
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2010

Digital Implementation of a True Random
Number Generator
Sam Mitchum
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2327

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2327?utm_source=scholarscompass.vcu.edu%2Fetd%2F2327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Digital Design and Implementation of True Random
Number Generators

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at Virginia Commonwealth University.

by

Samuel Theodore Mitchum, Junior
Bachelor of Science in Engineering, University of South Carolina, 1981

Master of Engineering, University of South Carolina, 1986

Director: Dr. Robert H. Klenke
Associate Professor

Department of Electrical and Computer Engineering

Virginia Commonwealth University
Richmond, Virginia

December 2010

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... 4
CHAPTER 1 INTRODUCTION... 5

1.1 STATEMENT OF PURPOSE .. 5
1.2 PROBLEM DEFINITION... 5
1.3 OVERVIEW.. 8
1.4 ABBREVIATIONS AND ACRONYMS .. 8

CHAPTER 2 DEFINING AND MEASURING RANDOMNESS .. 9
2.1. DEFINITION.. 9
2.2. TESTS FOR RANDOMNESS.. 10
2.3 HOW RANDOM IS RANDOM ENOUGH? .. 14
2.4 NOT-SO-RANDOM NUMBER GENERATORS ... 16

2.4.1 Linear Feedback Shift Register.. 16
2.4.2 Whitening ... 17

CHAPTER 3 BACKGROUND ... 19
3.1 ELECTRONIC RNG HISTORY... 19

3.1.1 Analog RNGs ... 19
3.1.2 Chaos RNGs... 21
3.1.3 Digital RNGs.. 23
3.1.4 RNG’s Similar To This Work ... 25

CHAPTER 4 DIGITAL TRNG DESIGNS .. 29
4.1. OVERVIEW... 29
4.2 RANDOMNESS... 29

4.2.1 Randomness In The Analog Domain.. 29
4.2.2 Randomness In The Digital Domain .. 30
4.2.3 Distilling Randomness From Clock Jitter.. 31
4.2.4 Range of Numbers and Paths Through The Range .. 32
4.2.5 Capturing Randomness Using Divergent Paths... 34
4.2.6 Simple Divergent Path RNG .. 40
4.2.7 Divergent Path Formulae .. 42
4.2.8 Differences From Other Architectures... 44

CHAPTER 5 DIVERGENT PATH ARCHITECTURES... 46
5.1 ADDER-SHIFTER BASED TRNG ARCHITECTURE .. 46
5.2 DESIGN OF THE ASTRNG CHIP .. 49

5.2.1 ASTRNG Design Methodology... 49
5.2.2 ASTRNG Development... 50
5.2.3 ASTRNG IC Fabrication Testing ... 55
5.2.4 ASTRNG IC Statistical Testing .. 56
5.2.5 ASTRNG Realization In FPGA .. 57

5.3 CONCATENATED LFSR BASED ARCHITECTURES.. 58
5.3.1 CLTRNG Realization With 9, 13 and 16 Bit LFSRs... 58
5.3.2 LFSR Realization With 11, 11 and 10 Bit LFSR Contributions ... 60
5.3.3 CLTRNG Realization With 7, 9, 11 and 13 Bit LFSR Contributions ... 61
5.3.4 Using a TRNG to Whiten a PRNG ... 62

CHAPTER 6 TEST EQUIPMENT... 63
6.1 TRNG TEST EQUIPMENT .. 63

6.2 RNG TEST EQUIPMENT BUILT IN TESTS... 65
6.3 RNG TEST INTERFACE PCBS ... 69

6.3.1 Single RNG IC Interface PCB.. 69
6.3.2 Multiple RNG IC Interface PCB .. 70
6.3.3 Avnet Development Board for Xilinx Spartan2 FPGA... 71

CHAPTER 7 TEST RESULTS ... 73
7.1 RNG IC TEST RESULTS .. 73

7.1.1 Reset and Read Test Results for RNG ICs.. 73
7.1.2 NIST800-22 Results for RNG ICs .. 75
7.1.3 Whitened NIST800-22 Results for RNG ICs .. 76

7.2 FPGA RNG TEST RESULTS .. 77
7.2.1 NIST800-22 Test Results for FPGA ASTRNG.. 78

7.3 THREE LFSR BASED FPGA CLTRNG TEST RESULTS ... 79
7.3.1 Reset and Read Test Results for 3-LFSR CLTRNG.. 79
7.3.2 NIST800-22 Test Results for 3-LFSR CLTRNG... 80

7.4 ANOTHER THREE LFSR BASED FPGA CLTRNG TEST RESULTS .. 81
7.4.1 Reset and Run Test Results for Second 3-LFSR CLTRNG... 81
7.4.2 NIST800-22 Test Results for Second 3-LFSR CLTRNG .. 82

7.4 FOUR LFSR BASED FPGA CLTRNG TEST RESULTS... 83
7.4.1 Reset and Read Test Results for 4-LFSR CLTRNG.. 84
7.4.2 NIST800-22 Test Results for 4-LFSR CLTRNG... 85

7.5 USING A TRNG TO WHITEN A PRNG... 86
CHAPTER 8 CONCLUSION.. 87

8.1 SUMMARY OF WORK .. 87
8.2 LESSONS LEARNED ... 87
8.3 FUTURE WORK ... 88

ACKNOWLEDGEMENT

This dissertation is a continuation of development begun at Philips Semiconductor.

The high cost and long lead times required to obtain analog chip design help on the

existing random number generator circuit inspired the System Architect to charge me

with developing a truly digital design containing no analog components. The Glen Allen

office was shut down before this work was completed. Philips Semiconductor granted

me permission to continue this development and to publish my findings. I would like to

recognize the contributions of the following people from Philips Semiconductor:

Raj Maini, Director of Strategic Marketing, for giving me permission to continue

David Deland, Manager of the Glen Allen office

Dr. Jack Ehrhardt, System Architect and Bill Chauncey, Mathematician

Mark Harrison, Lucien Rainville, Bill Lester, team members

I would also like to thank my advisory committee from VCU:

Dr. Bob Klenke, Department of Electrical and Computer Engineering, Advisor

Dr. Jim Ames, Department of Computer Science

Dr. Jim Deveney, Professor Emeritus, Department of Mathematics

Dr. Alen Docef, Department of Electrical and Computer Engineering

Dr. Mike McCollum, Department of Electrical and Computer Engineering

I would like to thank Donovan Davis, Naveen Elangho and Jin Xu for helping with the

layout of the RNG chip.

Finally I would like to thank the School of Engineering, Virginia Commonwealth

University and especially the Administrative Assistants who have been very helpful.

CHAPTER 1 INTRODUCTION

1.1 Statement of Purpose

 The purpose of this research is to develop a digital true random number generator

that can be synthesized using standard digital design tools. Random number generators

are used in security for generating secrets such as session keys and large primes for key

exchange and exponentiation[1]. Random number generators are also used for simulating

random events and for professional gaming. The security applications are of primary

importance as the number and complexity of networks continues to grow. Random

number generators will be required to protect the medical, financial and personal data of

entities connected to these networks. A digital true random number generator that can be

synthesized using standard digital tools will enable designers to address these privacy

concerns more efficiently.

1.2 Problem Definition

Random number generators may be divided into two classes – pseudo random

number generators and true random number generators. Pseudo random number

generators generate a stream of numbers in a known pattern. The pattern is typically very

long and it is hard to recognize the sequence of numbers is ordered. However, perfect

knowledge of the generating circuit and the most recently generated number will enable

the next generated number to be determined. For this reason pseudo random number

generators are often called deterministic random number generators. Pseudo random

number generators are easily built from a Linear Feedback Shift Register (LFSR)

assuming judicious selection of the XOR taps[2]. In order to disguise the fact that they

are deterministic, PRNGs are often built with many more generated bits than are used per

number. For example, a 128 bit LFSR may be used to implement a 32 bit PRNG.

Protection comes from the fact that it is more difficult to discover the 96 hidden bits than

the 32 bits used for the random number. Hence it is anticipated that the 128 bit

implementation would be more secure. As with many real-world aspects of security, it is

assumed that simply extending the length of the PRNG would provide acceptable

privacy. However the issue of perfect knowledge of the generator determining the next

output value is not addressed by this solution.

True random number generators produce a stream of truly random numbers. That

is, knowing the generating circuit and the past history of numbers generated is

insufficient to determine the next number. True random number generators are often

called non-deterministic random number generators since the next number to be

generated cannot be determined in advance. For a perfect true random number generator,

the probability of the next generated number being any specific value should be equal to

the probability of the next generated number being any other specific value. Since a

certainty is always a probability of 1 and since some specific value will certainly be

generated, the probability of any particular value being generated next should be equal to

1 (certainty) divided by the number of possible values in the range. As a simple

illustration, consider a six sided die. The probability of any one of the six sides facing up

after rolling the die is 1 (certainty) divided by 6 (the number of possible values). For a

digital random number composed of N bits where N is positive definite, the range of

values has 2N possible values. So the probability of any particular value being generated

next by a true N-bit digital random number generator is:

Equation 1

NP
2
1

=

At the inception of this research, true random number generators always required

some analog components be included in ICs (Integrated Circuits). True random number

generators were always based on an analog property like junction or thermal noise that

was often whitened and scaled to produce a uniformly distributed random number

generator. Whenever a SOC (System On a Chip) required random number generation, an

analog IC designer was required to complete the design. A digital random number

generator that can be designed using standard digital design tools would significantly

reduce the cost and complexity of including a true random number generator in a design.

When a true random number generator is implemented in an FPGA (Field

Programmable Gate Array), either several additional analog components such as resistors

and operational amplifiers must be added to the design, or the designer must measure and

match performance of individual logic blocks to achieve acceptable performance[3][4].

Again, a digital random number generator that can be designed and implemented using

standard digital design tools would alleviate the need for extra components and/or the

tedious hand-matching of logic blocks. This dissertation documents the design and

implementation of a true random number generator using standard digital design

methodology.

1.3 Overview

The remaining chapters of this dissertation are organized as follows; Chapter 2

covers methods for grading random number generators. Chapter 3 covers existing

random number generator designs. Chapter 4 introduces the concept of divergent path

RNGs. Chapter 5 covers two architecture proposals for non-deterministic digital random

number generators. Chapter 6 presents the hardware and software used to test the

generators. Chapter 7 contains the test results from the two proposed architectures.

Finally chapter 8 presents possible future work on digital random number generation.

1.4 Abbreviations and Acronyms

 The following abbreviations and acronyms are used throughout this paper.

Acronym Stands For Meaning

FPGA Field Programmable Gate
Array

A digital device whose architecture can be
readily reconfigured.

LFSR Logical Feedback Shift
Register

A multibit parallel FIFO whose incoming
bit is a logical combination of current bits.

NIST National Institute of
Standards and Technology

The government organization that
promotes and publishes standards.

PRNG Pseudo (Deterministic)
Random Number Generator

A number generator that creates a
repeatable sequence of numbers that
appear to be random.

RN Random Number A number whose value cannot be predicted
merely by knowing previous numbers in
the sequence and the generating circuit.

RNG Random Number Generator A circuit for creating a sequence of
numbers.

SOC System On a Chip A complete microprocessor based design
incorporated on a single semiconductor.

TRNG True (Non-deterministic)
Random Number Generator

A number generator that creates a non-
repeatable, non-predictable sequence of
numbers.

CHAPTER 2 DEFINING AND MEASURING
RANDOMNESS

2.1. Definition

In order to discuss random number generation, it is necessary to define what random

means. Webster’s New World College Dictionary gives three definitions for random[5]:

1) lacking aim or method; purposeless; haphazard

2) not uniform; especially of different sizes

3) Statistics of statistical sample selection in which all possible samples have equal

probability of selection

No one of these three definitions is sufficient to describe a true random number

generator. The first definition, haphazard, implies that the number stream from the RNG

is not predictable. But is says nothing about the distribution of numbers generated. This

definition would be satisfied with only a small portion of potential numbers actually

being produced; for example if a six sided die was cast and always came up either 3 or 6

but never 1, 2, 4 or 5. The second definition, not uniform, adds nothing to the first

definition. But the third definition, equal probability of selection, means that over time,

the probability of each possible number being produced should be the same. To continue

the analogy with a six sided die, this definition means that after rolling the die for a long

time, each value in the set {1, 2, 3, 4, 5, 6} should have come up about the same number

of times. How many samples constitute a long time and how close to equal constitutes

about the same number of times are defined by the statistical tests for randomness. One

other characteristic is defined by these tests: how haphazard (or unpredictable) the stream

is. For example, a simple counter will produce every value in the count range and with

equal distribution. But a counter is not considered to be a RNG because the output is not

haphazard; that is, the output is very predictable.

A random number generator outputs a stream of numbers. If the order of the numbers

in the stream is exactly known then the stream is completely determined and there is no

randomness in it. If the order of the numbers is not known then the stream has some

degree of randomness. For most systems, a random number stream that is uniformly

distributed is ideal. For such a system, the probability of any number being generated is

equal to the probability of any other number being generated at any time. The tests used

to measure the randomness in this paper all assume a uniform distribution. Each test has

a unique way to measure the distribution.

2.2. Tests For Randomness

There are many ways to test the randomness of a stream of numbers. A few simple

ones would be:

• count the number of “1” bits and the number “0” bits and make sure they are

approximately the same

• break the stream into groups of say four bits and make sure that each possible four-

tuple occurs roughly the same number of times (0000, 0001, 0010, 0011, …. 1111)

• pick a bit size and a particular pattern for that size and count how many bits are

produced before that exact pattern is produced again.

There are many published sets of tests for randomness, including FIPS 140-1 and George

Masaglia’s Diehard Tests. The National Institute for Standards and Technology (NIST)

has published a suite of statistical tests for determining the quality of a random number

generator in publication 800-22 [6]. These are the tests that have been used to determine

the quality of the RNGs in this paper. This suite contains sixteen different tests which are

detailed below.

1) Frequency Test: This test compares the proportion of 1’s to 0’s in the data. The

proportion of 1’s should be about half the number of bits. The test fails if there

are too many or too few 1’s in the bit stream.

2) Block Frequency Test: This test computes the proportion of 1’s to 0’s in a

specified block size. For random data the frequency should be about half the

block size. This test fails if there are too many blocks which have either too many

or too few 1’s.

3) Cumulative Sums Test: This test identifies the maximal excursion from 0 of a

random walk using the values [-1, +1]. In other words, start at a point in the bit

stream and move forward to the adjacent bit. If it is a “0” then SUM = SUM – 1.

If it is a “1” then SUM = SUM + 1. If the bits alternated perfectly then the

cumulative sum would remain low. If there are too many 1’s or 0’s in a row,

however, the cumulative sum gets large. This test fails if the cumulative sum is

either too large or too small.

4) Runs Test: This test counts the number of occurrences of runs of 1’s. A run is

defined as a continuous stream of bits of the same value bounded at the start and

the end by bits of the opposite value. The expected results are more runs of

shorter numbers of 1’s and fewer runs of longer numbers of 1’s. The test fails if

there is significant deviation from the expected number of runs for any length of

consecutive bits.

5) Longest Runs Test: This test counts the longest number of consecutive bits in

each block of m bits. The test fails if there are too many consecutive 1’s in the

block.

6) Rank Test: This test divides the stream of binary bits into rows and columns of

matrices. It then calculates the rank of each resulting matrix as a way of testing

for linear dependence – hence too many repeated patterns. The test fails if ranks

of the resulting matrices are incorrectly distributed.

7) Discrete Fourier Transform Test: This test examines the peak heights in the

discrete Fourier transform of the sequence. The purpose is to detect repetitive

patterns in the sequence. The test fails if the number of peaks exceeding a given

threshold is too large.

8) Non-overlapping Template Matching Test: This test searches the bit stream for

specific, aperiodic patterns. If the pattern is found, the search is started again just

beyond the end of the pattern. If the pattern is not found, the search is started

again at the next bit position. The test fails if too many occurrences of the pattern

are found.

9) Overlapping Template Test: This test is similar to the non-overlapping template

matching test except if the pattern is found, the search is continued from the next

bit following the start of the pattern so that patterns which overlap are detected.

Again the test fails if too many occurrences of the pattern are found.

10) Maurer’s Universal Statistical Test: This test counts the number of bits between

matching patterns in the data stream. This measure is related to how well the

stream can be compressed. The test fails if the bit stream is compressible.

11) Approximate Entropy Test: This test compares the frequency of occurrence of all

patterns of a certain bit length with the frequency of occurrence of all patterns that

are one bit longer. The test fails if the difference in frequency of occurrence for

the two lengths is not as expected for random data.

12) Random Excursions Test: This test is similar to the cumulative sum test in that a

sum is calculated by taking a random walk from a point considered to be the

origin and returning to that point. For each bit traversed, subtract 1 if the bit is a

“0” and add 1 if the bit is a “1”. The test actually examines eight different

measurements – how many times each of the sums in the set [-4, -3, -2, -1, +1, +2,

+3, +4] are encountered during a random walk. The test fails if the number of

times each sum is encountered does not match that predicted for random data.

13) Random Excursions Variant Test: This test is a more stringent variation of the

random excursions test. The difference is the number of sums. This test uses a

total of eighteen sums, [-9, … -1, +1, … +9] where the random excursions test

only uses eight. The test fails when the number of times each sum occurs does

not match that expected for random data.

14) Serial Test: This test measures the frequency of occurrence of all possible

overlapping patterns of a specified bit size. In a random stream, each pattern

should occur approximately the same number of times. The test fails if the

number of occurrences of each pattern is not approximately the same. Note for

the case of 1 bit patterns, this test degenerates to the frequency test.

15) Lempel-Ziv Test: This test counts the number of cumulatively distinct patterns in

the sequence. It is a measure of how much the bit stream can be compressed.

The test fails if the bit stream can be compressed.

16) Linear Complexity Test: This test calculates the size of a LFSR that would be

required to produce the bit stream. The test fails if the required LFSR is too

small.

These are the sixteen tests that make up the NIST800-22 test suite for randomness. They

are quite complete – a fact that may be inferred as NIST has not seen the need to update

them. The scoring is somewhat arbitrarily as suggested by NIST at 96%; that is, a score

of 95.9% fails while a score of 96.0% passes.

2.3 How Random is Random Enough?

Continuing the analogy with a six sided die, the value defined by rolling the die

would be random. Assuming the die was well-constructed and balanced, there should be

no way to predict what number would come up on any given roll. The probability should

be equal that any one of the range of numbers {1, 2, 3, 4, 5, 6} would come up on any

given roll. That is, if the die were cast many times, then the number of 1’s should match

the number of 2’s, the number of 3’s, the number of 4’s, the number of 5’s and the

number of 6’s. If this is true then the die is called “fair” and the probability of being

rolled is equally distributed across all six elements of the range. Such a die would be

called statistically random.

Suppose an extra dot is added to the 2 face of the die. Now there is no 2 face and

there are two 3 faces. Now if the die is rolled there is still a 1 in 6 chance of the other

four faces (1, 4, 5, 6) coming up. But there is no chance a 2 face will come up and there

is a 2 in 6 (or 1 in 3) chance of a 3 face coming up. Now, with this change, a haphazard

number is still generated by rolling the die because the number that will come up is not

perfectly predictable. But the probabilities are no longer evenly distributed. This uneven

distribution is one aspect that tests like those in the NIST 800-22 suite are designed to

detect.

Suppose another change is made to the die. The extra dot is removed so that all six

numbers are present, but we make the entire 1 dot face heavier than the other faces. Now

all six values can be rolled but the face across from the 1 dot will come up more often. If

the heavy face is 1, the faces adjacent to the heavy face are {2, 3, 4, 5} and the face

opposite the heavy face is 6. If the die is rolled many times then 1 will come up the least

frequently, {2, 3, 4, 5} will come up with about equal frequency and 6 will come up most

frequently. This variation in frequency is another aspect that statistical tests will

measure.

Finally, in a perfectly fair die it is not possible to predict which number will be rolled

following any other number. If it were possible to predict the order of numbers, for

example {1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5 …}, then the die would be of little use and that is

obvious. But a more basic (and more likely) example of this same aspect would be if

every time a 3 was rolled then a 1 would be rolled. The numbers rolled before the 3 and

after the 1 could be perfectly haphazard. But every time a 3 was rolled, a 1 would be

rolled next. While this would be obvious after a few dozen rolls with a six sided die, it

would be much harder to detect with a random number generator having four billion

output values. The statistical tests also find and measure these small patterns within the

larger output sample.

2.4 Not-So-Random Number Generators

2.4.1 Linear Feedback Shift Register

A Linear Feedback Shift Register is a circuit composed of a chain of flip-flops. Each

flip-flop output is tied to the next flip-flop input. All are clocked by a common clock.

The input to the first flip-flop in the chain is a linear combination of the outputs of one or

more of the flip-flops in the chain. See Figure 1 for an example of a LFSR.

If the feedback is chosen correctly then a maximal length LFSR is obtained. A

maximal length LFSR will cycle through every possible output value over and over –

much like a counter except with a scrambled count. The output of a maximal length

LFSR appears to be random though it is actually well ordered. The output of a maximal

length LFSR will typically pass all statistical tests for randomness. These RNGs are

often called PRNGs (pseudo random number generators) or deterministic RNGs because

the output stream can be predicted (determined) mathematically.

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q

Q0

Q1

Q2

Q3

Figure 1

Xilinx has published an application note that describes maximal length LFSRs and

gives topography for up to 168 bits[7]. This application note also contains a bibliography

for scholars interested in learning how appropriate feedback taps are chosen.

Unlike security applications and gaming, with simulation it is often more desirable to

guarantee a particular distribution of random numbers than to guarantee lack of

predictability of random numbers. In these applications a PRNG is an optimal choice.

Simulation software frequently implements one or more PRNG distributions in order to

model various combinations of timing delays, power fluctuations and other real world

phenomena. If the calculation of new random numbers could be accelerated that would

improve the speed of simulator and reduce the amount of time needed to run simulations.

McCollum and others present a FPGA implementation for accelerating a PRNG and for

controlling the distribution of the random number stream in [8].

2.4.2 Whitening

According to statistics, the variance of the linear combination of two sets of numbers

is equal to the sum of the variances of the individual sets as long as there is no correlation

between the two sets[9]. The linear combination can be realized by adding, subtracting

or XORing the two sets. Equation 2 illustrates this principle.

Equation 2 Variance of TRNG XOR PRNG

)()()^(yVxVyxV +=

Since a TRNG is independent of any LFSR based PRNG by virtue of its definition,

Equation 2 shows how the output of a TRNG can be statistically improved by XORing it

with the output of an LFSR. Combining the output of the TRNG with the output of a

LFSR will increase the variance, and hence the randomness of the TRNG. This process

is termed whitening and is well known in the practice of cryptology. Cusick and Stanica

state “LFSRs can be applied in generating pseudorandom numbers, pseudonoise

sequences, fast digital counters, whitening sequences, cryptography…”[10].

Thamrin, Witjaksono and others describe a RNG whose output is whitened by

XORing with a LFSR[11]. Figure 2 below is a reproduction of Figure 7 in this paper for

the purpose of illustrating such a circuit.

Figure 2 RNG Using LFSR Whitened By LFSR

Marsaglia presented a paper in 1968 proving that LFSRs do contain some frequency

related correlation in the stream of generated numbers[12]. Therefore a TRNG linearly

combined with a LFSR would exhibit better statistical properties than either the TRNG or

the LFSR alone. Expressed another way, the TRNG could be linearly combined with the

PRNG and the resulting combination would be more statistically random than either of

the two input streams.

CHAPTER 3 BACKGROUND

3.1 Electronic RNG History

3.1.1 Analog RNGs

As mentioned before, analog electronic RNGs have been used for some time.

Early analog RNG designs are based on amplifying electrical noise then converting the

amplified signal to a digital signal. The circuitry for converting to a digital signal can be

as simple as a clocked comparator. An example of such a TRNG is given in [13]. The

block diagram from this Analog RNG, Figure 1 in [13], is reproduced in Figure 3 for

convenient reference.

Figure 3 Simple Analog RNG [9]

If the frequency characteristics of the Analog RNG are inadequate for the

application, a whitening filter can be placed either before or after the amplifier. If 32 bit

random numbers are required then a 32 bit SIPO (serial in, parallel out) can be used to

collect the bits into words. “This is the most popular RNG technique for single-chip or

board-level solutions where shielding of the noise source is possible”[13].

Another publication of a similar analog RNG but having digital post processing is

given in [14]. The analog noise source for this RNG is not just a resistor; rather it is an

A/D output compared to the reference voltage. Note this analog RNG requires whitening

as shown by this quote “The proposed RNG exploits the direct amplification technique,

using an accurate offset zeroing system, and, when its output is fed to a XOR-based

decorrelating algorithm, the FIPS … and correlation randomness tests can be easily

passed”[14]. This design illustrates an example of whitening RNG output by XORing

with a PRNG output.

Each analog RNG starts with an analog noise source and amplifier. This reliance

on analog circuitry presents an extra requirement for IC designers – that an analog IC

designer be a part of the design team. Two other problems IC designers face with analog

RNG designs are: “The lack of adequate shielding from power supply and substrate

signals in an IC environment prohibits the exclusive use of this method for IC-based

cryptographic systems”[13].

An interesting analog RNG design is given by Walsh and Beisterfeldt in [15].

The block diagram for this RNG is reproduced on the following page. This design

utilizes a voltage controlled oscillator (VCO) to generate a waveform with a varying

frequency. The control voltage on the VCO is generated by the output of a D/A

converter. The input to the D/A converter is generated by a LFSR. The LFSR is clocked

by the sample clock and its input bit comes from the VCO output sampled by a D flipflop

that shares the same sampling clock as the LFSR. The output of the D flipflop is sent

through a CRC32 generator to whiten it. The output of the CRC32 block is multiplexed

with ground (0 volts) to form the random number output – 32 bits wide. The multiplexer

select is generated by a counter so that 0 is output while the random number is being

formed then the random number is output after it is formed. Variations on this design

(fast clock sampled by a much slower clock) have also been published as digital designs.

Figure 4 Oscillator Sampling RNG [15]

3.1.2 Chaos RNGs

RNGs have been designed using chaos theory. An excellent pair of papers on

chaos based RNG design has been presented by Stojanovski and Kocarev[16][17]. In the

first paper they cover the theory of chaos based RNG design while in the second paper

they present an example of a chaos based RNG. The basic theory behind chaos based

RNGs is that chaotic circuits tend to operate chaotically when observed at a course grain

level, though they are deterministic in microscopic space and by their defining equations.

The equation defining a chaos based TRNG appears to be perfectly solvable; however the

solution requires infinite calculation resolution and infinite granularity in measurement.

Since a digital number is being produced, neither the infinite calculation resolution nor

the infinite measurement granularity is available. Hence the domain must be partitioned

into the same number of partitions as the number of digital possibilities. For example, to

generate a 32 bit random number it would be necessary to partition the domain into 232

states. Now the generator output will always be in one of the predefined states (it will

have one of 232 states which can be conveniently named [0 .. 4,294,967,295]. But since

each state represents multiple values, the actual function output may have one of many

values. Hence the next state, which can be perfectly calculated using the chaotic equation

and the real value, is not visible in the digital world and will appear to be random. A

simple example may clarify: Assume a really simple equation, Xn+1 = 2*Xn, and a 2 bit

RNG. Then we would partition the output domain into the following four states: 0 =

[0..0.4999], 1 = [0.5 .. 0.9999], 2=[1.0 .. 1.4999] and 3=[1.5 .. 1.9999]. Table 1 illustrates

how the digital output can vary because the actual value varies for this simple equation.

 Table 1 Chaos RNG Example

Xn random number Xn+1=2*X next random number
0.2499 0 0.4998 0
0.2500 0 0.5000 1
0.7499 1 1.4998 2
0.7500 1 1.5000 3

The second paper by these authors presents a RNG based on a single attractor.

The structure of this RNG is shown in Figure 4 below. The structure is simple with only

29 MOS transistors and 2 resistors required. However, the presence of the resistors, and

of course the balancing of the transistors, will require analog IC design methodology.

This RNG cannot be designed using digital methods only.

Figure 5 Chaos Based RNG [17]

3.1.3 Digital RNGs

The first practical digital RNGs were built from LFSRs as covered in Chapter 2.

LFSRs produce a deterministic sequence that appears to be random but in fact repeats, at

least within the size of the LFSR. For example, a 32 bit LFSR will produce at best a

stream of 32 bit numbers that repeat after (232 - 1) numbers. The exact sequence is

controlled by the precise layout of the LFSR; specifically where the taps for feedback are

located and whether they represent an XOR or an XNOR. The components of a LFSR

are (1) one flipflop per bit and (2) the input to the LSBit is an XOR combination of the

outputs of the LFSR. Chu and Jones have documented not only the LFSR operation but

several different architectures in [18].

Predating the formalization of LFSR design, Knuth patented a design for a

random number generator. The difference between his design and a traditional LFSR

based PRNG is that whether various stages in the shift register are either complemented

or not is based on the value being shifted out[19]. Tausworthe[20] and MacLaren and

Marsaglia[21] were contemporaries of Knuth who published similar designs. Each of

these designs exhibited similar probability distributions.

A variant on a simple LFSR is an LFSR with more bits than are required. One

popular choice has been a 128 bit LFSR with only 32 bits of random number used. It is

hoped that failure to expose all the bits will keep third parties from predicting the stream

of numbers. Nonetheless this design still contains the weakness of a known generating

circuit and a pattern that can eventually be traced.

As mentioned before, another popular structure for a digital RNG is a slow clock

sampling a fast clock. Some papers refer to this style as oscillator sampling. Figure 2 in

[13] shows such a design and is reproduced below in Figure 6.

Figure 6 Oscillator Sampling from Fig2 in [13]

While this design looks deceptively simple, there is often considerable post processing

required to whiten the resulting random number stream as it is often impractical to

completely isolate the sample clock from the faster oscillator. That is, some common

frequency remnants must be whitened out. Some papers refer to this whitening as

decorrelating the output.

Another realization of a digital RNG constructed from oscillator sampling is given by

[3]. This design features a single D flipflop that handles the sampling. The TRNG

output is available but is also used to seed a PRNG. Using a TRNG to seed a PRNG has

also become popular because the unpredictability of the TRNG is merged with the

statistically desirable qualities of the PRNG. FIPS publication 140-2 specifically

recommends using a TRNG to seed a PRNG as the safest way to construct a RNG [22].

 A more complex architecture for an oscillator sampled RNG is given in [23]. Note

in this design, illustrated in Figure 7, the low frequency clock is the jittery one while the

high frequency oscillator is being sampled. Note also the presence of post processing to

whiten the RNG output.

 Figure 7 Oscillator Sampled RNG from [23]

3.1.4 RNG’s Similar To This Work

Several designs similar to the one documented herein have been presented.

McTaggert and Burson have presented a TRNG based on free running clocks[24]. In this

RNG, there are two LFSRs, each clocked by a separate and unrelated free running

oscillator. One of the oscillators is crystal based. The other oscillator is not crystal based

but its architecture is not disclosed. The LFSRs are of different lengths – one is 39 stages

and one is 23 stages. The LSBits of the two LFSRs are XORed together. The output of

the XOR is sampled by a flipflop to form the random number. The clock for the flipflop

is independent of the two LFSR clocks. Provisions have been made for seeding the

random number by preloading parts of the LFSRs. Figure 8 below shows the circuitry for

this random number generator.

Figure 8 Multi Clock RNG[24]

A TRNG based on a LFSR clocked by a random clock is presented in [25]. The

random clock is composed of the XOR of several unrelated ring oscillators. That signal

is then sampled by a flipflop and presented as the clock for a maximal length LFSR. The

number of inverters in each of the various ring oscillators is required to be prime relative

to the number of inverters in the other ring oscillators in order to lessen the possibility of

the oscillators locking into the same frequency or a related harmonic. The use of at least

three oscillators is advised in case one oscillator locks to the bus clock. This concept is

interesting because all of the randomness comes from the clock waveform as opposed to

any shuffling, scrambling or whitening of the produced bit stream. Figure 9 shows a

typical realization of this type of random number generator.

Figure 9 LFSR with random clock[25]

Wilbur has patented another RNG implementation involving multiple ring

oscillators[26], Note the presence of two ring oscillators generating randomness. Each

ring oscillator has an “enhanced” output which is the XOR of several taps from the ring.

Figure 10 Ring Oscillator With Enhanced Output[26]

Figure 11 illustrates the entire TRNG block diagram as presented in the patent

disclosure. The outputs of the ring oscillators drive a delay line. The delay line provides

multiple taps into the Combiner-Sampler. The Combiner-Sampler XORs the taps

together. The output of the Combiner-Sampler is XORd with the output of the sample

flipflop. The output of the sample flipflop is fed to a second sampling flipflop to produce

the random output.

Figure 11 TRNG Based On Scrambled Clocks[26]

CHAPTER 4 DIGITAL TRNG DESIGNS

4.1. Overview

The purpose of this research is to develop a digital true random number generator

that can be synthesized using standard digital design tools. Developing a digital TRNG

composed of standard digital components is important because:

• It alleviates the need for analog circuit design.

• The RNG can be incorporated with other digital cryptographic components.

• No external components are required for FPGA implementations.

A general architecture for digital TRNGs will be developed.

4.2 Randomness

4.2.1 Randomness In The Analog Domain

 Randomness in the analog domain has long been accepted in the form of signal

noise. The signal noise is usually present as a small amplitude signal superimposed over

the intended signal and may often be seen as tiny vertical perturbations in an oscilloscope

trace of the signal. The noise is comprised of several aspects including thermal noise,

noise picked up from a power supply and junction noise. Often the frequency

characteristic of signal noise is such that a suitable RNG can be obtained by simply

subtracting the signal then scaling the noise. Otherwise one or more frequencies may be

filtered out of the noise source. At that point the noise can be sampled and converted to

digital values as required.

4.2.2 Randomness In The Digital Domain

 In the digital domain, every effort is usually made to prevent randomness in

amplitude. Each piece of information is represented by a bit which is resolved to a “0” or

a “1”. The clock rate for a digital circuit is usually chosen so that all transitions from “0”

to “1” or from “1” to “0” are allowed to complete between clocks. Hence digital circuits

are designed to be immune to amplitude noise. Many digital clock signals are designed

to be quite repeatable to enable not only a predictable period for the afore-mentioned

transitions but also to enable accurate timing. Often the clock signal is fed back through

a crystal to restrict the frequency of operation. Such crystal controlled oscillators can be

accurate to 20 ppm (parts per million) depending on how exactly the mechanical crystal

properties are controlled when the crystal is cut. There is very little noise in such a

crystal controlled clock source and hence little randomness to recover in either the

amplitude or the period of oscillation.

A noisy oscillator may be formed by connecting inverters in series then

connecting the last output to the first input to form a ring. Each inverter alters the phase

of the signal by 180 degrees so in order for the circuit to oscillate, there must be an odd

number of inverters in the ring. Such an oscillator is called a ring oscillator and oscillates

with a period equal to twice the total propagation delay around the ring. Figure 12 is an

example of a ring oscillator.

Figure 12

These ring oscillators require very little chip area at only two transistors per

CMOS inverter stage and are easy to build with either schematics or HDL. Ring

oscillators are also susceptible to substantial perturbations in the oscillation period called

jitter which can easily be several percent of the nominal oscillator period[27]. This jitter

makes a ring oscillator a reasonable source of randomness. A different method will be

needed to capture this randomness since it is in the clock period rather than in the signal

amplitude, however. Where the noise source in an analog TRNG would be visible as

vertical perturbations on an oscilloscope trace, the noise source in a digital TRNG would

be visible as horizontal perturbations on an oscilloscope trace.

4.2.3 Distilling Randomness From Clock Jitter

 Distilling randomness from an analog noise source is straightforward. Use a

sample and hold to freeze the noisy signal long enough to perform a digital conversion to

the required number of bits. Distilling randomness from digital clock jitter is more

complex. If a straight conversion, analogous to the noise source conversion, is performed

then the converting circuit would need to resolve to (2N) values where N is the number of

bits required for the random number. The resolution would have to occur in one

(maximum period – minimum period) time and that would require a counter with a count

interval as shown in equation 3.

Equation 3

N

MinPeriodMaxPeriodvalCountInter
2

)(−
=

Therefore if the change in period is 10 nanoseconds and the random number is 32 bits,

the counter interval would be 2.3 x 10-18 seconds. Direct conversion to obtain the random

number is not possible using current technology. Hence it will be necessary to gather

randomness a few bits at a time and build it up into a significant word size.

4.2.4 Range of Numbers and Paths Through The Range

 A digital RNG generates numbers which are based on powers of 2. The number

of bits in the generated number defines the range of the generated number since each bit

can have one of two possible values, 0 or 1. The number of possible values that can be

represented is 2N where N is the number of bits. Thus the range of numbers that can be

generated by a RNG having N bits is [0 .. 2N-1]. A digital RNG is constrained to

generate a random number within this specified range. For instance, a four bit RNG can

only generate numbers from the set [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

When arithmetic operations result in carries beyond the most significant bit (MSB)

position these carries are typically ignored. When a RNG would attempt to generate a

number outside of the allowed range, a modulo operation is realized to bring the number

back within range. For example, if +1 is added to the maximum count for a four bit

RNG, the resulting number would be beyond the range that can be expressed in four bits.

So the carry beyond the MSB is ignored and the result of 15 + 1 is 16 MOD 16 or 0.

A generating function traverses a path through the range of numbers generated. A

very trivial example is a counter. On each cycle “1” is added to the number. The

sequence generated is {0, 1, 2, 3, 4, .. (2N-1), 0, 1, 2, …}. Notice the modulo operation

returns the generator output back to the allowed range at 0. The particular example of a

counter has some interesting properties:

• Each number in the range of numbers is generated – no numbers are skipped.

• The frequency of each generated number is the same; that is, a “2” is generated

just as often as a “3”.

• The pattern or sequence of numbers generated is always the same. Expressed

another way, the counting generator traverses the same path through the range of

numbers over and over.

Not all functions share these properties. For instance doubling, or multiplying by

two, also traverses a path through the range of numbers. But unlike counting, doubling

will not generate every value in the range – only the powers of 2. Any function used to

construct a RNG should be capable of generating all numbers in the range.

There are many functions that can generate all the numbers in the range. Instead of a

counter, adding any constant that is relatively prime with the size of the range (the

modulus) will generate every value in the range. The proof is straightforward. Let a be

the relatively prime constant used to generate the range and m (the size of the range) be

the modulus. Then starting at zero and adding a each time followed by a modulo

operation, the results are shown in Equation 4. Note there would be a total of m values

generated – one value generated for each value in the range.

Equation 4 Generating Range Using a Relatively Prime Constant

maimaai
mamaa

amaa

mod)*)1((mod))*((
mod)2(mod))*1((

mod))0((

+=+
∗=+

=+∗

Each calculated number must fall in the inclusive range [0 to (m-1)] by definition of

the modulus operation. There are as many calculated numbers as there are values in the

range. Each calculated number must be unique as stated by the Modified Cancellation

Law for Congruences illustrated by Equation 5. Therefore all values in the range are

generated by successively adding a constant that is relatively prime with the modulus.

 Equation 5 Modified Cancellation Law

ji
majmai

=∴
•=•)mod)(()mod)((

Since i = j then every unique value of i ε [0 .. (m-1)] must generate a unique number

within the range of possible numbers. A simple example is easily computed for the case

of a 3 bit range (m = 8) and a relatively prime a = 3 as shown by Equation 6.

Equation 6 Example of Relatively Prime Generation

58mod)3*7(
28mod)3*6(
78mod)3*5(
48mod)3*4(
18mod)3*3(
68mod)3*2(
38mod)3*1(
08mod)30(

=
=
=
=
=
=
=
=∗

4.2.5 Capturing Randomness Using Divergent Paths

In order to explore the concept of randomness within a generator it is necessary to

make an abstraction, separating the generator and the sampler. If the sampling is not at

perfectly uniform intervals then it will affect the apparent randomness of the generator.

Normally it is expected any randomness within the sampler will increase the apparent

randomness of the generator. Therefore this paper postulates a random number generator

producing random numbers and a sampler reading random numbers at fixed intervals.

If a RNG is constructed from a generating function such as a counter that is clocked

by a noisy source such as a ring oscillator then some slight amount of randomness may be

observed in the following way. Let the generator be a free running counter clocked by a

ring oscillator at an average rate of 100MHz but with a noise of +/- 1MHz and let the

sample interval be 1 microsecond (1MHz) as shown in Figure 13.

Figure 13 Simple Generator and Sampler

The counter runs at 100MHz on average. But at any given sample, the generator

could have run at 99MHz, 100MHz or 101MHz because of the noisy oscillator driving

the counter. Now, ignoring terminal count issues, the value of this generator at any

sample time can be predicted within 3 counts by multiplying the number of sample

intervals times the average oscillator frequency divided by the sample frequency.

Although the count can be predicted within 3 counts, it cannot be predicted exactly –

hence there is some randomness in the value. For example, on the fifth sample the value

of this generator could be 499, 500 or 501. On the seventh sample the value of this

generator could be 699, 700 or 701. On the nth sample, the value of this generator would

be (n x 100) + {-1, 0, 1}. There is a small amount of uncertainty about the value that is

due to the noisy oscillator in the generator. That uncertainty in the generator needs to be

collected and preserved. A simple counter cannot preserve it. In fact no generator that

has a single path through the range of generated numbers can preserve this uncertainty.

The value at any point in the future may be found be interpreting the generator once for

each sample interval and then adding the uncertainty to the final value. In general, the

value at the Nth sample from this type of generator is given by Equation 7.

 Equation 7 Values From a Single Path

[]1,0,1
)(...3210

+−∈
+Δ•=+++

whereU
URNRRRR AVG

The uncertainty is not preserved across multiple samples as is shown by Equation 7.

All of the uncertainty or randomness can be considered independent of how many

samples were taken. In order to create a TRNG or True Random Number Generator, a

way is needed to capture and store the randomness generated at each sample. Capturing

and storing the randomness at each sample can be accomplished by altering the path that

the generator traverses through the range of possible values at each sample. If the path is

altered at each sample then the state of the generator, including whatever randomness is

captured, can be preserved in the output value. Figure 14 is a visualization of how

altering the path of the generator at each sample can preserve randomness.

 A B
A` B`

Figure 14 Altering Path to Preserve Randomness

C
C`

D`

D

Notice in Figure 14 if the relative lengths of segments A and B are reversed, as shown

with segments A` and B`, then the end result is the same – that is, the variations in length

have no noticeable effect on the final position because there is only a single path. If the

path is altered between segments, as shown with segments C and D and the alternate

segments C` and D`, then the final result is different. The variations in length of the

individual segments are preserved by the alternate path. It is necessary to vary the path at

each sample in order to preserve the randomness at each sample.

In order to affect a new path at each period, the generator must employ a second

function independent of the generation function. In order to illustrate this requirement,

consider two cases. The first case will involve a simple generating function, +1 and at

every sample a dependent function, +3. The dependent function is derived from the

independent function by multiplying the independent function by 3. See Figure 15 for a

block diagram of the generator with a dependent function added. Another more subtle

change is also required to the generator. The number read by the sampler must be re-

introduced to the generator as a counter preload. Randomness is captured by feeding it

back into the system so the sampled value is loaded into the counter each time it is read.

 Figure 15 Generator With Dependent Function

This block diagram is represented by Equation 8 below where R0 is the first random

number, R1 is the second, R2 the third, etc. T is the number of sample periods, ΔRAVG is

the average value of the change in random number (the average number of clocks) per

sample period and U is the uncertainty at each sample. The equation says each random

number is the product of the average number of clocks per sample times the number of

samples plus the uncertainty. The uncertainty term, U, is outside the summation

indicating that the uncertainty is not captured at each sample period.

Equation 8 Uncertainty From a Single Path

[]1,0,1

))3100((

))3((...

1

3210

+−∈

++=

++Δ•=+++

∑
whereU

UR

URTRRRR
T

AVG

The second case will involve the same simple generating function, +1, but paired with

the function x10 as shown in the block diagram in Figure 16. The function x10 is

independent of the generating function +1. Independent here is used in the algebraic

sense: that is, there is no correlation between {X2 = X1 + 1} and {X2 = X1 x 10}.

 Figure 16 Generator with Independend Function

Equation 9 describes the generator in Figure 16. UT is the uncertainty at sample T.

Unlike the generator with a dependent second function, the exact value of U at the sample

instant is required to compute the next random number.

Equation 9 Uncertainty From Multiple Path

[]1,0,1

)10*)100((
1

+−∈

+=∑
T

T

T

whereU

UR

In Equation 9, the uncertainty cannot be factored out of the summation hence the

randomness is collected from each sample period. The second function in the second

case, times 10, is independent of the first function, +1. The uncertainty cannot be

factored out because the final value generated depends on what the uncertainty was at the

sample instant as well as how long it has been since the last sample. Hence randomness

is captured from each sample. Table 2 shows two iterations of output from the generator

and the result of reversing the order of the oscillator fluctuations. Once the independent

second function is added, the random number is different based on the order of the

oscillator fluctuations. Hence the randomness has been captured by the generator.

 Table 2 RN Generated Versus Oscillator Frequency

Osc Freq Counter RN Osc Freq Counter RN
101 101 1010 99 99 990
99 1109 11090 101 1091 10910

The independent function in the generator alters the path of the generating function

by moving the generated value to a new point in the range. Since the uncertainty is

present at each period, it is the uncertainty that is being preserved by relocating the value

at each period. Since the value is relocated, a discontinuity is introduced at each period.

The path of the generation function is forced to diverge from its normal trajectory

through the range of generated values. A simple example will illustrate this process.

4.2.6 Simple Divergent Path RNG

Assume a 4 bit random number, implying a range of [0 .. 15], a generating function of

+7, a secondary function of x 2, an oscillator for the generation circuit running at 10 Hz

average with +/- 10% noise and a sample frequency of 1 Hz. At this point it is necessary

to make a few modifications for the sake of the actual implementation. First, since there

are 4 bits holding the value, math will be done Modulo 16 as shown in Equation 10.

 Equation 10 Modulo 16

016)115(=+ MOD

Second, a straight multiply by 2 is problematic for two reasons; (a) it tends to push digits

beyond the 4 bit limit and (b) it removes randomness from bit0. Instead the multiply

function will be replaced by a rotate left function. This will preserve all the generated

bits and has no tendency to push bits beyond the 4 bit limit. With these two concessions

to the requirements of digital synthesis, the state machine for the example RNG is shown

in Figure 17.

Figure 17

Assuming the reset value is 0, Table 3 shows the first two iterations of this RNG.

Table 3

Iteration (+7 x {9,10,11}) MOD 16 Rotate Left

0 0 0

1 (15, 6, 13) (15, 12, 11)

2 {(6,12,2),(11,14,1),(2,4,6)} {(12,9,4),(7,13,2),(4,8,12)}

The middle column is calculated by multiplying +7 times the number of oscillations

in the sample period (9, 10 or 11) then taking MOD 16 of the resulting number. See

Figure 18 for examples of this calculation.

1316)711(
616)710(

1516)79(

=
=
=

MODx
MODx

MODx

The right column is just a Left Shift of the middle column with bit3 rotated into bit0. See

Figure 19 for examples of this calculation.

Figure 18 Example Calculations

111011%1101%13
121100%0110%6
151111%1111%15

===
===
===

RotateLeft
RotateLeft
RotateLeft

Figure 19 Example Rotate Left Calculations

Note that if there were no uncertainty, only one value of each three-tuple would be

generated. Since the oscillator jitter is assumed to be symmetrically distributed about the

average value, the middle value of each three-tuple would be generated in the absence of

jitter. The produced sequence would be [0, 12, 13]. Figure 20 illustrates the divergent

paths generated by this RNG.

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5

1_1
1_2
1_3
2_1
2_2
2_3
3_1
3_2
3_3

Figure 20

The paths diverge from each point at the rate of 3 paths per point because the clock

has an uncertainty of +/- 1 counts per period. Hence there are three possible values for

each generated number. The independent function ROTATE-LEFT preserves the

randomness from each path.

4.2.7 Divergent Path Formulae

As shown in Figure 20, there are three possible paths at each point of divergence.

After the first iteration there are 3 possible values. After the second iteration there are 9

possible values. Should a third iteration be performed there would be 27 different values

calculated. At each iteration the number of possible values becomes multiplied by the

divergence from each point. By inspection the total number of possible values after some

arbitrary number of iterations is given by Equation 11.

Equation 11 Number of Possible Values

iDN =

where N = number of values, D = divergence (number of paths from each point) and i =

iterations.

Another observation may be made about this simple generator. By the third iteration,

the number of possible values that can be calculated is 33 = 27. The range of values for a

4 bit generator is only 24 = 16. So the number of values that can be calculated exceeds

the range of the generator. That is, any generated value must be in the range [0 .. 15], a

total of 16 possible values. But the total number of calculations which must be

performed to guarantee that the actual generated number has been calculated on the third

iteration away is 27 according to Equation 11. At this point, calculating the expected

output of the generator becomes futile as there are more calculations required than simply

listing the possible values. Hence by Chaitin’s criterion for randomness, that no simpler

representation for the set exists other than listing the set, this generator will mimic truly

random behavior on the third iteration of values [28]. The number of iterations necessary

to mimic true random number generator behavior can be derived from Equation 11 by

setting it equal to the range of possible values, 2N, as shown in Equation 12. That is,

after how many iterations does the number of possible values equal the size of the range?

Equation 12 Iterations When RNG Appears Random

)log(
)2log(

)log()2log(
2

D
Ni

DiN
DiN

=

=
=

where N = number of bits (4) and D = divergence (3) at each point. The term on the top

left, 2N, represents the range of values – or for Chaitin’s criterion the size of a list of all

the possible values. The term on the right, Di, represents the number of values which

must be calculated to guarantee prediction of the random number generated with a

divergence D on the ith iteration. For the simple RNG example with D = 3and N = 4, this

equation yields i = 2.5 in agreement with the empirical measurement of 3 (see the plot in

Figure 20). Hence for a divergence of 3, prediction of more than two samples into the

future is futile as the list of calculated values is longer than the list of possible values.

4.2.8 Differences From Other Architectures

The Multi-Clock Generator presented by McTaggart and Burson[24] is an example of

the simplest form of a divergent path RNG. The two LFSRs, clocked by different clocks,

represent two functions. The two functions are independent since they are each maximal

length and the numbers of bits of the two LFSRs are relatively prime. The divergence for

this particular generator would be 2 as there are two independent operations.

The RNG presented by Oerlemans[25] is quite different from a divergent path RNG.

Oerlemans has presented a single LFSR clocked by an unpredictable clock so that the

stream of numbers is not predictable. But the randomness introduced by the clock

uncertainty is not preserved – each sample is only as random as the clock frequency

which is derived from the XOR of the oscillators. The average and standard deviation of

the clock frequency of this generator could be calculated by observing enough generated

numbers. Then the value at any time could be predicted to fall within a subset of the

range of numbers. Hence there is not necessarily any point in the future at which

prediction of the output value becomes futile. The RNG presented by Oerlemans is not

guaranteed to ever meet Chaitin’s criterion for randomness. A divergent path generator

will capture the randomness from each sample. The farther into the future prediction is

attempted, the more randomness the generator has captured. As shown in Equation 12

above, there is a point at which prediction of the output from a divergent path generator

becomes futile. Hence a divergent path RNG will always meet Chaitin’s criterion for

randomness at some future sample. The number of samples at which the RNG becomes

random by Chaitin’s definition is governed by the number of independent functions

comprising the RNG. More independent functions means less samples before the RNG

achieves randomness.

CHAPTER 5 DIVERGENT PATH ARCHITECTURES

5.1 Adder-Shifter Based TRNG Architecture

In chapter 4 a simple example for a TRNG was presented. A free-running adder was

used to generate bits and a shifter was used at sample intervals to capture and preserve

randomness. This type of TRNG can be abstracted to a general architecture consisting of

an adder for bit generation followed by a shifter for randomness preservation. A TRNG

that has an adder-shifter architecture will be referred to as an ASTRNG in the remainder

of this paper. The ASTRNG illustrated in Figure 21 has two additional features: (1) a

transposing unit attached after the shifter and (2) the adder is split into two counters.

 preload &
feedback

ring
oscillator

up
counter

down
counter

shift
count

logical
shifter

transpose
count

selective bit
transposer

32 bit
random number

ring
oscillator

ring
oscillator

ring
oscillator

Figure 21 Block Diagram of ASTRNG

The bit generation for this ASTRNG has been configured as a 16 bit up counter and a

16 bit down counter for two reasons. First, splitting the counter reduced the time

required to produce every possible value from 232 clocks to 216 clocks. Second, it helps

balance the number of high bits (1’s) with the number of low bits (0’s). Each counter has

its own noisy ring oscillator. Each counter runs all the time. Each counter has an

associated latch that is not shown in the block diagram in order to avoid confusion. All

four counters are latched when a value is read from the ASTRNG. The counters continue

to run and the latched counts are used for creating the value read. This architecture

avoids synchronizing the ring oscillators at every read. Whenever a random number is

read, the random number is fed back into the counters using the preload function.

Following the bit generation stage is the shift stage for preserving randomness. This

stage is a 32 bit barrel shifter. The shift count is not fixed; rather a free running 5 bit

counter is clocked by a third noisy ring oscillator as shown. Whenever a value is read

from the ASTRNG, the shift count is latched and the value from the bit generator is

rotated by that count. As discussed earlier, bits are rotated left and the leftmost bit (b31)

is rotated back into the rightmost bit (b0) position. The final stage in this ASTRNG

transposes the individual bits in the shifted value. There are four transpositions

implemented. A free running 2 bit counter, clocked by a fourth noisy ring oscillator, is

latched whenever a value is read from the ASTRNG. The latched 2 bit count determines

which transposition is applied to the value. Table 4 illustrates how the bits are

transformed according to the transpose count. The four different transpositions

implemented are: (1) 32 bit, (2) 16 bit, (3) 8 bit and (4) 4 bit.

Table 4 Transposer Bit Transpositions Per Count

output bit count=00 count=01 count=10 count=11
0 31 15 7 3
1 30 14 6 2
2 29 13 5 1
3 28 12 4 0
4 27 11 3 7
5 26 10 2 6
6 25 9 1 5
7 24 8 0 4
8 23 7 15 11
9 22 6 14 10
10 21 5 13 9
11 20 4 12 8
12 19 3 11 15
13 18 2 10 14
14 17 1 9 13
15 16 0 8 12
16 15 31 23 19
17 14 30 22 18
18 13 29 21 17
19 12 28 20 16
20 11 27 19 23
21 10 26 18 22
22 9 25 17 21
23 8 24 16 20
24 7 23 31 27
25 6 22 30 26
26 5 21 29 25
27 4 20 28 24
28 3 19 27 31
29 2 18 26 30
30 1 17 25 29
31 0 16 24 28

This ASTRNG was constructed using the Mentor Graphics chip design tools. The

resulting design was translated to a GDS-II plot file and that file was sent to MOSIS for

fabrication in AMI05 technology. Five (5) of the chips were bonded and packaged in the

typical MOSIS 40 pin ceramic DIP package and returned from MOSIS. The five chips

were tested for functional operation and current requirements and the results sent back to

MOSIS. Then the five TRNG chips were tested for divergence and shown to be truly

random. Finally bit streams were gathered from each of the five TRNG chips and tested

using the NIST 800-22 tests for randomness.

5.2 Design of the ASTRNG Chip

5.2.1 ASTRNG Design Methodology

The architecture of this TRNG is shown in Figure 21. The ASTRNG design was

begun using VHDL. However, when problems were encountered with the synthesis tool,

Leonardo Spectrum, the VHDL design was abandoned in favor of a digital schematic

design based on Mentor Graphics Design Architect, abbreviated DA. DA comes with a

generic AMI05 parts library. The library contains most commonly used gates, latches

and flipflops. This library was used in the ASTRNG design to minimize the amount of

time spent designing individual gates and allow concentration on the ASTRNG layout

and testing.

Fortunately switching to schematic design did not decrease the ability to test

individual blocks as they were completed. AccuSim was used to verify operation of each

component as it was designed. As each block layout was completed, a spice extraction

was performed and the resultant circuit was simulated using MachTA. While this

represents a lot of time spent designing and running tests, such attention to detail at the

block design level made the final layout much easier to test and gave a high degree of

confidence the resulting IC would work.

5.2.2 ASTRNG Development

This ASTRNG architecture required substantial development effort. First a more

detailed block diagram was prepared. The transistor count in each of these blocks was

estimated using Leonard Spectrum output statistics with no attempts at optimizing. Then

each block was constructed using the following methodology:

a) Draw a schematic using Design Architect

b) Simulate the schematic using Accusim

c) Layout the schematic using IC Station

d) Verify the layout using LVS (Layout Versus Schematic)

e) Check the layout using DRC (Design Rules Check)

f) Perform a parasitic extraction to properly model the fabricated part

g) Verify correct operation using MachTA on the extraction

There were a number of blocks to be designed including those shown in the block

diagram as well as some that were required but not shown in the block diagram. The

blocks that were designed as a part of this project are tabulated in Table 5.

Table 5 Blocks In ASTRNG

Name Number X Size Y Size
Input Mux 1 200 1100
Up Counter 1 796 1080

Down Counter 1 796 1080
Logical Shifter 1 1000 2200

Transposer 1 600 2200
Ouput Mux 1 160 2000

Latch16 1 193 1050
Control Register 1 992 360
Ring Oscillator 4 500 600
5 Bit Counter 1 631 360
2 Bit Counter 1 320 240
Counter Latch 2 322 970

A down counter bit slice and two versions of an up counter bit slice (one with a

preload and one without) were designed using AMI05 standard cells. Sixteen up counter

bit slices with preload were combined in the up counter while sixteen down counter slices

were combined in the down counter. A small amount of logic was added to each counter

to permit synchronous preload.

The logical barrel shifter was prepared in a different manner. Since an instantaneous

multiple bit shift was required, a block of five multiplexers implemented each bit. Then a

five bit count selected which of the multiplexer inputs were selected. The five bit counter

was built from five of the non-preload up counter bit slices mentioned above. The logical

shifter posed the greatest routing challenge of any module because of the large number of

interconnects.

The transposer was designed as a 32 bit wide four to one multiplexer. As such it

could be broken down into bit slices of a 4 to 1 multiplexer. Then thirty-two of the bit

slices were combined along with some control logic to create the transposer.

As shown in the block diagram, there were four ring oscillators required for this

design. Each ring oscillator had a different number of stages. Each ring oscillator is

controllable to some extent so the frequency of oscillation can be altered by switching

inverter stages in and out of the design. The fewer the stages, the faster the ring

oscillates. More stages cause the ring to oscillate slower. The rings were designed to

permit frequency shifting among four different oscillation frequencies. In order to permit

changes to the topology during operation, the changes had to be synchronized to the

operation of the ring. Digital control of the ring oscillators including frequency shifting

is covered in more detail in this paper[29].

There are two more entities required for this ASTRNG in addition to those in the

block diagram. A control register is required to allow stopping, starting and configuring

the ASTRNG and latches are required for holding data. The control register is formed

from D flipflops and has read and write capability. It contains three bits per ring

oscillator; one to select between fixed or rotated frequencies and two to select which

frequency. The control register also contains a run bit; when set the ASTRNG generates

numbers and when cleared it does not. Finally the control register contains an Inhibit

Feedback bit; when set the current output of the ASTRNG is not preloaded into the

counters and cleared the current output is preloaded to seed generation of the next

number.

Two different types of latches were constructed. One type of latch, ctlat, was

designed to latch the output of the up and down counters during random number

generation. There are two of these, one for the up counter and one for the down counter.

The other type of latch, lat16, is just a simple array of latches to latch the most significant

half of the 32 bit random number for the 16 bit bus implementation.

With all blocks completed and tested, the entire ASTRNG was simulated using

MachTA. Several operations were simulated. Reset and run was tested to be sure the

random number generator would come out of reset and produce random numbers with no

intervention from control logic. Reading from and writing to control registers was also

simulated. Finally several random numbers were simulated.

A padring was designed from AMI05 pads and the ASTRNG was placed in the

padring. The simulation was adapted to run through the padring. A parasitic extraction

was performed on the complete chip, ASTRNG plus padring. Finally MachTA was used

to verify functionality of the completed chip. Then the completed chip was converted to

GDS-II format and transferred electronically to MOSIS for production and packaging.

When the decision was made to have ASTRNG chips fabricated, it was necessary to

select a package and design the pinout. The standard MOSIS AMI05 package is the 40

pin DIP which limits the design somewhat. Once the required pins had been listed, there

were not enough pins to build a 32 bit bus. Eight pins, 4 inputs and 4 outputs, were

needed for bringing the ring oscillators out and supplying external oscillators in case the

internal oscillators were not adequate. Therefore it was necessary to build a 16 bit bus on

the IC itself and a latch inside the ASTRNG so that all 32 bits could be read from the

ASTRNG at once – the lower 16 bits are presented out the bus while the upper 16 bits are

held in the latch until a second read could be performed to collect them. The pins and

their functions are listed in Table 6.

Table 6 Pin Definitions for ASTRNG Chip

Pin Name Number Function
RST 6 1 means reset – 0 means run
IRUN 11 1 means generate after reset – 0 means halt after reset
CS 8 1 means ASTRNG selected – 0 means not selected
RnW 7 1 means read – 0 means write
MSW 10 1 means acess upper 16 bits – 0 means lower 16 bits
CReg 9 1 means access control register = 0 means access data
Ack 5 1 means transfer can complete – 0 means hold transfer
D0 .. D15 14-17,19-22,

24-27,28-31
Data lines

OBO 34 1 means use onboard oscillators – means use external
INxx 1,2,3,40 external oscillator inputs (4)
OUTxx 35,36,37,38 external oscillator outputs(4)
Vdd 12,13,18,23 Power supply voltage
Gnd 4,32,33,39 ground connection

Figure 22 shows the IC layout for the ASTRNG. Note this layout required a double

allocation from MOSIS as the area of the completed layout was larger than would fit in a

single allocation. That is why the top and bottom sides of the layout below look (and are)

much longer than the left and right sides. Note also that with poor planning, the top row

has many more connections (13) than the bottom row (7). For future reference, it is much

easier to connect the pads to pins if there are equal numbers of pads on each side of the

layout. Looking from left to right, the input bus latch is left most. Next are the counter

preload latches followed closely by the counters and the counter output latches. The

barrel shifter is next and the transposer is the rightmost tall block. Then along the top are

the fliflops that make up the control register. Just under them is a 16 bit output latch.

Then on the right are the four ring oscillators. Just below the ring oscillators are the 5 bit

shift counter and the 2 bit transpose counter.

Figure 22 ASTRNG IC Layout

5.2.3 ASTRNG IC Fabrication Testing

Whenever MOSIS fabricates an IC in their education program they request a report

on the results of the fabrication to help them improve their process. MOSIS fabricated

five of the ASTRNG ICs and bonded them into the 40 pin DIP packages. When the ICs

were returned to the University, each was tested for functionality by writing the control

register and reading it back, reading at least two random numbers and measuring the

power supply current for each chip with reset asserted and while the chip was active. The

results of the functionality test and the current measurements are reproduced in Table 7.

 Table 7 ASTRNG Functional and Current Results

Chip Functional Test Reset mA Active mA
1 pass 3.5 42.3
2 pass 3.4 42.3
3 pass 3.7 41.9
4 pass 3.8 41.2
5 pass 3.7 41.0

The oscillation frequency for each of the four settings of each of the four ring

oscillators was measured on each ASTRNG chip and is illustrated in Figure 23.

20

40

60

80

100

P
er

io
d

Setting

ASTRNG ICs Oscillator Agreement

Figure 23 ASTRNG Oscillator Comparison

As seen in Figure 23, the agreement in period between oscillators with similar

settings is very high. The results for all settings on all oscillators are in Table 8.

Table 8 RNG Oscillator Frequency

Chip Setting Osc1 Osc2 Osc3 Osc4
1 00 64.1 56.2 53.2 49.5
1 01 68.5 64.1 58.8 52.6
1 10 83.3 70.4 69.4 58.8
1 11 98.0 86.2 74.6 68.5
2 00 63.3 55.6 52.1 49.0
2 01 67.6 64.9 58.8 52.1
2 10 82.0 69.4 67.6 58.1
2 11 96.2 86.2 75.8 67.6
3 00 62.5 55.6 52.1 48.5
3 01 66.7 63.3 58.8 51.5
3 10 82.0 69.4 67.6 58.8
3 11 96.2 84.7 74.6 67.6
4 00 64.1 54.9 52.1 50.0

4 01 68.5 64.9 58.8 52.1
4 10 83.3 69.4 68.5 58.1
4 11 96.2 84.7 73.6 67.6
5 00 63.2 56.2 52.1 50.0

 5 01 67.6 64.9 58.1 52.6
5 10 82.0 70.4 67.6 58.1

 5 11 96.2 84.7 74.6 68.5

5.2.4 ASTRNG IC Statistical Testing

The ASTRNG IC was tested statistically using the NIST800-22 test suite. First the

raw output of each of the five ASTRNGs was gathered at 20 microsecond intervals. The

data was gathered from one IC at a time. The data was read at a rate of 32 bits every 20

microseconds or 1.6Mbits/second. Then the raw output was run through the NIST800-22

test suite. Since the data did not pass all of the NIST800-22 tests, it was whitened in

software by reading the raw TRNG data file, XORing it with the output of a PRNG and

writing a new data file containing the whitened data. The PRNG used to whiten the data

contained a 32 bit LFSR that was clocked exactly 32 times between samples. Clocking

the LFSR 32 times does not reduce the maximal length property since 232 and (232 – 1)

are relatively prime but it does insure that all bits in the LFSR change every sample

instant. The LFSR was derived from the Xilinx white paper on maximal length

LFSRs[7]. The taps for the XOR were at bits 31, 21, 1 and 0 though they are numbered

32, 22, 2 and 1 in the Xilinx paper. The results from the raw data and the whitened data

are presented in chapter 7 section 7.1.

5.2.5 ASTRNG Realization In FPGA

The same random number generator was described in VHDL and synthesized in an

FPGA in order to demonstrate the ease with which the design can be translated to any

digital platform. The design was synthesized to a Xilinx Spartan2 FPGA (XC2S100) in

an Avnet Mini-Spartan2 Development Board. In order to connect it to the same test bed

as the RNG ICs, an additional wrapper that duplicated the functionality of the ASTRNG

IC test board was created. Then a small PC board with two 40 pin connectors was wire

wrapped. This small board translated the pinout from the Spartan2 Mini Development

Board to the ASTRNG IC test board so that the same software and hardware could be

used to test the ASTRNG IC and any digital ASTRNG implementation on the Spartan2

Mini Development Board. As with the IC version, the output from the FPGA version

was whitened using the software PRNG previously described. Test results for the

ASTRNG in FPGA are discussed in chapter 7, section 7.2. Similar results were achieved

between the ASTRNG IC and the ASTRNG FPGA, meeting the requirement that the

design be realizable on any digital platform.

5.3 Concatenated LFSR Based Architectures

As mentioned earlier, the purpose of the transposer in the ASTRNG was just to

scramble the order of bits. Since a LFSR acts like a counter with a pseudo random count

it was decided to construct a digital TRNG from concatenated LFSRs instead of from the

adder-shifter architecture. For these CLTRNGs, the divergent path would come from

preloading the LFSR with different values depending on the relative rates of the

oscillators. The CLTRNG designs were easy to build using the Xilinx development

board. Each one was described in VHDL, synthesized for the Xilinx Spartan2

development board and tested using the same test setup as the ASTRNGs. Each of the

LFSRs used in CLTRNGs was based on the Xilinx application note previously cited.

A LFSR is just a bit trickier to work with than a straight counter. The reason is that

for either the XOR or the XNOR implementation there is a lockup value. Care must be

exercised to keep from preloading the LFSR with the lockup value. For these

implementations, instead of risking lockup, each LFSR was preloaded with its own

output bits. In order to implement a divergent path, the bits are scrambled before

preloading.

5.3.1 CLTRNG Realization With 9, 13 and 16 Bit LFSRs

Figure 24 is a block diagram for a CLTRNG. This Concatenated LFSR TRNG was

built from three LFSRs; one 16 bit LFSR, one 13 bit LFSR and one 9 bit LFSR.

Combined there would be 38 bits (16 + 13 + 9) so the upper two bits of each LFSR are

not concatenated to form the random number. Instead the upper two bits of each LFSR

are tied to the ring oscillators in the other two LFSRs to force frequency rotation in the

ring oscillators. The oscillators are all cross coupled: that is, each LFSR has two

frequency control outputs. Each ring oscillator has two frequency control inputs. Each

LFSR’s frequency control outputs are tied to the other two LFSRs’ frequency control

inputs – one output to each of the other two inputs. This design was described in VHDL.

 Figure 24 CLTRNG Bock Diagram

A 32 bit whitening PRNG constructed from a 32 bit LFSR was included in the design.

The PRNG contains a 32 bit LFSR and a state machine that clocks the LFSR exactly 32

times between samples – updating all bits in the PRNG every sample. The control

register was adapted so that either the 32 bit CLTRNG or the 32 bit PRNG or the 32 bit

XOR of the CLTRNG and PRNG could be selected for output. The output of the PRNG

was of interest to insure proper operation. Tests were made with the CLTRNG only

enabled, with the PRNG only enabled and with the whitened CLTRNG. Test results are

given in chapter 7, section 7.3.

5.3.2 LFSR Realization With 11, 11 and 10 Bit LFSR Contributions

Figure 25 CLTRNG With 11, 11 and 10 Bit Contributions

This CLTRNG was also built from three LFSRs; one 27 bit LFSR, one 13 bit LFSR

and one 12 bit LFSR. Figure 25 is a block diagram of this CLTRNG. The previous

design was altered somewhat to explore whether a different LFSR would make a

significant difference in the statistical scoring of the RNG. From the previous RNG, the

9 bit LFSR was expanded to a 10 bit LFSR. The 13 bit LFSR was not altered and the 16

bit LFSR was expanded to a 27 bit LFSR. For all LFSRs, maximal length circuits as

specified by the Xilinx application note were implemented. The 32 bit whitening PRNG

from the previous design was retained. The oscillator cross coupling from the previous

design was also retained. The design was synthesized for the Spartan2 development

board. Data was gathered with and without whitening and statistical tests were run on the

data. Chapter 7 section 7.4 documents test results from this CLTRNG. The PRNG data

is the same as that documented in section 7.3 so it is not repeated.

5.3.3 CLTRNG Realization With 7, 9, 11 and 13 Bit LFSR Contributions

 Figure 26 CLTRNG With 4 LFSR

This CLTRNG realization was built from four concatenated LFSRs instead of three to

explore whether increasing the number of LFSRs made a significant difference in the

statistical scoring of the RNG. Since there are now four oscillators instead of three, there

are 33% (4/3) more paths from any one point. Hence it is expected that the divergence

would be higher for this CLTRNG than for the three LFSR version of the CLTRNG. A

block diagram for this CLTRNG is shown in Figure 26. In this case a total of 40 bits are

produced, 32 of which are the random number. The other 8 bits are used to control the 4

ring oscillators. The oscillators are cross coupled as before; that is, no frequency control

output is tied to the oscillator which drives its generating LFSR. Both non-whitened and

whitened data were gathered as before. Statistical tests were run on this data. The results

are documented in chapter 7 section 7.5. Once again the PRNG results are not reported

for this generator as they are identical to those documented in chapter 7, section 7.3.

5.3.4 Using a TRNG to Whiten a PRNG

One of the more interesting possibilities to come out of this work is the ability to

whiten an LFSR based PRNG. The LFSR based PRNG is simple to build in hardware

and software as documented earlier. But there is a frequency component present in

maximal length LFSRs due to the repetition of certain bit patterns as the LFSR proceeds

through the range of output values. This frequency component can be whitened by

XORing the PRNG output with a divergent path TRNG built of LFSRs clocked by ring

oscillators – in other words a CLTRNG. Experimental data supporting this conclusion

are presented in chapter 7 section 7.6.

CHAPTER 6 TEST EQUIPMENT

6.1 TRNG Test Equipment

In order to test the random number generators, a hardware and software platform was

put together. The test equipment hardware is based on a microprocessor development

board. It contained a Motorola 68306 processor running at 16MHz, 2 Mbytes of

FlashPROM, 2 Mbytes of static ram, a RS232 port and a 16 bit bus. Figure 27 shows a

block diagram of the hardware used to test RNGs.

 2MByte
Flash

2MByte
SRam

UART 68306
Microprocesor

16 bit asynchronous interface bus

Custom RNG
Interface PCB

RNG IC

PC with
HyperTerm
User Interface

Figure 27 RNG IC Test Equipment

Crosscode C for the 68000 was used to compile and assemble the sotware for the test

equipment. Time critical routines were written in assembly language while other

software was written in C. The software provided a simple monitor, with peek and poke

capability, interrupt driven communications and a custom command set for testing

various aspects of the RNG. Table 9 lists the software modules and their contents.

Table 9 Testboard Software Files and Contents

File Contents
start.s powerup reset and speed dependent routines
duart.s interrupt driver for duart
zos.c basic operating system (malloc free printf scanc etc.)
fips.c routines to implement FIPS140-1 & 140-2 tests
trng.c custom routines for testing RNGs

Figure 28 shows a photograph of the test equipment. The larger board on the left is

the MC68306 microprocessor board. The MC68306 is in the top left corner. Below it

are two flash proms. This board was designed to run in as an EISA peripheral but the

EISA portion is unused. The large connector on the left is for power. The empty socket

where the ribbon connector is attached was originally for a coprocessor so all address and

data lines were available. The 40 pin ribbon connector attaches to one of several

interface boards as detailed later in this chapter.

Figure 28 RNG IC Test Equipment

6.2 RNG Test Equipment Built In Tests

The tests that are built into the test equipment follow a certain format. Each is

represented by a command which is of the form DoXyz where Xyz represent the name or

an abbreviation of the function or functions to be performed. The tests were originated in

response to FIPS140-1 and so several numbers are specified as follows. A buffer is

defined to be 625 each of 32 bit words or 2500 bytes. The built in tests have access to

100 of these buffers meaning a total of 62,500 each of 32 bit random numbers (or

250,000 bytes) may be generated at once and buffered for testing. The FIPS140

specification calls out failure rates in terms of so many per 10,000. So the normal

amount of data gathered for transfer to the PC host is 10,000 buffers of 625 each of 32 bit

words (25,000,000 bytes). The built in test routines are enumerated in the following

paragraphs.

The DoAlgo test is a routine that checks to insure the FIPS140-1 and/or 140-2

algorithms are performing correctly. First a buffer full of pseudo random data is

generated from either a LFSR or the rand() function built into the C compiler. Pseudo

random data is used in order to verify FIPS algorithm – as pseudo random data should

pass these tests. FIPS specifies a buffer to be 625 each of 32 bit words; that is, 2500

bytes. Then the data is evaluated based on either FIPS140-1 or 140-2 standards. The

operator specifies on the command line whether to generate with the LFSR or the rand()

function and whether to use FIPS140-1 or 140-2 testing.

The next routine, DoDump, merely dumps one or more of the 100 buffers to the

screen. Again, the operator specifies which buffer to dump on the command line.

The third routine, DoFIPS, runs the FIPS test for statistical randomness on the data

buffer or buffers specified. The operator chooses which buffer(s) are to be evaluated and

whether 140-1 or 140-2 specifications will be applied to the data. At the conclusion of

the test, the number of buffers which fail one or more aspects of the test are output by test

category.

The fourth routine, DoCLat, writes a value into the control latch on the test board.

The control latch, as the name suggests, latches the control signals for the RNG IC. The

three signals latched are tabulated in Table 10.

 Table 10 Bits in Control Latch

Bit Meaning
0 1=RUN; 0=RESET
1 1=RUN after RESET;0=HALT after RESET
2 1=Use Built-In Oscillators;0=Use Offboard Oscillators

The fifth routine, DoRand, reads a random number from either the normal RNG IC

interface board or the special interface board that permitted all five RNG ICs to be read at

one time. The user specifies which board to read on the command line. The random

number which is read is shown on the screen.

The sixth routine, DoOsc, writes the control latch bit that selects whether to use

onboard oscillators (built into the RNG IC) or external oscillators in the random number

generating circuit.

The seventh routine, DoCReg, reads and writes the control register onboard the RNG

IC. Bits in the control register control whether the RNG is generating or stopped and

control the oscillation of each of the four onboard ring oscillators. For each oscillator, a

bit controls whether the oscillator runs at a fixed frequency or rotates the frequency while

the other two bits specify which frequency if a fixed frequency is selected.

The eighth routine, DoLoad, loads one or more buffers with random numbers. The

options which can be specified on the command line are whether to read numbers from

the single RNG IC interface board or from the five RNG IC interface board and which of

the 100 buffers should be filled. The time between each random number read is

controlled by the global variable nBetween which defaults to 20 microseconds. Another

command exists to change the sample period.

The ninth routine, DoPeri, allows the user to set the sample period between random

number generations. The new value for the global variable nBetween is the command

parameter.

The tenth routine, DoCont, continuously loads buffers full of random numbers and

tests them for statistical randomness. The command parameters accepted for this routine

control whether the RNG IC is attached via a single IC interface board or the multi IC

interface board, whether to use FIPS140-1 or 140-2 specifications and whether or not to

whiten the data by XORing it with a 32 bit LFSR output before testing. The sample

period is set by the global variable nBetween. This routine will fill all buffers with data

then test all buffers, repeating until it is stopped by the user entering a key. When it is

finished, a final tally of the results of each phase of the FIPS test will be displayed.

The eleventh routine, DoReset, will reset the RNG IC if the parameter is 0. It will

permit the RNG IC to run if the parameter is 1. If the user does not type a parameter then

it will show the value of the current reset bit.

The twelfth routine, DoGath, gathers numbers from the random number generator

then dumps them to the screen continuously. This is the mechanism used to gather

random numbers for processing on the PC. The user can specify on the command line

whether to gather the numbers from a multi or single RNG IC board and how many 625

word buffers to gather (minimum of 1, maximum of 20,000). This routine alternately

calls Load and Dump to load the buffers then dump them to the screen.

The thirteenth routine, DoRR, resets the RNG then reads random numbers from it.

This routine evolved to prove the divergent nature of this series of TRNGs. It resets the

RNG then waits a precise amount of time. Then the routine loops reading a RNG and

waiting a precise amount of time until the user presses a key. If the routine is reading

from the Multi board then it reads four consecutive sets of random numbers and displays

them. All signals including reset and read are presented to each of the five boards at

exactly the same time. The data from each of the five boards is read into a buffer at

exactly the same time. Then thedata from each buffer is read into the test routine in

sequence. This test gives a very accurate picture of the divergent nature of these RNGs.

If the routine is reading random numbers from a single RNG IC, then it reads 20

numbers, resets the board, reads 20 numbers, resets the board and continues until it has

repeated this procedure eight times. It then displays the eight columns of numbers side

by side and resumes operation. This routine also places a start beside any columns that

have data duplicated with another column.

The fourteenth and fifteenth routines, DoTC and DoPound, were used to test the

counters associated with a RNG and to to continually write a location. These two

routines have no relevance to random number testing.

6.3 RNG Test Interface PCBs

Two printed circuit boards were designed to interface the RNG ICs to the test

equipment. One interface PCB was designed to test a single RNG IC exhaustively. The

second interface PCB was designed to operate all five RNG ICs in parallel. Both boards

were designed using OrCad Schematic Capture to generated the schematic and OrCad

Layout Plus to lay out the printed circuit boards. In order to reduce cross talk and power

supply noise, both boards were fabricated as four layer boards. Each board has a top and

bottom signal plane and a power plane and a ground plane on the inner layers. Once the

layout was complete, the board stack was sent to Sierra Proto Express for board

fabrication. Two of each board was ordered; one spare and one to populate. The boards

were fabricated and populated. The RNG ICs were placed in sockets for easy installation

and removal. One small modification from the original schematic was necessary on the

single RNG IC interface. No modifications were necessary on the multi-board.

6.3.1 Single RNG IC Interface PCB

The single RNG IC interface board has the ability to measure power supply current

by having a jumper on the +5V supply line. If the shorting block is removed and a

current meter is plugged into the jumper then the current from the +5V supply can be

read. The single RNG IC interface board has all four of the onboard oscillator outputs

attached to headers so that an oscilloscope or other measuring device can be attached to

each oscillator output. There are also headers so that four external oscillators can be tied

to the RNG IC in case the onboard oscillators are not functional. The final diagnostic

tool on the single RNG IC interface board is a circuit to capture any accesses that are not

properly terminated. Figure 29 is a picture of the single RNG IC interface.

Figure 29 Single RNG IC Interface

6.3.2 Multiple RNG IC Interface PCB

The multiple RNG IC interface board (multi-board) holds 5 each of RNG ICs. The

multi-board can only perform limited operations on the RNG ICs. It can reset them all

simultaneously and it can read them all simultaneously. It cannot write the control

register nor can it operate the RNG ICs in any manner other than free running out of

reset. The multi-board has special circuitry so that the reset, chip select and most

significant word lines are presented to all 5 RNG ICs at the same time. This arrangement

causes all 5 RNG ICs to generate random numbers at the same time. The multi-board

also has latches for each RNG IC output so that the random number generated by each

RNG IC is latched at the same time. This board was designed to test whether or not the

RNG ICs would produce different numbers even with identical power supplies reset

timing and control signals. Figure 30 is a picture of the multi-board.

Figure 30 RNG Multi-Board

6.3.3 Avnet Development Board for Xilinx Spartan2 FPGA

The single RNG IC interface and the multi-board were designed to attach to the

MC68306 bus as explained earlier. In order to provide a programmable digital hardware

solution, a development board containing a Spartan2 FPGA was attached to the test

equipment using the same bus port as the single and multi-board. The Spartan2 FPGA

has plenty of I/O lines and the development board has them brought out to a 40 pin

header. All that remained was to construct a simple wire-wrap board with two 40 pin

connectors: one connector plugged into the test equipment and the other connector

plugged into the Xilinx board. This arrangement allowed RNG designs to be built and

tested more rapidly as well as providing proof that this family of RNGs could be

implemented in any digital platform with analog components. Figure 31 is a photograph

of the Spartan2 development board and wire-wrapped interface.

Figure 31 Xilinx Spartan2 Interface

CHAPTER 7 TEST RESULTS

7.1 RNG IC Test Results

The RNG ICs were tested in several ways. First, as detailed before, each IC was

tested for functionality and for current drain and the results were sent to MOSIS. This

testing is designed to help MOSIS improve its ability to support education by fabricating

ICs for universities. Second, the RNG ICs were tested to see if they would really produce

divergent streams of random numbers using the DoRR (do reset and read) test as

described in chapter 6. Third, the RNG ICs were each subjected to statistical testing of

the resulting stream of random numbers using the NIST800-22 test suite.

7.1.1 Reset and Read Test Results for RNG ICs

All five RNG IC chips were reset simultaneously, released from reset simultaneously

and read simultaneously at 20 microsecond intervals. A total of 4 sets of 5 readings (one

from each RNG IC) are taken. After the readings are taken, the board is reset and another

4 sets of 5 readings are taken at 20 microsecond intervals. This cycle continues until the

operator presses a key to stop the test. Looking at the data reproduced on the next page,

each column represents one of the five RNG ICs. Each row represents one reading taken

from each of the five RNG ICs simultaneously. There are two important comparisons

made by this test. First, each of the five RNG ICs should generate a different stream of

numbers. That is, each column should be different. Second, each group of four numbers

within a column should be different. The number of readings before the data started to

diverge is an important indicator of the randomness of the RNGs. If there is no

randomness associated with the RNG design then it is expected that each RNG would

output the same sequence of numbers. However, not only did each RNG IC output a

different sequence of numbers than the other four, but each RNG never repeated the same

sequence of numbers. Figure 29 shows the Reset and Read test for the RNG ICs.

 Reset and read MULTI at 20 usec 20 [any key to quit]

E240A6BB F67501C4 BEAE68AB 5025C7DB 0AD8898E
DABB4A77 4C16ABE9 95C4B2A0 B5D747A7 16325610
0394D052 9EE06414 A78B7534 8C63E9B9 89077F72
F458F753 3C963B83 51F9495B D55EB858 901E3A32
[any key to quit]

D5804D67 8812E3ED F81088ED DABE218A 1B5B4130
A718ECD2 2E7F583B E14DE4D8 9F813B27 624A8D6C
23C895E0 9C557345 78ECE6E7 964682C6 755D34E7
4F1CAA2F F24E9F5A CEB5E4B4 5F35AE8A 862E4257
[any key to quit]

EDA810B2 5BC72510 87804C65 5025D7DB A6BEBA40
366D964D 6D1324F6 85C10031 5E9F8A18 AACD7C55
26ACFAB8 0BADD6C5 F89A8EAF 14F2A9B9 E5AEA400
50088C88 E593A84A 8F5A0B9E BAC9AD2A EBF1AA36
[any key to quit]

2B018ADE C75B1025 87804C67 5025C75B 1B5B4130
484469DA 720B20CC 179000C6 14B03D3D 46D8A42A
7FDB2C01 DC4987BA 49179C1A E4CA094F 6C301765
6AE5BB1E 9D5E581B 4947C4A2 C1BF03FB 574819B6
[any key to quit]

C64A20B6 ABB6284B F81088AD D67501D4 C4765B0C
BE9BC8AF 59B43287 A9AD9A4D 3070F265 9D4DACD8
A48F8D97 8B254C6C 80899067 B1314A1A 611996F5
80EE49AD 4D867E84 CF01E247 C4117AEB FB0F1052
[any key to quit]

ADA810BB 75F6CC09 3C046A2B DA3E218A 0314BDB1
0DD6A15F 393BDBC4 EE547F53 9FD52195 F66D817F
212105B9 6DE801FD EB929AB8 4F6D8B6A B560E8EB
169B946B BE942421 70948B4C 809D5181 AED5476D
[any key to quit]

175201B5 6BEAB402 F81088AD DABE218A 623B2306
4A90F065 366C593F 953B54DA 7C8C59BB 1A4DDFD9
CA7EA44A 5C919543 94AE6C77 774B7A6C 0DD3A8FB
B8925A8B FE89FD08 38C38D0E 49D81155 5B2D5000
[any key to quit]
TRNG>

Figure 32 Reset and Read at 20 uSec Intervals Multi RNG IC

There are no duplicate columns as expected, so each RNG IC is producing a different

stream of random numbers. There are three cases where a RNG IC produced the same

number after reset on two occasions. These duplicates are annunciated by the green, red

and blue circles. However, in no case is a second number duplicated, indicating a high

divergence of each RNG IC when sampled at 20 microsecond intervals as expected.

7.1.2 NIST800-22 Results for RNG ICs

The output random number streams of each of the five RNG ICs were also subjected

to the NIST800-22 statistical tests. A total of 200,000,000 bits (100 sets of 2,000,000

bits) were gathered from each RNG IC at the rate of 20 microseconds per 32 bit random

number. The data was input to the NIST800-22 test suite. The results of testing the raw

data from the RNG ICs are tabulated in Table 10. A star to the right of any test result

indicates the data failed that particular test for statistical randomness.

Table 10 Raw data NIST800-22 Results

 Raw data taken and processed by NIST800-22
test Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

Frequency 0.990 0.990 0.960 0.990 0.980
Block Frequency 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
Cumulative Sums 0.990 0.975 0.955 * 0.990 0.980 Runs 0.940 * 0.930 * 0.910 * 0.940 * 0.950 *
Longest Run 1.000 0.950 * 0.940 * 0.930 * 0.980

 Rank 0.980 1.000 0.990 1.000 1.000
FFT 1.000 1.000 1.000 0.990 1.000

 Nonperiodic Templates 0.963 0.961 0.962 0.958 * 0.962
Overlapping Templates 0.970 0.990 0.970 0.990 0.970
Universal 0.890 * 0.870 * 0.950 * 0.980 0.920 *
Approximate Entropy 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
Random Excursions 0.988 0.990 0.998 0.984 0.991 Random Excur Variant 0.996 0.992 0.993 0.986 0.983
Serial 0.540 * 0.545 * 0.490 * 0.535 * 0.540 *

 Lempel-Ziv 1.000 1.000 1.000 1.000 1.000
Linear Complexity 0.960 0.980 0.990 1.000 0.990

By inspection, the raw data output from each RNG IC passed more tests than it failed.

For each RNG IC, the raw data failed from 5 to 7 of the 16 statistical tests, however. In

particular, the raw data from all RNG ICs failed the Block Frequency test, the Runs test,

the Approximate Entropy test and the Serial test. Consistently failing these tests indicates

that some bit pattern (or patterns) is produced more often than the average and some bit

pattern is produced less often than the average. The data is still not predictable because

the Lempel Ziv compression algorithm is unable to compress the data at all.

7.1.3 Whitened NIST800-22 Results for RNG ICs

The output random number streams of each of the five RNG ICs were whitened and

the whitened data was subjected to the NIST800-22 statistical tests. Two different

methods of whitening were used. The first method was simply to XOR the output from

the RNG ICs with a 32 bit maximal length LFSR as defined by the Xilinx Application

Note[7]. The test results from running the NIST800-22 tests over the XOR whitened data

is tabulated in Table 11. Whitened data from every chip passes the NIST800-22 tests.

 Table 11 XOR Whitened Data NIST800-22 Results

Data whitened by XOR and processed by NIST800-22
test Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

Frequency 1.000 1.000 0.980 1.000 0.990 Block Frequency 0.980 1.000 0.990 0.990 0.990
Cumulative Sums 1.000 1.000 0.985 0.995 0.990

 Runs 1.000 0.990 0.990 0.990 0.990
Longest Run 1.000 0.980 0.990 0.990 0.990

 Rank 0.980 0.990 0.990 1.000 0.990
FFT 0.970 0.980 0.970 1.000 1.000
Nonperiodic Templates 0.990 0.990 0.991 0.989 0.990
Overlapping Templates 1.000 0.990 1.000 0.980 1.000
Universal 1.000 0.960 1.000 0.990 0.990 Approximate Entropy 0.990 0.990 0.990 1.000 0.990
Random Excursions 0.991 0.984 0.995 0.979 0.988

 Random Excur Variant 0.991 0.987 0.995 0.979 0.995
Serial 0.985 0.995 0.985 0.980 0.995

 Lempel-Ziv 1.000 1.000 1.000 1.000 1.000
Linear Complexity 1.000 0.990 1.000 1.000 1.000

One other variation of whitening was done as an experiment. Instead of simply

XORing each 32 bit number produced by the RNG with the 32 bit output of the LFSR,

half of the bits were XORd and half were XNORd in an attempt to help balance the

number of 1’s and 0’s produced. Table 12 has the results of the XOR/XNOR whitening.

As can be seen by inspection of Tables 11 and 12, there is no statistical difference

apparent between a straight XOR and a split XOR/XNOR. Any form of whitening seems

adequate to clean up the discrepancies and even up the distribution across the range.

 Table 12 Whitened by XOR/XNOR Results

Whitened by XOR,XNOR and processed by NIST800-22 test Chip 1 Chip 2 Chip 3 Chip 4 Chip 5
Frequency 1.000 1.000 0.980 1.000 0.990

 Block Frequency 0.980 1.000 0.990 0.990 0.990
Cumulative Sums 1.000 1.000 0.985 0.995 0.990

 Runs 1.000 0.990 0.990 0.990 0.990
Longest Run 1.000 0.990 0.980 0.980 0.970
Rank 0.990 1.000 1.000 0.990 1.000
FFT 0.970 0.980 0.970 1.000 1.000
Nonperiodic Templates 0.990 0.990 0.991 0.989 0.990 Overlapping Templates 0.990 0.980 0.980 1.000 0.990
Universal 1.000 0.960 1.000 0.990 0.990

 Approximate Entropy 0.990 0.990 0.990 1.000 0.990
Random Excursions 0.991 0.984 0.995 0.979 0.988

 Random Excur Variant 0.991 0.987 0.995 0.979 0.995
Serial 0.985 0.995 0.985 0.980 0.995
Lempel-Ziv 1.000 1.000 1.000 1.000 1.000
Linear Complexity 1.000 0.990 1.000 1.000 0.980

7.2 FPGA RNG Test Results

The RNG IC architecture was reproduced in a Spartan II FPGA in order to show how

readily the design could be moved from one digital design suite to another. The design

was coded in VHDL and realized using Xilinx xst. Data was gathered from this RNG

configuration and processed using the NIST800-22 suite. Then the data was whitened as

it was with the RNG ICs and tested again.

7.2.1 NIST800-22 Test Results for FPGA ASTRNG

Two sets of data were gathered from the FPGA ASTRNG at 20 microsecond intervals

in the same method as data from the ASTRNG ICs was gathered. The NIST800-22 suite

was run over each set of data as before. The results are in Table 13. A quick comparison

shows excellent experimental agreement between the ASTRNG ICs and the ASTRNG as

realized in the FPGA. Both implementations have similar results for the NIST800-22

tests on the raw data. In both cases the raw data shows problems with the Block

Frequency, Longest Runs, Universal, Approximate Entropy and Serial tests. There is a

little difference; the ASTRNG ICs have a problem with Runs test also while the FPGA

has a problem with the Overlapping Templates test. Both the ASTRNG IC data and the

FPGA realization data was whitened using a 32 bit LFSR clocked 32 times per sample –

so that each bit in the LFSR would be generated anew for each data point. Both the

ASTRNG IC and the ASTRNG FPGA realization passed all NIST800-22 tests after

whitening.

 Table 13 FPGA Based ASTRNG Raw and Whitened NIST Results

 Raw data NIST800-22 Whitened
 test Data 1 Data 2 Wht 1 Wht 2
 Frequency 0.970 0.990 0.990 1.000
 Block Frequency 0.390 * 0.780 * 0.990 0.980
 Cumulative Sums 0.965 0.970 0.990 1.000

Runs 1.000 0.980 1.000 0.960
Longest Run 0.650 * 0.780 * 0.980 1.000
Rank 1.000 0.990 1.000 1.000
FFT 1.000 0.990 0.990 1.000 Nonperiodic Templates 0.971 0.979 0.989 0.990

 Overlapping Templates 0.720 * 0.770 * 0.990 0.980
 Universal 0.010 * 0.340 * 0.990 0.990
 Approximate Entropy 0.000 * 0.010 * 1.000 0.990
 Random Excursions 0.990 0.994 0.993 0.993
 Random Excur Variant 0.997 0.997 0.993 0.997

Serial 0.760 * 0.905 * 0.990 0.995
Lempel-Ziv 1.000 1.000 1.000 1.000
Linear Complexity 0.980 0.990 1.000 1.000

7.3 Three LFSR Based FPGA CLTRNG Test Results

Instead of up and down counters, a barrel shifter and a transpose unit, a TRNG was

constructed by concatenating the output of three different LFSRs to form a 32 bit random

number. The LFSRs were each of different size and hence would produce different

output sequences. Divergence comes as the ring oscillator for each of the LFSRs

experiences noise. The PRNG that was used to whiten both the IC ATRNG and the

FPGA ASTRNG was included in each of the CLTRNG realizations. As with the

ASTRNG ICs, reset and read tests to insure the CLTRNG was diverging properly and

NIST800-22 statistical tests to insure the CLTRNG generated the appropriate distribution

were run on the data collected from the CLTRNGs.

7.3.1 Reset and Read Test Results for 3-LFSR CLTRNG

Since there was only one FPGA and therefore only one CLTRNG, the reset and read

test was run a little differently. The CLTRNG was reset then a set of 20 readings was

taken at 10 microsecond intervals. This process was repeated 8 times. Then the eight

sets of readings were shown one each in eight columns. Each column had 20 readings

taken consecutively. An asterisk is placed at the end of each row that has at least one

duplicate entry. Starting at the beginning, count down each line that has at least one

duplicate entry. The number of lines that have at least one duplicate is a reciprocal

indicator of how fast the CLTRNG is diverging. As with the multi-chip reset and read,

two aspects were important. First, the data does diverge after only a few samples. This

illustrates that the CLTRNG is not repeatable even given circumstances where reset and

sample timing is tightly controlled by a microprocessor and the tests are run within

milliseconds of each other, precluding the possibility of significant temperature change.

Second, the data does not converge again after it diverges. The lack of convergence

illustrates that the streams are truly divergent and not just a noise impulse.

[any key to quit]
F5507AB6 F5507AB6 F5507AB6 F5507AB6 F5507AB6 F5507AB6 F5507AB6 F5507AB6 *
FDA91E70 19470E71 19451E73 19451E73 19451E71 19472E70 19451E73 19451E73 *
7B26EEB3 69CD16F3 7A9161B3 A38C01C1 4C185522 54820C33 61D561B3 27F2954B
7BA1D0E0 CBE7572B 2F48246B 013106E0 7DBA38BA 6A18FBD9 E9C64905 16B79C4F
294A4A21 838EDF2B 94DFC210 ECF4A40C 8968A203 5BD55F10 BF56A659 1CB786C8
57684183 5474507F 6A4E9A70 04A00B38 9A64E6E9 C829A9C1 9D5C68F7 8697AD4C
9E926C2A F66FF995 41CEF6BF CA2A73CF 627A12A1 36B7E3BA 62CA849D 089A3C56
BB06F184 8A626AE8 2AB4D8F8 E1E81256 8C6E7383 6AE8C712 0B1F225D D339B475
AC9ED3A0 37407EE1 9DCAD36D B09308C4 8580ECBC 2C445E05 30BF3EA5 3CDFCAB5
0EE596B0 5B157CD6 EEFE8618 3978F7BC F25C0699 81A125A8 9DFF01EF E09012F3
A75341CB 876032B3 9D790948 27F11493 73C374FE E046F59D 3FFC6A41 F808ED74
43AAF0CA 0F3DD157 50950740 34B0E9AA 29D9BBA2 7032912A EB0226F4 FE2EB7EA
558E527E 33C91846 6C48CEC0 DF55A5FD B9330857 AC4A0950 90469BCA 3C97890D
0A091FFF C04AA121 3843F8CD 35899381 3C2E3200 BB1DE42B B5682889 39318BDA
FB0FA372 88E64E9D E6E5E9E9 9FEDF04C 64094361 E477E65B 20119DA8 F3BA548A
ACF5A901 BD088D5A 3CDCABD9 F8CAFE28 987468CA FDD56E6F 6429FF7A 47E72A54
A3A68B53 D697AAE0 470839D4 ADECEA91 2EA8E979 D128C07B CB2B003A 1EDB7680
AA1BDD5A ABF10449 05744276 18EDB692 0690AC6E F27B1CB8 70D7F92E D33F5DC5
063B9307 A0EDDC57 3F49E816 FA371F59 B69FF9B0 81482A82 69223362 67631CE7
4264385D B63ED630 7E825DD1 21962B82 1C166574 7211A019 BFF3FE66 33BC6D28

Figure 33 Reset and Read at 10 uSec Intervals for 3-LFSR RNG

7.3.2 NIST800-22 Test Results for 3-LFSR CLTRNG

Two sets of data were taken with the original 3-LFSR CLTRNG architecture. One

set of data was taken using only the TRNG while the other set was taken using the TRNG

whitened by the PRNG. Both of these data sets were taken by reading a random number

from the CLTRNG every 40 microseconds. The NIST800-22 statistical tests were run on

the data and the results are tabulated in Table 14. As can be seen by examining the NIST

test results, the CLTRNG passes all but one of the NIST tests without whitening. With

whitening it easily passes all NIST tests.

Table 14 NIST Results for 3-LFSR CLTRNG 40 uSec Interval
 Raw data Whitened

 test Data 1 Wht 1
Frequency 0.950 * 0.990

 Block Frequency 1.000 0.990
Cumulative Sums 0.960 1.000
Runs 0.980 0.990
Longest Run 1.000 1.000
Rank 0.980 0.990 FFT 0.990 0.980
Nonperiodic Templates 0.988 0.991

 Overlapping Templates 0.990 0.970
Universal 1.000 0.990

 Approximate Entropy 0.980 0.970
Random Excursions 0.990 0.993
Random Excur Variant 0.982 0.989
Serial 0.990 0.990
Lempel-Ziv 1.000 1.000 Linear Complexity 0.990 0.980

7.4 Another Three LFSR Based FPGA CLTRNG Test Results

The 3-LFSR CLTRNG architecture was changed to different LFSR’s. Instead of 16,

13 and 9 bit LFSRs with the most significant 2 bits ignored, the LFSRs used were 27, 13

and 12 bits long with 11, 11 and 10 bits respectively concatenated to form the 32 bit

random number.

7.4.1 Reset and Run Test Results for Second 3-LFSR CLTRNG

A reset and read test was run on the second 3 LFSR CLTRNG design. As with the

first 3 LFSR CLTRNG, the data were read in 32 bit random numbers at an interval of 40

microseconds. The results are shown in Figure 34. Note this configuration does not

diverge as fast as the previous CLTRNG.

 [any key to quit]
8A54BB81 8A54BB81 92B11503 8A54BB81 8A54BB81 92B11503 8A54BB81 8A54BB81 *
02E14EEC 02E14EEC 1DB7D31E 02E14EEC 02E14EEC 1DB7D31E 02E14EEC 02E14EEC *
D3492028 D3492028 03BED68E D3492028 D3492028 03BED68E D3492028 D3492028 *
4B41B334 4B41B334 1B1C9057 4B41B334 4B41B334 1B096457 F781DF24 4B41B334 *
EC4574F2 EC4574F2 F763E132 EC4574F2 EC4574F2 F7757132 24A9F585 EC4574F2 *
81047CAE 81047CAE 3F1120D0 81047CAE 81047CAE 3F0E5CD0 1954C8B2 81047CAE *
D4B56D9B D4B56D9B E40B413F D4B56C0E D4B56D9B E419BD3F 0CA5FA32 D4B56C0E *
FF54D278 FF54D278 6778BE9A E994D282 FF54D278 6778129A 1BA92E2C FF54D282 *
EC11082B EC11082B 67EFF73B 47710BA6 EC11082B 67FA0B3B 54D37ECA A7510BA6 *
3A72A11A 30C432F3 29B2A705 2FB2A158 BA72A11A 29B11B6A 2CA05F9B 1912A158
27ACF398 6CBA04D4 282F85DD 4E6CF200 CF2CF398 283F2DD9 85ACB92C A96CF03B
1857FF54 141446DF 04C7E6CE 6297FFB0 48B7FF54 04D83980 FF67523B EA77FFDB
E46814E2 FB32405B 250D98F3 75E814DA 950814E2 5F7345D3 E3945B48 C1E8170B
1F461724 7438960A 20FD07F6 A6A617FE 2B5D8724 DEF06B46 BF7C3222 29A61412
5ACA5718 512F820D 7B92B59D 205F9902 5F8B2318 78CE48FC 01198F7F 74BF9943
A16244D2 D487B2A2 CB8C1AA7 7DEBB442 047FD4D2 263CB3C8 48EEF578 530BB688
B3203579 8146092A 749AB3F7 F0EC5EA4 82FBD979 5D2CE7E5 3C346DBE B6CC5F15
D9772276 A04641EE AD9FFF64 CA281FE1 2DA13276 8C495682 68B3A38B 46D1970D
7F5BB458 EC6DB116 6A5C9AD9 CB58D30E 705FBC58 2B4B3A70 0288CEB2 DC216245
031FDD30 CF3D648C ED192F6D 9C616BC2 FF3C2D30 3CC7976A E20E18BC A7D82CD9

 Figure 34 Reset and Run Test 2nd 3-LFSR CLTRNG at 40 uSec Interval

7.4.2 NIST800-22 Test Results for Second 3-LFSR CLTRNG

Two sets of data were taken from this second 3-LFSR CLTRNG. One set was taken

with the PRNG disabled and is just the TRNG output. The second set of data was taken

with both the TRNG and the PRNG enabled. The results are in Table 15.

 Table 15 NIST Results for Second 3-LFSR CLTRNG

 Raw data Whitened
 test Data 1 Wht 1

Frequency 1.000 0.990
 Block Frequency 0.970 0.990

Cumulative Sums 0.995 0.990
Runs 1.000 1.000
Longest Run 0.970 0.990
Rank 1.000 1.000 FFT 0.990 0.990
Nonperiodic Templates 0.989 0.988

 Overlapping Templates 0.980 0.990
Universal 1.000 0.990

 Approximate Entropy 0.980 1.000
Random Excursions 0.988 0.990
Random Excur Variant 0.996 0.994
Serial 0.975 0.990
Lempel-Ziv 1.000 1.000 Linear Complexity 1.000 0.980

7.4 Four LFSR Based FPGA CLTRNG Test Results

The 4-LFSR CLTRNG architecture was designed using 13, 11, 9 and 7 bit LFSRs.

32 of the 40 bits are concatenated to form the RNG. The four oscillators for the LFSRs

are cross-coupled as described in Table 16.

 Table 8 4 Bit LFSR OScillator Cross-coupling

ring oscillator coupled to
lfsr7 lfsr9 & lfsr11
lfsr9 Lfsr11 & lfsr13
lfsr11 lfsr13 & lfsr7
lfsr13 lfsr7 & lfsr9

One interesting aspect of a CLTRNG made from 4 LFSRs as opposed to 3 LFSRs is

the relative rate of divergence of the two CLTRNGs. Since the CLTRNG with 4 LFSRs

has 4 points of divergence whereas the CLTRNG with 3 LFSR has only 3 points of

divergence, it seems logical that the 4 LFSR CLTRNG would show a faster divergence.

The classic Reset and Read test only takes 8 sets of data. In order to make a more

meaningful measure of divergence, the Reset and Read test was changed to run

continuously and store how many rows of the 8 sets of readings have duplicates per set of

8 readings. When the test is stopped, 20 counts are printed out. Each count represents

the number of rows of readings with duplicates. For example, if the first count, count[0],

had a value of 10 then that would mean 10 groups of 8 sets of data have no (zero) rows

with duplicates. If the second count, count[1], had a value of 100 then that would mean

100 groups of 8 sets of data had only 1 row with duplicate readings on it. In short, the 20

counts taken together represent a histogram of duplicate readings. The histogram can be

used to measure divergence. A large, steep bell indicates a high rate of divergence as few

duplicate readings are produced. A short, gently sloping bell indicates low divergence as

there are many duplicate readings. For example, consider the following two sets of

counts. The set labeled A was taken at 40 microsecond intervals. The set labeled B was

taken at 100 microsecond intervals. Since there is more opportunity for noise to affect

the slower readings, it is expected that set B would show a higher divergence. The graph

of the data as percentages bears this out in Figure 35.

Figure 35 Reset and Read Histograms for CLTRNG

7.4.1 Reset and Read Test Results for 4-LFSR CLTRNG

The reset and read tests for the 4-LFSR CLTRNGs show an improved divergence as

expected. Since there are 4 ring oscillators instead of 3, each ring oscillator can have

multiple next values and the divergence has been shown to be exponentially related to the

number of possible next values, it is expected that the divergence of the 4-LFSR

CLTRNG will be higher than the divergence of the 3-LFSR CLTRNG. The Reset and

Read data for both the 3-LFSR and the 4-LFSR CLTRNG are tabulated and charted in

Figure 36. Both sets of data were taken at 40 microsecond intervals.

 Figure 36 3-LFSR and 4-LFSR Divergence

7.4.2 NIST800-22 Test Results for 4-LFSR CLTRNG

Two pairs of two sets of data were taken with the 4-LFSR CLTRNG architecture.

Each pair consists of one set of data from the TRNG only and one set of whitened data.

Test results for the 4 LFSR CLTRNG are tabulated in Table 17.

 Table 9 4-LFSR CLTRNG Nist800-22 Results

 Raw data Whitened data
test Data 1 Data 2 Wht 1 Wht 2

Frequency 0.590 * 0.480 * 0.990 0.970
Block Frequency 0.960 0.980 0.990 0.990
Cumulative Sums 0.605 * 0.485 * 0.990 0.965

 Runs 0.690 * 0.630 * 0.980 1.000
 Longest Run

0.960 0.930 * 0.980 1.000
Rank

0.990 0.990 1.000 1.000

FFT

0.990 0.990 0.980 0.990
Nonperiodic Templates 0.981 0.983 0.991 0.991
Overlapping Templates 0.770 * 0.740 * 0.980 1.000
Universal 0.970 0.970 1.000 0.980
Approximate Entropy 0.950 * 1.000 0.960 0.990
Random Excursions 0.986 0.983 0.984 0.998

 Random Excur Variant

0.995 0.998 0.984 0.988
Serial 0.995 0.990 0.995 0.990

 Lempel-Ziv 1.000 1.000 1.000 1.000
 Linear Complexity 0.990 1.000 0.960 0.990

7.5 Using a TRNG to Whiten a PRNG

As mentioned earlier, an interesting result from this work is the discovery of a way to

whiten the output from a LFSR based PRNG. The 3-LFSR CLTRNG architecture

includes a PRNG and provisions were made for reading (1) the TRNG, (2) the PRNG or

(3) the XOR of the TRNG and PRNG. As is shown by the data in Figure 37, PRNG

output fails the Rank test in the NIST800 test suite. But after XORing with the TRNG,

the combined stream passes the Rank test.

Figure 37 LFSR Data Whitened By TRNG

CHAPTER 8 CONCLUSION

8.1 Summary of Work

A methodology for the digital design of digital true random number generators has

been presented. Digital schematics and the Mentor Graphics digital ASIC design

software was used to design and fabricate digital true random number generators. VHDL

and Xilinx FPGA design software was used to reproduce the original true random

number generator. Data measurements from both the ASTRNG ICs and the FPGA

ASTRNG realizations were taken and showed very similar results, proving the design

was portable across digital platforms. One other architecture for the divergent path

random number generator was realized by replacing the counters, shifter and transposer

with concatenated LFSRs. Three realizations of this CLTRNG architecture were

constructed and tested. The two CLTRNG realizations composed of three LFSRs

generated a stream of random numbers that scored significantly higher on the NIST800-

22 tests. The CLTRNG realization composed of four LFSRs showed a higher divergence

as expected but it also showed an unexpectedly poorer statistical composition.

8.2 Lessons Learned

One important lesson learned was that each experiment in the sequence of any

research has value. In particular, each time the Reset and Read test was modified the

previous experiments should have been repeated to include data from the older

experiments for comparison with data from the newer ones.

Another important lesson learned was that of keeping accurate records. In some cases

where years passed between gathering the data and writing up the experiment it was

difficult to reproduce the thinking behind each experiment. In the future more accurate

records will be kept. A statement of purpose for the experiment, the method, the data and

the results will be written up for each experiment to help clarify thinking, eliminate errors

and guide future work. The experimental writeup will be completed as soon as

reasonably possible during and after the experiment.

Another important lesson learned was the power of technology to increase the pace of

experimentation. This research contained large amounts of data – each NIST800-22 run

required 25,000,000 bytes of data. Work was started on a 700MHz P3 machine with

512M of 133 MHz SDRam. Crunching one set of NIST800-22 statistical tests took about

5 hours. Later work was done on 2GHz P4 machines with 1G of 400MHz DDRam. The

same NIST800-22 statistical tests ran in 20 minutes on these machines.

8.3 Future Work

As stated earlier, the original TRNG architecture was an attempt to jumble bits

randomly. Counters were used to generate bits then the resulting bits were shifted and

transposed. NIST800-22 tests brought out a critical weakness of this design – it has

detectable frequency components. This weakness was somewhat overcome by switching

from counters/shifter/transposer to concatenated LFSRs for the generating circuit. After

having time to consider more carefully, it was not necessary to use counters. Instead,

since any prime, or indeed any number that is relatively prime with respect to the range

of numbers, would generate every possible combination, a generator could be constructed

from an adder that would iteratively add the prime in the place of a counter that could

only add “1”. Then if a prime were chosen that was roughly half the length of the range,

it would serve to toggle many bits on every iteration which would alleviate the need for

the down counter and the need for bit balancing (trying to make the number of 1’s and

0’s equal over the long term). Whereas the CLTRNG formed by concatenation of three

LFSRs only alters 3 bits per generation period (one in each LFSR), a generator built from

a prime-adder circuit (ASTRNG) could easily alter half of the bits in the number at each

iteration. Hence the ASTRNG should be able to be sampled considerably faster than the

CLTRNG. An interesting research project would be to use the FPGA to derive the best

possible CLTRNG and ASTRNG and then to layout both designs and have ICs

constructed and tested.

REFERENCES

[1] Stallings, William, Network Security Essentials – Applications and Standards,

Prentice-Hall Inc., 2000, pp. 69.

[2] Brent, Richard P., “Note on Marsaglia’s Xorshift Random Number Generators”,

Journal of Statistical Software, Vol. 11, Issue 5, August 2004.

[3] K.H. Tsoi, K. H. and K.H. Leung et. al., “Compact FPGA-based True and Pseudo

Random Number Generators”, Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM’03), 2003, pp. 51-
61.

[4] Kohlbrenner, Paul and Kris Gaj, “An Embedded True Random Number Generator

for FPGAs”, Proceedings Of The 2004 ACM/SIGDA 12th International
Symposium On Field Programmable Gate Arrays (FPGA ’04), pp. 71-78.

[5] Collins English Dictionary – Complete and Unabridged 6th Edition 2003. Harper

Collins Publishers 2003.

[6] Rukhin, Andrew and Juan Soto et. al., “Statistical Test Suite For Random And

Pseudorandom Number Generators For Cryptographic Applications (NIST
Special Publication 800-22)”, National Institute of Standards and Technology,
May 15 2001.

[7] Alfke, Peter, Efficient Shift Registers, LFSR Counters and Long Pseudo-Random

Sequence Generators, Xilinx Publication XAPP052, July 7, 1996.

[8] McCollum, James M. and Joseph M. Lancaster et. al., “Hardware Acceleration of

Pseudo-Random Number Generation for Simulation Applications”, Proceedings
of the 35th IEEE Southeastern Symposium on System Theory (SST ’03), March
2003, pp. 299-303.

[9] Griffiths, Dawn, Head First Statistics, O’Reilly Media Inc., 2009, pp. 230.

[10] Cusick, Thomas W. and Pantelimon Stanica, Cryptograhic Boolean Functions

and Applications, Academic Press, 2009, pp. 19.

[11] Thamrin, N.M., G. Witjaksono. et. al., “An Enhanced Hardware-based Hybrid

Random Number Generator For Cryptosystem”, ICIME ’09 Proceedings of the
International Conference on Information Management and Engineering, April 03
– April 05 2009, pp. 152-156.

[12] Marsaglia, George, “Random Numbers Fall Mainly in the Planes”, Proceedings of

the National Academy of Sciences, Vol. 61, September 1968, pp. 25-28.

[13] Petrie, Craig S. and J. Alvin Connelly, “A Noise-Based IC Random Number
Generator for Applications in Cryptography”, IEEE Transactions On Circuits And
Systems—I: Fundamental Theory And Applications, Vol. 47, No. 5, MAY 2000,
pp. 615-621.

[14] Bucci, Marco and Lucia Germani et.al., “A High-Speed IC Random-Number

Source for SmartCard Microcontrollers”, IEEE Transactions On Circuits And
Systems—I: Fundamental Theory And Applications, Vol. 50, No. 11, November
2003, pp. 1373-1380.

[15] Walsh, James J. and Randall Paul Biesterfeldt, “Method And Apparatus For

Generating Random Numbers”, US Patent 6,480,072 B1, November 12 2002.

[16] Stojanovski, Toni and Ljupco Kocarev, “Chaos-Based Random Number

Generators—Part I: Analysis”, IEEE Transactions On Circuits And Systems—I:
Fundamental Theory And Applications, Vol. 48, No. 3, March 2001, pp. 281-288.

[17] Stojanovski, Toni and Johnny Pihl et. al., “Chaos-Based Random Number

Generators—Part II: Practical Realization”, IEEE Transactions On Circuits And
Systems—I: Fundamental Theory And Applications, Vol. 48, No. 3, March 2001,
pp. 382-385.

[18] Chu, Pong P. and Jones, Robert E., Design Techniques of FPGA Based Random

Number. Department of Electrical and Computer Engineering, Cleveland State
University, Cleveland, Ohio and NASA Glen Research Center, Cleveland Ohio,
October 26, 1999.

[19] Knuth, Donald E., “Random Number Generator”, US Patent 3,548,174, August

10 1966.

[20] Tausworthe, Robert C., “Random Numbers Generated By Linear Recurrence

Modulo Two”, Mathematics of Computation, Vol. 19, 1965, pp. 201-209.

[21] MacLaren, M. Donald and George Marsaglia, “Uniform Random Number

Generators”, Journal of the ACM, Vol. 12, Issue 1, 1965, pp. 83-89.

[22] FIPS 140-2: Federal Information Processing Standards Publication 140-2,

“Security Requirements for Cryptographic Modules”, U.S. Department of
Commerce / National Institute of Standards and Technology, December 03 2002.

[23] Bucci, Marco and Lucia Germani et.al., “A High-Speed Oscillator-Based Truly

Random Number Source for Cryptographic Applications on a Smart Card IC”,
IEEE Transactions On Computers, Vol. 52, No. 4, April 2003, pp. 403-409.

[24] McTaggert, Jeff and Brook Burson, “Multi-Clock Random Number Generator”,
Motorola White Paper, September 1999.

[25] Oerlemans, Robert Vincent Michael, “Digital True Random Number Generating

Circuit”, US Patent 6,807,553 B2, October 19, 2004.

[26] Wilber, Scott A., “Integrated True Random Number Generator”, US Patent

Application Publication US 2010/0281088 A1, Nov 04 2010.

[27] Weigandt, Todd C. and Beomsup Kim et. al., ”Analysis of Timing Jitter In CMOS

Ring Oscillators”, IEEE International Symposium on Circuits and Systems, 1994
(ISCAS’94), Vol. 4, May 30 1994, pp. 27-30.

[28] Chaitin, Gregory J., Exploring Randomness (Discrete Mathematics and

Theoretical Computer Science), Springer-Verlag, 2001, pp. 111-129.

[29] Mitchum, Sam and Robert H. Klenke, “Design and Fabrication of a Digitally

Synthesized, Digitally Controlled Ring Oscillator”, Proceedings of the Third
IASTED International Conference on Circuits, Signals and Systems (CSS 2005),
October 24-26 2005, pp. 26-30.

	Virginia Commonwealth University
	VCU Scholars Compass
	2010

	Digital Implementation of a True Random Number Generator
	Sam Mitchum
	Downloaded from

	1.1 Statement of Purpose
	1.2 Problem Definition
	1.3 Overview
	1.4 Abbreviations and Acronyms
	2.1. Definition
	2.2. Tests For Randomness
	2.3 How Random is Random Enough?
	2.4 Not-So-Random Number Generators
	2.4.1 Linear Feedback Shift Register
	2.4.2 Whitening

	3.1 Electronic RNG History
	3.1.1 Analog RNGs
	3.1.2 Chaos RNGs
	3.1.3 Digital RNGs
	3.1.4 RNG’s Similar To This Work

	4.1. Overview
	4.2 Randomness
	4.2.1 Randomness In The Analog Domain
	4.2.2 Randomness In The Digital Domain
	4.2.3 Distilling Randomness From Clock Jitter
	4.2.4 Range of Numbers and Paths Through The Range
	4.2.5 Capturing Randomness Using Divergent Paths
	4.2.6 Simple Divergent Path RNG
	4.2.7 Divergent Path Formulae
	4.2.8 Differences From Other Architectures

	5.1 Adder-Shifter Based TRNG Architecture
	5.2 Design of the ASTRNG Chip
	5.2.1 ASTRNG Design Methodology
	5.2.2 ASTRNG Development
	5.2.3 ASTRNG IC Fabrication Testing
	5.2.4 ASTRNG IC Statistical Testing
	5.2.5 ASTRNG Realization In FPGA

	5.3 Concatenated LFSR Based Architectures
	5.3.1 CLTRNG Realization With 9, 13 and 16 Bit LFSRs
	5.3.2 LFSR Realization With 11, 11 and 10 Bit LFSR Contributions
	5.3.3 CLTRNG Realization With 7, 9, 11 and 13 Bit LFSR Contributions
	5.3.4 Using a TRNG to Whiten a PRNG

	6.1 TRNG Test Equipment
	6.2 RNG Test Equipment Built In Tests
	6.3 RNG Test Interface PCBs
	6.3.1 Single RNG IC Interface PCB
	6.3.2 Multiple RNG IC Interface PCB
	6.3.3 Avnet Development Board for Xilinx Spartan2 FPGA

	7.1 RNG IC Test Results
	7.1.1 Reset and Read Test Results for RNG ICs
	7.1.2 NIST800-22 Results for RNG ICs
	7.1.3 Whitened NIST800-22 Results for RNG ICs

	7.2 FPGA RNG Test Results
	7.2.1 NIST800-22 Test Results for FPGA ASTRNG

	7.3 Three LFSR Based FPGA CLTRNG Test Results
	7.3.1 Reset and Read Test Results for 3-LFSR CLTRNG
	7.3.2 NIST800-22 Test Results for 3-LFSR CLTRNG

	7.4 Another Three LFSR Based FPGA CLTRNG Test Results
	7.4.1 Reset and Run Test Results for Second 3-LFSR CLTRNG
	7.4.2 NIST800-22 Test Results for Second 3-LFSR CLTRNG

	7.4 Four LFSR Based FPGA CLTRNG Test Results
	7.4.1 Reset and Read Test Results for 4-LFSR CLTRNG
	7.4.2 NIST800-22 Test Results for 4-LFSR CLTRNG

	7.5 Using a TRNG to Whiten a PRNG
	8.1 Summary of Work
	8.2 Lessons Learned
	8.3 Future Work

