
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2010

Development of a Rigid Body Computational
Model for Investigation of Wrist Biomechanics
Benjamin Majors
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/2319

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/2319?utm_source=scholarscompass.vcu.edu%2Fetd%2F2319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 

 

 

 

 
© Benjamin Judson Majors, 2010 

All Rights Reserved 



  ii

 

 

 

DEVELOPMENT OF A RIGID BODY COMPUTATIONAL 
MODEL FOR INVESTIGATION OF WRIST BIOMECHANICS 

 

 
A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Biomedical Engineering at Virginia Commonwealth University. 
 
 

By 
 
 

BENJAMIN JUDSON MAJORS 
B.S., Clemson University, 2007 

 
 
 

Director: Jennifer S. Wayne, Ph.D. 
Department of Biomedical Engineering and Orthopaedic Surgery 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Virginia Commonwealth University 
Richmond, Virginia 

December, 2010 



  iii

Acknowledgement 

 

There are many people I would like to acknowledge for helping and supporting my work 

here at VCU. First, and most importantly, I would like to thank my advisor, Dr. Jennifer Wayne, 

for her time and professional input. Her guidance, support and wisdom have been exceptional. I 

would also like to acknowledge Dr. Gerald E. Miller and Dr. Jonathan E. Isaacs for taking the 

time and effort to serve on my committee. I would like to thank Dr. Curtis Hayes and the VCU 

Department of Radiology for providing the CT scans that were an integral part of this research. 

I would also like to thank everyone in the Orthopaedics Research Laboratory, especially 

those whose research includes computational modeling. Without the guidance and support Kevin 

Elmore, Joseph Iaquinto, and Edward Sprately, this process would have been much less 

enjoyable. Thanks are also due to others within the BME program, including Charles Taylor. 

Additionally, I would like to thank my parents and sisters for their encouragement in my 

academic endeavors. Finally, I must thank my wife, Tricia. Without her support and 

understanding, none of this would have been possible, and I owe her the most sincere thank you 

of all. 



  iv

Table of Contents 

Acknowledgement ......................................................................................................................... iii 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

List of Abbreviations ..................................................................................................................... ix 

Abstract .......................................................................................................................................... xi 

1. INTRODUCTION ...................................................................................................................... 1 

1.1 MODELING OF MUSCULOSKELETAL SYSTEMS ........................................................ 1 

1.2 CURRENT METHODS OF COMPUTATIONAL MODELING ........................................ 3 

1.3 RIGID BODY MODELING OF THE WRIST ..................................................................... 7 

2. WRIST ANATOMY ................................................................................................................. 11 

2.1 SKELETAL ANATOMY ................................................................................................... 11 

2.1.1 Bony Anatomy ............................................................................................................... 11 

2.1.2 Joints of Wrist ............................................................................................................... 18 

2.2 LIGAMENTOUS ANATOMY ........................................................................................... 21 

2.2.1 Extrinsic Ligaments ...................................................................................................... 21 

2.2.2 Intrinsic Ligaments ....................................................................................................... 26 

2.2.3 The Triangular Fibrocartilage Complex ...................................................................... 31 

2.3 RETINACULAR AND MUSCULAR ANATOMY .......................................................... 33 

3. THREE DIMENSIONAL SOLID BODY MODEL ................................................................. 36 

3.1 COMPUTED TOMOGRAPHY (CT) ................................................................................. 36 



  v

3.2 MASK CREATION ............................................................................................................ 38 

3.3 MASK EDITING AND THREE-DIMENSIONAL BODY CREATION .......................... 40 

3.4 THREE-DIMENSIONAL BODY REMESHING .............................................................. 44 

3.5 SOLIDWORKS ................................................................................................................... 47 

3.5.1 Assembly and Reference Planes ................................................................................... 47 

3.5.2 COSMOSMotion ........................................................................................................... 51 

3.6 MODELING OF LIGAMENTOUS STRUCTURES ......................................................... 56 

3.6.1 Origins and Insertions .................................................................................................. 56 

3.6.2 Ligament Properties and Modeling .............................................................................. 60 

3.7 MUSCULAR STRUCTURES ............................................................................................ 65 

4. RANGE OF MOTION STUDY ............................................................................................... 67 

4.1 CADAVERIC STUDY ....................................................................................................... 67 

4.2 COMPUTATIONAL MODEL METHODS ....................................................................... 70 

4.2.1 Data Acquisition ........................................................................................................... 72 

4.2.2 RSL Fusion, Scaphoid Distal Pole and Triquetrum Excision Replication ................... 75 

4.3 RESULTS ............................................................................................................................ 79 

4.4 DISCUSSION ..................................................................................................................... 92 

5. CONCLUSION ......................................................................................................................... 98 

Literature Cited ........................................................................................................................... 101 

Appendix A ................................................................................................................................. 106 

VITA ........................................................................................................................................... 114 



  vi

List of Tables 

Table 3.6.1: Extrinsic Ligament Mechanical Properties ............................................................... 62 

Table 3.6.2: Intrinsic Ligament Mechanical Properties ................................................................ 63 

Table 3.6.1: Muscle Mechanical Properties .................................................................................. 66 

Table 4.3.1: Range of motion for intact wrist and percentage of normal for repaired states ....... 83 

 



  vii

List of Figures 

Figure 2.1-1: Palmar aspect of the bony anatomy of the wrist and hand [20] ............................................ 12 

Figure 2.1-2: Distal perspective of the radiocarpal joint [20] ..................................................................... 13 

Figure 2.1-3: Cross-section view of carpal tunnel from dorsal perspective [20] ........................................ 18 

Figure 2.1-4: Joints of the wrist .................................................................................................................. 19 

Figure 2.2-1: Palmar and dorsal view of extrinsic and midcarpal intrinsic wrist ligaments [20] ............... 22 

Figure 2.2-2: Palmar (top) and dorsal (bottom) views of the intrinsic ligaments [20]................................ 25 

Figure 2.2-3: Transverse section of wrist through the distal carpal [20] .................................................... 30 

Figure 2.2-5: The ulnocarpal triangular fibrocartilage complex [20] ......................................................... 32 

Figure 2.3-1: Flexors of right forearm (palmar view) [60] ......................................................................... 34 

Figure 2.3-2: Extensor retinaculum compartments [60] ............................................................................. 35 

Figure 3.1-1: Cadaver specimen on CT table in neutral position ............................................................... 37 

Figure 3.2-1: Use of thresholding to include more cortical and trabecular bone in distal radius and ulna . 39 

Figure 3.3-1: Materials with a high linear attenuation are present in scan ................................................. 41 

Figure 3.3-2: Manual slice editing to separate distal radius and ulna ......................................................... 42 

Figure 3.2-3: MIMICS screen capture illustrating use of polylines to check boundary of bony surfaces .. 43 

Figure 3.3-4: Interpolation of polylines to create solid body of distal radius ............................................. 43 

Figure 3.4-1: STL triangulation of distal radius with smoothing and triangle reduction ............................ 46 

Figure 4.5-1: Palmar (left) and lateral (right) view of computational model .............................................. 48 

Figure 4.5-2: Radial and ulnar coordinate systems [85] ............................................................................. 49 

Figure 4.5-3: Coordinate system for the metacarpals [85] .......................................................................... 50 

Figure 4.5-4: Capitate coordinate system as an example of carpal coordinate systems [85] ...................... 51 

Figure 3.5-5: COSMOSMotion Rigid Body Motion Solver Settings ......................................................... 53 

Figure 3.6-1: Modeling of pisohamate ligament and palmar extrinsic ligaments ....................................... 58 

Figure 3.6-2: Modeling of the dorsal radiocarpal and dorsal intercarpal ligaments ................................... 58 

Figure 3.6-3: Modeling of palmar intrinsic ligaments ................................................................................ 59 



  viii

Figure 3.6-4: Modeling of dorsal intrinsic ligaments .................................................................................. 59 

Figure 3.6-5: Modeling of carpometacarpal and intermetacarpal ligaments .............................................. 60 

Figure 3.7-1: Cross-sectional view of muscle tendons in MIMICS ............................................................ 65 

Figure 4.1-1: Schematic of loading apparatus [65] ..................................................................................... 68 

Figure 4.1-2: Radiographs of RSL fusion (A), distal pole excision (B) and triquetral excision (C) [65] ... 69 

Figure 4.2-1: Muscle force vectors along respective flexion muscle tendons ............................................ 71 

Figure 4.2-2: Muscle force vectors along respective extension muscle tendons ........................................ 71 

Figure 4.2-3: Volar and dorsal view of model with all bones and constraints present ............................... 72 

Figure 4.2-4: Flexion angle in the coronal plane (A) and radial deviation angle in the sagittal plane (B) . 74 

Figure 4.2-5: Result plot feature of COSMOSMotion demonstrating flexion angle .................................. 74 

Figure 4.2-6: Simulated RSL fusion in computational model .................................................................... 75 

Figure 4.2-7: Scaphoid bone taken out of model (A) and distal pole excised (B) ...................................... 76 

Figure 4.2-8: Distal pole excised scaphoid back in computational model .................................................. 77 

Figure 4.2-9: Representation of triquetral excision in computational model .............................................. 77 

Figure 4.3-1: Flexion range of motion results comparison between cadaver and model ............................ 80 

Figure 4.3-2: Extension range of motion results comparison between cadaver and model ........................ 80 

Figure 4.3-3: Radial deviation range of motion results comparison between cadaver and model .............. 81 

Figure 4.3-4: Ulnar deviation range of motion results comparison between cadaver and model ............... 81 

Figure 4.3-5: Contact force in joints predicted by computational model during flexion ............................ 84 

Figure 4.3-6: Contact force in joints predicted by computational model during extension ........................ 85 

Figure 4.3-7: Contact force in joints predicted by computational model during radial deviation .............. 86 

Figure 4.3-8: Contact force in joints predicted by computational model during ulnar deviation ............... 87 

Figure 4.3-9: Magnitude of the scaphocapitate ligament tension developed during flexion ...................... 88 

Figure 4.3-10: Magnitude of ligament tensions developed during extension ............................................. 89 

Figure 4.3-11: Magnitude of ligament tensions developed during radial deviation ................................... 90 

Figure 4.3-12: Magnitude of the scaphocapitate ligament tension developed during ulnar deviation ....... 91 



  ix

List of Abbreviations 

2-D Two Dimensional 
3-D Three Dimensional 
ADAMS Automatic Dynamic Analysis of Mechanical Systems 
ADM Abductor Digiti Minimi 
AP Anterior-Posterior 
APL Abductor Pollicis Longus 
CAD Computer Aided Design 
CH Capitohamate 
CT Capitotrapezoid 
CT Computed Tomography 
DIC Dorsal Intercarpal 
DICOM Digital Imaging and Communications in Medicine 
DP Distal Pole 
DRC Dorsal Radiocarpal 
DRUJ Distal Radioulnar Joint 
ECRB Extensor Carpi Radialis Brevis 
ECRL Extensor Carpi Radialis Longus 
ECU Extensor Carpi Ulnaris 
EDC Extensor Digitorum Communis 
EDQ Extensor Digiti Quanti 
EIP Extensor Indicis Proprius 
EPB Extensor Pollicis Brevis 
EPL Extensor Pollicis Longus 
FCR Flexor Carpi Radialis 
FCU Flexor Carpi Ulnaris 
FR Flexor Retinaculum 
GSTIFF Gear Stiff Integrator 
HM Hamatometacarpal 
HU Hounsfield Units 
IP Interfacet Prominence 
ISB International Society of Biomechanics 
LRL Long Radiolunate 
LT Lunotriquetral 
LVDT Linearly Variable Displacement Transducer 
MIMICS Materialise's Interactive Medical Imaging Control System 
ML Medial-Lateral 
PH Pisohamate 
PM Pisometacarpal 
PT Pisotriquetral 



  x

RBM Rigid Body Modeling 
RC Radiocapitate 
RS Radioscaphoid 
RSC Radioscaphocapitate 
RSL Radioscapholunate 
SC Scaphocapitate 
SL Scapholunate 
SRL Short Radiolunate 
STL Stereolithography 
STT Scaphotrapeziotrapezoidal 
TC Triquetrocapitate 
TFCC Triangular Fibrocartilage Complex 
TH Triqutrohamate 
TT Trapeziotrapezoidal 
UC Ulnocapitate 
UL Ulnolunate 
UT Ulnotriquetral 

 



  xi

Abstract  

 
 

DEVELOPMENT OF A RIGID BODY COMPUTATIONAL MODEL FOR INVESTIGATION 
OF WRIST BIOMECHANICS 

 
 

By Benjamin Judson Majors, B.S. 
 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 
in Biomedical Engineering at Virginia Commonwealth University.  

 
 

Virginia Commonwealth University, 2010 
 
 

Major Director: Jennifer S. Wayne, Ph.D.  
Professor, Biomedical Engineering and Orthopaedic Surgery; Director, Orthopaedic  

Research Laboratory  
 

The wrist is one of the most complex joints in the human body. As such, the wrist joint is 

difficult to model due to the number of bones involved and its intricate soft tissue interactions. 

Many studies have attempted modeling the wrist previously; however, the majority of these 

studies simplify the joint into two-dimensions or idealized mechanical joints to reduce the 

complexity of the simulation. While these approaches still yield valuable information, the 

omission of a third-dimension or geometry defined movements limits the models’ usefulness in 

predicting joint function under non-idealized conditions. Therefore, the goal of this study was to 

develop a computational model of the wrist joint complex using commercially available 

software, whereby joint motion and behavior is dictated by highly accurate three-dimensional 

articular contact, ligamentous constraints, muscle loads, and external perturbations only. As 

such, a computational model of the human wrist was created using computed tomography (CT) 

images of a cadaver right upper extremity. Commercially available medical imaging software 



  xii

and three-dimensional computer aided design (CAD) software were used to reconstruct the 

osteoarticular surfaces and accurately add soft tissue constraints, as well as calculate kinematic 

motion simulations. The model was able to reproduce physiologic motion including 

flexion/extension and radial/ulnar deviation. Validation of the model was achieved by comparing 

predicted results from the model to the results of a published cadaveric experiment that analyzed 

wrist function under effects of various surgical procedures. The model was used to replicate the 

exact testing conditions prescribed for the experiment, and the model was able to accurately 

reproduce the trends and, in many instances, the magnitudes of the range of motion 

measurements in the study. Furthermore, the model can now be used to predict the magnitudes 

for the joint contact forces within the wrist as well as the tension developed in ligaments in hopes 

locating potential areas of concern after these surgical procedures have been conducted, 

including further development of arthritis in the wrist and ligament breakdown. 
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1. INTRODUCTION 

 

1.1 MODELING OF MUSCULOSKELETAL SYSTEMS 

Computer simulation techniques for biological systems can be employed to estimate a 

wide variety of physiologic parameters that may be challenging to obtain experimentally 

including pressures, strains, and forces. Furthermore, the data obtained can be helpful in 

explaining the results obtained from motion analyses. These models reduce the need for 

expensive experiments that sometimes require a large sample size of specimens, and these virtual 

3-D models can be easily manipulated to obtain any parameters of interest. Further, once 

validated, these models have unlimited usability, and they are powerful investigative tools with 

many real world applications. For musculoskeletal models, these include the design of joint 

prostheses, preoperative planning of surgical procedures, and understanding the mechanics of 

injury and pathologies such as degenerative arthritis.  

While it is possible to conduct cadaveric studies to measure certain musculoskeletal joint 

features, these experimental approaches have limitations. Joint kinematic studies can be done by 

tracking bones in three dimensional space using markers, and joint pressure measurement can be 

achieved using pressure sensitive film. Ligament tensions and strains can be analyzed by 

attaching various strain gauges and tensiometers to the native ligament soft tissues. While these 

techniques offer the benefit of working with natural tissues and provide insightful information, 

they require invasive disruption of the joint to insert measurement devices that may damage the 

integrity of the joint. Further, experimental setup for these studies is expensive and time 
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consuming. Computational models represent an effective alternative to cadaveric studies as they 

have the advantage of comparing the direct impact of changes to the carpal structure without the 

complication of difficult changes to the experimentation equipment, and performing changes on 

the same model geometry permits direct comparison of the alterations. Commonly, 

biomechanical computational models have been divided into either finite element analysis (FEA) 

[12,13,16,22,37,38,48,68,83,86] or rigid body modeling. [6,17,24,27,28,30,32,34-

36,39,41,43,45,47,48,50-52,61,67,69,74,78,84] 

In all computational musculoskeletal models, assumptions and simplifications must be 

made, and these could potentially affect the accuracy of the results. Often, researchers have 

constrained joint degrees of freedom (DOF), reduced the model to two dimensions, ignored the 

contributions of various ligaments, or fused bones together within the joint. Although these 

simplifications decrease computation time and may be justified in various ways, the native 

anatomical joint may not always function in the same manner as the simplified joint. [7] By not 

allowing the osteoarticular geometry and soft tissue constraints alone to govern motion in the 

model, the model’s usefulness to predict joint function in non-idealized motions is limited.  
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1.2 CURRENT METHODS OF COMPUTATIONAL MODELING 

Finite element modeling and rigid body modeling are both current and effective 

computational methods with different approaches in methodology. Finite element modeling has 

been applied to estimate stress distributions within bone and cartilage layers in the articulations 

under static loading conditions. While in rigid body models, the bone structure is represented as 

rigid bodies, and soft tissue structures are represented as spring elements. Both of these methods, 

having been applied to a variety of musculoskeletal joints, are effective methods for investigating 

joint soft tissue function. Further, there are a number of computational software packages 

available to investigate joint kinematics once a modeling methodology has been chosen. 

Finite element analysis has been an effective method for analyzing joint contact areas and 

stress distributions in human structures such as bone. [13,72] This continuum based numerical 

analysis technique breaks down the investigated bodies into discrete elements, and assigns 

material properties at each node. FEA is a widely used and highly valuable research tool, 

however, there are many limitations regarding its use in analyzing contact problems in human 

joints, especially in multiple-body contact force analysis such as the wrist, elbow and ankle 

joints. FEA is sensitive to the values of material properties – many of which are difficult to 

obtain in biological materials, and often, nonphysiologic constraints have to be implemented to 

obtain convergence. [13] Additionally, the complexity and many unknowns present in FEA 

models cause the processing time required to solve very fine meshes to be very large. If the 

purpose of the analysis is not to find the actual stress inside the cartilage and bone, but only to 

obtain the kinematics and dynamic biomechanical function of the joint, a simpler approach can 

be performed. [3] As an alternative to FEA, rigid body models are highly efficient and often 

converge to a solution considerably faster than the corresponding FEA model. [45] 
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In rigid body modeling, ligaments span the space between adjacent bones connecting the 

bones to each other; this is where deformation mainly occurs in joints such as the wrist. In this 

situation, it can be assumed that the bones are rigid bodies and that the ligaments are linear 

springs interposed between the rigid bodies. This modeling approach was first developed within 

the field of civil engineering by Kawai and Takeuchi. [44] Since, the method has been applied to 

numerous musculoskeletal models. [6,17,24,27,28,30,32,34-36,39,41,43,45,47,48,50-

52,61,67,69,74,78,84] 

In RBSM, when a load is applied to a musculoskeletal joint, the deformations of the 

ligaments are much greater than the deformations of the bone and cartilage, therefore the bones 

can be considered rigid bodies. This assumes that each body is inelastic and incompressible, and 

such assumptions are appropriate when studying stiff materials with observable stresses that 

result in less than 1% total strain. [31] A set of equilibrium equations is formulated between the 

articular surfaces, the spring ligaments, and the external forces. Many of these models constrain 

joint movement to a smaller number of DOF’s to increase computational efficiency. These 

models idealize the joints and make them much simpler; for example, the knee may be 

approximated as a simple hinge. The limitation of this approach is apparent in the absence of 

allowing only the joint geometry and soft tissue to dictate motion. The more realistic and 

experimentally relevant approach is to allow totally unconstrained motion with no predefined 

limits on the degrees of freedom in the joint.  

Even fewer biomechanical models have been developed where motion is totally 

controlled by contact between the articular surfaces and soft tissue constraints. While modeling 

the biomechanics of the knee, Wismans et al [84] were among the first to model a 

musculoskeletal joint this way. Ligamentous and muscular soft tissues were represented as force 
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vectors spanning the joint, and cartilaginous soft tissues were not considered. Bony contacts 

were assumed to be rigid and constant. Other models have followed this methodology for 

modeling joint motion, and the importance of model validation has been expressed throughout 

the computational modeling literature. Regardless of the model’s assumptions and results, the 

model should be compared to experimental data before it can be used in a predictive or useful 

situation. There are many musculoskeletal rigid body models that require underlying computer 

code to develop and implement. This code is complex, and the models require the programmer to 

have exceptional knowledge of the model’s constituative equations and algorithms. Further, the 

software is commonly written in house, which makes it difficult to access and utilize outside of 

the lab where it was created.  

There are, however, a small number of rigid body modeling software packages that are 

capable of investigating the kinematics of musculoskeletal joints. Packages currently being used 

include SIMM (Software for Interactive Musculoskeletal Modeling, Musculographics Inc., 

USA), VIMS (Virtual Interactive Musculoskeletal System, BioMed Central Ltd., USA), and 

MSC ADAMS (Automatic Dynamic Analysis of Mechanical Systems, MSC Software Corp, 

USA). Each of these modeling software packages are able to solve the equations associated with 

RBM, but SIMM and VIMS are either limited or unavailable commercially. [14,15] 

The SIMM software package does not allow unconstrained joint motion. Instead, 

function is simplified and joint motion is reduced to idealized mechanical joints with few DOF’s. 

[14] The program has been used to investigate the roles of specific muscles and how they vary 

under different geometric conditions. [23,40] VIMS does allow full geometry based simulations, 

but it requires the use of proprietary software packages that are not commercially available at 

this time. [15] Because both of these programs are limited and/or proprietary, a commercially 
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available software program is an appealing alternative to SIMM and VIMS. SolidWorks 

(SolidWorks Corp., Concord, MA) employs the use of an add-in called COSMOSMotion 

(Structural Research and Analysis Corp, Santa Monica, CA) that provides three-dimensional 

rigid body dynamics simulation. SolidWorks and COSMOSMotion are common, commercially 

available computer-aided design (CAD) tools. At the core of the COSMOSMotion rigid body 

dynamic simulation package is the ADAMS solver.  

The ADAMS solver does not require the reduction of musculoskeletal joints to simplified 

idealized joints. The motion between bodies is dictated by algorithms with user-defined contact 

parameters to characterize the interactions between the two parts. [1] This allows the 

musculoskeletal model’s surface geometry, ligamentous constraints, and applied loads dictate 

joint kinematics. Because of SolidWorks wide-spread use, the program supports a wide variety 

of engineering formats including: Parasolid, IGES, DXF and STL. This versatility prevents the 

user from needing special software to create the initial rigid body solids. Further, the ADAMS 

solver is seamlessly incorporated into COSMOSMotion and SolidWorks. This fact allows for 

solid body creation and rigid body simulation in the same software package, and therefore, 

results and design alteration are easily achieved without converting, compressing, or 

importing/exporting functions. [48,49] 
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1.3 RIGID BODY MODELING OF THE WRIST 

As loads are transmitted from the hand to the forearm, the carpal bones of the wrist and 

their supporting ligaments are prone to injuries due to their small size and the high loads to 

which they are exposed. The use of computational models represents an effective method of 

allowing researchers the ability to determine how the loads are transmitted through the wrist and 

use that information to develop new therapies capable of minimizing patient suffering and 

restoring joint function. However, the wrist joint is difficult to model due to the number of bones 

involved and its complex soft tissue interactions. Only a few studies have attempted to simulate 

forces and motion in the wrist joint using RBM. [3,28,41-43,52,74] When analyzing multiple 

body contact, the rigid body modeling method is particularly attractive because of its relative 

computational efficiency. As stated before, this technique represents the structure of the wrist as 

a collection of rigid bodies, representing the bones of the carpus that are interconnected by linear 

tensile spring elements, representing the ligaments. Force vectors are then applied to the model 

to simulate physiological wrist muscle loads to produce motion.  

The majority of the previous studies were simplified to two dimensions. Horii et al [41] 

was one of the first groups to create a two-dimensional rigid body model of the wrist, using it to 

examine how different surgical procedures used for treating Kienböck’s disease modify the force 

distribution across the carpus.  Manal et al [52] and Schuind et al [74] both created separate rigid 

body models of the wrist from two dimensional posterior-anterior radiographs to investigate 

pressure transmission through a juvenile idiopathic arthritic wrist and a normal wrist, 

respectively. The primary limitations in each of these studies are the omission of a third 

dimension, and thus preclusion of the intricate interaction between the bony geometries, as well 
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as limiting the simulation to a static, neutral loading position. Ide and An also conducted similar 

2D RBM studies. [3,42] 

Subsequent studies using the RBM method have accounted for 3-dimensional joint 

geometry and loading conditions, and therefore provide a more accurate representation of rigid 

body carpal kinematics. Iwasaki et al [43] looked at the biomechanical effects of Kienböck’s 

disease of the carpus by analyzing the effects of limited intercarpal fusion in a 3D rigid body on 

force transmission through the carpus. Joint force, joint peak pressure, and ligament tension were 

also explored. Here, only a static grip maneuver was simulated as the loading condition, and 

other loading conditions were not considered; this served as the study’s main limitation. 

Fischli et al [28] conducted a study in which a 3D rigid body model was used to predict 

3D carpal bone kinematics in extension, and radial/ulnar deviation (flexion motion was 

excluded), but several questionable simplifications were included in the study. The metacarpals 

were fused to bones in the distal carpal row, and the pisiform was fused to the triquetrum. While 

the third metacarpal and capitate can be considered one functioning unit [64], there is 

considerable motion at the carpometacarpal joint and piso-triquetral joint. [56] Further, motion 

was modeled in an inverse dynamics scenario, where a particular carpal bone’s location 

(determined by radiograph) was matched in the model by prescribing the muscular soft tissue 

forces to end up in a similar position. On the contrary, model motion should employ a forward 

dynamic scenario, whereby model geometry and structure dictate function without prescribing 

soft tissue artifacts. [46] 

Carpal bones translate and rotate with six degrees of freedom, and each motion affects 

the stress distribution and articulations of neighboring bones and soft tissue structures. Therefore, 
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simplifying the wrist to two dimensions or static positions hinders its capability in widespread 

predictive use. Further, fusion of the pisiform to the triquetrum, as well as the distal carpal row to 

the metacarpals, eliminates motion at these articulations and therefore decreases overall carpal 

bone motion. While each study provides relevant information and insight into aspects of wrist 

biomechanics, no one model provides accurate three-dimensional articular contact with motion 

dictated only by the osteoarticular bony surfaces and soft tissue ligamentous constraints in a 

forward dynamics scenario. 
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1.4 OBJECTIVES 

The goal of this thesis was to develop and validate a computational model of the wrist 

joint for purpose of investigation of the joints biomechanics and its complex bony and soft tissue 

interactions.  Joint behaviour and kinematics were dictated only by highly accurate 3D 

osteoarticular contact, ligamentous constraints, and muscle loading as opposed to prescribing 

joint motion as a reduced, idealized degree of freedom joint. Osteoarticular surfaces and soft 

tissue constraints were derived from computed tomography of a cadaveric human upper 

extremity and reported physiologic literature, respectively. The model utilized commercially-

available software to accurately represent and simulate joint function. Finally, the model was 

validated against an experimental cadaveric study examining wrist range of motion after the 

fusion and excision of various carpal bones in the wrist. [65] Validation included comparing the 

results of this experimental study with results obtained from the computational model. 
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2. WRIST ANATOMY 

 

2.1 SKELETAL ANATOMY 

The wrist joint is not a single joint, as commonly described, but rather, it is a complex 

combination of several joints that articulate to produce a composite effect seen as the normal 

range of motion of the wrist. The bones comprising the wrist joint complex are the distal radius, 

the distal ulna, the eight carpal bones and the bases of the five metacarpal bones (Figure 2.1-1). 

The unique features of our wrist found in these individual joints separate us from other mammals 

and provide the controlling ability our opposable thumb and index finger mobility. The ability to 

grasp objects and move them with force and precision rests on the configurations of these wrist 

carpal joints. 

 

2.1.1 Bony Anatomy 

The most proximal bones contributing to the mechanics of the wrist joint are the two long 

bones of the forearm: the radius and ulna. The distal ends of these long bones articulate with the 

proximal carpal row. On the radius, there are two separate articular facets, called fossae, 

separated by a sagittal ridge called the interfacet prominence (Figure 2.1-2). The scaphoid fossa 

can be triangular or oval shaped and has a smaller radius of curvature than that of the lunate 

fossa.[20] The lunate fossa is rectangular in shape, and the entire surface of the distal radius is 

covered with cartilage. The lateral edge of the distal radius contains a prominence called the 
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radial styloid, which extends further distally than the rest of the radius (Figure 2.1-1). It has a 

pyramid shape and is the site of a few ligament insertions constraining the carpus. The radius’ 

articulation with the ulna is called the sigmoid fossa or ulnar notch of the radius. It is a concave 

semicylindrical surface and provides articulation with the convex surface of the ulna as well as 

provides attachment points for the distal radioulnar ligaments, distal radioulnar joint capsule, and 

articular disc of the triangular fibrocartilage complex (TFCC).  

 

Figure 2.1-1: Palmar aspect of the bony anatomy of the wrist and hand [20] 
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The distal end of the ulna consists of the rounded ulnar head that articulates with the 

sigmoid notch of the radius. It has a conical shape, and articular cartilage covers almost seventy-

five percent of the total surface. There are three parts to the distal ulna: a lateral surface for 

articulation with the articular disc of the TFCC, a central depression for the attachment of the 

apex of the disc, and a medial prominence called the ulnar styloid (Figure 2.1-2). The ulnar 

styloid provides attachment for the ulnocarpal ligaments as well as components of the TFCC.[63] 

The eight carpal bones of the wrist are typically divided into two horizontal anatomic 

groups of four bones each: a proximal row and a distal row. Beginning radially, the proximal row 

consists of the scaphoid, lunate, triquetrum, and pisiform. The distal row is comprised of the 

trapezium, trapezoid, capitate, and hamate. The distal carpal row has been considered as one 

relatively fixed or constrained group of bones in kinematic and load studies.[80,81] The 

proximal carpal row is, by comparison, much less constrained. 

 

Figure 2.1-2: Distal perspective of the radiocarpal joint [20] 
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Beginning on the radial side of the proximal row, the scaphoid is one of the largest bones 

in the carpus, and it is the largest in the proximal row. The scaphoid has a medial and distal 

concavity that provides an important stabilizing link between the proximal and distal carpal 

rows.[20,29,77] It has four distinct articular surfaces which cover the majority of the scaphoid 

surface. A proximal, convex surface articulates with the scaphoid fossa of the distal radius. Just 

medial to this exists another articular surface that is semilunar in shape and articulates with the 

lateral aspect of the lunate. A concave, oval-shaped facet exists on the distal and medial aspect of 

the scaphoid, articulating with the lateral portion of the head of the capitate. The distal portion of 

the scaphoid also articulates with the trapezoid and trapezium, by way of a convex surface, and 

this surface represents the fourth articular surface of the scaphoid. On the palmar aspect of the 

scaphoid, there is a rounded prominence extruding between the proximal and distal articular 

surfaces. This prominence, called the scaphoid tuberosity, provides attachment for a few strong 

ligaments as well as a pivot point for the flexor carpi radialis (FCR). [25] The narrower and 

shorter dorsal surface is also non-articulating and is located below the extensor tendons. 

Similar to the scaphoid, the lunate has four articular surfaces: proximal, distal, lateral, 

and medial. Two-thirds of the proximal articular surface of the lunate articulates with the lunate 

fossa of the distal radius, while the medial one-third of the proximal surface articulates with the 

articular disc of the TFCC. The distal articular surface of the lunate is biconcave and articulates 

with the capitate by way of a large lateral facet and the hamate by way of a smaller medial facet. 

The lunate articulates with the scaphoid laterally and the triquetrum medially through flat and 

semilunar surfaces. The lunate also has two nonarticular surfaces on the palmar and dorsal sides. 

The palmar aspect of the bone is rough and trapezoidal in shape and is the site of attachment for 

several ligaments. The dorsal aspect is triangular and smaller than the palmar aspect. The distal 
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edges of the two nonarticular surfaces have a stabilizing role with respect to the head of the 

capitate during wrist flexion and extension.[20]  

The triquetrum has multiple ligamentous insertions and four articular surfaces: distal, 

radial, proximal, and anterior. The distal articular surface articulates with the hamate bone and 

has a helicoidal surface. The radial articular surface articulates with the lunate, and is flat and 

semilunar in shape. The proximal surface is small, triangular and convex, and it articulates with 

the articular disc of the TFCC. The anterior articular surface has two areas: a lateral surface 

containing ligamentous attachments and a distal surface for the pisiform. This distal portion of 

the anterior articular surface is flat, oval-shaped and covered by cartilage. The dorsal facet of the 

triquetrum is divided into two by a transverse ridge. These two areas, one proximal and one 

distal, are triangular in shape. The transverse ridge is important because it receives several 

ligamentous attachments.[19] The sheath of the extensor carpi ulnaris (ECU) travels over the 

dorsal aspect, and the dorsal surface continues around the bone until it meets the edge of the 

articular surface for the pisiform. 

The pisiform, sometimes considered a sesamoid bone, is a carpal bone into which the 

flexor carpi ulnaris (FCU) inserts. The pisiform has only one posterior slightly concave, oval-

shaped articular surface that articulates with the triquetrum. Therefore, the pisiform is the only 

carpal bone that has a single articulation and the only carpal bone with a tendon insertion from a 

forearm muscle. The remaining anterior surface of the pisiform is rough, rounded, and fully 

covered by soft tissue attachments.[66] Soft tissue structures inserting on the anterior aspect 

include the flexor carpi ulnaris, flexor retinaculum, abductor digiti minimi (ADM), extensor 

retinaculum, pisotriquetral joint capsule, pisohamate (PH) ligament, and pisometacarpal (PM) 

ligament. 
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Beginning radially in the distal row, the trapezium is the most mobile bone, yet it is 

tightly bound to the trapezoid and has four articular surfaces.[32] There is a saddle-shaped 

articular surface for articulation with the first metacarpal. A small triangular, medial articular 

surface exists on the distal end of the trapezium for articulation with the second metacarpal. The 

articular surface between the trapezium and the trapezoid is a somewhat quadrilateral facet. The 

fourth articular surface is a concave proximal surface that articulates with the distal pole of the 

scaphoid. On the palmar side of the trapezium, there is a groove for the FCR tendon as well as a 

vertical prominence called the tubercle of the trapezium or trapezial ridge (Figure 2.1-1). This 

tubercle is the where strong ligaments, including the flexor retinaculum (FR), insert.  

The smallest bone of the distal row is the trapezoid, which lies just ulnar to the trapezium. 

The trapezoid has four articular surfaces (proximal, distal, lateral and medial) and two non-

articulating surfaces (palmar and dorsal). The proximal articular surface is slightly concave and 

continues with the concavity of the trapezium’s proximal articulation with the distal pole of the 

scaphoid. The distal articular surface has two facets separated by a sagittal ridge that fits deep 

into a notch in the in the base of the second metacarpal forming a tight junction. The lateral and 

medial articular surfaces are flat and bound to their corresponding facets of the trapezium and 

capitate, respectively. The palmar non-articular surface is rectangular and fully covered by 

ligaments, while the dorsal aspect is a flat, pentagram-shaped surface covered by extensor 

tendons.[32] 

The capitate is the largest carpal bone and is the keystone of the transverse carpal 

arch.[32] There are numerous articular surfaces on the capitate as it contacts seven different 

bones. The proximal one-third of the bone is covered by cartilage and is referred to as the head 

of the capitate. The head contains three different articular facets: one lateral for the scaphoid, one 
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proximal for the lunate, and a third medial for the hamate.  The distal portion of the bone is 

called the body of the capitate. On the radial side of the body of the capitate, there is a flat 

surface covered in cartilage for articulation with the trapezoid, while on the ulnar side there is a 

facet for articulation with the hamate. The distal articular surface of the capitate has contact with 

three metacarpal bones: a central facet that contacts the third metacarpal, a small lateral face that 

contacts the styloid process of the second metacarpal and a third small facet for the fourth 

metacarpal base. 

The hamate is the most medial carpal bone of the distal row. The distal surface of the 

hamate articulates with the bases of the fourth and fifth metacarpal bones by way of a saddle-

shaped surface covered with cartilage. The hamate has a lateral and proximal articulating surface 

with the triquetrum, as well as a lateral articulating surface with the capitate. The palmar non-

articulating surface of the hamate has a prominent rounded projection called the hook of the 

hamate (Figure 2.1-1). The tip of the hook is the site of attachment for several important 

structures including the flexor retinaculum, PH ligament and HM ligament. The lateral aspect of 

the hook is the medial wall of the carpal tunnel (Figure 2.1-3) that serves as a conduit for several 

flexor tendons. The dorsal non-articulating aspect is a triangular-shaped that has interaction with 

the sheath of the ECU.[20]  

The bases of the five metacarpal bones are broad with blunt ends. They articulate with 

each other by means of flat medial and lateral facets, with palmar and dorsal intermetacarpal 

ligaments connecting their respective non-articular surfaces. The second metacarpal base has a 

sagittal notch for the trapezoid, with an ulnar and dorsal prominence called the metacarpal 

styloid process that matches the shape of the distal articular facet of the capitate.[79] Because the 

joint between the four ulnar metacarpals and the carpal bones is compact and tight, there is 
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limited motion between them. By contrast, there is substantial motion at the first 

carpometacarpal joint. [21] This joint is much less stable and provides thumb apposition.  

 

Figure 2.1-3: Cross-section view of carpal tunnel from dorsal perspective [20] 

 

2.1.2 Joints of Wrist 

There are four distinct joints in the wrist that combine to provide its full range of motion 

(Figure 2.1-4). The distal radioulnar joint is the most proximal of the joints formed by the distal 

interactions between the radius and ulna. The radiocarpal joint is formed by the articulations of 

the distal radius and ulna with the proximal carpal row. The articulation between the proximal 

and distal carpal rows forms the midcarpal joint. And most distally, the articulation between the 

distal carpal row and the bases of the metacarpals comprise the carpometacarpal joint. 
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Figure 2.1-4: Joints of the wrist 

The most proximal joint of the wrist is the distal radioulnar joint (DRUJ). The distal 

radioulnar joint provides the proximal articulation for the carpus and consists of the distal radius 

and ulna with the TFCC. The articular surface between the radius and ulna is the sigmoid notch, 

where the generally concave cylindrical surface of the radius articulates with the generally 

convex cylindrical surface of the ulna. The second part of the DRUJ is the triangular 

fibrocartilage complex. The DRUJ is bounded by the TFCC, which represents the most distal 

extent of the DRUJ, and contains an articular disc bound by several ligaments.[11] The entire 

DRUJ is surrounded dorsally, volarly and proximally by a fibrous joint capsule. [26] 

The radiocarpal joint is formed by the articulations of the radius with the scaphoid and 

lunate as well as the interaction between the ulna, TFCC, pisiform and triquetrum. The distal 

surface of the radius can be divided into a triangular articular fossa for interaction with the 

scaphoid and a rectangular fossa for interaction with the lunate. Separating these two fossae is a 

ridge termed the interfacet prominence (IP), which coincides just proximal to the scapholunate 

joint. The proximal surface of the scaphoid has a higher radius of curvature than that of the 
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proximal lunate, while the articulating surface of the proximal triquetrum is relatively flat. The 

triquetrum does not necessarily articulate with another bone however. Rather, it rests on the 

articular disc of the TFCC.[4] The fibrocartilage disc of the TFCC joins the articular cartilage of 

the lunate fossa to form a gently concave boundary to the radiocarpal joint. Filling the ulnar gap 

between the TFCC and the triquetrum is a wedge shaped soft tissue called the meniscus 

homologue.  

The midcarpal joint is the articulation between the proximal and distal carpal rows, and is 

sigmoidal in shape, with a concave-distal arc radially and a concave-proximal arc ulnarly. The 

midcarpal joint is a combination of three different types of articulation. Laterally, the distal 

surface of the scaphoid is convex and articulates with the concavity formed by the trapezium, 

trapezoid and capitate. The central part of the midcarpal joint is formed by the articulations of 

the distal scaphoid and distal lunate, both of which together form a concave surface, and the 

convex head of the capitate. Medially, the articulation between the triquetrum and hamate is 

helicoid or screw shaped in configuration.[4] 

The carpometacarpal joint attaches the hand to the carpus by way of the first though fifth 

metacarpals. The joint is a tight ligamentous complex that connects the four ulnar metacarpal 

bases to their corresponding carpal bones forming a single articular compartment. The junction 

between the third metacarpal and the capitate is considered to be rigid, and as such, the distal 

carpal row and metacarpals tend to move in a similar fashion. [64] 
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2.2 LIGAMENTOUS ANATOMY 

The ligamentous anatomy of the wrist is extensive and varies across the literature and 

between subjects. These facts make defining and describing the carpal ligaments a project in 

itself, and the following definition represents the most logical division and definition when 

attempting to classify the ligaments of the wrist. The carpal ligaments may be divided into two 

groups based on their location of origin: extrinsic and intrinsic.[76] Extrinsic ligaments have an 

attachment on bones outside of the carpus as well as an attachment on the carpal bones, while 

intrinsic ligaments attach entirely within the confines of the carpus.  

 

2.2.1 Extrinsic Ligaments 

Extrinsic ligaments cross the radiocarpal joint, midcarpal joint, or both and can be 

considered capsular ligaments.[20] There are extrinsic ligaments originating on both the radius 

and the ulna. The palmar radiocarpal ligaments originate on the palmar rim of the radius and 

insert very deeply. These ligaments form a continuous capsular enclosure for the radiocarpal 

joint. There are three distinct extrinsic palmar radiocarpal ligaments that have been defined and 

represented in this model. From radial to ulnar, these ligaments are the radioscaphocapitate 

(RSC) ligament, long radiolunate (LRL) ligament, and short radiolunate (SRL) ligament. The 

ulnar region of the radiocarpal joint has three extrinsic ligaments originating from the palmar 

extent of the TFCC, the ulnolunate (UL) ligament, the ulnotriquetral (UT) ligament and the 

ulnocapitate (UC) ligament. The dorsum has one extrinsic radiocarpal ligament, the dorsal 

radiocarpal (DRC) ligament, which arises from the dorsal rim of the distal radius (Figure 2.2-1).  
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Figure 2.2-1: Palmar and dorsal view of extrinsic and midcarpal intrinsic wrist ligaments [20] 

The RSC ligament is the most radial of the palmar radiocarpal ligaments, and it originates 

from the radial styloid and the palmar lip of the radius (Figure 2.2-1). The RSC ligament courses 

distally and ulnarly and has several insertion areas, but the ligament does not have any 

distinguishable divisions for the various insertions. The most radial insertion is on the scaphoid 

with insertion on the lateral aspect of the scaphoid waist. Medially, the RSC inserts into the 

proximal surface of the distal pole of the scaphoid and spreads medially throughout the region of 

the proximal pole of the scaphoid. The remaining medial portion of the RSC continues ulnarly 

and distally to insert onto the proximal pole of the scaphoid with a few  of the fibers actually 

inserting onto the body of the capitate. Just ulnar to the RSC ligament is the LRL ligament 

(Figure 2.2-1). The LRL ligament connects the radius to the lunate, and it originates on the 

palmar ridge of the distal radius, spanning the majority of the width of the scaphoid fossa. 

Radially, the LRL overlaps the most superficial fibers of the RSC ligament to form a continuous 

capsule. The LRL ligament passes palmar to the proximal pole of the scaphoid and over the 

scapholunate interosseous ligament. The LRL ligament inserts in the radial half of the palmar 
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horn of the lunate.  The third palmar extrinsic ligament located on the radial side of the wrist is 

the SRL ligament, and it arises from the palmar margin of the lunate fossa (Figure 2.2-1).  The 

SRL is thick and courses distally and ulnarly to insert into the proximal aspect of the palmar horn 

of the lunate. Ulnarly, the SRL ligament blends with fibers from the TFCC and the UL ligament. 

This ligament appears to be the principal stabilizer of the lunate, as it is the structure that is 

responsible for maintaining the proximity of the lunate to the distal radius in lunate 

dislocation.[4] 

On the ulnar side of the wrist, the UL ligament arises from the region of origin of the 

palmar radioulnar ligament (Figure 2.2-1). This ligament is continuous with the SRL ligament, 

and distally, the ligament cannot be distinguished from the SRL ligament as it courses distally to 

attach to the proximal aspect of the horn of the lunate. The UL ligament shares a common 

insertion with the UT ligament and is considered a part of the TFCC. Ulnar to the UL ligament, 

the UT ligament also originates from the region of the palmar radioulnar ligament (Figure 2.2-1). 

The UT ligament is complex and quite variable between subjects. [20] The most radial fibers 

course directly distally and insert into the proximal and palmar margin of the triquetrum. The 

majority of the UT fibers form the ulnar wall of the radiocarpal joint. This ulnar region of the UT 

ligament is thick and thins only as the dorsal portion of the radiocarpal joint is reached. The UT 

ligament contributes to the floor of the sixth extensor tendon compartment on the dorsum of the 

wrist. The majority of the ligament inserts into the medial aspect of the triquetrum before 

continuing as part of the TFCC. The UT continues distally as a continuous structure to attach to 

the hook of the hamate and base of the fifth metacarpal respectively. The final ligament 

originating on the ulnar side of the wrist is the UC ligament, which some consider part of an 

arcuate or deltoid ligament (Figure 2.2-1).[4] The UC ligament originates from the base of the 
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radial styloid and part of the palmar radioulnar ligament. It courses distally with some fibers 

inserting on the triquetrum and pisiform. Many fibers continue distally past this point around the 

distal margin of the palmar horn of the lunate. At this point, the UC fibers begin to blend with 

the terminal fibers of the RSC ligament. The blending of the RSC and UC ligament give the 

appearance of a deltoid ligament. From a functional point of view, the palmar ligaments depict a 

“V” shape formed by the extrinsic RSC, UC, and UL ligaments with the intrinsic TC, TH, and 

SC ligaments.[71]  

Only one extrinsic ligament exists on the dorsum of the wrist, the DRC ligament (Figure 

2.2-1). The DRC ligament originates from the dorsal margin of the distal radius just distal to 

Lister’s tubercle. This band courses ulnarly and distally to insert on the dorsal rim of the 

triquetrum. This ligament forms the floor of the fourth, fifth and sixth extensor tendon 

compartments. At the DRC ligament’s termination, fibers from the DRC blend with fibers from 

the dorsal intercarpal (DIC) ligament (Figure 2.2-1).  
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Figure 2.2-2: Palmar (top) and dorsal (bottom) views of the intrinsic ligaments [20] 

 

 

 

 



  26

2.2.2 Intrinsic Ligaments 

Intrinsic ligaments (Figure 2.2-2) play an important role in stabilization, mobility, and 

mechanical integrity. The difference between ligaments that span the mid-carpal joint and those 

that do not can be seen in the specific roles of the ligaments. There are only a few intrinsic 

ligaments that span the mid-carpal joint, which could explain the relatively great mobility 

between the proximal and distal carpal rows. These ligaments are most importantly stabilizers. 

The palmar intrinsic midcarpal ligaments are the scaphotrapziotrapezoid (STT) ligament, the 

scaphocapitate (SC) ligament, the triquetrocapitate (TC) ligament, the triquetrohamate (TH) 

ligament, and the pisohamate (PH) ligament. The only midcarpal ligament on the dorsum of the 

carpus is the dorsal intercarpal (DIC) ligament. The intrinsic ligaments that do not span the mid-

carpal joint, called interosseous ligaments, are confined to either the proximal or distal carpal 

rows and play a substantial role in maintaining the mechanical integrity of each row. The 

proximal row intercarpal ligaments are the scapholunate (SL) ligament, the lunotriquetral (LT) 

ligament, and the pisotriquetral (PT) ligament, while the distal row interosseous ligaments and 

the trapeziotrapezoidal (TT) ligament, the capitotrapezoid (CT) ligament, and the capitohamate 

(CH) ligament. 

Beginning radially, the first intrinsic ligament that crosses the mid-carpal joint is the STT 

ligament (Figure 2.2-2). The STT fibers originate from the palmar surface of the distal pole of 

the scaphoid and fans out to form two bands: one that attaches to the trapezium and another that 

attaches to the trapezoid. Each band courses distally to insert into the palmar proximal surface of 

the trapezium near the tubercle of the trapezium and the proximal palmar surface of the 

trapezoid. Just ulnar to the STT, the SC ligament originates at the waist of the scaphoid just 

distal to the course of the RSC (Figure 2.2-2). It courses distally and ulnarly to insert onto the 
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radial half of the palmar surface of the head of the capitate near the insertion of the 

capitotrapzoid ligament. The STT and SC ligaments have been shown to play an important role 

as major distal stabilizers of the scaphoid.[4] The TC ligament originates from the triquetrum on 

the ulnar side of the wrist (Figure 2.2-2). Its origin is adjacent to the attachments of the LT and 

UT ligaments. The TC ligament courses distally and radially toward the body of the capitate 

where it attaches to the ulnar side of the capitate, and it terminates just proximal to the 

interosseous CH ligament. Ulnar and distal to the TC ligament, the TH ligament spans the 

midcarpal joint between the triquetrum and hamate. The TH ligament originates from fibers in 

the distal half of the pisotriquetral joint ligament on the distal-palmar portion of the triquetrum. 

The TH lies just palmar to the PH ligament and inserts broadly on the body of the hamate near 

the base of the hamulus, with no major insertion onto the proximal pole of the hamate. The PH 

ligament originates from the distal half of the pisiform just above the pisotriquetral joint (Figure 

2.2-1). The PH ligament is a direct continuation of the tendon of the FCU muscle tendon beyond 

the pisiform. It courses distally to the hook of the hamate where it terminates by inserting into 

the tip of the hamulus. Just ulnar to the origin of the PH, there also exists the pisometacarpal 

(PM) ligament that acts as a second direct continuation of the FCU that spans the distance 

between the distal pisiform and proximal base of the fifth metacarpal. Both the PM ligament and 

PH ligament are similar in structure and function: both are cordlike and meant to act as 

continuations of the FCU. [20]  

On the dorsum of the hand, the only ligament spanning the midcarpal joint is the dorsal 

intercarpal ligament (Figure 2.2-1). The DIC ligament originates on the dorsal surface of the 

triquetrum, continuous with fibers from the DRC. It courses distally and obliquely radially 

towards the dorsal scaphoid, trapezium and trapezoid. The main part of the ligament fans out and 
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inserts into the dorsal ridge of the waist of the scaphoid. Other fibers continue radially and 

distally to insert into the dorsal cortices of the trapezoid and, to a lesser extent, the trapezium.  

The interosseous intrinsic ligaments within the proximal and distal carpal rows of the 

wrist are composed of dorsal and palmar regions and connect two adjacent carpal bones. Within 

the proximal row, there are three interosseous ligaments: the SL ligament, the LT ligament, and 

the PT ligament. Both the SL and LT ligaments have true palmar and dorsal components, with 

the palmar regions being longer than the dorsal regions.  

The SL ligament is a “C”-shaped ligament that spans the interval between the dorsal, 

proximal and palmar edges of the scapholunate joint surface (Figure 2.2-2) . The SL ligament has 

a dorsal region and palmar region. The dorsal region is a thick ligament that spans the space 

between the dorsal horn of the lunate and the proximal pole of the scaphoid. The palmar region 

of the SL ligament is thinner and courses distally from the proximal lunate to the scaphoid. Ulnar 

to the SL ligament is the LT ligament. The LT ligament is very similar to the SL ligament, in that 

it is also “C”-shaped. It also has a dorsal and palmar region. The main difference between the SL 

and LT ligament is in the size and orientation. The dorsal and palmar regions of the LT ligament 

are relatively thick. The dorsal region interdigitates with fibers from the DRC ligament at the 

level of insertion on the triquetrum. The palmar region of the LT ligament originates at the ulnar 

edge of the horn of the lunate and courses ulnarly across the lunotriquetral joint space. It inserts 

into the palmar surface of the triquetrum combining with fibers from the UC, PT, and TC 

ligaments. The third proximal row intrinsic ligament is the pisotriquetral ligament. The PT 

ligament is a horseshoe shaped structure that wraps around the perimeter of the pisiform-

triquetrum joint. The ligament connects the lateral, distal, and medial edges of the joint. The PT 
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ligament is composed of short parallel fibers directly connecting the edges of the pisiform and 

triquetrum.  

Individual intrinsic ligaments within the distal row are found on the palmar and dorsal 

surfaces of the adjacent carpal bones. Within the distal carpal row, there are three interosseous 

ligaments: the TT ligament, the CT ligament, and the CH ligament.  These ligaments span the 

joint and are not easy to separate anatomically.  

The TT ligament connects the trapezium to the trapezoid on both the palmar and dorsal 

cortical surfaces (Figure 2.2-2). The proximal and distal surfaces of the TT joint are in open 

communication with the STT and first and second metacarpal joints respectively. Ulnar to the TT 

ligament is the CT ligament. The CT ligament consists of palmar and dorsal regions composed of 

short, transversely oriented fibers spanning the joint space. The palmar region attaches to the 

body of the capitate just distal to the attachments of the SC and TC ligaments. The dorsal 

ligament band is present on only the distal half of the surface of the capitate. Deep within the 

articular surface between the capitate and trapezoid is a matched offset or recess in the articular 

surfaces. Spanning this joint space is the deep CT ligament (Figure 2.2-3). The ligament courses 

obliquely dorsal to palmar from the trapezoid to the capitate. Finally, the CH ligament is the last 

intrinsic ligament in the distal carpal row. The CH ligament, like the CT ligament, has a palmar 

and dorsal component as well as a deep region. The dorsal and palmar regions of the CH 

ligament connect the dorsal and palmar outermost parts of the hamate and capitate bodies. The 

palmar region is located distal to the insertions of the TC and TH ligaments. The capitohamate 

joint has a non-articular recess created from the “pan-handling” of the articular surfaces. The 

recess is located at the palmar and distal extreme of the ulnar surface of the capitate and the 
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radial surface of the hamate. The deep region of the capitohamate ligament is located in this 

recess and fills the entirety of this non-articular region (Figure 2.2-3). 

 

Figure 2.2-3: Transverse section of wrist through the distal carpal [20] 
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2.2.3 The Triangular Fibrocartilage Complex 

The triangular fibrocartilage complex is sometimes considered an extrinsic ligamentous 

structure connecting the ulnar side of the carpus to the distal ulna, although its structure and 

function make it unique. Components of the TFCC stabilize the distal radioulnar joint, translate 

and diffuse forces from the wrist to the ulna, and stabilize the lunate within the radiolunate 

fossa.[71] The complex consists of the articular fibrocartilage disc, dorsal and volar radioulnar 

ligaments, ulnolunate ligament, ulnotriquetral ligament, meniscal homologue, and the extensor 

carpi ulnaris tendon sheath (Figure 2.2-5).  

The TFCC is a biconcave structure that stretches from the sigmoid notch of the radius to 

the ulnar styloid process. It can attach to both or either the fovea at the base of the styloid and the 

tip of the styloid. The dorsal and volar radioulnar ligaments attach the dorsal and volar margins 

of the sigmoid notch and form the dorsal and volar borders, respectively, of the articular disc. 

The UL and UT ligaments extend from the volar ulnolunate ligament to the volar aspect of the 

lunate and triquetrum, respectively and do not necessarily insert on the distal ulna. In the central 

portion between the dorsal and volar radioulnar ligaments, there exists a weight-bearing 

cartilaginous disc that articulates with the lunate and triquetrum.  

While the function and structure of the TFCC is somewhat unclear, it has been accepted 

that the TFCC has a nonhomogeneous structure with a central cartilaginous portion and 

peripheral fibrous portion with multiple areas of support. The TFCC may function as a buffer or 

cushion between the distal end of the ulna and the radioulnar carpal joint.[71] The triangular 

fibrocartilage complex also serves as the primary ligament of support for the radius to the ulnar 

side of the carpus with the TFCC carrying about 20% of the axial load from the wrist to the 
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forearm.[20] What is unclear is the exact role of the TFCC in maintaining support for the distal 

radioulnar joint compared with other associated structures.  

 

 

Figure 2.2-5: The ulnocarpal triangular fibrocartilage complex [20] 
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2.3 RETINACULAR AND MUSCULAR ANATOMY 

The retinacular system of the wrist is in place to maintain a normal relationship between 

the tendons crossing the wrist and its capsular structures. The flexor and extensor retinacula are 

circumferential distal extensions of the deep antebrachial fascia. The retinacula serve as pulleys 

for extrinsic tendons, redirecting the line of action of the tendons passing by them, and they serve 

as an interface to protect their confined contents from direct pressure.  

The radial attachment of the flexor retinaculum is found on the palmar surfaces of the 

scaphoid and trapezium, and the ulnar attachment is found on the pisiform and hamate. This 

encloses the region of the wrist commonly called the carpal tunnel (Figure 2.1-3). The carpal 

tunnel contains all the flexor tendons of the forearm except for the flexor carpi ulnaris (FCU) and 

flexor carpi radialis (FCR). The FCU is the only forearm muscle with an insertion actually on the 

carpus; the FCU attaches to the proximal surface of the pisiform, with the aforementioned 

pisohamate and pisometacarpal ligaments acting as an extension of the FCU tendon. The FCR is 

found within a separate tunnel where the antebrachial fascia splits to form a fibro-osseous 

septum. This septum forms the sheath of the FCR tendon that inserts on the tubercle of the 

trapezium, staying palmar and radial to the carpal tunnel. The FCR tendon inserts on the palmar 

aspect of the base of the second metacarpal. The FCU and FCR are the main flexors of the wrist 

(Figure 2.3-1). 
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Figure 2.3-1: Flexors of right forearm (palmar view) [60] 

The dorsal retinaculum of the wrist is also derived from the deep forearm fascia and 

generally contains six major compartments, numbered in sequence from radial to ulnar (Figure 

2.3-2). The first compartment is found on the dorsoradial surface of the distal radius and contains 

the abductor pollicis longus (APL) and extensor pollicis brevis (EPB) tendons. The second 

compartment spans the dorsum of the wrist from the termination of the first extensor 

compartment to the radial side of Lister’s tubercle and contains the extensor carpi radialis longus 

(ECRL) and extensor carpi radialis brevis (ECRB) tendons. The third compartment contains the 
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extensor pollicis longus (EPL) tendon and lies just ulnar to Lister’s tubercle. The fourth extensor 

retinaculum compartment, containing the extensor digitorum communis (EDC) and extensor 

indicis proprius (EIP), lies on the most ulnar portion of the dorsal surface of the radius. The fifth 

compartment is found in the region just dorsal to the distal radioulnar joint and contains the 

tendon of the extensor digiti quanti (EDQ). The sixth compartment is located on the dorsal-ulnar 

surface of the distal ulna and contains the tendon of the extensor carpi ulnaris (ECU). The main 

tendons of use in wrist extension are contained in extensor retinaculum compartments two and 

six, which house the ECRB, ECRL, and ECU. 

 

Figure 2.3-2: Extensor retinaculum compartments [60] 
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3. THREE DIMENSIONAL SOLID BODY MODEL 

 

Rigid body modeling of the wrist predicts both soft tissue and bony surface contributions 

of the fifteen bones in the carpus and integrates the articular contact between those bones.  A 

precise three-dimensional (3-D) reproduction of the wrist is essential when beginning to create 

an accurate rigid body model. To accomplish this, high resolution computed tomography (CT) 

scans were obtained from a cadaveric specimen to translate the bony geometry into a 

representative stack of 2-D images. Commercially available software was then used to transform 

the 2-D images into 3-D solid bodies. Upon obtaining an accurate solid body representation of 

the wrist, COSMOSMotion was used to create ligamentous and muscular forces to reproduce 

soft tissue constraints.  

 

3.1 COMPUTED TOMOGRAPHY (CT) 

A right fresh frozen upper extremity, including the shoulder joint, was harvested from a 

52 year old white male cadaveric specimen. The arm was free from any obvious deformities, and 

the appendage did not appear to have any musculoskeletal abnormalities that would change 

normal biomechanical function. The appendage was placed onto the table of a SOMATOM 

Sensation 64 helical scanner (Siemens AG, Forcheim, Germany) (Figure 3.1-1). Consideration 

was given to the positioning of the wrist as close to neutral as possible by inspection. The 

position of the wrist defined as neutral flexion/extension and neutral radial/ulnar deviation by 
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Wu et al is when the third metacarpal long axis is parallel to the long axis of the radius.[85] 

Therefore, the long axis of the radius and third metacarpal of the cadaver were positioned 

roughly parallel to each other and normal to the transverse plane of the scanner. In the end, it was 

determined that the wrist was positioned only slightly out of the neutral position demonstrating 

0.73 degrees of flexion and 7.63 degrees of ulnar deviation. These initial angles were taken into 

consideration in the final range of motion measurements discussed in Chapter 4. 

 Scans were taken in high resolution 0.4 millimeter increments in order to better capture 

the tight spaces between the articular surfaces. The scan totaled 2283 2-D slice images. For this 

model, only the slices containing the distal radius and ulna and the bones of the carpus were 

needed, while the remaining slices were taken for use in future modeling. Each 2-D image had a 

resolution of 512x512 pixels with each pixel containing 12 bits of data. Each of these images 

shows the density of different regions within that particular slice with bone being the densest and 

soft tissue being the least dense.  

 

Figure 3.1-1: Cadaver specimen on CT table in neutral position 
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3.2 MASK CREATION 

Once the right upper extremity was scanned, the commercially available medical imaging 

software MIMICS (Materialise’s Interactive Medical Imaging Control System, Materialise, Ann 

Arbor, MI) was used to transform the 2-D CT images into 3-D triangulated bodies.  The stack of 

DICOM (Digital Imaging and Communications in Medicine) images was imported in order of 

image capture. The CT scan produces voxels, the three-dimensional equivalent of a pixel, and 

MIMICS isolated voxels according to Hounsfield units, where the grayscale value within each 

voxel is constant. 

MIMICS was then used to threshold out certain “noisy” voxels in these images. For the 

solid body model, only the bony bodies are needed. The CT images contain the bone, all soft 

tissue surrounding the bone, and the CT patient table as well. The most effective and dramatic 

way to eliminate all of the extraneous voxels and yield only bony surfaces is to adjust the global 

threshold value in MIMICS. By assigning a global threshold value, MIMICS automatically turns 

on any mask voxels where the corresponding CT number is equal to or above the assigned value 

and eliminates any voxel that is less than the assigned volume.  

This thresholding process removed data from the CT images according to the 

radiodensity of each pixel, and thus allowed the user to remove the less dense material and leave 

the more dense bone. In thresholding, the user can select from various ranges of Hounsfield units 

(HU) that allow the desired tissue pixels to become active (bright) and all unwanted pixels to 

become inactive (dark). The Hounsfield scale is a standardization of the relative linear 

attenuation coefficient of a radiographed body compared to that of water. The preset thresholding 

option for bone that is native to MIMCS is 226 to 1743 HU, however this value did not 

necessarily represent the best value for capturing the entirety of the bony surfaces. Trabecular 
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bone has a much lower density and correspondingly lower linear attenuation coefficient. The 

thresholding value was adjusted downward until a satisfactory value including all bony regions 

with limited noise and soft tissue interference was reached (Figure 3.2-1). This value of 180 to 

1743 Hounsfield Units captures the majority of trabecular and cortical bone, while not including 

other soft tissues. These sets of arranged images sharing common threshold values are grouped 

into “masks” within MIMICS for further editing.  

 

Figure 3.2-1: Use of thresholding to include more cortical and trabecular bone in distal radius and ulna 
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3.3 MASK EDITING AND THREE-DIMENSIONAL BODY CREATION 

The simplest method for mass editing the mask was using the crop and multiple slice edit 

tools incorporated in the MIMICS software. As stated previously, the entire upper extremity, 

including the shoulder joint, was scanned, but for the purpose of this model, only the carpus and 

its articulations were needed. The cropping function is parallel to any traditional cropping tool, 

and can be used in concert with the multiple slice editing function. In the multiple slice editing 

tool, changes made to one 2-D DICOM image can be copied up or down multiple slices to 

expedite the separation process. Using these tools, the proximal portion of the upper extremity 

was cropped and removed from the mask leaving only the distal radius and ulna along with the 

carpus, metacarpals and phalanges. This vastly reduced the file size by eliminated numerous 2-D 

slices that were not needed in this study. By this simple modification, the number of 2-D slices 

decreased from 2283 images to 644 images. 

The cropping tool was used to deselect active voxels that were outside the smallest area 

that contained the bony surface of the wrist. Once this was done, the multiple slice editing tool 

was used to deselect those highlighted voxels that were considered extraneous and not part of the 

bony surface. As seen in Figure 3.3-1, the outlying pixels from the CT table can be easily 

distinguished from the outer surface of the bone by cropping, and the slice editing tool was used 

to delete the extra pixels from the image to separate bone from all other tissues and surfaces.  



  41

 

Figure 3.3-1: Materials with a high linear attenuation are present in scan  

Once an overall mask with a set thresholding value was chosen that included all osseous 

surfaces of interest with minimal noise, each individual bone was given its own respective mask 

in order to simplify mask manipulation and to allow subsequent individual 3-D body acquisition 

later in the model acquisition process. This was particularly important in differentiating 

respective articulating surfaces where bones are in close proximity to one another, which is 

inherently present in the wrist. Each bone must be carefully separated from the neighboring 

bones in order to create the individual articulating surfaces in the solid model (Figure 3.3-2). 

Often, a mask contained jagged edges around the bony surface due to the porosity of trabecular 

bone or very thin cortical bone. The thresholding value chosen captured the majority of the bony 

surface geometry, but sometimes it contains discontinuities that incorrectly display the surface 

geometry of the model. Because the accuracy of the solid body model rested on the accuracy of 

the surface geometry of the articulating surfaces, manual editing was used to compensate for the 

surface irregularities. For every mask representing an individual bone, the manual slice edit tool 

was used to fill in gaps in the surface contour to ensure precise surface geometry as well as 

separate each bone.  
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Figure 3.3-2: Manual slice editing to separate distal radius and ulna 

MIMICS is able to analyze each CT slice in a given mask and produce a set of 2-D 

contours called polylines that outline active voxels creating closed loops of cortical bone within 

each slice. Once the cortical shell of the bone had been captured by the polyline contours, the 

inactive voids representing trabecular bone or medullar space could be filled using the fill 

polylines command. Thus, by ensuring the cortical shell was captured and then filling the interior 

voids, each mask was made solid without manually filling low attenuation areas. These lines can 

also be used as a check to ensure that the entire surface geometry was captured and there are no 

cavitations in the polylines (Figure 3.3-3). If a void existed, the slice had to be manually edited to 

include all bone not represented in the mask. Once the fifteen bones of interest had each been 

defined by a separate continuous mask, MIMICS was used to perform a cavity fill to create a 

solid body for each bone (Figure 3.3-4). MIMICS created the solid bodies by interpolating the 

voxel space between the 0.4 mm image slices, and then surfaces of each bone were triangulated. 
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Figure 3.2-3: MIMICS screen capture illustrating use of polylines to check boundary of bony surfaces 

 

 

 

Figure 3.3-4: Interpolation of polylines to create solid body of distal radius 
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3.4 THREE-DIMENSIONAL BODY REMESHING 

After ensuring that the surface geometry was accurate and there were no gaps or 

extraneous noise, the surface of each solid body was modified to increase quality and reduce the 

file size. MIMCS created the 3-D bodies by detecting the boundaries within each slice and then 

created a linear interpolation between successive slices in a given mask. These combined 

surfaces were represented through triangulation in the remesh module. Originally, the solid 

bodies contained thousands of triangular facets for each bone in a variety of sizes and angular 

ratios. Each triangular facet is described by twelve Cartesian coordinates: three for each vertex of 

the triangle and three more for the directional unit vector. These triangular facets were modified 

using the MIMICS remeshing module with two surface modification operations: triangle 

reduction and smoothing. In remeshing, MIMICS can selectively remove and combine triangles 

resulting in a smooth 3-D body with a more manageable number of triangles. A perfect mesh 

would consist of all equilateral triangles. While this may not be completely possible, a more 

consistent and regular mesh performs better in computational simulations. 

The triangle reduction surface modification in MIMICS eliminates highly acute triangles, 

with a single triangle reduction algorithm reducing the initial mesh size of over 100,000 triangles 

down into the tens of thousand making the model much more manageable and efficient. When 

the model has over 100,000 triangles, SolidWorks has difficulty importing the solid bodies. 

MIMICS uses a shape threshold to evaluate the acuteness of triangles and a parameter called “R-

in/R-out normalized ratio” is used to quantitatively evaluate the shape quality of the surface 

triangulations. R-in/R-out is a ratio of twice the radius of an inscribed circle to the radius of an 

ascribed circle and that value is then normalized to two creating a dimensionless value between 0 

and 1. An equilateral triangle would have a value of 1, and triangles with a very low value 
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usually contain highly acute and obtuse inner angles. The threshold value was set at 0.3, and all 

triangles below the ratio were effectively eliminated. Depending of the initial quality of the 

mesh, this function would have an insignificant to minor effect on the total number of triangles 

but would greatly improve the resulting quality of the mesh. [2] 

After the threshold was set, the next step in triangle reduction was evaluating triangle 

edge angle. Here a threshold angle was assigned that defined the minimum angle to preserve 

shape geometry. This meant that any two triangles that meet with an angle below this value 

could be approximated as a single facet in one plane, and any two triangles that met at an angle 

above this value were identified as representing a unique curvature and thus preserved to keep 

the original surface contours. The flip threshold angle was set at 15 with a geometric error 0.05 

to ensure that the total 3-D volume was virtually unaffected from the triangle reduction. 

Next, a smoothing operation was performed to remove some of the small cavitations and 

discontinuities on the bony surface. This process examines each triangular vertex position and 

evaluates them according to the weighted contributions of its neighboring triangles. The 

smoothing operations looks at triangles sharing a common vertex and assigns weights to the 

adjoining triangles given according to the Smoothing-Factor ratio. When this ratio is low, the 

initial position of the vertex of the adjoining triangles is predominately responsible for the new 

vertex position, while if the ratio is high (approaching 1), then weights of all adjacent triangles 

are considered equally. Each vertex was no longer fixed, and this method of smoothing then 

moved the vertices according to Equation 3-1 through 3-3 given below.  

Specifically, the adjoining triangles sharing a common vertex v* have other vertices (v1, 

v2,…,vk). The difference between the common vertex coordinates and the vertex coordinates of 
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the adjoining triangles is given a weight (W1) according to the Smoothing-Factor in MIMICS 

such that: 

  ∑ −
i

i xxW )(1         (3-1) 

  ∑ −
i

i yyW )(1         (3-2) 

  ∑ −
i

i zzW )(1         (3-3) 

Where (xi, yi, zi) are the Cartesian coordinates of the ith vertex of the adjoining facets. 

The results of Equations 3-1 through 3-3 are the new coordinates of the common vertex after 

applying the smoothing operation. Multiple iterations were needed to reach convergence, and for 

both the smoothing and triangle reduction functions, fifteen was generally the maximum number 

of iterations performed. Figure 3.4-1 demonstrates the remeshing process and end result.  

  

Figure 3.4-1: STL triangulation (left) of distal radius with smoothing (middle) and triangle reduction (right) 
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3.5 SOLIDWORKS 

All bones considered in the wrist complex came out of remeshing with less than 10,000 

high-quality triangular facets. Each solid body had a smooth surface, and was exported as a 

stereolithography (STL) file. The STL file is ideal for computer modeling, as it is compatible 

with nearly all 3-D modeling software packages. SolidWorks is a commercially available 

mechanical CAD (computer aided design) software that has the ability to import these files and 

display the 3D geometry of the solid bodies. Therefore, each bone’s STL file was imported 

separately and saved as its own part to later be joined in an assembly. When SolidWorks imports 

these files, each vertex on a triangular facet is assigned a 3-D point, and each triangular facet is 

rebuilt in 3-D space to create a single body.  

 

3.5.1 Assembly and Reference Planes 

Solidworks has the ability to add multiple parts together to create an assembly that allows 

each solid body free movement with respect to each other. Before these parts were allowed to 

move freely, they were arranged in their correct anatomical position. To do this, a blank 

assembly was created in SolidWorks, and the radius solid part was loaded into the design space. 

The radius was fixed in space to prevent further movement and to provide a reference point for 

each subsequent bone being added to the design space. Then each bone was individually loaded 

into the design space with the radius, and had their reference planes “mated” to the radius’ 

reference planes. The relative positions of each bone was kept consistent from the CT scan to the 

SolidWorks design space by keeping the bones defined in terms of the CT scanner’s reference 

frames. Therefore, by mating each bone’s reference planes to the radius reference planes 

respectively, the bones were each oriented in their anatomical position, as shown in Figure 4.5-1. 



  48

The reference planes and coordinate systems were then defined according with 

recommendations by Wu et al on behalf of the International Society of Biomechanics.[85] 

Separate coordinate systems are necessary to describe relative motion between any two adjacent 

bones. Global wrist motion, as used in this range of motion study, is defined as the motion of the 

third metacarpal with respect to the radius; this motion is achieved by movement of the carpal 

bones with respect to the radius as well as the articulations between the eight carpal bones with 

respect to each other. The wrist was scanned in an approximately neutral position, and reference 

systems were created for the radius and thrid metacarpal using anatomic landmarks. 

   

Figure 4.5-1: Palmar (left) and lateral (right) view of computational model 
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The coordinate system designated for the radius is given with the palm forward (anterior) 

and the thumb lateral, while the dorsum of the hand and forearm face posterior. For a right arm, 

the positive y-axis is directed proximally, the positive x-axis is directed volarly, and the positive 

z-axis is directed radially. This coordinate system was chosen in coordination with the ISB 

recommendations.[85] The origin of the radius was defined as the midway point between the 

distal radius at the level of the interfacet prominence between the radioscaphoid and radiolunate 

fossae, and the proximal radius at the level of the depression in the proximal radial head. The y-

axis was then defined as the line parallel to the long shaft of the radius from the origin to the 

middle of the interfacet prominence. The z-axis is the line perpendicular to the y-axis, and in a 

plane defined by the tip of the radial styloid, the base of concavity of the sigmoid notch and the 

origin. Finally, the x-axis is the common line perpendicular to the y- and z-axis (Figure 4.5-2). 

SolidWorks was used to create sketches of points and connecting lines corresponding to the 

aforementioned anatomical landmarks to set up the coordinate system in the computational 

model.  

 

Figure 4.5-2: Radial and ulnar coordinate systems [85] 
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Similarly for the third metacarpal, the origin was located midway between the base and 

head of the bone at the approximate center in the transverse plane. The y-axis, or long axis, was 

defined the line parallel to a line from the center of the distal head to the midpoint of the base. 

The x-axis is determined by choosing a sagittal plane that will split the metacarpal into mirror 

images (Figure 4.5-3). Finally, the z-axis is the common line perpendicular to the x- and y-axis 

of the third metacarpal. Like the radius definitions, the third metacarpal coordinate system was 

created by sketches of points and lines in Solidworks between relevant anatomical landmarks. 

 

Figure 4.5-3: Coordinate system for the metacarpals [85] 

 

The coordinate systems of the radius and third metacarpal create frames of reference that 

aid in capturing simulation data. The motion data in the range of motion study was collected in 

the anteroposterior (AP) plane and mediolateral (ML) plane. The AP plane is defined by the x- 

and y-axis of the radius, while the ML plane is defined by the y- and z-axis; these reference 

planes were used to measure flexion/extension and radial/ulnar deviation respectively. Using 

these definitions, it is also possible to capture angular changes in the eight individual carpal 

bones with respect to the neutral wrist position. Thus, when the wrist is in neutral position, the 

coordinate systems for each carpal bone (Figure 4.5-4) should be parallel with the radial 

coordinate system. The origin of these coordinate systems is located at the volumetric centroid of 

the bone. 
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Figure 4.5-4: Capitate coordinate system as an example of carpal coordinate systems [85] 

 

3.5.2 COSMOSMotion 

COSMOSMotion is a rigid body simulation package available in SolidWorks that enables 

users to simulate motion by imposing forces, displacements, and boundary conditions for 

interactions between the bodies. In the wrist model, constant force vectors representing muscles, 

tension only spring elements representing ligaments, dampers representing viscoelastic effects 

and contact parameters reflective of the material stiffness were used to dictate the motion and 

interaction between the bony “parts” of the assembly. The COSMOSMotion add-on package can 

also calculate results for any number of variables such as displacements and forces and apply 

gravitational forces. The resulting rigid body model was controlled by only muscle contraction, 

ligament stiffness, and highly accurate 3D articular surface contacts.  
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COSMOSMotion uses the ADAMS solver to model the dynamics of the wrist joint, and 

ADAMS has a number of variable parameters available to change solver settings. The most basic 

motion study properties included setting frames per second to 50, 3D contact resolution to its 

maximum, and geometric accuracy to high. The frames per second setting was a major 

contributor to computation time, and this value was chosen to provide plenty of data in the 

motion study while keeping computation time reasonable. 3D contact resolution and geometric 

accuracy were set to high in order to reduce the amount of error present in the motion study. 

Gravitational effects were included in the model by orienting gravity along the fixed radius, and 

subsequently, a force was applied at the centroid of each bone. Once these basic values were set, 

the advanced motion analysis options were explored.  

ADAMS uses a series of algorithms to iteratively solve the simulation using equations of 

motion and any constraints imposed on the model. A set of coupled differential and algebraic 

equations is used to define the equations of motion in COSMOSMotion, and a numerical 

solution to these equations is obtained by integrating the differential equations while satisfying 

the algebraic constraint equations at every time step. A set of differential equations is 

numerically stiff when there is a wide spread between high and low frequency eigenvalues, while 

the high-frequency eigenvalues are overdamped. The speed of the solution of the equations 

depends on the numerical stiffness of the equations. Stiffer equations result in slower solutions, 

therefore a stiff integration method is the most efficient way to solve a stiff system. ADAMS 

provides the user a number of integrators, however the Gear Stiff Integrator (GSTIFF) was 

chosen because it is a fast and accurate method for computing displacements for a wide range of 

motion analysis problems. [1]  
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There are also a number of other variable parameters that the user can change in 

COSMOS that have effects on capturing events as well as the inherent error. These values, 

highlighted in Figure 3.5-5 below, were assigned with a goal of achieving the most stability, least 

error and fastest computation time. These values were obtained by both recommendations for the 

ADAMS solver, trial and error processes, and communications within the lab. The accuracy and 

minimum step value were set to an extremely low value to ensure that the GSTIFF integrator 

would capture the smallest timed events in the model as well as produce the least amount of 

error. The Jacobian was set at 100% to reevaluate the matrix at every time step to capture all 

rigid body motion, and maximum iterations was set at fifty to provide sufficient iterations to 

converge on a solution and capture all motion. Once all motion parameters had been set, soft 

tissue anatomy and constraints could be created and the model could move on to motion 

simulations.  

 

Figure 3.5-5: COSMOSMotion Rigid Body Motion Solver Settings 
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Once the solid bodies were imported and all other simulation parameters were set, the 

surface to surface contact settings needed to be set. In this model, the only things prescribing the 

motion of the 3D solid bodies were the defined connecting soft tissues that will be discussed and 

the surface contact parameters of the bones themselves. COSMOSMotion has a 3D contact 

feature that checks for overlap of the solid bodies at each time step in the simulation. If an 

overlap is detected, SolidWorks calculates the volume of overlap and penetration depth, and 

COSMOSMotion applies a force at the centroid of the overlapping volume directed outward 

against both bodies. The magnitude of this force is determined by Equation 3-4, where nF  is the 

separating force, k  is the material stiffness (N/mm), g  is the penetration depth, e  is the 

exponent, maxc  is the maximum damping force, maxd is the penetration depth at maximum 

damping, and 
dt
dg  is the penetration velocity. A number of these parameters were user defined in 

COSMOSMotion. The material stiffness, exponent, max damping, penetration depth, and 

geometric accuracy can all be altered to change the way that the bodies interact with each other.  

The geometric accuracy was set to its maximum to ensure accurate model geometry and overlap 

volume detection. A high stiffness value of 10,000 N/mm was chosen to keep overlap at a 

minimum. The penetration depth was set at very minimal 0.001 mm, the exponent was set at 

1.75, and the damping coefficient was set at 50 (N/mm-s).  

⎟
⎠
⎞

⎜
⎝
⎛+= maxmax ,,0,0,* dc

dt
dgStepgkF e

n     (3-4) 

Generally, the changing of these values does not drastically change the results of the 

simulation. Only stiffness, penetration depth, and exponent have any effect at all, as damping 

coefficient only affects time and not end position. A series of simulations were run to obtain the 
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chosen parameters. The parameters that provided end results that were the smoothest and most 

consistent with minimal computation time and overlap were utilized for the model. A material 

stiffness value of 10,000 N/mm was chosen to provide a stiff material to keep overlap at a 

minimum. This value was also low enough to prevent ringing and increased computation time, as 

stiffer bodies tend to cause integration difficulties. Most material exponent defaults provided in 

SolidWorks ranged from 1.5 to 2, and a median value of 1.75 was used in the model. Geometric 

accuracy was set to a maximum and penetration depth to a minimum to ensure that each 

triangulated body was faithfully represented and overlap of these bodies was kept minimal. 

Friction inside the joint was considered negligible and was therefore omitted.  
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3.6 MODELING OF LIGAMENTOUS STRUCTURES 

The ligamentous structures present in the wrist were represented as linear tension only 

forces. The orientation and attachment sites for the ligaments were gathered from anatomic 

books and scientific literature. The mechanical properties of the ligaments were based on 

published cadaveric experiments, and as with any research, there was abundant variation across 

the literature. The ligaments were modeled in COSMOSMotion as straight line force vectors, and 

the forces were based on their dynamic length. 

 

3.6.1 Origins and Insertions 

The origins and insertions of the modeled ligaments were based on anatomic texts and 

articles describing the ligaments of the wrist in reference to the adjacent bony segments. 

[8,9,11,18,20,54,57,60,70,71,82] There is considerable variation in the literature concerning the 

ligamentous anatomy of the wrist. This may be a result of the relatively high number of 

ligamentous constraints in such a small capsular joint. Certain texts omit various ligaments, 

while others combine what some consider two separate structures into one. The ligaments 

created in this model reflect the ligamentous anatomy described in Chapter 2 and are 

summarized in Table 3.6-1. 

Each ligament was given at least four attachment points representing the broad insertion 

of many of the ligaments. Originally, each ligament was represented by only two points (one 

insertion and one origin), but this amount of constraint was not sufficient. Many of the ligaments 

in the wrist have very wide insertions and origins, and a single line of action force could not 

adequately reproduce the amount of constraint provided by a ligament. Therefore, each 
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ligamentous structure was reproduced by creating two forces representing the medial and lateral 

or distal and proximal margins of the ligament. This required two points on each adjoining bone. 

Interosseous ligaments were given eight attachment points (four dorsal and four palmar), because 

these ligaments continuously span the joint space between adjacent bones and appear on the 

palmar and dorsal aspects of the wrist. Anatomical landmarks referenced in literature were 

identified on the solid bodies and were used to accurately reproduce the ligament origins and 

insertions. Figure 3.6-1 through Figure 3.6-5 show the modeling of the ligamentous constraints 

present in the carpal region of the model.  

The insertion and origin points for each ligament were sketched as 3-D points coinciding 

with nodes on the triangulated surface of the two adjoining bones. During the solid body creation 

process described in section 3.3, vertices from the triangulated surface were available to use as 

attachment sites for ligamentous constraints. Lines of action for all soft tissue ligaments were 

represented as straight line vectors between the origin and insertion. The RSC ligament has its 

origin on the radius and courses distally to insert on the scaphoid and the capitate. Therefore, to 

adequately represent the two insertions, the ligament had to be represented by two different 

elements, a radioscaphoid (RS) portion and radiocapitate (RC) portion as shown in Figure 3.6-1. 

Similarly, the STT ligament has its origin on the distal scaphoid and courses distally to insert on 

the trapezium and trapezoid. This ligament was represented in the model by three elements, two 

inserting on the trapezium and a third inserting on the trapezoid as show in Figure 3.6-3. The 

distal radioulnar ligaments were not modeled because the radius and ulna were fixed in space, 

thus preventing any relative motion between them. The intermetacarpal and carpometacarpal 

ligaments were represented by only one linear-tension band each and are shown in the Figure 

3.6-5 below. 
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Figure 3.6-1: Modeling of pisohamate ligament and palmar extrinsic ligaments 

 

 

 

Figure 3.6-2: Modeling of the dorsal radiocarpal and dorsal intercarpal ligaments 
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Figure 3.6-3: Modeling of palmar intrinsic ligaments 

 

 

 

Figure 3.6-4: Modeling of dorsal intrinsic ligaments 
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Figure 3.6-5: Modeling of carpometacarpal and intermetacarpal ligaments 

 

3.6.2 Ligament Properties and Modeling 

Each ligament’s mechanical properties were modeled based on published cadaveric data 

and previous modeling studies. In the event that a ligament’s mechanical properties were not 

available in a publication, the average value of that ligaments group properties (intrinsic or 

extrinsic) was used. Various scientific publications provide stiffness, modulus, in situ strain, and 

stress free length data for a number of ligaments. To model the ligaments, stiffness values 

(N/mm) were used in place of modulus values, because modeling of the ligaments did not 

incorporate their cross-sectional areas. If a modulus value was published, these values could be 

converted into stiffness values by factoring out geometry (Equation 3-5). The ligament stiffness 

values given in Tables 3.6.1 and 3.6.2 were obtained from load-displacement data published in 

literature [53] or determined from mechanical testing of bone-ligament-bone preparations. 

[32,53,74,75] The stiffness values for all ligaments considered in the model varied from 40 to 
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350 Nmm-1. The carpometacarpal and intermetacarpal ligaments are not listed in the tables 

below; these ligaments were assigned a stiffness of 100 Nmm-1. These stiffness values chosen in 

the model were also in general agreement with Nowak’s and Savelberg’s ligament mechanical 

properties studies. [62,73] 

Length
ThicknessWidthModulusStiffness ∗

∗=     (3-5) 

Ligaments were modeled as tension-only spring elements that provide no resistance to 

compression. COSMOSMotion does not have a tension-only spring element feature built into the 

program, it provides only simple spring elements that resist tension and compression. Therefore, 

an action-reaction force vector was applied connecting insertion and origin of each ligament, and 

a custom FORTRAN code written as an If statement was used to express tension in terms of the 

stiffness, displacement, and stress free length (Equation 3-6).  

 

If((Lig. Length)-(Zero Length): 0, 0, Stiffness*((Lig. Length)-(Zero Length))) (3-6) 
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Table 3.6.1: Extrinsic Ligament Mechanical Properties 

Abbreviation Ligament Name Stiffness (N/mm) Total Ligament 
Stiffness (N/mm)

LRL-L Long Radiolunate-Lateral 18.75
LRL-M Long Radiolunate-Medial 18.75
RC-L Radiocapitate-Lateral 25
RC-M Radiocapitate-Medial 25
RS-L Radioscaphoid-Lateral 25
RS-M Radioscaphoid-Medial 25
SRL-L Short Radiolunate-Lateral 18.75
SRL-M Short Radiolunate-Medial 18.75
UC-L Ulnocapitate-Lateral 25
UC-M Ulnocapitate-Medial 25
UL-L Ulnolunate-Lateral 20
UL-M Ulnolunate-Medial 20
UT-L Ulnotriquetrum-Lateral 20
UT-M Ulnotriquetrum-Medial 20
DRC-D Dorsal Radiocarpal-Distal 37.5
DRC-P Dorsal Radiocarpal-Proximal 37.5

Palmar

Dorsal

37.5

50

37.5

50

40

40

75

50

 

 

The FORTRAN code written in COSMOSMotion required the use of a result plot that 

tracked the instantaneous magnitude of the distance between the insertion and origin points of 

each ligament. This distance was automatically inserted into the force function given in Equation 

3-6 at each time step. The zero length was the measured distance between the two points where 

the ligament force vector would be applied present in the model as it was scanned. The function 

then calculated the difference between the two lengths and used this value to calculate the force 

in the ligament. If the ligament length is longer than the stress free length, the force is calculated 

by multiplying the spring stiffness by the difference in the distance. If the ligament length is 

equal to or shorter than the zero length, there is no tension developed. 
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Table 3.6.2: Intrinsic Ligament Mechanical Properties 

Abbreviation Ligament Name Stiffness (N/mm) Total Ligament 
Stiffness (N/mm)

DIC-D Dorsal Intercarpal-Distal 25
DIC-P Dorsal Intercarpal-Proximal 25
PH-D Pisohamate-Distal 25
PH-P Pisohamate-Proximal 25
SC-D Scaphocapitate-Distal 20
SC-P Scaphocapitate-Proximal 20
STT-L Scaphotrapeziotrapezoidal-Lateral 50
STT-C Scaphotrapeziotrapezoidal-Central 50
STT-M Scaphotrapeziotrapezoidal-Medial 50
TC-D Triquetrocapitate-Distal 20
TC-P Triquetrocapitate-Proximal 20
TH-L Triquetrohamate-Lateral 25
TH-M Triquetrohamate-Medial 25
FR-1 Flexor Retinaculum-1 32.5
FR-1 Flexor Retinaculum-2 32.5
FR-1 Flexor Retinaculum-3 32.5
FR-1 Flexor Retinaculum-4 32.5
DCH-D Dorsal Capitohamate-Distal 81.3
DCH-P Dorsal Capitohamate-Proximal 81.3
PCH-D Palmar Capitohamate-Distal 81.3
PCH-P Palmar Capitohamate-Proximal 81.3
DCT-D Dorsal Capitotrapezoid-Distal 75
DCT-P Dorsal Capitotrapezoid-Proximal 75
PCT-D Palmar Capitotrapezoid-Distal 75
PCT-P Palmar Capitotrapezoid-Proximal 75
DLT-D Dorsal Lunotriquetral-Distal 87.5
DLT-P Dorsal Lunotriquetral-Proximal 87.5
PLT-D Palmar Luntotriquetral-Distal 87.5
PLT-P Palmar Luntotriquetral-Proximal 87.5
PT1 Pisotriquetral-1 25
PT2 Pisotriquetral-2 25
PT3 Pisotriquetral-3 25
PT4 Pisotriquetral-4 25
DSL-D Dorsal Scapholunate-Distal 57.5
DSL-P Dorsal Scapholunate-Proximal 57.5
PSL-D Palmar Scapholunate-Distal 57.5
PSL-P Palmar Scapholunate-Proximal 57.5
DTT-D Dorsal Trapeziotrapezoidal-Distal 37.5
DTT-P Dorsal Trapeziotrapezoidal-Proximal 37.5
PTT-D Palmar Trapeziotrapezoidal-Distal 37.5
PTT-P Palmar Trapeziotrapezoidal-Proximal 37.5

Midcarpal

Interosseous

130

50

50

40

150

40

230

150

100

50

325

300

350
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Each ligament component also included a damping element to resist rapid development 

of ligament tension. The damper tool in COSMOSMotion was used to apply a linear damping 

coefficient of 0.25 N*s/mm to each straight line distance between origin and insertion point. The 

force provided by the damper is proportional to the velocity acting in the opposite direction of 

the two bone’s relative motion. This damper does provide some viscoelastic behavior, but the 

function of the damper was to prevent high speed motion in the computational model, not 

provide physiologic time dependant behavior.  
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3.7 MUSCULAR STRUCTURES 

The four prime wrist motors represented in this study include the ECRL, ECU, FCR and 

FCU. The FCR and FCU loaded together produces flexion, the ECRL and ECU loaded together 

produces extension, the FCR and ECRL loaded together produces radial deviation, and the 

loading the ECU produces ulnar deviation. Active contractions of these muscles were modeled 

by straight line, constant magnitude force vectors inserted onto their respective bony insertions 

and directed toward their respective bony origins. Due to limitations in the COSMOSMotion 

modeling package, the computational model was unable to account for the wrapping of tendons. 

Therefore, MIMICS was used to isolate each distal muscle tendon (Figure 3.7-1) and muscle 

forces were directed along the shortened tendons (Shown in Chapter 4). Tendons were located in 

MIMICS by using the anatomic texts and descriptions provided in Chapter 2. 

 

 

Figure 3.7-1: Cross-sectional view of muscle tendons in MIMICS 
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When possible, the muscle force vectors were shortened to coincide with the proximal 

termination of the flexor and extensor retinacula. Because the retinacula act as a fulcrum for the 

tendons, the force vectors were then lying on the physiological line of action for this tissue and 

the redirection and wrapping of the tendons could be neglected. For instance, the FCR is firmly 

fixed in a fibro-osseous groove formed in part by the tuberosity of the scaphoid and trapezium. 

This tendon travels directly underneath of the flexor retinaculum, and upon exit, it travels 

proximally up the forearm and wraps around the radius and ulna to its insertion on the humerus. 

For modeling simplicity, the line of action origin was located where this tendon exits the carpal 

tunnel. A similar modeling approach was taken for the FCU and for the extensor tendons on the 

dorsum of the hand. The values of the muscular soft-tissue structures modeled are given in Table 

3.7.1. A translational damper of 15 N/sec*mm was also added to each muscle force. The damper 

helped to control rapid acceleration and prevent ringing between bodies. The dampers do not 

affect the end position of the bodies, only the time required to reach the final state.  

Table 3.6.1: Muscle Mechanical Properties 

Abbreviation Muscle Name Anatomic Origin Model Origin Insertion Force (N)

FCR-L Flexor Carpi Radialis, 
Lateral Insertsion 11.12

FCR-M Flexor Carpi Radialis, 
Medial Inerstion 11.12

FCU-L Flexor Carpi Ulnaris, 
Lateral Insertion 11.12

FCU-M Flexor Carpi Ulnaris, 
Medial Insertion 11.12

ECRL-L Extensor Carpi Radialis 
Longus, Lateral Insertion 11.12

ECRL-M Extensor Carpi Radialis 
Longus, Medial Insertion 11.12

ECU-L Extensor Carpi Ulnaris, 
Lateral Insertion 11.12

ECU-M Extensor Carpi Ulnaris, 
Medial Insertion 11.12

Lower one-third of the 
lateral supracondylar ridge 
of the humerus

Dorsum of the 
second metacarpal 
base

Lateral epicondyle of the 
humerus (common 
extensor tendon)

Fifth metacarpal 
base (medial side)

ECRL tendon where 
tendon passes proximal 
extent of extensor 
retinaculm
ECU tendon where 
tendon passes proximal 
extent of extensor 
retinaculm

Medial epicondyle of the 
humerus (common flexor 
tendon)

Second and third 
metacarpal base

Medial epicondyle of the 
humerus (common flexor 
tendon) and medial border 
of olecranon

Pisiform

FCR tendon where 
tendon exits carpal 
tunnel

FCU tendon at distal 
ulna
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4. RANGE OF MOTION STUDY 

 

Pervaiz and colleagues performed a cadaveric study analyzing the range of motion effects 

of distal pole scaphoid excision and triquetral excision following radioscapholunate (RSL) 

fusion. [65] RSL fusion is a proven surgical procedure for treatment of isolated radiocarpal 

arthritis that alleviates pain and stiffness, however, it significantly reduces wrist motion results 

which is a common complaint of patients receiving the procedure. This experimental study was 

thus performed on cadaveric upper extremities to evaluate different techniques to improve the 

motion.  The results of the cadaveric study and computational model were compared and used to 

validate the model.  

 

4.1 CADAVERIC STUDY 

A brief description of the cadaveric study performed previously is given [65]. Ten fresh-

frozen, upper-extremity cadaver specimens ages 49 to 81 (Average age 65±  13) were used. All 

specimens were free of any evidence of wrist trauma, arthritis, or previous surgery. A custom 

designed apparatus (Figure 4.1-1) was used to hold each specimen, as well as provide weight 

activated motion of the wrist. The radius and ulna were fixed in a vertical position while the 

tendons of the FCR, FCU, ECRL, and ECU were loaded by way of a synthetic wire and five 

pound weight in sequence to produce flexion, extension, radial deviation and ulnar deviation. 

The FCR and FCU were loaded together to reproduce flexion, the ECRL and ECU together to 
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reproduce extension, the FCR and ECRL together to reproduce radial deviation, and the ECU to 

reproduce ulnar deviation. 

Two-dimensional photographs were used to track the movement of black markers placed 

strategically in the bones (two on the long axis of the radius and two on the long axis of the third 

metacarpal) and measure the range of motion of the wrist complex (Figure 4.1-1). The digital 

photographs were imported into Image J software (National Institutes of Health, Bethesda, MD), 

and the angles between the two sets of markers were measured to calculate flexion-extension and 

radial-ulnar deviation range of motion. 

 

Figure 4.1-1: Schematic of loading apparatus [65] 
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Figure 4.1-2: Radiographs of RSL fusion (A), distal pole excision (B) and triquetral excision (C) [65] 

 

The range of motion study was conducted for four specific states: intact (normal), RSL 

fusion, RSL fusion with distal scaphoid pole excision, and RSL fusion with distal pole excision 

and triquetrum excision. To represent the RSL fusion state, two 0.0625 inch K-wires were drilled 

across both the radioscaphoid and radiolunate joints to fix the radiocarpal joint (Figure 4.1-2). 

Scaphoid distal pole excision was accomplished by an osteotomy just distal to the waist of the 

scaphoid. After removal of the distal pole, the volar capsule and ligaments were repaired using 4-

0 sutures. Finally, the triquetrum was excised and all excisions were checked via radiograph 

(Figure 4.1-2). 

Thus, the digital images provided experimental data for four motions and positions of the 

wrist – flexion, extension, radial deviation, ulnar deviation – in four states of the wrist complex – 

intact, RSL fusion, RSL fusion + distal pole excision, RSL fusion + distal pole excision + 

triquetral excision. 
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4.2 COMPUTATIONAL MODEL METHODS 

The experimental procedure described by Pervaiz et al was replicated in the 3-D 

SolidWorks design space. Just as in the experimental study, the radius and ulna were fixed and 

constrained from motion. This was achieved simply by using the “fix” feature native to 

SolidWorks. “Fixing” a bone in the design space prevents the part from moving, while all other 

bones in the carpus were free to move or “float”. The third metacarpal was mated or “fixed” to 

the capitate bone. It has been proven that the third metacarpal and capitate move as one unit, and 

in the model the bones did not move relative to each other.[64] All soft-tissues present in the 

cadaveric study were actively modeled as appropriate in the computational study. This included 

all ligaments being activated, and the muscle force vectors being loaded alternately to produce 

flexion, extension, radial deviation and ulnar deviation. Two constant force vector values of 

11.12 N (22.24 N total) were assigned to each tendon modeled to represent the tension of the 5 lb 

weight hung on the FCR, FCU, ECRL, and ECU tendons in the experimental study (Figures 4.2-

1 and 4.2-2). The two blue arrows represent the muscle force vector in the COSMOSMotion 

module. These two force vectors represent the medial and lateral margins of the tendons and the 

line of action of the muscle tendon. The FCR and FCU were loaded together to reproduce 

flexion, the ECRL and ECU to produce extension, the FCR and ECRL for radial deviation, and 

the ECU for ulnar deviation as stated previously. Flexion/extension and radial/ulnar deviation 

angle was recorded for each wrist surgical state.  
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Figure 4.2-1: Muscle force vectors along respective flexion muscle tendons 

 

 

Figure 4.2-2: Muscle force vectors along respective extension muscle tendons 
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Figure 4.2-3: Volar and dorsal view of model with all bones and constraints present 

 

 

4.2.1 Data Acquisition  

Pervaiz and colleagues imported two dimensional digital photographs into the Image J 

software to measure flexion/extension angle in the coronal plane and radial/ulnar deviation in the 

sagittal plane. Similarly, lines created in the SolidWorks design space were used to track the 

motion of the wrist joint complex (Figure 4.2-4). For flexion and extension, two lines were 

created in the coronal plane; one line was drawn parallel to the long axis of the radius, while the 

second was drawn parallel to the long axis of the third metacarpal as defined by the ISB (Chapter 

3). The angle between these two lines was tracked to determine the range of motion of the wrist 
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joint. Likewise, the radial and ulnar deviation angle was calculated by tracking the angle between 

two lines drawn along the long axis of the radius and the long axis of the third metacarpal in the 

sagittal plane (Figure 4.2-4). 

In order to track the angle between the flexion/extension and radial/ulnar deviation lines, 

a result plot was used to measure the angle at every time step. Measurements taken at every time 

step were needed to ensure that the simulation time was sufficient for the model to reach an 

equilibrium state. In COSMOSMotion, angles can be plotted using the angular displacement 

result plot tool. For these plots to track the angle between the radius and the third metacarpal, 

three points are needed: one on each of the long axis lines and the point of intersection between 

the two lines (Figure 4.2-5). Therefore, two different angular displacement result plots were 

needed: flexion/extension angle and radial/ulnar deviation angle in the coronal and sagittal 

planes, respectively. Flexion angle for the intact state of the wrist is demonstrated below. These 

result plots were used to track the motion for the four surgical states: intact, RSL fusion, RSL 

fusion plus scaphoid distal pole excision, and RSL fusion with scaphoid distal pole excision plus 

triquetral excision. 
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Figure 4.2-4: Flexion angle in the coronal plane (A) and radial deviation angle in the sagittal plane (B) 

 

Figure 4.2-5: Result plot feature of COSMOSMotion demonstrating flexion angle 
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4.2.2 RSL Fusion, Scaphoid Distal Pole and Triquetrum Excision Replication 

The wrist was imported into the design space in an intact state. The cadaver specimen 

used to develop the model was free of any obvious trauma or previous surgeries. Therefore, the 

model in the design space is already in the intact (normal) state with all bones of the carpus 

present and free to move with motion dictated by modeled ligamentous and muscular soft 

tissues. In the experimental study, RSL fusion was simulated by using K-wires to fix the 

scaphoid and lunate to the radius. In the computational model, RSL fusion was achieved by 

simply “mating” the scaphoid and lunate to the radius. The “mate” feature in Solidworks creates 

a junction between the three bones, and because the radius is fixed in space, the three bones are 

fixed in space (Figure 4.2-6). Once activated, the radius, scaphoid, and lunate will not move with 

respect to all other bones in the wrist joint complex. In the figure below, the highlighted purple 

bones (scaphoid and lunate) are “fused” to the orange bone (radius). 

 

Figure 4.2-6: Simulated RSL fusion in computational model 
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Pervaiz et al went on to excise the distal pole of the scaphoid via volar approach. Digital 

radiographs taken post osteotomy showed approximately 50% resection. The osteotomy level 

was marked just distal to the waist of the scaphoid, and the cut was performed perpendicular to 

the long axis of the scaphoid in sagittal plane. In order to replicate the procedure followed by the 

experimental study, the scaphoid was duplicated into two different configurations. Solidworks 

allows creation of different part configurations with the ability to interchange these parts 

seamlessly. Therefore, the normal intact scaphoid and distal pole excised state could be 

interchanged without creating an entirely new model for this surgical state or altering any other 

features of the model.  

For the alternate model configuration, the distal pole was excised by first creating a line 

representative of the long axis of the scaphoid in the sagittal plane (Figure 4.2-7). A second 

plane, perpendicular to the long axis, was created that intersected the scaphoid just distal to the 

waist. This plane was used to cut the distal portion of this part and delete the distal pole in this 

configuration. Distal pole excision was comparable between the model (Figure 4.2-8), the 

experimental study (Figure 4.1-2), and postoperative surgical results [5]. 

 

Figure 4.2-7: Scaphoid bone taken out of model (A) and distal pole excised (B) 
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Figure 4.2-8: Scaphoid distal pole excised in computational model  

 

Figure 4.2-9: Representation of triquetral excision in computational model 
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The final surgical state included excision of the triquetrum. This was achieved 

experimentally by gentle cutting all of the ligaments attached to the bone and removing it 

through an incision in the dorsal capsule. This was reproduced in the Solidworks design space by 

suppressing the entire bone. When the bone is suppressed, it is removed from the design space, 

and therefore, all ligaments attached to the bone were also inactive (Figure 4.2-9).
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4.3 RESULTS 

COSMOSMotion was used to track and record a variety of variables in the model 

including angles, distances, and forces. The program’s ability to track all of these variables 

simultaneously allows direct comparison of the results from multiple model configurations to 

one another. The range of motion of the model was tracked to directly compare the model to the 

cadaveric experiment. While this was the only parameter analyzed in the cadaveric experiment, 

other variables, including contact force and ligament tensions, can be predicted and used in 

hopes of locating potential areas of concern in other areas of the wrist.  

Validation of the model was executed by comparing the range of motion results from 

sixteen individual 12 second simulations of the model for each surgical state to the results of the 

Pervaiz cadaver study. Just as was conducted in the cadaveric experiment, comparisons of the 

range of motion results in the normal, RSL fusion, RSL fusion with scaphoid distal pole 

excision, and RSL fusion with scaphoid distal pole excision and triquetral excision were 

calculated and exported in COSMOSMotion. Results for range of motion for both the cadaveric 

experiment and computational model are given in Figures 4.3-1 through 4.3-4. The results from 

the cadaveric experiment represent an average across ten specimens, and the error bars shown 

represent one standard deviation. Results plots were used to track angle with respect to time to 

obtain the angle measurements, and each plot was viewed to ensure that the model had reached a 

steady state and motion had ceased. These plots can be found in Appendix A. 
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Figure 4.3-1: Flexion range of motion results comparison between cadaver and model 
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Figure 4.3-2: Extension range of motion results comparison between cadaver and model 
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Figure 4.3-3: Radial deviation range of motion results comparison between cadaver and model 

 

Ulnar Deviation

0

10

20

30

40

50

60

70

Intact Fused DP Excised Tri Excised

R
an

ge
 o

f M
ot

io
n 

(D
eg

re
es

)

Cadaveric Study
Model Results

 

Figure 4.3-4: Ulnar deviation range of motion results comparison between cadaver and model 



  82

 The range of motion values predicted by the model showed similar trends and 

magnitudes to those seen in the cadaveric experiment For the normal (intact) wrist, the model 

predicted 84° of flexion, 58° of extension, 30° of radial deviation, and 39° of ulnar deviation. 

Range of motion in the model decreased after simulated RSL fusion for each motion with results 

showing 43% of normal for flexion, 41% of normal for extension, 64% of normal for radial 

deviation, and 51% of normal for ulnar deviation. Distal pole excision after simulated RSL 

fusion resulted in increased range of motion for three of the four motions; range of motion 

increased to 59% of normal for flexion, 46% of normal for extension, and 92% of normal for 

radial deviation. Excision of the triquetrum coupled with RSL fusion and distal pole excision 

increased all four motions increasing flexion to 72% of normal, extension to 50% of normal, 

radial deviation to 115% of normal, and ulnar deviation to 155% of normal. 

In flexion, the model was accurately able to reproduce the trend relationship between the 

normal and surgically altered states Figure (4.3-1). Motion decreased following RSL fusion, and 

then increased with subsequent distal pole and triquetral excision. Motion increase was greatest 

following distal scaphoidectomy and modest gains were seen following triquetrectomy, 

emulating experimental results. Only the intact (normal) results fell outside of one standard 

deviation of the measured experimental results. 

Although less pronounced, the model was also able to reproduce the same trends in 

extension. The normal (intact) state and RSL fusion state magnitudes were predicted to be within 

one standard deviation of the experimental results. Following RSL fusion, the model accurately 

predicted the loss in motion. Subsequent scaphoid distal pole excision and triquetral excision 

brought modest gains, however (Fig. 4.3-2).  
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The computational model and the experimental study showed nearly identical trends and 

magnitudes in radial deviation, as each simulation was within the cadaver study’s standard 

deviation (Fig. 4.3-3). Model motion decreased following RSL fusion, and increased with 

scaphoid distal pole excision and triquetral excision, with motion improving most after distal 

pole excision. Radial deviation predictions correlate the best with experimental measurements.  

In ulnar deviation, the model was able to accurately reproduce the trends seen in the 

experiment (Figure 4.3-4). Range of motion following RSL fusion matched that of the Pervaiz 

study, and the model showed minimal improvement following scaphoid distal pole excision, 

reinforcing the lack of a statistical difference found between the two states in the experiment. 

Normal (intact) and triquetral excision states were over-predicted by the model.  

The surgically altered experimental and computational model ROM results are presented 

as a percentage of the intact range of motion state (Table 4.3.1).  The trend for changes to motion 

in all states as predicted by the model correlate well with the experimental findings with most 

values within the reported range. 

Table 4.3.1: Range of motion for intact wrist and percentage of normal for repaired states 

Intact 
(Normal) RSL Fusion

Scaphoid DP 
Excised

Triquetrum     
Excised

Flexion
Cadaveric Study 70°±7 39% (26% - 51%) 79% (70% - 87%) 87% (77% - 94%)

Computational Model 84° 43% 59% 72%
Extension

Cadaveric Study 56°±8 46% (30% - 63%) 72% (57% - 85%) 97% (82% - 111%)
Computational Model 58° 41% 46% 50%

Radial Deviation
Cadaveric Study 30°±8 65% (40% - 93%) 89% (67% - 113%)  119% (100% - 140%)

Computational Model 30° 64% 92% 115%
Ulnar Deviation

Cadaveric Study 31°±5 71% (45% - 97%) 84% (65% - 103%) 137% (106% - 171%)
Computational Model 39° 51% 51% 155%  
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An advantage of computational models is the ability to predict other parameter measures 

that are not or cannot be easily obtained in experimental studies. SolidWorks and 

COSMOSMotion were able to track the forces at the midcarpal joint, and present the results in 

graphical form. In the computational model, the forces at the midcarpal joint were calculated to 

locate potential areas of arthritic development caused by increases in force as a result of surgical 

alteration.  

In flexion, the forces at the scaphoid-trapezoid articular facet and triquetrum-hamate 

articulation in the RSL fusion state were more than double what was predicted in the normal 

state. Distal pole excision relieved the increased pressure at these joints to totals lower than what 

was predicted computationally in the normal state (Fig. 4.3-5). Scapho-capitate and lunate-

hamate contact forces rose sharply with triquetral excision.   
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Figure 4.3-5: Contact force in joints predicted by computational model during flexion 
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In extension, RSL fusion resulted in an increase in contact force at the lunate-capitate 

joint over intact levels, and this force was further increased to a predicted value twice the normal 

value when the distal pole and triquetrum were excised (Fig. 4.3-6). All other forces following 

surgical procedures were at or below their predicted normal values. 
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Figure 4.3-6: Contact force in joints predicted by computational model during extension 

 

Radial deviation model results showed an increase in force at the scaphoid-trapezoid joint 

after RSL fusion over intact levels, and these increases were eliminated with excision of the 

distal pole. Following distal pole excision, the force at the lunate-capitate joint increased to twice 

the normal (intact) force (Fig. 4.3-7). The increase in force at the lunate-capitate joint was 

reduced to a normal value once the triquetrum was excised. 
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Figure 4.3-7: Contact force in joints predicted by computational model during radial deviation 

 

Finally, in ulnar deviation, force increases were seen at the scaphoid-capitate joint after 

RSL fusion and at the lunate-hamate joint after scaphoid distal pole excision (Fig. 4.3-8). Neither 

of these force increases were reduced with subsequent scaphoid distal pole excision or triquetral 

excision. 
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Ulnar Deviation
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Figure 4.3-8: Contact force in joints predicted by computational model during ulnar deviation 

 

COSMOSMotion was also used to track the tension in ligament elements for each of the 

surgical states across motions. Of particular interest in this study were the extrinsic and 

midcarpal intrinsic ligaments that do not insert on the triquetrum. This includes the 

scaphocapitate, radiocapitate, and ulnocapitate ligaments.  Each ligament had a lateral and 

medial fiber, and the total ligament tension was calculated as the sum of its fibers.  
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Figure 4.3-9: Magnitude of the scaphocapitate ligament tension developed during flexion  

 

The total tension developed in the scaphocapitate ligament during flexion across surgical 

states is shown in Figure 4.3-9. The SC ligament showed no tension in the normal state, but 

following RSL fusion, the tension in the ligament increased with each subsequent surgical 

change up to 21.4 N following triquetral excision. A sharp increase in tension was seen 

following distal pole excision (3.3 N to 18.1 N). The RC and UC ligaments did not register 

tension in any of the surgical states during flexion. 
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Figure 4.3-10: Magnitude of ligament tensions developed during extension 

 

Total ligament tensions during extension are shown in Figure 4.3-10 as each ligament 

registered tensions across all surgical states. Ligament tension showed a clear trend of increasing 

from the normal state to triquetral excision. SC ligament tension showed a steady increase across 

surgical states and was nearly double the normal value following triquetral excision (10.2 N to 

19.3 N).  Radiocapitate tension following triquetral excision also predicted values higher than 

that of the normal state, as predicted tension increased 58% (20.9 N to 33.2 N). Ulnocapitate 

ligament tension showed the greatest increase between normal and triquetral excised state, as 

tension increased by nearly 7 times the normal value (3.7 N to 24.9 N). 
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Figure 4.3-11: Magnitude of ligament tensions developed during radial deviation 

 

In radial deviation, similar trends were seen as ligament tension increases were seen in all 

three ligaments following triquetral excision (Figure 4.3-11). Scaphocapitate ligament tension 

following triquetral excision was more than triple what it was predicted to be in a normal (intact) 

state. Radiocapitate tension was not present until after triquetral excision. Ulnocapitate ligament 

tension was not detected in the normal state, but showed values after RSL fusion (8.6 N) and 

following triquetral excision (16.4 N) representing a 90% increase in force between the two 

states.  
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Figure 4.3-12: Magnitude of the scaphocapitate ligament tension developed during ulnar deviation 

 

The total tension developed in the scaphocapitate ligament during ulnar deviation across 

surgical states is shown in Figure 4.3-12. A sharp increase in tension was seen following 

simulated RSL fusion, with a further increase after triquetral excision. Total ligament tension 

following simulated triquetrectomy was over nine times the normal (intact) ligament tension (1.9 

N to 17.9 N). The RC and UC ligaments did not register tension in any of the surgical states 

during ulnar deviation. 
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4.4 DISCUSSION 

The developed computational model was able to reproduce physiologic ranges and trends 

when compared to experimental results.  Our computational model confirmed that RSL fusion 

significantly reduces motion of the wrist in all four directions, and motion improves following 

scaphoid distal pole excision and triquetral excision in all directions. Flexion and radial deviation 

motions improved most with distal pole excision, whereas ulnar deviation motion improved most 

after triquetral excision. In the computational model, extension did not show significant 

improvement with distal scaphoidectomy or triquetrectomy. Additionally, the computational 

model was able to show changes in the forces and tensions in the joints and ligaments, 

respectively, following RSL fusion, distal scaphoidectomy, and triquetrectomy. 

Model range of motion prediction in the normal (intact) state was in general agreement 

with values obtained experimentally. Extension and radial deviation motions were predicted 

within one standard deviation and correlated well. Flexion over-prediction of motion was most 

likely due to the absence of additional soft tissue constraints found in the wrist that could not be 

modeled, such as skin, muscle tendon, and the extensor retinacula. The higher ulnar deviation 

prediction by the model can be explained by the absence of the restraint provided by the 

triangular fibrocartilage complex and its articular disc in the model. Even with over-prediction of 

motion being attributed to absence of various anatomical soft tissue structures, the motion arcs of 

the model are similar to other published range of motion experimental studies. Normal (intact) 

flexion predicted by the computational model was higher than that reported experimentally by 

Pervaiz et al [65] (84° vs 70°±7°), and normal (intact) extension motion was consistent with the 

experimental data (58° vs 56°±8°).  While normal (intact) flexion prediction was higher, the 

computational flexion-extension arc prediction (142°) was well within the experimental 
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cadaveric flexion-extension arc measurements reported by McCombe et al and Berkhout et al 

[10,55] (141° ±9° and 149° ±19°, respectively). Similarly, normal (intact) radial deviation 

prediction by the model was exactly the same as the cadaveric experiment, but ulnar deviation 

was higher in the model. Berkhout measured a larger radial-ulnar deviation arc of 54° (±14°) 

which approached the model’s predicted radial-ulnar deviation arc of 69°, while McCombe 

measured a smaller radial-ulnar deviation arc (49°±9°). Anatomical variations of the ligamentous 

anatomy and differences in the measurement and loading procedures could explain the 

differences between cadaveric specimens across studies. 

The model predictions and measured experimental values for range of motion correlated 

well when simulating radioscapholunate fusion. Following RSL fusion, the scaphoid was not 

allowed to move relative to the radius and motion decreased substantially in all motion 

directions. All predicted values fell within one standard deviation of the experimental study, and 

the values are further validated by the measured motion arcs of Berkhout and McCombe [10,55].  

The computational model results showed an increase in all four ranges of motion after 

scaphoid distal pole excision, with excision of the distal pole having more of an effect on flexion 

and radial deviation.  Removal of the scaphoid distal pole frees up the midcarpal row, increasing 

motion in the joint.  However, excision of the distal pole did not have much effect on extension 

in the model. Distal scaphoidectomy also did not have much of an effect on the ulnar side of the 

carpus, as reflected by minimal gains during ulnar deviation. The model did not show an increase 

in ulnar deviation motion after distal pole excision, which reinforces the lack of a statistical 

difference between the two surgical states in the experimental study [65].  
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Excision of the triquetrum brought further gains in range of motion, with its maximum 

effects on radial (115% motion restored) and ulnar (156% motion restored) deviations, as in the 

experimental study. This differed from the findings of Berkhout et al. [10] where triquetral 

excision restored the flexion-extension and radial-ulnar deviation arcs to only 88% and 98% of 

intact levels, respectively.  The computational model predicted a 63% restoration of flexion-

extension motion and 139% restoration of radial-ulnar deviation motion. Over-prediction of 

ulnar deviation was most likely due to absence of the triangular fibrocartilage complex. 

The computational model was also able to predict carpal forces that could not be obtained 

easily experimentally without damaging native tissue. By fusing the scaphoid and lunate to the 

radius, the kinematics of the wrist are altered significantly. The bones of the proximal row do not 

act as a single unit, and motion of the wrist changes each bone’s position through rotation and 

translation. RSL fusion introduces a blockade to midcarpal joint motion. Clinical studies have 

shown that, following RSL fusion, patients often develop midcarpal degenerative arthritis 

[33,59].  Subsequent scaphoid distal pole excision restores motion at the midcarpal joint, as 

previously shown [10,55,58,65], by removing a strong lever arm that unloads the RSL 

arthrodesis so that fusion rates improve and secondary midcarpal arthritis decreases. Substantial 

increases in force following RSL fusion however can be seen at the scaphoid-trapezoid 

articulation in flexion (113% increase), the lunate-capitate articulation in extension (42% 

increase), the scaphoid-trapezoid articulation in radial deviation (40% increase), and the 

scaphoid-capitate articulation in ulnar deviation (225% increase). These increases in force at the 

midcarpal joint suggest an environment that promotes degenerative arthritis. Excision of the 

distal pole brought relief of the forces at two of these articulations (scaphoid-trapezoid in flexion 

and radial deviation). However, the forces at the lunate-capitate joint in extension and scaphoid-
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capitate joint in ulnar deviation increased and remained the same, respectively, following RSL 

fusion with distal pole excision. The increase in force at the lunate-capitate joint following RSL 

fusion could explain the model’s under-prediction of extension motion as it appears the capitate 

bone is losing motion at this articulation following scaphoidectomy and triquetrectomy. These 

findings also suggest that removal of the distal pole and/or triquetrum does not entirely relieve 

the forces induced by RSL fusion and that progressive arthritis is still a possibility in these areas 

of the midcarpal joint. 

The linear tension-only expression used in COSMOSMotion, provided a means of 

quantifying the tensions in the ligaments during range of motion simulations. The 

scaphocapitate, radioscaphocapitate, and ulnocapitate ligament tensions were of interest in this 

experimental study. The triquetrum is the site of many ligamentous attachments, and removal of 

this carpal bone could transfer stresses from ligaments inserting on the triquetrum to the 

surrounding ligaments. Ligaments inserting on the triquetrum include the UT, DRC, TC, TH, 

DIC, LT, and PT ligaments, and all of these ligaments are destroyed when the triquetrum is 

excised. In addition to removing these ligaments, the extrinsic ligaments inserting on the 

scaphoid and lunate are also essentially non-functional following RSL fusion. These include the 

LRL, SRL, UL and SL ligaments. Excision of the scaphoid distal pole also eliminates constraint 

of the STT ligament. Considering all of the ligaments absent following RSL fusion, distal pole 

excision, and triquetral excision, it was not surprising to find ligament tension increases in three 

of the ligaments remaining that span the midcarpal joint. The extent to which these ligaments 

experienced an increase was quite alarming. Research of the literature provided little 

experimental insight into actual tensions developed in wrist ligaments, mostly due to their small 

size and difficulty in isolation. Stability of the wrist joint complex was also a concern prior to 
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conducting the experimental study, but the model showed no sign of being unstable following 

the two excisions. 

Certain assumptions were implemented for the computational model of the wrist 

presented here.  Firstly, the model represents one single wrist specimen which is assumed 

comparable to the studies in the literature, whereas experimental studies record larger sample 

sizes allowing more general statistical conclusions to be made. The specimen age (52yo) with no 

underlying pathologies is reasonable to assume as normal.  Ligament in-situ strains are not 

reported for most structures in the wrist complex, and applications of normal strains (~2%) 

applied to the model ligaments caused deformation of the carpus and were thus not included. 

Stiffness values not reported in literature for specific ligaments were assigned as averages of 

similar ligaments stiffness values.  This was considered a reasonable assumption given the large 

variations in stiffness values seen in the literature [32,53,62,74,75].  Linear behavior was also 

assumed for these structures which could overestimate their restraining role. Further, it was not 

possible to model all soft tissues present in the wrist, including skin and other forearm muscle 

tendons, nor was it possible to model the wrapping effect of ligaments and muscles. These 

structures would provide a restraining force to the bones of the carpus, and thus range of motion 

results in the model could be over-estimated. Ligament-bone overlap was visually inspected at 

each maximum position. Spanning ligaments entering bone interior was minimal with most 

intrusion occurring in flexion.  Also, articular cartilage was not captured by CT imaging and was 

not modeled which could change joint surface anatomy. However, cartilage thickness variations 

over joint surfaces are typically such that the small differences from the underlying bone shape 

would not appreciably alter conclusions. Additionally, the exact cut plane of the scaphoid distal 

pole in the experiment is unknown. Visual inspection of the experimental radiographs (Figure 
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4.1-2B) after distal pole excision compared to the computational model with distal 

scaphoidectomy (Figure 4.2-8) provides a similar AP view. Therefore, while the precise cutting 

plane and angle was not quantified in the cadaver study, any difference in cut planes is not 

thought to have an effect on model range of motion predictions. Finally, one notable anatomical 

structure omitted from the wrist model is the TFCC. While the ligaments of this structure are 

included, the articular fibrocartilage disc and meniscal homologue were not captured by CT. The 

effects on ulnar deviation range of motion were seen in normal (intact) and triquetral excision 

results, as range of motion values for these states were over-estimated when compared to 

experimental results.   
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5. CONCLUSION 

 

The human wrist is a complex organization of bones and tissue structures, consisting of 

multiple small joints whose interactions provide the wrist its great degree of mobility.  Normal 

carpal mechanics rely on the complex interactions between the ligaments and carpal bone 

morphology. This makes wrist investigations increasingly prevalent and the need for cadaver 

specimens constant. With the cost and availability of cadavers for experimental testing 

presenting a challenge, computational modeling is becoming an attractive relief. Theoretical 

modeling and simulation techniques are, therefore, an important tool for musculoskeletal 

investigation and should be used to compliment cadaveric testing in solving wrist-related 

biomechanical problems. 

The computational model presented here used 3D bony contact, ligamentous constraints, 

and muscle loading to drive joint function. It has demonstrated an ability to efficiently study joint 

range of motion and mechanics, as well as compute parameters that are difficult to capture 

experimentally. The software packages used for modeling are widely available, and the approach 

taken in this study reduces the need for proprietary software to analyze musculoskeletal joints. 

This technique is versatile and provides the ability to predict the behavior of injury or corrective 

procedures.  

Validation of the model was conducted by simulating a cadaveric study by Pervaiz et al 

(2009), where wrist range of motion following RSL fusion was examined. The cadaveric 
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experimental setup was replicated in the SolidWorks environment, and the model was able to 

accurately predict the range of motion trends and most magnitudes for various surgical states 

following RSL fusion.  In addition to replicating range of motion results, the model is able to 

predict parameters that are not easily obtained experimentally, such as magnitudes for midcarpal 

joint force and ligament tensions. The ability of the model to predict these additional parameters 

present an opportunity for the model to locate areas of concern following surgical alteration. 

The computational model results are promising, however, further model refinements to 

the soft tissue constraints could greatly improve its accuracy and applicability. First, a better 

understanding of the mechanical properties of the ligaments of the wrist is needed. Ligament 

properties are varied and widespread across the literature, and cadaver experiments providing 

more detailed stiffness and in situ strains in wrist ligaments could increase model accuracy. Also, 

modeling the viscoelastic load-elongation behavior to the ligaments in COSMOSMotion would 

provide a more physiologic soft-tissue constraint to the model. Furthermore, ligaments and 

muscles in the model were represented as straight line vectors between origin and insertion 

points. The wrapping constraint of these soft-tissues was not included, and more attempts at 

modeling wrapping would benefit the model’s physiologic accuracy. More specific to the wrist, 

the inclusion of the triangular fibrocartilage complex’s cartilaginous disc and intricate interaction 

between the TFCC ligaments to the model could improve the model’s prediction of ulnar 

deviation. Next generation models should also explore the inclusion of cartilage on the rigid 

body surfaces to provide a physiological smooth surface. 

The ability of the current model to predict range of motion behavior in cadaver studies is 

encouraging. This model and modeling approach are expected to have value as a potential 

predictive clinical tool for patient-specific preoperative planning. Future applications range from 
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use in academia or the hospital, including further cadaveric investigations, patient specific 

biomechanical analysis, or implant design. The ability of the current model to obtain large 

amounts of data in a short amount of time make it extremely versatile, and the use of rigid body 

modeling should become more widespread in musculoskeletal research. 
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DP Excised Flexion
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Normal Extension
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DP Excised Extension
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Normal Radial Deviation
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DP Excised Radial Deviation
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Normal Ulnar Deviation
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DP Excised Ulnar Deviation
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