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CHAPTER 1 INTRODUCTION 
 

1.1 Statement of Purpose 

 
 The purpose of this research is to develop a digital true random number generator 

that can be synthesized using standard digital design tools.  Random number generators 

are used in security for generating secrets such as session keys and large primes for key 

exchange and exponentiation[1].  Random number generators are also used for simulating 

random events and for professional gaming.  The security applications are of primary 

importance as the number and complexity of networks continues to grow.  Random 

number generators will be required to protect the medical, financial and personal data of 

entities connected to these networks.  A digital true random number generator that can be 

synthesized using standard digital tools will enable designers to address these privacy 

concerns more efficiently. 

 

1.2 Problem Definition 

Random number generators may be divided into two classes – pseudo random 

number generators and true random number generators.  Pseudo random number 

generators generate a stream of numbers in a known pattern.  The pattern is typically very 

long and it is hard to recognize the sequence of numbers is ordered.  However, perfect 

knowledge of the generating circuit and the most recently generated number will enable 

the next generated number to be determined.  For this reason pseudo random number 

generators are often called deterministic random number generators.  Pseudo random 



number generators are easily built from a Linear Feedback Shift Register (LFSR) 

assuming judicious selection of the XOR taps[2].  In order to disguise the fact that they 

are deterministic, PRNGs are often built with many more generated bits than are used per 

number.  For example, a 128 bit LFSR may be used to implement a 32 bit PRNG.  

Protection comes from the fact that it is more difficult to discover the 96 hidden bits than 

the 32 bits used for the random number.  Hence it is anticipated that the 128 bit 

implementation would be more secure.  As with many real-world aspects of security, it is 

assumed that simply extending the length of the PRNG would provide acceptable 

privacy.  However the issue of perfect knowledge of the generator determining the next 

output value is not addressed by this solution. 

True random number generators produce a stream of truly random numbers.  That 

is, knowing the generating circuit and the past history of numbers generated is 

insufficient to determine the next number.  True random number generators are often 

called non-deterministic random number generators since the next number to be 

generated cannot be determined in advance.  For a perfect true random number generator, 

the probability of the next generated number being any specific value should be equal to 

the probability of the next generated number being any other specific value.  Since a 

certainty is always a probability of 1 and since some specific value will certainly be 

generated, the probability of any particular value being generated next should be equal to 

1 (certainty) divided by the number of possible values in the range.  As a simple 

illustration, consider a six sided die.  The probability of any one of the six sides facing up 

after rolling the die is 1 (certainty) divided by 6 (the number of possible values).  For a 

digital random number composed of N bits where N is positive definite, the range of 



values has 2N possible values.  So the probability of any particular value being generated 

next by a true N-bit digital random number generator is:  

Equation 1 

NP
2
1

=  

 

 

At the inception of this research, true random number generators always required 

some analog components be included in ICs (Integrated Circuits).  True random number 

generators were always based on an analog property like junction or thermal noise that 

was often whitened and scaled to produce a uniformly distributed random number 

generator.  Whenever a SOC (System On a Chip) required random number generation, an 

analog IC designer was required to complete the design.  A digital random number 

generator that can be designed using standard digital design tools would significantly 

reduce the cost and complexity of including a true random number generator in a design. 

When a true random number generator is implemented in an FPGA (Field 

Programmable Gate Array), either several additional analog components such as resistors 

and operational amplifiers must be added to the design, or the designer must measure and 

match performance of individual logic blocks to achieve acceptable performance[3][4].  

Again, a digital random number generator that can be designed and implemented using 

standard digital design tools would alleviate the need for extra components and/or the 

tedious hand-matching of logic blocks.  This dissertation documents the design and 

implementation of a true random number generator using standard digital design 

methodology.  



1.3 Overview 

 
The remaining chapters of this dissertation are organized as follows; Chapter 2 

covers methods for grading random number generators.  Chapter 3 covers existing 

random number generator designs.  Chapter 4 introduces the concept of divergent path 

RNGs.  Chapter 5 covers two architecture proposals for non-deterministic digital random 

number generators.  Chapter 6 presents the hardware and software used to test the 

generators.  Chapter 7 contains the test results from the two proposed architectures.  

Finally chapter 8 presents possible future work on digital random number generation. 

1.4 Abbreviations and Acronyms 

 The following abbreviations and acronyms are used throughout this paper. 
 
Acronym Stands For Meaning 

FPGA Field Programmable Gate 
Array 

A digital device whose architecture can be 
readily reconfigured. 

LFSR Logical Feedback Shift 
Register 

A multibit parallel FIFO whose incoming 
bit is a logical combination of current bits. 

NIST National Institute of 
Standards and Technology 

The government organization that 
promotes and publishes standards. 

PRNG Pseudo (Deterministic) 
Random Number Generator 

A number generator that creates a 
repeatable sequence of numbers that 
appear to be random. 

RN Random Number A number whose value cannot be predicted 
merely by knowing previous numbers in 
the sequence and the generating circuit. 

RNG Random Number Generator A circuit for creating a sequence of 
numbers. 

SOC System On a Chip A complete microprocessor based design 
incorporated on a single semiconductor. 

TRNG True (Non-deterministic) 
Random Number Generator 

A number generator that creates a non-
repeatable, non-predictable sequence of 
numbers. 



CHAPTER 2 DEFINING AND MEASURING 
RANDOMNESS 

2.1. Definition 

In order to discuss random number generation, it is necessary to define what random 

means. Webster’s New World College Dictionary gives three definitions for random[5]: 

1) lacking aim or method; purposeless; haphazard 

2) not uniform; especially of different sizes 

3) Statistics of statistical sample selection in which all possible samples have equal 

probability of selection 

No one of these three definitions is sufficient to describe a true random number 

generator.  The first definition, haphazard, implies that the number stream from the RNG 

is not predictable.  But is says nothing about the distribution of numbers generated.  This 

definition would be satisfied with only a small portion of potential numbers actually 

being produced; for example if a six sided die was cast and always came up either 3 or 6 

but never 1, 2, 4 or 5.  The second definition, not uniform, adds nothing to the first 

definition.  But the third definition, equal probability of selection, means that over time, 

the probability of each possible number being produced should be the same.  To continue 

the analogy with a six sided die, this definition means that after rolling the die for a long 

time, each value in the set {1, 2, 3, 4, 5, 6} should have come up about the same number 

of times.  How many samples constitute a long time and how close to equal constitutes 

about the same number of times are defined by the statistical tests for randomness.  One 

other characteristic is defined by these tests: how haphazard (or unpredictable) the stream 

is.  For example, a simple counter will produce every value in the count range and with 



equal distribution.  But a counter is not considered to be a RNG because the output is not 

haphazard; that is, the output is very predictable. 

A random number generator outputs a stream of numbers.  If the order of the numbers 

in the stream is exactly known then the stream is completely determined and there is no 

randomness in it.  If the order of the numbers is not known then the stream has some 

degree of randomness.  For most systems, a random number stream that is uniformly 

distributed is ideal.  For such a system, the probability of any number being generated is 

equal to the probability of any other number being generated at any time.  The tests used 

to measure the randomness in this paper all assume a uniform distribution.  Each test has 

a unique way to measure the distribution. 

2.2. Tests For Randomness 

There are many ways to test the randomness of a stream of numbers.  A few simple 

ones would be: 

• count the number of “1” bits and the number “0” bits and make sure they are 

approximately the same 

• break the stream into groups of say four bits and make sure that each possible four-

tuple occurs roughly the same number of times (0000, 0001, 0010, 0011, …. 1111) 

• pick a bit size and a particular pattern for that size and count how many bits are 

produced before that exact pattern is produced again. 

There are many published sets of tests for randomness, including FIPS 140-1 and George 

Masaglia’s Diehard Tests.  The National Institute for Standards and Technology (NIST) 

has published a suite of statistical tests for determining the quality of a random number 

generator in publication 800-22 [6].  These are the tests that have been used to determine 



the quality of the RNGs in this paper.  This suite contains sixteen different tests which are 

detailed below. 

1) Frequency Test: This test compares the proportion of 1’s to 0’s in the data.  The 

proportion of 1’s should be about half the number of bits.  The test fails if there 

are too many or too few 1’s in the bit stream. 

2) Block Frequency Test: This test computes the proportion of 1’s to 0’s in a 

specified block size.  For random data the frequency should be about half the 

block size.  This test fails if there are too many blocks which have either too many 

or too few 1’s. 

3) Cumulative Sums Test:  This test identifies the maximal excursion from 0 of a 

random walk using the values [-1, +1].  In other words, start at a point in the bit 

stream and move forward to the adjacent bit.  If it is a “0” then SUM = SUM – 1.  

If it is a “1” then SUM = SUM + 1.  If the bits alternated perfectly then the 

cumulative sum would remain low.  If there are too many 1’s or 0’s in a row, 

however, the cumulative sum gets large.  This test fails if the cumulative sum is 

either too large or too small. 

4) Runs Test:  This test counts the number of occurrences of runs of 1’s.  A run is 

defined as a continuous stream of bits of the same value bounded at the start and 

the end by bits of the opposite value.  The expected results are more runs of 

shorter numbers of 1’s and fewer runs of longer numbers of 1’s.  The test fails if 

there is significant deviation from the expected number of runs for any length of 

consecutive bits. 



5) Longest Runs Test:  This test counts the longest number of consecutive bits in 

each block of m bits.  The test fails if there are too many consecutive 1’s in the 

block. 

6) Rank Test:  This test divides the stream of binary bits into rows and columns of 

matrices.  It then calculates the rank of each resulting matrix as a way of testing 

for linear dependence – hence too many repeated patterns.  The test fails if ranks 

of the resulting matrices are incorrectly distributed. 

7) Discrete Fourier Transform Test:  This test examines the peak heights in the 

discrete Fourier transform of the sequence.  The purpose is to detect repetitive 

patterns in the sequence.  The test fails if the number of peaks exceeding a given 

threshold is too large. 

8) Non-overlapping Template Matching Test:  This test searches the bit stream for 

specific, aperiodic patterns.  If the pattern is found, the search is started again just 

beyond the end of the pattern.  If the pattern is not found, the search is started 

again at the next bit position.  The test fails if too many occurrences of the pattern 

are found. 

9) Overlapping Template Test:  This test is similar to the non-overlapping template 

matching test except if the pattern is found, the search is continued from the next 

bit following the start of the pattern so that patterns which overlap are detected.  

Again the test fails if too many occurrences of the pattern are found. 

10) Maurer’s Universal Statistical Test:  This test counts the number of bits between 

matching patterns in the data stream.  This measure is related to how well the 

stream can be compressed.  The test fails if the bit stream is compressible. 



11) Approximate Entropy Test:  This test compares the frequency of occurrence of all 

patterns of a certain bit length with the frequency of occurrence of all patterns that 

are one bit longer.  The test fails if the difference in frequency of occurrence for 

the two lengths is not as expected for random data. 

12) Random Excursions Test:  This test is similar to the cumulative sum test in that a 

sum is calculated by taking a random walk from a point considered to be the 

origin and returning to that point.  For each bit traversed, subtract 1 if the bit is a 

“0” and add 1 if the bit is a “1”.  The test actually examines eight different 

measurements – how many times each of the sums in the set [-4, -3, -2, -1, +1, +2, 

+3, +4] are encountered during a random walk.  The test fails if the number of 

times each sum is encountered does not match that predicted for random data. 

13) Random Excursions Variant Test:  This test is a more stringent variation of the 

random excursions test.  The difference is the number of sums.  This test uses a 

total of eighteen sums, [-9, … -1, +1, … +9] where the random excursions test 

only uses eight.  The test fails when the number of times each sum occurs does 

not match that expected for random data. 

14) Serial Test:  This test measures the frequency of occurrence of all possible 

overlapping patterns of a specified bit size.  In a random stream, each pattern 

should occur approximately the same number of times.  The test fails if the 

number of occurrences of each pattern is not approximately the same.  Note for 

the case of 1 bit patterns, this test degenerates to the frequency test. 



15) Lempel-Ziv Test:  This test counts the number of cumulatively distinct patterns in 

the sequence.  It is a measure of how much the bit stream can be compressed.  

The test fails if the bit stream can be compressed. 

16) Linear Complexity Test:  This test calculates the size of a LFSR that would be 

required to produce the bit stream.  The test fails if the required LFSR is too 

small. 

These are the sixteen tests that make up the NIST800-22 test suite for randomness.  They 

are quite complete – a fact that may be inferred as NIST has not seen the need to update 

them.  The scoring is somewhat arbitrarily as suggested by NIST at 96%; that is, a score 

of 95.9% fails while a score of 96.0% passes. 

2.3 How Random is Random Enough? 

Continuing the analogy with a six sided die, the value defined by rolling the die 

would be random.  Assuming the die was well-constructed and balanced, there should be 

no way to predict what number would come up on any given roll. The probability should 

be equal that any one of the range of numbers {1, 2, 3, 4, 5, 6} would come up on any 

given roll.  That is, if the die were cast many times, then the number of 1’s should match 

the number of 2’s, the number of 3’s, the number of 4’s, the number of 5’s and the 

number of 6’s.  If this is true then the die is called “fair” and the probability of being 

rolled is equally distributed across all six elements of the range.  Such a die would be 

called statistically random. 

Suppose an extra dot is added to the 2 face of the die.  Now there is no 2 face and 

there are two 3 faces.  Now if the die is rolled there is still a 1 in 6 chance of the other 

four faces (1, 4, 5, 6) coming up.  But there is no chance a 2 face will come up and there 



is a 2 in 6 (or 1 in 3) chance of a 3 face coming up.  Now, with this change, a haphazard 

number is still generated by rolling the die because the number that will come up is not 

perfectly predictable.  But the probabilities are no longer evenly distributed.  This uneven 

distribution is one aspect that tests like those in the NIST 800-22 suite are designed to 

detect. 

Suppose another change is made to the die.  The extra dot is removed so that all six 

numbers are present, but we make the entire 1 dot face heavier than the other faces.  Now 

all six values can be rolled but the face across from the 1 dot will come up more often.  If 

the heavy face is 1, the faces adjacent to the heavy face are {2, 3, 4, 5} and the face 

opposite the heavy face is 6.  If the die is rolled many times then 1 will come up the least 

frequently, {2, 3, 4, 5} will come up with about equal frequency and 6 will come up most 

frequently.  This variation in frequency is another aspect that statistical tests will 

measure. 

Finally, in a perfectly fair die it is not possible to predict which number will be rolled 

following any other number.  If it were possible to predict the order of numbers, for 

example {1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5 …}, then the die would be of little use and that is 

obvious.  But a more basic (and more likely) example of this same aspect would be if 

every time a 3 was rolled then a 1 would be rolled.  The numbers rolled before the 3 and 

after the 1 could be perfectly haphazard.  But every time a 3 was rolled, a 1 would be 

rolled next.  While this would be obvious after a few dozen rolls with a six sided die, it 

would be much harder to detect with a random number generator having four billion 

output values.  The statistical tests also find and measure these small patterns within the 

larger output sample. 



2.4 Not-So-Random Number Generators 

2.4.1 Linear Feedback Shift Register 

A Linear Feedback Shift Register is a circuit composed of a chain of flip-flops.  Each 

flip-flop output is tied to the next flip-flop input.  All are clocked by a common clock.  

The input to the first flip-flop in the chain is a linear combination of the outputs of one or 

more of the flip-flops in the chain.  See Figure 1 for an example of a LFSR. 

 

 

 

 

 

 

 

 

 

 

If the feedback is chosen correctly then a maximal length LFSR is obtained.  A 

maximal length LFSR will cycle through every possible output value over and over – 

much like a counter except with a scrambled count.  The output of a maximal length 

LFSR appears to be random though it is actually well ordered.  The output of a maximal 

length LFSR will typically pass all statistical tests for randomness.  These RNGs are 

often called PRNGs (pseudo random number generators) or deterministic RNGs because 

the output stream can be predicted (determined) mathematically. 
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Figure 1 

 



Xilinx has published an application note that describes maximal length LFSRs and 

gives topography for up to 168 bits[7].  This application note also contains a bibliography 

for scholars interested in learning how appropriate feedback taps are chosen. 

Unlike security applications and gaming, with simulation it is often more desirable to 

guarantee a particular distribution of random numbers than to guarantee lack of 

predictability of random numbers.  In these applications a PRNG is an optimal choice. 

Simulation software frequently implements one or more PRNG distributions in order to 

model various combinations of timing delays, power fluctuations and other real world 

phenomena.  If the calculation of new random numbers could be accelerated that would 

improve the speed of simulator and reduce the amount of time needed to run simulations.  

McCollum and others present a FPGA implementation for accelerating a PRNG and for 

controlling the distribution of the random number stream in [8]. 

2.4.2 Whitening 

According to statistics, the variance of the linear combination of two sets of numbers 

is equal to the sum of the variances of the individual sets as long as there is no correlation 

between the two sets[9].  The linear combination can be realized by adding, subtracting 

or XORing the two sets.  Equation 2 illustrates this principle. 

 
Equation 2 Variance of TRNG XOR PRNG 

 
)()()^( yVxVyxV +=  

 

Since a TRNG is independent of any LFSR based PRNG by virtue of its definition, 

Equation 2 shows how the output of a TRNG can be statistically improved by XORing it 

with the output of an LFSR.  Combining the output of the TRNG with the output of a 



LFSR will increase the variance, and hence the randomness of the TRNG.  This process 

is termed whitening and is well known in the practice of cryptology.  Cusick and Stanica 

state “LFSRs can be applied in generating pseudorandom numbers, pseudonoise 

sequences, fast digital counters, whitening sequences, cryptography…”[10]. 

Thamrin, Witjaksono and others describe a RNG whose output is whitened by 

XORing with a LFSR[11].  Figure 2 below is a reproduction of Figure 7 in this paper for 

the purpose of illustrating such a circuit. 

 

 

 

 

 

  
Figure 2 RNG Using LFSR Whitened By LFSR 

 

Marsaglia presented a paper in 1968 proving that LFSRs do contain some frequency 

related correlation in the stream of generated numbers[12].  Therefore a TRNG linearly 

combined with a LFSR would exhibit better statistical properties than either the TRNG or 

the LFSR alone.  Expressed another way, the TRNG could be linearly combined with the 

PRNG and the resulting combination would be more statistically random than either of 

the two input streams. 

 



CHAPTER 3 BACKGROUND 

3.1 Electronic RNG History 

3.1.1 Analog RNGs 

As mentioned before, analog electronic RNGs have been used for some time.  

Early analog RNG designs are based on amplifying electrical noise then converting the 

amplified signal to a digital signal.  The circuitry for converting to a digital signal can be 

as simple as a clocked comparator.  An example of such a TRNG is given in [13].  The 

block diagram from this Analog RNG, Figure 1 in [13], is reproduced in Figure 3 for 

convenient reference. 

 

 

 

 

  
Figure 3 Simple Analog RNG [9]  

 
 

If the frequency characteristics of the Analog RNG are inadequate for the 

application, a whitening filter can be placed either before or after the amplifier.  If 32 bit 

random numbers are required then a 32 bit SIPO (serial in, parallel out) can be used to 

collect the bits into words.  “This is the most popular RNG technique for single-chip or 

board-level solutions where shielding of the noise source is possible”[13]. 

Another publication of a similar analog RNG but having digital post processing is 

given in [14].  The analog noise source for this RNG is not just a resistor; rather it is an 



A/D output compared to the reference voltage.  Note this analog RNG requires whitening 

as shown by this quote “The proposed RNG exploits the direct amplification technique, 

using an accurate offset zeroing system, and, when its output is fed to a XOR-based 

decorrelating algorithm, the FIPS … and correlation randomness tests can be easily 

passed”[14]. This design illustrates an example of whitening RNG output by XORing 

with a PRNG output. 

Each analog RNG starts with an analog noise source and amplifier.  This reliance 

on analog circuitry presents an extra requirement for IC designers – that an analog IC 

designer be a part of the design team.  Two other problems IC designers face with analog 

RNG designs are: “The lack of adequate shielding from power supply and substrate 

signals in an IC environment prohibits the exclusive use of this method for IC-based 

cryptographic systems”[13]. 

An interesting analog RNG design is given by Walsh and Beisterfeldt in [15].  

The block diagram for this RNG is reproduced on the following page.  This design 

utilizes a voltage controlled oscillator (VCO) to generate a waveform with a varying 

frequency.  The control voltage on the VCO is generated by the output of a D/A 

converter.  The input to the D/A converter is generated by a LFSR.  The LFSR is clocked 

by the sample clock and its input bit comes from the VCO output sampled by a D flipflop 

that shares the same sampling clock as the LFSR.  The output of the D flipflop is sent 

through a CRC32 generator to whiten it.  The output of the CRC32 block is multiplexed 

with ground (0 volts) to form the random number output – 32 bits wide.  The multiplexer 

select is generated by a counter so that 0 is output while the random number is being 



formed then the random number is output after it is formed.  Variations on this design 

(fast clock sampled by a much slower clock) have also been published as digital designs. 

 

 

 

 

 

 

 

 

 

 

  
Figure 4 Oscillator Sampling RNG [15] 

3.1.2 Chaos RNGs 

RNGs have been designed using chaos theory.  An excellent pair of papers on 

chaos based RNG design has been presented by Stojanovski and Kocarev[16][17].  In the 

first paper they cover the theory of chaos based RNG design while in the second paper 

they present an example of a chaos based RNG.  The basic theory behind chaos based 

RNGs is that chaotic circuits tend to operate chaotically when observed at a course grain 

level, though they are deterministic in microscopic space and by their defining equations.  

The equation defining a chaos based TRNG appears to be perfectly solvable; however the 

solution requires infinite calculation resolution and infinite granularity in measurement.  

Since a digital number is being produced, neither the infinite calculation resolution nor 



the infinite measurement granularity is available.  Hence the domain must be partitioned 

into the same number of partitions as the number of digital possibilities.  For example, to 

generate a 32 bit random number it would be necessary to partition the domain into 232 

states.  Now the generator output will always be in one of the predefined states (it will 

have one of 232 states which can be conveniently named [0 .. 4,294,967,295].  But since 

each state represents multiple values, the actual function output may have one of many 

values.  Hence the next state, which can be perfectly calculated using the chaotic equation 

and the real value, is not visible in the digital world and will appear to be random.  A 

simple example may clarify: Assume a really simple equation, Xn+1 = 2*Xn, and a 2 bit 

RNG.  Then we would partition the output domain into the following four states: 0 = 

[0..0.4999], 1 = [0.5 .. 0.9999], 2=[1.0 .. 1.4999] and 3=[1.5 .. 1.9999].  Table 1 illustrates 

how the digital output can vary because the actual value varies for this simple equation. 

 Table 1 Chaos RNG Example 

Xn random number Xn+1=2*X next random number 
0.2499  0 0.4998 0 
0.2500 0 0.5000 1  
0.7499 1 1.4998 2 
0.7500 1 1.5000 3  

The second paper by these authors presents a RNG based on a single attractor.  

The structure of this RNG is shown in Figure 4 below.  The structure is simple with only 

29 MOS transistors and 2 resistors required.  However, the presence of the resistors, and 

of course the balancing of the transistors, will require analog IC design methodology.  

This RNG cannot be designed using digital methods only. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 5 Chaos Based RNG [17] 

3.1.3 Digital RNGs 

The first practical digital RNGs were built from LFSRs as covered in Chapter 2.  

LFSRs produce a deterministic sequence that appears to be random but in fact repeats, at 

least within the size of the LFSR.  For example, a 32 bit LFSR will produce at best a 

stream of 32 bit numbers that repeat after (232 - 1) numbers.  The exact sequence is 

controlled by the precise layout of the LFSR; specifically where the taps for feedback are 

located and whether they represent an XOR or an XNOR.  The components of a LFSR 

are (1) one flipflop per bit and (2) the input to the LSBit is an XOR combination of the 



outputs of the LFSR.  Chu and Jones have documented not only the LFSR operation but 

several different architectures in [18]. 

Predating the formalization of LFSR design, Knuth patented a design for a 

random number generator.  The difference between his design and a traditional LFSR 

based PRNG is that whether various stages in the shift register are either complemented 

or not is based on the value being shifted out[19].  Tausworthe[20] and MacLaren and 

Marsaglia[21] were contemporaries of Knuth who published similar designs.  Each of 

these designs exhibited similar probability distributions. 

A variant on a simple LFSR is an LFSR with more bits than are required.  One 

popular choice has been a 128 bit LFSR with only 32 bits of random number used.  It is 

hoped that failure to expose all the bits will keep third parties from predicting the stream 

of numbers.  Nonetheless this design still contains the weakness of a known generating 

circuit and a pattern that can eventually be traced. 

As mentioned before, another popular structure for a digital RNG is a slow clock 

sampling a fast clock.  Some papers refer to this style as oscillator sampling.  Figure 2 in 

[13] shows such a design and is reproduced below in Figure 6. 

 

 

 

  
Figure 6 Oscillator Sampling from Fig2 in [13]  

While this design looks deceptively simple, there is often considerable post processing 

required to whiten the resulting random number stream as it is often impractical to 



completely isolate the sample clock from the faster oscillator.  That is, some common 

frequency remnants must be whitened out.  Some papers refer to this whitening as 

decorrelating the output. 

Another realization of a digital RNG constructed from oscillator sampling is given by 

[3].  This design features a single D flipflop that handles the sampling.  The TRNG 

output is available but is also used to seed a PRNG.  Using a TRNG to seed a PRNG has 

also become popular because the unpredictability of the TRNG is merged with the 

statistically desirable qualities of the PRNG.  FIPS publication 140-2 specifically 

recommends using a TRNG to seed a PRNG as the safest way to construct a RNG [22]. 

  A more complex architecture for an oscillator sampled RNG is given in [23].  Note 

in this design, illustrated in Figure 7, the low frequency clock is the jittery one while the 

high frequency oscillator is being sampled.  Note also the presence of post processing to 

whiten the RNG output. 

 

 

 

 

 
 

 Figure 7 Oscillator Sampled RNG from [23] 

 
3.1.4 RNG’s Similar To This Work 

Several designs similar to the one documented herein have been presented.  

McTaggert and Burson have presented a TRNG based on free running clocks[24].  In this 

RNG, there are two LFSRs, each clocked by a separate and unrelated free running 



oscillator.  One of the oscillators is crystal based.  The other oscillator is not crystal based 

but its architecture is not disclosed.  The LFSRs are of different lengths – one is 39 stages 

and one is 23 stages.  The LSBits of the two LFSRs are XORed together.  The output of 

the XOR is sampled by a flipflop to form the random number.  The clock for the flipflop 

is independent of the two LFSR clocks.  Provisions have been made for seeding the 

random number by preloading parts of the LFSRs.  Figure 8 below shows the circuitry for 

this random number generator.   

 

 

 

 

 

 

 

 

 
 

Figure 8 Multi Clock RNG[24]  

 

A TRNG based on a LFSR clocked by a random clock is presented in [25].  The 

random clock is composed of the XOR of several unrelated ring oscillators.  That signal 

is then sampled by a flipflop and presented as the clock for a maximal length LFSR.  The 

number of inverters in each of the various ring oscillators is required to be prime relative 

to the number of inverters in the other ring oscillators in order to lessen the possibility of 



the oscillators locking into the same frequency or a related harmonic.  The use of at least 

three oscillators is advised in case one oscillator locks to the bus clock.  This concept is 

interesting because all of the randomness comes from the clock waveform as opposed to 

any shuffling, scrambling or whitening of the produced bit stream.  Figure 9 shows a 

typical realization of this type of random number generator. 

 

 

 

  
Figure 9 LFSR with random clock[25] 

Wilbur has patented another RNG implementation involving multiple ring 

oscillators[26],  Note the presence of two ring oscillators generating randomness.  Each 

ring oscillator has an “enhanced” output which is the XOR of several taps from the ring. 

 

 

 

 
Figure 10 Ring Oscillator With Enhanced Output[26]  

Figure 11 illustrates the entire TRNG block diagram as presented in the patent 

disclosure.  The outputs of the ring oscillators drive a delay line.  The delay line provides 



multiple taps into the Combiner-Sampler.  The Combiner-Sampler XORs the taps 

together.  The output of the Combiner-Sampler is XORd with the output of the sample 

flipflop.  The output of the sample flipflop is fed to a second sampling flipflop to produce 

the random output. 

 

 

 

 

 

 

 
Figure 11 TRNG Based On Scrambled Clocks[26] 



CHAPTER 4 DIGITAL TRNG DESIGNS 

4.1. Overview 

The purpose of this research is to develop a digital true random number generator 

that can be synthesized using standard digital design tools.  Developing a digital TRNG 

composed of standard digital components is important because: 

• It alleviates the need for analog circuit design. 

• The RNG can be incorporated with other digital cryptographic components. 

• No external components are required for FPGA implementations. 

A general architecture for digital TRNGs will be developed. 

4.2 Randomness 

4.2.1 Randomness In The Analog Domain 

 Randomness in the analog domain has long been accepted in the form of signal 

noise.  The signal noise is usually present as a small amplitude signal superimposed over 

the intended signal and may often be seen as tiny vertical perturbations in an oscilloscope 

trace of the signal.  The noise is comprised of several aspects including thermal noise, 

noise picked up from a power supply and junction noise.  Often the frequency 

characteristic of signal noise is such that a suitable RNG can be obtained by simply 

subtracting the signal then scaling the noise.  Otherwise one or more frequencies may be 

filtered out of the noise source.  At that point the noise can be sampled and converted to 

digital values as required. 



4.2.2 Randomness In The Digital Domain 

 In the digital domain, every effort is usually made to prevent randomness in 

amplitude.  Each piece of information is represented by a bit which is resolved to a “0” or 

a “1”.  The clock rate for a digital circuit is usually chosen so that all transitions from “0” 

to “1” or from “1” to “0” are allowed to complete between clocks.  Hence digital circuits 

are designed to be immune to amplitude noise.  Many digital clock signals are designed 

to be quite repeatable to enable not only a predictable period for the afore-mentioned 

transitions but also to enable accurate timing.  Often the clock signal is fed back through 

a crystal to restrict the frequency of operation.  Such crystal controlled oscillators can be 

accurate to 20 ppm (parts per million) depending on how exactly the mechanical crystal 

properties are controlled when the crystal is cut.  There is very little noise in such a 

crystal controlled clock source and hence little randomness to recover in either the 

amplitude or the period of oscillation. 

A noisy oscillator may be formed by connecting inverters in series then 

connecting the last output to the first input to form a ring.  Each inverter alters the phase 

of the signal by 180 degrees so in order for the circuit to oscillate, there must be an odd 

number of inverters in the ring.  Such an oscillator is called a ring oscillator and oscillates 

with a period equal to twice the total propagation delay around the ring.  Figure 12 is an 

example of a ring oscillator. 

 
Figure 12 

 

 

 

These ring oscillators require very little chip area at only two transistors per 

CMOS inverter stage and are easy to build with either schematics or HDL.  Ring 



oscillators are also susceptible to substantial perturbations in the oscillation period called 

jitter which can easily be several percent of the nominal oscillator period[27].  This jitter 

makes a ring oscillator a reasonable source of randomness.  A different method will be 

needed to capture this randomness since it is in the clock period rather than in the signal 

amplitude, however.  Where the noise source in an analog TRNG would be visible as 

vertical perturbations on an oscilloscope trace, the noise source in a digital TRNG would 

be visible as horizontal perturbations on an oscilloscope trace. 

4.2.3 Distilling Randomness From Clock Jitter 

 Distilling randomness from an analog noise source is straightforward.  Use a 

sample and hold to freeze the noisy signal long enough to perform a digital conversion to 

the required number of bits.  Distilling randomness from digital clock jitter is more 

complex.  If a straight conversion, analogous to the noise source conversion, is performed 

then the converting circuit would need to resolve to (2N) values where N is the number of 

bits required for the random number.  The resolution would have to occur in one 

(maximum period – minimum period) time and that would require a counter with a count 

interval as shown in equation 3. 

Equation 3 
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Therefore if the change in period is 10 nanoseconds and the random number is 32 bits, 

the counter interval would be 2.3 x 10-18 seconds.  Direct conversion to obtain the random 

number is not possible using current technology.  Hence it will be necessary to gather 

randomness a few bits at a time and build it up into a significant word size. 



4.2.4 Range of Numbers and Paths Through The Range 

 A digital RNG generates numbers which are based on powers of 2.  The number 

of bits in the generated number defines the range of the generated number since each bit 

can have one of two possible values, 0 or 1.  The number of possible values that can be 

represented is 2N where N is the number of bits.  Thus the range of numbers that can be 

generated by a RNG having N bits is [0 .. 2N-1].  A digital RNG is constrained to 

generate a random number within this specified range.  For instance, a four bit RNG can 

only generate numbers from the set [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 

When arithmetic operations result in carries beyond the most significant bit (MSB) 

position these carries are typically ignored.  When a RNG would attempt to generate a 

number outside of the allowed range, a modulo operation is realized to bring the number 

back within range.  For example, if +1 is added to the maximum count for a four bit 

RNG, the resulting number would be beyond the range that can be expressed in four bits.  

So the carry beyond the MSB is ignored and the result of 15 + 1 is 16 MOD 16 or 0. 

A generating function traverses a path through the range of numbers generated.  A 

very trivial example is a counter.  On each cycle “1” is added to the number.  The 

sequence generated is {0, 1, 2, 3, 4, .. (2N-1), 0, 1, 2, …}.  Notice the modulo operation 

returns the generator output back to the allowed range at 0.  The particular example of a 

counter has some interesting properties: 

• Each number in the range of numbers is generated – no numbers are skipped. 

• The frequency of each generated number is the same; that is, a “2” is generated 

just as often as a “3”. 



• The pattern or sequence of numbers generated is always the same.  Expressed 

another way, the counting generator traverses the same path through the range of 

numbers over and over. 

Not all functions share these properties.  For instance doubling, or multiplying by 

two, also traverses a path through the range of numbers.  But unlike counting, doubling 

will not generate every value in the range – only the powers of 2.  Any function used to 

construct a RNG should be capable of generating all numbers in the range. 

There are many functions that can generate all the numbers in the range.  Instead of a 

counter, adding any constant that is relatively prime with the size of the range (the 

modulus) will generate every value in the range.  The proof is straightforward.  Let a be 

the relatively prime constant used to generate the range and m (the size of the range) be 

the modulus.  Then starting at zero and adding a each time followed by a modulo 

operation, the results are shown in Equation 4.  Note there would be a total of m values 

generated – one value generated for each value in the range. 

 
Equation 4 Generating Range Using a Relatively Prime Constant 
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Each calculated number must fall in the inclusive range [0 to (m-1)] by definition of 

the modulus operation.  There are as many calculated numbers as there are values in the 

range.  Each calculated number must be unique as stated by the Modified Cancellation 

Law for Congruences illustrated by Equation 5.  Therefore all values in the range are 

generated by successively adding a constant that is relatively prime with the modulus. 



 

 Equation 5 Modified Cancellation Law 
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Since i = j then every unique value of i ε [0 .. (m-1)] must generate a unique number 

within the range of possible numbers.  A simple example is easily computed for the case 

of a 3 bit range (m = 8) and a relatively prime a = 3 as shown by Equation 6. 

 

Equation 6 Example of Relatively Prime Generation 
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4.2.5 Capturing Randomness Using Divergent Paths 

In order to explore the concept of randomness within a generator it is necessary to 

make an abstraction, separating the generator and the sampler.  If the sampling is not at 

perfectly uniform intervals then it will affect the apparent randomness of the generator.  

Normally it is expected any randomness within the sampler will increase the apparent 

randomness of the generator.  Therefore this paper postulates a random number generator 

producing random numbers and a sampler reading random numbers at fixed intervals. 



If a RNG is constructed from a generating function such as a counter that is clocked 

by a noisy source such as a ring oscillator then some slight amount of randomness may be 

observed in the following way.  Let the generator be a free running counter clocked by a  

ring oscillator at an average rate of 100MHz but with a noise of +/- 1MHz and let the 

sample interval be 1 microsecond (1MHz) as shown in Figure 13. 

 

 

 

 

  
Figure 13 Simple Generator and Sampler 

 

The counter runs at 100MHz on average.  But at any given sample, the generator 

could have run at 99MHz, 100MHz or 101MHz because of the noisy oscillator driving 

the counter.  Now, ignoring terminal count issues, the value of this generator at any 

sample time can be predicted within 3 counts by multiplying the number of sample 

intervals times the average oscillator frequency divided by the sample frequency.  

Although the count can be predicted within 3 counts, it cannot be predicted exactly – 

hence there is some randomness in the value.  For example, on the fifth sample the value 

of this generator could be 499, 500 or 501.  On the seventh sample the value of this 

generator could be 699, 700 or 701.  On the nth sample, the value of this generator would 

be (n x 100) + {-1, 0, 1}.  There is a small amount of uncertainty about the value that is 

due to the noisy oscillator in the generator.  That uncertainty in the generator needs to be 

collected and preserved.  A simple counter cannot preserve it.  In fact no generator that 



has a single path through the range of generated numbers can preserve this uncertainty.  

The value at any point in the future may be found be interpreting the generator once for 

each sample interval and then adding the uncertainty to the final value.  In general, the 

value at the Nth sample from this type of generator is given by Equation 7. 

 Equation 7 Values From a Single Path 
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The uncertainty is not preserved across multiple samples as is shown by Equation 7.  

All of the uncertainty or randomness can be considered independent of how many 

samples were taken.  In order to create a TRNG or True Random Number Generator, a 

way is needed to capture and store the randomness generated at each sample.  Capturing 

and storing the randomness at each sample can be accomplished by altering the path that 

the generator traverses through the range of possible values at each sample.  If the path is 

altered at each sample then the state of the generator, including whatever randomness is 

captured, can be preserved in the output value.  Figure 14 is a visualization of how 

altering the path of the generator at each sample can preserve randomness. 
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Figure 14 Altering Path to Preserve Randomness 
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Notice in Figure 14 if the relative lengths of segments A and B are reversed, as shown 

with segments A` and B`, then the end result is the same – that is, the variations in length 

have no noticeable effect on the final position because there is only a single path.  If the 

path is altered between segments, as shown with segments C and D and the alternate 

segments C` and D`, then the final result is different.  The variations in length of the 

individual segments are preserved by the alternate path.  It is necessary to vary the path at 

each sample in order to preserve the randomness at each sample. 

In order to affect a new path at each period, the generator must employ a second 

function independent of the generation function.  In order to illustrate this requirement, 

consider two cases.  The first case will involve a simple generating function, +1 and at 

every sample a dependent function, +3.  The dependent function is derived from the 

independent function by multiplying the independent function by 3.  See Figure 15 for a 

block diagram of the generator with a dependent function added.  Another more subtle 

change is also required to the generator.  The number read by the sampler must be re-

introduced to the generator as a counter preload.  Randomness is captured by feeding it 

back into the system so the sampled value is loaded into the counter each time it is read. 

 

 

 

 

 

 
 

 Figure 15 Generator With Dependent Function 



This block diagram is represented by Equation 8 below where R0 is the first random 

number, R1 is the second, R2 the third, etc.  T is the number of sample periods, ΔRAVG is 

the average value of the change in random number (the average number of clocks) per 

sample period and U is the uncertainty at each sample.  The equation says each random 

number is the product of the average number of clocks per sample times the number of 

samples plus the uncertainty.  The uncertainty term, U, is outside the summation 

indicating that the uncertainty is not captured at each sample period. 

Equation 8 Uncertainty From a Single Path 
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The second case will involve the same simple generating function, +1, but paired with 

the function x10 as shown in the block diagram in Figure 16.  The function x10 is 

independent of the generating function +1.  Independent here is used in the algebraic 

sense: that is, there is no correlation between {X2 = X1 + 1} and {X2 = X1 x 10}. 

 

 

 

 

 

 

 
 

 Figure 16 Generator with Independend Function 



Equation 9 describes the generator in Figure 16.  UT is the uncertainty at sample T.  

Unlike the generator with a dependent second function, the exact value of U at the sample 

instant is required to compute the next random number. 

Equation 9 Uncertainty From Multiple Path 
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In Equation 9, the uncertainty cannot be factored out of the summation hence the 

randomness is collected from each sample period.  The second function in the second 

case, times 10, is independent of the first function, +1.  The uncertainty cannot be 

factored out because the final value generated depends on what the uncertainty was at the 

sample instant as well as how long it has been since the last sample.  Hence randomness 

is captured from each sample.  Table 2 shows two iterations of output from the generator 

and the result of reversing the order of the oscillator fluctuations.  Once the independent 

second function is added, the random number is different based on the order of the 

oscillator fluctuations.  Hence the randomness has been captured by the generator. 

 Table 2 RN Generated Versus Oscillator Frequency 

Osc Freq Counter RN  Osc Freq Counter RN 
101  101 1010  99 99 990 
99 1109 11090  101 1091 10910 

  

The independent function in the generator alters the path of the generating function 

by moving the generated value to a new point in the range.  Since the uncertainty is 

present at each period, it is the uncertainty that is being preserved by relocating the value 

at each period.  Since the value is relocated, a discontinuity is introduced at each period.  



The path of the generation function is forced to diverge from its normal trajectory 

through the range of generated values.  A simple example will illustrate this process. 

4.2.6 Simple Divergent Path RNG 

Assume a 4 bit random number, implying a range of [0 .. 15], a generating function of 

+7, a secondary function of x 2, an oscillator for the generation circuit running at 10 Hz 

average with +/- 10% noise and a sample frequency of 1 Hz.  At this point it is necessary 

to make a few modifications for the sake of the actual implementation.  First, since there 

are 4 bits holding the value, math will be done Modulo 16 as shown in Equation 10. 

 Equation 10 Modulo 16 

016)115( =+ MOD   

Second, a straight multiply by 2 is problematic for two reasons; (a) it tends to push digits 

beyond the 4 bit limit and (b) it removes randomness from bit0.  Instead the multiply 

function will be replaced by a rotate left function.  This will preserve all the generated 

bits and has no tendency to push bits beyond the 4 bit limit.  With these two concessions 

to the requirements of digital synthesis, the state machine for the example RNG is shown 

in Figure 17. 

 
Figure 17 

 

 

 

 

 

 

 



Assuming the reset value is 0, Table 3 shows the first two iterations of this RNG.     

 

 

Table 3 

Iteration (+7 x {9,10,11}) MOD 16 Rotate Left 

0 0 0 

1 (15, 6, 13) (15, 12, 11) 

2 {(6,12,2),(11,14,1),(2,4,6)} {(12,9,4),(7,13,2),(4,8,12)} 

 

 

 

The middle column is calculated by multiplying +7 times the number of oscillations 

in the sample period (9, 10 or 11) then taking MOD 16 of the resulting number.  See 

Figure 18 for examples of this calculation. 
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The right column is just a Left Shift of the middle column with bit3 rotated into bit0.  See 

Figure 19 for examples of this calculation. 

 

Figure 18 Example Calculations 
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Figure 19 Example Rotate Left Calculations 

 

Note that if there were no uncertainty, only one value of each three-tuple would be 

generated.  Since the oscillator jitter is assumed to be symmetrically distributed about the 

average value, the middle value of each three-tuple would be generated in the absence of 

jitter.  The produced sequence would be [0, 12, 13].  Figure 20 illustrates the divergent 

paths generated by this RNG. 
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Figure 20 

 

 

 

 

 

 

 

 

 

 

 

The paths diverge from each point at the rate of 3 paths per point because the clock 

has an uncertainty of +/- 1 counts per period.  Hence there are three possible values for 

each generated number.  The independent function ROTATE-LEFT preserves the 

randomness from each path. 

4.2.7 Divergent Path Formulae 

As shown in Figure 20, there are three possible paths at each point of divergence.  

After the first iteration there are 3 possible values.  After the second iteration there are 9 

possible values.  Should a third iteration be performed there would be 27 different values 

calculated.  At each iteration the number of possible values becomes multiplied by the 

divergence from each point.  By inspection the total number of possible values after some 

arbitrary number of iterations is given by Equation 11.  



 
Equation 11 Number of Possible Values 

iDN =  
 

 

where N = number of values, D = divergence (number of paths from each point) and i = 

iterations. 

Another observation may be made about this simple generator.  By the third iteration, 

the number of possible values that can be calculated is 33 = 27.  The range of values for a 

4 bit generator is only 24 = 16.  So the number of values that can be calculated exceeds 

the range of the generator.  That is, any generated value must be in the range [0 .. 15], a 

total of 16 possible values.  But the total number of calculations which must be 

performed to guarantee that the actual generated number has been calculated on the third 

iteration away is 27 according to Equation 11.  At this point, calculating the expected 

output of the generator becomes futile as there are more calculations required than simply 

listing the possible values.  Hence by Chaitin’s criterion for randomness, that no simpler 

representation for the set exists other than listing the set, this generator will mimic truly 

random behavior on the third iteration of values [28].  The number of iterations necessary 

to mimic true random number generator behavior can be derived from Equation 11 by 

setting it equal to the range of possible values, 2N,  as shown in Equation 12.  That is, 

after how many iterations does the number of possible values equal the size of the range? 

Equation 12 Iterations When RNG Appears Random 
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where N = number of bits (4) and D = divergence (3) at each point.  The term on the top 

left, 2N, represents the range of values – or for Chaitin’s criterion the size of a list of all 

the possible values.  The term on the right, Di, represents the number of values which 

must be calculated to guarantee prediction of the random number generated with a 

divergence D on the ith iteration.  For the simple RNG example with D = 3and N = 4, this 

equation yields i = 2.5 in agreement with the empirical measurement of 3 (see the plot in 

Figure 20).  Hence for a divergence of 3, prediction of more than two samples into the 

future is futile as the list of calculated values is longer than the list of possible values. 

4.2.8 Differences From Other Architectures 

The Multi-Clock Generator presented by McTaggart and Burson[24] is an example of 

the simplest form of a divergent path RNG.  The two LFSRs, clocked by different clocks, 

represent two functions.  The two functions are independent since they are each maximal 

length and the numbers of bits of the two LFSRs are relatively prime.  The divergence for 

this particular generator would be 2 as there are two independent operations. 

The RNG presented by Oerlemans[25] is quite different from a divergent path RNG.  

Oerlemans has presented a single LFSR clocked by an unpredictable clock so that the 

stream of numbers is not predictable.  But the randomness introduced by the clock 

uncertainty is not preserved – each sample is only as random as the clock frequency 

which is derived from the XOR of the oscillators.  The average and standard deviation of 

the clock frequency of this generator could be calculated by observing enough generated 

numbers.  Then the value at any time could be predicted to fall within a subset of the 

range of numbers.  Hence there is not necessarily any point in the future at which 



prediction of the output value becomes futile.  The RNG presented by Oerlemans is not 

guaranteed to ever meet Chaitin’s criterion for randomness.  A divergent path generator 

will capture the randomness from each sample.  The farther into the future prediction is 

attempted, the more randomness the generator has captured. As shown in Equation 12 

above, there is a point at which prediction of the output from a divergent path generator 

becomes futile.  Hence a divergent path RNG will always meet Chaitin’s criterion for 

randomness at some future sample.  The number of samples at which the RNG becomes 

random by Chaitin’s definition is governed by the number of independent functions 

comprising the RNG.  More independent functions means less samples before the RNG 

achieves randomness. 



CHAPTER 5 DIVERGENT PATH ARCHITECTURES 

5.1 Adder-Shifter Based TRNG Architecture 

In chapter 4 a simple example for a TRNG was presented.  A free-running adder was 

used to generate bits and a shifter was used at sample intervals to capture and preserve 

randomness.  This type of TRNG can be abstracted to a general architecture consisting of 

an adder for bit generation followed by a shifter for randomness preservation.  A TRNG 

that has an adder-shifter architecture will be referred to as an ASTRNG in the remainder 

of this paper.  The ASTRNG illustrated in Figure 21 has two additional features: (1) a 

transposing unit attached after the shifter and (2) the adder is split into two counters. 
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Figure 21 Block Diagram of ASTRNG  

 



The bit generation for this ASTRNG has been configured as a 16 bit up counter and a 

16 bit down counter for two reasons.  First, splitting the counter reduced the time 

required to produce every possible value from 232 clocks to 216 clocks.  Second, it helps 

balance the number of high bits (1’s) with the number of low bits (0’s).  Each counter has 

its own noisy ring oscillator.  Each counter runs all the time.  Each counter has an 

associated latch that is not shown in the block diagram in order to avoid confusion.  All 

four counters are latched when a value is read from the ASTRNG.  The counters continue 

to run and the latched counts are used for creating the value read.  This architecture 

avoids synchronizing the ring oscillators at every read.  Whenever a random number is 

read, the random number is fed back into the counters using the preload function.  

Following the bit generation stage is the shift stage for preserving randomness.  This 

stage is a 32 bit barrel shifter.  The shift count is not fixed; rather a free running 5 bit 

counter is clocked by a third noisy ring oscillator as shown.  Whenever a value is read 

from the ASTRNG, the shift count is latched and the value from the bit generator is 

rotated by that count.  As discussed earlier, bits are rotated left and the leftmost bit (b31) 

is rotated back into the rightmost bit (b0) position. The final stage in this ASTRNG 

transposes the individual bits in the shifted value.  There are four transpositions 

implemented.  A free running 2 bit counter, clocked by a fourth noisy ring oscillator, is 

latched whenever a value is read from the ASTRNG.  The latched 2 bit count determines 

which transposition is applied to the value.  Table 4 illustrates how the bits are 

transformed according to the transpose count.  The four different transpositions 

implemented are: (1) 32 bit, (2) 16 bit, (3) 8 bit and (4) 4 bit. 

 



 
Table 4 Transposer Bit Transpositions Per Count 

output bit count=00 count=01 count=10 count=11 
0 31 15 7 3 
1 30 14 6 2 
2 29 13 5 1 
3 28 12 4 0 
4 27 11 3 7 
5 26 10 2 6 
6 25 9 1 5 
7 24 8 0 4 
8 23 7 15 11 
9 22 6 14 10 
10 21 5 13 9 
11 20 4 12 8 
12 19 3 11 15 
13 18 2 10 14 
14 17 1 9 13 
15 16 0 8 12 
16 15 31 23 19 
17 14 30 22 18 
18 13 29 21 17 
19 12 28 20 16 
20 11 27 19 23 
21 10 26 18 22 
22 9 25 17 21 
23 8 24 16 20 
24 7 23 31 27 
25 6 22 30 26 
26 5 21 29 25 
27 4 20 28 24 
28 3 19 27 31 
29 2 18 26 30 
30 1 17 25 29 
31 0 16 24 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This ASTRNG was constructed using the Mentor Graphics chip design tools.  The 

resulting design was translated to a GDS-II plot file and that file was sent to MOSIS for 

fabrication in AMI05 technology.  Five (5) of the chips were bonded and packaged in the 

typical MOSIS 40 pin ceramic DIP package and returned from MOSIS.  The five chips 



were tested for functional operation and current requirements and the results sent back to 

MOSIS.  Then the five TRNG chips were tested for divergence and shown to be truly 

random.  Finally bit streams were gathered from each of the five TRNG chips and tested 

using the NIST 800-22 tests for randomness. 

5.2 Design of the ASTRNG Chip 

5.2.1 ASTRNG Design Methodology 

The architecture of this TRNG is shown in Figure 21.  The ASTRNG design was 

begun using VHDL.  However, when problems were encountered with the synthesis tool, 

Leonardo Spectrum, the VHDL design was abandoned in favor of a digital schematic 

design based on Mentor Graphics Design Architect, abbreviated DA.  DA comes with a 

generic AMI05 parts library.  The library contains most commonly used gates, latches 

and flipflops.  This library was used in the ASTRNG design to minimize the amount of 

time spent designing individual gates and allow concentration on the ASTRNG layout 

and testing. 

Fortunately switching to schematic design did not decrease the ability to test 

individual blocks as they were completed.  AccuSim was used to verify operation of each 

component as it was designed.  As each block layout was completed, a spice extraction 

was performed and the resultant circuit was simulated using MachTA.  While this 

represents a lot of time spent designing and running tests, such attention to detail at the 

block design level made the final layout much easier to test and gave a high degree of 

confidence the resulting IC would work. 



5.2.2 ASTRNG Development 

This ASTRNG architecture required substantial development effort.  First a more 

detailed block diagram was prepared.  The transistor count in each of these blocks was 

estimated using Leonard Spectrum output statistics with no attempts at optimizing.  Then 

each block was constructed using the following methodology: 

a) Draw a schematic using Design Architect 

b) Simulate the schematic using Accusim 

c) Layout the schematic using IC Station 

d) Verify the layout using LVS (Layout Versus Schematic) 

e) Check the layout using DRC (Design Rules Check) 

f) Perform a parasitic extraction to properly model the fabricated part 

g) Verify correct operation using MachTA on the extraction 

There were a number of blocks to be designed including those shown in the block 

diagram as well as some that were required but not shown in the block diagram.  The 

blocks that were designed as a part of this project are tabulated in Table 5. 

 

 

 

 

 

 

 

 

 

Table 5 Blocks In ASTRNG 

Name Number X Size Y Size 
Input Mux 1 200 1100 
Up Counter 1 796 1080 

Down Counter 1 796 1080 
Logical Shifter 1 1000 2200 

Transposer 1 600 2200 
Ouput Mux 1 160 2000 

Latch16 1 193 1050 
Control Register 1 992 360 
Ring Oscillator 4 500 600 
5 Bit Counter 1 631 360 
2 Bit Counter 1 320 240 
Counter Latch 2 322 970 

 



A down counter bit slice and two versions of an up counter bit slice (one with a 

preload and one without) were designed using AMI05 standard cells.  Sixteen up counter 

bit slices with preload were combined in the up counter while sixteen down counter slices 

were combined in the down counter.  A small amount of logic was added to each counter 

to permit synchronous preload. 

The logical barrel shifter was prepared in a different manner.  Since an instantaneous 

multiple bit shift was required, a block of five multiplexers implemented each bit.  Then a 

five bit count selected which of the multiplexer inputs were selected.  The five bit counter 

was built from five of the non-preload up counter bit slices mentioned above.  The logical 

shifter posed the greatest routing challenge of any module because of the large number of 

interconnects. 

The transposer was designed as a 32 bit wide four to one multiplexer.  As such it 

could be broken down into bit slices of a 4 to 1 multiplexer.  Then thirty-two of the bit 

slices were combined along with some control logic to create the transposer. 

As shown in the block diagram, there were four ring oscillators required for this 

design.  Each ring oscillator had a different number of stages.  Each ring oscillator is 

controllable to some extent so the frequency of oscillation can be altered by switching 

inverter stages in and out of the design.  The fewer the stages, the faster the ring 

oscillates.  More stages cause the ring to oscillate slower.  The rings were designed to 

permit frequency shifting among four different oscillation frequencies.  In order to permit 

changes to the topology during operation, the changes had to be synchronized to the 

operation of the ring.  Digital control of the ring oscillators including frequency shifting 

is covered in more detail in this paper[29]. 



There are two more entities required for this ASTRNG in addition to those in the 

block diagram.  A control register is required to allow stopping, starting and configuring 

the ASTRNG and latches are required for holding data.  The control register is formed 

from D flipflops and has read and write capability.  It contains three bits per ring 

oscillator; one to select between fixed or rotated frequencies and two to select which 

frequency.  The control register also contains a run bit; when set the ASTRNG generates 

numbers and when cleared it does not.  Finally the control register contains an Inhibit 

Feedback bit; when set the current output of the ASTRNG is not preloaded into the 

counters and cleared the current output is preloaded to seed generation of the next 

number. 

Two different types of latches were constructed.  One type of latch, ctlat, was 

designed to latch the output of the up and down counters during random number 

generation.  There are two of these, one for the up counter and one for the down counter.  

The other type of latch, lat16, is just a simple array of latches to latch the most significant 

half of the 32 bit random number for the 16 bit bus implementation. 

With all blocks completed and tested, the entire ASTRNG was simulated using 

MachTA.  Several operations were simulated.  Reset and run was tested to be sure the 

random number generator would come out of reset and produce random numbers with no 

intervention from control logic.  Reading from and writing to control registers was also 

simulated.  Finally several random numbers were simulated. 

A padring was designed from AMI05 pads and the ASTRNG was placed in the 

padring.  The simulation was adapted to run through the padring.  A parasitic extraction 

was performed on the complete chip, ASTRNG plus padring.  Finally MachTA was used 



to verify functionality of the completed chip.  Then the completed chip was converted to 

GDS-II format and transferred electronically to MOSIS for production and packaging. 

When the decision was made to have ASTRNG chips fabricated, it was necessary to 

select a package and design the pinout.  The standard MOSIS AMI05 package is the 40 

pin DIP which limits the design somewhat.  Once the required pins had been listed, there 

were not enough pins to build a 32 bit bus.  Eight pins, 4 inputs and 4 outputs, were 

needed for bringing the ring oscillators out and supplying external oscillators in case the 

internal oscillators were not adequate.  Therefore it was necessary to build a 16 bit bus on 

the IC itself and a latch inside the ASTRNG so that all 32 bits could be read from the 

ASTRNG at once – the lower 16 bits are presented out the bus while the upper 16 bits are 

held in the latch until a second read could be performed to collect them.  The pins and 

their functions are listed in Table 6. 

 

 

 

 

 

 

 

 

 

 

Table 6 Pin Definitions for ASTRNG Chip 

Pin Name Number Function 
RST 6 1 means reset – 0 means run 
IRUN 11 1 means generate after reset – 0 means halt after reset 
CS 8 1 means ASTRNG selected – 0 means not selected 
RnW 7 1 means read – 0 means write 
MSW 10 1 means acess upper 16 bits – 0 means lower 16 bits 
CReg 9 1 means access control register = 0 means access data 
Ack 5 1 means transfer can complete – 0 means hold transfer 
D0 .. D15 14-17,19-22, 

24-27,28-31 
Data lines 

OBO 34 1 means use onboard oscillators – means use external 
INxx 1,2,3,40 external oscillator inputs (4) 
OUTxx 35,36,37,38 external oscillator outputs(4) 
Vdd 12,13,18,23 Power supply voltage 
Gnd 4,32,33,39 ground connection 
 



Figure 22 shows the IC layout for the ASTRNG.  Note this layout required a double 

allocation from MOSIS as the area of the completed layout was larger than would fit in a 

single allocation.  That is why the top and bottom sides of the layout below look (and are) 

much longer than the left and right sides.  Note also that with poor planning, the top row 

has many more connections (13) than the bottom row (7).  For future reference, it is much 

easier to connect the pads to pins if there are equal numbers of pads on each side of the 

layout.  Looking from left to right, the input bus latch is left most.  Next are the counter 

preload latches followed closely by the counters and the counter output latches.  The 

barrel shifter is next and the transposer is the rightmost tall block.  Then along the top are 

the fliflops that make up the control register.  Just under them is a 16 bit output latch.  

Then on the right are the four ring oscillators.  Just below the ring oscillators are the 5 bit 

shift counter and the 2 bit transpose counter. 

 

 

 

 

 

 

 

 

 
 

Figure 22 ASTRNG IC Layout  



5.2.3 ASTRNG IC Fabrication Testing 

Whenever MOSIS fabricates an IC in their education program they request a report 

on the results of the fabrication to help them improve their process.  MOSIS fabricated 

five of the ASTRNG ICs and bonded them into the 40 pin DIP packages.  When the ICs 

were returned to the University, each was tested for functionality by writing the control 

register and reading it back, reading at least two random numbers and measuring the 

power supply current for each chip with reset asserted and while the chip was active.  The 

results of the functionality test and the current measurements are reproduced in Table 7. 

 Table 7 ASTRNG Functional and Current Results 

Chip Functional Test Reset mA Active mA 
1 pass 3.5 42.3 
2 pass 3.4 42.3 
3 pass 3.7 41.9 
4 pass 3.8 41.2 
5 pass 3.7 41.0 

 

 

 

 

The oscillation frequency for each of the four settings of each of the four ring 

oscillators was measured on each ASTRNG chip and is illustrated in Figure 23. 

20 

40 

60 

80 

100 

P
er

io
d

Setting

ASTRNG ICs Oscillator Agreement 

 

 

 

 

 

  
Figure 23 ASTRNG Oscillator Comparison 

 

 



As seen in Figure 23, the agreement in period between oscillators with similar 

settings is very high.  The results for all settings on all oscillators are in Table 8. 

 
Table 8 RNG Oscillator Frequency 

Chip Setting Osc1 Osc2 Osc3 Osc4 
1 00 64.1 56.2 53.2 49.5 
1 01 68.5 64.1 58.8 52.6 
1 10 83.3 70.4 69.4 58.8 
1 11 98.0 86.2 74.6 68.5 
2 00 63.3 55.6 52.1 49.0 
2 01 67.6 64.9 58.8 52.1 
2 10 82.0 69.4 67.6 58.1 
2 11 96.2 86.2 75.8 67.6 
3 00 62.5 55.6 52.1 48.5 
3 01 66.7 63.3 58.8 51.5 
3 10 82.0 69.4 67.6 58.8 
3 11 96.2 84.7 74.6 67.6 
4 00 64.1 54.9 52.1 50.0 

 

 

 

 

 

 

 

4 01 68.5 64.9 58.8 52.1  
4 10 83.3 69.4 68.5 58.1 
4 11 96.2 84.7 73.6 67.6  
5 00 63.2 56.2 52.1 50.0 

 5 01 67.6 64.9 58.1 52.6 
5 10 82.0 70.4 67.6 58.1 

 5 11 96.2 84.7 74.6 68.5 

 

5.2.4 ASTRNG IC Statistical Testing 

The ASTRNG IC was tested statistically using the NIST800-22 test suite.  First the 

raw output of each of the five ASTRNGs was gathered at 20 microsecond intervals.  The 

data was gathered from one IC at a time.  The data was read at a rate of 32 bits every 20 

microseconds or 1.6Mbits/second.  Then the raw output was run through the NIST800-22 

test suite.  Since the data did not pass all of the NIST800-22 tests, it was whitened in 

software by reading the raw TRNG data file, XORing it with the output of a PRNG and 

writing a new data file containing the whitened data.  The PRNG used to whiten the data 



contained a 32 bit LFSR that was clocked exactly 32 times between samples.  Clocking 

the LFSR 32 times does not reduce the maximal length property since 232 and (232 – 1) 

are relatively prime but it does insure that all bits in the LFSR change every sample 

instant.  The LFSR was derived from the Xilinx white paper on maximal length 

LFSRs[7].  The taps for the XOR were at bits 31, 21, 1 and 0 though they are numbered 

32, 22, 2 and 1 in the Xilinx paper.  The results from the raw data and the whitened data 

are presented in chapter 7 section 7.1. 

5.2.5 ASTRNG Realization In FPGA 

The same random number generator was described in VHDL and synthesized in an 

FPGA in order to demonstrate the ease with which the design can be translated to any 

digital platform.  The design was synthesized to a Xilinx Spartan2 FPGA (XC2S100) in 

an Avnet Mini-Spartan2 Development Board.  In order to connect it to the same test bed 

as the RNG ICs, an additional wrapper that duplicated the functionality of the ASTRNG 

IC test board was created.  Then a small PC board with two 40 pin connectors was wire 

wrapped.  This small board translated the pinout from the Spartan2 Mini Development 

Board to the ASTRNG IC test board so that the same software and hardware could be 

used to test the ASTRNG IC and any digital ASTRNG implementation on the Spartan2 

Mini Development Board.  As with the IC version, the output from the FPGA version 

was whitened using the software PRNG previously described.  Test results for the 

ASTRNG in FPGA are discussed in chapter 7, section 7.2.  Similar results were achieved 

between the ASTRNG IC and the ASTRNG FPGA, meeting the requirement that the 

design be realizable on any digital platform.   



5.3 Concatenated LFSR Based Architectures 

As mentioned earlier, the purpose of the transposer in the ASTRNG was just to 

scramble the order of bits.  Since a LFSR acts like a counter with a pseudo random count 

it was decided to construct a digital TRNG from concatenated LFSRs instead of from the 

adder-shifter architecture.  For these CLTRNGs, the divergent path would come from 

preloading the LFSR with different values depending on the relative rates of the 

oscillators.  The CLTRNG designs were easy to build using the Xilinx development 

board.  Each one was described in VHDL, synthesized for the Xilinx Spartan2 

development board and tested using the same test setup as the ASTRNGs.  Each of the 

LFSRs used in CLTRNGs was based on the Xilinx application note previously cited. 

A LFSR is just a bit trickier to work with than a straight counter.  The reason is that 

for either the XOR or the XNOR implementation there is a lockup value.  Care must be 

exercised to keep from preloading the LFSR with the lockup value.  For these 

implementations, instead of risking lockup, each LFSR was preloaded with its own 

output bits.  In order to implement a divergent path, the bits are scrambled before 

preloading. 

5.3.1 CLTRNG Realization With 9, 13 and 16 Bit LFSRs 

Figure 24 is a block diagram for a CLTRNG.  This Concatenated LFSR TRNG was 

built from three LFSRs; one 16 bit LFSR, one 13 bit LFSR and one 9 bit LFSR.  

Combined there would be 38 bits (16 + 13 + 9) so the upper two bits of each LFSR are 

not concatenated to form the random number.  Instead the upper two bits of each LFSR 

are tied to the ring oscillators in the other two LFSRs to force frequency rotation in the 

ring oscillators.  The oscillators are all cross coupled: that is, each LFSR has two 



frequency control outputs.  Each ring oscillator has two frequency control inputs.  Each 

LFSR’s frequency control outputs are tied to the other two LFSRs’ frequency control 

inputs – one output to each of the other two inputs.  This design was described in VHDL. 

 

 

 

 

 

 

 

 

 

 
 

 Figure 24 CLTRNG Bock Diagram 

 

A 32 bit whitening PRNG constructed from a 32 bit LFSR was included in the design.  

The PRNG contains a 32 bit LFSR and a state machine that clocks the LFSR exactly 32 

times between samples – updating all bits in the PRNG every sample.  The control 

register was adapted so that either the 32 bit CLTRNG or the 32 bit PRNG or the 32 bit 

XOR of the CLTRNG and PRNG could be selected for output.  The output of the PRNG 

was of interest to insure proper operation.  Tests were made with the CLTRNG only 

enabled, with the PRNG only enabled and with the whitened CLTRNG.  Test results are 

given in chapter 7, section 7.3. 



5.3.2 LFSR Realization With 11, 11 and 10 Bit LFSR Contributions 

 

 

 

 

 

 

 

 

 

  
Figure 25 CLTRNG With 11, 11 and 10 Bit Contributions 

 

This CLTRNG was also built from three LFSRs; one 27 bit LFSR, one 13 bit LFSR 

and one 12 bit LFSR.  Figure 25 is a block diagram of this CLTRNG.  The previous 

design was altered somewhat to explore whether a different LFSR would make a 

significant difference in the statistical scoring of the RNG.  From the previous RNG, the 

9 bit LFSR was expanded to a 10 bit LFSR.  The 13 bit LFSR was not altered and the 16 

bit LFSR was expanded to a 27 bit LFSR.  For all LFSRs, maximal length circuits as 

specified by the Xilinx application note were implemented.  The 32 bit whitening PRNG 

from the previous design was retained.  The oscillator cross coupling from the previous 

design was also retained.  The design was synthesized for the Spartan2 development 

board.  Data was gathered with and without whitening and statistical tests were run on the 

data.  Chapter 7 section 7.4 documents test results from this CLTRNG.  The PRNG data 

is the same as that documented in section 7.3 so it is not repeated. 



5.3.3 CLTRNG Realization With 7, 9, 11 and 13 Bit LFSR Contributions 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 26 CLTRNG With 4 LFSR 

This CLTRNG realization was built from four concatenated LFSRs instead of three to 

explore whether increasing the number of LFSRs made a significant difference in the 

statistical scoring of the RNG.  Since there are now four oscillators instead of three, there 

are 33% (4/3) more paths from any one point.  Hence it is expected that the divergence 

would be higher for this CLTRNG than for the three LFSR version of the CLTRNG.  A 

block diagram for this CLTRNG is shown in Figure 26.  In this case a total of 40 bits are 

produced, 32 of which are the random number.  The other 8 bits are used to control the 4 

ring oscillators.  The oscillators are cross coupled as before; that is, no frequency control 

output is tied to the oscillator which drives its generating LFSR.  Both non-whitened and 



whitened data were gathered as before.  Statistical tests were run on this data.  The results 

are documented in chapter 7 section 7.5.  Once again the PRNG results are not reported 

for this generator as they are identical to those documented in chapter 7, section 7.3. 

5.3.4 Using a TRNG to Whiten a PRNG 

One of the more interesting possibilities to come out of this work is the ability to 

whiten an LFSR based PRNG.  The LFSR based PRNG is simple to build in hardware 

and software as documented earlier.  But there is a frequency component present in 

maximal length LFSRs due to the repetition of certain bit patterns as the LFSR proceeds 

through the range of output values.  This frequency component can be whitened by 

XORing the PRNG output with a divergent path TRNG built of LFSRs clocked by ring 

oscillators – in other words a CLTRNG.  Experimental data supporting this conclusion 

are presented in chapter 7 section 7.6. 



CHAPTER 6 TEST EQUIPMENT 
 

6.1 TRNG Test Equipment 

In order to test the random number generators, a hardware and software platform was 

put together. The test equipment hardware is based on a microprocessor development 

board.  It contained a Motorola 68306 processor running at 16MHz, 2 Mbytes of 

FlashPROM, 2 Mbytes of static ram, a RS232 port and a 16 bit bus.  Figure 27 shows a 

block diagram of the hardware used to test RNGs.   
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Figure 27 RNG IC Test Equipment 

 

Crosscode C for the 68000 was used to compile and assemble the sotware for the test 

equipment.  Time critical routines were written in assembly language while other 

software was written in C.  The software provided a simple monitor, with peek and poke 

capability, interrupt driven communications and a custom command set for testing 

various aspects of the RNG.  Table 9 lists the software modules and their contents. 

 



 
Table 9 Testboard Software Files and Contents 

 
File Contents 
start.s powerup reset and speed dependent routines  
duart.s interrupt driver for duart 
zos.c basic operating system (malloc free printf scanc etc.)  
fips.c routines to implement FIPS140-1 & 140-2 tests 
trng.c custom routines for testing RNGs  

Figure 28 shows a photograph of the test equipment.  The larger board on the left is 

the MC68306 microprocessor board.  The MC68306 is in the top left corner.  Below it 

are two flash proms.  This board was designed to run in as an EISA peripheral but the 

EISA portion is unused.  The large connector on the left is for power.  The empty socket 

where the ribbon connector is attached was originally for a coprocessor so all address and 

data lines were available.  The 40 pin ribbon connector attaches to one of several 

interface boards as detailed later in this chapter. 

 

 

 

 

 

 

 

 

 

  
Figure 28 RNG IC Test Equipment  



6.2 RNG Test Equipment Built In Tests 

The tests that are built into the test equipment follow a certain format.  Each is 

represented by a command which is of the form DoXyz where Xyz represent the name or 

an abbreviation of the function or functions to be performed.  The tests were originated in 

response to FIPS140-1 and so several numbers are specified as follows.  A buffer is 

defined to be 625 each of 32 bit words or 2500 bytes.  The built in tests have access to 

100 of these buffers meaning a total of 62,500 each of 32 bit random numbers (or 

250,000 bytes) may be generated at once and buffered for testing. The FIPS140 

specification calls out failure rates in terms of so many per 10,000.  So the normal 

amount of data gathered for transfer to the PC host is 10,000 buffers of 625 each of 32 bit 

words (25,000,000 bytes).  The built in test routines are enumerated in the following 

paragraphs. 

The DoAlgo test is a routine that checks to insure the FIPS140-1 and/or 140-2 

algorithms are performing correctly.  First a buffer full of pseudo random data is 

generated from either a LFSR or the rand() function built into the C compiler.  Pseudo 

random data is used in order to verify FIPS algorithm – as pseudo random data should 

pass these tests.  FIPS specifies a buffer to be 625 each of 32 bit words; that is, 2500 

bytes.  Then the data is evaluated based on either FIPS140-1 or 140-2 standards.  The 

operator specifies on the command line whether to generate with the LFSR or the rand() 

function and whether to use FIPS140-1 or 140-2 testing. 

The next routine, DoDump, merely dumps one or more of the 100 buffers to the 

screen.  Again, the operator specifies which buffer to dump on the command line. 



The third routine, DoFIPS, runs the FIPS test for statistical randomness on the data 

buffer or buffers specified.  The operator chooses which buffer(s) are to be evaluated and 

whether 140-1 or 140-2 specifications will be applied to the data.  At the conclusion of 

the test, the number of buffers which fail one or more aspects of the test are output by test 

category. 

The fourth routine, DoCLat, writes a value into the control latch on the test board.  

The control latch, as the name suggests, latches the control signals for the RNG IC.  The 

three signals latched are tabulated in Table 10. 

 Table 10 Bits in Control Latch 

Bit Meaning  
0 1=RUN; 0=RESET 
1 1=RUN after RESET;0=HALT after RESET  
2 1=Use Built-In Oscillators;0=Use Offboard Oscillators 

 

The fifth routine, DoRand, reads a random number from either the normal RNG IC 

interface board or the special interface board that permitted all five RNG ICs to be read at 

one time.  The user specifies which board to read on the command line.  The random 

number which is read is shown on the screen. 

The sixth routine, DoOsc, writes the control latch bit that selects whether to use 

onboard oscillators (built into the RNG IC) or external oscillators in the random number 

generating circuit. 

The seventh routine, DoCReg, reads and writes the control register onboard the RNG 

IC.  Bits in the control register control whether the RNG is generating or stopped and 

control the oscillation of each of the four onboard ring oscillators.  For each oscillator, a 



bit controls whether the oscillator runs at a fixed frequency or rotates the frequency while 

the other two bits specify which frequency if a fixed frequency is selected. 

The eighth routine, DoLoad, loads one or more buffers with random numbers.  The 

options which can be specified on the command line are whether to read numbers from 

the single RNG IC interface board or from the five RNG IC interface board and which  of 

the 100 buffers should be filled.  The time between each random number read is 

controlled by the global variable nBetween which defaults to 20 microseconds.  Another 

command exists to change the sample period. 

The ninth routine, DoPeri, allows the user to set the sample period between random 

number generations.  The new value for the global variable nBetween is the command 

parameter. 

The tenth routine, DoCont, continuously loads buffers full of random numbers and 

tests them for statistical randomness.  The command parameters accepted for this routine 

control whether the RNG IC is attached via a single IC interface board or the multi IC 

interface board, whether to use FIPS140-1 or 140-2 specifications and whether or not to 

whiten the data by XORing it with a 32 bit LFSR output before testing.  The sample 

period is set by the global variable nBetween.  This routine will fill all buffers with data 

then test all buffers, repeating until it is stopped by the user entering a key.  When it is 

finished, a final tally of the results of each phase of the FIPS test will be displayed. 

The eleventh routine, DoReset, will reset the RNG IC if the parameter is 0.  It will 

permit the RNG IC to run if the parameter is 1.  If the user does not type a parameter then 

it will show the value of the current reset bit. 



The twelfth routine, DoGath, gathers numbers from the random number generator 

then dumps them to the screen continuously.  This is the mechanism used to gather 

random numbers for processing on the PC.  The user can specify on the command line 

whether to gather the numbers from a multi or single RNG IC board and how many 625 

word buffers to gather (minimum of 1, maximum of 20,000).  This routine alternately 

calls Load and Dump to load the buffers then dump them to the screen. 

The thirteenth routine, DoRR, resets the RNG then reads random numbers from it.  

This routine evolved to prove the divergent nature of this series of TRNGs.  It resets the 

RNG then waits a precise amount of time.  Then the routine loops reading a RNG and 

waiting a precise amount of time until the user presses a key.  If the routine is reading 

from the Multi board then it reads four consecutive sets of random numbers and displays 

them.  All signals including reset and read are presented to each of the five boards at 

exactly the same time.  The data from each of the five boards is read into a buffer at 

exactly the same time.  Then thedata from each buffer is read into the test routine in 

sequence.  This test gives a very accurate picture of the divergent nature of these RNGs.  

If the routine is reading random numbers from a single RNG IC, then it reads 20 

numbers, resets the board, reads 20 numbers, resets the board and continues until it has 

repeated this procedure eight times.  It then displays the eight columns of numbers side 

by side and resumes operation.  This routine also places a start beside any columns that 

have data duplicated with another column. 

The fourteenth and fifteenth routines, DoTC and DoPound, were used to test the 

counters associated with a RNG and to to continually write a location.  These two 

routines have no relevance to random number testing. 



6.3 RNG Test Interface PCBs 

Two printed circuit boards were designed to interface the RNG ICs to the test 

equipment.  One interface PCB was designed to test a single RNG IC exhaustively.  The 

second interface PCB was designed to operate all five RNG ICs in parallel.  Both boards 

were designed using OrCad Schematic Capture to generated the schematic and OrCad 

Layout Plus to lay out the printed circuit boards.  In order to reduce cross talk and power 

supply noise, both boards were fabricated as four layer boards.  Each board has a top and 

bottom signal plane and a power plane and a ground plane on the inner layers.  Once the 

layout was complete, the board stack was sent to Sierra Proto Express for board 

fabrication.  Two of each board was ordered; one spare and one to populate.  The boards 

were fabricated and populated.  The RNG ICs were placed in sockets for easy installation 

and removal.  One small modification from the original schematic was necessary on the 

single RNG IC interface.  No modifications were necessary on the multi-board. 

6.3.1 Single RNG IC Interface PCB 

The single RNG IC interface board has the ability to measure power supply current 

by having a jumper on the +5V supply line.  If the shorting block is removed and a 

current meter is plugged into the jumper then the current from the +5V supply can be 

read.  The single RNG IC interface board has all four of the onboard oscillator outputs 

attached to headers so that an oscilloscope or other measuring device can be attached to 

each oscillator output.  There are also headers so that four external oscillators can be tied 

to the RNG IC in case the onboard oscillators are not functional.  The final diagnostic 

tool on the single RNG IC interface board is a circuit to capture any accesses that are not 

properly terminated.  Figure 29 is a picture of the single RNG IC interface. 



 

 

 

 

 

 

 

 

 

  
Figure 29 Single RNG IC Interface  

 

6.3.2 Multiple RNG IC Interface PCB 

The multiple RNG IC interface board (multi-board) holds 5 each of RNG ICs.  The 

multi-board can only perform limited operations on the RNG ICs.  It can reset them all 

simultaneously and it can read them all simultaneously.  It cannot write the control 

register nor can it operate the RNG ICs in any manner other than free running out of 

reset.  The multi-board has special circuitry so that the reset, chip select and most 

significant word lines are presented to all 5 RNG ICs at the same time.  This arrangement 

causes all 5 RNG ICs to generate random numbers at the same time.  The multi-board 

also has latches for each RNG IC output so that the random number generated by each 

RNG IC is latched at the same time.  This board was designed to test whether or not the 

RNG ICs would produce different numbers even with identical power supplies reset 

timing and control signals.  Figure 30 is a picture of the multi-board. 



 

 

 

 

 

 

 

 

 

 

  
Figure 30 RNG Multi-Board 

6.3.3 Avnet Development Board for Xilinx Spartan2 FPGA 

The single RNG IC interface and the multi-board were designed to attach to the 

MC68306 bus as explained earlier.  In order to provide a programmable digital hardware 

solution, a development board containing a Spartan2 FPGA was attached to the test 

equipment using the same bus port as the single and multi-board.  The Spartan2 FPGA 

has plenty of I/O lines and the development board has them brought out to a 40 pin 

header.  All that remained was to construct a simple wire-wrap board with two 40 pin 

connectors: one connector plugged into the test equipment and the other connector 

plugged into the Xilinx board.  This arrangement allowed RNG designs to be built and 

tested more rapidly as well as providing proof that this family of RNGs could be 

implemented in any digital platform with analog components.  Figure 31 is a photograph 

of the Spartan2 development board and wire-wrapped interface. 



 

 

 

 

 

 

 

 

 

 

  
Figure 31 Xilinx Spartan2 Interface 

 
 

 

 

 

 

 



CHAPTER 7 TEST RESULTS 
 

7.1 RNG IC Test Results 

The RNG ICs were tested in several ways.  First, as detailed before, each IC was 

tested for functionality and for current drain and the results were sent to MOSIS.  This 

testing is designed to help MOSIS improve its ability to support education by fabricating 

ICs for universities.  Second, the RNG ICs were tested to see if they would really produce 

divergent streams of random numbers using the DoRR (do reset and read) test as 

described in chapter 6.  Third, the RNG ICs were each subjected to statistical testing of 

the resulting stream of random numbers using the NIST800-22 test suite. 

7.1.1 Reset and Read Test Results for RNG ICs 

All five RNG IC chips were reset simultaneously, released from reset simultaneously 

and read simultaneously at 20 microsecond intervals.  A total of 4 sets of 5 readings (one 

from each RNG IC) are taken.  After the readings are taken, the board is reset and another 

4 sets of 5 readings are taken at 20 microsecond intervals.  This cycle continues until the 

operator presses a key to stop the test.  Looking at the data reproduced on the next page, 

each column represents one of the five RNG ICs.  Each row represents one reading taken 

from each of the five RNG ICs simultaneously.  There are two important comparisons 

made by this test.  First, each of the five RNG ICs should generate a different stream of 

numbers.  That is, each column should be different.  Second, each group of four numbers 

within a column should be different.  The number of readings before the data started to 

diverge is an important indicator of the randomness of the RNGs.  If there is no 

randomness associated with the RNG design then it is expected that each RNG would 



output the same sequence of numbers.  However, not only did each RNG IC output a 

different sequence of numbers than the other four, but each RNG never repeated the same 

sequence of numbers.  Figure 29 shows the Reset and Read test for the RNG ICs. 

  Reset and read MULTI at 20 usec  20 [any key to quit] 
 
E240A6BB F67501C4 BEAE68AB 5025C7DB 0AD8898E 
DABB4A77 4C16ABE9 95C4B2A0 B5D747A7 16325610 
0394D052 9EE06414 A78B7534 8C63E9B9 89077F72 
F458F753 3C963B83 51F9495B D55EB858 901E3A32 
[any key to quit] 
 
D5804D67 8812E3ED F81088ED DABE218A 1B5B4130 
A718ECD2 2E7F583B E14DE4D8 9F813B27 624A8D6C 
23C895E0 9C557345 78ECE6E7 964682C6 755D34E7 
4F1CAA2F F24E9F5A CEB5E4B4 5F35AE8A 862E4257 
[any key to quit] 
 
EDA810B2 5BC72510 87804C65 5025D7DB A6BEBA40 
366D964D 6D1324F6 85C10031 5E9F8A18 AACD7C55 
26ACFAB8 0BADD6C5 F89A8EAF 14F2A9B9 E5AEA400 
50088C88 E593A84A 8F5A0B9E BAC9AD2A EBF1AA36 
[any key to quit] 
 
2B018ADE C75B1025 87804C67 5025C75B 1B5B4130 
484469DA 720B20CC 179000C6 14B03D3D 46D8A42A 
7FDB2C01 DC4987BA 49179C1A E4CA094F 6C301765 
6AE5BB1E 9D5E581B 4947C4A2 C1BF03FB 574819B6 
[any key to quit] 
 
C64A20B6 ABB6284B F81088AD D67501D4 C4765B0C 
BE9BC8AF 59B43287 A9AD9A4D 3070F265 9D4DACD8 
A48F8D97 8B254C6C 80899067 B1314A1A 611996F5 
80EE49AD 4D867E84 CF01E247 C4117AEB FB0F1052 
[any key to quit] 
 
ADA810BB 75F6CC09 3C046A2B DA3E218A 0314BDB1 
0DD6A15F 393BDBC4 EE547F53 9FD52195 F66D817F 
212105B9 6DE801FD EB929AB8 4F6D8B6A B560E8EB 
169B946B BE942421 70948B4C 809D5181 AED5476D 
[any key to quit] 
 
175201B5 6BEAB402 F81088AD DABE218A 623B2306 
4A90F065 366C593F 953B54DA 7C8C59BB 1A4DDFD9 
CA7EA44A 5C919543 94AE6C77 774B7A6C 0DD3A8FB 
B8925A8B FE89FD08 38C38D0E 49D81155 5B2D5000 
[any key to quit] 
TRNG> 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 32 Reset and Read at 20 uSec Intervals Multi RNG IC 



There are no duplicate columns as expected, so each RNG IC is producing a different 

stream of random numbers.  There are three cases where a RNG IC produced the same 

number after reset on two occasions.  These duplicates are annunciated by the green, red 

and blue circles.  However, in no case is a second number duplicated, indicating a high 

divergence of each RNG IC when sampled at 20 microsecond intervals as expected. 

7.1.2 NIST800-22 Results for RNG ICs 

The output random number streams of each of the five RNG ICs were also subjected 

to the NIST800-22 statistical tests.  A total of 200,000,000 bits (100 sets of 2,000,000 

bits) were gathered from each RNG IC at the rate of 20 microseconds per 32 bit random 

number.  The data was input to the NIST800-22 test suite.  The results of testing the raw 

data from the RNG ICs are tabulated in Table 10.  A star to the right of any test result 

indicates the data failed that particular test for statistical randomness. 

 
Table 10 Raw data NIST800-22 Results 

 Raw data taken and processed by NIST800-22  
test Chip 1  Chip 2  Chip 3  Chip 4  Chip 5 

Frequency 0.990 0.990 0.960 0.990 0.980  
Block Frequency 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
Cumulative Sums 0.990 0.975 0.955 * 0.990 0.980  Runs 0.940 * 0.930 * 0.910 * 0.940 * 0.950 *
Longest Run 1.000 0.950 * 0.940 * 0.930 * 0.980 

 Rank 0.980 1.000 0.990 1.000 1.000 
FFT 1.000 1.000 1.000 0.990 1.000 

 Nonperiodic Templates 0.963 0.961 0.962 0.958 * 0.962 
Overlapping Templates   0.970 0.990 0.970 0.990 0.970 
Universal                 0.890 * 0.870 * 0.950 * 0.980 0.920 * 
Approximate Entropy 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
Random Excursions        0.988 0.990 0.998 0.984 0.991  Random Excur Variant 0.996 0.992 0.993 0.986 0.983 
Serial                    0.540 * 0.545 * 0.490 * 0.535 * 0.540 *

 Lempel-Ziv                1.000 1.000 1.000 1.000 1.000 
Linear Complexity         0.960 0.980 0.990 1.000 0.990 

 



By inspection, the raw data output from each RNG IC passed more tests than it failed.  

For each RNG IC, the raw data failed from 5 to 7 of the 16 statistical tests, however.  In 

particular, the raw data from all RNG ICs failed the Block Frequency test, the Runs test, 

the Approximate Entropy test and the Serial test.  Consistently failing these tests indicates 

that some bit pattern (or patterns) is produced more often than the average and some bit 

pattern is produced less often than the average.  The data is still not predictable because 

the Lempel Ziv compression algorithm is unable to compress the data at all. 

7.1.3 Whitened NIST800-22 Results for RNG ICs 

The output random number streams of each of the five RNG ICs were whitened and 

the whitened data was subjected to the NIST800-22 statistical tests.  Two different 

methods of whitening were used.  The first method was simply to XOR the output from 

the RNG ICs with a 32 bit maximal length LFSR as defined by the Xilinx Application 

Note[7].  The test results from running the NIST800-22 tests over the XOR whitened data 

is tabulated in Table 11.  Whitened data from every chip passes the NIST800-22 tests. 

 Table 11 XOR Whitened Data NIST800-22 Results 

Data whitened by XOR and processed by NIST800-22 
test Chip 1  Chip 2  Chip 3  Chip 4  Chip 5 

Frequency 1.000 1.000 0.980 1.000 0.990  Block Frequency 0.980 1.000 0.990 0.990 0.990 
Cumulative Sums 1.000 1.000 0.985 0.995 0.990 

 Runs 1.000 0.990 0.990 0.990 0.990 
Longest Run 1.000 0.980 0.990 0.990 0.990 

 Rank 0.980 0.990 0.990 1.000 0.990 
FFT 0.970 0.980 0.970 1.000 1.000 
Nonperiodic Templates 0.990 0.990 0.991 0.989 0.990  
Overlapping Templates   1.000 0.990 1.000 0.980 1.000 
Universal                 1.000 0.960 1.000 0.990 0.990  Approximate Entropy 0.990 0.990 0.990 1.000 0.990 
Random Excursions        0.991 0.984 0.995 0.979 0.988 

 Random Excur Variant 0.991 0.987 0.995 0.979 0.995 
Serial                    0.985 0.995 0.985 0.980 0.995 

 Lempel-Ziv                1.000 1.000 1.000 1.000 1.000 
Linear Complexity         1.000 0.990 1.000 1.000 1.000 



One other variation of whitening was done as an experiment.  Instead of simply 

XORing each 32 bit number produced by the RNG with the 32 bit output of the LFSR, 

half of the bits were XORd and half were XNORd in an attempt to help balance the 

number of 1’s and 0’s produced.  Table 12 has the results of the XOR/XNOR whitening.  

As can be seen by inspection of Tables 11 and 12, there is no statistical difference 

apparent between a straight XOR and a split XOR/XNOR.  Any form of whitening seems 

adequate to clean up the discrepancies and even up the distribution across the range. 

 Table 12 Whitened by XOR/XNOR Results 

Whitened by XOR,XNOR and processed by NIST800-22 test Chip 1  Chip 2  Chip 3  Chip 4  Chip 5 
Frequency 1.000 1.000 0.980 1.000 0.990 

 Block Frequency 0.980 1.000 0.990 0.990 0.990 
Cumulative Sums 1.000 1.000 0.985 0.995 0.990 

 Runs 1.000 0.990 0.990 0.990 0.990 
Longest Run 1.000 0.990 0.980 0.980 0.970 
Rank 0.990 1.000 1.000 0.990 1.000  
FFT 0.970 0.980 0.970 1.000 1.000 
Nonperiodic Templates 0.990 0.990 0.991 0.989 0.990  Overlapping Templates   0.990 0.980 0.980 1.000 0.990 
Universal                 1.000 0.960 1.000 0.990 0.990 

 Approximate Entropy 0.990 0.990 0.990 1.000 0.990 
Random Excursions        0.991 0.984 0.995 0.979 0.988 

 Random Excur Variant 0.991 0.987 0.995 0.979 0.995 
Serial                    0.985 0.995 0.985 0.980 0.995 
Lempel-Ziv                1.000 1.000 1.000 1.000 1.000  
Linear Complexity         1.000 0.990 1.000 1.000 0.980 

 

7.2 FPGA RNG Test Results 

The RNG IC architecture was reproduced in a Spartan II FPGA in order to show how 

readily the design could be moved from one digital design suite to another.  The design 

was coded in VHDL and realized using Xilinx xst.  Data was gathered from this RNG 

configuration and processed using the NIST800-22 suite.  Then the data was whitened as 

it was with the RNG ICs and tested again. 



7.2.1 NIST800-22 Test Results for FPGA ASTRNG 

Two sets of data were gathered from the FPGA ASTRNG at 20 microsecond intervals 

in the same method as data from the ASTRNG ICs was gathered.  The NIST800-22 suite 

was run over each set of data as before.  The results are in Table 13.  A quick comparison 

shows excellent experimental agreement between the ASTRNG ICs and the ASTRNG as 

realized in the FPGA.  Both implementations have similar results for the NIST800-22 

tests on the raw data.  In both cases the raw data shows problems with the Block 

Frequency, Longest Runs, Universal, Approximate Entropy and Serial tests.   There is a 

little difference; the ASTRNG ICs have a problem with Runs test also while the FPGA 

has a problem with the Overlapping Templates test.  Both the ASTRNG IC data and the 

FPGA realization data was whitened using a 32 bit LFSR clocked 32 times per sample – 

so that each bit in the LFSR would be generated anew for each data point.  Both the 

ASTRNG IC and the ASTRNG FPGA realization passed all NIST800-22 tests after 

whitening. 

 Table 13 FPGA Based ASTRNG Raw and Whitened NIST Results 

 Raw data        NIST800-22        Whitened
 test Data 1  Data 2  Wht 1  Wht 2  
 Frequency 0.970 0.990 0.990 1.000 
 Block Frequency 0.390 * 0.780 * 0.990 0.980 
 Cumulative Sums 0.965 0.970 0.990 1.000 

Runs 1.000 0.980 1.000 0.960  
Longest Run 0.650 * 0.780 * 0.980 1.000  
Rank 1.000 0.990 1.000 1.000  
FFT 1.000 0.990 0.990 1.000  Nonperiodic Templates 0.971 0.979 0.989 0.990 

 Overlapping Templates   0.720 * 0.770 * 0.990 0.980 
 Universal                 0.010 * 0.340 * 0.990 0.990 
 Approximate Entropy 0.000 * 0.010 * 1.000 0.990 
 Random Excursions        0.990 0.994 0.993 0.993 
 Random Excur Variant 0.997 0.997 0.993 0.997 

Serial                    0.760 * 0.905 * 0.990 0.995  
Lempel-Ziv                1.000 1.000 1.000 1.000  
Linear Complexity         0.980 0.990 1.000 1.000  

 



7.3 Three LFSR Based FPGA CLTRNG Test Results 

Instead of up and down counters, a barrel shifter and a transpose unit, a TRNG was 

constructed by concatenating the output of three different LFSRs to form a 32 bit random 

number.  The LFSRs were each of different size and hence would produce different 

output sequences.  Divergence comes as the ring oscillator for each of the LFSRs 

experiences noise.  The PRNG that was used to whiten both the IC ATRNG and the 

FPGA ASTRNG was included in each of the CLTRNG realizations.  As with the 

ASTRNG ICs, reset and read tests to insure the CLTRNG was diverging properly and 

NIST800-22 statistical tests to insure the CLTRNG generated the appropriate distribution 

were run on the data collected from the CLTRNGs. 

7.3.1 Reset and Read Test Results for 3-LFSR CLTRNG 

Since there was only one FPGA and therefore only one CLTRNG, the reset and read 

test was run a little differently.  The CLTRNG was reset then a set of 20 readings was 

taken at 10 microsecond intervals.  This process was repeated 8 times.  Then the eight 

sets of readings were shown one each in eight columns.  Each column had 20 readings 

taken consecutively.  An asterisk is placed at the end of each row that has at least one 

duplicate entry.  Starting at the beginning, count down each line that has at least one 

duplicate entry.  The number of lines that have at least one duplicate is a reciprocal 

indicator of how fast the CLTRNG is diverging.  As with the multi-chip reset and read, 

two aspects were important.  First, the data does diverge after only a few samples.  This 

illustrates that the CLTRNG is not repeatable even given circumstances where reset and 

sample timing is tightly controlled by a microprocessor and the tests are run within 

milliseconds of each other, precluding the possibility of significant temperature change.  



Second, the data does not converge again after it diverges.  The lack of convergence 

illustrates that the streams are truly divergent and not just a noise impulse. 

 

 

 

 

 

 

 

 

 

 

 

[any key to quit] 
F5507AB6 F5507AB6 F5507AB6 F5507AB6   F5507AB6 F5507AB6 F5507AB6 F5507AB6 * 
FDA91E70 19470E71 19451E73 19451E73   19451E71 19472E70 19451E73 19451E73 * 
7B26EEB3 69CD16F3 7A9161B3 A38C01C1   4C185522 54820C33 61D561B3 27F2954B 
7BA1D0E0 CBE7572B 2F48246B 013106E0   7DBA38BA 6A18FBD9 E9C64905 16B79C4F 
294A4A21 838EDF2B 94DFC210 ECF4A40C   8968A203 5BD55F10 BF56A659 1CB786C8 
57684183 5474507F 6A4E9A70 04A00B38   9A64E6E9 C829A9C1 9D5C68F7 8697AD4C 
9E926C2A F66FF995 41CEF6BF CA2A73CF   627A12A1 36B7E3BA 62CA849D 089A3C56 
BB06F184 8A626AE8 2AB4D8F8 E1E81256   8C6E7383 6AE8C712 0B1F225D D339B475 
AC9ED3A0 37407EE1 9DCAD36D B09308C4   8580ECBC 2C445E05 30BF3EA5 3CDFCAB5 
0EE596B0 5B157CD6 EEFE8618 3978F7BC   F25C0699 81A125A8 9DFF01EF E09012F3 
A75341CB 876032B3 9D790948 27F11493   73C374FE E046F59D 3FFC6A41 F808ED74 
43AAF0CA 0F3DD157 50950740 34B0E9AA   29D9BBA2 7032912A EB0226F4 FE2EB7EA 
558E527E 33C91846 6C48CEC0 DF55A5FD   B9330857 AC4A0950 90469BCA 3C97890D 
0A091FFF C04AA121 3843F8CD 35899381   3C2E3200 BB1DE42B B5682889 39318BDA 
FB0FA372 88E64E9D E6E5E9E9 9FEDF04C   64094361 E477E65B 20119DA8 F3BA548A 
ACF5A901 BD088D5A 3CDCABD9 F8CAFE28   987468CA FDD56E6F 6429FF7A 47E72A54 
A3A68B53 D697AAE0 470839D4 ADECEA91   2EA8E979 D128C07B CB2B003A 1EDB7680 
AA1BDD5A ABF10449 05744276 18EDB692   0690AC6E F27B1CB8 70D7F92E D33F5DC5 
063B9307 A0EDDC57 3F49E816 FA371F59   B69FF9B0 81482A82 69223362 67631CE7 
4264385D B63ED630 7E825DD1 21962B82   1C166574 7211A019 BFF3FE66 33BC6D28 

 
Figure 33 Reset and Read at 10 uSec Intervals for 3-LFSR RNG 

 

7.3.2 NIST800-22 Test Results for 3-LFSR CLTRNG 

Two sets of data were taken with the original 3-LFSR CLTRNG architecture.  One 

set of data was taken using only the TRNG while the other set was taken using the TRNG 

whitened by the PRNG.  Both of these data sets were taken by reading a random number 

from the CLTRNG every 40 microseconds.  The NIST800-22 statistical tests were run on 

the data and the results are tabulated in Table 14.  As can be seen by examining the NIST 

test results, the CLTRNG passes all but one of the NIST tests without whitening.  With 

whitening it easily passes all NIST tests. 

 

 



 

Table 14 NIST Results for 3-LFSR CLTRNG 40 uSec Interval  
 Raw data   Whitened

 test Data 1  Wht 1  
Frequency 0.950 * 0.990 

 Block Frequency 1.000 0.990 
Cumulative Sums 0.960 1.000 
Runs 0.980 0.990  
Longest Run 1.000 1.000 
Rank 0.980 0.990  FFT 0.990 0.980 
Nonperiodic Templates 0.988 0.991 

 Overlapping Templates   0.990 0.970 
Universal                 1.000 0.990 

 Approximate Entropy 0.980 0.970 
Random Excursions        0.990 0.993 
Random Excur Variant 0.982 0.989  
Serial                    0.990 0.990 
Lempel-Ziv                1.000 1.000  Linear Complexity        0.990 0.980 

7.4 Another Three LFSR Based FPGA CLTRNG Test Results 

The 3-LFSR CLTRNG architecture was changed to different LFSR’s.  Instead of 16, 

13 and 9 bit LFSRs with the most significant 2 bits ignored, the LFSRs used were 27, 13 

and 12 bits long with 11, 11 and 10 bits respectively concatenated to form the 32 bit 

random number. 

7.4.1 Reset and Run Test Results for Second 3-LFSR CLTRNG 

A reset and read test was run on the second 3 LFSR CLTRNG design.  As with the 

first 3 LFSR CLTRNG, the data were read in 32 bit random numbers at an interval of 40 

microseconds.  The results are shown in Figure 34.  Note this configuration does not 

diverge as fast as the previous CLTRNG. 



  [any key to quit] 
8A54BB81 8A54BB81 92B11503 8A54BB81   8A54BB81 92B11503 8A54BB81 8A54BB81 * 
02E14EEC 02E14EEC 1DB7D31E 02E14EEC   02E14EEC 1DB7D31E 02E14EEC 02E14EEC * 
D3492028 D3492028 03BED68E D3492028   D3492028 03BED68E D3492028 D3492028 * 
4B41B334 4B41B334 1B1C9057 4B41B334   4B41B334 1B096457 F781DF24 4B41B334 * 
EC4574F2 EC4574F2 F763E132 EC4574F2   EC4574F2 F7757132 24A9F585 EC4574F2 * 
81047CAE 81047CAE 3F1120D0 81047CAE   81047CAE 3F0E5CD0 1954C8B2 81047CAE * 
D4B56D9B D4B56D9B E40B413F D4B56C0E   D4B56D9B E419BD3F 0CA5FA32 D4B56C0E * 
FF54D278 FF54D278 6778BE9A E994D282   FF54D278 6778129A 1BA92E2C FF54D282 * 
EC11082B EC11082B 67EFF73B 47710BA6   EC11082B 67FA0B3B 54D37ECA A7510BA6 * 
3A72A11A 30C432F3 29B2A705 2FB2A158   BA72A11A 29B11B6A 2CA05F9B 1912A158 
27ACF398 6CBA04D4 282F85DD 4E6CF200   CF2CF398 283F2DD9 85ACB92C A96CF03B 
1857FF54 141446DF 04C7E6CE 6297FFB0   48B7FF54 04D83980 FF67523B EA77FFDB 
E46814E2 FB32405B 250D98F3 75E814DA   950814E2 5F7345D3 E3945B48 C1E8170B 
1F461724 7438960A 20FD07F6 A6A617FE   2B5D8724 DEF06B46 BF7C3222 29A61412 
5ACA5718 512F820D 7B92B59D 205F9902   5F8B2318 78CE48FC 01198F7F 74BF9943 
A16244D2 D487B2A2 CB8C1AA7 7DEBB442   047FD4D2 263CB3C8 48EEF578 530BB688 
B3203579 8146092A 749AB3F7 F0EC5EA4   82FBD979 5D2CE7E5 3C346DBE B6CC5F15 
D9772276 A04641EE AD9FFF64 CA281FE1   2DA13276 8C495682 68B3A38B 46D1970D 
7F5BB458 EC6DB116 6A5C9AD9 CB58D30E   705FBC58 2B4B3A70 0288CEB2 DC216245 
031FDD30 CF3D648C ED192F6D 9C616BC2   FF3C2D30 3CC7976A E20E18BC A7D82CD9 

 

 

 

 

 

 

 

 
 

 Figure 34 Reset and Run Test 2nd 3-LFSR CLTRNG at 40 uSec Interval 

 

7.4.2 NIST800-22 Test Results for Second 3-LFSR CLTRNG 

Two sets of data were taken from this second 3-LFSR CLTRNG.  One set was taken 

with the PRNG disabled and is just the TRNG output.  The second set of data was taken 

with both the TRNG and the PRNG enabled.  The results are in Table 15. 

 Table 15 NIST Results for Second 3-LFSR CLTRNG 

 Raw data   Whitened
 test Data 1  Wht 1  

Frequency 1.000 0.990 
 Block Frequency 0.970 0.990 

Cumulative Sums 0.995 0.990 
Runs 1.000 1.000  
Longest Run 0.970 0.990 
Rank 1.000 1.000  FFT 0.990 0.990 
Nonperiodic Templates 0.989 0.988 

 Overlapping Templates   0.980 0.990 
Universal                 1.000 0.990 

 Approximate Entropy 0.980 1.000 
Random Excursions        0.988 0.990 
Random Excur Variant 0.996 0.994  
Serial                    0.975 0.990 
Lempel-Ziv                1.000 1.000  Linear Complexity        1.000 0.980 



 
 

7.4 Four LFSR Based FPGA CLTRNG Test Results 

The 4-LFSR CLTRNG architecture was designed using 13, 11, 9 and 7 bit LFSRs.  

32 of the 40 bits are concatenated to form the RNG.  The four oscillators for the LFSRs 

are cross-coupled as described in Table 16. 

 Table 8 4 Bit LFSR OScillator Cross-coupling 

ring oscillator coupled to  
lfsr7 lfsr9 & lfsr11 
lfsr9 Lfsr11 & lfsr13  
lfsr11 lfsr13 & lfsr7 
lfsr13 lfsr7 & lfsr9  

One interesting aspect of a CLTRNG made from 4 LFSRs as opposed to 3 LFSRs is 

the relative rate of divergence of the two CLTRNGs.  Since the CLTRNG with 4 LFSRs 

has 4 points of divergence whereas the CLTRNG with 3 LFSR has only 3 points of 

divergence, it seems logical that the 4 LFSR CLTRNG would show a faster divergence.  

The classic Reset and Read test only takes 8 sets of data.  In order to make a more 

meaningful measure of divergence, the Reset and Read test was changed to run 

continuously and store how many rows of the 8 sets of readings have duplicates per set of 

8 readings.  When the test is stopped, 20 counts are printed out.  Each count represents 

the number of rows of readings with duplicates.  For example, if the first count, count[0], 

had a value of 10 then that would mean 10 groups of 8 sets of data have no (zero) rows 

with duplicates.  If the second count, count[1], had a value of 100 then that would mean 

100 groups of 8 sets of data had only 1 row with duplicate readings on it.  In short, the 20 

counts taken together represent a histogram of duplicate readings.  The histogram can be 

used to measure divergence.  A large, steep bell indicates a high rate of divergence as few 



duplicate readings are produced.  A short, gently sloping bell indicates low divergence as 

there are many duplicate readings.  For example, consider the following two sets of 

counts.  The set labeled A was taken at 40 microsecond intervals.  The set labeled B was 

taken at 100 microsecond intervals.  Since there is more opportunity for noise to affect 

the slower readings, it is expected that set B would show a higher divergence.  The graph 

of the data as percentages bears this out in Figure 35. 

 

 

 

 

 

 

 

 

  
Figure 35 Reset and Read Histograms for CLTRNG 

7.4.1 Reset and Read Test Results for 4-LFSR CLTRNG 

The reset and read tests for the 4-LFSR CLTRNGs show an improved divergence as 

expected.  Since there are 4 ring oscillators instead of 3, each ring oscillator can have 

multiple next values and the divergence has been shown to be exponentially related to the 

number of possible next values, it is expected that the divergence of the 4-LFSR 

CLTRNG will be higher than the divergence of the 3-LFSR CLTRNG.  The Reset and 

Read data for both the 3-LFSR and the 4-LFSR CLTRNG are tabulated and charted in 

Figure 36.  Both sets of data were taken at 40 microsecond intervals. 



 

 

 

 

 

 

 

 

 
 

 Figure 36 3-LFSR and 4-LFSR Divergence 

7.4.2 NIST800-22 Test Results for 4-LFSR CLTRNG 

Two pairs of two sets of data were taken with the 4-LFSR CLTRNG architecture.  

Each pair consists of one set of data from the TRNG only and one set of whitened data.  

Test results for the 4 LFSR CLTRNG are tabulated in Table 17. 

 
 Table 9  4-LFSR CLTRNG Nist800-22 Results 

  Raw data Whitened data 
test Data 1   Data 2  Wht 1  Wht 2 

Frequency 0.590 * 0.480 * 0.990 0.970  
Block Frequency  0.960 0.980 0.990 0.990 
Cumulative Sums 0.605 * 0.485 * 0.990 0.965 

 Runs 0.690 * 0.630 * 0.980 1.000 
 Longest Run 
 

0.960 0.930 * 0.980 1.000 
Rank 

 
0.990 0.990 1.000 1.000 

FFT 
 

0.990 0.990 0.980 0.990 
Nonperiodic Templates 0.981 0.983 0.991 0.991 
Overlapping Templates   0.770 * 0.740 * 0.980 1.000  
Universal                 0.970 0.970 1.000 0.980  
Approximate Entropy  0.950 * 1.000 0.960 0.990 
Random Excursions        0.986 0.983 0.984 0.998 

 Random Excur Variant 
 

0.995 0.998 0.984 0.988 
Serial                    0.995 0.990 0.995 0.990 

 Lempel-Ziv                1.000 1.000 1.000 1.000 
 Linear Complexity         0.990 1.000 0.960 0.990 



7.5 Using a TRNG to Whiten a PRNG 

As mentioned earlier, an interesting result from this work is the discovery of a way to 

whiten the output from a LFSR based PRNG.  The 3-LFSR CLTRNG architecture 

includes a PRNG and provisions were made for reading (1) the TRNG, (2) the PRNG or 

(3) the XOR of the TRNG and PRNG.  As is shown by the data in Figure 37, PRNG 

output fails the Rank test in the NIST800 test suite.  But after XORing with the TRNG, 

the combined stream passes the Rank test. 

 

 

 

 

 

 

 

  
Figure 37 LFSR Data Whitened By TRNG 

 
 

 

 



CHAPTER 8 CONCLUSION 
 

8.1 Summary of Work 

A methodology for the digital design of digital true random number generators has 

been presented.  Digital schematics and the Mentor Graphics digital ASIC design 

software was used to design and fabricate digital true random number generators.  VHDL 

and Xilinx FPGA design software was used to reproduce the original true random 

number generator.  Data measurements from both the ASTRNG ICs and the FPGA 

ASTRNG realizations were taken and showed very similar results, proving the design 

was portable across digital platforms.  One other architecture for the divergent path 

random number generator was realized by replacing the counters, shifter and transposer 

with concatenated LFSRs.  Three realizations of this CLTRNG architecture were 

constructed and tested.  The two CLTRNG realizations composed of three LFSRs 

generated a stream of random numbers that scored significantly higher on the NIST800-

22 tests.  The CLTRNG realization composed of four LFSRs showed a higher divergence 

as expected but it also showed an unexpectedly poorer statistical composition. 

 

8.2 Lessons Learned 

One important lesson learned was that each experiment in the sequence of any 

research has value.  In particular, each time the Reset and Read test was modified the 

previous experiments should have been repeated to include data from the older 

experiments for comparison with data from the newer ones. 



Another important lesson learned was that of keeping accurate records.  In some cases 

where years passed between gathering the data and writing up the experiment it was 

difficult to reproduce the thinking behind each experiment.  In the future more accurate 

records will be kept.  A statement of purpose for the experiment, the method, the data and 

the results will be written up for each experiment to help clarify thinking, eliminate errors 

and guide future work.  The experimental writeup will be completed as soon as 

reasonably possible during and after the experiment. 

Another important lesson learned was the power of technology to increase the pace of 

experimentation.  This research contained large amounts of data – each NIST800-22 run 

required 25,000,000 bytes of data.  Work was started on a 700MHz P3 machine with 

512M of 133 MHz SDRam.  Crunching one set of NIST800-22 statistical tests took about 

5 hours.  Later work was done on 2GHz P4 machines with 1G of 400MHz DDRam.  The 

same NIST800-22 statistical tests ran in 20 minutes on these machines. 

8.3 Future Work 

As stated earlier, the original TRNG architecture was an attempt to jumble bits 

randomly.  Counters were used to generate bits then the resulting bits were shifted and 

transposed.  NIST800-22 tests brought out a critical weakness of this design – it has 

detectable frequency components.  This weakness was somewhat overcome by switching 

from counters/shifter/transposer to concatenated LFSRs for the generating circuit.  After 

having time to consider more carefully, it was not necessary to use counters.  Instead, 

since any prime, or indeed any number that is relatively prime with respect to the range 

of numbers, would generate every possible combination, a generator could be constructed 

from an adder that would iteratively add the prime in the place of a counter that could 



only add “1”.  Then if a prime were chosen that was roughly half the length of the range, 

it would serve to toggle many bits on every iteration which would alleviate the need for 

the down counter and the need for bit balancing (trying to make the number of 1’s and 

0’s equal over the long term).  Whereas the CLTRNG formed by concatenation of three 

LFSRs only alters 3 bits per generation period (one in each LFSR), a generator built from 

a prime-adder circuit (ASTRNG) could easily alter half of the bits in the number at each 

iteration.  Hence the ASTRNG should be able to be sampled considerably faster than the 

CLTRNG.  An interesting research project would be to use the FPGA to derive the best 

possible CLTRNG and ASTRNG and then to layout both designs and have ICs 

constructed and tested. 
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