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Abstract

EMBEDDINGS OF PRODCUT GRAPHS WHERE ONE FACTOR IS QN

By Bethany Turner, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2011.

Director: Ghidewon Abay-Asmerom, Associate Professor, Department of Mathematics and
Applied Mathematics.

Voltage graph theory can be used to describe embeddings of product graphs if one factor
is a Cayley graph. We use voltage graphs to explore embeddings of various products where
one factor is a hypercube, describing some minimal and symmetrical embeddings. We
then define a graph product, the weak symmetric difference, and illustrate a voltage graph
construction useful for obtaining an embedding of the weak symmetric difference of an
arbitrary graph with a hypercube.
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Introduction

In this chapter we define graphs and product graphs along with some of their basic properties,

and ideas from topological graph theory of graph genus and graph embeddings. We will also

introduce the theory of voltage graphs which will aid us later in describing some embeddings

of product graphs.

1.1 Basic Definitions

A graph is a structure consisting of two sets: a vertex set and an edge set. The vertex set

is denoted V (G), and the edge set, denoted E(G), is a set of unordered pairs of distinct

vertices. Since a graph can be uniquely defined by its edges and vertices, we may write

G = (V (G),E(G)). When {v1,v2} ∈ E(G) we will denote the edge by v1v2 whenever

convenient.

We say that two vertices v1,v2 ∈V (G) are adjacent if v1v2 ∈ E(G), and the edge v1v2

is incident with the vertices v1 and v2. Naturally a graph is presented as a collection of dots,

the vertices, with edges connecting pairs of adjacent vertices as in Figure 1.1.

The degree of a vertex v is denoted d(v) and represents the number of edges incident

with v. The cardinality of V (G), |V (G)|, is said to be the order of G and is denoted by

p, while |E(G)| is the size of G and is denoted q. If every vertex of G has degree k, G

is k-regular. An isolated vertex is one with degree zero. There is a simple relationship

between a graph’s order and the sum of the degrees of its vertices.
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a
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c d
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Figure 1.1: A graph G and its complement, G

THEOREM 1.1. For any graph G,

∑
v∈V (G)

d(v) = 2q.

A walk is sequence of vertices, not necessarily distinct, such that any two consecutive

vertices are adjacent. A path is a walk in which no vertex is repeated. A walk is closed if

its endpoints are the same and open otherwise. A closed path is a cycle; a cycle is even or

odd depending on whether it contains an even or odd number of vertices. Two vertices are

connected if there is a path between them; similary, a graph is connected if there is a path

between every pair of its vertices. For example in Figure 1.1, abc f is an a− f -path, so a is

connected to f . In fact, the graph is connected.

We define the complement of G by G = (V (G),E(G)), so that vertices in G are adjacent

if and only if they are not adjacent in G. Figure 1.1 illustrates a graph and its complement;

notice that c is an isolated vertex in G but it is adjacent to every vertex in G.

The structure G in Figure 1.2 has some additional features. Every edge in G comes from

an ordered pair as indicated by the arrows; this indicates that the edge is a directed edge.

For example, the edges ab and ba are distinct. Such a structure with directed edges is called
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G

a b

c d

Figure 1.2: A pseudograph with directed edges

a directed graph, or digraph. An edge from a vertex to itself is called a loop. In the figure,

there is a bb loop. There are also two distinct edges from c to d. A pseudograph is a graph

in which both loops and multiple edges are permitted. In the literature, our graphs, those

that admit no loops, directed edges or multiple edges are called simple graphs, reserving

the name graph for what we have called a pseudograph.

Unless otherwise noted, we will assume that all graphs are simple. We will make use of

pseudographs in Section 1.4, but only as tools for understanding other simple graphs.

A subset of the vertex set of a graph is independent if its elements are mutually

nonadjacent. A graph is bipartite if its vertices can be partitioned into two independent sets,

known in context as partite sets. A useful characterization of bipartite graphs is that they

are exactly those graphs containing no odd cycles.

A complete graph is a graph with an edge between every pair of vertices; the complete

graph on n vertices is denoted Kn. A graph with no edges is an empty graph.

A graph G′ is a subgraph of G if V (G′)⊂V (G) and E(G′)⊂ E(G). G′ is an induced

subgraph of G if V (G′) ⊂ V (G) and E(G′) = {v1v2 : v1,v2 ∈ V (G′) and v1v2 ∈ E(G)}.

Vertices of an induced subgraph are adjacent if and only if they are adjacent in the parent

graph.
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K1 K2 K3 K4 K5

Figure 1.3: Some complete graphs

A graph is vertex-transitive if for every v1,v2 ∈ V (G), there is some automorphism

α : V (G)→ V (G) such that α(v1) = v2. Similarly a graph is edge-transitive if for every

e1,e2 ∈ E(G), there is some automorphism α : E(G)→ E(G) such that α(e1) = e2.

1.2 Graph Products

Graph products are certain binary operations on a set of graphs. Given two graphs G and

H, we can construct a graph G∗H, whose vertex set is the Cartesian product V (G)×V (H).

Different ways of defining an edge set give rise to the various graph products. For this

discussion we define V (G) = {g1,g2, ...,gp} and V (H) = {h1,h2, ...,hp′}. Some common

examples of graph products are described below. With respect to any product graph G∗H,

we refer to G and H as factors

The Cartesian product of G and H is denoted by G�H, and has

E(G�H) = {(g1,h1)(g2,h2)|(g1 = g2 and h1h2 ∈ E(H)) or (h1 = h2 and g1g2 ∈V (G))}.

Consider the graph K2�K2. Notice in Figure 1.4 (a) that the Cartesian product consists

of two identical copies of K2, with edges between the copies’ corresponding vertices. In

general, the product G�H contains a copy of H for each vertex of G, and corresponding

vertices of H placed at adjacent vertices of G are joined. The Cartesian product satisfies
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g1

g2

K2

h1 h2
K2

K2�K2

g1

g2

K2

h1 h2 h3
K3

K2�K3

Figure 1.4: The Cartesian products K2�K2 and K2�K3

|E(G�H)|= pq′+ p′q.

The graphs known as the hypercubes or n-cubes are defined recursively as a Cartesian

product. Let Q1 = K2, and Qn = Qn−1�K2 for n ≥ 2. Figure 1.5 shows the first three

n-cubes. Chapter 2 details some properties of these graphs.

The tensor product of G and H, also known in the literature as the direct product or

Kronecker product, is denoted G×H, with

E(G×H) = {(g1,h1)(g2,h2)|g1g2 ∈ E(G) and h1h2 ∈ E(H)}.

The tensor product is demonstrated for small graphs in Figure 1.6. Notice that every

pair of edges one from each factor gives rise to two distinct edges in the tensor product;

therefore, |E(G×H)|= 2qq′.

The augmented tensor product G 1 H has edge set

E(G 1H)= {(g1,h1)(g2,h2)|(g1 = g2 and h1h2 ∈E(H)) or (g1g2 ∈E(G) and h1h2 ∈E(H))}.

The augmented tensor product is not commutative.

There are many possibilities for the edge set of a product graph, and not all types have
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Q2 Q3 Q4

Figure 1.5: Some n-cubes

g1

g2

K2

h1 h2
K2

K2×K2

g1

g2

K2

h1 h2 h3
K3

K2×K3

Figure 1.6: The tensor products K2×K2 and K2×K3
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v2

v1

v3

v4

(a)

v3

v1

v4

v2

(b)

Figure 1.7: Two drawings of K4 on S0

been studied at length. In Chapter 4 we discuss the weak symmetric difference product,

denoted G5H, whose edge set is given by

E(G5H)= {(g1h1,g2,h2)|(g1g2 ∈E(G) and h1h2 ∈E(H)) or (g1g2 ∈E(G) and h1h2 ∈E(H))}.

In several instances properties of product graphs depend on those properties of their

factors: if G and H are each connected, for example, then G�H is connected as well. We

also know that G×H is bipartite if either factor is bipartite. The genus of a product graph,

defined in the next section, however, is not known to depend simply on the genera of its

factors. Our goal is to attain some of this information with the help of voltage graph theory,

defined in the following sections.

1.3 Drawings and Embeddings

Our definition of a graph was combinatorial, with a graph defined uniquely by the connec-

tions which exist between its vertices. The diagrams used to represent these connections are

helpful, but they are not unique. Consider the two representations of K4 in Figure 1.7: in (a),

the edges of K4 intersect only at their common vertices, but in (b) the edges v1v3 and v2v4

cross elsewhere.
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One aim of topological graph theory is to study the relationship between a graph’s

combinatorial structure and its drawings. Some properties of these drawings are given in the

following definitions.

We define a surface as a closed orientable 2-manifold, and say that a graph is embedded

on a surface if it is drawn so that edges intersect only at common vertices. By this definition,

the drawing of K4 in Figure 1.7 (a) is an embedding, while the drawing in Figure 1.7 (b) is

not. A region of an embedding of a graph G on a surface S is a component of S−G. We

identify regions in an embedding by the edges that bound them; for example in Figure 1.7

(a), the outer region is bounded by the cycle v1v2,v2v3,v3v1, and there are four regions in

total. We refer to the number of edges in the cycle bounding a region as its size. If a region

has size k it is called a k-gon.

An embedding is 2-cell if every region of the embedding is homeomorphic to an open

disk. The genus of a graph G, denoted γ(G), is the minimum genus among the surfaces on

which G has a 2-cell embedding. Similarly, the maximum genus of G is denoted γM(G)

and is the maximum genus among the surfaces on which G has a 2-cell embedding. We will

now use embedding to mean 2-cell embedding exclusively.

An embedding of G on Sγ(G) is said to be minimal, while an embedding of G on SγM(G)

is maximal. A graph is planar if it has genus zero; that is, it is embeddable on the sphere.

The following theorem of Euler relates the number of vertices, edges and regions in a given

embedding.

THEOREM 1.2. Any embedding of a connected graph G on the surface Sγ has satisfies

p−q+ r = 2−2γ , where r is the number of regions in the embedding.

A graph may have distinct embeddings on the same surface. Figure 1.8 shows two

embeddings of K5 on S1. The embedding in (a) contains two 3-gons and one 8-gon, while

the embedding in (b) contains four 3-gons, one 4-gon and two 5-gons. Each embedding has
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v3

v1

v4 v2v5

(a)

v5

v5 v5

v5

v3

v1

v4 v2

(b)

Figure 1.8: Distinct 2-cell embeddings of K5 on S1

a total of five regions, ten edges and five vertices, satisfying the equation of Theorem 1.2.

To formalize the distinction between embeddings such as the ones in 1.8, we identify a

given embedding by the rotation of edges around each vertex. For each vertex vi ∈V (G),

define a cyclic permutation ρi : N(vi)→ N(vi). This is the rotation at vi, and the set

P = {ρ1, ...,ρp} is a rotation scheme. There is a one-to-one correspondence between

rotation schemes and embeddings. In Figure 1.8 (b), ρ1 = (5324).

The relationship from Theorem 1.2 implies that the more regions an embedding has,

the lower the genus of the surface on which it is embedded. If a graph has a triangular

embedding, then this embedding is necessarily minimal, as every region is as small as

possible. Similarly if a graph is bipartite, then any quadrilateral embedding is minimal, as

the graph has no odd cycles.

Minimal embeddings are of interest because the construction of a minimal embedding

of a graph verifies the graph’s genus. In addition to the minimal and maximal embeddings,

we may seek isogonal embeddings in which every region has the same size. We will refer

to triangular and quadrilateral embeddings, those isogonal embeddings in which every

region has size three or four, respectively.
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(b) C{1,2}(Z8)

Figure 1.9: The Cayley graphs C{1}(Z8) and C{1,2}(Z8)

We have discussed vertex-transitivity and edge-transitivity of graphs. An embedding is

symmetrical if it is region-transitive as well. That is, an embedding is symmetrical if there

is some automorphism which preserves its rotation scheme.

1.4 Voltage Graphs

Given a group Γ and a generating set ∆, the Cayley graph C∆(Γ) has vertex set V (C∆(Γ)) =

Γ. Edges in the Cayley graph are defined as follows:

E(C∆(Γ)) = {g1g2|g1,g2 ∈ Γ and g2 = g1δ for some δ ∈ ∆}.

So vertices in C∆(Γ) are adjacent whenever they are related by some generator. Cayley

graphs encode the structures of groups with respect to certain generating sets, as illustrated

in Figure 1.9.

The following definitions and results are detailed in [3].

For a pseudograph G, let G∗ be the graph obtained by replacing every edge in G with

a pair of oppositely directed edges. A voltage graph is a triple (G,Γ,φ) where G is a
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pseudograph, Γ is a group, and φ : E(G∗)→ Γ is a function satisfying φ(uv) = φ(vu)−1 for

every uv ∈ E(G∗). The values of φ [E(G∗)] are called voltages.

Given a region R in (G,Γ,φ), we define the order of R in Γ by |R|φ = ∑
n
i=1 φ(ei), where

e1,e2, ...,en are the edges of (G,Γ,φ) bounding R.

The covering graph G×φ Γ for (G,Γ,φ) has vertex set V (G)×Γ and uv∈E(G) implies

(u,g)(v,gφ(uv)) ∈ E(G×φ Γ) for all g ∈ Γ.

Whenever (G,Γ,φ) is embedded on a surface S, described by the rotation scheme

P = (ρ1, ...,ρp), then we may obtain an embedding of G×φ Γ, described by a new rotation

scheme. We define the lift P
′
of P to G×φ Γ as follows: if ρv(v,u) = (v,w), then

ρ
′
(v,g)((v,g),(u,gφ(v,u))) = ((v,g),(w,gφ(v,w))),

for each g ∈ Γ. Then

P
′
= {ρ

′
(v,g)|(v,g) ∈V (G×φ Γ)}.

The next result, due to Gross and Alpert as it appears in [3], allows us to analyze the

embedding of a covering graph obtained from its voltage graph.

THEOREM 1.3. Let (G,Γ,φ) be a voltage graph. If R is a k-gonal region of the embedding

of G, then the embedding of G×φ Γ contains |Γ||R|φ k|R|φ -gons.

Proof. Let v1, ...,vk be a closed walk w bounding R, with ei = (vi,vi+1), mod k. Then we

can also express w as: e1, ...,ek. Let n = |R|φ , the order of φ(w) in Γ. Then each component
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of the covering of R will have boundary of the form:

(v1,g),(v2,gφ(e1)), ...,(vk,gφ(e1)φ(e2)...φ(ek−1)),

(v1,gφ(w)), ...,(vk,gφ(w)φ(e1)φ(e2)...φ(ek−1)),

.

.

.

(v1,gφ
n(w)) = (v1,g),

for some g ∈ Γ. So each such component is a kn-gon. The number of such components is
|Γ|
n , as the second coordinates of (v1,g) range over Γ.

Figure 1.10 shows a voltage graph which lifts to the Petersen graph. The group used is

Z5. The embedding determined by the voltage graph in the figure is not pictured, but we

can describe it. The voltage graph has two 1-gonal regions, bounded by the loops aa and bb,

each of which has order 5. Therefore each of these regions lifts to one 5-gonal region in

the embedding of the covering graph. The 4-gonal region in the voltage graph, bounded by

the walk ab,bb,ba,aa, has order 5 and lifts to one 20-gonal region in the embedding of the

covering graph. We can compute using Theorem 1.2 that the embedding is on the surface of

genus 2.

For the purpose of embedding product graphs, it is convenient that we obtain an embed-

ding of a graph whose vertex set is V (G)×Γ. It will be possible to choose Γ and φ so that

G×φ Γ is in fact isomorphic to a familiar product graph, resulting in an embedding of the

product.



13

0
2 1

a b (a,4)
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(a,1)

(a,0)

(b,4)
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Figure 1.10: The Petersen graph as a covering graph

A bouquet Bn is a graph with a single vertex and n loops. Every Cayley graph C∆(Γ)

is the covering graph of (Bn,Γ,φ) where φ assigns a unique element of ∆ to each loop in

Bn. For example letting Γ = Z8 and ∆ = {1,2}, we may construct a voltage graph with one

vertex a and a loop for each element of Γ. The resulting covering graph will have vertex set

{a}×Γ≡ Γ, and edges between exactly those vertices that are related by some generator in

∆. This is exactly the definition of C{1,2}(Z8), and results in the graph in Figure 1.9(b).
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Hypercubes

In this chapter we elaborate on our earlier definition of the hypercubes and derive some

of their basic properties. This is in preparation to describe embeddings of various product

graphs in which one factor is a hypercube. Specifically, we will define Qn as a Cayley graph

for the group (Z2)
n and construct some voltage graphs which lift to Qn.

2.1 Properties of Qn

In Chapter 1 we defined Qn as the Cartesian product of n copies of K2. Equivalently, we may

define V (Qn) as the set of bit strings of length n, and allow that two vertices are adjacent if

and only if their corresponding bit strings differ by exactly one bit. These labels may be

built through the iteration of the Cartesian product. Beginning with two copies of K2, name

each vertex set {0,1}. Then name the vertices in the product graph by concatenating the

names of their components.

Note that |V (Qn)|= 2n, because there are 2n bitstrings of length n. Given a bit string of

length n, there are n bit strings which differ from it in exactly one place; this implies that Qn

is n-regular. From Theorem 1.1 we have |E(Qn)|= n2n−1.

Qn is bipartitesince the Cartesian product of two bipartite graphs is bipartite, and K2

is bipartite. Alternatively, our association of V (Qn) with bit strings leads to an explicit

partition of the vertices into two independent sets, where every vertex is assigned to one of

two sets according to the (mod 2) sum of its digits. Two vertices belonging to the same set
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000 010

110100

001 011

111101

Figure 2.1: Partite sets in V (Q3)

must differ by an even number of digits, so that each set is independent. This is illustrated

in Figure 2.1 where the partite sets are {000,011,110,101} and {111,100,001,010}.

For us this vertex labeling has another advantage; we can easily view V (Qn) as iso-

morphic to the group (Z2)
n. This will help us see Qn as a Cayley graph. The set

∆ = {δi ∈ (Z2)
n : δi has a 1 in its ith coordinate only} is a generating set for (Z2)

n. Our

definition of E(Qn) allows us to view Qn as the Cayley graph C∆((Z2)
n). We will refer to

the elements of ∆ as the standard generators of (Z2)
n, and denote by δi that element of ∆

with a 1 in its ith coordinate.

2.2 Qn as a Covering Graph

We now construct some voltage graphs which lift to Qn.

Because Qn is a Cayley graph, it occurs as the covering graph of the n-loop bouquet in

which each loop is assigned a distinct voltage from ∆. For example, Figure 2.2 shows a

voltage graph of this type which lifts to Q3. While simple, this construction does not lead to

a minimal embedding. Its outer region is a 6-gon of order two, which lifts to four 6-gonal

regions by Theorem 1.3. The regions bounded by invidual loops are 1-gons of order two

which lift to a total of 12 2-gons in the covering graph; however, we may exclude any 2-gons
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a

001

001

010

Figure 2.2: B3 as a voltage graph which lifts to Q3

a b

e

δ1

δ2

δn−1

Figure 2.3: A voltage graph which lifts to Qn

in our count as they do not affect the underlying graph. Using p = 8,q = 12 and r = 4 in

Theorem 1.2 implies that our embedding is on S1. This is not minimal because Q3 is planar.

We will consider a different voltage graph which lifts to Qn; by proving the embedding

is minimal and applying 1.2, we will compute γ(Qn). Let Γ = (Z2)
n−1. Let G = K2 with

V (G) = {a,b}. We construct the voltage graph (G,Γ,φ) by replacing the edge in G with n

edges, each assigned a distinct voltage from ∆∪ e.

The covering graph has 2n vertices and is n-regular. In fact, the edge set of the covering

graph is exactly that of K2 1 Qn−1, which is simply Qn. This embedding of Qn allows a

proof of the following theorem.

THEOREM 2.1. γ(Qn) = 1+2n−3(n−4).

Proof. Construct the voltage graph G as described above and illustrated in Figure 2.3.
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e
δ1δ2δn−1 δ1 δ2 δn−1

a b

Figure 2.4: A second voltage graph which lifts to Qn

Then |Γ| = 2n−1. We have seen that the covering graph is Qn, so that p′ = 2n and q′ =

2n−1n. Because the voltage graph embedding contains n 2-gons, each of order 2, by

Theorem 1.3 the covering graph embedding contains 2n−2n 4-gons. Because Qn is bipartite,

this quadrilateral embedding is minimal. By Theorem 1.2, the embedding is on Sh, where

h = 1+2n−3(n−4).

Finally we consider the voltage graph in 2.4. The subgraph induced by {a} is a bouquet

which lifts to Qn−1, as does the subgraph induced by {b}. The covering graph contains

these two copies of Qn−1, in addition to edges between each pair of corresponding vertices

in the subgraphs. So the covering graph is simply Qn−1�K2 = Qn. Again the embedding is

bipartite and thus minimal.
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Product Embeddings

We now investigate embeddings of products of the form G ∗Qn, concentrating on those

products defined in Chapter 1. To illustrate embedding techniques, we consider cases where

G is a familiar planar graph. We then look to some products of Qn with quadrilateral tilings

of the torus.

3.1 Embedding Techniques

Section 2.2 described a way to modify a single edge or vertex into a voltage graph lifting to

Qn. In this chapter we develop the method further, modifying an arbitrary graph G into a

voltage graph which lifts to a product G∗Qn of our choosing. Throughout this discussion

we will use Γ = (Z2)
n. When considering a product G∗Qn, we will denote |V (G∗Qn)| by

p′ and |E(G∗Qn)| by q′.

Every element of Γ is self-inverse, so to simplify voltage graph constructions we need

not consider the edges of G as directed edges. Another convenience is that the regions in

these voltage graphs will have order one or two.

Some of the voltage graphs that follow contain half-edges. A half-edge has exactly one

endpoint and contributes one to the size of a region while contributing nothing to the net

voltage; intuitively, we traverse the half-edge in both directions while computing the net

voltage of a region. The inner region of the voltage graph in Figure 3.1 is bounded by the

walk a,b,c,d,a,a, so its net voltage is 0+1+2+1+1+1−1=1, which has order three in Z3. We

consider the region a 5-gon, so it will lift to a 15-gon in the covering graph embedding.
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(a) (G,Z3,φ)

(a,0)
(a,1)

(a,2)

(b,0)

(b,1)

(b,2)
(c,0)

(c,1)

(c,2)

(d,0)

(d,1)

(d,2)

(b) G×φ Z3

Figure 3.1: A half-edge in a voltage graph

Table 3.1: Platonic Solids

Name p q r
Tetrahedron (PS4) 4 6 4
Octahedron (PS8) 6 12 8
Icosahedron (PS20) 12 30 20
Dodecahedron (PS12) 20 30 12

Half-edges are useful for minimizing the size of regions in the voltage graph while

forcing certain edges into the covering graph. In Figure 3.1, the effect of the half-edge at a

is to ensure that the edge (a,g)(a,g+1) belongs to the edge set of the covering graph for

every g ∈ Z3. Only the underlying graph of the covering graph is shown in the figure, and it

is not represented as an embedding.

The following techniques are due to Abay-Asmerom and appear in [3] along with similar

techniques for embedding additional product graphs.
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3.1.1 Cartesian Product Embeddings

We have seen already that Qn arises as the covering graph of a bouquet. By similar logic,

the single-vertex graph with n half-edges assigned distinct elements of ∆ also lifts to Qn.

We exploit this property to obtain an embedding of G�Qn.

Given an embedding of G, construct a voltage graph (G,Γ,φ) by assigning voltage

e ∈ Γ to each edge of G and adding n half-edges at each vertex, one labeled by each of

the n standard generators of Γ. The covering graph may be described similarly to that of

Figure 2.4. For each vertex in G, the subgraph induced by that vertex lifts to a copy of Qn in

the covering graph, while the edges between the vertices in G lift to those edges connecting

adjacent copies of Qn.

We can define the edge set of the covering graph formally. The vertices (v,g1) and

(u,g2) are adjacent in G×φ Γ if and only if one of the following conditions hold. Either

v = u and g2 = g1δi for some δi ∈ ∆, in which case the edge results from some half-edge

in the voltage graph, or g1 = g2 and uv ∈ E(G), in which case the edge results from some

original edge from G. This definition is equivalent to that of E(G�Qn), using the definition

of Qn as a Cayley graph given in Chapter 2.

Figure 3.2 shows a voltage graph which will lift to PS8�Q8. Each full edge has voltage

e ∈ (Z2)
8 while the n half-edges around each vertex have distinct voltages from the standard

generators of (Z2)
8; beyond this, the specific assignment of voltages for the half-edges is

irrelevant, as each half-edge contributes nothing to the order of the region it bounds.

We may use Theorem 1.3 to describe the embedding of PS8�Q8 associated with the

voltage graph in Figure 3.2. The product is embedded on Sh where h = 1+26(44) = 2817,

but we can say more. Because n ≡ 0(mod 4), we can obtain an isogonal embedding of

PS8�Q8 on Sh by distributing the half-edges evenly between the regions of PS8, as shown

in the figure. The covering graph is isogonal because each region of the voltage graph is an
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Figure 3.2: A voltage graph which lifts to PS8�Q8

order one 9-gon.

The following theorem generalizes the above argument to embeddings of G�Qn.

THEOREM 3.1. Given an embedding of G on Sk, we may define an embedding of G�Qn

on the surface of genus h = 1+ 2n−2(pn+ 4k− 4). Given an isogonal embedding of an

r-regular graph, we may ensure that this embedding of G�Qn is isogonal if n≡ 0(mod r).

Proof. We have p′= 2n p and q′= 2nq+2n−1 pn. Because each of the 2−2k+q− p regions

in the embedding of G has order one in the voltage graph, G�Qn has r′ = 2n(2−2k+ p−q)

regions. Applying Theorem 1.2 gives h = 1+2n−2(pn+4k−4). If n≡ 0(mod r) and the

embedding of G is isgonal, we may place at each vertex exactly n/r half-edges in each

region bounded by that vertex. Then each s-gon in G becomes an (s+ s(n/r))-gon in the

voltage graph, lifting to 2n (s+ s(n/r))-gons in the embedding of G�Qn.

3.1.2 Tensor Product Embeddings

To produce the tensor product G×Qn, we construct a voltage graph (G,Γ,φ) by first

replacing each edge of G with n edges, then assigning voltages to these edges corresponding

to the n standard generators of Γ. Then, by definition of E(G×φ Γ), (v,g1) and (u,g2)
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are adjacent in G×φ Γ if and only if vu ∈ E(G) and g2 = g1φ(vu). Because φ(vu) is

some standard generator of Γ, this is equivalent to the statement that g1g2 ∈ E(Qn). So

E(G×φ Γ) = E(G×Qn).

One consequence of this construction is that the resulting embedding of G×Qn will

necessarily contain at least 2n−1q(n− 1) 4-gons, corresponding to the q(n− 1) 2-gonal

regions in the voltage graph. The ratio of numbers of regions of different sizes will remain

unchanged, unless we adjust the ordering of the voltages to ensure that regions of even size

have order one.

THEOREM 3.2. Given an embedding of G on Sk, we may obtain an embedding of G×Qn

on the surface of genus h≤ 1+2n−2(qn− (p+2)+2k), with equality holding whenever

every region in G has order 2. If t is the number of regions in the voltage graph having order

one, then h = 1+2n−2(qn− (p+2+ t)+2k).

Proof. We have p′ = 2n p and q′ = 2nqn. We compute the number of regions in the voltage

graph by adding the 2− 2k+ q− p regions in the original embedding of G to the q(n−

1) 2-gons created by adding edges in the voltage graph, so that the voltage graph has

2− 2k+ qn− p regions. Each region in the voltage graph has order at most two, so that

r′ ≥ 2n−1(2−2k+qn− p). Applying Theorem 1.2 gives h≤ 1+2n−2(qn− (p+2)+2k).

We may of course adjust the voltages so that certain regions have order one. If t is the

number of regions in the voltage graph having order one, then there are 2−2k+qn− p− t

regions having order two, so that r′ = 2nt +2n−1(2−2k+qn− p− t). As above, we use the

values of p′, q′ and r′ along with Theorem 1.2 to conclude that h = 1+2n−2(qn− (p+2+

t)+2k).

For example, by Theorem 3.2 we can embed PS20×Qn on Sh where h = 1+2n−2(30n−

14). Because every region in PS20 has odd size, each region in our voltage graph must have

order two. In the voltage graph there are 20 3-gons and 30(n−1) 2-gons. Therefore the
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associated embedding of PS20×Qn contains 20 ·2n−1 6-gons and 30(n−1) ·2n−1 4-gons.

So this embedding is not isogonal, despite the fact that the embedding of the voltage graph

was isogonal.

In general, because our voltage graph construction forces 4-gons into the corresponding

covering graph embedding, we may not obtain an isogonal embedding of G×Qn by this

method unless we begin with a quadrilateral embedding of G.

3.1.3 Augmented Tensor Product Embeddings

Finally, we obtain an embedding of the augmented tensor product G 1 Qn by a slight

adjustment of the voltage graph used for the tensor product above; we replace each edge

of G with n+1 edges instead of n, with the extra edge in each case receiving the voltage

e ∈ Γ. We may sometimes assign these identity voltages to edges bounding the regions of

odd length in G so as to ensure that each such region has order one. The following theorem

describes the embeddings obtained from these constructions.

THEOREM 3.3. Given an embedding of G on Sk, we may obtain an embedding of G 1Qn on

the surface of genus h≤ 1+2n−2(qn− (p+2)+2k+q), with equality holding whenever

each region has order two. If t is the number of regions in the voltage graph having order

one, then h = 1+2n−2(qn− (p+2+ t)+2k+q).

Proof. We have p′ = 2n p and q′ = 2nq+2nqn = 2nq(n+1). We compute the number of

regions in the voltage graph by adding the 2−2k+q− p regions in the original embedding

of G to the qn 2-gons created by adding edges in the voltage graph, so that the voltage graph

has 2−2k+qn− p+q regions. Each region in the voltage graph has order at most two, so

that r′ ≥ 2n−1(2−2k+qn− p+q). Applying Theorem 1.2 gives h≤ 1+2n−2(qn− (p+

2)+2k+q).
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Now if t is the number of regions in the voltage graph having order one, then there are

2−2k+qn− p+q− t regions having order two, so that r′ = 2nt +2n−1(2−2k+qn− p−

+qt). As above, we use the values of p′, q′ and r′ along with Theorem 1.2 to conclude that

h = 1+2n−2(qn− (p+2+ t)+2k+q).

For example when constructing PS20 1 Qn, we may adjust the ordering of the voltages

along the n+1 new edges between each pair of adjacent vertices in PS20 so that each of the

20 3-gons in the voltage graph has order one. The remaining 30n 2-gons each have order 4,

so that the covering graph embedding has 20 ·2n 3-gons and 30n ·2n−1 4-gons. Again, this

embedding is not isogonal.

To obtain an isgonal embedding of G 1Qn, we again need a voltage graph in which each

region is an order one 4-gon or an order two 2-gon. In the following section we consider

some graphs with quadrilateral embeddings, from which we may obtain isgonal embeddings

of their products with Qn.

3.2 Symmetrical Embeddings

Symmetrical embeddings are of interest because of their great symmetry; in addition to

being regular, isogonal, vertex-transitive and edge-transitive, they can be thought of as

region-transitive as well.

We will define an infinite class of minimal, symmetrical embeddings of the form G×Qn,

where G is a tiling of the torus by quadrilaterals. To prove that a given embedding is

symmetrical, we use the following condition.

A Cayley map is a Cayley graph C∆(Γ) together with a rotation scheme ρ and a cyclic

permutation r : ∆∗→ ∆∗ such that ρg(h) = gr(g−1h) for every g ∈ Γ and h ∈ N(g). That is,

a Cayley map is an embedding of a Cayley graph such that the rotation of generators around
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Figure 3.3: Modifying C3�C4 into a voltage graph

each vertex is fixed. Given a Cayley map, if there is some α ∈ Aut(Γ) such that α|∆∗ = r,

then the embedding is symmetrical.

To illustrate the general approach we consider the Cartesian product C3�C4 embeddeded

on S1 as in Figure 3.3 (a). Note that C3�C4 is the Cayley graph C∆1(Z3×Z4) where

∆1 = {(0,1),(0,−1),(1,0),(−1,0)}. This is a tiling of the torus by quadrilaterals where

p = 12,q = 24 and, because G is 4-regular, r = 12.

We obtain a quadrilateral embedding of C3�C4×Q2 by the methods of Section 3.1.2.

This embedding is minimal because C3�C4×Q2 is bipartite. The associated voltage graph

(C3�C4,(Z2)
2,φ) is represented in Figure 3.3. By Theorem 3.2 and the fact that the voltage

graph has 12 regions of order one, this embedding of C3�C4×Q2 is on the surface of genus

1+24(2)− (12+2+12)+2(1) = 25.

Because G and Q2 are both Cayley graphs, the tensor product C3�C4×Q2 is the Cayley

graph C∆1×∆2((Z3×Z4)×(Z2)
2), where ∆2 = {10,01}. To verify that the given embedding
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is a Cayley map, we must formalize its rotation scheme, which is defined as the lift of

the rotation scheme for C3�C4. For a vertex (a,b) ∈ V (C3�C4), denote the edges in

(C3�C4,(Z2)
2,φ) which are incident to (a,b) by (a′,b′)i, where φ((a′,b′)(a,b)) = i. Now

the rotation of edges at a vertex (a,b) is given by

ρ(a,b) =((a,b+1)10(a,b+1)01(a+1,b)01(a+1,b)10

(a,b−1)01(a,b−1)10(a−1,b)10(a−1,b)01).

For example, ρ(1,3)=((1,0)10,(1,0)01,(2,3)01,(2,3)10,(1,2)01,(1,2)10,(0,3)10,(0,3)01),

which is represented clockwise in Figure 3.3 (b).

Now let ρ
′
be the lift of ρ to C3�C4×φ (Z2)

2 'C3�C4×Q2, as defined in Section 1.4.

For an edge (a′,b′)i, denote ρ(a,b)(a′b′)i by (a∗,b∗)k, where k is the voltage assigned to the

next edge in the rotation about (a,b). Fix g ∈ (Z2)
2.

Then ρ
′
(a,b,g)(a

′,b′,gi)= (a∗,b∗,gk). We know, for example, that ρ(1,3)(1,0)01 =(2,3)01.

Letting g = 11, we can compute ρ
′
(1,3,11)(1,0,10) = (2,3,10). To compute ρ

′
(1,3,11)(2,3,10),

note that (2,3)10 = ρ(1,3)(2,3)01 and use the same formula as before to obtain ρ
′
(1,3,11)(2,3,10)=

(2,3,01). Figure 3.4 illustrates the complete rotation of vertices around (1,3,11) in

C3�C4×Q2. Note that because (Z2)
2 contains only 4 elements, the rotation in the fig-

ure looks misleadinginly similar to the rotation of edges around (1,3) in the voltage graph.

Define a cyclic permutation of ∆1×∆2 by

r = ((0,1,10)(0,1,01)(1,0,01)(1,0,10)(0,−1,01)(0,−1,10)(−1,0,10)(−1,0,01)).
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We can now verify that

ρ(a,b,g)(a
′,b′,gi) = (a∗,b∗,gk)

= (a,b,g)+ r((a,b,g)−1 +(a′,b′,gi))

= (a,b,g)+ r((a′−a,b′−b, i)), (3.1)

which implies that our embedding of C3�C4×Q2 is a Cayley map. To demonstrate

the above equality, consider again the vertex (1,3,11) and its neighbor (1,0,10). Then

(1,3,11)+r((1,3,11)−1+(1,0,10)) = (1,3,11)+r(0,1,01) = (2,3,10). This was exactly

our result for ρ
′
(1,3,11)(1,0,10).

Finally, we define

α(a,b,g) =



(a,b,10) if (a,b,g) = (0,1,01) or (−1,0,01)

(a,b,01) if (a,b,g) = (0,−1,10) or (1,0,10)

(−b,a,10) if (a,b,g) = (0,1,10) or (1,0,01)

(−b,a,01) if (a,b,g) = (−1,0,10) or (0,−1,01)

(a,b,g) otherwise

for (a,b,g)∈V (C3�C4×Q2). Because α ∈Aut(C3�C4×Q2) and satisfies α|∆1×∆2 = r,

we may conclude that this embedding of C3�C4×Qn is symmetrical.

Generalizing, we obtain a minimal and symmetrical embedding of G×Qn for each

G'Cs�Ct . In the general case, we may view G as the Cayley graph C∆1(Zs×Zt) where

again ∆1 = {(0,1),(0,−1),(1,0),(−1,0)}. In this case we have p = st, q = 2st and r = st.

The voltage graph for this construction is illustrated in Figure 3.5.

To verify that G×Qn is a Cayley map, we now use the rotation of edges around a vertex

(a,b) given by
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(2,3,01)

(2,3,10)

(1,0,10)

(1,0,01)

(0,3,10)

(0,3,01)

(1,2,01)
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Figure 3.4: Rotation of vertices around (1,3,11) in C3�C4×Q2

(a+1,b)

(a,b+1)

(a−1,b)

(a,b−1)

δn

δ1

δ1 δn

δn

δ1

δ1 δn

Figure 3.5: Rotation of edges around (a,b) in (G,Γ,φ)

ρ(a,b) =((a,b+1)δ1...(a,b+1)δn(a+1,b)δn...(a+1,b)δ1

(a,b−1)δn(a,b−1)δ1(a−1,b)δ1 ...(a−1,b)δn).

We define ρ
′
, the lift of ρ to G×φ Γ, just as before so that ρ

′
(a,b,g)(a

′,b′,gδi) =

(a∗,b∗,gδk). Figure 3.6 illustrates this rotation.
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We use the cyclic permutation r of ∆∗1×∆∗2 = ∆1×∆2 defined as

r =((0,1,δ1)...(0,1,δn)(1,0,δn)...(1,0,δ1)

(0,−1,δn)(0,−1,δ1)(−1,0,δ1)...(−1,0,δn)),

which again satisfies the condition from Equation 3.1. So the embedding of G×Qn

generated by the voltage graph in Figure 3.5 is in fact a Cayley map. To prove that

the embedding is symmetrical, it remains to demonstrate the neccesary automorphism

α ∈ Aut(G), which is defined in a similar way as in the example.

Define

α(a,b,g) =



(a,b,δi+1) if (a = 0,b = 1 and i < n) or (a =−1,b = 0 and i < n)

(a,b,δi−1) if (a = 0,b =−1 and i > 1) or (a = 1,b = 0 and i > 1)

(−b,a,δn) if (a = 0,b = 1 and i = n) or (a = 1,b = 0 and i = 1)

(−b,a,δ1) if (a =−1,b = 0 and i = n) or (a = 0,b =−1 and i = 1)

(a,b,g) otherwise

where the first four conditons suppose that g ∈ ∆2. Then α ∈ Aut(Zs×Zt × (Z2)
n) and

α|∆1×∆2 = r.

This embedding of G×Qn is again minimal, as it is a quadrilateral embedding and

G×Qn is bipartite. Using Theorem 3.2 and the fact that there were st regions in the voltage

graph of order one, we may conclude that our embedding of G×Qn is on the surface of

genus 1+2n−1(st(n−1)).
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(a,b,g)

(a′,b′,gδi) (a∗,b∗,gδk)

Figure 3.6: Two consecutive edges in the rotation around (a,b,g) in G×Qn

As G was arbitrary, we have shown that γ(Cs�Ct×Qn) = (1+2n−1(st(n−1))).

A similar argument yields a quadrilateral embedding of G×Qn where G is now the

infinite tiling of the plane by quadrilaterals, corresponding to the Cayley graph C∆(Z×Z).
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Weak Symmetric Difference Product

In Chapter 1 we defined the weak symmetric difference of simple graphs G and H, G5H,

as the product graph whose edge set is

E(G5H)= {(g1,h1)(g2,h2) : (g1g2 ∈E(G) and h1h2 ∈E(H)) or (g1g2 ∈E(G) and h1h2 ∈E(H))}.

Figure 4.1 illustrates the weak symmetric difference of two small graphs. In each example,

edges in G and H are indicated by dashed lines.

4.1 Properties

We now derive some basic properties of the weak symmetric difference.

Notice that E(G5H) = E(G×H)∪E(G×H). Recall that |E(G×H)| = 2qq′. To

compute |E(G5H)|, we’ll use this along with the fact that |E(G)|=
(p

2

)
−q for all graphs

G. This gives

|E(G5H)|= |E(G×H)|+ |E(G×H)|

= 2q
((

p′

2

)
−q′

)
+2q′

((
p
2

)
−q
)

= qp′(p′−1)+q′p(p−1)−4qq′. (4.1)

If g ∈V (G) has degree dg and h ∈V (H) has degree dh, then we may compute the degree
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Figure 4.1: Two examples of the weak symmetric difference

of (g,h)∈V (G5H). The computation relies on the observation that g has degree p−1−dg

when viewed as a vertex in G, and that h has degree p′−1−dh when viewed as a vertex in

H. Then

deg((g,h)) = dg(p′−1−dh)+dh(p−1−dg). (4.2)

Equations 4.1 and 4.2 confirm that the weak symmetric difference of two empty graphs

is empty, as is the weak symmetric difference of two complete graphs. No weak symmetric

difference will be a complete graph, as there will be no edges between, for example, the

vertices (g,h1) and (g,h2); this is because there are no loops gg in either G or G. Because

there are p
(p′

2

)
+ p′

(p
2

)
such pairs of vertices in V (G5H), and

(pp′
2

)
pairs of vertices total,

the maximum number of edges in G5H is given by
(pp′

2

)
− p
(p′

2

)
− p′

(p
2

)
= 2
(p

2

)(p′
2

)
. If one

of G and H is complete while the other is empty, or if H = G, then this maximum number of

edges is obtained in G5H. Whenever the maximum number of edges is obtained, G5H

is connected.
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4.2 Embedding techniques

Given a graph G, we obtain an embedding of G5Qn via some embedding of Kp. As usual,

let Γ = (Z2)
n and denote by ∆ the standard generators of Γ. Consider G as an induced

subgraph of Kp.

Notice that Qn is the Cayley graph for Γ with respect to ∆
′
= Γ− (∆∪{e}), and that

|∆′| = 2n−n−1. Define ∆
′
= {d1, ...,dm}. We construct a voltage graph (Kp,Γ,φ) from

our embedding of Kp by replacing each edge of Kp[V (G)] with 2n−n−1 edges and assign

voltages corresponding to the elements of ∆
′
. We then replace each remaining edge of

Kp with n edges, and assign voltages to these edges corresponding to the elements of ∆.

Figure 4.2 illustrates such a voltage graph, with the edges from G indicated by dashed lines

in the original embedding of Kp.

Now an edge (g1,h1)(g2,h2) occurs in the covering graph Kp×φ Γ if and only if g1g2 ∈

E(G) and h2 = h1δi for some δi ∈ ∆
′
, or g1g2 ∈ E(G) and h2 = h1δi for some δi ∈ ∆. That is,

the edge set of the covering graph is given by {(g1,h1)(g2,h2) : (g1g2 ∈ E(G) and h1h2 ∈

E(Qn)) or (g1g2 ∈ E(G) and h1h2 ∈ E(Qn))}, which is exactly the edge set of G5Qn.

For example, consider C5. From the quadrilateral embedding of K5 on S1 given in

(Figure), we construct a voltage graph which lifts to C55Q3. The voltage graph has 5(2)

order two 2-gons corresponding to the edges in C5, 5(3) order two 2-gons corresponding

to the edges in C5, and 5 order two 4-gons corresponding to the original regions in the

embedding of C5. This gives a total of 4(10+15+5) = 120 regions in the covering graph.

We have from Equation 4.1 that |E(C55Q3|= (5)(8)(7)+(12)(5)(4)− (12)(5)(4) =

280. So by Theorem 1.2, this embedding of C55Q3 is on S61. Note that it is not minimal,

as it does contain 20 8-gons.

The general case is described in the following theorem.

THEOREM 4.1. Given a graph G and an embedding of Kp on Sk, we may construct an
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A region in Kp

dmd1
d1

dm

δn

δ1

The corresponding region in (Kp,Γ,φ)

Figure 4.2: Voltage assignment in a graph lifting to G5Qn

v1 v2 v3 v4 v5 v1

v1 v2 v3 v4 v5 v1

Figure 4.3: K5 on S1, with edges not from C5 dashed

embedding of G5Qn on Sh where h = 1+ 2n−2(−2p+ 2q(2n− 1)+ np(p− 1)− 4qn−

q(2n−n−2)− (
(p

2

)
−2)−

(p
2

)
+ p−2+2k).

Proof. Let the voltage graph be as illustrated in Figure 4.2, and assume that the net voltage

around each region has order 2 in Γ. The original embedding of Kp has
(p

2

)
− p+2−2k

regions. Each of the q edges of Kp[V (G)] corresponds to 2n−n−2 regions in the voltage

graph, and each of the remaining
(p

2

)
−q edges corresponds to n−1 regions in the voltage

graph, so that the covering graph contains 2n−1(
(p

2

)
− p+2−2k+q(2n−n−2)+(

(p
2

)
−

q)(n−1)) = 2n−1(n(
(p

2

)
+q−1)−q− p−2k+2n) regions.

By Equation 4.1, there are q2n(2n−1)+n2n−1 p(p−1)−4qn2n−1 edges in the covering

graph. Applying Theorem 1.2 gives the result.

When G is a self-complementary graph, as in the example, G5Qn ≡ G×K2n , since
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E(G5Qn) = E(G×Qn)∪E(G×Qn). In this way, a minimal embedding of the weak

symmetric difference of a self-complementary graph with Qn can give information about

the genus of a different tensor product.
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