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 Previous studies in our laboratory demonstrated the expression of WT1 in a significant 

number of glioma cells and established its role in promoting tumor cell proliferation. Here, we 



xiv 
 

noted the effect(s) of manipulating WT1 levels on the expression levels of genes that were 

previously shown to be regulated by WT1. We found no correlation between the expression 

levels of WT1 and PDGF-A, Snai1 and E-cadherin and a consistent inverse correlation between 

WT1 and IGF-1R expression in U251-MG cells. To ascertain whether the increased IGF-1R 

levels resulting from WT1 silencing could account for decreased cellular proliferation, we 

utilized siRNA mediated knockdown of IGF-1R and found a modest decrease in cellular 

proliferation instead of an expected increase.  

Gene expression profiling in U251-MG cells was then used to identify candidate target genes for 

WT1. Several genes whose levels directly correlated with WT1 were observed to have putative 

or established oncogenic role(s) in glioma cells or other malignancies. Among the genes that 

correlated inversely, a tumor-suppressor role was attributed to some. Real time RT-PCR helped 

to substantiate these microarray findings in U251-MG cells.  

We also characterized the expression and function of WT1 in U1242-MG and GBM6 cells. 

Interestingly, in these cells WT1 facilitated cell invasiveness but had no discernible influence on 

cellular proliferation. The expressions of the candidate WT1 target genes were also determined 

in these 2 cell lines. At least 3 genes were consistently down-regulated with WT1 silencing in the 

three cell lines- INPP5A, CD97, and TYMS. To determine whether CD97 assisted WT1 in 

facilitating cellular invasion, we silenced CD97 expression using siRNA and noted a significant 

decrease in the cells’ ability to invade through Matrigel-coated filters. We propose that WT1 
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profoundly impacts the glioma cells’ invasive ability, and this function is mediated by CD97 

alone or in conjunction with other pro-invasive molecules. 

Our findings argue for the oncogenic role of WT1 in the specific context of glioma cells. They 

also point to a role for the novel pro-invasive protein- CD97- in glioma cells. Further studies are 

necessary to confirm the mechanism by which CD97 promotes invasion as well as to explore its 

potential as a diagnostic and/or therapeutic target.
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Chapter 1: Introduction 

Tumors of the central nervous system (CNS), as with all other organ systems, can be 

either benign or malignant. That is where the similarity ends though, because the consequences 

of even the best-behaved growth in these parts can be extremely morbid, or even fatal, depending 

on its exact location. The utterly non-expansive confines within which the brain and the spinal 

cord are housed, the extreme vulnerability of the neurons to ischemic damage and the risk of 

damage to vital functions entailed in the surgical removal of any tumor lodged in and around the 

organs of the CNS are all factors that set these tumors apart from all others. 

According to the 2007 WHO classification 
[1]

, tumors of the CNS can be broadly 

classified into different categories. These include tumors of the neuroepithelial tissue 

(astrocytomas, oligo-dendroglioma/ -astrocytomas, ependymal tumors and so on), cranial and 

paraspinal nerve tumors (for example. Schwannomas, neurofibromas and so on), tumors of the 

meninges, lymphomas and hematopoietic tumors, sellar tumors, germ cell tumors and the 

metastatic tumors. 

The biological behavior of these tumors can be predicted by grading the neoplasms based 

on their histological appearance. Tumor grading- which is similar across all CNS tumor entities-

also helps determine the appropriate therapeutic approach- especially in deciding whether to 

include or exclude adjuvant radiation and specific chemotherapy protocols
[1]

. 

According to the 2007 WHO classification system, Grade I uniformly refers to tumors 

that have a low proliferative potential and that can be cured by surgical resection alone. 

Neoplasms that are designated Grade II also have low proliferative rates, but possess the ability 

to infiltrate surrounding brain parenchyma. Hence, surgery alone cannot effect a complete cure 
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and Grade II tumors often tend to recur. Such recurrences are usually more aggressive, both in 

their behavior and in their resistance to therapy. Grade III neoplasms differ from the lower 

grades in the high proliferative capacity that the tumor cells possess. There is a significant 

increase in the number of mitotic figures and nuclear atypia seen on microscopic examination of 

these tumor specimens. Patients with Grade III CNS tumors often receive adjuvant radiation and/ 

or chemotherapy. The highest grade of malignancy- Grade IV- is assigned to tumors with a 

rapidly deteriorating course and an inevitably fatal outcome. Microscopically, these tumors are 

associated with a significantly high level of abnormal cells and mitotic figures, and areas of 

necrosis. Examples of Grade IV CNS neoplasms include Glioblastoma Multiforme (GBM), most 

embryonal neoplasms and some sarcomas. Such aggressive tumors are characterized by 

widespread tissue infiltration and a propensity for craniospinal dissemination
[1]

. 

Gliomas (derived from mature glia or their less differentiated precursors) mostly infiltrate 

the surrounding parenchyma diffusely. The WHO classifies these tumors broadly into one of 3 

categories: Astrocytomas, Oligodendrogliomas and Oligoastrocytomas. Differentiating between 

astrocytic and oligodendroglial tumors on histologic examination is somewhat possible by taking 

into account the cell shape, cytoplasmic appearance and the nuclear characteristics
[2]

. 

Astrocytomas are characterized by cells with elongated nuclei which are hyperchromatic and 

irregular. Prominent nucleoli and perinuclear halos are not typical. Some astrocytomas are 

characterized by prominent pink cytoplasm (e.g. gemistocytic or granular cell astrocytoma) 

while others have minimal fibrillary cytoplasm (e.g. fibrillary and small cell astrocytoma) 
[2]

. 

Tumor cells in oligodendrogliomas, on the other hand, have nuclei that are usually round, 

regular and show little inter-cellular pleomorphism. The phenomenon of perinuclear cytoplasmic 

clearing- which gives rise to a “scrambled egg” appearance- although helpful is a rather 
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inconsistent finding
[2]

. Some of the non-specific features that also help to form a diagnosis of 

oligodendroglioma include cortical involvement, microcalcifications, delicate branching 

capillaries and microcysts
[2]

.  

Astrocytomas are the most common primary neoplasms of the CNS from among these 

(Ref: CBTRUS), and also the most intensely studied. The WHO uses the 3-tiered system to 

grade these tumors from Grade II through Grade IV. Based largely on the grading criteria 

established by the St. Anne/ Mayo system, the WHO classification differs from this system only 

in its non-recognition of Grade I gliomas, which are non- infiltrative and lack nuclear atypia, 

mitoses, endothelial proliferation and necrosis and therefore, are associated with a very low 

likelihood of recurrence
[2]

. The characteristic features that help differentiate Grade II through 

Grade IV/ GBM are outlined in the table as shown below: 

Table 1: Features that help differentiate the different grades of gliomas. 

Basis Grade II Grade III/ AA Grade IV/ GBM 

1. Infiltrative capacity + + + 

2. Nuclear atypia & 

pleomorphism 

+ ++ +++ 

3. Mitotic figures + (0-1) ++ (>1) ++(+) 

4. Hyper-cellularity + ++ +++ 

5. Endothelial proliferation - - + 

6. Necrosis - - + 
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Genetic subtypes of GBM based on genomic analysis 

Despite the similar clinical course and histological appearance amongst GBMs, there 

exists a remarkable heterogeneity at the genetic level. The study of the pathogenesis of 

astrocytomas is broadly based on two themes
[3]

- to identify the cell of origin of these tumors (that 

is, whether they arise from de-differentiation of mature astrocytes or from the transformation of 

astrocytic precursor cells) and to uncover the specific genetic abnormalities in different phases or 

grades of these astrocytic neoplasms. While nearly a century’s worth of experiments has not yet 

generated an unequivocal answer to the first question, distinct molecular signaling pathway 

abnormalities have been delineated, that have helped us understand how these tumors progress 

from lower-to higher- grades, or how highly malignant astrocytomas are spontaneously 

generated. In 2009, The Cancer Genome Atlas Network (TCGA) undertook a massive venture, 

studying 206 human GBM samples with respect to their DNA copy number, gene expression, 

DNA methylation, and nucleotide sequence aberrations 
[4]

. These investigations revealed that the 

frequency of somatic alterations, based solely on the copy number data, of the retinoblastoma 

(RB), TP53 and receptor-tyrosine kinase (RTK) pathways was 66%, 70% and 59% respectively 

and these values were greater when sequencing data were taken into account. Moreover, the 

alterations of components within each pathway trended towards statistically significant mutual 

exclusivity. This suggests that deregulation of one component within the pathway diminishes the 

selective pressure for additional ones. However, any one sample was found to have at least one 

aberrant gene from each of the three pathways, and 74% harbored abnormalities involving all 

three pathways. 

The RB pathway: The retinoblastoma protein (pRb) is active in its hypo-phosphorylated state 
[5]

 

and acts to inhibit cell cycle progression through its inhibitive regulatory effect on the E2F 
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family of transcription factors 
[6]

 which have been established to push cells through the G1 phase 

of the cell cycle into the S-phase 
[7]

. Cyclin dependent kinase 4/6 phosphorylates pRb 
[8]

 and 

inactivates it, thereby lifting the hold on cell-cycle progression. The cyclin-dependent kinase 

inhibitor - p16
INK4A

  also known as CDKN2A- binds all available cdk4/6 and causes Cyclin-D1 

to detach from the cdk4/6 complex 
[5]

. Thus unprotected, Cyclin-D undergoes degradation and is 

no longer able to participate in cell cycle regulation 
[5]

.  

As per the TCGA studies 
[4]

, 77% of the 206 samples examined had mutations belonging 

to the Rb pathway, and of these, the most common event was deletion of the 

CDKN2A/CDKN2B locus on chromosome 9p21 (55% and 53%), followed by amplification of 

the CDK4 locus (14%). It was also found that the 9 samples that contained RB1 nucleotide 

substitutions lacked the above-mentioned mutations in the upstream signaling components. 

TP53 pathway: The p53 protein has long been hailed as the “guardian of the genome”, owing to 

its contribution towards maintaining genomic stability 
[9, 10]

 in addition to its myriad other 

extensively documented functions as a tumor suppressor (reviewed in 
[10]

). The p53 protein can 

prevent tumor formation or progression by causing cell-cycle arrest, inhibiting cell growth, 

eliminating the generation of reactive oxygen species (ROS) on account of its antioxidant 

behavior, promoting the removal of permanently damaged cells through death or senescence and 

by promoting apoptosis or autophagy. The exact molecular targets that enable it to influence 

each of these functions are extensively detailed elsewhere 
[10, 11]

. One transcriptional target of 

p53 is the murine double mutant-2 (MDM2) 
[11]

. MDM2, when transcriptionally activated serves 

to inhibit the actions of p53 in two ways 
[11]

- it binds and covers the transactivational domain of 

the latter protein, thereby thwarting its transcriptional activity. Additionally, it also targets p53 

for degradation either by a mechanism involving p300 (which in its turn is inhibited by Arf) or 
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by phosphorylating p53 at its N-terminal end. The CDKN2A locus on chromosome 9p21 

mentioned earlier encodes two different proteins. We have already described briefly, the 

functions of one of these- p
16INK4A

 , which plays an important role in ensuring the functionality of 

pRb. The second product- named ARF (or alternate reading frame) differs from this protein in 

one exon 
[12]

. This protein also serves to stabilize p53 protein by binding MDM2, an event that 

leads to decreased degradation of p53 
[12]

.  

Based on the findings from the TCGA studies 
[4]

, the most common aberrations seen in 

the TP53 signaling pathway included ARF deletions (55%), MDM2 (11%) and MDM4 (4%) 

amplifications, in addition to mutations seen with the p53 gene itself (35%). Previous studies had 

reported that in grades II and III astrocytomas, p53 mutations correlated with an allelic loss of 

17p 
[3]

. Interestingly, loss of heterozygosity (LOH) at 17p was associated with an increase in 

mRNA levels of PDGF-Rα 
[3]

, although these studies also showed that the latter abnormality 

could exist without p53 mutations, suggesting that while p53 mutation might be an early event in 

tumor progression, it was not the initial event. Another interesting study 
[13]

 demonstrated that 

the acquisition of p53 mutations correlated with progression of brain tumors from low-grade to 

higher grades, and these mutations were shown to be propagated in a clonal fashion, establishing 

the importance of this “master watchman” protein in halting malignant progression. 

RTK pathway: Receptor tyrosine kinases are cell surface receptors; the ones that are important in 

glial neoplasms include epidermal growth factor receptor (EGFR), platelet-derived growth factor 

receptor (PDGF-R) and fibroblast growth factor receptor (FGF-R). These receptors bind their 

corresponding growth-factor ligands on the extracellular N-terminal side, and are consequently 

activated by a process known as auto-phosphorylation. Phosphorylation of the receptor serves 

two purposes 
[14]

. It results in activation of the intracellular kinase domain, which can then 
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phosphorylate the downstream substrates. Additionally, it creates docking sites for these 

signaling effector molecules involved in transducing the receptor’s signal. These downstream 

effectors of signal transduction are mostly proteins that possess domains (like the SH2 and PTB 

domains) which recognize and bind the phosphorylated tyrosine residues on the activated 

receptor 
[14-16]

. Most of the transducers are proteins with inherent or associated catalytic activity, 

for example- Phosphatidylinositol-3-kinase (PI3-kinase), Phospholipase C- γ (PLC- γ), Src 

family of tyrosine kinases, and the Ras- GTP-ase activating protein (Ras-GAP) among others. 

Other proteins that bind the activated receptor, but are devoid of any catalytic activity are the 

adaptor proteins- such as Grb2, Grb3, Nck, Shc, Crk etc. All these signaling pathway 

components participate in a cascade of reactions that eventually result in cell transformation, 

enhanced survival and proliferative abilities, invasiveness and tumor angiogenesis.  

Studies have proven that the PI3-kinase/AKT (Protein Kinase B) pathway is one of the 

most important ones mediating cellular transformation following receptor tyrosine kinase 

stimulation (reviewed in 17). In fact, it has been established that several growth factor signaling 

pathways converge onto this particular enzyme. The Class I family of PI3-kinases, like the 

others, has two subunits- a p85 regulatory subunit and a p110 catalytic subunit. The enzyme 

binds phosphorylated tyrosine residues via the SH2 domain on the p85 subunit, which leads to 

stimulation of the kinase activity of the p110 catalytic subunit 
[18]

. It is this activation that leads 

to further phosphorylation of the downstream effectors. 

PI3-kinase, which is a lipid kinase, acts upon Phosphatidylinositol-4,5- Bisphosphate 

(PIP2), which is then phosphorylated (and thereby activated) to Phosphatidylinositol- 3,4,5- 

Triphosphate (PIP3). PIP3 now recruits AKT to the cell membrane via its pleckstrin homology 

(PH) domain. Complete AKT phosphorylation is mandatory for its activation. Once that has 
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occurred, active AKT can either act upon cytoplasmic targets or translocate to the nucleus and 

interact with nuclear effectors. One of its many substrates include BAD- a pro-apoptotic protein, 

and the net result is a decrease in its activity. Unopposed action of the anti-apoptotic proteins 
[19]

, 

such as Bcl-2 and Bcl-Xl results in cell survival and consequently, proliferation. 

Tumor suppressor proteins such as neurofibromin 1(NF1) and phosphatase and tensin 

homolog (PTEN) act to keep the proteins that function downstream of RTKs and, therefore, the 

cell’s survival machinery under control. NF1 has a functional Ras-GAP domain and can 

therefore negatively regulate Ras activity 
[17]

. PTEN negatively impacts the PI3K pathway by 

dephosphorylating PIP3 to PIP2 
[17]

, thus blocking the pathway from proceeding further 

downstream.  

In astrocytomas, abnormal functioning of the growth factor receptors can arise in several 

ways- increased expression of ligand with consequently increased frequency of receptor-ligand 

complex formation, increased receptor expression or constitutively activated receptors that 

circumvent the need for ligand binding interactions. Mutations involving the effector molecules 

that lie downstream of the receptors are also common.  

The TCGA studies confirmed previous findings that the variant III deletion of the 

extracellular domain (vIII mutant) and carboxy-terminal deletions with correspondingly altered 

transcripts were the most common EGFR mutations
[4]

. In general, EGFR gene alterations were 

seen in 45% of the cases. Further. 22 out of the 91 GBM specimens studied had focal EGFR 

amplifications, 16 had point mutations and focal amplifications, and 3 cases had only EGFR 

point mutations without amplifications. Other studies have reported frequent over-expression and 

amplification of PGFR-α and β in GBM specimens 
[3]

. FGF-Rs were interesting in their pattern 
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of expression, as studies have shown that while low-grade astrocytomas express FGF-R2, they 

switch to FGF-R1 as they progress to high-grade tumors (reviewed in 3), although the functional 

significance of this was not yet determined. 

The PI3K pathway was found to be dysregulated by activating missense mutations in the 

p110 encoding gene- PI3KCA, resulting in an activated catalytic subunit of PI3K. The 

contribution of NF1 mutations to sporadic GBM has been definitively confirmed by the TCGA’s 

findings of somatic inactivating mutations or deletions of the NF1 gene in at least 47 of the 206 

cases 
[4]

. PTEN mutations frequently involve the phosphatase domains, and germline mutations 

in the NF1 and PTEN genes (resulting in Neurofibromatosis 1 and Cowden disease, respectively) 

each render the individual susceptible to sporadic glioblastoma 
[17]

. 

Based on these gene expression studies analyzing the molecular make-up across hundreds of 

GBM tumor specimens, 4 different classes are known, each of which has a predominant pattern 

of abnormal genetic alteration(s) 
[20]

. These four classes and their accompanying abnormal 

genetic markers are as follows: 

1. Classical subtype: Chromosome 7 amplification and chromosome 10 loss are seen in 

100% of tumors belonging to this sub-type with high level EGFR amplification seen in 

97% of the Classical sub-type. Over 50% of the tumor samples belonging to this sub-type 

demonstrated point or vIII mutations in EGFR. Along with the EGFR amplification, p53 

mutations were found lacking. Neural precursor and stem cell marker, nestin (NES), as 

also Notch and Sonic Hedgehog (SHH) pathways were found to be highly up-regulated in 

these specimens.  
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2. Mesenchymal subtype: Tumor samples belonging to this sub-type displayed a high 

frequency of mutations of the NF-1 gene. They were also found to display a combination 

of increased activity of mesenchymal and astrocytic markers- CD44 and c-mer proto-

oncogene tyrosine kinase (MERTK) - suggestive of the process of epithelial-

mesenchymal transition (EMT) which has been associated with trans-differentiated and 

de-differentiated tumors. 

3. Proneural subtype: Tumors belonging to this sub-type are characterized by alterations of 

PDGFRA and point mutations in isocitrate dehydrogenase 1 (IDH-1) 
[20, 21]

. PDGFRA 

alterations take the form of focal amplification as well as high levels of PDGFRA 

expression. TP53 mutations and loss of heterozygosity (LOH) were also seen to occur 

frequently in these tumors, while chromosome 7 amplification and chromosome 10 loss 

were infrequent events. This group of tumors also demonstrates an up-regulation of genes 

that are involved in oligodendrocytic development such as oligodendrocyte transcription 

factor 2 (OLIG2), PDGFRA and NK2 transcription factor (NKX2-2). High levels of 

OLIG2 have been shown to down-regulate the tumor suppressor p21, a finding that is 

confirmed in proneural tumors.  

4. Neural subtype: Expression of neuronal markers like neurofilament, light polypeptide 

(NEFL), gamma-aminobutyric acid (GABA) A receptor (GABRA1), synaptogamin 1 

(SYT1) and solute carrier family 12 (potassium/chloride transporter), member 5 

(SLC12A5) characterize tumors belonging to this group. The Gene Ontology (GO) 

categories associated with this sub-group included neuron projection and synaptic and 

axon transmission.  
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This information was then used in the study to compare against data from the brain 

transcriptosome database presented by Cahoy et al. which classifies genes into different sets 

associated with neurons, oligodendrocytes, astrocytes and cultured astroglial cells
[20]

. This 

comparison showed that genes associated with the proneural subtype were strikingly 

enriched with the oligodendrocytic signature, and not astrocytic. The classical group, on the 

other hand, is strongly related to the murine astrocytic signature. The neural sub-type was 

associated with genes involved in astrocytic and oligodendrocytic differentiation and also 

those expressed by neurons. The mesenchymal group was associated with cultured astroglial 

gene signature. Finally, it was noticed that while WHO grade III tumors and certain GBMs 

occurring in young patients mainly comprised proneural sub-type, classical and 

mesenchymal tumors were all GBMs 
[21]

 

 

Glioma Cell Invasiveness 

As mentioned above, the property of invasiveness is the first malignant characteristic that 

glioma cells acquire, and it also constitutes the chief confounding factor in therapy (see 

below). The earliest descriptions of glioma cell invasion are credited to Hans-Joachim 

Scherer, a neuropathologist who, while a political refugee in Belgium in the aftermath of 

WWII, published numerous papers that dealt extensively with the behavioral patterns of 

malignant gliomas 
[22]

. In his studies
[23]

, he designated those structures that were inherent to 

the glioma tumor and did not depend on pre-existing tissue (for example, canaliculi and 

papillary formations) as “proper structures”, whereas those that did depend on pre-existing 

tissue, were called “secondary structures” (including perivascular-, surface-, perineuronal- 
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and intrafascicular-growth). Finally, he described the formations wrought by tumor cell 

interactions with the proliferating mesenchymal tumor tissue as “tertiary structures”. 

During normal embryonic development, neural stem cells and glial progenitor cells 

extensively proliferate and travel great distances to reach their eventual destination. These 

activities are considerably diminished as the organism reaches maturity. The migratory 

pattern of glioma cells has been likened, interestingly, to that of their stem cell predecessors. 

Malignant gliomas, while similar to other malignant cells in their tendency to infiltrate, are 

nevertheless different. One reason for this difference is the limited volume of extracellular 

space available, owing to the complex mesh formed by the extensive axonal-, dendritic- and 

glial branching. However, it has been observed that in infiltrative gliomas (which includes 

Grades II, III and IV gliomas), this extracellular space increases in volume and becomes 

more irregular as extracellular matrix (ECM) components unusual for this space are seen to 

accumulate 
[23]

. Secondly, in most other malignant tumors, the cells move in and out of blood 

vessels and lymphatics, and travel via the bloodstream/lymph respectively to distant sites in 

the body. However, while glioma cells can penetrate the glial-derived portion of the blood 

vessels’ basement membrane (BM), they generally do not disrupt the endothelial portion of 

the BM, resulting in an inability of these cells to gain access to the vascular lumen 
[24]

. Thus, 

metastasis outside the brain by primary brain tumors is a relatively rare occurrence. 

Within the confines of the brain parenchyma, however, these malignant cells quite 

literally know no boundaries. In this regard, they have often been likened to “guerilla 

warriors” 
[23, 24]

 as these cells invade alone or in small groups, and abuse the “pre-existent 

supply lines”. The ECM component of the brain also includes material other than the 

vascular BM, and comprises such molecules as glycosaminoglycans (GAGs) and a few 
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structural ECM glycoproteins. The GAGs are of 4 kinds in the brain- hyaluronic acid, 

chondroitin sulfate, keratan sulfate and heparan sulfate 
[24]

. Although it isn’t clear yet as to 

how glioma cells directly interact with these GAGs in their path through the ECM, it is 

presumed that specific cell-substrate interactions must be at work, to facilitate the spread of 

these cells through the corpus callosum, the anterior commissure or the optic radiation, which 

are all very frequent routes of glioma cell invasion. Besides ECM components, the neoplastic 

cells may also utilize the surfaces of neighboring neuronal and glial cells as a scaffold for 

diffusely infiltrating the parenchyma, and it has been confirmed that myelin is among the 

most permissive substrates for glioma cells for adhesion and migration. This may account for 

the common histopathological finding of glioma cells’ preferential migration in white matter 

tracts. 

It has been estimated that these tumor cells can move to a distance of 4.0±7.0 cm from 

the parent tumor 
[24]

. Using time-lapse video microscopy it was found that glioma cells when 

grown in monolayer cell cultures, migrate at different rates depending on the substrate(s) 

they are exposed to, while other experiments have shown that the brain’s ECM components- 

particularly laminin, tenascin, collagen IV and hyaluronic acid- are preferred substrates for 

tumor cell adhesion and migration 
[24]

. 

The invasion of the neoplastic cells through the surrounding normal tissue is a complex 

process. In gliomas, this process can be broken down into 3 main steps 
[24]

: A. Adherence of 

the tumor cells to the ECM via cell adhesion receptors (Integrins, CD44). B. Degradation of 

the local ECM by proteases (such as matrix metalloproteases) and C. Sending out processes 

into the newly cleared space followed shortly thereafter by migration of the cell itself 

(involving actin cytoskeleton rearrangements). 
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Angiogenesis has also been postulated to contribute significantly to the process of 

proliferation and migration of glioma cells. In fact, it has been noted that the processes of 

tumor cell invasion and neovascularization are effected by similar signaling pathways, and 

mechanisms such as adhesion, proteolysis and migration are also common to both 
[24]

. For 

example, the expression of Scatter Factor (SF)/ Hepatocyte Growth Factor (HGF) has been 

observed to strongly influence glioma cell migration as well as endothelial cell migration in 

vitro. Moreover, the endothelial cells recruited by glioma cells to vascularize the growing 

tumor are a source of proteases that assist with invasion. In turn, the invading tumor cells 

utilize the newly formed vessels as guiding structures as they invade the host. 

Clinical features of patients with gliomas and current standard of care: 

The signs and symptoms with which a patient presents can be either non-specific (such as 

due to increased intracranial pressure) or specific (secondary to the tumoral location). 

Symptoms and signs arising out of an elevation in the increased intracranial pressure 

typically include headache, vomiting, nuchal rigidity, papilledema and sixth nerve palsy. 

Headache is usually worse in the morning (presumably due to mild CO2 retention during 

sleep leading to cerebral vasodilatation) and with certain postural positions. It may be 

relieved by vomiting. It is noteworthy that the headache, while prolonged and eventually 

constant, is rarely as severe in intensity as that seen in migraine or subarachnoid hemorrhage. 

These non-specific signs and symptoms are more common in the higher-grade gliomas as 

compared to the low grade tumors.  

Clinical features owing to the location of the tumor arise due to the irritative or 

destructive nature of the tumor. The symptoms and signs produced by these masses can 
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provide valuable clues as to their location. For example, a glioma situated in the temporal 

lobe or near the motor cortex is more likely to cause seizures. Tumors situated in the fronto-

temporal cortex can cause a person to present with mental apathy or memory loss and 

personality disturbances, while those located in the fronto-parietal cortex can result in 

hemiparesis and/ or sensory loss. 

MRI imaging- including T-1 weighted images (± gadolinium contrast)  and T-2 weighted 

images-   is the investigative method of choice, as it enables localization of the tumor and 

also aids in assessing the extent of infiltration into surrounding tissue and the tumor’s 

contrast enhancing ability. GBMs usually show up as hypo-intense to intense on T-1 images 

and, if intravenous contrast has been injected, a ring-like pattern of enhancement is seen, 

suggestive of leaky vessels typical of high grade malignant gliomas 
[25]

. On T-2 weighted and 

FLAIR images, in contrast, these masses show up as hyper-intense compared to normal brain 

tissue. Some of the more advanced tools that may provide further information about the 

tumor’s biochemistry, physiology and metabolic rate include MR spectroscopy, MR 

perfusion and F-18 fluorodeoxyglucose- positron emission tomography scanning (FDG-

PET). These can also help once therapy has begun, to distinguish areas of radiation necrosis 

from tumor recurrence 
[25]

, which appear very similar on FLAIR images. 

The current standard of care of treatment for gliomas (Grade III & IV) often involves a 

combination of Surgery, Radiation therapy (RT) and Chemotherapy. Surgery enables 

debulking of the tumor which facilitates a lowering of the intracranial pressure and provides 

tissue that can be examined microscopically to form a definitive diagnosis. However, the 

median survival time with surgery alone is 3-6 months 
[26]

. While surgical resection removes 

much of the malignant tissue and provides rapid symptomatic relief, a sizeable number of 
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residual tumor cells remain that have infiltrated the brain parenchyma and cannot be 

visualized. This accounts for the frequent recurrence and dismal survival time seen in these 

patients. In order to eliminate these cells, and prevent further recurrences, the patient is 

subjected to external beam fractionated radiotherapy as well as chemotherapy. Currently, the 

most widely used drug for the latter course of therapy is temozolamide (TMZ). It has been 

demonstrated that the 2-year survival rate for patients with GBM has gone from 10% to 40% 

from 2000 to 2010, since the practice of administering TMZ concomitantly with radiation has 

been adopted 
[27]

. Despite the multimodal approach to therapy the median survival of patients 

with GBM treated with RT and TMZ is only marginally better than that in patients treated 

with RT alone (14.6 months versus 12.1 months, respectively) 
[26]

. Hence, intensive research 

is being conducted- at the bench and at the bedside- to identify new targets and better drug 

delivery techniques. These strategies are predominantly aimed at identifying proteins (growth 

factors/ growth factor receptors/cytokines/transcription factors and so on.) that are aberrantly 

expressed in tumor cells versus their normal counterparts, and restoring them to their normal 

levels. 

One such protein that has been found to be highly expressed by glioma cells is a zinc 

finger transcription factor- Wilms’ Tumor-1 (WT1) 
[28]

. While WT1 plays a major role 

during the development of several different organ systems, its expression has been found to 

be down-regulated in most of the adult tissues- including adult human astrocytes 
[29]

. 

Previous studies in our lab have shown that although absent in normal human astrocytes, 

WT1 is expressed in a significant number of glioma cells from primary tumor specimens and 

GBM cell lines 
[28]

. The level of expression varied directly with the tumor grade, and down-

regulating the protein was found to decrease cell viability in vitro and in vivo, while 
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increasing cellular sensitivity to chemo- and radiation therapy 
[30-32]

. Given its transcription 

factor status, WT1 might mediate these effects by promoting and maintaining the malignant 

phenotype through the regulation of other genes. Little is known about the exact role of this 

protein in the pathogenesis of brain tumors: an understanding of the basic structure and 

functions of WT1 is therefore essential in order to better understand the possible 

mechanism(s) by which it can facilitate tumorigenesis. 

Wilms’ Tumor-1:  

The Wilm’s Tumor- 1 protein (WT1) is a transcription factor belonging to the zinc-finger 

family. The gene encoding this protein- wt1- was first cloned in 1990 
[33]

 and has been 

localized to the chromosome 11p13 
[34, 35]

. The mRNA transcript consists of ten exons 
[36]

, 

with the two most common splicing site variations involving the inclusion or exclusion of 

exon 5 and/or exon 9 (Fig.). Exon 5 codes for an in-frame 17-amino- acid peptide and exon 9 

codes for a tripeptide consisting of lysine, threonine, and serine (KTS). This tripeptide 

sequence is inserted in-frame between the 3
rd

 and 4
th

 zinc fingers 
[37]

. It has been 

demonstrated that presence of both splice inserts (
+
Exon 5/

+
KTS) is the most common variant 

and the absence of both (-/-) is the least 
[36]

. Further, the ratio of +KTS to –KTS isoforms, 

under normal physiological conditions, has been found to be 2:1 
[34]

. 
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Fig. 1-1: Schematic representation of the four most commonly studied isoforms of WT1. The 

inclusion or exclusion of exon 5 and KTS tripeptide give rise to these four isoforms. Numbers 1-

4 represent the zinc fingers that bind DNA. 

 

Other isoforms arise from utilizing alternate start sites that may be upstream of the 

regular start site or within the exons. Certain exons are subject to RNA editing 
[38]

 giving rise to 

additional differences in the protein product. Recently, another isoform of WT1, called 

Alternative WT1 (AWT1) was discovered, which was found to be encoded from within the first 

intron and consequently has an alternative exon 1 sequence 
[34, 38]

; this protein shows exon 

5/exon 9 splice variants similar to its regular counterpart. Another isoform has been isolated in 

different cancer cells, and its start site lies at the end of the fifth intronic sequence 
[38]

. This 

diversity in coding start sites, alternative splicing and mRNA editing contributes to the existence 
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of nearly 36 isoforms 
[38] 

known today, and does not preclude the possibility of more such 

variants being discovered in the future.  

The net result is the production of the WT1 protein, a 52-54 kDa protein 
[36]

, that serves 

as an important regulator of several growth and developmental processes. Early experiments 

using WT1 knockout mouse models showed that a congenital absence of WT1 protein led to 

death (by apoptosis) of the cells constituting the metanephric blastema, and renal agenesis by 

E12 
[39, 40]

. However, the fatality associated with WT1 gene knockout in these mouse embryos 

appears to have resulted from severe cardiovascular anomalies 
[24]

. Eliminating expression of the 

protein after E13 in these animals resulted in a disruption of differentiation of the metanephric 

mesenchyme, and not apoptotic cell death. Hence, it has been argued that the role of WT1 in 

promoting proliferation versus facilitating differentiation would depend, among other things, on 

the differentiation status of the cells involved. 

Structurally, WT1 protein consists of an amino terminal that is rich in proline and 

glutamine, and a carboxy terminal that has four adjacent Krupple-like residues, two each of 

cysteine and histidine 
[34, 35]

. These residues chelate zinc, thereby forming a “zinc finger,” which 

then fits neatly into the groove of the DNA helix. The zinc fingers of the WT1 are designated I 

through IV. The N-terminal mediates interactions of the protein with RNA and other proteins. It 

is critical for the transcriptional regulatory activities of the protein as proven by deletion studies 

[34]
. The AWT1 lacks the first 147 amino acids due to an alternative start site. Consequently, it 

lacks a functional repression domain
[34]

. Madden et al. 
[41]

 showed that the transcriptional 

repression site (R) was located between amino acid residues 70 to 180, while the transcriptional 

activation domain (A) was juxtaposed, located between amino acid residues 180 to 250. Later, it 

was shown that this R domain could directly suppress the function of the A domain- by self-
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association or through interaction with a nuclear protein, and this inhibition was not cell-type 

specific 
[42]

. 

The zinc fingers have important interactions with proteins- p53, prostate apoptosis 

response factor-4 (Par-4), E1b, Ciao1 and U2AF65 
[34, 42]

, which can modify the function of the 

WT1. Zinc fingers I, II and III also contain nuclear localization signals 
[36]

. The key purpose of 

these sites though, is to serve as the DNA binding motifs of which they recognize a variety. 

These include GC- rich sites that resemble the Egr-1 consensus sequences, with which zinc 

fingers II-IV share ~61% homology (5’-GCGGGGGCG-3’) 
[36]

, a high-affinity WTE site (5’-

GCGTGGGAGT-3’) 
[43]

, or (TCC)n motif 
[44]

. 

Studies have revealed that +KTS isoforms- which account for most of the WT1 present in 

cells- could not bind the established consensus sites for WT1 with as much ease as the –KTS 

isoform 
[45-47]

. The insertion of the KTS tripeptide between the 3
rd

 and 4
th

 zinc fingers increases 

the flexibility of the linker region between them, which de-stabilizes the DNA-protein complex, 

and in turn leads to a decreased affinity of this particular isoform for DNA binding sequences 
[45, 

46]
. The alternative splicing event of WT1, to include or exclude KTS, is evolutionarily 

conserved 
[48]

, and its consequences led scientists to deliberate over its significance. Their search 

for an answer led to the discovery of an additional role for WT1- namely post-transcriptional 

regulation. 

The concept of a transcription factor that can also regulate post-transcriptional processes, 

although unusual, has been acknowledged 
[49-52]

.  The earliest findings pointing to a role for WT1 

in post-transcriptional regulation established that + and - KTS isoforms of WT1 differentially 

localized with splicing factors and transcription factors, which were RNase and DNase sensitive, 

respectively 
[53, 54]

. The RNA recognition motif was then located in the protein sequence 
[55]

, and 
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subsequent studies demonstrated that WT1 co-localized with several splicing factors- such as 

U2AF65 and WTAP among others 
[56-58]

. The presence of WT1 in nuclear poly (A)
+ 

ribonucleprotein (RNP) particles 
[54]

 and, more recently, RNP particles in acute myeloid 

leukemia cells
[59]

, its ability to shuttle between the nucleus and cytoplasm and localization of the 

protein in functional polysomes 
[60]

 all substantiated its newly proposed role. That WT1 protein 

also bound mRNA transcripts was demonstrated both in vitro and in vivo 
[48, 49, 61]

 and the zinc 

fingers were found to play a role in this RNA binding interaction 
[49, 61]

. Significantly, a protein 

that binds the poly-A tail of a mRNA transcript can increase the stability of the latter by 

protecting it from rapid destruction 
[62]

. Recent experiments have also demonstrated that 

WT1+KTS, in association with the Constitutive Transport Element (CTE), can promote the 

translation of unspliced transcripts with retained introns 
[63]

. 

 

WT1 in malignancies  

In the developing embryo, WT1 is expressed in the kidney (condensing metanephric 

blastema and podocytes), brain (area postrema), spinal cord (ventral horn motor neurons), spleen, 

the gonadal ridge mesothelium and the mesothelial lining of all organs 
[64]

. In the adult, WT1 is 

normally expressed in the glomerular epithelium of the kidney, uterine decidualcells, granulosa 

cells of the ovary and Sertoli cells of the testes 
[64]

.The importance of WT1 was first discovered 

by virtue of its absence leading to the development of Wilms’ tumor or nephroblastoma, a 

pediatric renal malignancy that was first described by Karl Max Wilms in 1899 
[34-36]

. This 

childhood tumor was thought to arise from mesenchymal blastema cells that undergo abnormal 

proliferation instead of differentiating into metanephric structures. It was, therefore, naturally 
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postulated that the WT1 functions as a tumor suppressor in this context, and most studies 

assiduously set about proving this point.  

It was subsequently discovered that most Wilms’ tumors also contained wildtype WT1 

[43]
, as opposed to earlier findings. WT1 expression is seen to be activated in a variety of other 

tissue types as the cells undergo malignant transformation. These tissues can be of epithelial 

(carcinomas of the gastrointestinal tract, lung or hepatocellular carcinoma), mesenchymal (bone- 

and soft tissue sarcomas, desmoplastic small round cell tumors or DSRCTs), ectodermal (e.g. 

gliomas, melanomas) or hematopoietic (leukemias and others) origin 
[28, 59, 65-78]

. Using 

immunohistochemical staining across a broad spectrum of tumor specimens, it was observed that 

the protein localized in different sub-cellular compartments depending on the tumor type 
[79]

. In 

tumor specimens isolated from patients with GBM, some soft tissue sarcomas, osteosarcomas, 

and malignant melanomas of the skin, WT1 was found predominantly in the cytoplasm. 

However, in certain other malignancies, such as ovarian tumors and desmoplastic small round 

cell tumors, WT1 was found in the intranuclear compartment. 

Ye at al.
 [80]

 demonstrated that in the region of its DNA-binding domain- the zinc fingers, 

WT1 could be phosphorylated in vitro by a variety of purified kinases including cAMP 

dependent kinases such as Protein Kinase A (PKA), Protein Kinase C (PKC) and Casein Kinase 

II (CKII) as well as by those obtained from nuclear extracts. Interestingly, they showed that 

phosphorylation of WT1 resulted in an impairment of its ability to bind DNA but not mRNA, 

and activating PKA significantly influenced the sub-cellular compartmental localization of WT1 

by trapping the protein in the cytoplasm. In the particular case of brain tumors, the intra-

cytoplasmic localization of the protein 
[51, 79, 81]

 might enable it to interact with the RNA, stabilize 
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it, and alter its processing and translation, leading to elevated levels or a mutant form of the 

protein. This could be one way in which WT1 can function as an oncogenic protein in gliomas. 

Moreover, the cytoplasmic localization of WT1 has been linked with its binding to actin 

filaments via the zinc finger domain 
[82]

. Interfering with actin depolymerization resulted in an 

abolition of nucleo-cytoplasmic shuttling of WT1, moved it off the cytoplasmic polysome 

fraction and impaired its ability to bind DNA and RNA. The study concluded that WT1 might 

function as an adaptor molecule, hoisting a specific subset of mRNAs on to the actin 

cytoskeleton for transporting to the target location. In a separate study using stably transduced 

TYK (ovarian carcinoma) cells, 6 other carcinomatous cell lines and one fibrosarcoma cell line 

with the different WT1 isoforms mentioned above, it was noted that in 5 out of the 8 cell lines, 

the expression of WT1(-/-) isoform induced morphological changes
[83]

. Further studies in TYK 

cells showed that these morphological changes were associated with decreased cell-substrate 

adhesion, increased cellular invasion, decreased levels of α-actinin 1 and cofilin expression, and 

an increase in gelsolin expression, i.e. an alteration in cytoskeletal dynamics. On a similar note, 

WT1 was found to be expressed in a significantly higher number of vertically growing 

melanoma cells compared to radially spreading ones, again arguing for a possible role of WT1 in 

facilitating tumor cell invasion 
[76]

. 

WT1 has also been found to be expressed in the endothelial cells of tumors, consistent 

with its role during development where it significantly contributes to the normal vascularization 

of the embryonic heart 
[84]

. 113 tumor specimens from different tissue types were analyzed and 

WT1 protein was found to be expressed in the vascular endothelial cells of 108. WT1 was also 

shown to increase the proliferation and migration of endothelial cells by regulating the levels of 

the Ets-1 transcription factor in these endothelial cells 
[85]

. 
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An important aspect of studying WT1 biology involves ascertaining its target genes. This 

list and the regulatory effect usually vary from one cell type to another. For example, while WT1 

was found to activate the transcription of E-cadherin (Cdh-1) in stably transfected mesenchymal 

fibroblasts- the NIH3T3 cells
 [102]

, in epicardial cell extracts from mouse embryos, WT1 was 

found to repress Cdh-1 expression 
[86]

. This cell-specific effect may arise from the role of WT1 

in regulating a balance between mesenchymal- epithelial transition (MET) or epithelial-

mesenchyme transition (EMT) 
[87]

. In developing kidney cells, it has been postulated that WT1 

expression facilitates cell differentiation and their exit from the cell cycle (MET). In other tissue 

types, such as the Sertoli cells and neuronal (+KTS isoforms especially) and vascular progenitor 

cells, WT1 appears to protect cells from apoptosis and facilitates cellular proliferation; in the 

developing heart, in particular, it has been found to push towards EMT- a state also seen in 

tumorigenesis. 

The transcriptional activity of WT1 has also been found to depend on its expression 

levels, the predominant isoforms (+KTS versus –KTS) and the relationship of the transcriptional 

start site to the WT1 DNA binding site (upstream, downstream or both) 
[34]

, as was noted with its 

effect on PDGF-A. The PDGF-A promoter was found to have a pair of Egr-1 consensus 

sequences upstream and a (TCC)n site downstream of the start site 
[44]

, and it was established that 

transcription of PDGF-A could be activated or repressed, depending upon whether binding of 

WT1 occurred on one or both sides of the start site, respectively 
[88-90]

.  

Thus, it is clear that there are several complex issues that need to be addressed to get a 

clearer understanding of the role that WT1 might play in tumorigenesis, and, more specifically in 

gliomagenesis. One approach would be to examine its role(s) and target genes in a very tissue- 

and cell-type specific manner, keeping in mind its ability to interact with other proteins such as 
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p53 
[91]

, which could also alter its regulatory ability. Moreover, it is rational to study the effects 

of WT1 in cell-based model systems by altering the levels of endogenously expressed WT1 

rather than inducing its expression in WT1 null cells, since the role of WT1 is very isoform- and 

concentration- sensitive as mentioned previously. 

WT1 has also been found to be a potential cancer antigen target on account of two 

features 
[92, 93]

. The first is based on its oncogenic function in promoting and maintaining the 

transformed phenotype of malignant cells which ensures its constant expression, and prohibits 

the escape of tumors from immunological surveillance by down-regulating WT1 expression. 

Moreover, WT1 is expressed by a variety of malignancies.  Hence, it could potentially be used in 

antigen-directed immunotherapy in several different malignancies. A study conducted by the 

NCI examined the potential of 75 antigenic molecules to determine which of these were 

candidate antigens for immunotherapy 
[94]

. Different criteria were utilized in this analysis in the 

following descending order of importance: (a) therapeutic function, (b) immunogenicity, (c) role 

of the antigen in oncogenicity, (d) specificity, (e) expression level and percent of antigen-

positive cells, (f) stem cell expression, (g) number of patients with antigen-positive cancers, (h) 

number of antigenic epitopes, and (i) cellular location of antigen expression. The results of the 

study showed that while there was no ideal candidate antigen, WT1 was found to be the most 

promising cancer antigen 
[94, 95]

. 

It has been pointed as a shortcoming of immunotherapy that, in comparison to 

chemotherapy, the response rate (which is given by the percentage of complete response plus 

partial response) is very low 
[95]

. However, in defense of the immune-therapeutic strategy, the 

mechanism of action is very different from that in chemotherapy in that immunotherapy utilizes 

the body’s inherent defense mechanism to kill tumor cells, which gives rise to a latent period 
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during which the tumor continues to grow. Thus, it contrasts sharply with the rapid cytolytic 

effects seen with chemotherapeutic drugs. The advantage with immunotherapy, however, is its 

low risk of toxicity, enabling repeated vaccinations. This results in disease stabilization or tumor 

shrinkage after an initial growth phase (late response) or long-term disease stabilization with 

good quality of life. Hence, it has been suggested that stable disease (SD) should be given more 

importance when evaluating response to a cancer-antigen directed vaccine, especially if the SD 

index persists long-term, as was observed to be the case with the use of WT1-specific vaccine in 

patients with GBM 
[93]

. More specifically, the disease control rate (calculated by the number of 

patients with complete response, partial response and stable disease) in the 3-month trial period 

was found to be 57.1% 
[96]

. Current studies in this context aim at determining whether combining 

WT1 peptide vaccination with the current chemotherapeutic drug of choice- TMZ- is likely to be 

more efficacious than either treatment alone. 

Conclusion 

It appears that the WT1 protein has a very complex behavioral pattern. Rather than 

classifying it as a tumor suppressor or oncogene, it should be viewed as a regulator of several 

key processes including proliferation, cell migration, angiogenesis and differentiation. Its exact 

function depends on the cell context and cell differentiation status, among other things. In glioma 

cells, it is undoubtedly a promoter of the malignant phenotype, and a thorough examination of its 

role and its target gene repertoire is, therefore, of utmost importance. This would enable the 

development of a multi-target therapeutic approach to deliver a stronger blow while 

simultaneously circumventing issues such as tumor cells resorting to alternate survival pathways. 



 
 

27 
 

Chapter 2: WT1 expression in U1242-MG and GBM-6 cell lines promotes cellular 

invasiveness. 

 

Abstract 

 

WT1 expression was previously found in our laboratory to be up-regulated in a 

significant number of glioma cell lines and primary tumor specimens, and this transcription 

factor was noted to significantly impact cellular invasiveness and cellular proliferation (in vitro 

and in vivo) in U251-MG cells. This study aimed to analyze its expression in two hitherto 

unexamined cell lines- U1242-MG and GBM-6- both of which are noted for their invasive 

potential 
[99,100]

. Using Real Time RT-PCR and Western blotting, we found that WT1 was 

expressed in both cell lines. Moreover, silencing WT1 expression in these cell lines was 

associated with a remarkable decrease in their invasiveness in vitro but the proliferative rates of 

the siRNA-treated cells were similar to their control counterparts. We also sought to examine the 

effects of WT1 silencing on the expression of some of the previously established target genes- 

PDGF-A, Snai1, E-cadherin and IGF-1R, to account for the functional effects of WT1. While no 

consistent effect was noted upon manipulating WT1 levels on the expression of PDGF-A, Snai1 

and E-cadherin, the amount of WT1 inversely correlated with IGF-1R expression in U251-MG 

cells at the RNA and protein levels. To ascertain whether the increased IGF-1R expression could 

account for increased cell death seen with WT1 silencing, we performed cell viability assays on 

cells treated with IGF-1R siRNA. Our results show a trend towards a decrease in cell viability 

upon IGF-1R silencing, suggesting that the decreased cell proliferation caused by WT1 down-

regulation in U251-MG cells does not involve IGF-1R mediated paraptosis. We conclude that the 
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target genes previously established for WT1 are not upheld in the glioma cell lines studied, and 

further studies are necessary to elucidate its downstream targets in the specific context of glioma 

cells. 

Introduction 

Malignant gliomas include Grade III and Grade IV glial tumors and constitute an 

extremely formidable group of malignant neoplasms that are highly aggressive and resistant to 

most conventional modes of therapy. Studies are in progress to identify molecules that can be 

targeted to achieve a better therapeutic outcome. One such intracellular protein that has been 

implicated for its potential role in the neoplastic progress is the zinc finger transcription factor- 

Wilms’ Tumor-1 (WT1).  

WT1 was thought to function as a tumor-suppressor for several years following its initial 

discovery, and it has been well established as a co-ordinator of several key processes during 

embryonic development 
[36, 64]

. Most of its functional studies were conducted in NIH3T3 and 

HEK293 cells 
[41, 89, 95]

, wherein reporter assays mostly showed a repressive effect on the 

transcriptional regulation of most oncogenic proteins. This was followed by a diametrically 

opposing change towards ascribing an oncogenic role to WT1, as its unusual expression in 

malignant cells of different tissue types became increasingly evident 
[59, 65-78]

. In most of these 

tumors, it was noted that down-regulating the endogenous expression of WT1 led to a reversal of 

the malignant phenotype of the tumor cells 
[97, 98]

. Moreover, it was also demonstrated that not 

only did WT1 regulate the expression of its targets at the transcriptional level, but it could also 

exert its influence beyond transcription 
[53, 54]

. At present, researchers studying the intriguing 

facets of this very complex protein have arrived at the conclusion that interpretation of the roles 
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and functions of WT1 should be viewed strictly in the context of the the specific features of the 

cells under investigation, including cell type, cell differentiation status, DNA binding sites 

available and the isoforms of WT1. 

We have previously demonstrated that the aberrant expression of WT1 in glioma cells 

contributes to enhanced cell proliferation in vitro and in vivo and resistance to radiation- and 

chemotherapy 
[28, 30-32]

. Our findings on the effect of WT1 on cell proliferation are in agreement 

with other studies involving glioma cells as well as other tumors. While it has been shown that 

immunologically targeting WT1 in patients with gliomas has had promising results 
[96]

, aspects 

of its functional biology in these tumors remains largely unknown.  Here, we show for the first 

time that WT1 is expressed in two highly invasive glioma cell lines- U1242-MG and GBM-6. In 

these cells, WT1 was found to dramatically enhance cell invasion but not proliferation. Our 

rationale for selecting these two cell lines was based on previous studies by other groups that 

have established these cells as closely mimicking the pathology of GBM when implanted 

orthotopically in athymic mice 
[99, 100]

. 

In this study, we also sought to identify potential molecular targets for WT1 in 

facilitating these malignant phenotypic features of glial neoplasms. To do this, we examined the 

effect of manipulating WT1 on four of its previously established target genes- IGF-1R 
[101]

, 

PDGF-A 
[88-90]

, Snai1 and E-cadherin 
[86, 102]

. The latter three candidate proteins were chosen 

mainly for their facilitation of the invasive process (PDGF-A and Snai1 
[14, 103, 104]

) or for 

inhibiting it (E-cadherin 
[104, 105]

). The up-regulation of IGF-1R following WT1 silencing in 

T98G 
[30]

 cells was previously postulated to contribute to a non-apoptotic form of cell death 

called paraptosis 
[30, 106]

. We set out to ascertain the validity of this hypothesis by first confirming 

the inverse correlation between these two proteins in U251-MG cells, followed by siRNA 
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mediated IGF-1R silencing to determine whether it led to enhanced cell proliferation. Our 

findings show that WT1 is consistently and inversely correlated with IGF-1R expression in 

U251-MG cells. This inverse correlation, however, was not found to explain the effect of WT1 

on promoting cellular proliferation. We also noted a lack of consistent correlation between the 

expression levels of WT1 and the pro-invasive proteins that we examined- PDGF-A, Snai1 and 

E-cadherin in the three cell lines tested. 

Materials & Methods 

Cell culture: Human glioma cell line, U251-MG, was obtained from the ATCC, U1242-MG and 

GBM-6 cells were kindly gifted by Dr. James Van Brocklyn and Dr. C. David James/Dr. Paul 

Dent respectively. All cells were cultured in Dulbecco's modified Eagle's medium containing 

10% fetal bovine serum, glutamine, nonessential amino acids, and 1% penicillin-streptomycin in 

a humidified atmosphere of 5% CO2. 

siRNA transfections: Cells were plated in 6-well plates at a density of 1.5-2 x 10
5
 cells per well. 

24 hours after plating, the cells were transfected as described previously 
[32]

. Briefly, 

transfections were carried out using the pre-designed siGENOME SMARTpool (Dharmacon) 

containing 4 siRNA sequences directed against WT1 and/ or IGF-1R. A pool of 4 non-targeting 

siRNA sequences (siCONTROL Non-Targeting Pool, Dharmacon) was used as a control and 

will be referred to as siScramble (Scr). The final concentrations of Scr control and anti-WT1 

siRNA were 100nM, and for siRNA directed against IGF-1R, the final concentration was 50nM. 

These siRNA concentrations were determined by a series of optimization experiments. 24 hours 

after transfection, 10% DMEM supplemented with 1% penicillin/streptomycin was added. 48 

hours after transfection, the cells were harvested with trypsin, and following re-suspension of the 
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cell pellet in 10% DMEM, the cells were re-plated for RNA extraction for qRT-PCR, protein 

extraction for Western Blotting and for cell proliferation assays and/ or invasion assays. 

Plasmid construction and transient transfection: WT1 expression plasmids (in pcDNA3, 

Invitrogen) containing either WT1 (+/+) or WT1 (-/+) isoforms were kindly provided by Dr. 

Charles T. Roberts, Jr. and have been described previously 
[32]

. Cells were plated in triplicate at a 

density of 2 x l0
5
 in six well plates and allowed to attach overnight in DMEM without 

penicillin/streptomycin. Cells were transfected with a mixture of 3µl Lipofectamine 2000 

(Invitrogen) and 1.0µg plasmid diluted in 500µ1 DMEM without fetal bovine serum or 

penicillin-streptomycin and incubated for 4 hours at 37
0
 C. After 4 hours, cells were 

supplemented with 1.5 ml DMEM with 10% fetal bovine serum without penicillin-streptomycin. 

Twenty four hours after transfection, the conditioned media was removed and replaced with 2.0 

ml fresh DMEM with 10% fetal bovine serum without penicillin/streptomycin. Forty eight hours 

after transfection, cells were selected in DMEM containing 600µg/ml Geneticin (Invitrogen). 

Selection media was changed every 4 days. 

RNA Extraction: Total RNA was extracted using Trizol (Invitrogen) as per the manufacturer’s 

protocol. Following RNA extraction, the RNA content was quantified using the 

spectrophotometer, and roughly 12µg of RNA per sample were subjected to DNase treatment 

using RQ1 DNase (Promega). Samples were then analyzed using Real Time RT-PCR. Synthesis 

of probes and primers for WT1 was carried out at the VCU Nucleic Acid Research Facilities. 

The Taqman primer mixes for the target genes were purchased from Applied Biosystems. All 

Real Time PCR reactions were performed at the VCU Nucleic Acid Research Facilities. 
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Western Blotting: Protein was extracted from cell lines using SDS buffer (50 mM Tris-C1, 1% 

SDS, 10% glycerol) supplemented with protease inhibitors. The concentration of protein was 

determined by DC protein assay (Bio Rad). For protein analysis of cells transfected with WTl, 

10µg of total protein lysate were separated by SDS-PAGE and transferred to nitrocellulose 

membrane as per manufacturers' protocol (Invitrogen). The membrane was then blocked with 5% 

nonfat milk solution for 1 hour at room temperature. Mouse anti-WT1 monoclonal antibody 

(1:200, Clone: 6F-H2, Dako), rabbit anti-IGF-1R polyclonal antibody (1:1000, Cell Signaling) 

were diluted in blocking buffer and the blots were incubated with the respective primary 

antibodies overnight at 4
0
 C. The membranes were then washed six times in tris buffered saline 

containing 0.05% Tween-20 before and after a 1-hour incubation at room temperature with 

horseradish peroxidase-conjugated anti-mouse (1:2000) and anti-rabbit (1: 3000) secondary 

antibodies directed against anti-WT1 and anti-IGF-1R, respectively. Anti-Cyclophilin A 

monoclonal antibody (1: 30000, Upstate Biotechnology) or Anti-beta actin monoclonal antibody 

(1:5000, Sigma) was used as a control for protein loading. Blots immunostained for WT1 were 

developed using Pierce Supersignal West Dura Substrate and those for IGF-1R were developed 

using the ECL™ Western Blotting Detection Reagents (Amersham Biosciences). 

Cell proliferation Assay: Cellular proliferation was measured at specified time-points after 

transfection using the CellTiter-Glo® Luminescent Cell Viability assay (Promega). Cells were 

plated in 3-5 replicates per treatment group in opaque 96-well plates 48 hours after transfection. 

These cells were lysed for 15 minutes in Cell-titer Glo ATP viability assay reagents as per the 

protocol at specified time points following transfection. Relative luminescence was then detected 

on a Lumistar luminescence plate reader (BMG Technologies). Each experiment was performed 

in triplicate. Validation studies in our laboratory demonstrate that this assay provides highly 
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reproducible results with strong linear correlation (R
2
 > 0.98) to cell counting with the Trypan 

exclusion technique, and with high throughput capacity (data not shown). 

Invasion assay: Matrigel (BD Biosciences), previously aliquoted was thawed at 4
0
 C on ice 

overnight before use. 48 hours post-transfection, cells were plated in triplicate on Matrigel-

coated 8.0µm Pore Polycarbonate Membrane Inserts of 6.5mm Transwell® plates (Corning- 

3422) at a density of 5000 cells/500µL.  96 hours following transfection, media was removed 

from the filters and the lower chambers, the upper part of each filter was scraped with cotton-

tipped applicators to remove the cells that had not invaded, and each lower chamber was rinsed 

with PBS. 200µL of trypsin-EDTA (Invitrogen) was added to each chamber to harvest the cells, 

and 800µL of 10% DMEM was used to neutralize the enzyme. The lower part of each filter was 

rinsed with media, in order to collect cells that had invaded through the Matrigel-coated insert, 

but not adhered to the base of the lower chamber. After centrifugation at 1000 rpm for 5 minutes 

to collect the cells, the supernatant was removed from each tube, and fresh media was added to a 

volume of 500µl. The entire volume was then plated (100µl/well) into an opaque 96-well plate 

for assaying the ATP content as described above. Each experiment was conducted in triplicate. 

Statistical Analysis: All comparisons were made between two groups- cells treated with non-

targeting siRNA (scr) and those treated with siRNA directed against WT1 or IGF-1R. Each 

experiment was performed at least three times. Results were analyzed using Student’s T-test 

(two-tailed, paired). Significance level was set at p value <0.05. Error bars were calculated using 

standard deviation measurements. 
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Results 

WT1 is expressed in GBM-6 and U1242-MG cell lines. Using western blotting, we detected 

WT1 expression in these cell lines (Fig.2-1). Cell extracts from the prostatic carcinoma cell line 

(PC3) was used as a positive control for WT1. Both GBM6 and U1242-MG show the 

characteristic WT1 double band, suggesting the possibility of the + and – exon 5 variants that 

differ by 17 amino acids, at the predicted molecular weight level (52-54 kDa). 

 

Figure 2-1: WT1 expression in GBM-6 and U1242-MG cells. Using western blotting technique, 

WT1 protein was detected in these highly invasive cell lines. 20 µg of protein was loaded in each 

lane. Cell lysates in Lane A: PC3 (control), lane B: GBM-6, lane C: U1242-MG. 
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Silencing WT1 inhibits cellular invasiveness in GBM-6 and U1242-MG cells in vitro. Using 

siRNA directed against WT1, we confirmed efficient silencing of this transcription factor by 

Real Time RT-PCR (Fig.2-2A). On the third day after transfection, we found that WT1 level in 

GBM-6 cells that had been treated with si- WT1 was 14.44% (S.D.: ± 2.89) of that seen in its 

control counterpart that had been treated with non-targeting siRNA (n=3, **p≤0.001). In U1242-

MG cells, there was less knockdown (50.47% [S.D.: ± 3.49] of control, which was nevertheless 

highly significant (n=3, **p≤0.001).  

We observed that these decreases in cellular content of WT1 remarkably depressed the 

invasive capacity of these cells (Fig.2-2B). In GBM-6 cells, there was nearly a 95% decrease 

(S.D.: ± 22.65) in the ability of the siWT1-treated cells to invade through the Matrigel-coated 

filter (n=3, *p≤0.05) compared to the control cells, while in U1242-MG cells, silencing WT1 

caused a decrease in cellular invasiveness to 20.62% (S.D.: ± 1.12) of the control cells (n=3 

**p≤0.001). These differences in the ability to invade could potentially be accounted for by 

decreased proliferative rates in the siRNA transfected cells versus control cells. Hence, we 

performed cell viability assays on these same groups of cells. Our results showed that the growth 

rates of control and treated cells were not significantly different across three independent 

experiments (Fig.2-2C). Also, based on our previous experiments we found no statistically 

significant differences between untreated and non-targeting siRNA (scr) treated cell groups. 

Hence, we show only comparisons between the scr and targeting siRNA treated groups. 
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Figure 2-2: WT1 silencing in GBM-6 and U1242-MG cells causes decrease in cellular 

invasiveness. A. RNA was extracted at day 3 post-transfection. WT1 silencing was confirmed 

using Real Time RT-PCR (n=3, p ≤ 0.001). WT1 expression in siWT1 treated cells is first 

normalized to the loading control and expressed as a percentage of their control counterparts. 

B.WT1 down-regulation was associated with a decrease in GBM-6 and U1242-MG cellular 

invasiveness at day 4 post-transfection (n=3, *p < 0.05, **p< 0.001; RLU= relative 

luminescence units). Cell invasiveness in WT1 silenced cells is expressed by calculating the ATP 

content in the si groups versus scr groups and then expressed as a percentage of that seen in 

control cells. C. GBM-6 and U1242-MG cells that were treated with siRNA directed against 

WT1 exhibited proliferative rates similar to the cells that were treated with non-targeting siRNA 

(n=3; RLU= relative luminescence units). 
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WT1 expression in U251MG cells correlates inversely with IGF-1R levels, but not with 

PDGF-A. We have previously shown a significant decrease in cellular proliferation in vitro and 

in vivo with WT1 silencing 
[31]

. Our current results in U1242-MG and GBM-6 cells also confirm 

our previous findings in U251-MG cells that WT1 plays a major role in regulating cellular 

invasiveness. Based on these findings, we chose PDGF-A, Snai1, E-cadherin and IGF-1R to 

determine if WT1 might mediate these effects on invasiveness and proliferation by regulating the 

expression(s) of any of these genes. We could find no consistent effect upon manipulating WT1 

expression on the level of PDGF-A, Snai1 or E-cadherin (data not shown).  

However, in U251-MG cells, silencing WT1 was associated with an increase in IGF-1R 

protein expression (Fig. 2-3A). We transduced U251-MG cells with plasmids containing WT1 

(+/+) and (-/+) isoforms as these are the most predominant isoforms seen in glioma cells. The 

increase in WT1 expression as a result of this manipulation was associated with a decrease in 

IGF-1R expression at the RNA level as shown in Fig. 2-3B (n=3). Over-expressing WT1 (+/+) 

resulted in a marked increase in WT1 protein expression and was accompanied by a reduction of 

approximately 50% (S.D.: ± 13.35) in IGF-1R protein expression while only a small increase in 

WT1 protein expression with WT1 (-/+) transfection paradoxically increased IGF-1R protein 

levels (Fig.2-3C). Notably, silencing WT1 expression in U1242-MG and GBM-6 cells had no 

effect on IGF-1R expression levels (data not shown). Thus, it appears that in U251-MG cells, 

and as per previous studies in T98G cells 
[30]

, WT1 expression correlates inversely with IGF-1R.
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Figure 2-3: WT1 levels vary inversely with expression of IGF-1R in U251MG cells. A. WT1 

silencing was associated with increased IGF1R expression at the protein level (representative 

blot). 20 µg protein was loaded in each lane. Cyclophilin was used as a control to ensure equal 

protein loading. B. WT1 over-expression was carried out using WT1 (+/+) and WT1 (-/+) 

isoform containing plasmids. Cells transduced with an empty plasmid served as Vector Control 

(VC). IGF-1R expression was specifically and consistently low in cells that had been transfected 

with WT1 (+/+) plasmid at the RNA (n=3, p=0.05) and (Fig.2-3C) protein levels. U251-MG 

cells transfected with WT1 (-/+) did not exhibit a decrease in IGF-1R protein level, despite a 

decrease in IGF-1R mRNA levels. Representative blot is shown. All experiments were replicated 

≥ 3 times with similar results. 
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IGF1R silencing decreases cellular proliferation in U251-MG cells. The increase in IGF1R 

expression seen as a result of WT1 silencing could potentially decrease the ability of these cells 

to proliferate by means of a non-apoptotic cell death called paraptosis 
[106]

. Conversely, it could 

be a compensatory response by the cells to escape death due to eliminating the effects of WT1. 

In order to ascertain which of these two scenarios was more likely, U251-MG cells were 

transfected with siRNA against IGF-1R. Initial optimization experiments revealed that using a 

concentration of siRNA of 50nM delivered a 69% decrease in IGF-1R protein even at day 5 

following transfection (Fig.2-4A). This dose was then used to determine the optimum time 

period of IGF-1R knockdown, and we found that this was at day 2 and day 3 following 

transfection (Fig. 2-4B). On the 2
nd

 post-transfection day, the IGF-1R mRNA level in si cells was 

about 42.7% the level in scr controls (n=3, p< 0.01) and 51.42% of the level in untreated control 

cells (n=3, p< 0.5). Cell proliferation assays were carried out until day 5 post-transfection. At 

this time point, we observed that the IGF-1R mRNA level in siRNA treated cells was still 

decreased to 58.93% and 71.79% of the levels in the scr and control cells respectively (n=3, p > 

0.05). While there was no difference in proliferative abilities between the three experimental 

groups up to day 4 despite maximal RNA knockdown at days 2 and 3 post-transfection, silencing 

IGF-1R expression was generally found to lead to a decrease in proliferative rates (Fig.2-4C). 

However, this was not observed to be statistically significant between the non-targeting siRNA 

and IGF-1R siRNA treated groups, but only between the untreated and IGF-1R siRNA treated 

groups (n=3, *p<0.05).



 
 

42 
 

Fig.2-4:  IGF-1R silencing in U251-MG cells decreases cellular proliferation. A. Western Blot 

densitometry results showing the effect of IGF-1R knockdown at day 5 post-transfection. 

Optimization experiments were conducted with different concentrations of siIGF-1R: 5-, 10-, 50- 

and 100 nM (n=1). Maximal knockdown efficacy at this time-point was seen with [siIGF-1R] = 

50nM. B. Real Time RT-PCR data showing maximal IGF-1R levels suppression between scr and 

si groups on Days 2 and 3 post-transfection, and between untreated (ctrl), non-targeting siRNA 

treated (scr) and siWT1 treated (si) groups on Day 3 post-transfection (n=3, * p < 0.05, ** p< 

0.01). C. Cell proliferation assay demonstrating a significant but small decrease in cell viability 

in siIGF-1R treated cells as compared to the untreated cells at day 5 post-transfection (n=3, *p< 

0.04; RLU= relative luminescence units). No statistical significance was observed between 

scrambled RNA and siRNA treatment groups. 
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Discussion 

We have previously shown that WT1, a zinc finger transcription factor, is expressed in a 

significant number of glioma cells, and impacted tumor cell proliferation in U251-MG and T-

98G, invasiveness, and resistance to radiation- and chemotherapy 
[28, 30-32]

. In this study, we have 

shown that WT1 is expressed in two additional glioma cell lines- U1242-MG and GBM-6 and in 

these cells it is seen powerfully affect their invasive abilities. A decrease in the endogenous 

expression of WT1 decreases the invasive capacity of glioma cells, despite equivalent 

proliferative rates. These differences in invasiveness appear not to involve the PDGF-A or Snai1 

signaling pathways or down-regulation of E-cadherin. We also demonstrate here that in U251-

MG cells, WT1 level is inversely correlated with that of IGF-1R, similar to our previous findings 

in T98-G cells 
[30]

. IGF-1R silencing, however, resulted in a trend towards decreased cell 

viability, suggesting that its up-regulation with WT1 silencing might represent activation of an 

alternate survival pathway. 

In malignant cells, contrary to what was believed earlier, recent evidence has leaned more 

in favor of a putative oncogenic role(s) ascribable to WT1 
[30, 31, 65-79, 85]

. It is worth reiterating 

that the functions of this highly complex protein are variable and should therefore be interpreted 

strictly based on the cell context in which they are studied. It has been established that the ability 

of WT1 to promote proliferation versus differentiation also depends upon the differentiation 

status of the cells involved. For example, its ability to induce mesenchymal-to-epithelial 

transformation (MET) leads to an exit from the cell cycle of developing cells in the kidney and 

their consequent differentiation to generate nephrons 
[38]

. However, in other tissue types- such as 

neuronal and vascular progenitor cells- WT1 protects cells from apoptosis, and maintains cells in 

the proliferative, undifferentiated state 
[38]

. Further, we postulate that the ability of WT1 to 
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influence proliferation in glioma cells might also depend upon other factors, such as the PTEN 

status and/ or its interactions with other proteins. It was interesting to note that in U251-MG and 

T98G cells, where WT1 significantly impacted cellular proliferation, the PTEN status was either 

null or mutated 
[107, 108]

. In U1242-MG and GBM-6 cells, on the other hand, WT1 was found to 

influence migratory properties and not proliferation. Both these cell lines have wildtype PTEN 

[109, 110]
. There is no documentation at present regarding the influence of PTEN status on the 

ability of WT1 to regulate cell proliferation. Interestingly, there is evidence that the presence of 

wildtype PTEN acts as a deterrent in the cellular invasiveness process by mechanisms that are 

independent of its effect on cellular proliferation 
[3]

. Yet, despite the presence of wildtype PTEN 

in U1242-MG and GBM-6 cells, there appears to be no inhibition of invasion, in the presence of 

WT1. Thus, a complex interplay exists between proteins belonging to different intracellular 

signaling pathways in a malignant cell, and it would be interesting to determine if an interaction 

between WT1 and PTEN contribute towards the functional effects of each in glioma cells. 

There have been several reports implicating WT1 in fostering invasiveness of different 

types of tumor cells 
[76, 82, 83, 111, 112]

. More recently, a new binding partner for WT1 has been 

revealed in actin- a key component of the cytoskeleton that dictates such important processes as 

changes in cell shape, movement and cell division 
[82]

. It is clear from our results that in glioma 

cells, WT1 co-ordinates cellular motility. The earliest studies that sought to determine WT1’s 

target genes highlighted PDGF-A as being both- transcriptionally activated as well as repressed 

by WT1, depending upon the cell context and the locations of the binding sites for WT1 on its 

promoter 
[88-90]

. Considerable data exists demonstrating the importance of the PDGF-signaling 

pathway in glial neoplasms (reviewed in 15). However, in our experimental models, we failed to 
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find a consistent correlation between WT1 and PDGF-A expression levels, and therefore rule out 

this interaction as an explanation to the former’s impact on cell migration. 

Snai1 and E-cadherin are both well established regulators of the crucial process of 

epithelial-mesenchymal transition (EMT) (reviewed in 113). Snai1 down-regulates the 

expression of E-cadherin and pushes the cell towards a more undifferentiated phenotype, with a 

consequent decrease in inter-cellular adhesive forces (also a consequence of decreased E-

cadherin levels) and increase in cellular motility 
[33, 103-105, 114]

. In vascular progenitor cells, Snai1 

was shown to be transcriptionally activated by WT1, while E-cadherin was shown to be 

repressed 
[86]

. However, altered expression of these genes could not be shown to explain the 

enhanced cell motility conferred upon glioma cells by WT1. 

IGF-1R is known to be a key factor in promoting cellular transformation. However, there 

have been reports ascribing a unique role to this growth factor receptor, in promoting a non-

apoptotic form of programmed cell death called paraptosis 
[106]

. Similar to the findings described 

in that study, we have previously shown that in T98G cells treated with WT1 siRNA, there were 

no discernible differences in markers for apoptosis or autophagy, but the cell viability was, 

nevertheless, markedly decreased, along with inverted light microscopy features of prominent 

cytoplasmic pleomorphism and vacuolization 
[30]

. These changes were associated with an up-

regulation in IGF-1R expression in this cell line, as was seen with the U251-MG cells. 

Surprisingly however, when we silenced IGF-1R expression using siRNA in U251-MG cells, the 

cells displayed a decrease in their proliferative capacity. This suggested that the up-regulation of 

IGF-1R with WT1 silencing was not a satisfactory mechanism to explain the decrease in cell 

viability, but, in fact, might point to activation of an alternate survival pathway that these 

malignant cells are notorious for. Interestingly, the maximal knockdown of IGF-1R mRNA was 
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observed at days 2- and 3 post- transfection, but cell proliferation rates were noticeably low only 

at day 5 post-transfection at which time point the protein levels of IGF-1R were also low. This 

observed delay in the effect on cell proliferation might be accounted for by pre-existing 

functional IGF-1R protein that continues to promote the proliferative potential of tumor cells in 

the immediate post-transfection period. This can be roughly evaluated by assessing the levels of 

phosphor-IGF1R- the activated form of the receptor protein. 

To summarize, we have demonstrated a novel role for WT1 in enabling glioma cells to 

invade, in vitro. The target gene/s that help(s) it achieve this process, as well as those that enable 

it to promote cellular proliferation, remain(s) to be discovered and form the focus of our current 

and future studies. Considering that it is the property of cellular invasiveness that makes these 

tumors difficult to treat, the need to identify the molecules mediating this process can easily be 

recognized as imperative. A more in-depth examination of its target gene(s) and their 

contributions will undoubtedly facilitate the development of a multi-targeted therapeutic 

strategy, which might be our only hope in effecting a cure for this deadly disease. 
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Chapter 3: Candidate target genes for WT1 in glioma cells- Possible involvement of CD97 

in mediating its effects on glioma cell invasiveness. 

 

Abstract 

 

WT1 is a zinc finger transcription factor with well-established roles in the development 

of different organ systems during embryonic development. Its expression is absent in normal 

adult astrocytes, but is switched back on in astrocytomas, and the more aggressive tumors exhibit 

increasing levels of expression. While in U251-MG and T-98G glioma cell lines, this protein has 

been demonstrated to influence tumor cell proliferation, it has also been found to play a very 

prominent role in mediating cell invasiveness as we have shown previously. Although its 

functional effects have been studied to some extent and this knowledge has been employed in 

devising therapeutic strategies to immunologically target WT1, little is known yet about the 

molecular allies that help it mediate these oncogenic functions in the specific context of glioma 

cells. Here, we present for the first time in glioma cells, the identities of some of these proteins. 

Using gene expression analysis, we found that silencing the endogenous expression of WT1 in 

U251-MG cells was associated with the down-regulation of several genes that have putative 

oncogenic functions, and the up-regulation of some proteins considered to have tumor-

suppressor effects. When compared to normal human astrocytes, the expression levels of most of 

the candidate target genes that directly correlated with WT1 were higher in glioma cells. We 

validated the microarray findings at the RNA level using Real Time RT-PCR, and also 

confirmed these correlations in two other glioma cell lines- U1242-MG and GBM-6- which are 

well known for their high invasive capacities
 [99,100]

. One of the genes that was found to be 

consistently and significantly decreased upon WT1 silencing in all three cell lines studied was 
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CD97. We sought to ascertain whether this protein, which has been implicated in facilitating cell 

invasiveness and even angiogenesis in gastrointestinal carcinomas and other tumors, has any 

effect in mediating the pro-invasive effects of WT1. Our invasion assay results in vitro showed 

that cells that had been treated with siRNA directed against CD97 displayed a markedly lower 

propensity to invade as compared to their control counterparts. We conclude that CD97 has a 

very important role to play in dictating one of the most characteristic features of glial tumor 

cells, and further studies are imperative to clarify the extent of its impact. 

Introduction 

The Wilms’ Tumor-1 (WT1) protein was originally believed to function as a tumor-

suppressor. Early studies showed that the protein repressed the transcription of several 

oncogenes such as PDGF-A, TGF-beta, EGFR, IGF-1R and so on, and increased the expression 

of genes that prevented malignant transformation such as E-cadherin, and pro-apoptotic 

molecules (reviewed in 34). This impression, however, began to undergo a remarkable 

transformation, as it was increasingly noticed that the ability of WT1 to transcriptionally activate 

or repress a putative target depended largely on the cell type, the isoforms studied, the number of 

WT1 binding sites present on the target promoter and other factors. The factor that most put into 

serious doubt WT1’s tumor-suppressor status, however, was the escalating incidence of its 

discovery in malignant cells from several different tissue types (reviewed in 115). A key 

regulator of various developmental processes, WT1 expression was known to be switched off as 

tissues developed into the normal adult stage 
[36, 38-40]

. However, wildtype WT1 was found to be 

expressed in leukemias and other hematopoietic malignancies, lung and breast cancers, 

gastrointestinal cancers, sarcomas, tumors in the head and neck, reproductive organ neoplasms, 

and gliomas (reviewed in 115). In most or all of these tumors, WT1 was not merely expressed, 
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but appeared to play a decisive role in promoting proliferation, invasion and/ or angiogenesis 
[30, 

31, 65-80, 82-85]
. 

We have previously demonstrated aberrant WT1 expression in a significant number of 

glioma cell lines and tumor specimens 
[28]

. The predominant WT1 isoforms expressed in these 

cells was discovered to be the one containing exon 5 and the tripeptide KTS between zinc fingers 

3 & 4 (WT1 +/+). Our studies showed that glioma cells that had endogenous WT1 expression 

relied heavily on the protein for their growth and motility. WT1 also conferred upon these cells 

resistance to radiation therapy and some chemotherapeutic agents 
[30, 32]

. The question then arose 

from these observations: How does WT1 mediate these effects in glial neoplasms?  

Given its structural identity- a zinc finger transcription factor- and its functional history, 

it seemed logical to hypothesize that WT1 might regulate the transcription (or post-

transcriptional expression) of other genes, which might then directly cause the above-mentioned 

effects. However, when we looked for possible correlations between WT1 and its previously 

established targets- PDGF-A and IGF-1R, we found that in glioma cells WT1 had no consistent 

effect on PDGF-A, while its inverse correlation with IGF-1R levels appeared not to be related to 

a regulatory mechanism. Therefore, in order to identify which genes  might vary in glioma cells 

in their expression patterns as a result of WT1-mediated regulation, we utilized the gene 

expression profiling technique to characterize differential gene expression. This method enables 

rapid screening of the entire genome to find all the possible candidate genes that are 

differentially expressed as a result of any manipulations. Our analyses revealed the identity of 

some such presumed or established oncogenes whose levels paralleled that of WT1 in glioma 

cells- PDGF-D, TYMS, INPP5A, CD97 and FAM57A. Genes that were increased as a result of 

WT1 suppression, on the other hand, included putative tumor suppressors- such as LZTS1, 
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TIMP3, MAFF, WIPI-1 and so on. We selected CD97 for further investigations, based on its 

consistent and direct correlation with WT1 across the GBM cell lines examined and because of 

its putative roles in facilitating cell invasiveness and neo-angiogenesis in gastrointestinal and 

thyroid tumors. This is the first time that expression of this protein has been reported in glial 

neoplastic cells. 

CD97 is a cell surface receptor that belongs to the Adhesion-G-Protein Coupled Receptor 

(GPCR) family and is therefore characterized by heptahelical hydrophobic segments that form 

the seven-transmembrane spanning domain (TM7), an extracellular N-terminus containing 

epidermal growth factor (EGF)- like structural domains (comprising the α-subunit) and an 

intracellular C-terminus 
[116]

. Through alternative splicing of the mRNA transcript, three 

isoforms of the α-subunit of CD97 can be generated, that differ in the number of EGF repeats 

they contain- these isoforms are hCD97 (EGF 1,2,5), hCD97 (EGF 1,2,3,5) and hCD97 (EGF 

1,2,3,4,5) 
[117]

. Also present on the nucleotide sequence of the extracellular segment, after the 

EGF-like repeats and before the first membrane-spanning sequence at position 318 is an RGD 

motif. This motif has been established to act as a binding site for several classes of integrins, 

which are well known for their role in mediating attachment to the extracellular matrix and to 

other cells 
[117]

. The ligands that have been found to bind CD97 include CD55/ Decay 

Accelerating Factor (DAF) (involved in protection from complement mediated attack and lysis), 

Chondroitin Sulfate (a glycosaminoglycan that affects cell attachment), and α5β1 integrin 
[118]

. 

Interestingly, the intracellular signaling mechanism(s) by which CD97 and other EGF-TM7 

family members might act is/are yet unclear 
[119]

. 

CD97 expression has been reported mainly in leukocytes and in this group, it has been 

found predominantly in myeloid cells. Besides these, its expression has also been reported in 
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smooth muscle cells and in epithelial tumors 
[118]

. Its expression in thyroid carcinoma cells has 

been linked with promoting de-differentiation 
[120]

, while in colorectal and gastric carcinomas 

and fibrosarcomas, its expression has been alleged to promote cellular invasiveness 
[119]

. Our 

results corroborated the findings from these earlier studies and we confirm that in glioma cells, 

too, CD97 appears to influence cellular invasiveness. Future studies will be directed at 

confirming whether WT1 regulates expression of this protein at the transcriptional and/or at the 

post-transcriptional level(s). 

Materials & Methods 

Cell culture and reagents: Normal human astrocyte RNA (Cat.No.: 1805) was procured from 

ScienCell Research Laboratories. Cell lines used are described on page 31. 

siRNA transfections: The procedure for siRNA transfection has also been described on page 31. 

The final concentration of non-targeting siRNA control, anti-WT1 and anti-CD97 siRNA was 

100nM and determined by performing optimization experiments. 48 hours after transfection, the 

cells were harvested with trypsin, and following re-suspension of the cell pellet in 10% DMEM, 

the cells were re-plated for RNA extraction for qRT-PCR and microarray analyses, protein 

extraction for western blotting and for cell proliferation assays and/ or invasion assays. 

RNA extraction: The technique for RNA extraction and processing was similar to that described 

on page 32. 

Western blotting: Western blotting using cell lysates was performed exactly as described on page 

33. Rabbit anti-CD97 polyclonal antibody (Abcam, 1:200) were diluted in blocking buffer and 

the blots were incubated with the respective primary antibodies overnight at 4
0
 C. After this, the 

membranes were washed six times in Tris buffered saline containing 0.05% Tween-20 before 
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and after a one hour incubation at room temperature with horseradish peroxidase-conjugated 

anti-rabbit (1: 3000) secondary antibodies directed against anti-CD97 respectively. Anti-

Cyclophilin A monoclonal antibody (1: 30000, Upstate Biotechnology was used as a control for 

protein loading. Blots were developed using Pierce Supersignal West Dura Substrate. 

Cell proliferation assay: This assay has been described on page 33.  

Invasion assay: Technique described on page 34. 

Gene Expression Profiling: The quality of total RNA sample as well as cDNA and cRNA 

synthesis products was assessed by running 1 µL of every sample in RNA 6000 Nano or DNA 

7500 LabChips on the 2100 Bioanalyzer (Agilent, Palo Alto, CA), following the manufacturer's 

protocol. Quality control criteria included cDNA and cRNA synthesis products within median 

lengths of 2.0 and 3.0 kb, respectively, and 3’/5’ ratios close to 1.00 for both housekeeping 

genes, GAPDH and β-actin 
[121]

. The microarray reactions were performed using the Affymetrix 

GeneChip Standard protocol. The “significance-score” algorithm (S-score) developed by Dr Li 

Zhang was used to produce a score for the comparisons of the expression summaries between 

cell groups 
[122]

. The Minimum Information About a Microarray Gene Experiment guidelines 

have been met with, and the microarray raw data has been deposited with the National Center for 

Biotechnology Institute Gene Expression Omnibus (GEO), accession number GSE22578. 

Promoter analyses: The UCSC genome browser was used to and nucleotide sequences that lay 

1000 base-pairs upstream and down-stream of the start site were selected. These regions were 

entered into the MatInspector software and searched for the presence of potential binding sites 

for WT1. The following criteria were used to select sequences of interest: a. Sequences 
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belonging specifically to the WT1 matrix b. Sequences that had a matrix similarity of ≥ 0.9 and 

c. Sequences that lay on the positive strand. 

Statistical analysis: All comparisons were between two cell groups- cells treated with non-

targeting siRNA or untreated cells and cells treated with siRNA directed against WT1 or CD97. 

Each experiment was replicated at least three times. Student’s T-test (two-tailed, paired) was 

used to determine statistical significance. Error bars were calculated using standard deviation 

measurements. 

Results 

Gene Expression Profiling reveals putative target genes for WT1 in glioma cells. In order to 

ascertain the identity of the potential target genes for WT1 in the particular context of glioma 

cells, we chose to perform the gene expression profiling experiments, which have often been 

reliably used for this purpose. U251 cells were transfected with siRNA against WT1 and after 

confirming WT1 knockdown with Real Time RT-PCR, the microarray reactions were carried out 

using the standard Affymetrix GeneChip Standard protocol. Quality control assays were 

performed and RNA that met with the criteria that have been described in detail from previous 

studies in our laboratory 
[121, 123]

 was utilized for microarray analyses. Fig. 3-1 shows the 

supervised cluster analyses from three independent experiments. It is immediately evident from 

the dendrogram above the heat map that the control and scr cell groups cluster together and 

separately from cells that were treated with siWT1. To the right side of the heat map is a list of 

all the genes whose levels were found to be altered with this manipulation. WT1 (highlighted in 

yellow) appears prominently down-regulated as a result of our experimental treatment and 

speaks for successful down-regulation using siRNA knockdown. Also, there is a high level of 
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consistency in the patterns of up- or down- regulation of the selected genes, among the three 

replicates for each group of cells. Analyses of the data obtained in the 3 sets of experiments are 

summarized in Table 2, revealing a total of 27 genes that were down-regulated and 11 genes that 

were up-regulated, in response to WT1 silencing. These genes passed two separate levels of 

stringency for being declared significantly altered- the S-score which establishes significance at 

the univariate level and the Benjamini-Hochberg correction which corrects for multiple 

comparisons 
[122]

.  

The genes that were down-regulated with WT1 silencing, implying a direct correlation, 

included several molecules (identified by searching the available literature) that have either 

putative or established oncogenic roles in gliomas and/or other malignancies. These included 

INPP5A, TYMS, PDGF-D, CD97, EPAS1, FAM57A and HSPC111 (marked by asterisks and 

bold lettering, Table 2). Conversely, the genes that inversely correlated with WT1 levels 

included some prominent tumor-suppressors such as SSAT1, LZTS1, WIPI1, TIMP3, and 

DPYSL3 (marked by asterisks and bold lettering, Table3). Table 4 summarizes the information 

that is currently available regarding the role(s) played by each of these genes. 
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Fig.3-1: Supervised Cluster Analysis. Two-dimensional hierarchical clustering of samples and 

genes using Pearson (centered) correlation and average linkage. Three independent transfection 

experiments were performed for each microarray analysis. The dendrogram demonstrates that 

control and scr groups of cells cluster together and separately from the siWT1 treated cells. Each 

row in the heat map below the dendrogram shows the relative expression for that specific gene in 

the 9 individual samples (columns). The color scale at the bottom of the heat map represents the 

relative gene expression levels (0-fold to 3-fold) and the red and green areas correspond to over-

expression and under-expression, respectively. The genes that are differentially altered by 

silencing WT1 expression are listed to the left of the heat map. WT1 is highlighted in yellow to 

distinguish it from the other genes on the list.  
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Gene symbol

CD97

NDUFA1

TYMS

KRT18

UROS

SCG2

NSFL1C

LSM14A

EPAS1

WT1

ISCA1

FLJ10357

Unknown

INPP5A

PDGFD

KCTD12

Unknown

BTBD1

FAM57A

CPVL

C11orf57

DBT

NECAP1

ICK

C14orf135

RBMS1

LSM14A

LSM14A

HSPC111

MFN1

SCPEP1
TIMP3

HMOX1

WIPI1

CD55

SOX11

MAFF

DPYSL3

LZTS1

RORB

SAT1

TIMP3

CALCRL

CALCRL

Gene symbol

CD97

NDUFA1

TYMS

KRT18

UROS

SCG2

NSFL1C

LSM14A

EPAS1

WT1

ISCA1

FLJ10357

Unknown

INPP5A

PDGFD

KCTD12

Unknown

BTBD1

FAM57A

CPVL

C11orf57

DBT

NECAP1

ICK

C14orf135

RBMS1

LSM14A

LSM14A

HSPC111

MFN1

SCPEP1
TIMP3

HMOX1

WIPI1

CD55

SOX11

MAFF

DPYSL3

LZTS1

RORB

SAT1

TIMP3

CALCRL

CALCRL

Gene symbol

CD97

NDUFA1

TYMS

KRT18

UROS

SCG2

NSFL1C

LSM14A

EPAS1

WT1

ISCA1

FLJ10357

Unknown

INPP5A

PDGFD

KCTD12

Unknown

BTBD1

FAM57A

CPVL

C11orf57

DBT

NECAP1

ICK

C14orf135

RBMS1

LSM14A

LSM14A

HSPC111

MFN1

SCPEP1
TIMP3

HMOX1

WIPI1

CD55

SOX11

MAFF

DPYSL3

LZTS1

RORB

SAT1

TIMP3

CALCRL

CALCRL
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Table 2: Gene expression profiling demonstrating the fold change of genes that are significantly 

down-regulated in WT1-silenced U251MG cells. Total down-regulated genes= 27 (including 

WT1- not shown in table). Genes that have putative or established roles in suppressing cancers 

are highlighted with both asterisks (*) and green bold lettering. A total of three independent 

microarray experiments were conducted.
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Gene Title Gene 

symbol 

Fold 

change si 

Vs ctrl 

Fold change 

si Vs scr 

* intestinal cell (MAK-like) kinase 
ICK 0.189 0.287 

* inositol polyphosphate-5-phosphatase, 40kDa 
INPP5A 0.25 0.1649 

chromosome 11 open reading frame 57 C11orf57 0.25 0.25 

* thymidylate synthetase 
TYMS 0.26 0.287 

* platelet-derived growth factor-D 
PDGF-D 0.26 0.176 

LSM14A, SCD6 homolog A (S. cerevisiae) LSM14A 0.287 0.26 

NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 1, 7.5kDa 

NDUFA1 0.287 0.287 

dihydrolipoamide branched chain transacylase E2 DBT 0.33 0.307 

potassium channel tetramerisation domain containing 12 KCTD12 0.33 0.33 

* CD97 molecule 
CD97 0.33 0.307 

NECAP endocytosis associated 1 NECAP1 0.33 0.307 

BTB (POZ) domain containing 1 BTBD1 0.33 0.307 

* endothelial PAS domain protein 1 
EPAS1 0.353 0.287 

hypothetical protein FLJ10357 FLJ10357 0.353 0.353 

secretogranin II (chromogranin C) SCG2 0.353 0.233 

mitofusin 1 MFN2 0.353 0.33 

carboxypeptidase, vitellogenic-like CPVL 0.353 0.3789 

LSM14A, SCD6 homolog A (S. cerevisiae) LSM14A 0.353 0.33 

chromosome 14 open reading frame 13 C14orf135 0.3789 0.3789 

uroporphyrinogen III synthase (congenital 

erythropoietic porphyria) 

UROS 0.3789 0.33 

* family with sequence similarity 57, member A 
FAM57A 0.3789 0.353 

serine carboxypeptidase 1 SCPEP1 0.3789 0.33 

NSFL1 (p97) cofactor (p47) NSFL1C 0.406 0.3789 

* hypothetical protein HSPC111 
HSPC111 0.406 0.353 

iron-sulfur cluster assembly 1 homolog (S. cerevisiae) ISCA1 0.406 0.435 

* keratin 18 
KRT18 0.406 0.3789 

RNA binding motif, single stranded interacting protein 1 RBMS1 0.406 0.353 
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Table 3: Gene expression profiling demonstrating the fold change of genes that are significantly 

up-regulated in WT1-silenced U251MG cells. Total up-regulated genes = 11. Genes that have 

putative or established roles in suppressing cancers are highlighted with both asterisks (*) and 

red bold lettering. A total of three independent microarray experiments were conducted. 

Gene title Gene 

symbol 

Fold change 

si Vs ctrl 

Fold change 

si Vs scr 

CD55 molecule, decay accelerating factor for 

complement (Cromer blood group) 

CD55 2.46 2.828 

* spermidine/spermine N1-acetyltransferase 1 SAT1 2.639 2.639 

* WD repeat domain, phosphoinositide interacting 1 WIPI1 2.639 2.828 

calcitonin receptor-like CALCRL 2.639 3.03 

calcitonin receptor-like CALCRL 2.639 2.639 

* leucine zipper, putative tumor suppressor 1 LZTS1 2.828 3.73 

* TIMP metallopeptidase inhibitor 3 (Sorsby fundus 

dystrophy, pseudoinflammatory) 

TIMP3 2.828 3.03 

heme oxygenase (decycling) 1 HMOX1 2.828 2.828 

* SRY (sex determining region Y)-box 11 SOX11 2.828 2.46 

* v-maf musculoaponeurotic fibrosarcoma oncogene 

homolog F (avian) 

MAFF 3.03 2.828 

RAR-related orphan receptor B RORB 3.24 2.828 

TIMP metallopeptidase inhibitor 3 (Sorsby fundus 

dystrophy, pseudoinflammatory) 

TIMP3 3.24 3.48 

* dihydropyrimidinase-like 3 DPYSL3 3.48 3.73 



 
 

61 
 

Table 4: Functions of candidate target genes identified using microarray. A literature search was 

conducted to determine the functions of all the genes that were revealed to be dys-regulated by 

WT1 silencing. Of the 27 down-regulated genes (green), 9 were found to possess an oncogenic 

function. Conversely, of the 11 up-regulated genes (red), 6 were found to be associated with 

tumor-suppressor activity. Corresponding references are listed in the table below in parentheses. 

Gene symbol Function(s) Reference 

ICK Promotes proliferation, G1 cell cycle progression in 

intestinal epithelial cells 

[124] 

INPP5A Potential role in promoting radio-resistance of U343-

MG cells. 

[125] 

TYMS High proliferative rate in cells; translational repression 

of p53; resistance to chemotherapeutic drugs 

[126-128] 

PDGF-D Promotes proliferation, migration, invasion, 

angiogenesis 

[129] 

CD97 Promotes cellular invasion, angiogenesis [118, 120, 130] 

EPAS1 VEGF up-regulation  angiogenesis [131] 

FAM57A Promotes proliferation of lung cancer cells [132] 

HSPC111 Estrogen and c-myc target; associated with adverse 

outcome in breast cancer cells 

[133] 

KRT18 Promotes invasion (melanoma and breast cancer) [134] 

SAT-1 Promotes cell death [135] 

WIPI-1 Involved in autophagy [136] 

LZTS1 Inhibition of cell cycle progression [137, 138] 

TIMP3 Promotes apoptosis; inhibition of invasiveness. [139-141] 

MAFF Transcriptional transactivator involved in 

transformation 

[142] 

DPYSL3 Inhibits invasiveness of prostatic carcinoma cells; 

inhibits neurite outgrowth 

[143, 144] 
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Candidate genes identified as correlating directly or indirectly with WT1 expression levels 

compared among normal human astrocytes and GBM cells. We then examined Normal 

Human Astrocytic (NHA) RNA to determine whether these candidate targets were expressed 

therein. As shown in Fig. 3-2A and corroborating evidence from previous studies, WT1 was not 

detectable in adult non-malignant human astrocytes. Our results (Fig.3-2A) also show that the 

genes that correlate directly with WT1 levels are expressed at extremely low levels or are 

undetectable in the normal adult cells. No expression could be determined for INPP5A or PDGF-

D either, and the expression levels for TYMS, CD97 and FAM57A (normalized to beta-actin) 

were 0.05, 0.075 and 0.049 (n=1), respectively. However, glioma cells U251-MG, U1242-MG 

and GBM-6 have much higher levels of all these genes. For each cell line (as for the NHA 

RNA), target gene values were normalized to the corresponding value of beta actin for that cell 

line. These normalized values in U251-MG cells (n=3) were observed to be: WT1: 0.058 (± 

0.058), INPP5A: 1.835 (± 0.488), TYMS: 1.042 (± 0.06), PDGF-D: 13.13 (± 4.187), CD97: 

0.792 (± 0.2), FAM57A: 0.577 (± 0.11). For U1242-MG cells (n=3), the normalized values were 

as follows: WT1: 0.253 (S.D.: ± 0.196), INPP5A: 1.88 (± 0.0.239), TYMS: 0.61 (± 0.96), 

PDGF-D: 0.074 (± 0.019), CD97: 0.564 (± 0.0.075). Finally, for GBM-6 cells (n=3), the 

normalized values for WT1 and candidate gene expression levels were as follows: WT1: 0.504 

(± 0.051), INPP5A: 1.12 (± 0.917), TYMS: 1.707 (± 0.284), PDGF-D: 2.808 (± 0.733), CD97: 

1.942 (± 0.946), FAM57A: 2.631 (± 1.441). The genes that correlated inversely with WT1 as per 

the microarray findings were somewhat variable in their expression patterns in the 4 different 

cell types studied (Fig. 3-2B). Only the expression of TIMP-3 was found to be high in the normal 

state and suppressed in tumor cells (0% of NHA content in U251-and U1242-MG cells, and 10% 

of NHA levels in GBM-6 cells). This is consistent with the hypothesis that in the process of 
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malignant transformation of cells, TIMP3 expression is down-regulated in association with the 

up-regulation of WT1. However, the experiment will have to be repeated multiple times to 

confirm these findings. This relation was also evident, though less dramatic, with the expression 

level of MAFF, which was decreased to roughly 77% and 85% of the NHA level in U251-MG 

and GBM-6 cells respectively, while its expression in U1242-MG cells couldn’t be determined. 

From among the other genes whose levels were inversely correlated with that of WT1 as per the 

microarray analyses, we found that WIPI was down-regulated in U251-MG cells to 48% of the 

level seen in NHA, but remarkably up-regulated in U1242-MG cells. In GBM-6 cells, expression 

of this gene could not be determined at all. 
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Fig. 3-2: Aberrant expression of candidate target genes in glioma cell lines. RNA extracted from 

NHA (n=1), and the GBM cell lines (n=3) - U251-MG, U1242-MG and GBM-6 were analyzed 

using Real Time RT-PCR for WT1 and the candidate target genes identified using the 

microarray. All values are shown after normalizing by the corresponding beta actin value. A. 

Genes that directly correlated with WT1 as per the microrarray findings. B. Genes that were 

found on gene expression profiling to correlate inversely with WT1 levels. 
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Microarray findings were validated using Real Time RT-PCR. We used qRT-PCR to 

validate our microarray findings, because it was quicker, infinitely more sensitive and would 

provide information pertaining to the gene expression levels, which is of particular interest to us 

since we are assessing the potential transcriptional targets of WT1. For our validation 

experiments, we selected from among all the targets identified by microarray, only those that had 

been implicated as having a relevant role in oncogenesis or tumor-suppression (Table 4). 

Furthermore, certain genes such as ICK, KRT18 and TIMP3 are not represented in the graph 

owing to lack of reproducible results. The 2
- ΔΔCT  

method was used to calculate fold changes in 

the expression levels of the candidate genes against beta-actin. The values thus obtained for the 

si groups of cells were then compared to the corresponding values in the scr groups of cells. 

Figure 3-3 represents a comparison of the fold change of each candidate gene obtained from the 

qRT-PCR analyses (bar graph) against the corresponding value derived from the microarray 

analyses (line-graph). We successfully substantiated the microarray results with qRT-PCR by 

showing that with both sets of genes there is a consistent trend towards down- or up-regulation of 

their expression levels. In case of the genes that were down-regulated with WT1 silencing, the 

magnitude of the fold change values using qRT-PCR (0.25-0.53 fold-change [S.D.: ± 0.04- 

±0.22]) is seen to be close to or only slightly different from the values obtained through the 

microarray experiments (0.16-0.35). With the inversely correlated genes, the fold-change values 

are much higher in the microarray results (2.6-3.7 fold differences) as compared to the qRT-PCR 

results (0.9-1.9 fold differences [S.D.: ±0.21- ±1.07]). 
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Fig. 3-3: Validation of microarray results. U251 cells were transfected with Non-targeting 

siRNA (Scr) or WT1 targeting siRNA (si). RNA samples extracted 48 hours following 

transfection were analyzed by Real Time RT-PCR; n= 3, *p≤ 0.05; **p≤ 0.01. Bar graph: Fold-

change values calculated from qRT-PCR experiments. Line-graph: Fold-change values 

calculated using microarray analyses. 
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Putative target genes identified by microarray confirmed in U1242-MG and GBM-6 cell 

lines. We subsequently investigated if these genes that were dysregulated in U251-MG cells 

were replicated in GBM cell lines- U1242-MG and GBM-6. Cells from both these cell lines were 

subjected to siRNA transfections targeting WT1 and non-targeting siRNA (scr) was used to 

generate appropriate controls. RNA samples from these groups were analyzed using qRT-PCR, 

and it was seen that from among the genes whose levels paralleled that of WT1, INPP5A, CD97, 

and TYMS were down-regulated in the si groups in both U1242-MG and GBM-6 cells as 

compared to scr groups (Fig. 3-4). In U1242-MG cells (Fig. 3-4B, n=3, *p ≤ 0.05, ** p ≤ 0.01), 

the extent of knockdown of these genes (as a percent of scr control) was as follows: INPP5A- 

65.5% (S.D.: ± 0.11), CD97- 30.6% (S.D.: ± 0.09) and TYMS- 47.7% (S.D.: ± 0.04). In GBM-6 

cells (n=3, *p ≤ 0.05, ** p ≤ 0.01), the extent of knockdown was as follows (Fig. 3-4A): 

INPP5A- 51.77% (S.D.: ± 0.26), CD97- 49.6% (S.D.: ± 0.14) and TYMS- 52.4% (S.D.: ± 0.16). 

Moreover, in GBM-6 cells, the levels of PDGF-D and FAM57A in the siWT1 treated groups of 

cells were significantly decreased to 16.2% and 44.1% of their scr counterparts respectively 

(S.D.: ± 0.06 and S.D.: ± 0.23 respectively). Likewise, in U1242-MG cells (Fig.3-4B), the level 

of EPAS1, a potent angiogenesis facilitator, was also decreased with WT1 silencing. siWT1 

treated cells had 77.5% of EPAS1 expression compared to their corresponding control values, 

although statistical significance could not be established. With the genes that were demonstrated 

to be up-regulated by the microarray analyses with WT1 silencing, we found a trend towards an 

increase in DPYSL and MAFF (GBM-6) and WIPI-1 (U1242-MG), but the high variability across 

the three independent experiments precluded the establishment of statistical significance. 
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Fig.3-4: Confirmation of altered regulation of target genes across different glioma cell lines 

transfected with siWT1. A. GBM-6 cells (n= 3, *p≤ 0.05, ** p< 0.01) B. U1242-MG cells (n= 3, 

*p≤ 0.05, ** p< 0.01). X- axis: Target genes Y-axis: Fold change in si cells (value of scr set at 

1). §§- Genes that were not found to correlate/ be expressed.A 

 

B 
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CD97 expression in glioma cells is associated with cellular invasiveness. Based on our 

microarray findings and our confirmatory findings using Real Time PCR, we conducted 

promoter analyses to look for potential binding sites in the promoter regions of the genes that 

appeared to be differentially regulated by WT1 (3-5). With the exception of PDGF-D (which had 

binding sites for Egr-1, but not specifically WT1), all the remaining candidate target genes were 

found to have at least one potential WT1 binding site. This information coupled with the finding 

of consistent CD97 down-regulation in all three GBM cell lines that had been treated with WT1 

siRNA, led us to further examine the role of CD97 in these cells with respect to its expression 

levels and consequent effects on cellular invasiveness. 

We first ascertained the expression of CD97 at the protein level using western blot 

analysis which revealed that it was expressed in all three cell lines examined (Fig. 3-6). 

Qualitatively, it appears that expression level is highest in U251-MG cells, intermediate in 

GBM-6 and least in U1242-MG cells. Subsequently, we down-regulated CD97 levels in all these 

three cell lines and noted the biological effects of this manipulation. As shown in Figure 3-7A, 

real time RT-PCR analyses showed that we were able to achieve a significant knockdown in all 

the three cell lines even at Day 4 post-transfection (n=3, *p<0.05). In U251-MG cells, there was 

a nearly 50% decrease in CD97 mRNA levels at this time point while in GBM-6, there was a 

nearly 80% decrease. In U1242-MG cells, there was a less remarkable knockdown (20% 

decrease compared to the control cells), which was nevertheless statistically significant. When 

plated on Matrigel-coated filters of transwell plates, we found that these decreases in CD97 

mRNA levels were associated with significantly lower cellular invasive capacities (Fig. 3-7B). In 

U251-MG cells treated with siRNA against CD97, the cellular invasive potential was decreased 

to roughly 53.85% of its control counterpart. In U1242-MG cells, even a modest decrease in 
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CD97 RNA levels was associated with a striking decrease in invasiveness (25.5% of control) 

while in GBM-6 cells, the 80% decrease in CD97 mRNA levels caused a nearly 50% decrease in 

invasive capacity.  

Table 5 summarizes our findings of the effect of WT1 and CD97 silencing on the levels 

of CD97 mRNA and how each correlates with changes in cell invasiveness. In the U251-MG 

cells, silencing WT1 correlated with a decrease in CD97 mRNA levels to about 52.9% of the 

level in control cells (shown in Fig. 3-3), and we have previously shown that decreasing WT1 

was associated with a decrease in cellular invasiveness in these cell lines to about 40% of the 

control cells 
[31]

. In U1242-MG and GBM-6 cells, WT1 silencing resulted in a decrease in CD97 

levels to about 69.45% (S.D.: ± 0.09) and 51% (S.D.: ± 0.14), respectively, of the level in their 

respective controls (Fig. 3-4A & B). These values correlated with a decline in the cellular 

invasive property to about 20.6% (S.D.: ± 1.12) and 5.9% (S.D.: ± 22.65) respectively in U1242-

MG and GBM-6 cells (Fig.2-2B). CD97 silencing in U251-MG, U1242-MG and GBM-6 cells 

(Fig.3-7) resulted in a decrease in cell invasiveness to 53.85% (S.D.: ± 14.64), 25.5% (S.D.: ± 

21.38) and 49.82% (S.D.: ± 11.71), respectively. Thus, it is clear that the expression of CD97 in 

glioma cells is of great functional significance. We also examined the effects (if any) of 

knocking down CD97 on cellular proliferation, even though such a role has not frequently been 

attributed to this molecule. Our findings showed that there were no significant differences 

between the proliferative rates of the control versus experimental groups across all the three cell 

lines (data not shown). 



 
 

72 
 

Fig.3-5: Promoter analyses of candidate target genes selected on the basis of their putative roles 

as oncogenes or tumor-suppressors. The UCSC genome browser was used to search for promoter 

sequences for each gene using the search criteria of 1000 base-pairs upstream and downstream of 

the start site. Sequences were then entered into the MatInspector software, and a search was 

conducted for potential binding sites specifically for the WT1 matrix within the Egr-1 family of 

transcription factors. From the results generated, sequences that fulfilled the following criteria 

were selected- a) members of the WT1 matrix, b) matrix similarity of ≥ 0.9 and c) sequences that 

were on the positive strand. Sequences with green numbering belong to genes that are down-

regulated with WT1 silencing, while those with red numbering are for genes that correlate 

inversely with WT1 levels. The underlined areas represent the potential binding sites. The 4-

capitalised nucleotide sequences represent the core- The "core sequence" of a matrix is defined 

as the (usually 4) highest conserved positions of the matrix. The maximum core similarity of 1.0 

is only reached when the highest conserved bases of a matrix match exactly in the sequence. 
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Fig.3-6:  Western Blot showing CD97 protein expression (≈92 kDA) in U251-MG, U1242-MG 

and GBM-6 glioma cells. Cell lysates were prepared using 1% SDS-lysis buffer. 10 µg protein 

was loaded in each lane. Rabbit polyclonal Ab (Abcam) was used to detect CD97 (1: 200). 
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Fig.3-7: CD97 silencing suppresses cellular invasiveness in glioma cells. A. Using siRNA 

directed against the CD97 receptor, we confirmed a significant knockdown in CD97 RNA in the 

tumor cells on day 4 post-transfection by Real Time RT-PCR in U251-MG, U1242-MG and 

GBM-6 cells (n=3, *p<0.05). B. Treatment of U251-MG, U1242-MG and GBM-6 cells with 

siRNA against CD97 resulted in a significant decrease in their ability to invade through the 

Matrigel-coated filters of transwell plates, as compared to cells that were treated with non-

targeting siRNA (n=3; RLU= Relative luminescence units). We confirmed that the decreased 

expression of CD97 did not result in decreased proliferation rates across the three cell lines. 



 
 

76 
 

A 

 

 

B 

 

 



 
 

77 
 

Table 5: Effect of WT1 and CD97 silencing on CD97 mRNA levels- Correlating these results 

with changes in cellular invasiveness. 

Cell Line Following transfection with 
siWT1 

CD97 mRNA level                  Cell invasiveness 
(% control)                               (% control) 

Following transfection with 
siCD97 

CD97 mRNA level           Cell invasiveness 
(% control)                     (% control) 

U251-MG 52.9% 40% [31] 49.16% 53.8% 

GBM-6 51% 5.9% 20.87% 49.82% 

U1242-MG 69.45% 20.6% 80.42% 25.5% 

 

Discussion 

 

We have identified, using gene expression profiling, some of the genes that correlate 

directly or inversely with WT1 levels in the specific context of astrocytomas. Of the 27 genes 

whose expression patterns mirrored that of WT1, 7 candidates were selected for having 

established or putative oncogenic functions, based on published literature. Conversely, of the 11 

genes whose levels were up-regulated with WT1 silencing, 5 had been implicated in the 

suppression of tumorigenesis in some way. We have validated the microarray findings for these 

genes in U251-MG cells with Real Time RT-PCR and have also confirmed these expression 

patterns in two other GBM cell lines. We have also demonstrated here that most of the genes that 

correlate directly with WT1 levels are not expressed in normal human astrocytes, but are highly 

expressed in GBM cells. This observation strongly implicates these genes in the process of 

malignant transformation, necessitating further investigations into their precise contributions to 
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this process. Our promoter studies revealed potential binding sites for WT1 in the promoter 

regions of all but one of the putative target genes. In the lone exception- PDGF-D- the promoter 

region did however show potential binding sites for the Egr-1 family of transcription factors. It 

has been established in previous studies 
[36, 43, 44]

 that WT1 shares the consensus sequences 

recognized and bound by the Egr-1 family of proteins. CD97 was uniformly down-regulated in 

all three cell lines with WT1 silencing and displayed sites on its promoter that could be 

theoretically bound by WT1. Moreover, it has been well established as a facilitator of tumor cell 

invasiveness in other malignancies. Given these considerations, we chose to further examine the 

role of this protein in gliomas. This novel undertaking revealed that in glioma cells, as in 

gastrointestinal malignancies and fibrosarcoma cell line HT-1080 
[119]

, the CD97 receptor 

appears to foster cellular invasiveness, and decreasing its endogenous expression caused 

significant and striking decreases in the ability of the cells to invade through Matrigel.  

The complexity of the WT1 protein has for long posed a formidable challenge to those 

that have ventured to study its varied functions. Its vastly differing roles in different cell types 

make it difficult to categorize this protein as a tumor-suppressor or an oncogene. In certain cells 

like the progenitor cells of the kidney, WT1 facilitates their exit from the cell cycle with 

subsequent differentiation 
[87]

. In the neural and vascular progenitor cells however, it has the 

exact opposite effect- facilitating proliferation and preventing differentiation 
[87]

. Hence, any 

conclusions about its role(s) must be made strictly in the context of the cell-type examined. This 

was the basis for our decision to choose the microarray technique to study differences in gene 

expression arising out of manipulating the levels of WT1 in cells that expressed it endogenously. 

Moreover, silencing the endogenous expression of the protein to look for the resultant 

differences was a more appropriate model rather than over-expressing WT1 in a WT1 null cell 
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line, due to the myriad variables (WT1 isoforms, concentrations etc) associated with the latter 

technique; the former method was therefore selected in order to more faithfully assess the 

possible functions of WT1.  

Identifying the target genes via which WT1 might influence its role in the neoplastic 

transformation of glial cells was of paramount importance for many reasons. First, as a regulator 

of transcriptional and post-transcriptional processes, WT1 has the ability to co-ordinate all the 

key aspects of glioma biology- proliferation, invasiveness and angiogenesis, by regulating the 

expression of the molecules that mediate any or all of these processes. Moreover, given the rapid 

progress that is currently being made in the field of immunologically targeting WT1, it is evident 

that WT1 is a force to be reckoned with in gliomas, and our findings also help to fill in the 

missing links in understanding how it functions. Finally, knowing the identity of its associates 

can help in devising therapeutic strategies that target one or more of these components. Since 

these components belong to different intracellular signalling pathways, targeting them ensemble 

would shut down any possible “escape routes” that malignant cells are notorious for taking.  

The identification of at least 7 candidate oncogenes that were suppressed and 5 putative 

tumor-suppressors that were up-regulated by WT1 silencing confirmed our hypothesis that in 

gliomas, WT1 has more of an oncogenic function. What was more interesting was that among 

the genes that varied directly with WT1 levels, only TYMS, CD97 and FAM57A were expressed 

in normal human astrocytic RNA and even then, their expressions were in the order of a 100ths 

of a fraction. These same genes were expressed between 10-100 times or more in untreated GBM 

cells, thus making a powerful argument in favor of their roles in promoting malignant 

transformation. 
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Our study has also revealed a novel protein- CD97- that is aberrantly over-expressed in 

GBM cells. This protein has well-documented roles in mediating tumor cell invasion and even 

angiogenesis 
[118, 120, 130]

. In various gastrointestinal malignancies, an increased expression of 

CD97 has been demonstrated at the invading front of the tumor 
[145, 146]

. Likewise, we have 

shown here that in glial neoplastic cells, too, it has a significant role in conferring invasiveness 

upon the cells. From our findings, it appears that in U1242-MG cells the extent to which WT1 

decreases cellular invasiveness can be roughly accounted for by CD97 alone. In U251-MG and 

GBM-6 cells, on the other hand, WT1 silencing causes a much more pronounced decrease in 

cellular invasiveness than that seen with CD97 silencing alone. In both these cell lines, PDGF-D 

was also seen to be significantly decreased with lowered expression of WT1. It is well 

established that PDGF-D is a strong mitogenic and chemo-attractant molecule and it can initiate 

several malignant features like proliferation, invasion and angiogenesis in brain tumors 

(reviewed in Ref 129). Examining in more detail the relationship of this growth factor to WT1 

undoubtedly merits further attention. 

  Although our promoter studies suggest putative binding sites for WT1 on the CD97 

promoter, definitive evidence is still required, preferably using the Chromatin 

Immunoprecipitation (ChIP) Assay or even Luciferase Reporter assay techniques. For the 

former, a reliable antibody to immunoprecipitate WT1 is essential, and has been a confounding 

factor in our attempts to study this.  

  The ability to localize the invading neoplastic cells in situ has for a long time been a 

challenge in the treatment of brain tumors. With the identification of CD97 expression and 

function in glioma cells, determining its ability to serve as a reliable marker of invasiveness 

using immunohistochemical staining of glioma tumor specimens opens up a potentially 
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interesting line of investigation. Another option would be to devise a therapeutic strategy aimed 

at targeting the CD97 receptor, which would be relatively safe, since it is virtually absent in the 

normal human astrocytes. Further investigations are also necessary to determine the effect of 

targeting the CD97 receptor on angiogenesis, as it is also known to affect this process.  

Our study thus opens up entirely new avenues in the field of glioma biology. Hitherto 

unknown targets have been uncovered, and more in-depth analyses of these molecules should 

hopefully take us several steps further in our attempts to conquer the fatal disease that constitutes 

GBM. 
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Chapter 4: General discussion and future directions. 

 

In the preceding chapters, we have shown that the developmental regulator Wilms’ 

Tumor-1 (WT1) has a significant contribution to the invasive property that typifies tumor cells in 

malignant gliomas. WT1 was also shown to promote tumor cell growth in vitro and in vivo, by 

studies in our laboratory and others 
[28, 30-32]

. Given its zinc-finger transcription status, we 

embarked on a mission to uncover the target genes via which these effects are mediated. 

Previously established pro-invasive target gene candidates such as PDGF-A 
[88, 89]

, Snail-1 
[86]

 

and E-cadherin 
[86]

 failed to demonstrate a consistent correlation with WT1 expression levels. 

Expression levels of the tyrosine-kinase receptor IGF-1R were analyzed in relation to WT1, to 

account for differences in proliferative rates between cells that had WT1 expression versus those 

in which endogenous WT1 expression was abolished or increased. Our hypothesis was that IGF-

1R, when up-regulated, might mediate a non-apoptotic form of cell death called paraptosis 
[101, 

106]
. We observed consistent up-regulation of IGF-1R with WT1 silencing in U251-MG and T-

98G cells 
[31]

, and a down-regulation of IGF-1R protein and RNA upon over-expressing the WT1 

(+/+) isoform in U251-MG cells. However, siRNA-mediated silencing of IGF-1R in U251-MG 

cells was associated with a decrease in cell proliferation, thereby indicating that the IGF-1R up-

regulation consequent to WT1 silencing was more likely due to activation of an alternate survival 

pathway by the tumor cells, rather than the mechanism by which WT1-mediated cell-death. 

These findings support the theory that the transcriptional targets for WT1 vary depending upon 

the cell type and differentiation status, the isoforms of WT1 present in the cells under 

investigation, and the level of WT1 expression. Hence, in order to ascertain potential targets for 

WT1 in gliomas, we chose to evaluate changes in global gene expression levels following 
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suppression of endogenous WT1, using microarray analyses. Our results from three independent 

microarray experiments revealed the identities of some candidate target genes that were 

consistently down- or up-regulated with WT1 silencing, implying a direct or indirect correlation 

respectively, with this protein. Based on literature search results, the altered regulation of these 

genes, we observed, could not only explain WT1’s effects on proliferation and invasion, but also 

uncovered a potential role in angiogenesis (Fig.4-1).  

Fig.4-1: WT1 regulates different aspects of the malignant phenotype that characterizes glioma 

cells- cell proliferation, invasion and angiogenesis. The potential target genes that enable it to 

effect these processes (+), or those that inhibit the process (-) and correlate inversely with WT1 

levels are also listed. Genes highlighted in bold are those that are common among three different 

glioma cell lines examined. 
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An involvement in angiogenesis will not be surprising given that the fatality in WT1 null 

mice is a consequence of severe cardiovascular abnormalities 
[84]

. Moreover, in glioma tumor 

specimens, WT1 expression has been discovered in the endothelial cells of tumor vessels 
[85]

, and 

while it has also been shown to regulate the expression of pro-angiogenic molecules like Ets-1 

[85]
 in tumors, its own transcription is potentially activated by hypoxia-inducible factor-1 (HIF-1) 

with oxygen restriction 
[84]

. WT1 is thus well-linked to the process of blood vessel formation and 

it would be interesting to study if the expression in vascular endothelial cells in tumors is a 

coincidental finding, or if it actually contributes to the process. Our laboratory has established an 

in vitro 3-dimensional model to study angiogenesis, 
[147]

 which would well serve this purpose. 

Further, this model could also be used to ascertain which of the pro-angiogenic target genes 

identified- CD97, PDGF-D and EPAS1- contribute to this process in glioma cells. 

Based on our findings, it is evident that WT1 regulates the invasiveness of glial 

neoplastic cells, possibly via altering the expression of CD97. While definitive evidence for 

CD97 regulation by WT1 would only be obtained by demonstrating binding of the latter to the 

CD97 promoter, there is substantial proof to validate this hypothesis. For one, the expression 

patterns of both WT1 and CD97 are closely related across all the cell lines studied- both proteins 

are expressed at much higher levels in GBM cells as opposed to normal human astrocytes and 

suppressing the endogenous expression of WT1 significantly and consistently down-regulates 

CD97 expression. Further, both proteins notably affect the invasiveness of the neoplastic cells. In 

U251-MG and GBM-6 cells, down-regulating WT1 has a much greater impact on decreasing 

cellular invasiveness than that seen with CD97 suppression alone, and pro-invasive molecules 

like PDGF-D could be additionally implicated. In the highly invasive GBM cell line- U1242-
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MG, however, even a modest decrease in CD97 level dramatically impairs the cells’ ability to 

invade. The absence of significant dysregulation of Snai1, E-cadherin, PDGF-D, KRT18 or 

DPYSL3 in these cells gives rise to the hypothesis that U1242-MG cells are heavily dependent on 

the CD97 receptor expression levels to retain their invasiveness. 

Invasion of the neoplastic cells into surrounding normal brain parenchyma involves inter-

cellular interactions and interactions occurring between tumor cells and the surrounding 

extracellular matrix, facilitated by adhesion molecules, chemo-attractants, and perhaps most 

importantly- by matrix proteases produced by tumor cells 
[148]

. In vivo assays and organotypic 

brain slice models are considered superior to in vitro assays for invasion, since they provide an 

environment that facilitates this study of how the invading neoplastic cells interact with the 

unique extracellular matrix in the brain. However, a key element in promoting cellular 

invasiveness is the inherent motility acquired by malignant cells 
[148]

, which is a property that can 

be examined in great detail using an in vitro invasion assay. In this system, it is also possible to 

determine and manipulate the properties that confer this enhanced motility upon the transformed 

cell. In our case, for example, manipulating the expression level of WT1 or CD97 generates an 

excellent system by which to study the exact contribution(s) of these proteins to cellular 

invasion.  

The microarray analyses identified several pro-proliferative proteins that varied directly 

with WT1 levels, such as ICK, TYMS, PDGF-D and FAM57A, and several pro-apoptotic 

molecules that varied inversely, like SAT-1, LZTS-1 and TIMP-3. WIPI-1 which also inversely 

correlated with WT1 plays a role in autophagy 
[136]

- a non-apoptotic form of cell death. It is 

interesting to note that among the putative oncogenic targets, only PDGF-D has been studied for 

its contribution to gliomagenesis. Information pertaining to the other molecules is mostly from 
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studies conducted in gastrointestinal carcinomas or lung malignancies 
[118, 120, 124, 126-133]

. Thus, 

the aberrant dysregulation of several genes with hitherto unknown functions in gliomas has been 

presented for the first time in these studies. 

Future directions 

We have validated the microarray findings at the mRNA level for all the candidate genes 

in three different cell lines. It is important to demonstrate that these genes are similarly expressed 

at the protein level, as well, using western blotting, in order to rule out any post-transcriptional 

regulatory differences. Further analyzing the exact role and contributions of each protein to 

glioma is beyond the scope of this study. However, such investigations would undoubtedly 

broaden our current understanding of this disease. 

Our findings from the in vitro invasion assays following WT1 and CD97 suppression can 

be supplemented by orthotopically implanting cells in which WT1 has been silenced, and 

detecting changes in CD97 expression at the invasion front, using immunohistochemistry. 

Further, the invasive patterns of the tumor cells can be visualized histologically or using MRI. 

Brain slice models can be similarly utilized in place of or in addition to the above-mentioned 

system. The U1242-MG xenograft model has been established to closely mimic the key features 

seen in GBM with features of extensive infiltration into the brain parenchyma, perivascular and 

subpial spread of cells, microvascular proliferation with typical neovascularization and even 

necrosis 
[99]

. Moreover, based on our findings from in vitro experiments this cell line 

demonstrates a high sensitivity to CD97 expression levels. Thus, it would serve as a good model 

to test our findings using these experimental model systems. 
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Finally, demonstration of WT1 binding to CD97 promoter using chromatin 

immunoprecipitation assay or luciferase reporter assay is also vital to confirm transcriptional 

regulation of the latter protein by WT1. 
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