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In radiation therapy, it is imperative to deliver high doses of radiation to the tumor 

while reducing radiation to the healthy tissue.  Respiratory motion is the most significant 

source of errors during treatment.  Therefore, it is essential to accurately model respiratory 

motion for precise and effective radiation delivery.  Many approaches exist to account for 

respiratory motion, such as controlled breath hold and respiratory gating, and they have 

been relatively successful.  They still present many drawbacks.  Thus, research has been 

expanded to tumor tracking.  This paper presents a spatio-temporal model for four 

dimensional CT reconstruction.  The method begins with a set of initial CT projections and 

a simultaneously acquired breathing trace.  Two methods are explored to model the spatial 

components: principal component analysis and a pseudoinverse matrix method.  An 

iterative approach is used to match the simulated projections to the actual projections.  The 



 

simulated projections and the initial projections are evaluated using Normalized Root 

Mean Square Error (NRMSE).  The proposed method shows simulated projections and 

actual projections match, and as such the model is able to accurately predict the 

deformation. 
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CHAPTER 1 
INTRODUCTION 

 
 
 
 

Radiation therapy procedures, by tradition, have used imaging technology for initial 

treatment planning.  The technology has predominantly been used to generate scans of the 

patient's anatomy to identify the tumor size and location preceding the treatment [1,2].  

Currently, imaging technology such as computed tomography (CT) has been used before, 

during, and after radiation therapy for treatment planning, guidance, and verification [3-5].  

Because radiation therapy requires the acquisition of multiple CT scans, it is 

important to consider reducing the ionizing radiation a patient receives.  Properly radiating 

a tumor inhibits the tumor’s ability to reproduce; however, normal tissue is also radiated 

along with the tumor [6].  The normal tissue is then damaged, because it also loses its 

ability to reproduce.  Therefore, it is important to accurately predict the location and 

geometry of the tumor [1].  Image-guided radiation therapy (IGRT) is a prominent method 

used to increase accuracy in dose-targeting.  IGRT uses numerous and repetitive imaging to 

improve the localization of the target tissue by tracking the changes of the target during the 

radiation delivery [4,7].   

A critical tool in the acquisition of data for IGRT is time-dependent computed 

tomography (ordinarily denoted as 4DCT).  4DCT is able to image the movement of the 

anatomy [8].  It is principally used to account for respiratory motion.  As such, 4DCT 
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requires a large amount of data to reconstruct a time sequence of CTs from scratch [2].  

Numerous methods have been implemented to construct a 4DCT model of the moving 

anatomy.  Some methods include modeling respiratory motion with cosine models, or using 

multiple breathing periods and averaging them to create one model period.  In actuality, 

respiratory motion is more complex, and studies show breathing changes during treatment 

[2].  

This thesis presents a method to create a more realistic and versatile spatio-

temporal model of the moving anatomy for use in 4D cone beam CT reconstruction.   It is 

hypothesized that a set of CT scans has ample information to characterize the tumor 

motion in a 4D motion model where the motion is continuous for the period of inspection.   

The method begins with the assumption that an initial 3D source CT scan is available.   A 4D 

deformation model is applied to the source CT to simulate the organ motion.  The 

reconstruction process for the 4DCT is as follows: 

 Acquire a CT scan as the patient breathes freely; 

 Determine basis vectors and a breathing trace that correspond to the CT scan; 

 Apply the 4D deformation model on the initial CT scan to create subsequent 

simulated projections that change with the organ motion; 

 Compare the initial and simulated projection images and use an iterative algorithm 

to adjust the deformation model until the initial and simulated projection images 

have a minimum normalized root mean square error. 
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The proposed method is tested on two data sets using artificial anatomy and 

projections, artificial motion, and a real breathing trace.  The robustness of the 4D 

reconstruction model is determined by testing the two data sets under ideal and imperfect 

conditions. 

The completed research project is in the area of image-guided adaptive radiation 

therapy (IGART). The long term goal of IGART research is to enable safe delivery of 

aggressive radiation treatment by optimal use of imaging technologies coupled with an 

adaptive delivery system. This requires accurate delineation of the tumor both before and 

during treatment. In order to obtain precise information regarding the location and shape 

of the area that needs to be irradiated, a four-dimensional model of the tumor’s motion is 

sought. This model will be used to predict the tumor’s location and shape. Our project 

evaluates the accuracy and robustness of such a model. The completed work assumes a 

descriptive, rather than predictive, model, and as such provides a better understanding of 

the tumor’s motion. This will allow future research to refine the 4-D motion model to a true 

predictive model. 
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CHAPTER 2 
BACKGROUND 

 
 
 
 

In this chapter, we briefly discuss some fundamental topics to understand the 

evolution of four-dimensional computed tomography.  In particular, we address the 

following subjects: computed tomography, radiation therapy, image-guided radiation 

therapy, and four-dimensional computed tomography. 

COMPUTED TOMOGRAPHY 

Computed tomography (CT), also known as digital radiography, is an imaging 

technique that produces a three-dimensional representation of the anatomy through a 

number of radiologic images from different viewpoints [10].  Over the past decade, CT 

theory, techniques, and applications have grown tremendously [11].  Therefore, it has 

substituted many other radiographic exams as the method of choice [6,12].   

The computed tomography process begins by taking numerous radiologic x-ray 

images.  Fan-shaped or cone-shaped x-ray beams pass through the patient's body at several 

angles, and images are taken 360° around the body, along a single axis of rotation [10,12].  

The array of detectors and the x-ray tube, separated by 180°, rotate smoothly around the 

patient, as seen in Figure 1.  The detector and the tube exhibit no linear motion [10].  This 

allows for cross-sectional imaging of the anatomy as well as the continuous acquisition of 
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the data.  The attenuated x-ray transmissions are gathered by an array of several hundred 

detectors [10,12].  The x-rays that enter the detector array are collimated.  This avoids any 

unnecessary photon scatter as well as keeps radiation exposure and image noise to a 

minimum.  The data acquired by the detectors is digitized into two-dimensional (2D) 

picture elements (pixels) which are then converted to volumetric elements (voxels), 

essentially three-dimensional (3D) picture elements [12].   

 

Figure 1: Fan beam CT.  The x-ray tube and detector array are 
180° apart, with both rotating 360° around the patient.  [10] 

As stated, CT uses x-rays to create images; consequently, areas of image brightness 

and darkness depend on the density and presence of atoms with different atomic numbers 

[10,12].  Tissues within the human body have different physical densities, and the higher 

the density, the brighter the structure appears on the CT scan [12].  Bone has particularly 

high density because it is rich in calcium.  It will appear white.  The lungs, on the other 

hand, are filled with air and contain very low density, so they appear black.  Soft tissues, 
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such as muscles and organs, and blood appear as various shades of gray.  The differences in 

density allow for the x-ray to be attenuated in distinguishing degrees, thus causing varying 

degrees of brightness on the CT image.  This is commonly referred to as contrast resolution 

[12].  The gray-scale information digitized into the pixels is reconstructed by using a 

reconstruction algorithm such as filtered back projection.  The gray-scale values within the 

pixels are defined using Hounsfield Values (otherwise known as CT numbers).  The 

numbers represent the brightness of each pixel (Figure 2). 

 

Figure 2:  Representation of pixel values, where 0 is the brightest 
and 7 is the darkest.  [10] 

CT is advantageous for it allows for the acquisition of volumetric data that outputs 

high quality images [11].  Benefits include the capability to process and obtain thin cross-

sectional images with superior spatial resolution and spatial integrity than other imaging 

modalities, such as ultrasound, magnetic resonance imaging (MRI), and nuclear medicine 

[6,12].  Other advantages include depicting bony structure with very good accuracy, as well 
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as providing relative electron density information.  Electron density information becomes 

useful in calculations for dose distribution [2].  CT also displays precise information of the 

human anatomy by avoiding the overlay of three-dimensional information onto a single 

two-dimensional image [12], thus allowing for the use of methods such as tumor 

localization and treatment in radiation therapy [12]. 

Disadvantages of CT imaging include the radiation dose received by the patient.  A 

health risk is associated with ionizing radiation.  McCollough, et al. states that the radiation 

dose of one CT scan, 1-14mSv (milli-Sieverts), is equivalent to the annual dose of 

background radiation (1-10mSv), as with radon and cosmic radiation.  Further statistics 

show that 0.4 percent of all cancers in the United States are caused from CT radiation [6]. 

RADIATION THERAPY 

Radiation therapy is the preferred method of eradicating tumors located in the 

thorax and abdomen.  The radiation is deposited as energy into the patient's body.  When 

human body cells acquire too much energy at one time, they are damaged.  They lose their 

ability to reproduce.  Because a tumor is an abnormal growth of cells within the human 

body, it is necessary to inhibit their reproductive ability.  Nevertheless, an unfortunate side 

effect of radiation is that normal cells in the path of the radiation are also affected.  Other 

uncertainties in radiation therapy planning and treatment include distinguishing the 

tissues to be radiated and delivering the radiation dose once the tissue is identified [1,2,3].  

For this reason, there is a need to locate and differentiate between normal cells and cancer 

cells during radiation therapy treatment [2,5,7,13,14]. 
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A typical radiation therapy regime consists of five phases: (1) simulation or patient 

staging, (2) treatment planning, (3) set-up verification, (4) beam delivery, and (5) response 

assessment or patient follow-up [2,14].  All stages of radiation therapy are heavily 

dependent on imaging technology.   

During the simulation or patient staging phase, the patient is positioned as for 

treatment delivery with the aid of optical lasers and is immobilized [5,14].  An initial CT 

scan is conducted to obtain structural information on the patient's anatomy [14].  The 

information is contained in a three-dimensional data set.  The information collected in this 

data set is used to guide any radiation therapy treatment as well as to position the patient 

during multiple treatment sessions [5].  During this time, a physical examination of the 

patient may be conducted as well.  The information obtained from the exam may include 

the location of physical markers on the body.  This may be used for positioning the patient 

or for externally observing respiratory motion during treatment [14].  Once the CT data set 

is obtained and the physical examination is conducted, the images and information are 

transferred to the radiation treatment planning phase.  Computed tomography is the most 

used imaging modality in radiation therapy, because of its wide availability, reasonable 

cost, and ability to extract density information necessary for dose calculation [2,14].   

In the radiation therapy treatment planning phase, tumor extension and the organs 

at risk are determined and assessed [5].  The target volume to treat is also defined.  The 

treatment parameters and the target volume are defined with the information taken from 

the previous stage.  The plan for treatment is calculated with the parameters and is 

transferred to the next phase, the set-up verification phase.  The set-up verification phase 
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occurs each time the patient is administered radiation.  The patient is positioned in the 

exact manner as in the patient staging and simulation phase.  The staging is aided with 

optic lasers and any physical skin markers.  Several imaging modalities are used for 

positioning the patient; some include ultrasound imaging devices, room mounted kV x-

rays, multi-slice CT scanners, and kV or MV cone beam CT scanners [7,13,14].  There is no 

single device that is appropriate for all situations; therefore, the devices are used on a case-

by-case basis. 

The radiation delivery is carried out by the treatment device (such as the 

CyberKNife) according to the parameters of the treatment plan.  The tumor is assessed in 

real time, and treatment is delivered to follow the motion of the tumor.  There are temporal 

changes in the anatomy during treatment, which occur for many reasons.  The most 

prevalent reason for temporal changes in the thorax and abdomen is breathing.  Image-

guided radiation therapy (IGRT) is used to improve detection of motion, and as a result 

improve the dose distributions in radiation therapy [1,2,3,4,14]. 

IGRT is also used for inter-fraction deformation such as rectal and bladder motions 

[2,14].  It works very well for those cases [14].  In the case of intra-fraction motion, a 

greater degree of sophistication is required.  Cardiac activity and bowel peristalsis are 

intra-fraction motions that cause changes in tumor motion, but both cases have minor 

contributions to anatomy motion compared to breathing.  The larger temporal changes in 

anatomy exhibited during radiation therapy is the cause that led to the development of 

four-dimensional (4D) CT. 
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The final stage of radiation therapy is the assessment stage.  The tumor is assessed 

after the treatment, and a verdict is made for future radiation therapy.  A treatment is 

determined successful if the tumor size is smaller than the initial size.  Imaging modalities 

similar to those  used in the set-up verification stage are used to determine the size of the 

tumor. 

IMAGE-GUIDED RADIATION THERAPY 

Image-guided radiation therapy (IGRT) is an in-room image guiding technology 

which uses instant knowledge of the tumor and changes treatment according to tumor 

motion and displacement [3].  The purpose of image guided radiation therapy is to reduce 

the treatment volume with respect to the target volume, and ensure coverage of the target 

volume without affecting the healthy tissue.  Any failure to detect and predict the tumor 

location restricts the accuracy of the radiation delivered to the cancerous tissue [15]. 

Computed tomography is the imaging modality that is most widely used for IGRT.  In 

some cases magnetic resonance imaging (MRI) and positron emission tomography (PET) 

have been used.  Computed tomography has many advantages that set it apart from MRI 

and PET for IGRT.  CT gives a very fast scan, depicts spatial information very accurately, 

supplies electron density information to aid in dose distribution as well as cortical bone 

information  [12,14].  The major drawback of CT is it requires radiation to create images of 

the anatomy [6,10,11].  MRI does not have this problem; it is a radiation free procedure.  It, 

like CT, is minimally invasive with excellent spatial resolution [10].  Nevertheless, it lacks 

crucial elements necessary for IGRT.  IGRT depends on information of the electron density 
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of the tissue, and MRI is not able to obtain this information.  Unlike MRI, PET is able to 

provide both anatomical and functional information about the patient, but has low spatial 

resolution [10].  Other limiting factors with PET are the long data acquisition time and the 

need for intravenous injection of radiopharmaceuticals [10,14]. 

Image-guided radiation therapy began with an interest in CT.  Current image-guided 

radiation therapy techniques, such as conformal radiation therapy (CRT) treatment and 

intensity modulated radiation therapy, use CT imaging.  3DCRT is a method where a 3DCT 

image of the anatomy is taken, and visualized using computer software.  Mathematical 

algorithms are used to calculate a conformed or focused target area for radiation.  Another 

technique commonly used in image-guided radiation therapy is intensity modulated 

radiation therapy (IMRT).  IMRT, like 3DCRT, uses a 3D image and delivers a high dose of 

radiation fit tightly around the target volume, with greater dosage to the center and 

diminished dosage to the outer boundaries of the tumor volume [2,5].  While these 

technologies provide a means for delivering radiation within the target volume dimensions 

and sparing healthy tissue, they do so only when the patient is completely immobile [2].  In 

reality, intra- and inter- organ motions are a significant part of tumor movement [3,14].   

FOUR-DIMENSIONAL COMPUTED TOMOGRAPHY 

Organ motion in the upper abdomen can move up to 4cm during the breathing cycle.  

Consequently, 3DCRT and IMRT cannot be fully utilized until temporal motion is accounted 

for during therapy planning and radiation.  Time-dependent imaging is necessary to 

account for the tumor motion due to breathing [8]. 
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Respiration-induced motion is the most significant source of positional errors in the 

thorax and abdomen [16].  Internal motion of the body can be classified into inter-fraction 

and intra-fraction components.  Inter-fraction motion occurs through the change in tumor 

size, either growth or shrinkage, as well as the daily filling and emptying of the bladder and 

bowel [17].  Motion can also be the result of weight loss or gain between radiation therapy 

treatment sessions.  Intra-fraction motion occurs through organ processes, such as motions 

related to respiration, the cardiac cycle, or peristalsis of the digestive system [2,17]. 

Intra-fraction motion, in the thorax and abdomen, is the primary cause for tumor 

movement.  Several studies have determined that the range of motion in the superior-

inferior direction of the diaphragm due to normal respiration is approximately 0.5 - 4.0 cm 

[2,5].  It has also been seen that different areas within the lung exhibit dynamic behavior.  

The extent of motion in the lungs varies with regions; the lower lobes of the lung exhibit 

twice the motion of the middle and upper lobes [18-20].  The upper lung has linear motion, 

while the lower and middle lung regions exhibit less linearity [18].  Lung motion is also 

prone to hysteresis, with the effects varying though out the lungs [20].  Hysteresis is 

prevalent in the lower-middle regions of the lungs, and the upper-middle regions show less 

hysteresis.  Motion distorts the target volume to move in and out of the dose targeting 

window.  Subsequently, the area to dose the tumor is increased to compensate for the 

organ motion.  As a result, large amounts of normal tissue are radiated.   

The goal of four-dimensional radiation therapy is to deliver high doses of radiation 

to the tumor, while minimizing the dose to the surrounding healthy tissue [21].  If 

respiratory motion is not considered when acquiring CT scans, there can be distortion and 
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deformation of the target volume [17].  There will be large deviations from the planned 

dose distribution and the actual delivered dose distribution [21].  Including temporal 

changes in the anatomy during treatment can help reduce dose margins [2,14,15].  A 

decreased dose margin may lead to reduced radiation toxicity, reduced risk of radiating 

healthy tissue thus eliminating treatment-induced cancers, and possible dose 

intensification to the tumor [14,15].  A study conducted by Khan, et al. has shown that using 

4DCT over free breathing planned radiation therapy reduces the mean lung dose an 

average of over 22%.  In a particular case the mean lung dose decreased by approximately 

38%  with 4DCT versus planned radiation therapy [22].  Three common treatment 

approaches for compensating for respiratory motion are controlled breath hold, 

respiratory gating, and tumor tracking [23]. 

In order to suppress respiratory motion, a patient holds his breath during the 

scanning process of the simulation phase and treatment delivery phase [23,24].  The 

respiratory motion is eliminated when the breath is held.  A static CT scan is obtained 

during the simulation phase [23].  During each treatment delivery, the patient is expected 

to hold the breath during dose distribution.  The patient is cued, usually visually, as to 

when to hold and release the breath.  The previous process described a voluntary breath 

hold.  Other processes are used frequently in controlled breath hold procedures.  One such 

procedure is active breathing control (ABC), where the respiration is forced to shallow 

breathing [23].  Treatment is administered during a small window of time.  Although this 

procedure eliminates respiratory motion, it does so with the assumption the patient has 

the capacity to hold his breath during the scanning process.  Many patients have difficulty 
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holding breath, especially those with lung cancer [17,24].  For this reason, there is need for 

technologies that allow the patient to breathe freely. 

Respiratory gating is a technique that allows the patient to breathe freely.  The 

patient's natural breathing pattern is observed, and treatment is delivered periodically 

when breathing reaches a particular phase [2,14,25].  Usually, the dose is delivered at end-

inhale or end-exhale [2].  The patient's respiration is observed and the thoracic wall 

displacement generally triggers the activation of the radiation dose [26].  Like the 

controlled breath hold procedure, the initial CT scan taken during simulation must 

represent the CT sets taken during treatment.  A disadvantage of respiratory gating is the 

active participation of the patient.  The patient is required to control breathing to a steady 

pattern.  This is not always possible as there are patients with respiratory complications 

who are unable to breathe steadily [24].  Another disadvantage is that treatment is longer, 

since radiation is delivered only over a fraction of the breathing cycle.   

Tumor tracking, however, allows for the patient to breathe freely.  The delivery field 

follows the displacement of the target volume during the entire breathing cycle.  The field 

follows the 4DCT set acquired during simulation.  Multiple methods have been proposed to 

increase the accuracy of tumor tracking, but the subject still requires more research. 

An accurate method of four-dimensional computed tomography reconstruction is 

necessary to conduct the previous treatment procedures.  4D imaging focuses on 

reconstructing a volume that accounts for respiratory motion with minimized motion 

artifacts [18].  The core cause of motion artifacts is the "transaxial image slicing combined 

with the asynchronous path of tumor motion" [27].   
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Current practices of 4DCT attempt to include temporal aspects and have been 

reasonably successful, yet areas that need improvement exist.  The standard practice 

requires the acquisition of large amounts of CT data to reconstruct a complete temporal 

sequence.  A typical three-dimensional CT data set generally contains approximately 100 

axial slices, where each slice contains 512x512 pixels.  With 16 bits per pixel, a single data 

set takes over 50 megabytes of storage [2].  Therefore, large data sets increase processing 

time.  Also, as stated previously, larger amounts of data require a greater all around 

radiation increase to the patient.  It is imperative that the amount of data is decreased so 

patient radiation dose and processing time are decreased.   

Some research conducted on reconstructing CT images from incomplete or 

undersampled data sets involves digital tomosynthesis and prior image constrained 

compressed sensing (PICCS) [28,29].  Digital tomosynthesis is a method that a reconstructs 

three-dimensional CT model from two-dimensional radiographic projects using only 

limited gantry rotation (40° of rotation).  The method uses filtered back projection 

reconstruction methods and does not account for any temporal components.  PICCS 

reconstructs a sparsified image and uses an inverse sparsifing algorithm to construct the 

target image.  This method is able to reconstruct a 3D data set using undersampled 

projections; however, it does not account for any temporal information. 

Another issue with conventional CT practices is how temporal motion is 

represented.  In a typical 4DCT scan, the patient is immobilized and positioned with the 

help of optical lasers, as with a standard 3DCT scan.  The patient's respiratory signal is 

modeled through one of many methods.  Cosine models and piecewise linear models are 
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methods considered [18].  In some cases fast scanning has been considered.  Fast scanning 

shortens the rotation time of the scanner to eliminate motion artifacts; this has been 

particularly effective in respiratory gating [24].  The more common method used in 

modeling respiration for 4DCT reconstruction is using a priori deformation model with a 

respiratory trace [16,24,30].  The tidal volume may be measured using a spirometer and 

the data collected by the CT machine [14].  Another method uses a physical marker such as 

a reflecting block attached to the patient's abdomen, inferior to the xiphoid process.  A 

camera on the CT machine uses the position of the reflecting block to capture the breathing 

pattern of the patient.   The breathing pattern, generally referred to as the respiratory or 

breathing trace, is recorded for the entire scan process.  Currently, for the breathing 

pattern to be relevant for 4DCT reconstruction, it has to be regular and consistent; 

however, research is being conducted for detection and use of irregular breathing patterns 

[31,32].  The patient helps in reducing irregularities by breathing calmly and consistently.  

They are sometimes prompted by audio cues such as a "breathe in, breathe out" recording.  

In some difficult cases, a modified ventilator may even be used to control the airflow [33]. 

In the conventional method, once the breathing pattern has been established, time 

dependent CT projection data is acquired in the helical or cine mode [5,30,34,35].  After an 

initial scan is taken, the CT software computes a phase value for every point on the 

breathing trace.  The end-respiration peaks are detected by the software, and a linear 

interpolation method is used to assign percentages, based on the end-respiration peak, to 

the remaining points on the trace [14].  The data from the CT scan is partitioned into time 

bins corresponding to a user specific time interval.  Generally, a time cycle is divided into 

10 time bins (Figure 3).  The respiratory trace and CT sequences are reconstructed for each 
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time bin using filtered back-projection into a 4DCT, resulting in ten CTs for the duration of 

the breathing period. 

 

 

 

Figure 3:  CT images acquired and sorted by phase into time bins 
[17] 
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The treatment planning and delivery phases begin with an assumption that organ 

motion during the treatment will match the movement observed in the simulation stage.  

This assumption is not always valid, as a patient may become accustomed to treatment 

procedures and relax over time [2].  When the patient relaxes, the breathing pattern and 

rhythm change and breathing becomes shallow.  Studies show that over several weeks of 

radiation therapy, patients have exhibited changes with respiratory motion, even when 

coached by audio cues [33].  As a result, it is necessary to create a model that allows for 

changes in the tumor motion. 
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CHAPTER 3 
METHODS AND MATERIALS 

 
 

 

 

The purpose of this work is to create a more realistic and versatile spatio-temporal 

model of the moving anatomy for use in 4D cone beam CT reconstruction.   When modeling 

anatomy motion, the most challenging factor is achieving a suitable representation of 

displacement variation in time.  A popular approach to model temporal variation is by 

using a reference CT scan and a breathing trace.  The 4D spatio-temporal model in this 

work is shown by increasing order of complexity and flexibility.  This work draws upon the 

work of Docef and Murphy [9]. We introduce the 4D model in several steps, going from 

simple to complex. 

Step 1:  The simplest model assumes the each voxel moves proportionally to the 

breathing trace.  The model is depicted by Equation 3.1.  The displacement vector field 

(DVF) for a specific time location t and spatial location r is represented by       .  The 

spatial component r is composed of three components in the x, y, and z directions, therefore 

         .  The breathing trace is represented by      , and      is a constant field of 

amplitudes of which each voxel has three magnitudes along the x, y, and z directions.  In 

this simple model, the every voxel moves on a linear trajectory. 

                     (3.1) 
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Step 2:  To increase the versatility of the model, we assume that all the voxels are 

moving proportionally to the moving trace.  We also assume that there is a phase difference 

(delay) from voxel to voxel; the model is represented by Equation 3.2.  Docef and Murphy 

have modeled the temporal motion using this method.  An amplitude and a phase was 

attributed to each spatial direction (x, y, and z) [9]. 

                         (3.2) 

Step 3:  The next assumption is that the breathing trace is sinusoidal in behavior and  

model it by             .  Therefore, it can be understood that             (      )  

[       (    )]        [       (    )]       .  The DVF has two components, one in the 

phase and one in the quadrature.  The model is generalized in the following equation: 

                       (  
 

 
)    (3.3) 

                (    )     (3.3) 

                     .     (3.3) 

Step 4:  The assumption for this step is that the signal is no longer sinusoidal, but 

still is periodic.  The breathing signal,     , is expressed in terms of its Fourier Series.  The 

following is a case where the Fourier Series has two terms, and it is expressed by assuming 

                     .  It can be seen that the DVF then has four components as follows: 

                       (  
 

 
)        (  

 

 
)        (  

  

 
) (3.4) 

where,  
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Each component has a spatial amplitude and a temporal component that is a phase-

delayed version of the breathing trace.  This representation is not unique, and if we chose a 

different set of phases of     , we get different coefficients.  The proof, found in the 

Appendix, can be extended to any periodic signal.  It can be seen that for a breathing signal 

with N Fourier series terms, we can obtain a DVF with 2N components. 

Step 5:  Finally, the phase delays are considered arbitrary and modeled equation 

becomes an approximate representation of the DVF (Eq. 3.5).  The spatial components 

      can be modeled using spatial models such as B-spline. In this work, we attempt to 

obtain them from CTs reconstructed via binned filtered back-projection.  More specifically,  

the spatial components are obtained by performing Principal Component Analysis (PCA) or 

a pseudoinverse matrix method. 

       ∑                   (3.5) 
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SOURCE AND TARGET DATA 

In this experiment, it is assumed a static initial 4D scan set collected over multiple 

breathing cycles is available.  Additionally, a breathing trace is collected simultaneously 

with the 3DCT scan.  These three components are used to construct a 4DCT reconstruction 

model.  Initially available are a set of deformation vector fields, a source anatomy (the 

anatomy at the initial point), as well as projections from the source anatomy.  A know 

deformation is applied to the initial anatomy to create a target anatomy.  The target 

anatomy in turn is used to create target CT projections. 

Two data sets are used to evaluate the proposed model.  Both sets are simulated to 

be ideal data sets.  From Figure 5, it can be seen that data set 2 is designed to have 3 modes 

that operate separately from each other.  Each mode moves with a separate phase and 

amplitude.  This is a simplified case that congruent with realistic data seen in CT 

projections.  Data set 1, however, is designed to be a difficult case for the model.  In this 

case the modes that were described for data set 2 are no longer grouped together.  It is 

designed such that the modes are interlaced in a 1-2-3 pattern.  The data seen in data set 1 

is a not a realistic representation of tissue motion; nevertheless it is useful for evaluating 

the robustness of the model in an extreme scenario. In both data sets, the displacement 

amplitude is maximum in the center of the field of view and decreases towards the edges 

according to a Gaussian law. 
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DATA SET 1 

 

(a)                                                                                     (b) 

Figure 4:  Slice from source Deformation Vector Field (DVF) for 

Data Set 1.  (a) Quiver Plot – shows direction of deformation. (b) 

Intensity map – intensity of distribution. 

The source data consists of three dimensional vector fields for multiple time 

instances, a breathing trace, and corresponding principal components.  The deformation 

vector field has 64 x 64 x 64 voxels over 128 time instances.  A slice through the DVF is 

shown in Figure 4.  It can be seen that the DVF has a Gaussian shape.  The DVF was 

downsampled to 32 x 32 x 32 voxels over 32 time instances to reduce memory 

requirements.   

The source anatomy is modeled as a simple structure.  The structure of the anatomy 

is represented by a spherical volume.  The region of interest (ROI) of the spherical volume 

is 1 (dimensionless), and voxels outside of a radius of 0.95 is equal to zero.  The volume 

covers 64 x 64 x 64 voxels, and like the DVF is downsampled during the experiment to 32 x 

32 x 32 voxels to reduce memory and computations.  The deformed anatomy is modeled by 

displacing the volume by 10% of the maximum region of interest.  The simulation of the 
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anatomy changing through time is made by applying motion to the source anatomy.  Also, 

the source projections and the deformed projections are both created using the source 

volume.  From the volume 32 target projections are created. 

DATA SET 2 

 

Figure 5:  Slice from source Deformation Vector Field (DVF) for 
Data Set 2 

Data set 2 differs from data set 1 in the distribution of the DVF.  The data DVF has 

the same size of 64 x 64 x 64 voxels over 128 time instances.  The DVF is downsampled to 

32 x 32 x 32 voxels over 32 time instances, as with data set 1.  Figure 5 shows the DVF to 

have a different shape.  The DVF shows a distribution that consists of three stacked 

Gaussian distributions. 

ITERATIVE MATCHING 

The spatio-temporal model considered is based on the most flexible model 

introduced earlier in the chapter, described by Equation 3.5.  The proposed model uses a 

breathing trace taken over multiple respiratory cycles, and is represented by      (Figure 
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6).  A delay is introduced into the breathing trace and is represented by  .  As stated 

previously, the phase delay is an arbitrary value, thus allowing the breathing trace to be 

either periodic or non periodic.  The spatial components are modeled by eigenvectors and 

eigenvalues calculated using principal component analysis (PCA) or basis vectors from the 

pseudoinverse matrix method.   

 

 

Figure 6:  Sample segment of the breathing trace        

PCA is a mathematical procedure that transforms data from one coordinate system 

or space to another.  The data is arranged so that the data with the greatest variance is 

represented by the first principal component.  The first principal component is defined as 

the largest eigenvalue and its corresponding eigenvector.  The data with the second 

greatest variance, is associated by the second PCA vector.  The first two principal 

components, in general, hold over 90% of the data information.  In this experiment we use 

the first three principal components, because 96% of the data is represented by the first 

three principal components.  The DVF is represented by the following equation. 
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       ∑                 ∑               
 
     (3.6) 

The number of principal components,       , used in the is model is 3.  Three modes 

were chosen because it was determined to be a suitable number by Vaman, et al [36].  They 

determined that as each new mode is added, it contributes progressively less to the 

accuracy of the model.  In [36], any contribution from modes greater than three or four can 

be considered negligible.  Although three principal component vectors are chosen for our 

experiments, 3 is not an ideal number for all sets of data.  The number of modes to 

sufficiently represent a set of data depends entirely on the data itself.  The model and 

associated method for computing model parameters can be applied for more or less basis 

vectors as necessary.  The variable   in equation 3.6 will then range from 1 to the maximum 

number of modes required.  

For equation 3.6, the amplitudes "a" and the phase shifts "   " are free parameters 

that are modeled using an iterative procedure.  The breathing trace and the principal 

components are known.  The amplitude and phase values are optimized by minimizing the 

dissimilarity between modeled and measured quantities..  In a first experiment, the 

deformation model is compared to the source DVF and the difference between the two is 

used as the similarity measure.  The complete set of experiments is described in later 

sections. The Levenberg-Marquardt iterative optimization method is used to optimize the 

free parameters.  The nonlinear least squares minimization method compares the 

difference and terminates when the difference of the current iteration is the same as the 

previous iteration.  A tolerance level to stop the iterations is set to      . 
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An alternative method to model the basis modes is also presented.  In the previous 

case, the basis modes are modeled using Principal Component Analysis vectors.  This 

method assumes, along with a breathing trace, a limited number of DVFs are available; for 

this experiment we use 8 DVFs.  We also assume the delays of the modes are known.  

Equation 3.6 is modified so that we now solve for the spatial components.  The DVFs, 

      , are represented by a matrix, where each row is a DVF.  The breathing trace is also 

represented by a matrix, with 3 rows to correspond to the 3 modes.  We initially represent 

Equation 3.6 as a set of matrices, as seen in Equation 3.7. 

            (3.7) 

We expand Equation 3.7 to get Equation 3.8; from this we see for this case that   , 

  , and    are the three basis vectors,   ,   , and    are the amplitude parameters, and   , 

  , and    are the delay parameters.    ,   , and    are the deformation vector fields and 

  ,   , and    are the times at which the DVFs are estimated.  As stated previously, the 

experiment uses 8 DVFs, therefore    . 

[

  

  

 
   

]  [

                        

                        
   

                        

] [
    
    
    

] [

  

  

  

]  (3.8) 

 The following method is used to calculate the matrix  : initially we assume    

   , and then solve for   using the pseudoinverse of  , as shown in Equation 3.9.  Then 

each row of   is normalized to obtain   (Equation 3.10).  The spatial components 

calculated are used as the spatial components       in Equation 3.6, and the algorithm is 
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evaluated using iterative matching.  The similarity between the known DVFs and 

projections versus simulated DVFs and projections is determined using NRMSE. 

             (3.9) 

In this equation,    is the pseudoinverse of  . 

   
    

‖    ‖
        (3.10) 

EXPERIMENTAL SET-UP 

To evaluate the performance of the proposed method, multiple scenarios need to be 

assessed for both data sets.  These scenarios can be grouped into two categories: 

performance under ideal conditions and performance under imperfect conditions.  The 

model is applied under ideal conditions, initially.  This case is when the test DVF can be 

represented exactly by the 4-D model, with a sufficient amount of CT projections, no noise, 

and no contrast mismatch.  The imperfect scenarios attempt to evaluate the robustness of 

the model under more realistic conditions, such as the presence of projection noise and 

contrast mismatch.  It is expected that with greater noise and contrast mismatch, the 

model's performance will be worse than under ideal conditions.  A decrease in projection 

number may also degrade the model's performance. 

The performance under ideal conditions compares DVF versus the modeled DVF, 

volume versus modeled volume, and projections versus modeled projections.  The 

experiment begins with an initial condition of 0 for all 6 free parameters.  The number of 

iterations necessary for convergence is assessed.  The effect when the number of 
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projections is decreased is also considered.  Initially 32 projections are considered, then 16, 

8, 4, and 2 are also considered. 

For the case of imperfect conditions, a DVF that cannot be exactly modeled by the 

algorithm is considered.  Another simulation looks at the effect of white noise in the target 

data.  A random white noise is generated and applied to the DVFs, volume, and projections, 

specifically 4, 8, 12, 16, and 20 percent of the maximum pixel value.  Contrast mismatch is 

also considered.  The pixel values of the target projections are changed using the following 

nonlinear gamma function (Equation 3.11).  1, 2, 4, 8, 16, and 32 percent of contrast 

mismatch is explored.  Finally the effect of initial conditions is measured.  The initial 

conditions looked at were 0, 25, 50, 75, and 100 percent of the optimal values for the free 

parameters. 

             (
   

    
)     (3.11) 

In this equation, 

    is the pixel value, 

     is the maximum pixel value, and 

   is the nonlinearity factor. 

The prevalent method to measure performance of the model is the mean estimation 

error.  The normalized root mean square error (NRMSE) is the error measure used in this 

experiment (Equation 3.12).  Other methods to evaluate performance are the maximum 
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estimation error, number of iterations necessary to converge, and the execution time of the 

optimization. 

       
√∑ ( ̂            )

 

   

√∑ (        ̅)
 

   

      (3.12) 

In this equation,  

       is the actual DVF, 

 ̂      is the estimated DVF, and 

 ̅ is the mean value of the real DVF. 
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CHAPTER 4 
EXPERIMENTAL RESULTS 

 
 

 

 

The reconstruction model is evaluated for accurate and timely convergence.  The 

modeled deformation vector fields and projections are compared to the actual deformation 

vector fields and projections by means of the normalized root mean square error.  The 

model is determined to be perfectly accurate when the NRMSE converges to zero.  

PRINCIPAL COMPONENT ANALYSIS METHOD 

PERFORMANCE UNDER IDEAL CONDITIONS 

The model is evaluated for ideal conditions, where there is no noise present, no 

contrast mismatch, and where the DVF can be perfectly matched by the model.  The initial 

condition for each free parameter is zero.  The results for data set 1 are shown in Figure 7.  

It can be seen that the modeled DVF matches perfectly with the actual DVF, when NRMSE 

equals 0, after six iterations.  The DVF error converges to zero percent error in 9 iterations 

when the volume dissimilarity is used as a target function and in 13 iterations when the 

projection dissimilarity is used as a target function.  DVF matching and projection matching 

are able to achieve a normalized RMS error of 0% for 32 projections.    



32 
 

The same procedure is conducted for data set 2 as for data set 1.  The model is 

evaluated for ideal conditions with zero noise and contrast mismatch with initial 

conditions of zero for the free parameters.  Like with data set 1, it can be seen the DVF, 

volume, and projections are perfectly modeled by the algorithm.  Figure 8 illustrates the 

number of iterations taken by the model to perfectly match the original data set.  The DVF 

converges to 0% normalized RMS error with 7 iterations, while the volume converges in 8 

iterations.  The projection takes 38 iterations to converge. 

 

Figure 7:  Simulation results for data set 1 under ideal conditions 
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For both data sets, this is not the case for a reduced number of projections.  Table 1  

shows that projection matching is not able to produce acceptable results from less than 16 

projections.  Figure 9 and Figure 10 show for data set 1 and data set 2, respectively, that as 

the number of projections decrease, the number of iterations to converge increases. 

 

 

Figure 8:  Simulation results for data set 2 under ideal conditions 
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Figure 9:  Simulation results for effect of reduced number of 
projections on projection matching for data set 1 under ideal 

conditions 
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Figure 10:  Simulation results for effect of reduced number of 
projections on projection matching for data set 2 under ideal 

conditions 

Projection 
Matching 

Normalized RMS Error 

No. of Projections 32 16 8 4 2 

Data Set 1 0 1.6616 1.9057 13.3888 13.3445 

Data Set 2 0 0 6.1089 3.7539 12.7836 

 

Table 1:  Results for projection matching for a reduced number 
of projections for data set 1 and data set 2 using PCA 
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Experiment 3 considers the effect of initial conditions in optimizing the free 

parameters of the model.  Figure 11 shows the effect of initial conditions for DVF matching 

and projection matching for data set 1.  The results of the simulation for data set 2 are 

shown in Figure 12.  The optimal values for the parameters are initially calculated in order 

to be used as a benchmark.  The initial conditions range from 0 to 100 percent of the 

optimal value in 25 percent increments.  It can be seen the algorithm does not break down 

as the initial conditions move away from the optimal values. 

 

Figure 11:  Simulation results for the effect of initial conditions 
on DVF matching and projection matching for data set 1 under 

ideal conditions 
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Figure 12:  Simulation results for the effect of initial conditions 
on DVF matching and projection matching for data set 2 under 

ideal conditions 

PERFORMANCE UNDER IMPERFECT CONDITIONS 

 The previous section considered the case where the data is acquired under ideal 

conditions; here we apply our method to more realistic data.  Two cases are explored for 

non-ideal conditions, the addition of noise and contrast mismatch.  The robustness of the 

algorithm is evaluated using the normalized RMS error.  The closer the error is to zero, the 

more similar it is to the original DVF or projection.  Additive noise values are introduced in 

a range of 0 to 20 percent.  Contrast mismatch is introduced according to Equation 3.11, 

where epsilon values range from 0 to 0.08 (0% - 32%).  For data set 1, Figure 13 shows the 

effect of the addition of noise on projection matching.  The results for contrast mismatch 
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are shown in Figure 15 for projection matching.  Figure 14 shows the effect of noise for 

projection matching for data set 2.  Figure 16 describes the effect of contrast mismatch with 

projection matching for data set 2. 

 

 

 

Figure 13:   Simulation results for the effect of noise on 
projection matching for data set 1 under imperfect conditions 
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Figure 14:  Simulation results for the effect of noise on projection 
matching for data set 2 under imperfect conditions 
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Figure 15:   Simulation results for the effect of contrast mismatch 
on projection matching for data set 1 under imperfect conditions 
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Figure 16:  Simulation results for the effect of contrast mismatch 
on projection matching for data set 2 under imperfect conditions 
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One more imperfect scenario is considered.  The case is explored where the model 

does not perfectly represent the DVF.  For data set 1, it can be seen that the DVF and 

volume target functions do not converge to 0%, instead to 1.3%, for the normalized RMS 

error (Figure 17).  The projection matching is very inaccurate in representing the actual 

DVF; it has an error of approximately 225%.  This experiment is conducted under the 

stipulation that there is no noise or contrast mismatch, and the initial conditions equal 

zero.  The effect of initial conditions is explored and depicted in Figure 18.  The initial 

conditions range from 0 to 100 percent in increments of 25 percent of the optimal value.  

The optimal value for the parameters is calculated by modeling for the DVF of the imperfect 

case. 

 Data set 2 also is evaluated for the case where the model does not entirely represent 

the DVF.  The model DVF is compared to the actual DVF and the normalized RMS error is 

analyzed.  The same is done for the volume and projection.  It can be seen the DVF 

converges to an error of 1.3% in 8 iterations, while the volume converges to the same error 

in 13 iterations.  The projection to projection comparison does not converge to the same 

error value as the DVF and volume.  It converges to about 860% error in 102 iterations, as 

seen in Figure 19.  This is conducted with an initial value of zero for all the free parameters.  

The same case is explored for multiple initial values for the free parameters.  The effect of 

the initial conditions is shown in Figure 20. 
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Figure 17:  Simulation results for data set 1 for a DVF that 
cannot be perfectly represented by the model 
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Figure 18:  Simulation results for the effect of initial conditions 
on DVF matching and projection matching for data set 1 for a 

DVF that cannot be perfectly represented by the model 

  

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Iteration

N
o
rm

a
liz

e
d
 R

o
o
t 

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(N
R

M
S

E
)

DVF Matching

 

 

0%

25%

50%

75%

100%

0 5 10 15 20 25 30 35
0

5

10

15

Iteration

N
o
rm

a
liz

e
d
 R

o
o
t 

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(N
R

M
S

E
)

Projection Matching

 

 

0%

25%

50%

75%

100%



45 
 

 

 

 

 

 

Figure 19:  Simulation results for data set 2 for a DVF that 
cannot be perfectly represented by the model 
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Figure 20:  Simulation results for the effect of initial conditions 
on DVF matching and projection matching for data set 2 for a 

DVF that cannot be perfectly represented by the model 
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PSEUDOINVERSE MATRIX METHOD 

The same scenarios as the PCA method are considered for the pseudoinverse matrix 

method. Data set 1 is used to evaluate the performance of this alternative method. 

Performance under ideal conditions of zero noise and contrast mismatch is considered. 

Imperfect conditions such as noise, contrast mismatch, and the effect of initial conditions 

are also considered. 

PERFORMANCE UNDER IDEAL CONDITIONS 

 

Figure 21:  Simulation results for data set 1 using the 
pseudoinverse matrix method under ideal conditions 
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Figure 22:  Simulation results for the effect of reduced number of 
projections on projection matching for data set 1 using the 

pseudoinverse matrix method under ideal conditions 

Projection 
Matching 

Normalized RMS Error 

No. of Projections 32 16 8 4 2 

Pseudoinverse 
matrix method 

0 0 1.9056 26.0770 13.0206 

 

Table 2:  Results for projection matching for a reduced number 
of projections for data set 1 using the pseudoinverse matrix 

method 
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The method is evaluated for zero noise and contrast mismatch with an initial 

condition of zero for all the free parameters.  It can be seen from Figure 21 that the DVF, 

volume, and projection matching converged to an error of 0%. For DVF matching the 

optimization process took 7 iterations, and for projection matching it took 10 iterations. 

The data is downsampled so that 16, 8, 4, and 2 projections are also considered.  It can be 

seen from Table 2 and Figure 22 that for 16 projections and 4 projections the algorithm is 

able to converge to a normalized RMS of 0.  The effects of initial conditions are considered 

and it is seen that regardless of the initial conditions, the error converged to 0% (Figure 

23). 

 

Figure 23:  Simulation results for the effect of initial conditions 
on DVF matching and projection matching for data set 1 using 

the pseudoinverse matrix method under ideal conditions 
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PERFORMANCE UNDER IMPERFECT CONDITIONS 

The effect of noise and contrast mismatch is also considered.  For the pseudoinverse  

matrix method data set 1 is evaluated for noise values of 0, 4, 8, 12, 16, and 20 percent, and 

contrast mismatch for 1, 2 4, 8, 16, and 32 percent.  The simulation results for noise and 

contrast mismatch are shown in Figure 24 and Figure 25, respectively. 

 

Figure 24:  Simulation results for the effect of noise on projection 
matching for data set 1 using the pseudoinverse matrix method 

under imperfect conditions 
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Figure 25:  Simulation results for the effect of contrast mismatch 
on projection matching for data set 1 using the pseudoinverse 

matrix method under imperfect conditions 
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CHAPTER 5 
DISCUSSION AND CONCLUSIONS 

 
 

 

 

 A reconstruction model has been proposed to create a more realistic and versatile 

spatio-temporal representation for use in 4D CT.  The model applies a motion model to a 

set of CT projections to match the movement in successive sets of CT projections.  The 

model comprises of three components:  an initial 4D CT projection set collected over 

multiple cycles, the breathing trace associated with the set, and the spatial component, a 

set of basis modes determined using principal component analysis or the pseudoinverse 

matrix method. 

 To evaluate the performance of the proposed method, several scenarios have been 

considered.  Two data sets have been tested for two scenarios: performance under ideal 

conditions and performance under imperfect conditions.  Performance under ideal 

conditions is considered with zero noise and zero contrast mismatch.   Imperfect 

conditions were introduced by adding noise, contrast mismatch, and imperfect modeling.  

For both cases, the effect of initial conditions in determining the optimum free parameters 

was considered. 
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 For idealized conditions for the case where the PCA vectors perfectly match the 

DVFs, the simulated DVF is successfully reconstructed with a normalized root mean square 

error or 0% for data set 1 and data set 2.  For data set 1, the process took 6 iterations of the 

optimization procedure.  Data set 2, a more realistic DVF, converged in 7 iterations.  For 

projection matching, the simulated projections are reconstructed with a normalized RMS 

error of 0 percent for both data sets.  Data set 2 took 38 iterations of the optimization 

process to converge to 0%, but the more general case, data set 1, of the Gaussian 

distribution took 13 iterations. 

 Experiments were conducted to see the effect of downsampling. Thirty two 

projections were downsampled to 16, 8, 4 and 2 projections.  The algorithm broke down 

for both data sets with 16 projections for projection matching.  This is acceptable because 

typical CT scan projection data sets operate with larger amounts of projections, typically 

greater than 100 [2].  The algorithm thus proves to be advantageous as it is capable of 

modeling a data set perfectly with a limited number of projections. 

 Another such advantage of the algorithm is its independence with respect to the 

initial conditions estimated for the free parameters.  Figure 11 and Figure 12 show the 

effect of initial conditions on DVF and projection matching for data set 1 and data set 2, 

respectively.  For both data sets, it can be seen that as the initial conditions are closer to the 

optimal value, the number of iterations are reduced in the optimization procedure than 

when the values are closer to zero.  Nevertheless, the algorithm reconstructs the DVFs and 

the projections to a normalized RMS error of 0% for both data sets.  This is very beneficial 

because as the initial conditions remain independent of the outcome, it is possible to model 
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DVF and projections sets where it is not always possible to predict an initial estimate that is 

similar to the optimal value.    

 Several scenarios are considered for the performance of the algorithm under 

imperfect conditions, one of which is the inclusion of noise.  It can be seen as the percent of 

noise increases, the normalized RMS error increases linearly with respect to the noise.  This 

is the case for data set 1 with projection matching, as depicted in Figure 13.  It is important 

to note that the percent of error remains the same with DVF and projection matching, 

although the number of iterations necessary to converge is greater for projection matching.  

That is expected because motion information is more obviously presented in a DVF versus 

a projection.  The results for the noise experiments were downsampled from the original 

projection data both spatially and temporally.  It is expected that as the resolution of the 

projections increases noise will decrease, as the literature shows, projection noise is not 

correlated in space or time [9,37].  For data set 2, this was not the case.  It can be seen that 

increasing noise did not a linear increase in the error.  The model was sensitive to noise 

with respect to data set 2.   

 Another parameter that affects data acquisition is contrast mismatch.  As with the 

case for noise, the relationship between normalized RMS error and the percent of contrast 

mismatch is a linear relationship.   An increase in contrast mismatch has shown to produce 

a less accurate representation of the DVFs and projections.  This relationship is relevant for 

data set 1 using the PCA method.  For the case of data set 2, contrast mismatch showed a 

general linear trend for nonlinearity greater than 4%. 
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 The final case considered is performance of the algorithm for a known case where 

the DVF cannot be perfectly modeled.  In this case it is known that the DVF matching results 

in an error.  The normalized RMS error is found to be 1.3 percent for data set 1 and data set 

2.  The error is the same for volume matching for both data sets.  The error changes for 

projection matching.  Projection matching for data set 1 shows an error of about 225%, and 

projection matching for data set 2 shows and error of approximately 860%.  This 

experiment is conducted with initial conditions of zero for the free parameters, no noise, 

and no contrast mismatch. 

 The error for the projection matching in both data sets is large due to an initial 

guess of zero for the free parameters.  It can be seen from Figure 18 and Figure 20 that 

initial conditions affect the convergence of the algorithm, unlike with the case where the 

DVF can be perfectly modeled by the algorithm.  For the cases where the initial estimation 

of the free parameters were from 25 percent of the optimum value to 100 percent, DVF 

matching and projection matching for both data sets estimated the projections and DVFs to 

an error of 1.3%.  As such, it is determined that initial conditions play a significant role in 

the ability of the algorithm to converge to an optimal value for the case where the DVF 

cannot be perfectly modeled. 

 When the spatial parameters are determined using the pseudoinverse matrix 

method, it can be seen that the normalized RMS error converged to an error of 0% for DVF 

matching in 7 iterations, volume matching in 8 iterations, and projection matching in 10 

iterations.  The projection matching proved to be faster for the pseudoinverse matrix 

method than the PCA method.  As with the PCA method, the projections are downsampled.  
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The results show for the pseudoinverse matrix method, a reduced number of projections of 

16 give a NRMSE of 0%.  We can determine that the pseudoinverse matrix method is more 

robust to a decrease in projections than the PCA method.   The final test on ideal conditions, 

the effect of initial conditions, shows that regardless of the initial conditions, the error 

converges to 0%.  As with the PCA method, it can be seen that the number of iterations 

increase as the initial conditions move away from the optimal value for the free 

parameters.   When performance under imperfect conditions are considered, it can be seen 

that the pseudoinverse matrix method and the PCA method produced the same results for 

noise and contrast mismatch. 

The pseudoinverse matrix method is an alternative to using PCA analysis to 

determine the basis modes. It has the advantage that it can be used to obtain not only the 

basis modes, but also an estimate of the amplitude parameters of the 4-D DVF model. These 

amplitude values can then be used as good initial guesses during the projection matching 

optimization. Its disadvantage is that it requires knowledge of the delays (  ,   , and   ). 

These delays could be estimated by using a global signal that can be extracted from the 

projections without performing 3D reconstruction. Such a signal could be the displacement 

of the diaphragm, and various averages such as the first and second moments of 

projections. A method we envision for estimating the delays is based on using a subset of 

projections acquired at the same gantry angle. Motion information can be extracted from 

this "video" sequence and used to estimate the delays. The evaluation of such methods is 

beyond the scope of our work. 
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 It has been seen from the proposed method that it is feasible to estimate an 

unknown target CT by applying a deformation motion model to the initial CT and by 

matching the simulated target projections to the original known source projections.  The 

goal of the project is to create a spatio-temporal model for 4D CT reconstruction that can 

accurately represent the moving anatomy.  The goal has been achieved as the model has 

shown it can accurately reproduce target projections from a limited number of low 

resolution source projections. 

 Although the prediction model produces accurate projection data, it breaks down 

rapidly when constrained by less than 16 projections for the PCA method and by less than 

8 projections for the pseudoinverse matrix method.  The model is also sensitive to noise 

and contrast mismatch.  There is a linear relationship between noise and error between the 

source and target projections for data set 1.  The sensitivity to noise may decrease with 

higher resolution projections.  It is also seen that data set 2 does not provide a linear 

relationship with respect to noise and is very sensitive to noise unlike data set 1.  It is 

determined that initial conditions do not influence the accuracy of convergence for the 

model if the model can perfectly match the DVF.  It does, however, affect the convergence 

speed.  As the initial conditions go further away from the optimal value, the convergence 

speed decreases.  The same observation applies in the case where the DVF is not perfectly 

matched by the model; however, initial conditions do affect the accuracy of convergence.  It 

is determined an initial condition of zero for all the free parameters will not allow the 

algorithm to converge to the minimum error possible. 
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 This initial investigation shows potential for the algorithm.  In the future, further 

experiments can be designed to evaluate the algorithm (1) with real anatomy, artificial 

motion, and a real breathing trace, and (2) by using real cone-beam CTs and a real 

breathing trace.   
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APPENDIX A 
PROOF OF EQUATION 3.4 
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