c9 (CYP2C9) and vitamin 

K epoxide reductase c1 (VKORC1), which are involved in the PK and PD of warfarin 

respectively, have been shown to result in increased INRs and reduced warfarin dose 

requirements [3-10]. The variant alleles *2 and *3 in the CYP2C9 gene reportedly reduce 

warfarin clearance to about 30% and 15% respectively [4;8]. Patients with these variant 

alleles also require a longer time to achieve stable dosing, and are at a significantly 
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increased bleeding risk when compared with patients with the CYP2C9*1*1 (homozygous 

wild-type) genotype [6;11-13]. Multiple polymorphisms (such as -1639 G>A and 1173 

C>T) in the VKORC1 gene, which occur in linkage disequilibrium, have been shown to 

increase warfarin sensitivity by about 30-50% [13;14], reducing warfarin dose 

requirements. Collectively, the CYP2C9 and VKORC1 genotypes have been shown to 

account for approximately 45% of the variability in warfarin dose requirements 

[7;9;10;15;16]. At a clinical pharmacology advisory committee meeting of the U.S. Food 

and Drug Administration (FDA) in 2005, there was consensus on existence of sufficient 

mechanistic and clinical evidence to support lower doses of warfarin for patients with 

certain polymorphisms in CYP2C9 and VKORC1 genes [17]. Subsequently, the warfarin 

label was updated in 2007 to include recommendations to genotype subjects for CYP2C9 

and VKORC1 before initiating warfarin therapy and use lower doses accordingly [1]. 

Notably, the prevalence of the CYP2C9 polymorphisms in Caucasians is about 35% [18] 

and that of VKORC1 polymorphisms is about 40% in Caucasians and very high, i.e. about 

85%, in Asians [5]. Therefore, testing for these polymorphisms is being performed to 

guide dosing in adults, which may improve the clinical safety and efficacy of warfarin 

[11]. Additional influential factors for warfarin dosing include but are not limited to body 

weight, age, co-morbidities, drug-drug interactions (DDI) and diet. Extensive research has 

been undertaken in order to account for the impact of all these factors on warfarin therapy 

and several algorithms for dosing warfarin in adults have been proposed [7-

10;12;15;16;19]. 

 



Figure 1: PK-PD of S-warfarin 

 

PK: two-compartment model dose-proportional PK, metabolic clearance via CYP2C9 only 

PD: inhibition of synthesis of components of pro-coagulant complex activity (PCA) characterized using 

inhibitory Emax model; response measured as INR, a derivative of prothrombin time 

CL- clearance; V- volume of distribution; ka- first-order absorption rate constant; Cfree- free/unbound  

plasma drug concentration; EC50- drug concentration to elicit half maximal inhibitory response; ksyth- zero-

order rate constant for PCA production; kout- first-order rate constant for PCA degradation [42]. 

 

 

As far as pediatrics, even though not approved, warfarin remains the mainstay of oral 

anticoagulant therapy for patients with cardiovascular indications for prevention of 

thromboembolism [20-23]. Two distinct pediatric patient populations receive warfarin 

frequently; one are infants and young children with congenital heart defects who have 

undergone Fontan or other surgery, and second are the adolescent patients who have valve 
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replacement. Some other common pediatric indications requiring warfarin therapy include 

presence of central venous lines, congenital antithrombin deficiency, and cerebral 

thromboembolism. As in adults, the management of warfarin therapy is difficult in 

pediatrics and adverse effects are common [20;24;25]. The bleeding rate in pediatric 

patients on warfarin has been reported to be about 0.5% per patient year for major bleeding 

events and to range from 1.9-2.3% per patient year for minor bleeding events [25;26]. 

While major bleeding may occur even at warfarin doses considered therapeutic, serious 

hemorrhage risk has been shown to increase with increasing intensity of anticoagulation 

[27]. The occurrence of recurrent thromboembolic events in pediatric patients while still on 

warfarin therapy has been reported to range from 1.3-2.3% per patient year [25;26].  

 

Limited clinical studies of warfarin in the pediatric population have been conducted 

[26;28;29]. Body size and age have been suggested to have an influence on warfarin dose. 

Some researchers also propose a maturation effect on the fundamental activity of the 

human coagulation system [30;31]. In addition, the polymorphisms in CYP2C9 and 

VKORC1 genes have been shown to be associated with lower pediatric warfarin dose 

requirements [32-34]. It is intuitive that these genetic effects seen in adults would be 

similar in pediatrics given that the mechanism of action of warfarin, and the coagulation 

and drug elimination pathways, are the same in pediatrics and adults. 

However, all clinically available computer-based pharmacogenetic dosing algorithms for 

warfarin ignore considerations for pediatrics. In order to provide pediatric patients on 
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warfarin therapy with the pharmacogenetic advances that are now being integrated into 

adult care, it is important to develop and validate a pediatric warfarin dosing algorithm. 

Such an algorithm should integrate the impact of CYP2C9 and VKORC1 genotype with 

other factors (such as body size, ontogeny of PK-PD determinants, concomitant drugs) on 

warfarin disposition and effect in pediatrics.  A recent study reported enthusiasm among 

pediatric hematologists for trials to develop a pediatric warfarin dosing algorithm, 

incorporating pharmacogenetic effects [35]. However, patient recruitment problems have 

been a severe limitation to such trials [36]. The need for efficient, novel approaches to 

enable addressing pediatric warfarin dosing has been highlighted [35].  

 

The objective of the current study is to develop a genetics-based pediatric warfarin dosing 

regimen, including both starting doses and a titration scheme, which can be validated 

prospectively for pediatric patients. A pharmacometric bridging approach, using modeling 

and simulation along with limited available pediatric data have been used to assess the 

potential usefulness of the dosing regimen. The eventual goal is to establish a new standard 

of care for pediatric patients who require warfarin therapy via an optimal, validated dosing 

regimen that will guide clinicians for safer and more effective warfarin use in pediatrics. 

 

METHODS 

An attempt has been made to leverage all the information previosuly available for the data 

anlysis in this study, using efficient modeling and simulation methods. Prior information 



was available in the form of an accepted adult warfarin PKPD model [14] and warfarin 

dosing and INR information was available from a limited number of pediatric subjects 

from Children’s Hospital, Los Angeles (CHLA). Our research approach is outlined in 

Figure 2. Briefly, we derived a pediatric PKPD model using the prior adult PKPD model 

and knowledge of physiology. By physiology we refer to PKPD principles such as the 

relation between drug clearance and body size, the maturation pattern of drug metabolizing 

enzymes and the mechanism of action of warfarin. We then qualified the pediatric model 

using the CHLA data, which were not used for model derivation. Initial pediatric warfarin 

doses were estimated by matching target INRs for typical pediatric subjects with adults. 

The pediatric dosing regimen - starting dose and titration scheme - were then optimized 

using simulations of several thousand pediatric subjects. 

 

Figure 2: Outline of research approach employed 
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CHLA data 

Patients 

Data for the current study came from pediatric patients ≤ 18 years of age who were 

followed previously (within the last 1 year) and currently (during the study period) in the 

warfarin clinic of the Division of Cardiology, CHLA. Patients who had received warfarin 

for less than 7 days were excluded. This was an observational study with patients receiving 

standard of care warfarin therapy. The clinicians dosed and monitored patients as per their 

clinical expertise, with each patient treated on a case to case basis, depending on their 

condition and target INR. Warfarin dosing and INR logs (INR measurements across time) 

were recorded during regular scheduled visits to monitor warfarin therapy. Informed 

consent for study participation was obtained at one such routine visit along with a sample 

of 1.0 ml blood in addition to the routine blood draw. The blood sample was transported to 

the USC (University of Southern California) pharmacogenetics laboratory where genetic 

testing was done. A vitamin K dietary intake estimate was performed from a 1-3 day food 

diary. In addition to genotype and diet, data items collected were age, weight, height, 

gender, warfarin dose, INR, other medical illness or medications and adverse events. The 

information was obtained from the existing nurse coordinator's database and documented 

under the study ID number. 
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Genetic analysis 

Genomic DNA samples were extracted from blood samples using a genomic DNA 

extraction kit (QIAmp DNA Blood Mini kit, Qiagen, Mississauga, Ontario, Canada). The 

genotypes for the CYP2C9 *2 (rs1799853) and *3 (rs1057910) and the VKORC1 -1639 

G>A (rs9923231) SNPs were determined using real-time quantitative polymerase chain 

reaction assay based on the 5’ nuclease allelic discrimination assay (ABI PRISM 7900 

Sequence Detection System, Applied Biosystems, Foster City, California). Genomic DNA 

(10 ng) was mixed with 2.5 µL of gene specific primers and probes (10X concentrated) 

and 12.5 µL of polymerase chain reaction universal master mix (Applied Biosystems) to a 

final volume of 25 µL. Thermal cycler parameters included 10 minutes at 95oC and 50 

cycles involving denaturation at 95oC for 15 seconds and annealing/extension at 60oC for 1 

minutes. For quality control of genotyping, negative and positive controls were used 

whenever genotyping was performed. Distributions of the CYP2C9 and the VKORC1 

genotypes were compared to the Hardy-Weinberg theoretical distribution using the chi 

square test. A p-value less than 0.05 was considered statistically significant. 

 

Pediatric warfarin model: derivation & qualification 

Prior adult model 

Previosuly, a group at the FDA in collaboration with Harvard Partners, Boston MA has 

developed a warfarin population PKPD model and dosing scheme in adults [14]. The adult 

model was based on published research on the concentration-effect relationship for 
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warfarin [8;42] as well as data from an adult warfarin trial, CROWN (creating an optimal 

warfarin dosing nomogram). The model was built using data from an initial 271 subjects 

and subsequently validated in the same trial by using model-derived dosing in 117 subjects 

(unpublished results). In the current study, a pediatric warfarin population PKPD model 

was derived using the adult model and mechanistic reasoning.  

 

Pediatric PK model 

The adult PK parameters were first scaled to account for body size effects in pediatrics. A 

covariate effect for body weight was included in the pediatric model, using previously 

published and widely accepted allometric scaling principles [37;38]. A body weight effect 

with allometric exponent of 0.75 was included on systemic and inter-compartmental free 

clearances while that with an exponent of 1 was included for the central and peripheral free 

volumes of distribution. Next, the impact of maturation on free warfarin clearance was 

accounted for, using age as a covariate. The age effect on free clearance in the model is 

based on a relationship previously developed for the maturation of CYP2C9 using warfarin 

pediatric data [39]. According to the model used, CYP2C9 enzyme activity increases with 

age and attains maturity by the age of 2-3 months. Finally, effects of the CYP2C9 

genotype (variants *2 and *3) on clearance were included in the model as estimated for 

adults [8]. These values came from a clinical PKPD study in 150 adult patients on warfarin 

that included subjects of all relevant polymorphic CYP2C9 genotypes. 

 



Between-subject variability in our pediatric PK model was described for three model 

parameters - clearance, central volume, and peripheral volume, using a lognormal 

distribution. The total plasma drug concentrations were corrected for plasma protein 

binding, which is reported to be 99% [1], in order to achieve free plasma drug levels. The 

following equations describe the PK model we used: 
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where; ηCLi is the difference between individual (CLi) and population mean (TVCL) 

clearance on log scale, ηVci is the difference between individual (Vci) and population mean 

(TVVc) central volume of distribution on log scale, ηVpi is the difference between 

individual (Vpi) and population mean (TVVp) peripheral volume of distribution on log 

scale, Qi and TVQ are the individual and population mean inter-compartmental clearance, 
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ely. 

CYPeff is the covariate parameter that accounts for the effect of CYP2C9 genotype on 

clearance, WTi and Agei are individual body weight and age and Cp, Cpfree and fu are 

total, free and fraction unbound plasma drug concentrations of S-warfarin. ηCLi, ηVci and 

ηVpi were all assumed to follow a normal distribution, independent of each other, with 

mean of zero and variances of Ω2
CL, Ω2

Vc and Ω2
Vp respectiv

 

The pediatric model assumes that immature CYP2C9 clearance is not saturable at 

therapeutic warfarin concentrations. Plasma protein binding was assumed to be unaffected 

by maturation. The model does not account for the impact of drug-drug interactions and 

dietary vitamin K on warfarin PK. 

 

Pediatric PD model 

There is no published study that establishes the concentration/dose-response relationship 

for warfarin in the pediatric population. This relationship is assumed to be similar in 

pediatrics and adults for pediatric PD model derivation. The assumption is based on two 

reasons. First, the mechanism of action of warfarin is the same for pediatrics and adults, 

namely inhibition of synthesis of vitamin K dependent clotting factors in the liver, and 

drug response in both populations is measured clinically as INR. Second, the 

concentration-response relationship has been shown to be similar between pediatrics and 

adults for other anticoagulants, namely argatroban [40] and heparin and low molecular 

weight heparin [41]. While these drugs have a different mechanism of action than warfarin 
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and their response is measured in terms of aPTT, the net effect is on clotting factor activity, 

much as for warfarin. Hence, in absence of pediatric specific warfarin PD data, the adult 

PD model [14] for warfarin was used for pediatrics as well.  

 

Warfarin exerts anticoagulation by inhibiting synthesis of vitamin K dependent clotting 

facttos, which results in a decrease in total clotting factor complex activity (PCA). This 

effect is measured clinically as a subsequent increase in prothrombin time (PT). The INR is 

a standardized measurement of PT, accounting for variations in lab reagents. The PD 

model used describes an inhibitory effect of warfarin on INR degradation rather than on 

synthesis of PCA. Given the inverse relationship between PCA and INR, and the fact that 

the clinical response to warfarin therapy is measured as INR, such a representation of the 

effect of warfarin is both logical and intuitive.  

 

The PD effect in patients is driven by free drug levels and hence protein-binding corrected 

plasma drug concentrations are used in the model. According to the model (Eqn. 6), INR 

change is dependent on previous INR, free warfarin plasma concentration (Cpfree) and drug 

potency (EC50), which may be defined as the drug concentration required for half maximal 

inhibitory effect. Patient sensitivity to warfarin, which is dependent on VKORC1 

genotype, was captured as differing potency of the drug (EC50VKOR) to elicit the same 

response in subjects with different genotypes. 
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Between-subject variability in our pediatric PD model was described for three parameters - 

Kin, Kout, and EC50VKOR, using a lognormal distribution. The measurement error on INR 

was accounted for using an additive error model. The following equations describe the PD 

stochastic models used: 
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INRpredobs INRINR ε+=        … Eqn. 10 

where; ηKini is the difference between individual (Kini) and population mean (TVKin) 

synthesis rate constant for INR on log scale, ηKouti is the difference between individual 

(Kouti) and population mean (TVKout) degradation rate constant for INR on log scale, 

ηEC50VKORi is the difference between individual (EC50VKORi) and population mean 

(TVEC50VKOR) VKORC1 genotype-dependent warfarin potency on log scale and INRε  is 

the difference between observed (INRobs) and model-predicted (INRpred) INR. ηKini, ηKouti, 

ηEC50VKORi and INRε were all assumed to follow a normal distribution, independent of each 

other, with mean of zero and variances of Ω2
Kout, Ω2

Kin, Ω2
EC50VKOR and σ2

INR respectively. 
 

128



 

129

Pediatric model qualification 

The prediction capability of the derived pediatric population PKPD model was qualified 

using CHLA pediatric data. Data were used from only those subjects whose CYP2C9 and 

VKORC1 genotypes and INR log information were available. We first predicted individual 

CHLA patient INRs using our model, based on only the demographic and warfarin dosing 

information from the CHLA data. 200 replicate simulations were performed for each 

CHLA subject’s set of demographic and dosing data, to generate a distribution of predicted 

INRs across time. For the validation simulations, INR distribution was truncated within 

values 1.0-6.0. Thus, we generated 5th, 50th and 95th INR prediction percentiles, for each 

CHLA subject over time. This step was blinded to the INR data from the CHLA study. 

Next, we overlaid the observed INR-time profiles for each subject from the CHLA trial 

onto the model INR prediction percentiles. If about 90% of a subject’s INR observations 

fell within the 5th and 95th percentiles, the model predictions were considered reasonable. 

The proportion of subjects where model predictions matched reasonably well with INR 

observations were determined to qualify the model’s prediction capability. 

 

Optimal pediatric dosing: clinical trial simulations 

The pediatric PKPD model was employed to investigate optimal warfarin dosing using 

clinical trial simulations. The aim was to optimize INR outcomes to clinically reasonable 

targets. Figure 3 is a schematic representation of the simulation process. For purposes of 

deriving starting dose, each genotype category was treated independently. Given all 



possible combinations of genotypes for CYP2C9 (*1*1, *1*2, *1*3, *2*2, *2*3 or *3*3) 

and VKORC1 (GG, GA or AA), we had 18 unique genotype categories. 

 

Broadly, a two-step approach was used for determining optimal dosing. In the first step we 

narrowed the starting dosing choices based on deterministic simulations in typical subjects 

within each genotype. The second step comprised of performing stochastic simulations to 

derive the best starting and titration dosing. 

 

Figure 3: Clinical trial simulations schematic 
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Demographics  

We used a CDC (center for disease control and prevention) database for the simulation of 

pediatric demographics that included age, gender and weight. The database contained ages 

from birth-20 yrs, in increments of 1 month, yielding 240 unique ages. For each unique 

combination of age and gender there is a parameter set, including a variability component, 

to determine the distribution of body weight. We simulated 100 individuals of different 

body weight for each combination of age (1 month - 17 years) and gender resulting in a 

virtual bank of about 48000 unique virtual pediatric subjects. For preliminary simulations 

we considered six typical pediatric subjects, covering the entire pediatric demographic 

range. The six typical subjects represent the mean body weight and age, obtained from the 

virtual bank, for five different body weight/age groups. The typical demographics were: 

5kg/1month; 8kg/6mo; 11kg/1.5yrs; 16kg/4yrs; 28kg/9yrs; 54kg/15yrs. For final 

simulations, subjects were randomly sampled from the virtual bank of pediatrics. 1000 

pediatric subjects for each genotype category were simulated.  

 

Initial pediatric dosing: mean simulations 

In the initial step, the target was to match warfarin INRs in typical pediatric subjects with 

adults. Body weight based dosing (mg/kg/day) was considered suitable for pediatrics. 

However, given the body-weight clearance relationship is not linear; the mg/kg dose is 

expected to be different across different body weight groups (lower for subjects with 

higher body weight). Thus one consideration was to arrive at a reasonable number of 
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dosing steps by body weight level. We also considered the need to adjust dosing steps 

based on age group. For the mean simulations all sources of variability in the pediatric 

model were disregarded. INR outcomes were simulated for the first 30 days of warfarin 

therapy. 

 

Initial estimates of starting dose (mg/kg/day) for each of the six typical pediatric subjects 

were derived for each genotype category. Adult starting doses and our pediatric covariate 

model for clearance [8;14] were used for this purpose. Then using the initial pediatric dose 

estimates we simulated INR outcomes for the average subject, within each genotype 

category. The starting dose was adjusted to target, on an average, an INR of 2.5 and/or to 

match the INR-time profile for typical subjects with that of adults. Doses that rendered 

mean INR-time profiles closest to the target were considered for the full-fledged stochastic 

simulations.   

 

Final pediatric dosing: stochastic simulations 

The next step was to perform stochastic simulations in order to optimize the pediatric 

dosing scheme for the entire population. For these simulations all sources of variability 

were included in the model, namely, demographic variability, between-subject PK and PD 

variability and INR measurement error. For each genotype category, the dosing aim was to 

target a high (≥ 60%) proportion of INRs within therapeutic range of 2.0-3.0, by week two 

into warfarin therpay. Simulataneously, the target was to minimize bleeding and 



thromboembolic risk by minimizing proportions of INR > 3.5 (to ≤ 10%) as well as 

proportions of INR < 2 (to ≤ 20%). While week 2 (14 days) into therapy was considred the 

primary time end-point, the INR outcomes through month 1 (30 days) were evaluated for 

all dosing regimens tested. The target clinical outcomes (depicted in Figure 4) are  based 

on those used commonly in pediatric patients on warfarin [20;24;26;28;29] as well as those 

desired in adults, as per the expertise of the CROWN trial clinicians [14]. 

 

The starting dose as well as titration scheme were optimized as an iterative process, 

assessing the target INR outcomes for all genotype groups. INR monitoring (and dose 

titration) in our simulations was performed twice a week, as is done in regular clinical 

practice. Simulations were performed for first 30 days of warfarin therapy. For the final 

propsed dosing regimen INR outcomes through 90 days of warfarin therapy were also 

simulated. 

 

Figure 4: INR target outcomes for pediatric dose optimization 
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Initially genotype-independent dosing was compared with genotype-based dosing. In the 

former case, all subjects were given the same body weight adjusted doses as determined 

for the CYP2C9*1*1 and VKORC1 GA genotype. In the latter case, dosing was as per our 

proposed regimen – subjects with different genotypes were given different body weight 

adjusted doses. Comparisons were made with regard to target INR outcomes for all 

genotype categories. 

 

The proposed dosing regimen was then compared with the empirical dosing as used in 

subjects in the CHLA study. For the proposed dosing target INR outcomes were as 

previously defined (Figure 4). However, for the CHLA dosing since the target INR varied 

across patients, outcomes were in accordance with individual patient target INR range. To 

maintain consistency with INR outcomes used for the proposed dosing, sub-therapeutic 

INRs for CHLA dosing were those below the lower limit of the patient’s target therapeutic 

INR range while supra-therapeutic INRs were considered at 0.5 value above the upper 

limit of the target range.   

 

Finally, we also evaluated the impact of restricting doses proposed by our regimen to 

available strengths of warfarin formulations, on the target INR outcomes. The lowest dose 

that is currently feasible to administer to pediatric patients in warfarin clinics is 0.5 mg.  
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Software 

Trial Simulator version 2.2.1 by Pharsight® was used for the mean and stochastic 

simulations, while determining pediatric doses. NONMEM version VI with Compaq 

Visual FORTRAN 6 compiler was used for simulations during model validation. For 

NONMEM simulations, random numbers were generated using a six digit seed. R version 

2.9.1 was used for data processing, data analysis and graphics generation. The NONMEM 

model used is given in Appendix B. The drug model set-up in clinical trial simulator is 

given in Appendix C. 

 

RESULTS 

CHLA Data 

A total of 36 pediatric subjects were included in the CHLA study. Of these, 10 subjects 

were missing genotype and/or INR log data. We were able to use data from 26 pediatric 

subjects for model qualification. Cohort demographics are provided in Table 1. The mean 

age of subjects was 4yrs 5mo (range 4 mo-18 yrs) and mean body weight was 23 kg (range 

6.9-84 kg). The cohort included a wide range of body weight but only one subject with age 

< 6 months. While there were a fair number of subjects with the VKORC1 polymorphisms 

in the study cohort, the CYP2C9*2 polymorphism was rare and the *3 polymorphism was 

absent. There were three sub-groups in terms of target INR range, which was dependent on 

indication for warfarin therapy. 
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 Table 1: Description of cohort of pediatric subjects from CHLA 

Characteristic Mean (range) or Number (%) 

Age (years) 4.4 (0.33-18) 

Body weight (kg) 23 (6.9-84.1) 

Height (cm) 107 (65-189) 

BSA 0.81 (0.36-2.1) 

Warfarin maintenance dose (mg/kg/day) 0.12 (0.04 - 0.3) 

Gender: 
Male 

Female 

 
16 (61%) 
10 (39%) 

Race: 
Hispanic 

Caucasian 
African American 

Mixed 

 
16 (61%) 
7 (27%) 
2 (8%) 
1 (4%) 

Target INR: 
1.5-2.5 
2.0-2.5 
2.5-3.5 

 
13 (50%) 
5 (19%) 
8 (31%) 

Indication: 
Valve replacement 
Fontan procedure 

Kawasaki 
Cardiomyopathy 

 
8 (31%) 
12 (46%) 
5 (19%) 
1 (4%) 

CYP2C9 genotype: 
*1*1 
*1*2 

*1*3 / *2*2 / *2*3 / *3*3 

 
22 (85%) 
4 (15%) 

0 

VKORC1 genotype: 
GG 
GA 
AA 

 
7 (27%) 
8 (31%) 
11 (42%) 
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A wide range of doses (0.5-6.5 mg/day) were used in the pediatric subjects by the 

clinicians in the CHLA study. Starting doses in particular ranged from 0.5-5 mg/day. The 

dosing and titration choices did not follow a specified algorithm. For instance, two 

comparable patients weighing 16 kg, with target INR 1.5-2.5, were started on doses of 0.5 

mg/day and 1.5 mg/day, respectively. Further, in case of two patients with target INR 2.5-

3.5, during monitoring at an INR of 1.4 on day 5, one patient was given a 20% increase in 

dose while the other didn’t receive any dose change.  

 

The patient charts reveal that adherence to dosing assigned was poor in 4 subjects and 

prolonged times (> 60 days) were needed to arrive at stable dose in 12 (46%) subjects. The 

median time to achieve stable INR was 137 days. There were 4 major bleeding and 6 

minor bleeding events during the study.  

 

Pediatric warfarin model 

The parameters of the pediatric model that we derived and used for clinical trial simulation 

are shown in Table 2.  
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Table 2: Parameters of the warfarin pediatric population PKPD model used to 

predict CHLA data and to optimize dosing. 

Parameter Value (*for a 20 kg subject) Variability 

PK: two-compartment model 

TVCL 0.1207 L/h* 30 %CV 

CYPeff 

*1*1 

*1*2 

*1*3 

*2*2 

*2*3 

*3*3 

 

100% 

68% 

55% 

28% 

31% 

15% 

 

TVVc 3.45 L* 24 %CV 

TVVp 1.65 L* 98 %CV 

TVQ 0.05 L/h*  

Allometric exponent 
for weight effect on: 
CL and Q 

Vc and Vp 

 

0.75 

1 

 

Ka 2 /h  

Bioavailability 50%  

Unbound fraction 1%  

PD: sigmoidal Emax indirect response model 

Kin 0.01953 /h SD = 0.005 

Kout 0.01698 /h SD = 0.005 

EC50VKOR 

GG 

GA 

AA 

 

3.953 μg/L 

3.075 μg/L 

2.547 μg/L 

SD = 0.783 

 

INR residual error  SD = 0.586 
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 The model qualification outcomes for all 26 subjects are presented in Figure 5. The 5th, 

50th and 95th perrcentiles of INR predictions by the model and observed INR values from 

the CHLA subjects are shown. In about 80% cases (20/26) the observations lay moreover 

within the 95% prediction intervals. No particular genotype, age or body weight group was 

associated with cases where the model did not predict the INR time profile well. However, 

in case of the only two African-American subjects present in the cohort, the model fails to 

capture the INR profile well. Based on these results, the model was considered reasonable 

for use in subsequent simulations to determine an optimal warfarin dosing regimen for 

pediatrics.  

 

 

 

 



Figure 5: Model qualification outcomes: predicted and observed INR over time 

P5, P50, P95 – 5th, 50th (median) and 95th percentile model predicted INR. 

OBS – CHLA subjects observed INR 
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Initial pediatric dosing – typical subjects 

The simulated INR-time profiles for the typical subjects for four representative genotype 

categories are presented in Figure 6. Based upon these profiles, as well as the clearance-

body weight relationship for warafrin as per our model, we found the need to use two 

different mg/kg doses for higher (≥ 20 kg) and lower (< 20 kg) body weight subjects, 

within each genotype category. We did not find the need to alter mg/kg dose based on an 

age cut-off. The selected initial dosing scheme allowed for targeting an INR of 2.0-2.5, 

on an average, for all genotypes and moreover matched the average adult INR profiles.   

 

Figure 6: INR vs. time profiles by genotype for mean simulations – initial dosing 

scheme for typical subjects. 
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Final pediatric dosing – population 

For the stochastic simulations, the results were evaluted in terms of the target INR 

outcomes across time. We refined the starting dose from the initial doses derived for 

typical subjects, as suitable for each genotype category. We also made minor 

modifications to the titration scheme from that suggested for adults [14]. Thus, we 

derived an optimal pediatric warfarin dosing regimen, inclusive of starting dose and 

titartion scheme to maximize desired INR outcomes. Our final proposed dosing regimen 

is given in Table 3. 

 

Table 3: Final proposed pediatric warfarin dosing regimen – starting dose and 

titration scheme 

 

 

The comparison of INR outcomes for genotype-independent and genotype-based dosing 

are displayed in Figure 7, for four representative genotypes. The genotype-independent 

dosing results in progressively worse outcomes (dramatic increase in proportions of 

INR>3.5) as the number of variant CYP2C9 or VKORC1 alleles increases. 
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Figure 7: Comparison of genotype-based and genotype-independent dosing on 

patient INR outcomes across time. 

 

 

 

 

The comparison of INR outcomes between CHLA dosing and our proposed genotype-

based dosing are displayed in Figure 8 for all (six) genotypes present in the CHLA data. 

There were vast differences in outcomes between genotype categories under CHLA 

dosing. 

 

In case of genotype *1*1-GG (homozygous wildtype for both genes) the proportions of 

INR within target therapeutic range were high (60%) at week 2, with the CHLA dosing. 

However, there is a decline in this proportion and an increase in proportions of supra-

therapeutic INR (to 20%) through month 1. In case of the other extreme end of genotype 

*1*2-AA (heterozygous variant for CYP2C9 and homozygous variant for VKORC1) 

while the proportions of INR within target therapeutic range were again high (60%) at 

 
143



week 2, there is a sharp decline in this proportion (to 30%) and an increase in proportions 

of supra-therapeutic INR (to 50%) through month 1. In contrast, with the proposed 

dosing, both therapeutic and supra-therapeutic INRs are consistently around 60% and 

10% respectively through month 1.   

 

In case of the remaining, intermediate genotype categories, the proportions of INR within 

target therapeutic range were much lower (10-40%) at week 2 with CHLA dosing and 

remain lower (upto 45%) through month 1, relative to the proposed dosing (60%). As far 

as supra-therapeutic INR proportions, there is again an increase observed through month 

1 (up to 10- 30%), in all cases. Notably, the proportions of sub-therapuetic INR at week 2 

were much higher (40-90%) with CHLA dosing and remain considerably high (20-50%) 

through month 1, relative to the proposed dosing (< 20%). 
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Figure 8: Target INR outcomes across time with CHLA standard of care dosing and 

proposed dosing regimen. 
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Finally, we report the simulated INR outcomes for all genotype categories using our 

proposed dosing but having imposed restrictions of available warfarin formulation 

strengths. Here, the lowest dose administered and all dose changes (increase/decrease) 

during the titration were limited to a minimum of 0.5 mg. The INR outcomes for four 

representative genotypes are displayed in Figure 9. As expected, proportions of INR >3.5 

increase sharply as the number of variant CYP2C9 or VKORC1 alleles increases. This is 

because the doses administered tend to be higher than those proposed for certain 

genotypes owing to the formulation strength limitations for low dose requirements.   

 

Figure 9: INR outcomes across time with proposed warfarin dosing and formulation 

restrictions. 
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DISCUSSION 

There are two primary contributions of the current study:  

1- A proposed scientifically based pediatric warfarin dosing regimen that can be 

reproduced across clinical settings. 

2- A tool that can be used by clinicians/researchers to arrive at an optimal pediatric 

warfarin dosing regimen, should INR outcomes be targeted other than those used in the 

current study.  

The research, in a nutshell, involved leveraging prior information in the form of adult 

warfarin data, extensive research on warfarin pharmacokinetics and pharmacodynamics 

and physiology to meet a clinical need. Pharmacometric methods were employed to 

bridge an adult model and dosing regimen to develop a pediatric warfarin model and 

propose a dosing regimen. The most relevant aspects of the research are discussed 

further. 

 

Pediatric model qualification 

In perspective, a warfarin population PKPD model built with adult data was appropriately 

scaled for a pediatric population and used to predict INR outcomes over time for pediatric 

patients on warfarin. The INR outcomes were predicted well in about 80% of the patients, 

given limitations in sample size, covaraiate distributions and individual therapeutic INR 

targets. The mechanisms that the model represents are supported by 

pharmacological/physiological knowledge. The allometric and maturation models used 

for scaling PK parameters from adults to pediatrics are those proposed and/or widely 
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accepted in the literature. Thus, the pediatric model appears useful based on physiology, 

consistency with adult data, and predictive ability in limited pediatric data. 

 

Having said that, the available CHLA pediatric data represented limited CYP2C9 

genotypes. *1*2 was the only genetic polymorphism present in the subjects. In the 

general Caucasian population the prevelance of *1*2, *1*3, and *2*2/*2*3/*3*3 are 

20%, 10% and 5% respectively. In addition, there were no subjects aged < 2 months in 

order to assess the validity of the CYP2C9 maturation model used for pediatric clearance. 

 

The model makes predictions for the typical subject with a given set of covariates having 

fixed effects and assumes compliance with dosing regimen. However, an important 

concern that contributes to INR variability and is difficult to quantify is patient adherence 

to dosing regimen [2]. In fact, the INR logs of some of the patients where the model 

appeared unable to predict INR well did reveal poor protocol adherence and exceptional 

difficulty in achieving stable INR. In most cases, the model predictions follow the dosing 

patterns (constant or increasing dose) but INR outcomes are counter-intuitive (decreasing 

or steady). Such observations are classic cases of non-compliance with warfarin therapy.  

 

The model also tended to over predict the INR outcomes for both the African-American 

subjects present in the cohort. It is known that subjects of the black race have a lower 

sensitivity to warfarin, requiring higher doses, owing to certain genetic polymorphisms 

that were not included in the current model. Hence this observation is not surprising but 

may also be confounded by non-compliance. In addition, particularly in case of 
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pediatrics, diet can have an influence on INR to a greater extent than captured by the 

unexplained variability model parameter. These aspects may have led to subjects in the 

CHLA study straying from their predicted INR profile. 

 

Initial pediatric dosing 

The mean simulations led us to conclude that two weight bins with different mg/kg doses, 

for all genotypes, would result in desired INR profiles on an average. In addition, given 

that 18 different starting doses are already required based on genotype, we found it to be 

of practical convenience to have a 2-step dosing regimen based on body weight. There 

has been speculation about an impact of age in regard to the wide observation that 

younger children require higher mg/kg warfarin doses than older children and adults, and 

uncertainty has been expressed about the underlying mechanism [20;26;28;29]. However, 

we would like to point out that this is neither an unexpected observation nor a 

consequence of an age or maturation effect. It is an expected outcome based on the nature 

of the clearance-body weight relationship for the drug. The slope of the relationship is 

steeper at the lower weight range, which are mostly younger children, and gets shallower 

at the higher weight range, which are mostly older children. Hence per kg dose is higher 

for younger, or rather lighter weighing, pediatric subjects. Accordingly, for all genotypes 

we have proposed a smaller mg/kg dose for subjects weighing ≥ 20 kg and a higher dose 

for subjects < 20 kg. Notably, the absolute doses (in mg) administered to heavier children 

would still be higher than absolute doses given to lighter children.  
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Final pediatric dosing 

Based on our pediatric warfarin PKPD model, it is expected that genotype would have a 

significant effect on warfarin clearance and INR response, and thereby on required doses 

for target INR. In the simulations, assuming everyone to belong to the same genotype 

category (CYP2C9*1*1/VKORC1-GA) for dosing purposes resulted in adverse INR 

outcomes, particularly for the homozygous variant genotypes (*2/*3 and AA). Between 

the CYP2C9 (PK) and VKORC1 (PD) genetic effects, the polymorphisms altering PK 

had the most significant impact on dosing. There are two reasons for this; first, the 

homozygous variant CYP2C9 variant genotypes *2*2, *2*3 and *3*3 had a large 

magnitude of effect (-70 to -85% on clearance) relative to the VKORC1 homozygous 

variant genotype AA (-35% on potency). Second, warfarin dose is titrated by monitoring 

INR, the PD response, and not the drug concentrations which reflect PK. Hence adjusting 

starting dose based on genotypes relevant for PK is most crucial. Patients with the 

*2*2/*2*3/*3*3 genotypes have prolonged warfarin half-life (3-6 times longer than 

*1*1) and the starting dose needs to account for this effect. For patients with genetic 

polymorphisms, outcomes at week 3 or 4 into therapy are more clinically relevant than 

week 2. While all results have been presented for only four or six (of eighteen) genotype 

categories, the conclusions for all scenarios tested remain the same for all genotypes. 

 

In the CHLA study, the target INR range of 2.5-3.5 used for patients with valve 

replacement matches with that reported in the literature. However, the choice of target 

INR 1.5-2.5 and 2.0-2.5 for patients undergoing Fontan procedure or diagnosed with 

Kawasaki are different from that reported widely in the literature [20;24;26;28;29]. 
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Hence for the proposed dosing the commonly accepted and employed target INR range of 

2.0-3.0 was selected, to maintain consistency with the literature and to generalize the 

outomes to most settings. However, the modeling and simulation tool developed can be 

employed to derive rational pediatric warfarin dosing for optimizing clinical outcomes in 

terms of any other target INR range or even another INR end-point, if desired. 

Comparison of the CHLA warfarin dosing with our proposed genetics-based dosing 

regimen on individual target INR outcomes reflects the erratic nature of pediatric 

warfarin dosing practices, and the need for a uniform dosing regimen. The dose and 

titration choices used in the CHLA study were independent of patient genotype and did 

not follow a specific, reproducible algorithm. This is common practice for pediatric 

warfarin dosing. Granted the dosing decisions are based on clinical experience, but this 

would vary considerably across clinicians and institutions. The first clinical problem with 

current dosing practices, such as those used in the CHLA study, is that even if good INR 

control is obtained (which was not common in the study) the dosing employed cannot be 

reproduced in another setting. The second problem is their moreover empirical nature. 

Hence a rational, uniform dosing regimen that can be replicated across patients and 

clinics is required.  

 

While INR control was fairly good initially for the *1*1-GG and *1*2-AA genotype 

groups with the CHLA dosing, there was an increase in supra-therapeutic outcomes 

across time, and significantly so for *1*2-AA, which indicates sub-optimal starting dose 

and/or titration scheme. The INR control was poor for the remaining genotype groups. 

Their INR outcomes in general reflect clinician attitude to be conservative with warfarin 
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therapy. In several cases, the INRs tend to remain in the sub-therapeutic range through 

even a whole month into therapy. This is because there is grave concern, perhaps more so 

in pediatrics, of overdosing leading to bleeding events. As a result though, the 

proportions of INRs within the therapeutic window were lower than ought to be targeted. 

However, while supra-therapeutic INRs remain well below 10% initially, the trend was 

for these to increase significantly over time, more so in patients with genetic 

polymorphisms. Thus despite the general conservative dosing, lack of an appropriate 

starting dose and/or a rational and consistent dose titration scheme can lead to several 

cases with risky supra-therapeutic INRs after first couple weeks into warfarin therapy. 

 

Based on simulations, we consider our dosing regimen superior to that used in the CHLA 

study, which may be regarded as the current standard of care. Our regimen succeeded 

over empirical dosing in maximizing targeted INR outcomes consistently throughout the 

first month into warfarin therapy. We also expect to see similar results should these 

dosing regimens be compared in a clinical trial. 

 

Finally, we make a case for the need for a suitable pediatric warfarin formulation. From 

our simulations it is clear that limiting the lowest dose administered and smallest possible 

dose change to 0.5 mg is not advisable for pediatric subjects, particularly those with 

homozygous CYP2C9 and/or VKORC1 polymorphisms. In addition, the oral tablet is not 

a well-suited dosage form for pediatric patients. In several cases where patients are 

unable to swallow whole tablets, the tablets are crushed and administered with apple 

sauce. Such drug administration practices, along with a limitation on lowest dose strength 
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available, further contribute to the already high variabiltiy in INR outcomes. Hence a 

more pediatric-friendly warfarin formulation, in terms of both strength and dosage form, 

is a timely requirement. 

 

Scope of the study 

Currently there is no information available on altering warfarin dose in pediatrics based 

on influential factors. In particular, quantifying the impact of polymorphisms in the 

CYP2C9 and VKORC1 on pediatric warfarin dosing is of critical therapeutic relevance. 

To our knowledge, our research brings forth the first ever proposed dosing regimen for 

using warfarin in pediatric patients as well as a useful tool to derive such dosing. The 

pediatric PKPD model used complies with what is known of warfarin and general 

pharmacology, and is consistent with adult warfrain clinical data.   

 

However, we recognize the limitations of the current research. We believe that in general 

the limitations may be attributed to the paucity of available clinical data on warfarin use 

in pedtarics. Firstly, we were restricted to a small sample size of pediatric subjects 

(n=26), which we used to qualify the model. Hence the model was based on adult data 

and physiological principles rather than pediatric data, and the proposed dosing was 

based on simulations. Moreover, the available pediatric data was limited in terms of 

covariate distributions, particualrly CYP2C9 polymorphisms and youngest ages.Another 

limitation to our study is the absence of prospective validation of the dosing regimen. For 

any dosing regimen to be widely accepted it must first be shown to be superior on 

relevant clinical outcomes in a prospective controlled trial. Given the practical limitations 
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to conducting pediatric warfarin interventional trials, we recommend that more 

propspective observational studies and experiemntal studies be conducted in pediatrics to 

update the PKPD model and hence the proposed dosing strategy. However, despite the 

limitations, we believe we have made efficient use of available information and 

suggested an important first step towards improving pediatric warfarin dosing.   

 

The research was based on certain assumptions. First, that the concentration-INR 

response relationship for warfarin is similar between pediatrics and adults. Some 

researchers have suggested intrinsic developmental differences in the coagulation 

systems [30;31], precluding extrapolation of dose-response for antithrombotic therapy 

from adults to the youngest subset of the pediatric population (< 6 months). The second 

assumption is that the CYP2C9 polymorphisms reduce warfarin clearance to the same 

extent in pediatrics and adults. Last, we assumed no developmental changes in plasma 

protein binding and dose-proportional PK throughout the entire pediatric age range. 

However, again there is dearth of data regarding how ontogeny affects warfarin 

pharmacokinetics and pharmacodynamics to formally challenge our assumptions. This is 

particularly true for VKORC1 where the patterns of developmental expression are not yet 

known.  

 

The eventual goal of studies like ours is to establish a new standard of care for pediatric 

patients who require warfarin therapy. A genetics-based warfarin dosing nomogram that 

functions more efficiently than conventional arbitrary dosing at maximizing therapeutic 

INR outcomes will represent a major advance in pediatric pharmacotherapy.  Such a 
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nomogram could be made widely available to all clinicians, and would enhance the safety 

and effectiveness of warfarin therapy in pediatric patients. Hence, further research for 

refining and validating the proposed model and dosing regimen would be useful. Even so, 

the proposed regimen is based on rational sciene and is recommended for use in pediatric 

studies and practice.  
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CHAPTER 6 

 Conclusions and Future Research 

 

 

CONCLUSIONS 

Over the past decade there has been significant interest and progress in conducting 

pediatric clinical research in order to directly generate information for the safe and 

effective use of drugs in this special population. However, pediatric drug development is 

challenging and fairly unique is several aspects. Most development programs have just 

one chance to perform an informative set of trials, generally few in number. In some 

cases, logistic and ethical constraints, and lack of financial incentives prevent conduct of 

trials and limit the data available on drug use in pediatrics. Hence novel, efficient 

approaches such as pharmacometric methods have and can be used to leverage prior and 

current information and make useful decisions during pediatric drug development. The 

research underlying this dissertation as well as the several case studies discussed in 

chapters 1 and 2 highlight the contribution of pharmacometrics in enhancing pediatric 

drug development. 
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One aspect of the research undertaken provides evidence of the use of modeling and 

simulation in improving pediatric trial design. With objective criteria such as the PK 

quality standard in place, pharmacometric techniques can be successfully applied in 

better planning of pediatric PK trials, to ensure informative trial outcomes. The other 

aspect of the research undertaken represents the power of pharmacometric methods in 

maximizing on limited available information and generating useful dosing guidelines in 

pediatrics. A warfarin model and genetics-based dosing regimen that was originally built 

using adult data and validated in a clinical trial was successfully leveraged along with 

physiological principles to derive a pediatric warfarin model and dosing regimen. The 

work caters to a heretofore unmet clinical need for a rational, reproducible pediatric 

warfarin dosing strategy that may be applied across clinical settings.  

 

The broader implications of the current research include, in general, improved pediatric 

health care and quality of life. Parents of children requiring pharmacotherapy for various 

conditions as well as the clinicians treating these patients stand to benefit considerably 

from the wider adoption of such research, as described in this dissertation. The work also 

represents an advance for pharmacogenetics. For instance, adults are now able to avail of 

genetics-based warfarin dosing and the research aims at providing similar care for 

pediatric patients as well. While clinical research historically has been focused on the 

adult population, the work undertaken represents increased awareness and avenues for 

bridging the gap between adults and pediatrics. The research is encouargaing for future 

investments in enhancing pediatric drug development.  

 

 
160



FUTURE RESEARCH 

The quality standard described currently applies only to pediatric PK trials. However, the 

likelihood is that future regulation will introduce such standards for exposure-response 

trials in pediatrics as well. Research on methodology and feasibility for pediatric trial 

design to achieve good target precision on the slope of the exposure-response relationship 

is a potential avenue for related future research. In general, all future clinical trials ought 

to be designed rationally, using modeling and simulation.  

 

Future clnical studies with warfarin in pediatrics would serve as a bonus to our current 

research. Controlled interventional clinical trials of warfarin in pediatric patients are an 

unrealistic expectation, given the age of this drug and lack of financial incentive for 

future trials. However, experimental PKPD studies can help update the model and 

prospective observational studies may help improve the dosing regimen. Refining and 

prospectively validating the proposed dosing regimen could lead to wider adoption of 

rational and standardized dosing for warfarin use in pediatrics, rather than the current 

empirical standard of care dosing practices. The current research is a step forward in 

enhancing the safety and effectiveness profile of the most widely used anticoagulant that 

stands to benefit from future research. 

 

Further, there are several reserach areas within pediatrics that can benefit from modeling 

and simulation such as quantifying effects of ontogeny and identifying pediatric-specific 

biomarkers and trial end-points. Moreover, the applications of pharmacometrics go 

beyond pediatrics to all populations and to all aspects of drug development. Identification 
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of risk factors for new and existing drug therapies and quantifying pharmacogenetic 

information is an important research area. Pharmacometric analysis has been used for this 

purpose for the anti-viral drug nevirapine. The report is presented in Appendix D of this 

dissertation. In summary, a continuous Learn-Apply paradigm, if adopted, can 

significantly improve pediatric and overall drug development and therapeutics. Timely 

application of pharmacometric methods would be an integral part of such a paradigm.
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APPENDIX A 

R script, NONMEM model and SAS program files used to run 

simulation-estimation for pediatric PK quality standard 

evaluation (Chapter 3) 

 

R script 

 

#### EXECUTING SIMULATIONS IN NONMEM AND ESTIMATIONS IN SAS THROUGH R ### 
### VARYING BOTH SAMPLE SIZE AND NUMBER OF SAMPLES ### 
 
 
library(Hmisc) 
library(grid) 
library(lattice) 
 
setwd("/home/lalam/Peds_Sim") 
#setwd("W:/Peds_Sim") 
 
## INPUT SIMULATION SCENARIO: ONE COMP. ORAL FIRST ORDER ABSORPTION ## 
 
## PK MODEL PARAMETERS: 
 
DOSE <- 100   #mg/kg 
anchor <- 20  #kg 
CL <- 3.2     #L/h/20kg 
V <- 6.2      #L/20kg 
KA <- 2       #/hr 
FBA <- 1      #100% 
ALLOCL<- 0.75 
A50<- 0.18    #yrs 
ALLOV<-1 
p<-8 
 
vari<-"MV" 
CVCL <- 0.5 
CVV <- 0.5 
SDCL <-round(sqrt(log(1+CVCL**2)),2) 
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SDV <-round(sqrt(log(1+CVV**2)),2) 
SDTHF <- round(sqrt(SDCL**2 + SDV**2),2) 
CVKA <- 0.5 
SDKA <-round(sqrt(log(1+CVKA**2)),2) 
sdtimes <-3 
OMCL <- CVCL**2 
OMV <- CVV**2 
OMKA<-CVKA**2 
SIG <- 0.01 
COV<-c(ALLOCL,ALLOV,A50,OMCL,OMV,SIG) 
lim<-20 
 
## TRIAL CHARACTERISTICS: 
 
nBins<-4 
nAdult<-24 
tAdult<- ifelse(nAdult==12,2.20, ifelse(nAdult==24,2.07, 0)) 
nABins <- ifelse(nAdult==0,nBins,nBins+1) 
nrep1<-250 
nrep2<-300 
nrep <- ifelse(vari=="LV",nrep1,nrep2) 
 
path<-ifelse(nAdult==0, 
paste("/home/lalam/Peds_Sim/ORAL/SPARSE/NoAdult/",vari,"/",sep=""), 
paste("/home/lalam/Peds_Sim/ORAL/SPARSE/Adult/",nAdult,"ad/",vari,"/",sep
="")) 
#path<-ifelse(nAdult==0, 
paste("W:/Peds_Sim/ORAL/SPARSE/NoAdult/",vari,"/",sep=""), 
paste("W:/Peds_Sim/ORAL/SPARSE/Adult/",nAdult,"ad/",vari,"/",sep="")) 
 
Nbin1<-c(4,4,4,4,nAdult) 
t1<-c(3.18,3.18,3.18,3.18,tAdult) 
Nbin2<-c(6,6,6,6,nAdult) 
t2<-c(2.57,2.57,2.57,2.57,tAdult) 
Nbin3<-c(8,8,8,8,nAdult) 
t3<-c(2.36,2.36,2.36,2.36,tAdult) 
Nbin4<-c(10,10,10,10,nAdult) 
t4<-c(2.26,2.26,2.26,2.26,tAdult) 
Nbin5<-c(12,12,12,12,nAdult) 
t5<-c(2.20,2.20,2.20,2.20,tAdult) 
Nbin6<-c(16,16,16,16,nAdult) 
t6<-c(2.13,2.13,2.13,2.13,tAdult) 
Nbin7<-c(20,20,20,20,nAdult) 
t7<-c(2.09,2.09,2.09,2.09,tAdult) 
 
N1<- Nbin1[1]+Nbin1[2]+Nbin1[3]+Nbin1[4]+Nbin1[5] 
N2<- Nbin2[1]+Nbin2[2]+Nbin2[3]+Nbin2[4]+Nbin2[5] 
N3<- Nbin3[1]+Nbin3[2]+Nbin3[3]+Nbin3[4]+Nbin3[5] 
N4<- Nbin4[1]+Nbin4[2]+Nbin4[3]+Nbin4[4]+Nbin4[5] 
N5<- Nbin5[1]+Nbin5[2]+Nbin5[3]+Nbin5[4]+Nbin5[5] 
N6<- Nbin6[1]+Nbin6[2]+Nbin6[3]+Nbin6[4]+Nbin6[5] 
N7<- Nbin7[1]+Nbin7[2]+Nbin7[3]+Nbin7[4]+Nbin7[5] 
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Nsub <- c(N1,N2,N3,N4,N5,N6,N7)    # if other than 7 sizes, also change 
       in modules 6,7 
 
Tsamp1 <- c(0,4)       
Tsamp2 <- c(0,1,3) 
Tsamp3 <- c(0,1,3,4) 
TsampR <- c(0,0.25,0.5,1,1.5,2,2.5,3,4,6,8) 
Nsamp <- c(length(Tsamp2),length(Tsamp3))   # if other than 2  
      schedules, also change in module 2 
RS<-length(TsampR) 
 
Ntrials <- length(Nsub)*length(Nsamp) 
 
 
## DEMOGRAPHICS: 
 
# ages below entered in months 
Bin1lo<-1   #1month 
Bin1hi<-24    #2yrs 
Bin2hi<-72.5  #6yrs 
Bin3hi<-144.5 #12yrs 
Bin4hi<-192.5 #16yrs 
Bin5lo<- 18 # yrs 
Bin5hi<- 65 # yrs 
 
medage1<-1 
medage2<-4 
medage3<-9 
medage4<-14 
medage5<-41 
 
medwt1<-9.9 
medwt2<-16.1 
medwt3<-28.9 
medwt4<-50.5 
medwt5<-74.7 
 
## PREDEFINED OBJECTS: 
 
simdataitems<-c("ID","TIME","AMT","Y","ABIN","AGE","WT","SEX") 
 
parms<-c("CL","V") 
Nparms<-length(parms) 
covar<-c("ALLOCL","ALLOV","A50","OMCL","OMV","SIG") 
Ncovar<-length(covar) 
MEANparms<-paste("MEAN_",parms,sep="") 
RSEparms<-paste("RSE_",parms,sep="") 
UCIparms<-paste("UCI",parms,sep="") 
BIAS1parms<-paste("BIAS1_",parms,sep="") 
EQUIV1parms<-paste("EQUIV1_",parms,sep="") 
BIAS2parms<-paste("BIAS2_",parms,sep="") 
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EQUIV2parms<-paste("EQUIV2_",parms,sep="") 
BIASparms<-c(BIAS1parms,BIAS2parms) 
EQUIVparms<-c(EQUIV1parms,EQUIV2parms) 
PRECparms<-paste("PREC_",parms,sep="") 
ESTcovar<-paste("EST_",covar,sep="") 
BIAScovar<-paste("BIAS_",covar,sep="") 
PRECcovar<-paste("PREC_",covar,sep="") 
popestnames<-c(PRECparms,BIASparms,EQUIVparms) 
poprawnames<-c(MEANparms,RSEparms) 
popest2names<-c(ESTcovar,BIAScovar,PRECcovar) 
Npopest<-length(popestnames)+1 
Npopraw<-length(poprawnames)+1 
Npopest2<-length(popest2names) 
pop1names<-
c("ID","AGE","WT","CL","SECL","RSE_CL","UCICL","V","SEV","RSE_V","UCIV") 
Npop1<-length(pop1names) 
pop2names<-
c("Parameter","Estimate","SE","DF","t","p","alpha","LCI","UCI","gradient"
) 
Npop2<-length(pop2names) 
 
indparms<-c("CLi","Vi") 
Nindparms<-length(indparms) 
MEANposthoc <-paste("MEAN_",indparms,sep="") 
RSEposthoc <-paste("RSE_",indparms,sep="") 
SHRINKposthoc <- paste("SHRINK_",indparms,sep="") 
BIAS1posthoc <- paste("BIAS1_",indparms,sep="") 
BIAS2posthoc <- paste("BIAS2_",indparms,sep="") 
EQUIV1posthoc <- paste("EQUIV1_",indparms,sep="") 
EQUIV2posthoc <- paste("EQUIV2_",indparms,sep="") 
PRECposthoc <- paste("PREC_",indparms,sep="") 
indrawnames<-c(MEANposthoc, RSEposthoc) 
posthocestnames<- 
c(PRECposthoc,BIAS1posthoc,BIAS2posthoc,EQUIV1posthoc,EQUIV2posthoc,SHRIN
Kposthoc) 
Nindraw<-length(indrawnames)+1 
Nposthocest<-length(posthocestnames)+1 
posthocnames<-
c("ID","ABIN","AGE","WT","SEX","dose","CLi","SECLi","UCICLi","Vi","SEVi",
"UCIVi","KAi","SEKAi","UCIKAi","TIME","dv","PPRED","IPRED") 
Nposthoc<-length(posthocnames) 
 
 
## MODULE 1: CREATING BANK OF PEDS WITH CDC-BASED AGE-WT RELATIONSHIP ## 
 
data<-read.csv("CDCwtage.csv") 
names(data) 
 
nsim<-100 
sim<-c() 
for (i in 1:nsim){ 
 data$nrep<-i 
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 sim<-rbind(sim, data)  
} 
set.seed(123) 
sim$rn<-rnorm(nrow(sim)) 
sim$wt<-sim$M*(1+sim$L*sim$S*sim$rn)**(1/sim$L) 
sim$CL<-CL*((sim$wt/anchor)**ALLOCL)*(sim$Agemos/((A50*12)+sim$Agemos)) 
sim$V<-V*((sim$wt/anchor)**ALLOV) 
 
sim1<-sim[sim$Agemos>Bin1lo & sim$Agemos<=Bin1hi,c(1,2,17,18,19)] 
sim2<-sim[sim$Agemos>Bin1hi & sim$Agemos<=Bin2hi,c(1,2,17,18,19)] 
sim3<-sim[sim$Agemos>Bin2hi & sim$Agemos<=Bin3hi,c(1,2,17,18,19)] 
sim4<-sim[sim$Agemos>Bin3hi & sim$Agemos<=Bin4hi,c(1,2,17,18,19)] 
sim1$AgeBin<-1 
sim2$AgeBin<-2 
sim3$AgeBin<-3 
sim4$AgeBin<-4 
 
#edit(bank) 
bank<-rbind(sim1,sim2,sim3,sim4) 
bankmean<-aggregate(log(bank[ ,parms]),by=list(bank$AgeBin),mean,na.rm=T) 
bankmean<-exp(bankmean)[ ,parms] 
bankvar<-aggregate(log(bank[ ,parms]),by=list(bank$AgeBin),var,na.rm=T) 
bankvar<-bankvar[ ,parms] 
 
truemean<-bankmean 
 
meanclad<-CL*((medwt5/anchor)**ALLOCL)*(medage5/(medage5+A50)) 
meanvad<-V*((medwt5/anchor)**ALLOV) 
adultmean<-c(meanclad,meanvad) 
if(nAdult>0) bankmean<-rbind(bankmean,adultmean) 
 
 
## MODULE 1A: SIMULATING COMMON DEMOGRAPHICS FOR ALL CASES ## 
 
simb1a<-sim1a[sample(1:nrow(sim1a),Npbin[1],replace=F), ] 
simb1b<-sim1b[sample(1:nrow(sim1b),Npbin[1],replace=F), ] 
simb1<-sim1[sample(1:nrow(sim1),Npbin[1],replace=F), ] 
simb2<-sim2[sample(1:nrow(sim2),Npbin[1],replace=F), ] 
simb3<-sim3[sample(1:nrow(sim3),Npbin[1],replace=F), ] 
simb4<-sim4[sample(1:nrow(sim4),Npbin[1],replace=F), ] 
 
simbin5<-sim5[sample(1:nrow(sim5),nAdult,replace=F), ] 
 
 
simbn1a<-simb1a 
simbn1b<-simb1b 
simbn1<-simb1 
simbn2<-simb2 
simbn3<-simb3 
simbn4<-simb4 
 
simdemo<-list() 
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allsimdemo<-list(list()) 
k<-7 
for (i in Npbin) { 
  
  simbin1a<-simbn1a[sample(1:nrow(simbn1a),i,replace=F), ] 
  simbin1b<-simbn1b[sample(1:nrow(simbn1b),i,replace=F), ] 
  simbin1<-simbn1[sample(1:nrow(simbn1),i,replace=F), ] 
  simbin2<-simbn2[sample(1:nrow(simbn2),i,replace=F), ] 
  simbin3<-simbn3[sample(1:nrow(simbn3),i,replace=F), ] 
  simbin4<-simbn4[sample(1:nrow(simbn4),i,replace=F), ] 
  simbn1a<-simbin1a 
  simbn1b<-simbin1b 
  simbn1<-simbin1 
  simbn2<-simbin2 
  simbn3<-simbin3 
  simbn4<-simbin4 
  simdemo[[6]]<-simbin1a 
  simdemo[[7]]<-simbin1b 
  simdemo[[1]]<-simbin1 
  simdemo[[2]]<-simbin2 
  simdemo[[3]]<-simbin3 
  simdemo[[4]]<-simbin4 
 allsimdemo[[k]]<-simdemo 
 k<-k-2 
} 
 
## MODULE 1B: CREATING DEMOGRAPHIC DATASETS FOR SIMULATIONS ## 
 
k <- 1 
n <- 4 
 
for (i in Ntot) { 
 if(n==10) n<-12 
  simbin1a<-allsimdemo[[k]][[6]] 
  simbin1b<-allsimdemo[[k]][[7]] 
  simbin1<-allsimdemo[[k]][[1]] 
  simbin2<-allsimdemo[[k]][[2]] 
  simbin3<-allsimdemo[[k]][[3]] 
  simbin4<-allsimdemo[[k]][[4]] 
  simagewt<-rbind(simbin1,simbin2,simbin3,simbin4) 
  if(nBins==5) simagewt<-
rbind(simbin1a,simbin1b,simbin2,simbin3,simbin4) 
  simagewt<-simagewt[,c(6,2,3,1)] 
  names(simagewt)<-c("AgeBin","Age","Weight","Sex") 
  simagewt$Age<-simagewt$Age/12 
  if(nAdult>0) simagewt<-rbind(simagewt,simbin5) 
   
  demog <- data.frame(1:i) 
  names(demog) <- "ID" 
  demog<-cbind(demog,simagewt) 
  names(demog)<-c("ID","AgeBin","AGE","WT","SEX") 
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  demog$AGE<-
ifelse(demog$AGE<1,round(as.numeric(demog$AGE),2),round(as.numeric(demog$
AGE),1)) 
  demog$WT <- round(as.numeric(demog$WT),1) 
   
  plot<-xyplot(demog$WT~demog$AGE, data=demog,xlab="AGE 
(yrs)",ylab="WEIGHT (kg)", 
  
 scales=list(cex=1.5,lwd=2,x=list(log=10,at=c(0,1,2,6,12,16,25,50)))
, 
   panel=function(x,y,...){ 
   panel.xyplot(x,y,type="p",...) 
   panel.curve(5.4095+4.6965*10^x-
0.7261*(10^x)^2+0.0721*(10^x)^3-0.002*(10^x)^4, from=log10(1), 
to=log10(18), lty=2, col=2) 
   panel.curve(3.9364+4.5254*10^x-
0.7279*(10^x)^2+0.0649*(10^x)^3-0.0017*(10^x)^4, from=log10(1), 
to=log10(18), lty=2, col=2) 
   panel.curve(7.5589+4.1842*10^x-
0.4651*(10^x)^2+0.0628*(10^x)^3-0.002*(10^x)^4, from=log10(1), 
to=log10(18), lty=2,col=2) 
   panel.curve(3.5802+10.681*10^x-4.037*(10^x)^2, 
from=log10(0.0001), to=log10(1), lty=3,col=1) 
   panel.curve(2.5787+9.8283*10^x-3.8735*(10^x)^2, 
from=log10(0.0001), to=log10(1), lty=3,col=1) 
   panel.curve(4.4035+12.857*10^x-4.9702*(10^x)^2, 
from=log10(0.0001), to=log10(1), lty=3,col=1) 
   } 
   ) 
  pdf(file=paste("AgeWtPlot",n,".pdf",sep=""),width=9,height=9)  
  print(plot) 
   dev.off() 
  
  write.table(demog, file=paste("demog_N",n,".csv",sep=""), 
  sep=",", quote=F, row.names=F, na=".") 
 
  k <- k+2 
  n <- n+2 
 }  
 
 
## MODULE 2: CREATING DATA TEMPLATES & CONTROL STREAMS FOR NM TO USE FOR 
SIMULATIONS ## 
 
ctlstrm <- scan(file="runsim_oral_trunc.mod", what="character", sep="\n") 
 
d<-1 
k <- 1 
 
for (i in Nsub) { 
 for (j in Nsamp) { 
  if (j==Nsamp[1]) Tsamp <- Tsamp2 
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  if (j==Nsamp[2]) Tsamp <- Tsamp3 
 
  #demog<-
read.csv(file=paste("W:/Peds_Sim/DEMOGS/demog",d,"_",nAdult,"ad.csv",sep=
"")) 
  demog<-
read.csv(file=paste("/home/lalam/Peds_Sim/DEMOGS/demog",d,"_",nAdult,"ad.
csv",sep="")) 
            demog<-demog[!duplicated(demog$ID), ] 
  e<-c(rep(j,each=i-nAdult),rep(RS,each=nAdult)) 
  input<-demog[rep(demog$ID,e), ] 
  input$TIME <- c(rep(Tsamp, i-nAdult),rep(TsampR,nAdult)) 
  input$AMT <- ifelse(input$TIME==0, DOSE*input$WT, 0) 
  input$CONC <- rep(".", nrow(input)) 
  input<-input[ ,c(1,6,7,8,2,3,4,5)] 
  write.table(input, 
file=paste(path,"run_sim_",nAdult,"/input",k,".csv",sep=""), 
  sep=",", quote=F, row.names=F, na=".") 
 
  ctlstrm[3]  <- paste("$DATA input",k,".csv IGNORE=@",sep="") 
  ctlstrm[7] <- paste("SUBPROBLEMS = ",nrep,sep="") 
  ctlstrm[11] <- paste(" ",CL," FIX ; CL (L/h/20kg)",sep="") 
  ctlstrm[12] <- paste(" ",V," FIX ; V (L/20kg)",sep="") 
  ctlstrm[13] <- paste(" ",KA," FIX ; TVKA (/h)",sep="") 
  ctlstrm[14] <- paste(" ",ALLOCL," FIX ; ALLOCL",sep="") 
  ctlstrm[15] <- paste(" ",ALLOV," FIX ; ALLOV",sep="") 
  ctlstrm[16] <- paste(" ",A50," FIX ; A50 (YRS)",sep="") 
  ctlstrm[18] <- paste(" ",OMCL," FIX ; BSVCL",sep="") 
  ctlstrm[19] <- paste(" ",OMV," FIX ; BSVV",sep="") 
  ctlstrm[20] <- paste(" ",OMKA," FIX ; BSVKA",sep="") 
  ctlstrm[22] <- paste(" ",SIG," FIX ; CVCP",sep="") 
  ctlstrm[40] <- paste("      DLTACL = 
",sdtimes,"*",SDCL,sep="") 
  ctlstrm[41] <- paste("      DLTAV = ",sdtimes,"*",SDV,sep="") 
  ctlstrm[42] <- paste("      DLTAKA = 
",sdtimes,"*",SDKA,sep="") 
  ctlstrm[43] <- paste("      DLTATH = 
",sdtimes,"*",SDTHF,sep="") 
  ctlstrm[length(ctlstrm)] <- paste("NOPRINT ONEHEADER NOAPPEND 
FILE=sdtab",k,sep="") 
 
 write(ctlstrm,file=paste(path,"run_sim_",nAdult,"/runsim",k,".mod",
sep="")) 
 
  k <- k+1 
  } 
d<-d+1   
}  
 
 
## MODULE 3: EXECUTE NM RUNS FOR SIMULATIONS THROUGH R ON CLUSTER ## 
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execute <- character() 
execute[1] <- "#!/bin/sh" 
execute[2] <- paste("execute -
threads=32",paste("runsim",1:Ntrials,".mod",collapse=" ",sep=""),sep=" ") 
setwd(paste(path,"run_sim_",nAdult,sep="")) 
write(execute,"sim.pl") 
system("perl sim.pl") 
 
 
## MODULE 4: READ IN THE SIMULATED OUTPUT DATA (sdtab files) FROM NM ## 
## SPLIT THE SIMULATED DATA FOR EACH REPLICATE AND CREATE DATASETS TO 
INPUT BACK TO SAS ## 
## CREATE SAS MODEL FILES FOR FITTING SIMULATED DATA ## 
 
#model <- scan(file="W:/Peds_Sim/fit_oral_sp.sas", what="character", 
sep="\n") 
model <- scan(file="/home/lalam/Peds_Sim/fit_oral_sp.sas", 
what="character", sep="\n") 
 
k <- 1 
test <- list() 
 
simparms<- list() 
allsim<-list(list()) 
 
for (i in Nsub) { 
 for (j in Nsamp) { 
  for(r in 1:nrep){ 
   test[[r]] <- read.table(file=paste("sdtab",k,sep=""), 
    skip=(r-1)*((i*j)+(nAdult*(RS-
j))+1)+(r),header=T,nrows=(i*j)+(nAdult*(RS-j))) 
 
   simparms[[r]]<-
test[[r]][!duplicated(test[[r]]$ID),c("CL","V","ABIN","WT")] 
 
   test[[r]] <- test[[r]][ ,simdataitems] 
   names(test[[r]]) <- 
c("ID","TIME","AMT","CONC","ABIN","AGE","WT","SEX") 
 
   dosing <- test[[r]][!duplicated(test[[r]]$ID), ] 
   dosing$TIME<-0 
   dosing$AMT<-DOSE*dosing$WT 
   dosing$CONC <- "." 
    
   test[[r]]<-test[[r]][test[[r]]$TIME>0 , ] 
   test[[r]] <- rbind(dosing, test[[r]]) 
   test[[r]] <- test[[r]][order(test[[r]]$ID), ] 
   test[[r]]$MDV <- ifelse(test[[r]]$AMT==0,0,1) 
   test[[r]]$EVID <- ifelse(test[[r]]$AMT==0,0,1) 
   write.table(test[[r]], 
file=paste(path,"fit_model/simdata",k,"rep",r,".csv",sep=""),  
    sep=",", quote=F, row.names=F, na=".") 
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   model[7]<- paste("  DATAFILE=\"", 
path,"fit_model/simdata",k,"rep",r,".csv\"",sep="") 
   model[17]<-paste("if id=1001 then do; age=",medage1," ; 
wt=",medwt1,"; end;",sep="") 
   model[18]<-paste("if id=1002 then do; age=",medage2," ; 
wt=",medwt2,"; end;",sep="") 
   model[19]<-paste("if id=1003 then do; age=",medage3," ; 
wt=",medwt3,"; end;",sep="") 
   model[20]<-paste("if id=1004 then do; age=",medage4," ; 
wt=",medwt4,"; end;",sep="") 
   model[65]<-paste("   anchor = ",anchor,";",sep="") 
         
   model[66]<-paste("   TVKA = ",KA,";",sep="") 
   model[67]<-paste("   s2ka = ",OMKA,";",sep="") 
   model[68]<-paste("   F = ",FBA,";",sep="") 
   model[141] <- paste("(pTVCL=",CL,",",sep="") 
   model[142] <- paste("pTVV=",V,",",sep="") 
   model[143] <- paste("pALLOCL=",ALLOCL,",",sep="") 
   model[144] <- paste("pALLOV=",ALLOV,",",sep="") 
   model[145] <- paste("pA50=",A50,",",sep="") 
   model[146] <- paste("ps2cl=",OMCL,",",sep="") 
   model[147] <- paste("ps2v=",OMV,",",sep="") 
   model[148] <- paste("ps2=",SIG,",",sep="") 
   model[149] <- paste("repeats=",lim,")",sep="") 
   model[171] <- paste("proc export data=bins 
outfile=\"",path,"model_output/bins",k,"rep",r,".csv\" DBMS=CSV REPLACE; 
run;",sep="") 
   model[172] <- paste("proc export data=para 
outfile=\"",path,"model_output/parms",k,"rep",r,".csv\" DBMS=CSV REPLACE; 
run;",sep="") 
   model[173] <- paste("proc export data=posthoc 
outfile=\"",path,"model_output/posthoc",k,"rep",r,".csv\" DBMS=CSV 
REPLACE; run;",sep="") 
  
 write(model,file=paste(path,"fit_model/fit",k,"rep",r,".sas",sep=""
)) 
 
   } 
  allsim[[k]]<-simparms 
 
  k <- k+1 
 } 
} 
 
 
## MODULE 5: FITTING MODEL TO SIMULATED DATA USING SAS THROUGH R ## 
 
setwd(paste(path,"fit_model",sep="")) 
 
runsas <- character() 
runsas[1] <- "#!/bin/sh" 
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k<-1 
for (i in Nsub){ 
 for (j in Nsamp) { 
  for (r in 1:nrep) { 
   runsas[2]<-(paste("/opt/sas92/SASFoundation/9.2/sas92 -
noterminal -log ",path,"fit_model -print ",path,"fit_model " 
,path,"fit_model/fit",k,"rep",r,".sas",sep="")) 
   write(runsas,file=paste("fit",k,"rep",r,".bat",sep="")) 
   system(paste("chmod a+x fit",k,"rep",r,".bat",sep="")) 
   system(paste("qsub -o /home/lalam/eofiles -e 
/home/lalam/eofiles fit",k,"rep",r,".bat &",sep="")) 
  } 
 k<-k+1 
 } 
} 
 
## MODULE 6: READ IN SAS ESTIMATION OUTPUT (lst/bin/parm files) FOR 
ANALYSIS : METHOD 1 - POP.MEAN. ##  
 
popest <- list() 
popraw<-list() 
popest2<-list() 
pop1 <- list() 
pop2<-list() 
allpop1<-list(list()) 
allpop2<-list(list()) 
agebin<-1:nBins 
 
k<-1 
f<-1 
g<-1 
finalpop<-data.frame(matrix(NA,ncol=Npopest+2,nrow=Ntrials*nBins*2)) 
names(finalpop)<-c("METRIC","AgeBin",popestnames,"SCENARIO") 
finalpop2<-data.frame(matrix(NA,ncol=Npopest2+2,nrow=Ntrials*2)) 
names(finalpop2)<-c("METRIC",popest2names,"SCENARIO") 
 
for (i in Nsub) { 
  
 t<-qt(0.975,(i-nAdult-p))  
 
 for (j in Nsamp) { 
    
 popest[[k]]<-data.frame(matrix(NA,ncol=Npopest,nrow=nrep*nBins)) 
 names(popest[[k]])<-c("AgeBin",popestnames) 
 popraw[[k]]<-data.frame(matrix(NA,ncol=Npopraw,nrow=nrep*nBins)) 
 names(popraw[[k]])<-c("AgeBin",poprawnames) 
 popest2[[k]]<- data.frame(matrix(NA,ncol=Npopest2,nrow=nrep)) 
 names(popest2[[k]]) <- popest2names 
 
 b<-1  
 for(r in 1:nrep){ 
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  output <- scan(file=paste("fit",k,"rep",r,".lst",sep=""), 
what="character", sep="\n") 
  thetaPos <- grep("Successful", output) 
  ifelse(length(thetaPos)==0, 
   pop1[[r]]<-
data.frame(matrix(NA,ncol=Npop1,nrow=nBins)), 
   pop1[[r]]<-
read.csv(paste(path,"model_output/bins",k,"rep",r,".csv",sep=""))) 
   names(pop1[[r]])<-pop1names 
  ifelse(length(thetaPos)==0, 
   pop2[[r]]<-
data.frame(matrix(NA,ncol=Npop2,nrow=Nparms+Ncovar)), 
   pop2[[r]]<-
read.csv(paste(path,"model_output/parms",k,"rep",r,".csv",sep=""))) 
   names(pop2[[r]])<-pop2names 
 
  allsim[[k]][[r]][ ,parms]<-log(allsim[[k]][[r]][ ,parms]) 
  simmean<-aggregate(allsim[[k]][[r]][ 
,parms],by=list(allsim[[k]][[r]]$ABIN),mean,na.rm=T) 
  simmean<-exp(simmean[1:nBins,parms]) 
 
  popmean<- pop1[[r]][ ,parms] 
  popRSE<-pop1[[r]][ ,RSEparms] 
  popprec<-(100 + t*(popRSE)) 
  popbias1<-((popmean-truemean)/truemean)*100 
  popequiv1<-exp(log(popmean/truemean)) 
  popbias2<-((popmean-simmean)/simmean)*100 
  popequiv2<-exp(log(popmean/truemean)) 
  popparms <- 
cbind(agebin,popprec,popbias1,popbias2,popequiv1,popequiv2) 
  popest[[k]][c(b:(nBins*r)),] <- popparms 
  poprawpar<-cbind(agebin,popmean,popRSE) 
  popraw[[k]][c(b:(nBins*r)),] <- poprawpar 
   
  popcov<-pop2[[r]][(Nparms+1):nrow(pop2[[r]]),pop2names[1:3]] 
  popcov$UCI<-popcov$Estimate + t*(popcov$SE) 
  popcov$Prec<-(popcov$UCI/popcov$Estimate)*100 
  popcov$Bias<-((popcov$Estimate-COV)/COV)*100   
  popcovpar <- c(popcov$Estimate,popcov$Bias,popcov$Prec) 
  popest2[[k]][r,] <- popcovpar 
  
  b<-b+nBins 
 } 
 allpop1[[k]]<-pop1 
 allpop2[[k]]<-pop2 
 
 pass<-c() 
  p.pass<-c() 
  for(a in agebin) { 
   for(p in 2:3) { 
   con<-is.na(popest[[k]][popest[[k]]$AgeBin==a,p]) 
   ncon<-length(con[con==F]) 
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   test1<-
ifelse(is.na(popest[[k]][popest[[k]]$AgeBin==a,p])==T,0, 
    
 ifelse(popest[[k]][popest[[k]]$AgeBin==a,p]<=140,1,0)) 
   test2<-(length(test1[test1==1])/ncon)*100 
   pass[p]<-test2 
   } 
   for(p in 4:7) { 
    pass[p]<-NA 
   } 
   for(p in 8:11) { 
    pass[p]<-NA 
   } 
   p.pass<-rbind(p.pass,pass) 
  }  
  p.pass[,1]<-agebin 
   
  pass2<-c() 
  for(p in 1:6) {  
   pass2[p]<-NA 
   } 
  for(p in 7:12) {  
   pass2[p]<-NA 
   } 
  for(p in 13:18) { 
   con<-is.na(popest2[[k]][,p]) 
   ncon<-length(con[con==F]) 
   test1<-ifelse(is.na(popest2[[k]][,p])==T, 0, 
     ifelse(popest2[[k]][,p]<=140, 1,0)) 
   test2<-(length(test1[test1==1])/ncon)*100 
   pass2[p]<-test2 
   } 
    
 meanpop <- aggregate(popest[[k]][ 
,popestnames],by=list(popest[[k]]$AgeBin),mean,na.rm=T) 
 popest[[k]][c((nrep*nBins+1):(nrep*nBins+nBins)),] <- meanpop 
 popest[[k]][c((nrep*nBins+nBins+1):(nrep*nBins+nBins*2)),] <- 
p.pass 
 popest[[k]][,c(PRECparms,BIASparms)]<-
round(popest[[k]][,c(PRECparms,BIASparms)],0) 
 popest[[k]][,c(EQUIVparms)]<-round(popest[[k]][,c(EQUIVparms)],1) 
 popest[[k]]$REP <- rep(c(1:nrep,"MEAN","POWER"),each=nBins) 
 popest[[k]]<- popest[[k]][ 
,c(ncol(popest[[k]]),1:ncol(popest[[k]])-1)] 
 write.table(popest[[k]], 
file=paste(path,"results/method1/",vari,"_Sparse_",nAdult,"ad_M1_output",
k,".csv",sep=""), 
  sep=",", quote=F, row.names=F, na=".") 
  
 meanraw <- aggregate(popraw[[k]][ 
,poprawnames],by=list(popraw[[k]]$AgeBin),mean,na.rm=T) 
 popraw[[k]][c((nrep*nBins+1):(nrep*nBins+nBins)),] <- meanraw 
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 popraw[[k]]$REP <- rep(c(1:nrep,"MEAN"),each=nBins) 
 popraw[[k]]<- popraw[[k]][ 
,c(ncol(popraw[[k]]),1:ncol(popraw[[k]])-1)] 
 
 popest2[[k]][nrep+1,] <- mean(popest2[[k]][1:nrep,],na.rm=T) 
 popest2[[k]][nrep+2,] <- pass2 
 popest2[[k]][,c(ESTcovar)]<-round(popest2[[k]][,c(ESTcovar)],3) 
 popest2[[k]][,c(PRECcovar,BIAScovar)]<-
round(popest2[[k]][,c(PRECcovar,BIAScovar)],0) 
 popest2[[k]]$REP <- c(c(1:nrep),"MEAN","POWER") 
 popest2[[k]] <- popest2[[k]][ 
,c(ncol(popest2[[k]]),1:ncol(popest2[[k]])-1)] 
 write.table(popest2[[k]], 
file=paste(path,"results/method1/",vari,"_Sparse_",nAdult,"ad_M1_auxout",
k,".csv",sep=""), 
 sep=",", quote=F, row.names=F, na=".") 
 
  
 finalpop[f:(f+nBins*2-1), ]<-
popest[[k]][(nrep*nBins+1):(nrep*nBins+nBins*2), ] 
 finalpop$SCENARIO[f:(f+nBins*2-1)]<-k 
 f<-f+(nBins*2) 
 
 finalpop2[c(g,g+1), ]<-popest2[[k]][c(nrep+1,nrep+2), ] 
 finalpop2$SCENARIO[c(g,g+1)]<-k 
 g<-g+2 
 
 k<-k+1 
} 
} 
 
finalpop<-finalpop[ ,c(ncol(finalpop),1:ncol(finalpop)-1)] 
write.table(finalpop, 
file=paste(path,"results/method1/",vari,"_Sparse_",nAdult,"ad_M1_summary.
csv",sep=""),sep=",", quote=F, row.names=F, na=".") 
 
finalpop2<-finalpop2[ ,c(ncol(finalpop2),1:ncol(finalpop2)-1)] 
write.table(finalpop2, 
file=paste(path,"results/method1/",vari,"_Sparse_",nAdult,"ad_M1_auxsum.c
sv",sep=""),sep=",", quote=F, row.names=F, na=".") 
 
 
 
## MODULE 7: READ IN SAS ESTIMATION OUTPUT (lst/parm/posthoc files) FOR 
ANALYSIS : METHOD 2 - POSTHOC ##  
 
posthocest <- list() 
indraw<-list() 
allposthoc<-list(list()) 
posthoc <- list() 
posthoc.pkg<-list() 
pop2<-list() 
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agebin<-1:nABins 
 
finalposthoc<-
data.frame(matrix(NA,ncol=Nposthocest+2,nrow=Ntrials*nABins*2)) 
names(finalposthoc)<-c("METRIC","AgeBin",posthocestnames,"SCENARIO") 
 
k<-1 
f<-1 
for (i in Nsub) { 
 if (i==Nsub[1]) Nbin <- Nbin1 
 if (i==Nsub[2]) Nbin <- Nbin2 
 if (i==Nsub[3]) Nbin <- Nbin3 
 if (i==Nsub[4]) Nbin <- Nbin4 
 if (i==Nsub[5]) Nbin <- Nbin5 
 if (i==Nsub[6]) Nbin <- Nbin6 
 if (i==Nsub[7]) Nbin <- Nbin7 
 
 Nbin<-Nbin[1:nABins] 
 t<-qt(0.975,(((i-nAdult)/4)-1))  
 
for (j in Nsamp) { 
 
 posthocest[[k]]<-
data.frame(matrix(NA,ncol=Nposthocest,nrow=nrep*nABins)) 
 names(posthocest[[k]]) <- c("AgeBin",posthocestnames) 
 indraw[[k]]<- data.frame(matrix(NA,ncol=Nindraw,nrow=nrep*nABins)) 
 names(indraw[[k]]) <- c("AgeBin",indrawnames) 
 
 b<-1  
 for(r in 1:nrep){ 
  output <- scan(file=paste("fit",k,"rep",r,".lst",sep=""), 
what="character", sep="\n") 
  thetaPos <- grep("Successful", output) 
 
  ifelse(length(thetaPos)==0, 
   pop2[[r]]<-
data.frame(matrix(NA,ncol=Npop2,nrow=Nparms+Ncovar)), 
   pop2[[r]]<-
read.csv(paste(path,"model_output/parms",k,"rep",r,".csv",sep=""))) 
   names(pop2[[r]])<-pop2names 
 
  ifelse(length(thetaPos)==0, 
   posthoc[[r]]<-
data.frame(matrix(NA,ncol=Nposthoc,nrow=i)), 
   posthoc[[r]]<-
read.csv(paste(path,"model_output/posthoc",k,"rep",r,".csv",sep=""))) 
   names(posthoc[[r]])<-posthocnames 
  if(length(thetaPos)!=0) 
   posthoc[[r]]<-
posthoc[[r]][match(unique(posthoc[[r]]$ID),posthoc[[r]]$ID), ] 
   
  posthoc.pkg[[r]]<-posthoc[[r]] 
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  if(length(thetaPos)!=0) 
   posthoc[[r]][ ,indparms]<-log(posthoc[[r]][ ,indparms]) 
       ifelse(length(thetaPos)==0, 
   posthocmean<-
data.frame(CLi=c(rep(NA,nABins)),Vi=c(rep(NA,nABins))), 
   posthocmean<- aggregate(posthoc[[r]][ 
,indparms],by=list(posthoc[[r]]$ABIN),mean,na.rm=T)) 
  ifelse(length(thetaPos)==0,posthocmean<-
posthocmean,posthocmean<- exp(posthocmean)[ ,indparms]) 
  posthocbias1<-((posthocmean-bankmean)/bankmean)*100 
  posthocequiv1<-exp(log(posthocmean/bankmean)) 
 
  #allsim[[k]][[r]][ ,parms]<-log(allsim[[k]][[r]][ ,parms]) 
  simmean<-aggregate(allsim[[k]][[r]][ 
,parms],by=list(allsim[[k]][[r]]$ABIN),mean,na.rm=T) 
  simmean<-exp(simmean[ ,parms]) 
  posthocbias2<-((posthocmean-simmean)/simmean)*100 
  posthocequiv2<-exp(log(posthocmean/simmean)) 
 
  posthoc.pkg[[r]][ ,indparms]<- 
   posthoc.pkg[[r]][ 
,indparms]/c(((posthoc.pkg[[r]]$WT**ALLOCL)*(posthoc.pkg[[r]]$AGE/(postho
c.pkg[[r]]$AGE+A50))),posthoc.pkg[[r]]$WT**ALLOV) 
  if(length(thetaPos)!=0) 
   posthoc.pkg[[r]][ ,indparms]<-log(posthoc.pkg[[r]][ 
,indparms]) 
  ifelse(length(thetaPos)==0, 
   posthocmean.pkg<-
data.frame(CLi=c(rep(NA,nABins)),Vi=c(rep(NA,nABins))), 
   posthocmean.pkg<- aggregate(posthoc.pkg[[r]][ 
,indparms],by=list(posthoc.pkg[[r]]$ABIN),mean,na.rm=T)) 
  ifelse(length(thetaPos)==0, 
   posthocvar.pkg<-
data.frame(CLi=c(rep(NA,nABins)),Vi=c(rep(NA,nABins))), 
   posthocvar.pkg<- aggregate(posthoc.pkg[[r]][ 
,indparms],by=list(posthoc.pkg[[r]]$ABIN),var,na.rm=T)) 
  ifelse(length(thetaPos)==0, 
   posthocsd.pkg<-
data.frame(CLi=c(rep(NA,nABins)),Vi=c(rep(NA,nABins))), 
   posthocsd.pkg<- aggregate(posthoc.pkg[[r]][ 
,indparms],by=list(posthoc.pkg[[r]]$ABIN),sd,na.rm=T)) 
   
  posthocse<- sqrt(posthocvar.pkg/Nbin) 
  posthocUCI<-posthocmean.pkg+t*(posthocse) 
  posthocUCI<-exp(posthocUCI)[ ,indparms] 
  if(length(thetaPos)!=0) posthocmean.pkg<- 
exp(posthocmean.pkg)[ ,indparms] 
  posthocprec<-(posthocUCI/posthocmean.pkg)*100 
  posthocRSE<-(posthocse[ ,indparms]/posthocmean.pkg)*100 
   
  posthocsd.pkg<-(posthocsd.pkg)[ ,indparms] 
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  meanvar<-pop2[[r]][(Ncovar:(Ncovar+1)),pop2names[2]] 
  meansdcl<-rep(sqrt(meanvar[1]),nABins) 
  meansdv<-rep(sqrt(meanvar[2]),nABins) 
  popsd<-cbind(meansdcl,meansdv) 
  shrinkage<- (1-posthocsd.pkg/popsd)*100 
 
  indest <- 
cbind(agebin,posthocprec,posthocbias1,posthocbias2,posthocequiv1,posthoce
quiv2,shrinkage) 
  posthocest[[k]][c(b:(nABins*r)),] <- indest 
  indest2<-cbind(agebin,posthocmean,posthocRSE) 
  indraw[[k]][c(b:(nABins*r)),] <- indest2 
  b<-b+nABins   
 } 
 allposthoc[[k]] <- posthoc 
 
 pass<-c() 
 p.pass<-c() 
 for(a in agebin) { 
  for(p in 2:3) { 
   con<-
is.na(posthocest[[k]][posthocest[[k]]$AgeBin==a,p]) 
   ncon<-length(con[con==F]) 
   test1<-
ifelse(is.na(posthocest[[k]][posthocest[[k]]$AgeBin==a,p])==T,0, 
    
 ifelse(posthocest[[k]][posthocest[[k]]$AgeBin==a,p]<=140, 1,0)) 
   test2<-(length(test1[test1==1])/ncon)*100 
   pass[p]<-test2 
   } 
  for(p in 4:7) { 
   pass[p]<-NA 
   } 
  for(p in 8:11) { 
   pass[p]<-NA 
   } 
  for(p in 12:13) { 
   pass[p]<-NA 
   } 
  p.pass<-rbind(p.pass,pass) 
 }  
 p.pass[,1]<-agebin 
 
 meanposthoc <- aggregate(posthocest[[k]][ 
,posthocestnames],by=list(posthocest[[k]]$AgeBin),mean,na.rm=T) 
 posthocest[[k]][c((nrep*nABins+1):(nrep*nABins+nABins)),] <- 
meanposthoc 
 posthocest[[k]][c((nrep*nABins+nABins+1):(nrep*nABins+nABins*2)),] 
<- p.pass 
 posthocest[[k]][,c(PRECposthoc,BIAS1posthoc,BIAS2posthoc)]<-
round(posthocest[[k]][,c(PRECposthoc,BIAS1posthoc,BIAS2posthoc)],0) 
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 posthocest[[k]][,c(SHRINKposthoc,EQUIV1posthoc,EQUIV2posthoc)]<-
round(posthocest[[k]][,c(SHRINKposthoc,EQUIV1posthoc,EQUIV2posthoc)],1) 
 posthocest[[k]]$REP <- rep(c(1:nrep,"MEAN","POWER"),each=nABins) 
 posthocest[[k]]<- posthocest[[k]][ 
,c(ncol(posthocest[[k]]),1:ncol(posthocest[[k]])-1)] 
 write.table(posthocest[[k]], 
file=paste(path,"results/method2/",vari,"_Sparse_",nAdult,"ad_M2_output",
k,".csv",sep=""), 
  sep=",", quote=F, row.names=F, na=".") 
 
 meanraw <- aggregate(indraw[[k]][ 
,indrawnames],by=list(indraw[[k]]$AgeBin),mean,na.rm=T) 
 indraw[[k]][c((nrep*nABins+1):(nrep*nABins+nABins)),] <- meanraw 
 indraw[[k]]$REP <- rep(c(1:nrep,"MEAN"),each=nABins) 
 indraw[[k]]<- indraw[[k]][ 
,c(ncol(indraw[[k]]),1:ncol(indraw[[k]])-1)] 
 
 
 finalposthoc[f:(f+nABins*2-1), ]<-
posthocest[[k]][(nrep*nABins+1):(nrep*nABins+nABins*2), ] 
 finalposthoc$SCENARIO[f:(f+nABins*2-1)]<-k 
 f<-f+(nABins*2) 
 k<-k+1 
 } 
} 
 
finalposthoc<-finalposthoc[ ,c(ncol(finalposthoc),1:ncol(finalposthoc)-
1)] 
write.table(finalposthoc, 
file=paste(path,"results/method2/",vari,"_Sparse_",nAdult,"ad_M2_summary.
csv",sep=""),sep=",", quote=F, row.names=F, na=".") 
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NONMEM model 

$PROBLEM sim_NM thru R ; truncated normal wrt t1/2, cl, v, ka 
; PROGRAMMER=MALLIKA 
 
$DATA inputk.csv IGNORE=@ 
 
$INPUT ID TIME AMT DV=CONC ABIN AGE WT SEX 
;TIME=HRS, DV=CONC=ug/mL, AMT=DOSE=MG, ABIN=AgeBin=1-5, AGE=YRS, WT=KG, 
SEX=1=M,2=F 
 
$SIMULATION (12345678 NEW) ONLYSIM 
SUBPROBLEMS = 1 
 
$SUBROUTINE ADVAN2 TRANS2 
;1 COMP. MODEL oral 
 
$THETA 
   3.2 FIX  ; CLTI (L/h/20kg) 
   6.2 FIX  ; VTI  (L/20kg) 
   2   FIX  ; KATI (/h) 
   0.75 FIX ; ALLOCL 
   1 FIX    ; ALLOV 
   0.18 FIX ; A50 (years) 
 
$OMEGA 
   0.49 FIX ; CVCL 
   0.49 FIX ; CVV 
   0.16 FIX ; CVKA 
 
$SIGMA 
   0.01 FIX ; CVCP 
 
 
$PK 
 
 IF (ICALL.EQ.4) THEN  
 
   CLTI   = THETA(1) 
   VTI    = THETA(2) 
   KATI   = THETA(3) 
   ALLOCL = THETA(4) 
   ALLOV  = THETA(5) 
   A50    = THETA(6) 
 
   ETCL   = ETA(1) 
   ETV    = ETA(2) 
   ETKA   = ETA(3) 
 
   TVCL   = CLTI*((WT/20)**ALLOCL)*(AGE/(AGE+A50)) 
   TVV    = VTI*((WT/20)**ALLOV) 
   TVKA   = KATI 
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   TVKE   = TVCL/TVV 
   TVTHF  = 0.693/TVKE 
   
       DLTACL  = 2*0.7        ; MUST BE 3.27*SQRT(CVCL)! 
       DLTAV   = 2*0.7        ; MUST BE 3.27*SQRT(CVV)! 
       DLTAKA  = 2*0.4 
       DLTATH  = 2*0.7 
       LNMUCL  = LOG(TVCL) 
       LOCL    = EXP(LNMUCL-DLTACL) 
       HICL    = EXP(LNMUCL+DLTACL) 
       LNMUV   = LOG(TVV) 
       LOV     = EXP(LNMUV-DLTAV) 
       HIV     = EXP(LNMUV+DLTAV) 
       LNMUKA  = LOG(TVKA) 
       LOKA    = EXP(LNMUKA-DLTAKA) 
       HIKA    = EXP(LNMUKA+DLTAKA) 
       LNMUTH  = LOG(TVTHF) 
       LOTHF   = EXP(LNMUTH-DLTATH) 
       HITHF   = EXP(LNMUTH+DLTATH) 
 
 
       CL=TVCL*EXP(ETCL) 
       IF (CL.GE.LOCL.AND.CL.LE.HICL) THEN 
          CLOK=1 
       ELSE 
          CLOK=0 
       ENDIF 
 
       V=TVV*EXP(ETV) 
       IF (V.GE.LOV.AND.V.LE.HIV) THEN 
          VOK=1 
       ELSE 
          VOK=0 
       ENDIF 
 
       KA=TVKA*EXP(ETKA) 
       IF (KA.GE.LOKA.AND.KA.LE.HIKA) THEN 
          KAOK=1 
       ELSE 
          KAOK=0 
       ENDIF 
 
       KE=CL/V 
       THF=0.693/KE 
       IF (THF.GE.LOTHF.AND.THF.LE.HITHF) THEN 
          THFOK=1 
       ELSE 
          THFOK=0 
       ENDIF 
 
       DOWHILE (CLOK.EQ.0.OR.VOK.EQ.0.OR.KAOK.EQ.0.OR.THFOK.EQ.0) 
          CALL SIMETA(ETA) 



 

184

          ETCL   = ETA(1) 
          ETV    = ETA(2) 
          ETKA   = ETA(3) 
 
          CL=TVCL*EXP(ETCL) 
          IF (CL.GE.LOCL.AND.CL.LE.HICL) THEN 
             CLOK=1 
          ELSE 
             CLOK=0 
          ENDIF 
 
          V=TVV*EXP(ETV) 
          IF (V.GE.LOV.AND.V.LE.HIV) THEN 
             VOK=1 
          ELSE 
             VOK=0 
          ENDIF 
 
          KA=TVKA*EXP(ETKA) 
          IF (KA.GE.LOKA.AND.KA.LE.HIKA) THEN 
             KAOK=1 
          ELSE 
             KAOK=0 
          ENDIF 
 
          KE=CL/V 
          THF=0.693/KE 
          IF (THF.GE.LOTHF.AND.THF.LE.HITHF) THEN 
             THFOK=1 
          ELSE 
             THFOK=0 
          ENDIF 
 
       ENDDO 
 ENDIF 
 
 
S2 = V/1          ;S2 is scaling factor to comp. 2 (for oral); 
Cp(t)=A(t)/S2 
 
REP = IREP 
 
 
$ERROR 
ICP  = F 
IRES = ERR(1) 
 
Y = F + F*ERR(1)  ;proportional error model 
 
 
$TABLE REP ID TIME AMT DV Y CL V KA THF ETCL ETV ABIN AGE WT SEX ICP IRES 
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SAS program 

options mlogic mprint; 
 
*delete all datasets in work; 
proc datasets lib=work kill memtype=data; 
quit; 
 
*import data; 
PROC IMPORT OUT= data  
  DATAFILE="simdatakrepr.csv" 
  DBMS=CSV REPLACE; 
  GETNAMES=YES; 
  DATAROW=2;  
  RUN; 
data dose; set data; if evid; dose=amt; keep id dose;run; 
data data; merge data dose; by id; if evid=0; dv=conc; run; 
   
*create the median age and wt combination within each age group for derived TVCL and TVV; 
data newid; set data; by id ; if first.id; if id<=4; id=1000+id; dv=.;  
if id=1001 then do; age=1 ; wt=9.7; end; 
if id=1002 then do; age=4 ; wt=15.7; end; 
if id=1003 then do; age=9 ; wt=29; end; 
if id=1004 then do; age=14 ; wt=49.5; end; 
run; 
*attach newid to raw data; 
data data; set data newid;run;  
 
*fit model; 
%let flag = 0; 
%macro RunModel(pTVCL=, 
pTVV=, 
pALLOCL=, 
pALLOV=, 
pA50=, 
ps2cl=, 
ps2v=, 
ps2=, 
repeats=); 
 
%let seedi = 18; 
%let count = 0; 
%let itvcl = &ptvcl; 
%let itvv = &pTVV; 
%let iallocl = &pALLOCL; 
%let iallov = &pALLOV; 
%let ia50 = &pA50; 
%let is2cl = &ps2cl; 
%let is2v = &ps2v; 
%let is2 = &ps2; 
%let tvclest = -1; 
%let tvvest = -1; 
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%let alloclest = -1; 
%let allovest = -1; 
%let a50est = -1; 
%let s2clest = -1; 
%let s2vest = -1; 
%let s2est = -1; 
 
%do %while ((&flag = 0 or %sysevalf(&tvclest < 0) or %sysevalf(&tvvest < 0) or 
%sysevalf(&alloclest < 0) or %sysevalf(&allovest < 0 ) or  
  %sysevalf(&a50est < 0) or %sysevalf(&s2clest < 0) or %sysevalf(&s2vest < 0) or 
%sysevalf(&s2est < 0 )) and &count < &repeats); 
 
proc nlmixed data=data  QPOINTS=1;   *QPOINTS=1 is like Laplacian and METHOD=FIRO is like 
FO in NONMEM;  
    parms  
TVCL=&iTVCL 
TVV=&iTVV 
ALLOCL=&iALLOCL 
ALLOV=&iALLOV 
A50=&iA50 
s2cl=&is2cl 
s2v=&is2v 
s2=&is2; 
   anchor = 20; 
   TVKA = 0.6; 
   s2ka = 0.09; 
   F = 1; 
      TVCLI= TVCL*((WT/anchor)**ALLOCL)*(AGE/(AGE+A50)); 
      CL = TVCLI*EXP(ETACL);  
      TVVI=TVV*((WT/anchor)**ALLOV); 
      V = TVVI*EXP(ETAV); 
      KA = TVKA; 
      KE = CL/V; 
      TVKE = TVCL/TVV;  
      pred= log(((F*dose*TVKA)/(TVV*(TVKA-TVKE)))*(exp(-TVKE*time)-exp(-TVKA*time)));  
      ipred = log(((F*dose*KA)/(V*(KA-KE)))*(exp(-KE*time)-exp(-KA*time)));  
      ldv=log(dv); 
      model ldv ~ normal(ipred,s2); 
      random ETACL ETAV ~ normal([0,0],[s2cl,0,s2v]) subject=id;  
      *random ETACL ETAV ETAKA ~ normal([0,0,0],[s2cl,0,s2v,0,0,s2ka]) subject=id;   
predict ipred out=ipred;  
predict pred out=pred;  
predict TVCLI out=TVCLI; 
predict TVVI out=TVVI;  
predict cl out=cl;  
predict v out=v;  
predict ka out=ka; 
ods output  ParameterEstimates=para; 
run; 
 
*reset inital parameter est; 
data _NULL_; 
 set para; 
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 if _N_ = 1 then call symput("tvclest", Estimate); 
    if _N_ = 2 then call symput("tvvest", Estimate); 
    if _N_ = 3 then call symput("alloclest", Estimate); 
 if _N_ = 4 then call symput("allovest", Estimate); 
 if _N_ = 5 then call symput("a50est", Estimate); 
    if _N_ = 6 then call symput("s2clest", Estimate); 
    if _N_ = 7 then call symput("s2vest", Estimate); 
 if _N_ = 8 then call symput("s2est", Estimate); 
run; 
 
data _NULL_; 
 seed = &seedi; 
 call ranuni(seed, rannum1); 
 rannum = 1 + (rannum1 - 0.5) * 0.2; 
 TVCL = &ptvcl * rannum;  
 TVV = &ptvv * rannum;  
 ALLOCL = &pallocl * rannum;  
 ALLOV = &pallov * rannum;  
 A50 = &pa50 * rannum;  
 s2cl = &ps2cl * rannum; 
 s2v = &ps2v * rannum; 
 s2 = &ps2 * rannum; 
 call symput("seedi", seed); 
 call symput("itvcl", tvcl); 
 call symput("itvv", tvv); 
 call symput("iallocl", allocl); 
 call symput("iallov", allov); 
 call symput("ia50", a50); 
 call symput("is2cl", s2cl); 
 call symput("is2v", s2v); 
    call symput("is2", s2); 
run; 
 
data _NULL_; 
 set ipred; 
 if _N_ ^= 0 and %sysevalf(&tvclest > 0) and %sysevalf(&tvvest > 0 ) and 
%sysevalf(&alloclest > 0) and %sysevalf(&allovest > 0 ) and 
      %sysevalf(&a50est > 0) and %sysevalf(&s2clest > 0 ) and %sysevalf(&s2vest > 0) and 
%sysevalf(&s2est > 0 ) then 
  call symput("flag", 1); 
run; 
 
%if &flag = 0 %then 
%do; 
 proc datasets library=work; 
  delete ipred; 
 quit; 
%end; 
 
%let count = &count + 1; 
%end; 
%mend RunModel; 
%RunModel 
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(pTVCL=13.5, 
pTVV=10.4, 
pALLOCL=0.75, 
pALLOV=1, 
pA50=0.18, 
ps2cl=0.09, 
ps2v=0.09, 
ps2=0.01, 
repeats=20) 
 
%macro printRes; 
 
*tailoring output structure; 
 
%if &flag=1 %then 
%do; 
data _NULL_; 
title "Successful"; 
file print; 
put "Successful"; 
run; 
 
data tvcliout; set tvcli; if id>1000; keep id age wt Pred StdErrPred Upper CLbin SECL CVCL 
UCICL; CLbin=Pred; SECL=StdErrPred; CVCL=StdErrPred/Pred*100; UCICL=Upper; run; 
data tvviout; set tvvi; if id>1000; keep id age wt Pred StdErrPred Upper Vbin SEV CVV UCIV; 
Vbin=Pred; SEV=StdErrPred; CVV=StdErrPred/Pred*100; UCIV=Upper; run; 
data cliout; set cl; by id; if first.id; if id<1000; CLi=Pred; SECLi=StdErrPred; 
UCICLi=Upper; run;    *pred in this file is the posthoc CL estimate for each id; 
data viout; set v; by id; if first.id; if id<1000; Vi=Pred; SEVi=StdErrPred; UCIVi=Upper; 
run;         *pred in this file is the posthoc V estimate for each id; 
data kaiout; set ka; by id; if first.id; if id<1000; KAi=Pred; SEKAi=StdErrPred; 
UCIKAi=Upper; run;    *pred in this file is the posthoc KA estimate for each id; 
data pred; set pred; if id<1000; PPRED=exp(Pred); run; 
data ipred; set ipred; if id<1000; IPRED=exp(Pred); run; 
data bins; merge tvcliout tvviout; by id; keep id age wt CLbin SECL CVCL UCICL Vbin SEV CVV 
UCIV; run; 
data posthoc; merge cliout viout kaiout; by id; keep id abin age wt sex dose cli secli 
ucicli vi sevi ucivi kai sekai ucikai; run; 
data preds; merge pred ipred; by id; keep id time abin age wt sex dose dv ppred ipred; run; 
data posthoc; merge posthoc preds; by id; run; 
 
*output; 
proc export data=bins outfile="binskrepr.csv" DBMS=CSV REPLACE; run; 
proc export data=para outfile="parmskrepr.csv" DBMS=CSV REPLACE; run; 
proc export data=posthoc outfile="posthockrepr.csv" DBMS=CSV REPLACE; run; 
%end; 
%mend printRes; 
%printRes 
run; 
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APPENDIX B 

NONMEM model file used for simulations for warfarin 

pediatric model qualification (Chapter 5) 

 

$PROB WARF PEDS PKPD MODEL VALIDATION 
 
$INPUT C ID TIME DAY CMT AMT DV TYPE EVID MDV INRO AGE WT GENO CYP VKOR 
TARG 
 
$DATA nmdata3.csv IGNORE='C' 
 
$SIMULATION (123456 NEW) ONLYSIM 
SUBPROBLEMS = 150 
 
$SUBROUTINE ADVAN6 TOL=6 
;User defined model written as differential equations 
 
$MODEL ; DEFINES THE NO. OF COMPARTMENTS IN THE MODEL 
 
COMP = 1 
COMP = 2 
COMP = 3 
COMP = 4 
 
 
$THETA (0,0.01698,1)  ; TVKOUT 
$THETA (0,0.019527,1) ; TVKIN 
$OMEGA  0.0961        ;BSV CL 
$OMEGA  0.0686        ;BSV V2 
$OMEGA  0.9821        ;BSV V3 
$OMEGA  0.000001      ;BSV EC50 
$OMEGA  0.000025      ;BSV KOUT 
$OMEGA  0.000025      ;BSV KIN 
 
$SIGMA  0.3429        ;sd=0.585662 
 
 
$PK 
 
   TVKA = 2 
   TVCL = 0.1207 
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   TVV2 = 3.45 
   TVQ  = 0.05 
   TVV3 = 1.65 
   F1   = 0.5 
 
   ETCL  = ETA(1)  
   ETV2  = ETA(2)  
   ETV3  = ETA(3)  
 
   CLWT = TVCL*((WT/20)**0.75)*((0.821*AGE/(AGE+0.01))+0.21)*EXP(ETCL) 
   CL   = CLWT 
   IF (CYP.EQ.1)  CL = CLWT*0.685 
    
   IF (CYP.EQ.2)  CL = CLWT*0.547 
    
   IF (CYP.EQ.3)  CL = CLWT*0.28 
 
   IF (CYP.EQ.4)  CL = CLWT*0.31 
   
   IF (CYP.EQ.5)  CL = CLWT*0.148 
 
   KA  = TVKA 
   V2  = TVV2*((WT/20)**0.75)*EXP(ETV2) 
   V3  = TVV3*((WT/20)**0.75)*EXP(ETV3) 
   Q   = TVQ*((WT/20)**0.75) 
 
   S2 = V2  
; S2 is scaling factor to cmpt. 2 (for oral); Cp(t)=A(t)/S2 to get conc 
in MG/L 
 
TVKOUT = THETA(1) 
TVKIN  = THETA(2)  
 
ETEC50 = ETA(4)  
ETKOUT = ETA(5) 
ETKIN  = ETA(6) 
 
TVEC50 = 0.003953 
   IF (VKOR.EQ.1)  TVEC50 = 0.003075 
    
   IF (VKOR.EQ.2)  TVEC50 = 0.002547 
 
EC50 = TVEC50*EXP(ETEC50) 
KOUT = TVKOUT*EXP(ETKOUT) 
KIN  = TVKIN*EXP(ETKIN) 
BSLN = KIN/KOUT         ; R0 baseline INR 
F4   = BSLN 
 
REP  = IREP 
 
 
$DES 
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DADT(1) = -KA*A(1) 
DADT(2) = (KA*A(1))+((Q/V3)*A(3))-((Q/V2)*A(2))-((CL/V2)*A(2)) 
DADT(3) = ((Q/V2)*A(2))-((Q/V3)*A(3)) 
CFREE = A(2)*0.01/S2 
DADT(4) = KIN - KOUT*A(4)*(1-(CFREE/(CFREE+EC50))); 
;INHIBITION OF OUTPUT SINCE INR IS RESPONSE INVERSELY RELATED TO PCA 
(INHIBITORY INDIRECT RESPONSE MODEL) 
 
 
$ERROR 
 
IF (ICALL.EQ.4) THEN  
 
   INR   = A(4) 
   CFRE  = A(2)*0.01/S2 
   IPRE  = INR 
   RESID = ERR(1) 
 
       LOINR = 1 
       HIINR = 6 
 
       Y = IPRE + RESID  
       IF (Y.GE.LOINR.AND.Y.LE.HIINR) THEN 
          INROK=1 
       ELSE 
          INROK=0 
       ENDIF 
  
       DOWHILE (INROK.EQ.0) 
          CALL SIMEPS(EPS)   
          RESID = ERR(1) 
          Y = IPRE + RESID  
          IF (Y.GE.LOINR.AND.Y.LE.HIINR) THEN 
             INROK=1 
          ELSE 
             INROK=0 
          ENDIF 
       ENDDO 
ELSE 
   INR   = A(4) 
   CFRE  = A(2)*0.01/S2 
   IPRE  = INR 
   RESID = ERR(1) 
   Y = IPRE + RESID   ;ADDITIVE ERROR MODEL 
ENDIF 
 
 
$TABLE REP ID TIME DAY CMT AMT DV TYPE CFRE INR RESID Y INRO AGE WT GENO 
CYP VKOR TARG CL EC50 BSLN KOUT KIN ETA1 ETA4 ETA5 ETA6 
NOPRINT ONEHEADER FILE=sdtab8 



APPENDIX C 

Drug Model set-up in Trial Simulator for optimizing pediatric warfarin dosing regimen (Chapter 5) 
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APPENDIX D 

Target INR outcomes for all genotypes (Chapter 5) 
1. Proposed dosing regimen: 
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2. Genotype-independent dosing: 
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3. Proposed dosing regimen with formulation restrictions: 
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4. Initial starting dose estimates - INR-time profile in typical subjects: 
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APPENDIX E 

Population Pharmacokinetic-Pharmacogenetic Analysis of 

Nevirapine in HIV-infected Populations in Uganda and the U.S. 

– A Covariate Exploration 

 

 

 

ABSTRACT  

The aims of this open-label, pharmacokinetic study were to characterize nevirapine 

pharmacokinetics in two geographically distinct populations of HIV- infected patients and 

to assess demographic and genetic covariates on drug exposures, focusing on the CYP2B6, 

CYP3A4, CYP3A5, and MDR1genes.  A total of 46 HIV-infected adults underwent 

nevirapine sampling under steady state conditions.  All data were analyzed using nonlinear 

mixed-effects modeling, and the population pharmacokinetic model was used to assess the 

effects of covariates.  The following homozygous loss-of-function alleles, CYP2B6 

516G>T, CYP3A5*3 and CYP3A4*1B, were associated with 35%, 25% and 18% 

reductions in nevirapine clearance, respectively.  These three genotypes in combination 

with body weight, explained 71% of the interpatient variability in nevirapine apparent 

clearance.  Regardless of CYP genotype, all patients had trough nevirapine concentrations 

above the 3,000 ng/mL threshold.  As previously noted by others, variability in apparent 

nevirapine clearance tended to be low and was heavily influenced by CYP2B6 516G>T.   
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INTRODUCTION 

At the beginning of 2009, approximately 33.4 million people world-wide were infected 

with the human immunodeficiency virus (HIV); 22.5 million of these individuals live in 

sub-Saharan Africa (1).  In recent years, significant progress has been made in providing 

antiretroviral therapy (ART) for HIV-infected patients residing in low and middle income 

countries.  Expanded ART access has resulted in a 10-fold increase in the number of 

people receiving treatment in these underserved areas (2, 3).  The availability of potent 

ART to developing nations has been largely driven by the manufacture and distribution of 

generic ART formulations.  Of these, nevirapine has gained widespread use due to (a) its 

status as a recommended component of combination ART for treatment-naïve individuals 

who meet criteria for initiating therapy (4), (b) its ability to reduce mother-to-child 

transmission (MTCT) of HIV-1 (5) and (c) its availability as an affordable fixed-dose 

combination product (6). 

 

Nevirapine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1, which 

binds directly to- and allosterically inhibits viral reverse transcriptase (RT) activity.  Upon 

oral administration, the drug is rapidly absorbed (Tmax = 2 h) with an absolute 

bioavailability of 90-93%.  It has a long half-life of 25-30 hours following repeated dosing 

and is 60% bound to plasma proteins (7).  Nevirapine undergoes oxidative metabolism by 

CYP3A4 and CYP2B6 enzymes, while the role of CYP3A5 in nevirapine metabolism is not 

entirely clear (8).  In addition to CYP2B6 and CYP3A, nevirapine may also be a substrate 

for the ABCB1 (MDR1) gene product and efflux transporter, P-glycoprotein (P-gp) (9).  

Genetic polymorphisms in the CYP2B6, CYP3A4, CYP3A5, and ABCB1 genes may 

contribute to interindividual differences in nevirapine pharmacokinetics among different 

populations.  Indeed, homozygous expression of the CYP2B6 516TT variant allele was 

found by us and others to result in higher nevirapine concentrations in Ugandan and Swiss 

populations, respectively (10, 11). Similarly, a population pharmacokinetic-

pharmacogenetic study in Cambodian patients found that CYP2B6 516TT was associated 

with reduced nevirapine clearance compared with CYP2B6 516GT and 516GG genotypes 
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(12).  Nonetheless, there is still a general paucity of information regarding covariates 

influencing nevirapine pharmacokinetics among different populations.  

 

The purpose of this pharmacokinetic-pharmacogenetic study was to characterize 

nevirapine pharmacokinetics in comparable non-Western (Uganda, Africa) and Western 

(United States) HIV-infected populations.  A population approach was used to identify 

demographic and genetic factors that influence nevirapine disposition; genetic variability 

in CYP2B6, CYP3A4, CYP3A5, and ABCB1 (MDR1) were targeted for this purpose.  Non-

linear mixed-effects modeling was used to characterize the influence of all covariates on 

nevirapine pharmacokinetic parameter values. 

 

 

METHODS 

Patients. Data from this study were sequentially acquired from two pooled cohorts of HIV-

infected patients from Uganda Africa, and the United States, respectively.  To be 

considered for study inclusion, candidates had to be HIV positive, >18 years old, and in 

good general health as determined by medical history, physical examination, and serum 

chemistry values.  There were no minimum or maximum requirements with regard to 

CD4+ counts or HIV-RNA levels, although patients could not have any clinical or 

laboratory evidence of an active opportunistic infection.  Exclusion criteria also included 

receipt of interleukin-2 within 3 months of study participation, receipt of any medications 

known or suspected to modulate CYP2B6 and/or CYP3A4/5 activity, active drug or 

alcohol abuse, pregnancy, chronic diarrhea or loose stools, fever > 38.5 0C within 7 days of 

screening, and a history of poor adherence to antiretroviral therapy.  After the Ugandan 

cohort completed their portion of the study, a comparator group of U.S. subjects was 

selected from the National Institutes of Allergy and Infectious Diseases (NIAID) outpatient 

HIV clinic and included subjects who were matched by gender and BMI to their Ugandan 

counterparts.  
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The study was approved by the Joint Clinical Research Center Institutional Review Board, 

the Uganda National Council for Science and Technology, and the National Institute of 

Allergy and Infectious Diseases Institutional Review Board.  All participants gave written 

informed consent, and clinical research was conducted according to guidelines for human 

experimentation as specified by the US Department of Health and Human Services.  

 

Study procedures.  Because the study was designed to characterize nevirapine 

pharmacokinetics in two different HIV-infected populations, a single nevirapine 

formulation (Viramune™) Boehringer Ingelheim) was administered to both groups to 

eliminate the possibility of a formulation effect on study results.  As such, Ugandan 

participants who were stabilized on a generic nevirapine formulation for at least 28 days 

were switched to brand name nevirapine (Viramune™) 200 mg twice daily; the remainder 

of their antiretroviral regimen remained unchanged.  Due to the unavailability of generic 

nevirapine formulations in the U.S., patients were already stabilized on a Viramune-

containing regimen (200 mg twice daily) for at least 28 days.  To this end, pharmacokinetic 

sampling for both groups occurred under steady state conditions for all study participants.  

 

In the Ugandan cohort, subjects were admitted to the Clinical Research Center the night 

before scheduled pharmacokinetic sampling.  The evening nevirapine dose was observed 

by study personnel for all subjects and the time of administration recorded.  The next 

morning, after an overnight fast, an intravenous catheter was placed into the forearm vein 

of participants for the purposes of blood drawing.  Just prior to taking their morning 

nevirapine dose (12 hrs after the previous night’s dose), blood was collected into 

heparinized tubes for a time 0 hr nevirapine concentration.  Blood was also collected into 

EDTA tubes for determination of CYP2B6, CYP3A4/5, and MDR1 genotypes as described 

below.  Next, subjects took their morning 200 mg dose of nevirapine with 100 mL of water 

and a standardized breakfast provided by the clinic. Four hours after taking nevirapine, 
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subjects were free to eat lunch.  Adherence with antiretroviral medications was assessed by 

patient interview and pill counts. 

  

Sampling and bioanalysis. Blood samples (15 mL) for the determination of nevirapine 

concentrations were collected in heparinized (green top) tubes immediately before (time 0), 

and 2 and 6 hours after dosing.  Blood was centrifuged after collection and plasma was 

harvested and frozen until the time of analysis.  Nevirapine concentrations in human 

plasma were measured using a high-performance liquid chromatography (HPLC) liquid–

liquid extraction method. Percentage errors, as a measure of accuracy, were <10%, and the 

inter- and intra-assay coefficients of variation were 4.35 – 8.55% and 3.54 – 6.52% 

respectively (R2 = 0.998), and the limit of detection was 25 ng/ml.  Blood samples 

collected during the study were also used to determine CYP2B6, CYP3A4/5, and 

MDR1genotypes of the study subjects for further genetic analysis.  

 

Genetic analysis. Venous blood samples were obtained from all subjects, and DNA was 

isolated from peripheral leucocytes with the Qiamp system (Qiagen Inc, Valencia, CA). 

CYP2B6 (516GG, 516GT and 516TT) and CYP3A4*1B genotypes, and/or the CYP3A5*3 

null allele together with the MDR1 genotype at position 2677 were determined by 

polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) as 

previously described (23, 24, 25, 26).  Based on CYP2B6, CYP3A4*1B and the 

CYP3A5*3 genotypes, subjects were phenotypically identified as “poor”, “intermediate” 

and “extensive” nevirapine metabolizers.  No ultrarapid metabolizers were identified.  

Further, based on the MDR1 genotype, subjects were phenotypically identified as “poor”, 

“intermediate” and “extensive” nevirapine transporters.  

 

Pharmacokinetic analysis. A population approach was used for the current 

pharmacokinetic analysis.  Previously, population PK models for nevirapine have been 

published (13, 14, 15) that are consistent with regard to the base structural, one-

compartment body model with first order absorption.  The primary objective of this study 



was to mainly update the covariate model.  While we tested for effects of all available 

covariates, the focus was on the effects of four genes – CYP2B6, CYP3A4, CYP3A5 and 

MDR1.  All analyses were carried out using the non-linear mixed-effects modeling 

software NONMEM version VI.  All graphics were generated using R version 2.9.1.   

 

Prior base model. The available pharmacokinetic data were sparse such that we could not 

estimate the oral absorption parameters.  We used prior information on the base model 

from a previous study (13) and fixed the parameter values for the first-order absorption rate 

constant (Ka) and its variability (Ω2
Ka) accordingly.  The prior model included a linear 

body weight effect parameter (WTeff) on clearance, using a proportional model.  Between-

subject variability (BSV) was explained using a proportional error model while within-

subject or residual variability (WSV) was accounted for using an additive error model.  We 

adapted our base model from this prior as follows: 

 

( )( ) ( )
iCLieffi WTWTTVCLCL η+−+= ••• 1701        (2) 

( )
iVci TVVcVc η+= • 1           (3) 

(
iKai TVKaKa η+= • 1 )          (4) 

Cppredi CpCp ε+=           (5) 

 

where; ηCLi is the difference between individual (CLi) and population mean or typical 

value (TVCL) of clearance for a 70-kg individual, ηVci is the difference between individual 

(Vci) and population mean or typical value (TVVc) of volume of distribution and ηKai is 

the difference between individual (Kai) and population mean or typical value (TVKa) of 

absorption rate constant, while Cpi is the individual observed plasma concentration and 

Cppred is the individual model predicted plasma concentration. ηCLi, ηVci and ηKai were all 

assumed to follow a normal distribution with mean of zero and variances of Ω2
CL, Ω2

Vc 

and Ω2
Ka respectively, and with ηCLi and ηVci having a correlated distribution. εCp is the 
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residual error assumed to follow a normal distribution with mean of zero and variance of 

σ2
Cp. 

 

We fit the prior model, without modification, to our study data to determine if it describes 

the observed individual level data well.  We also tested use of an exponential error model 

for explaining BSV on all model parameters rather than a proportional model.  We 

explored estimating BSV on volume with and without a covariance with clearance.  We 

also considered fixing the BSV on volume to the value from the prior model, or leaving 

this parameter out of the model altogether.  

 

Covariate exploration. We first tested the inclusion of each genetic and demographic 

covariate individually into the model.  Covariate significance was assessed based on 

mechanistic plausibility, decrease in model objective function value (ΔOFV ≥ -4), and 

graphical inspection of overall model fit and covariate plots.  While testing for covariate 

effects, we estimated all model parameters other than mean Ka and its variability. 

  

We explored retaining the weight effect parameter on clearance as per the prior 

proportional model and estimating a weight effect parameter.  We also considered an 

allometric scaling model for weight effect.  We then modified the clearance model as 

described in the Results section above.  Based on mechanism, effects of the three CYP450 

isoforms were tested on nevirapine clearance and that of the MDR1 gene on bioavailability.  

We used a stepwise approach for inclusion of multiple gene effects into the model, based 

upon the significance of individual effects.  This approach is outlined in Table 3.  

 

Initially, we ran the model with no gene effect included.  Upon inspection of covariate 

plots for the four genes (vs. predicted apparent clearance (CL/F) residuals) we observed 

gene effects only for the homozygous variant genotypes.  Residuals were similar for the 

wild type (“extensive” metabolizer) and heterozygous (“intermediate” metabolizer) 

genotypes.  Hence for analysis of all gene effects, subjects were categorized into 2 
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genotype groups – “extensive” metabolizers (or transporters in case of MDR1) including 

wild type and heterozygous genotypes or “poor” metabolizers (or transporters in case of 

MDR1) including only the homozygous variant genotype. Since the two MDR1 genotypes 

(2677G>T/A and 3435C>T) on which data were available occur in linkage disequilibrium 

we focused our analysis for gene effects only on the MDR1 2677 polymorphism since 

there were more subjects (n = 4) with this variation than for the silent mutation MDR1 

3435 (n = 2).    

 

Although our study population was comprised of two cohorts, we considered the influence 

of covariate effects based on race (White vs. Black) rather than region (U.S vs. Uganda).  

Gender, age, height and BMI were the other covariates we considered for effects on both 

clearance and volume, although previously published work on nevirapine population 

pharmacokinetics only found either body weight or gender to be of significance.  

 

 

RESULTS 

 

Patients 

A total of 46 patients met inclusion criteria and were included in the final analysis (24 and 

22 subjects from the U.S. and Ugandan cohorts, respectively).  Cohort demographics are 

provided in Table 1. 

 

Table 1 Characteristics of 46 HIV infected participants in this population 

pharmacokinetic analysis from the U.S. and Uganda 

      

  U.S. SUBJECTS 
UGANDAN 
SUBJECTS Total 

  
(mean values and 
range) (mean values and range)   
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N 22 24 46 
AGE 37.23 (21-50) 35.75 (27 - 64) 36.9 (21-64) 
HEIGHT 
(cm) 164.27 (145.7 - 184.8) 166.65 (155.3 - 195) 165.6 (145.7 - 195) 
WEIGHT 
(kg) 72.18 (47.4 - 98.5) 65.33 (40 - 87.5) 68.5 (40-98.5) 
BMI 26.82 (22.01 - 37.75) 23.57 (14.3 - 29.7) 25 (14.3 - 37.76) 
GENDER       
F 14 (63.6%) 16 (66.7%)  30  
M 8 (36.4%) 8 (33.4%) 16 
RACE       
BLACK 9 24   
WHITE 13     
GENOTYPE       
CYP2B6-516       
Extensive 
metabolizers 
GG 11 (50%) 13 (54.2%) 24 (52%)  
Intermediate 
metabolizers 
GT 8 (36.4%) 7 (29.2%) 15 (33%) 
Poor 
metabolizers 
TT 3 (13.6%) 4 (16.7%) 7 (15%) 
CYP3A4*1B       
Extensive 
metabolizers 
AA 12 (54.5%)  0 12 (26%) 
Intermediate 
metabolizers 
AG 3 (13.6%) 15 (62.5%) 18 (39%) 
Poor 
metabolizers 
GG 7 (31.8%) 9 (37.5%) 16 (35%) 
CYP3A5*3       
Extensive 
metabolizers 
AA 6 (27.3%) 14 (58.3%) 20 (44%)  
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Intermediate 
metabolizers 
AG 5 (22.7%) 8 (33.3%) 13 (28%) 
Poor 
metabolizers 
GG 11 (50%) 2 (8.3%) 13 28%) 
MDR1-2677       
Extensive 
transporters 
GG 11 (50%) 23 (95.8%) 34 (74%) 
Intermediate 
transporters 
GT 7 (31.9%) 1 (4.2%) 8 (17%) 
Poor 
transporters 
TT 4 (18.2%) 0 4 (9%) 

 

 

Pharmacokinetic analysis 

Prior base model.  The sparseness of the available pharmacokinetic data precluded 

estimation of oral absorption parameters.  Hence, the base model was adapted from a 

previous study (13).  The prior model, without modification, fit the individual observed 

data well.  Using an exponential error model for between-subject variability (BSV) 

resulted in an increase in objective function value (OFV); hence we retained the 

proportional error model to describe BSV on all primary model parameters.  We also found 

that estimating BSV on volume of distribution along with a covariance with clearance 

yielded the best fit in terms of OFV, standard error (SE) on mean volume estimate and 

predicted volume residual plots (data not shown).  

 

Covariate exploration.  We could not estimate a weight effect parameter for clearance 

since the effective body weight range in both cohorts was limited (60-90 kg).  Nonetheless, 

removing the weight effect on clearance adversely impacted the overall model fit; hence 

we chose to retain this covariate in our model.  However, we used a physiologically more 



plausible allometric scaling model, with an exponent of 0.75 for body weight effect, rather 

than the proportional model used previously.  Besides weight, we did not find any other 

demographic covariate to be of significance.  Thus, our modified base clearance model is 

as follows: 

 

( )
iCLii WTTVCLCL η+= •

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
• 1

70

75.0

       (1) 

where; ηCLi is the difference between individual clearance (CLi) and population mean or 

typical value (TVCL) of clearance for a 70-kg individual.  

 

Genetic covariates were initially assessed individually for their effect on nevirapine 

clearance. The CYP2B6 variant genotype was found to be most significant (31% reduction 

in clearance, Decrease in Objective Function Value (ΔOFV) = -8) followed by the CYP3A5 

variant genotype (19% reduction in clearance, ΔOFV= -4).  As lone covariates, the 

CYP3A4 and MDR1 variant genotypes were not found to significantly affect nevirapine 

clearance.  

 

Table 2 summarizes our findings of gene effects on nevirapine clearance.  The plots of 

individual and population predicted vs. observed plasma concentrations are depicted in 

Figure 1. Improved model fits can be observed for the population predictions upon 

addition of significant gene effects.  Figure 2 shows the covariate plots (individual - 

population mean predicted apparent clearance (CL/F) residuals vs. covariate levels) for the 

relevant genotype effects.  

 

Table 2 Step-wise inclusion of gene-effects into model 

              
STEP GENE EFFECT* (on 

CL) 
95%CI OFV 
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1 NONE     247 
2 CYP2B6 -31% -18 to -44% 239 
3 CYP2B6 -31% -19 to -43%   
  CYP3A5 -19% -5 to -32% 235 
4 CYP2B6 -35% -24 to -46 %   
  CYP3A5 -25% -13 to -37%   
  CYP3A4 -18% -5 to 31% 231 
5 CYP2B6 -36% -26 to -46%   
  CYP3A5 -21% -6 to -36%   
  CYP3A4 -18% -1 to -39%   
  MDR1 +22% (eff. on F) -14 to +65% 230 
 

 



Figure 1: Observed vs. predicted nevirapine plasma concentrations 
(a) No gene effect included  (b) CYP2B6, CYP3A5 and CYP3A4 gene effects included 

 
 

Figure 2: Covariate plots showing individual vs. population mean predicted apparent 

clearance (CL/F) residuals for genotype effects 
(a) No gene effect included  (b) CYP2B6 gene effect included 

(c) CYP2B6 and CYP3A5 gene effects included    (d) CYP2B6, CYP3A5 and CYP3A4 gene effects included 

*Extensive metabolizers reflect pooled wild and heterozygous genotypes. Poor metabolizers reflect   

homozygous variant genotypes alone. 
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In the absence of any gene effect in the model, the covariate plots were indicative of a 

genotype effect for CYP2B6 and CYP3A5 genes (Figure 2a).  Hence, we first included the 

CYP2B6 variant genotype effect on nevirapine clearance in our model and found statistical 

significance (ΔOFV = -8, Table 2) and improved graphical model fit.  The average 

exposures (Cavg) were 8.63 ug/ml and 6.33 μg/ml in poor and extensive metabolizers 

respectively. 

  

Following inclusion of CYP2B6 in the model, the covariate plots were still indicative of a 

genotype effect for the CYP3A5 gene (Figure 2b).  We included the CYP3A5 variant 

genotype effect next and found this covariate to be marginally statistically significant  

(ΔOFV= -4, Table 2).  The covariate plots now revealed a CYP3A4 genotype effect that 

was absent earlier (Figure 2c) and a mild, if any, MDR1 genotype effect (not shown).  

Hence the third genetic covariate we added to our model was the CYP3A4 variant genotype 

and again found it to be marginally statistically significant (ΔOFV= -4, Table 2).  Finally, 

the MDR1 genotype effect on bioavailability was tested, since the covariate plots still 

indicated a mild signal (Figure 2d); however, the effect was not found to be statistically 

significant (ΔOFV= -1, Table 2) and did not improve the graphical model fit. 

 

We considered differences in nevirapine clearance across race (White vs. Black).  In 

absence of any gene effect in the model, the covariate plots indicate a potential ‘race 

effect’.  However, upon inclusion of the three CYP450 isoforms into the covariate model 

for clearance, this apparent race effect was no longer present in the covariate plots and the 

variability in apparent clearance residuals within each race was also relatively reduced 

(Figure 3).  

 

 

 

 



Figure 3: Covariate plots showing individual vs. population mean predicted apparent 

clearance (CL/F) residuals for race effects  
(a) No gene effect included (b) CYP2B6, CYP3A5 and CYP3A4 gene effects included 

*Extensive metabolizers reflect pooled wild and heterozygous genotypes. Poor metabolizers reflect   

homozygous variant genotypes alone. 

 

 
 

 

Final model parameters are presented in Table 3.  While our parameter estimate for 

volume of distribution (287 L) is higher when compared with previous models (70-210 L), 

of note is the fact that this parameter estimate appears to vary considerably between 

different models (12, 13, 14, 15).  When mean volume was fixed to the prior model value 

(106 L) (13), there was bias seen in the predicted volume residual (ηVci) plots.  Estimating 

the mean volume parameter eliminated such bias yielding uniformly distributed residuals. 

 

Table 3 Final model parameters 
     
Parameter Estimate (RSE %) Variability (RSE %) 
Mean Clearance (TVCL) 3.62 L/h/70kg (6.6) 29% (22.2) 
Mean Volume (TVVc) 287 L (19.8) 46% (24.8) 
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Absorption rate constant (TVKa) 1.68 /h [fixed] 38% [fixed] 
WTeff_CL 0.75 [fixed]   
CYP2B6 effect on CL -35% (16.1)   
CYP3A5 effect on CL -25% (24.8)   
CYP3A4 effect on CL -18% (36)   
Residual error 0.63 ug/ml (43.9)   

RSE%: Relative Standard Error percentage  

 

 

DISCUSSION 

The base model parameters from our population model of nevirapine pharmacokinetics in 

this study are in agreement with previously published accounts (12, 13, 14, 15) and they 

represent the first covariate model to identify significant genotype effects on nevirapine 

disposition in an African cohort.  Our data are in line with prior findings that have linked 

low body weight to an increase in nevirapine exposure (13, 15, 16).  In fact, body weight 

was the only demographic covariate with a significant impact on drug exposure, as no 

differences in nevirapine pharmacokinetics were observed based on race (White vs. Black), 

when accounting for the effects of the CYP genotypes in the model.  Thereby, any 

observed differences in nevirapine exposure among patients of different racial (or regional) 

backgrounds are likely due to differential distribution of variant genotypes among different 

races, particularly CYP2B6 and CYP3A5.  Highlighting this point, the CYP2B6 516TT 

genotype, which is associated with minimal metabolic activity of the CYP2B6 enzyme, 

was more prevalent among White subjects (24%) compared with Black subjects (12%), 

while the CYP3A5*3 genotype, which is associated with minimal CYP3A5 activity, was 

predominant in White subjects (85%) and negligible among Blacks (6%).  The 

CYP3A4*1B variant genotype was absent among Whites and 50% prevalent in the Black 

race. 

 

In an initial study of nevirapine trough concentrations in the same Ugandan cohort reported 

herein, we observed a significant association between nevirapine pre-dose concentration 



 214

and CYP2B6 genotype (10).  Consistent with these findings, our population analysis 

revealed that the CYP2B6 genotype was the most significant covariate of the population 

model, being associated with a 35% reduction in nevirapine clearance.  After CYP2B6, 

CYP3A5*3 and CYP3A4*1B variant genotypes were identified as secondary covariates, 

each of which explained 25% and 18% reductions in nevirapine clearance, respectively.  

The identification of CYP2B6 and CYP3A5 variant alleles as contributors to nevirapine 

clearance is consistent with previously published data (12).  However, this is the first 

nevirapine population model that included CYP3A4*1B.  Even though the reduction in 

variability in nevirapine clearance explained by CYP3A4*1B was relatively minor, 

inclusion of this polymorphism improved the fit of our model and may be considered in 

future studies assessing the influence of genetic covariates on nevirapine clearance.   

  

Finally, our analysis indicated a non-significant increase of 20% in nevirapine 

bioavailability in patients with the MDR1 2677TT variant genotype, when tested in context 

of all genes.  However, inclusion of the MDR1 gene effect did not improve the graphical 

model fit.  This is likely because nevirapine exhibits high oral bioavailability (> 90%), 

suggesting that drug concentrations in the gastrointestinal tract would likely exceed those 

necessary to saturate P-gp –assuming the nevirapine is in fact a P-gp substrate (17).  To 

this end, any alteration in nevirapine bioavailability due to MDR1 genotype would appear 

to carry little, if any, clinical significance. 

 

Perhaps the most important concern with reduced nevirapine clearance is the risk of 

persisting subtherapeutic concentrations.  This is particularly relevant to pregnant women 

who receive a single dose of nevirapine for the prevention of mother-to-child-transmission 

(MTCT) of HIV in Africa.  Indeed single-dose nevirapine administered intrapartum, has 

been associated with detectable concentrations of the drug in plasma between 1-3 weeks 

after drug administration (18, 19, 20).  Mothers with the CYP2B6 516TT genotype, which 

is associated with reduced nevirapine clearance, may be at particular risk for persisting 

nevirapine concentrations and development of NNRTI resistance mutations (K103N and 
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Y181C) (21).  However, a recent investigation assessed the influence of CYP2B6 516G>T 

on nevirapine concentrations in HIV-infected Thai women and found that this 

polymorphism had only a minor impact on nevirapine concentrations following a single 

intrapartum nevirapine dose (22).  

 

This study has several limitations. Our study design employed a limited sampling strategy 

of 3 samples per subject with one pre-dose trough sample (time 0), and two post-dose 

samples at 2 and 6 hours, respectively.  As a result, our data was missing information on 

the absorption phase of nevirapine and we could not estimate oral absorption parameters.  

Hence we were unable to generate a complete model de novo, so we used a Bayesian-like 

approach where we adopted prior information on these base model parameters from 

previous nevirapine models.  Notably, leveraging prior information where possible is 

considered good practice in model building. Next, we recognize that our sample size of 46 

is comparatively smaller than other nevirapine population pharmacokinetic studies.  

However, our results are consistent with previously reported findings from nevirapine 

population pharmacokinetic studies, and the mechanistic reasoning for including the 

selected genetic covariates is based on solid scientific rationale. Lastly, since all of our 

HIV-infected patients were in good general health, we did not consider creatinine 

clearance or co-morbidities as factors potentially impacting nevirapine apparent clearance.  

Yet, absence of significant co-morbidities in our patient population allowed us to isolate 

the influence of the genetic polymorphisms on nevirapine disposition.  

Despite these limitations, data from this study show that the three genetic polymorphisms, 

CYP2B6, CYP3A4*1B and CYP3A5*3 and body weight collectively explained 71% of 

variability in nevirapine clearance. 

 

Pharmacogenetic-pharmacokinetic data explaining the impact of genetic polymorphisms 

on nevirapine clearance have not been previously reported in a Ugandan - U.S. cohort.  

These data were largely consistent with those recently reported in HIV-infected 

Cambodian patients where CYP2B6 also had the greatest impact on nevirapine clearance 
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(12).  Also similar to patients from other studies, all of our patients had nevirapine trough 

concentrations in excess of 3,000 ng/mL compared to 95% of patients in the Chou et al. 

investigation (12).  The main theoretical concern in individuals with the three genetic 

polymorphisms mentioned above, particularly the CYP2B6 516TT variant, is the potential 

for increased risk of nevirapine toxicity or development of nevirapine resistance due to 

higher and/or persisting plasma concentrations when the drug is used for prevention of 

MTCT.  Further study into the pharmacogenetics and pharmacokinetics of nevirapine in 

diverse patient populations will likely illicit information that will allow clinicians to 

optimize the use of this agent in developing nations.  Model-based dose adjustments may 

also be considered for future study in homozygous variant genotype individuals to avoid 

toxicity due to higher drug exposures. 
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