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ABSTRACT

Interstitial and intracavitary brachytherapy plays an essential role in management of several
malignancies. However, the achievable accuracy of brachytherapy treatment for prostate and
cervical cancer is limited due to the lack of intraoperative planning and adaptive replanning. A
major problem in implementing TRUS-based intraoperative planning is an inability of TRUS to
accurately localize individual seed poses (positions and orientations) relative to the prostate
volume during or after the implantation. For the locally advanced cervical cancer patient, manual
drawing of the source positions on orthogonal films can not localize the full 3D intracavitary
brachytherapy (ICB) applicator geometry. A new iterative forward projection matching (IFPM)
algorithm can explicitly localize each individual seed/applicator by iteratively matching
computed projections of the post-implant patient with the measured projections. This thesis
describes adaptation and implementation of a novel IFPM algorithm that addresses hitherto
unsolved problems in localization of brachytherapy seeds and applicators. The prototype
implementation of 3-parameter point-seed IFPM algorithm was experimentally validated using a
set of a few cone-beam CT (CBCT) projections of both the phantom and post-implant patient’s
datasets. Geometric uncertainty due to gantry angle inaccuracy was incorporated. After this,
IFPM algorithm was extended to 5-parameter elongated line-seed model which automatically
reconstructs individual seed orientation as well as position. The accuracy of this algorithm was

1 '%°1 seed

tested using both the synthetic-measured projections of clinically-realistic Model-671
arrangements and measured projections of an in-house precision-machined prostate implant
phantom that allows the orientations and locations of up to 100 seeds to be set to known values.
The seed reconstruction error for simulation was less than 0.6 mm/3°. For the physical phantom
experiments, [FPM absolute accuracy for position, polar angle, and azimuthal angel were (0.78 +
0.57) mm, (5.8 + 4.8)°, and (6.8 + 4.0)°, respectively. It avoids the need to match corresponding
seeds in each projection and accommodates incomplete data, overlapping seed clusters, and
highly-migrated seeds. IFPM was further generalized from 5-parameter to 6-parameter model
which was needed to reconstruct 3D pose of arbitrary-shape applicators. The voxelized 3D
model of the applicator was obtained from external complex combinatorial geometric modeling.
It is then integrated into the forward projection matching method for computing the 2D

projections of the 3D ICB applicators, iteratively. The applicator reconstruction error for

simulation was about 0.5 mm/2°. The residual 2D registration error (positional difference)

4



between computed and actual measured applicator images was less than 1 mm for the
intrauterine tandem and about 1.5 mm for the bilateral colpostats in each detector plane. By
localizing the applicator’s internal structure and the sources, the effect of intra and inter-
applicator attenuation can be included in the resultant dose distribution and CBCT metal
streaking artifact mitigation. The localization accuracy of better than 1 mm and 6° has the
potential to support more accurate Monte Carlo-based or 2D TG-43 dose calculations in clinical
practice. It is hoped the clinical implementation of IFPM approach to localize elongated line-
seed/applicator for intraoperative brachytherapy planning may have a positive impact on the

treatment of prostate and cervical cancers.
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Williamson, “Localizing intracavitary brachytherapy applicators from cone-beam CT
X-ray projections via a novel iterative forward projection matching,” accepted for

publication in Medical Physics (October 2010)



A INTRODUCTION

Radiation therapy is an important modality for cancer treatment. According to NCI,
almost 50% of all cancer patients are treated with radiation. Radiation may be obtained from a
machine outside the body (external beam radiation therapy —EBRT), or it may come from
encapsulated radioactive sources placed inside the body in or near the cancer cells
(brachytherapy). In the brachytherapy treatment, the dose is delivered continuously, either over
the lifetime of the source to a complete decay (permanent implants) or over a short period of
time (temporary implants). The goal of brachytherapy is to apply radiation to kill cancer cells
and shrink tumors, while minimizing dose to the normal tissues. This goal is not always
achievable due to different types of uncertainties induced throughout the course of brachytherapy
treatment. These are mainly from (1) seed and applicator localization relative to the target
volume, (2) target volume definition due to image quality, (3) patient motion and anatomic
deformation during implantation, uncertainty about tumor extent, inter-observer tumor
delineation variation, etc. Among these sources of uncertainties, accurate seed and applicator
localization relative to the target volume using digital x-ray projections is the primary focus of
this thesis. Because of the rapid fall off of dose from the brachytherapy sources, small
differences in the pre-planned and actual localizations can lead to large differences in planned
and delivered doses. Also, accurate and complete localization of brachytherapy seeds and
applicators inside the patient 3D anatomy is essential to improve image quality by suppressing

metal streaking artifacts for more accurate target definition.

Several topics are discussed here to explain the overall clinical rationale for carrying out
the research for this thesis. A brief description of conventional methods for interstitial and
intracavitary brachytherapy (ICB) planning and treatment delivery is given. The major
limitations of the conventional methods for intraoperative seed/applicator localization are
reviewed. The topic is further narrowed down to developing and validating novel iterative
forward projection matching (IFPM) algorithm for brachytherapy seed and applicator
localization, which overcomes many of the difficulties of the conventional methods. Prostate and
cervical cancers are identified as the main clinical applications of this new method. Potential

application of dedicated ACUITY CBCT imaging system (Varian Medical Systems, Palo Alto,



CA) in conjunction with IFPM approach for localizing brachytherapy seeds and applicators, in

support of intraoperative brachytherapy planning is emphasized.

An estimated 192,280 new cases of prostate cancer occurred in the United States in 2009.
Prostate cancer is the most common cancer in men. According to American Cancer Society Facts
and Figures 2009 (ACS facts and figures), it was estimated that there were 27,360 deaths in

2009; prostate cancer being the second-leading cause of cancer death in men.

For early stage prostate cancer patients, brachytherapy —permanent interstitial seed
implantation (sources are implanted within the tumor volume) has become the standard treatment
procedure in many cancer centers in the United States. Improvement in the diagnosis of disease
at an early stage, and refinement in the brachytherapy procedures due to imaging, planning, and
treatment delivery has led to the popularity of permanent interstitial seed implantation. Image
guided brachytherapy has been shown to support long term diseases control comparable to
radical prostatectomy with a more favorable profile of complications." The overall prostate-
specific-antigen (PSA) progression-free at 10-year survival rate is 80% to 90% for early stage
(low-risk) cancer patients.> 3 Prostate seed implants are currently performed using 121 (Eavg ~ 28
keV, Ty, ~ 60 days) and 183pq (Eavg ~ 22 keV, Ty» ~ 17 days) shielded radioactive sources under
template and image guidance (see Figure 1 (a)). The recommended total prescription dose to the
periphery of the target volume is ~144 Gy for '*I and ~116 Gy for '®>Pd when a brachytherapy
is the sole treatment modality. Brachytherapy treatments can also be administered in
combination with EBRT to deliver localized doses to the patients. The main advantage of the
permanent seed implant over EBRT is to deliver higher doses to the tumor (increasing the
likelihood of destroying the tumor) and smaller doses to the surrounding healthy tissues.
Brachytherapy has become significant convenience over seven weeks of daily EBRT treatment
can be replaced by one day of outpatient surgical procedure. It is minimally invasive along with

fewer side effects’ and has resulted in continuous growth of this treatment modality.

The conventional approach of prostate seed implant involves a pre-plan method®,
(creating a treatment plan a few days or weeks before the procedure using transrectal ultrasound

(TRUS) images of the patient). The prostate is then implanted according to that pre-plan on the
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treatment day. Post-implant localization (after 4 to 6 weeks of implantation) of brachytherapy
seeds implanted in the prostate allows for validation against the planned seed poses as well as the
opportunity to recalculate the actual delivered dose. As currently practiced, post-implant
dosimetry is performed using CT images acquired 4 to 6 weeks after the implantation to evaluate
the dose delivered to the 90% of the prostate (Dgg) and the volume of the prostate receiving the
full prescription (Vigo). However, this pre-plan method may introduce large uncertainties
because of the alternations in the prostate shape and size, patient re-positioning and setup errors.

A separate TRUS imaging is required to create a pre-plan, which causes discomfort in patient.*

To overcome the above difficulties , the American Brachytherapy Society (ABS)
recommended the use of intraoperative planning and dosimetry to allow for the adjustment in
seed placement to achieve the intended dose (without moving patient and TRUS probe between
the volume study and seed insertion procedure).’” However, the routinely used TRUS and
template guided prostate seed implant provides adequate imaging of the soft tissue anatomy but
it cannot localize all of the implanted seeds.® A major problem in implementing TRUS-based
intraoperative planning is the inability (it can only localize about 60% of total the implanted
seeds) of TRUS to accurately localize individual seed pose (position and orientation) relative to
the prostate volume during or after the implantation.® Reconstructing seeds from radiographic
projections and then fusing the seed coordinates with 3D TRUS is widely used in intraoperative
brachytherapy planning.” However, the seed localization problem is difficult because of the
overlapping seed clusters, image distortions”® due to non-rigidly mounted non-isocentric C-arm
imager (due to change in orientation of image intensifier with the earth’s or other stray magnetic
fields), uncertainties in the projection geometry, and detector motion in/out of the plane,

inconstancy in seed count, patient motion, etc.

In addition to limited seed localization, TRUS has a number of limitations including an
anatomy distorted by the patient lithotomy position and intrarectal imaging probe. Thus post-
implant CT is the current standard of practice for evaluating and reporting the delivered dose®?,
however, it does not allow for altering and optimizing the treatment plan intraoperatively. In
addition to poor soft-tissue contrast and large (up to 8 mm when compared with axial magnetic

resonance images) prostate contouring errors'’, 3D CT suffers from streaking artifacts arising
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from the implanted metal seeds, overlapping seed clustering, and resolution limited by the slice

thickness as shown in Figure 1 (b).

(b)

Fig.1. (a) Model 6711 "I brachytherapy seeds (http//www/orau/ptp/collection/brachytherapy). Typically they are
4.5 mm in length and 0.8 mm diameter. (b) CT image of a brachytherapy prostate seed implant patient showing
global effect of metal streaking artifacts arise from implanted seeds.

A major advantage of adaptive intraoperative evaluation of the dose delivery is that it
would allow the identification of under-dosed regions and remedial seed placement, thus making
sure that the entire prostate volume receives the prescribed dose. But the main challenge is the
difficulty in accurately localizing 3D pose of the implanted seed in near-real-time and updating
the dose distribution. This requires a fast, automatic, and robust method to reconstruct individual
seed pose at the time of implantation. The role of intraoperative planning is not only limited to
prostate cancers. Its role has been increasing in other anatomical sites such as gynecological
malignancies. ICB is most commonly used in the treatment of carcinomas of the uterine cervix to

deliver prescribed dose.

According to American Cancer Society Facts and Figures 2009 (ACS facts and figures),
an estimate 53,430 cases of locally advanced cervical and endometrial cancer were diagnosed in
2009. Among them 11,850 deaths were reported. The S5-year relative survival rates for cervical

and endometrial cancer patients are 71% and 83%, respectively.

ICB is a well-established and effective treatment technique for definitive treatment of
locally advanced cervical cancer. It is currently performed with *’Cs (Eavg ~ 662 keV, Ty ~ 30
years) radioactive sources using low dose rate (LDR) applicators (tandem and colpostats)

temporary placement. *’Cs is used because less shielding is required, and afterloading may be
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performed with this source. All of the sources are encapsulated, and may be filtered to produce
gamma radiation of moderate energy. But the disadvantage is that the patient is required to
remain in hospital bed for the duration of the treatment. The patient has the applicator in for 48-
72 hours. In modern remote afterloading devices, 921 (Eavg ~ 400 keV, Ty ~ 74 days) is the
commonly used radioactive source for outpatient interstitial and high dose rate (HDR)
brachytherapy with shorter treatment time (high specific activity). The major advantages of using
HDR systems over LDR systems are dwell-time optimization of dose distribution, more accurate
source/applicator positioning, reduced geometric uncertainty due to Dbetter patient
immobilization, etc. However, its relatively short half-life is a particular downside, since
frequent replacement of sources is required (typically 3 to 4 times annually). In addition, other
disadvantages in the use of HDR systems are uncertainty in biological effectiveness and the

potential risks for accidental high exposures and serious errors in the treatment delivery.

In current clinical practice, ICB planning is routinely performed manually utilizing 2D
orthogonal radiographs on which single source dose distributions are superimposed. No TRUS or
MR images are available for the planning purposes. Because of the poor lateral radiographic
image quality, it is very difficult to accurately estimate the source position in the bilateral
colpostats. A fast, automatic, and robust method is required to localize ICB applicators, in

support of intraoperative brachytherapy planning and adaptive replanning.
A.1  Conventional methods for brachytherapy seed localization

A.1.1 3D CT-based method

For each prostate brachytherapy patient, the ABS recommends’ that post-implant

dosimetry should be performed (at week four following the implantation) by localizing seed

8-14 9, 24

positions using reconstructed 3D CT images.” ~ However, as reported in the literature and
found from our clinical experience with VariSeed (Varian Medical System, Palo Alto, CA)
planning, this method frequently finds more than the actual number of implanted seeds, as the
same seed may appear in more than one slice. This is mainly because of the CT slice thickness

limitation and metal streaking artifacts. Difficulty in resolving overlapping seed clusters and
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inter-slice spacing in reconstructed CT images are also the major causes that create difficulty in

localizing seed using CT images.

Several researchers have made valuable contributions to automate the process of seed
reconstruction from MRI or CT images. Roy et al.® developed a semi-automated method for
reducing the number of seeds and later Feygelman et al.' modified Roy’s method to
interactively determine physical seed locations from the post-implant CT images. The methods
presented by Brinkmann and Kline® and Li et al." are based on data clustering, which determine
seed positions by grouping the separate spots in CT images. They showed that the algorithm was
able to identify the seed locations to within 1 mm of known locations but these methods are
limited by low resolution in the z-direction due to inter-slice separation. Because of the CT
slicing effect (partial volume averaging), a radioactive seed can appear on more than one CT
slice. To overcome this difficulty, Bice et al.” designed an automated process for reduction of
source location, using the nearest-neighbor approach. Yue et al.'? developed another method
using a pair of orthogonal scout views and a stack of transverse cuts. Liu et al.'* presented a
geometry-based recognition method (i.e., larger overlapping cluster areas were split into smaller
ones by geometry-based filtering in each slice), which automatically determines the 3D seed
position of the seed centers in a CT study of the post-implant patients. The average error was
about 1.6 mm when compared against orthogonal-film technique. A promising brachytherapy
seed reconstruction method using seven digital-tomosynthesis (DTS) projections has recently
been applied to clinical datasets.”’ In their method, seed-only 3D binary images were obtained by
back-projecting each detector pixel shadowed by an elongated seed based upon pre-
reconstruction binarization of each projection. Then the seed orientation was estimated by
finding the major and minor axes of the each reconstructed 3D binary voxel cluster. However,

their method can not distinguish between orientations of seed clusters and individual seeds.

However, the current 3D CT-based post-implant evaluation process does not allow for
intervention during the implant procedure to improve the actual treatment outcomes. 3D CT
suffers from inconsistencies in both seed localization (mainly caused by CT slice thickness
limitation and streaking artifacts arising from the implanted metal seeds (see Figure 1 (b)) and

soft-tissue structure delineation. Also, intraoperative fan-beam CT installations in brachytherapy
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suites are uncommon precluding intraoperative planning and would require moving and re-
positioning the patient from the operating room (OR) to the imaging room and then back to the

OR.

With the introduction of dedicated ACUITY cone-beam CT (CBCT) imaging system in
the OR for seed placement, the advantages of a rigidly-mounted intraoperative imaging system
and reconstruction of 3D anatomy in the same coordinate system can be combined.” However,
the CBCT imaging system in our procedure room requires about 4 minutes (limited by constrain
on gantry speed) to acquire CT images and cannot provide useful images with the TRUS probe
and metal stirrups in the field of view.® Therefore, the current CBCT imaging is able to support

only 2D projection based intraoperative brachytherapy guidance.
A.1.2 Back-projection (BP) methods

A more common approach to 3D seed localization is the BP of seed positions in 2D x-ray

projections using two-film'” and three-film'®%

techniques. For any given seed, BP localizes the
3D seed positions by ray-tracing from the projected seed positions backward along the projection
paths and finding the point of closet intersection for the projection rays as shown in Figure 2.
The two-film technique has raised the problem of matching seed ambiguity, by increasing
number of projection from 2 to 3 further reducing the risk of mismatching of the seed in the
projections. Taking the projections images from gantry rotations, Altschuler e al.*' used 3 non-
coplanar projections and reduced the ambiguity in seed matching. The reconstructed implant
geometry is then fused to intraoperatively acquired ultrasound images, upon which dose planning

can be performed. However, in the widely studied BP methods®*>* 3" %

, corresponding seed in
each projection must be identified and matched. This is a difficult problem mainly because of
overlapping clusters®” **, resulting in inaccurate seed localization due to mismatch or missing
seeds. While a few investigators have developed generalized BP algorithms®® * for
reconstructing seed orientation as well as position, they suffer from the same limitations as their

more widely used centroid localization methods.
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Fig.2. Illustration of the seed matching in back-projection method. Figure reproduced with permission from Todor et

al. 2002.

Todor et al?’ determined the number of seeds within a cluster by measuring the
characteristics of each cluster of seeds and processing the morphological differentiation towards
improved accuracy. The average error in the phantom reconstruction was about 1.5 mm.
Narayana et al.”* developed a method for the reduction of the matching complexity by using up
to four images. Su et al** conducted both the simulation and phantom studies on the
measurement of the overlapping seed by modifying Narayanan’s method. This method was very
useful in identifying the overlapping seed clusters but it can not reproduce a satisfactory result
for completely overlapping seeds. Lee et al.*’ have proposed a fluoroscopy based seed
reconstruction algorithm to solve the overlapping seed problem using dimensionality reduction

technique.

Patient motion and uncertainty in imaging device positioning during image acquisition
can further confound seed localization when using BP methods. This particularly happens if the
images are acquired using a non-isocentric mobile C-arm imager. Tubic e al.*> proposed an
algorithm using simulated annealing, which has integrated the motion correction up to 5 mm
translation and +2.5° in the rotational errors. Given infinite computation time, the simulated
annealing is not subject to trapping in local minima. Todor ef al.*® and Lee and Zaider presented

algorithms for intraoperative dosimetric assessment.”” Current clinical applications rely mainly
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on BP algorithms®*>* " for intraoperative planning. The main problems of these methods are

33, 34

overlapping clusters and inconsistencies in seed count due to missing seeds™™ ", patient motion

30, 96

between image acquisition’®, image distortions and uncertainties in source and detector

2% on not-rigidly mounted non-isocentric C-arm imaging system due detector flex

position
(moving electrons inside the image intensifier are deflected by external magnetic fields”) which
complicates the seed reconstruction process as described earlier. One of the major challenges to
BP methods is localizing the seed positions on each projection and matching each seed from one

24353138 _the so called correspondence problem. Some clinical BP

projection to the others
methods tried to manage this problem through morphological differentiation and identification of
seed images in the clusters by heuristic learning approach®”** or equally distributing the activity

of the missing seeds among the reconstructed seeds in the implant.'’

Having far better spatial resolution, radiographic seed localization can address some of
the problems associated with CT-based method, including suppression of metal streaking
artifacts. Recent advances in imaging and treatment delivery technology such as ACUITY CBCT
now provide the opportunity to perform intraoperative dose reconstruction to further optimize the
implant.”® However, even with the resulting improvements in the calibration and stability of the

imaging geometry, seed reconstruction via BP method still remains problematic.

Several algorithms are available for reconstructing 3D seed pose, including seed

24.25.38 Tpe algorithms presented by Tubic et al** %

orientation, from measured 2D projections.
use mathematical morphology to detect the center of the seeds as well as their orientation on the
2D image plane. This information (seed center and orientation in 2D) was then used to perform
3D reconstruction of each individual seed including orientation.” However, their method fails to
correctly reconstruct seeds in large clusters of more than three seeds. Another approach,
proposed by Siebert e al.*®, separately back-projects the tip and end positions of each seed
image and uses a heuristic search algorithm to efficiently solve the NP3 matching problem.

While in principle this method identifies seed orientation, no quantitative data were presented.

As currently practiced, conventional seed localization techniques only attempt to find the

center of the elongated line seeds (i.e., point source approximation) for dose calculation. By
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directly measuring the individual 3D pose of each implanted brachytherapy seed, more accurate
Monte Carlo-based dose calculations (or 2D TG-43 dose calculations’’) can be employed to
include the effect of 2D anisotropy and interseed attenuation on the resultant dose distribution.
The effect of seed orientation on the prostate dose volume histogram (DVH) for '*I seed

1.** They found that incorporating 2D anisotropy functions

implants was studied by Corbett et a
into the dose calculation slightly improved (~1%) DVH accuracy relative to the isotropic point
seed model, but they did not report on local dose differences. However, the theoretical study
presented by Prasad et al.*® concluded that the actual dose rate may differ from the expected dose
rate by a factor of 2 when taking account of the anisotropy of the individual seeds. In the post-
implants geometry using '*’I and '”’Pd seed, Lindsay et al.*> showed that omitting 2D anisotropy
corrections introduced large local dose variations that collectively exceeded 10% in 20% to 40%
of the target volume. Monte Carlo-based dose evaluations demonstrated that interseed

attenuation®” %

may reduce Dy doses by as much as 5% and dose-calculation models that
account for the interseed attenuation and local seed anisotropy™ may deviate by as much as 7.5%
from one-dimensional point-source dose computations. Leclerc et al.”® showed as much as 6 to
7.5% errors for the Dy of the penile bulb and maybe about 2 to 4% for bladder and rectum when

ignoring 2D anisotropy.

A.2  Conventional methods for ICB applicator localization

Current ICB treatment planning uses orthogonal 2D radiographs to localize the

16, 55 : .
* > Because, this process involves

radioactive sources (tandem and colpostats) in the patient.
manual drawing of the source positions on films or digital images; it is time consuming and may
be prone to user error. Tandem sources are difficult to visualize in the 30% of cases for larger
patient (thickness greater than 38 cm) due to poor lateral radiograph quality as shown in Figure
3. The edges of colpostats are almost always obscured in the lateral view because of the pelvic
bone and the overlap of the two colpostats and the tandem shaft.”®> Source tip and end positions
only localization using orthogonal films does not provide full 3D applicator pose in the CT
frame. So, it can not localize full 3D pose of applicator geometry that is needed to account for
intra- and inter-applicator attenuation maps for more accurate dose calculation or mitigation of

56-59

metal artifacts. Brachytherapy applicators have complex internal structures’ ™, the pose of
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which relative to the patient’s anatomy needs to be determined for more accurate dose evaluation

via Monte Carlo simulation.””®" ® Monte Carlo studies have shown that applicator shielding

reduces doses up to 25% when the dose distributions from the bilateral colpostats and
4,59 60.63

intrauterine tandem are include

Fig.3. Orthogonal x-ray films of the ICB applicator (tandem and colpostats) patient (Courtesy of Dr. Jeffrey F

Williamson).

Li et al®' has developed a method for localizing ICB applicators based on identifying
several corresponding landmark points on the 2D radiographic projections, which allows the
pose of the object to be reconstructed. However, the conventional ICB clinical workflow
involves moving and repositioning the patient with applicator inserted on the fan beam CT table
often inaccurately and then returning the patient to the treatment room. It can cause patient
discomfort and may introduce large (up to 10 mm) patient setup error pertains to EBRT in
combination with high dose rate brachytherapy.** Several methods are available for

automatically localizing ICB sources and applicators from 3D CT studies®” ¢ 7

including
brachytherapy catheters.*® The plastic (low Z material) applicators developed by Schoeppel et
al.” does not produce streaking artifacts in the CT images and has the ability to shield portions
of the bladder and rectum by using tungsten alloy shields that are after-loadable with the
radioactive sources. However, the physical size of the applicators geometry was very large which
may cause patient discomfort. In the applicator pose determination, it is difficult to accurately
segment and threshold fully plastic applicators components and overlap with bony structures.

Weeks®’ explicitly localize applicator and source positions, by determining particular geometric

features of the Fletcher-Suit applicator directly from the axial CT images. Lerma and
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Williamson®' have developed an approach in which a 3D rigid model of the external applicator
shape was rigidly registered to the corresponding surface that was manually contoured in the
reconstructed CT images. For typical ICB applicator orientations, they demonstrated that the
localization accuracy was about 1/3 of the slice thickness. By localizing the applicator internal
structure and the sources, the effect of intra- and inter-applicator attenuation can be applied to

include the effect of colpostats shielding in the resultant dose distribution.®’

Since the streaking artifact arises from the metal applicator itself, the manually drawn
contour may introduce large error in dose evaluation. Applicators localization problem is closely
related to the problem of metal streaking artifacts. The widely used shielded vaginal

67-68

applicators produce severe streaking artifacts limiting the value of CT imaging for

segmenting critical organs at risk relative to the implanted applicators. The artifacts are mainly

%71 that passes

due to under-sampling of the photons (photon starvation) on the detector plane
through the metal object (high Z material) regions of patient scans. Over the past few decades,
the problem of metal artifact suppression has been studied extensively by restoring the missing

68-71

information in the sinogram region either using interpolation techniques or registering a prior

metal-free CT images.”” Another more general approach is to use iterative solutions. The

74 . .
7374 can provide artifact-

alternating minimization (AM) and other iterative statistical algorithms
free CT images of the soft tissues near implanted foreign metal bodies; provided that a priori
model of the metal object, including its pose, shape, and attenuation map is essential when using
AM image reconstruction to suppress metal streaking artifacts. Because of the excellent soft-

82-84 ¢ould be the future trend. However, as it

tissue contrast, MRI-based applicator reconstruction
is now, the cost associated with intraoperative MRI in brachytherapy suite causes their

instillations to be uncommon and MR-compatible applicators are expensive themselves.

Automatically reconstructing applicator poses from radiographic images (with high
spatial resolution) can address some of the problems associated with the post-operative CT as
described above. Therefore, there is a need for fast, fully automatic, and more accurate method to

localize ICB applicator to address some of the above mentioned problems.
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A.3  New method —iterative forward projection matching (IFPM) algorithm

A novel IFPM algorithm proposed by Drs. Murphy and Todor”” was adapted in this
research. A series of prototype codes, clinical workflows, and associated validation
methodologies were created for accurately localizing point (see section B) and elongated line
seeds inside patient 3D anatomy using as few as 3 synthetic and experimentally acquired
radiographic projections. The IFPM method was designed to avoid the major problems of BP
localization methods, such as the need to determine the seed correspondences between different
projections, the ambiguities presented by clustered or missing seeds in the projections, and
uncertainties in the projection geometry. It accomplishes this by iteratively adapting an initial
estimate of the 3D seed configuration that minimizes the pixel-by-pixel sum of the squared
intensity differences (SSOD) between computed projections of the estimated seed configuration
and radiographic projections of the implant until the computed seed images match the measured
ones. By matching the projection of the full seed configuration rather than individual seed
projections, IFPM intrinsically accommodates incomplete and ambiguous data by recreating the

overlapping seeds in the matching computed images.

This algorithm also allows the imaging viewpoints for the digitally reconstructed
radiographs (DRRs) to be adjustable parameters to accommodate gantry angle uncertainties up to
8° with respect to the first projection (i.e., the reference projection, which is not allowed to vary,
other imaging viewpoints are defined relative to the first projection in terms of rotation and
translation). This is a particularly useful feature if the images have been acquired using a mobile

C-arm imager.

This algorithm was generalized to reconstruct the 3D pose of implanted elongated line
seeds using a set of a few measured 2D projections (see section C). It was further extended to
localize larger metal objects in the brachytherapy treatment, for example ICB applicators

(tandem and colpostats) of arbitrarily-shape (see section D).

This thesis presents solutions for the localization of brachytherapy seeds and ICB

applicators via IFPM approach using few (3 to 10) measured digital x-ray projections that
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address some of the problems as described earlier including individual seed orientation
measurement, resolving overlapping clusters and reconstruct full 3D pose of seed/applicator
geometry. The main content of the present work concerns the development and clinical
validation of the two-step 3-parameter IFPM algorithm, further development and validation of
the generalized IFPM algorithms (extension from 3-parameter to 5 and 6-parameter models to
localize elongated line-seed and arbitrary-shaped ICB applicator, respectively), development of a
novel precision-machined multi-configuration prostate line-seed phantom, evaluation of IFPM’s

accuracy in the clinical setting and investigations of principle limitations of the algorithms.
A4 ACUITY CBCT for image-guided brachytherapy

The ACUITY CBCT imaging system used for image-guided brachytherapy in our
institute has the potential to support more accurate 3D seed and applicator localization, intra- and
post-operative dose planning for improving implant quality, and more accurate post-implant dose
evaluation (see Figure 4). The main advantage of this imaging system for brachytherapy
procedures is the relative ease and flexibility of imaging system positioning with the patient
immobilized on a surgical procedure table. Availability of intraoperative 3D or planar imaging
allows the localization of brachytherapy seed and applicator relative to the patient’s 3D anatomy
without moving or repositioning the patient. This eliminates the need to schedule a separate CT
imaging procedure following release of the patient from the recovery room and allows incorrect

implants to be removed/ corrected on the spot.

Fig.4. ACUITY CBCT imaging system in the brachytherapy imaging suite at our institute (VCU health system)
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However, a significant challenge to brachytherapy CBCT applications is the streaking
artifacts caused by implanted metal objects in the patient scan regions. Metallic seed and
applicator can cause moderate to severe streaking artifacts on CBCT images that make
segmentation of soft-tissues difficult and eventually introduce large error in dose calculations. As
mentioned earlier, the artifacts are mainly due to undersampling of the photons on the detector

plane®®7!

that passes through the metal object regions of the patient scans. The flat panel detector
(FPD) used in CBCT imaging has more prominent effect of streaking artifacts due to scattered
photons® and associate noise propagation. These effects create pronounced streaking artifacts in
the reconstructed CBCT images. Therefore, more accurate pose estimate of the implanted metal
object (find the metal object boundary and its orientation in the sinogram region) in the patient
scan region is needed to study these effects and to suppress streaking artifacts. This is important
for metal streaking artifacts mitigation because if we overestimate the metal object we miss the

soft-tissue information on the metal object boundary regions where as if we underestimate the

metal objects we still have residual streaking artifacts.

As mentioned earlier, the metal streaking artifacts problem is closely associated with the
brachytherapy seed and applicator localization problem. The IFPM approach” " can contribute
to metal artifact mitigation solution by using high spatial resolution projections, rather than
streak-limited CT images for seed/applicator localization and by making accurate seed/applicator
73-74

pose estimates available as an input to the iterative CT images reconstruction algorithm.

CBCT sinogram projections could be adapted to validate these algorithms in the clinical setting.
B EXPERIMENTAL VALIDATION OF IFPM ALGORITHM —point seed model

The prototype IFPM algorithm was adapted from Murphy and Todor” and
experimentally validated in this study. It finds the set of seed positions that minimizes the pixel-
by-pixel sum of the square intensity difference (SSQD) between blurred computed and
experimentally acquired auto-segmented projections of the seed array. IFPM starts with an initial
approximation to the seed configuration, e.g., the pre-planned seed arrangement and then

iteratively refines the 3D seed positions and imaging viewpoint parameters’”> until the SSQD

converges. Then the (x, y,z) coordinates of each seed are independently adjusted in an iterative
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search process until the computed projections optimally match the measured images (i.e., when

the total SSQD for all image pairs has been minimized).

The aim of this study was to experimentally validate IFPM algorithm using both the
phantom and post-implant patient’s datasets in a clinical setting. Two in-house brachytherapy
phantoms (12 and 72 seeds) and four selected low risk Stage-I prostate patients (60 to 81 seeds)
imaged for post-implant dose evaluation intraoperatively, (i.e. approximately 4 weeks after

103
0

implanting Theragenics Model 20 Pd interstitial sources) were included in this study. The

details of this research are published in Medical Physics, which is included as paper 1.”°

B.1  ACUITY image acquisition details and image post-processing

The image datasets of both the phantom (12 and 72 seeds) and patient (60, 62, 67 and 81
seeds) were experimentally acquired from the Varian ACUITY intraoperative imaging system
integrated in the brachytherapy treatment room for image guidance procedures in our institute.
Projection images were acquired in different gantry angle positions using the Varian 4030CB
imager. The detector is 40 cm x 30 cm with a 1024 x 768 image size resulting in pixel resolution
of 0.388 mm each. The ACUITY imaging geometry consists of a 100 cm source to isocenter
distance (SID) and a 150 cm source to detector distance (SDD). It was operated at 80 kVp, 80
mA, and 25 ms with an exposure of 2.56 mAs /projection. The IFPM projections were selected
from approximately 660 sinogram projections acquired for CBCT imaging. The choice of
perspectives was based on maximizing visibility of the implanted seeds in the projections and

avoiding excessively small angular parallaxes.

The post-processing involves a) cropping the images to a 256 x 256 pixel square region
of interest (ROI), b) normalizing the image intensity by finding its maximum and minimum
values in the image, ¢) morphological top-hat filtering to suppress the background, and d)
automatic thresholding using the 3-standard deviation value of the pixel intensity histogram to
create a binary marker for each seed in each projection in order to separate the seeds from the
background. The images were processed to create binary bitmap images with zero intensity in

the background and intensity of one over the area of each projected seed marker. In the phantom
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study, the seed centroids were obtained by computing the center of mass for each elongated line
seed marker. For the patient study, it was represented by entire radio-opaque marker of the '“*Pd
seed (1.09 x 0.5 mm?) as shown in Figure 5. This avoids resolving seed clusters in the 2D

measured projections (paper I).

@) (b) (d)

Fig.5. One image viewpoint showing an example of the image post-processing of the projection image obtained
from the Varian 4030CB digital simulator; (a) raw projection image, (b) filtered image, (c) seed only image, and (d)
blurred image used by IFPM algorithm for Patient III (81 implanted Theragenics model 200 '**Pd seeds).

The binary images were then convolved with a 2D Gaussian blurring function to create diffuse
spots with a known intensity distribution. This produces smoothly-varying image gradients that
can be computed analytically in the computed projections to guide towards minimization of the

similarity, SSQD, and speed up the convergence of the matching process.
Initial seed configuration estimates and computed projection images

For the precision-machined phantoms, we knew the exact seed locations (with machined

uncertainty of +/- 0.2 mm). The initial seeds configuration {r} ., Was obtained by perturbing the

known 3D seed configuration, by adding a randomly chosen displacement from a uniform
distribution [-2.0 mm, +2.0 mm] in each of the three directions, resulting in a mean displacement

of 1.98 mm, where k is the seed number, N is total number of seeds, and 0 <k <N. In the

patient study, the initial estimate of the seed configuration {1} , Was obtained from the

ultrasound volume study of the prostate of the patient, which gives X, y, and z coordinates of
each seed centroids within the planning target volume (PTV) for each patient. This pre-plan was

used as the initial guess of the implant seed configuration. Since this IFPM algorithm used the
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CBCT reference frame, the TRUS-based pre-plan coordinates were transformed to the CBCT
coordinate system by using rotation, translation and scaling. As with the phantom study, the
transformed 3D seeds configuration (ultrasound-to-CBCT reference frame) was rotated and

translated for each imaging viewpoint and then projected on the imaging plane. The projected

seeds {r} , on the imaging plane were digitized to create the binary images and dilated one pixel

along each direction to reproduce '“Pd seed like marker in the computed projections. The
computed binary images of image intensity were then convolved with the same 2D Gaussian

blurring function as used for measured projections.
Similarity metric and gradient search

The overall similarity metric, SSQD is the total of the pixel-by-pixel sum of the squared

intensity differences between the all blurred computed 7, (u,v|{r}k,0', 7/) and measured

I (u,v |o, 7/) seed image pairs (paper I);

SSQD( |G }/) ZZ[ (u v| k,a,j/)—lm(u,v|0',}/) T (1)

yoouy

where (u,v) are pixel indices in the 2D image plane, ¢ is the width of Gaussian blurring

function and y is the gantry angle. The initial seed positions {r}  were iterated by

simultaneously adjusting 3D seed coordinates and the imaging viewpoints while projecting
computed images. The adjustment to each degree of freedom was calculated from the gradient of
SSQD with respect to that degree of freedom. After computing the analytical gradients to adjust
all free parameters, the process iteratively refines the 3D seed positions and each imaging
viewpoint parameters until the computed seed projections matched the measured projections of
the seed geometry. The computed and measured projections must have the same imaging
geometry, image size and pixel resolution. Three to six pairs of computed and measured
projection image datasets with corresponding imaging geometry were used for one
reconstruction process. The 3N seed positions plus 6 (/ -1) degrees of freedom of the imaging
viewpoints are the freely moveable parameters in each iteration, where / = (3, M) is the imaging

viewpoint index and M is the number of projections.
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B.2  Validation test with phantoms

The phantom study shows very good agreement between the IFPM seed positions and the

physically measured precision-machined seed coordinates.

18 : :
0 ; -72 seed phantom

11 S—

=9

o N

number of seeds

0 0.5 1 1.5 2
localization error [mm]

Fig.6. Histograms of the seed positional error for the 12 and 72 seed phantom study.

For the 72 seed phantom case, from one-to-one correspondence between the measured
and computed sets of seed coordinates, the root-mean-square (RMS) error was found to be (0.58
+ 0.33) mm. The distribution of seed reconstruction errors is reported in the histogram in Figure
6 where it shows that greater than 96% of the reconstructed seed positions are within 1 mm from
the measured seed positions. For the 12 seed phantom case, the RMS error was even smaller

(0.43 + 0.24) mm.

B.3  Patient study

In Figure 7 we show the convergence process for a configuration of 81 seeds: Patient III.
The three imaging viewpoints were positioned at 0°, +£20° gantry angle. Since, the patient
datasets have overlapping seed clusters and highly-migrated seeds, we followed a two-stage
iterative process in which the images were initially processed with a larger blurring function and
then, after 1*' step convergence, the images were reprocessed with a smaller blurring function to

sharpen the resolution and complete the convergence to the final solution.
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Fig.7. An illustration of the iterative sequence morphing of the convergence process, (a) initial estimate of the seed
configuration, (b) computed images after first step of convergence, (c¢) computed images after second step of
convergence, and (d) the measured images at different gantry angle for Patient III. Despite large differences between
the pre-planned seed geometry (based on a TRUS volume study acquired about a week before the implant) and that
observed four weeks after the implant; [FPM was able to accurately reproduce the desired seed configuration.

The initial estimate of the seed configuration (obtained from the TRUS pre-plan) is portrayed in
the image group (a); the measured images are displayed in group (d). Part (b) of the figure shows
the iterated seed configuration after 1% step convergence using the larger Gaussian blurring
function; part (c) shows the final convergence after switching to the smaller blurring function.
Comparison of (¢) and (d) shows good agreement, including replication of overlapping seed

clusters which appears as brighter or extended features in the images (paper I).

Figure 8 shows the two-stage convergence rate for the four example patient cases. The
red arrow indicates that the plateau region of the SSQD when switching larger to smaller
Gaussian width, for the example case patient III. Similar transitions can be seen for remaining

patient’s convergence histories.
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convergence rate of IFFM algorithm for 4 post-implant
prostate brachytherapy patients
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Fig.8. The convergence rate of the two step IFPM algorithm for the 4 example post-implant patient cases; Red arrow
indicates that the transition from larger to smaller Gaussian spread for one of the test case. One-dimensional profile

of the source attractive two-step blurring scheme can be seen in the inset.

For all example cases, the IFPM converged in 16 to 22 iterations and in 4 to 7 iterations
following reduction of Gaussian blurring function width with computation time of about 1.9 to

2.8 minutes/iteration on a 1GHz processor (running time depended upon number of seeds used in

the implants, i.e., the number of free parameters to optimize).

(b)

(@)

Fig.9. Superposition of measured seed images (white seeds) with automatically detected seed positions (black
markers) projected on the detector planes, (a) 0° gantry angle, (b) -20° gantry angle, and (c¢) +20° gantry angle for
Patient III. While many seeds coincide exactly, a few still exhibit significant discrepancies.

An example of the reconstructed seed positions projected on the digital simulator images
is presented in Figure 9 (a), (b) and (c¢) where the three projections are shown at 0°, £20°
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respectively, along with the automatically obtained seed positions (black markers). From these
images, for every candidate computed seed we empirically calculated the nearest-neighbor
distance between the computed and measured seed positions on each detector plane -residual 2D
registration error. The RMS errors were 0.78 + 0.56 mm (0°), 0.89 = 0.49 mm (-20°), and 0.82 +
0.54 mm (+20°), respectively. Comparison of the results obtained by IFPM algorithm, and those
obtained by the VariSeed (Varian Medical Systems, Palo Alto, CA) planning provided a measure
of the accuracy in the positions deduced by IFPM, as summarized in Table I for all example case
patients. Since we don’t know the ground truth for the patient study, this seed localization error
includes not only the error from the IFPM algorithm but also the error contributed by the
VariSeed planning system. In Table I we also show the residual 2D registration error while
comparing against measured seed projection in each image plane. In all cases the RMS value of
the seed registration error was better than 1 mm and maximum seed displacement (dyax) did not

exceed 2.5 mm on the detector planes (paper I). Experiments showed that increasing the number

of projections from 3 to 6 reduces this error approximately by a factor of V2 at the cost of
doubling computation time.
TABLE I. Summary of the comparisons of the seed positions deduced by the IFPM algonithm and by the VaniSeed planning system for all example case

patients. The mean value, standard deviation (sd) in each of the three directions, and overall 3D RMS error is reported. The seed registration error in the 2D
image plane in terms of RMS value. The sd and the maximum displacement (d..,) of the seed is also presented.

2D registration error

IFPM vs VariSeed in each image plane
(mm) (mm)
Image viewpoint used — — —
Patient no. (deg) Total no. of iterations oxxsd dy = sd drxtsd 3D RMS error RMS error . .
I 0 28 038097 020=098 0.25*0.87 1.64+0.54 0.63*0.86 1.96
+15 0.74+0.53
16 0.78+0.72
Il 180 25 035098 019=1.08 026+0.89 1.76 059 0.82+0.83 24
160 094+074
+165 0.86+0.92
11 0 26 022096 -024+097 023+092 1.58+0.56 0.78 +0.56 235
20 0.89+049
+20 0.82+0.54
v 0 27 037x1.16 -029+1.04 0.28 +0.98 1.86=0.68 0.83+0.63 248
20 0.98+1.22
+18 0.96+0.82

“Incomplete data case.

A novel IFPM method was experimentally validated to reconstruct 3D brachytherapy
seed configurations from measured 2D projection images. The iterative process doesn’t require
one to establish seed correspondences between the projection images. It also estimates the gantry

angle if unknown or incorrect. This study shows that IFPM provided about 0.5 mm accuracy in
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reconstructing the 3D positions of brachytherapy seeds when tested on 12 and 72 seed phantom
datasets using CBCT x-ray projections. In the patient study, we obtained better than 1 mm

accuracy tested against measured projection images.

By matching overall image content rather than individual seed projections, IFPM
intrinsically accommodates incomplete and ambiguous data (i.e., missing seeds in the measured
or computed projections) by iteratively recreating the overlapping seeds in the computed images
(paper 1). It is also observed that IFPM successfully found the overlapping seed clusters and the
highly-migrated seeds.

To improve the accuracy of the seed localization validation study, we have designed and
fabricated a novel prostate seed implant phantom and tested IFPM performance against a more
accurate ground truth (paper II). Also, more extensive evaluation of the initial estimate as well as
more optimal search of the blurring parameter with elongated overlapping seed clusters is being
investigated as an extension of this method (paper II). Other geometric uncertainties such as
detector in/out of plane motion and inaccuracy in the magnification factor are also an area of

future investigation.

These early test cases of the [FPM algorithm found the (X, y,z) coordinates of the seed

centroids. The data presented here suggest that the IFPM algorithm works effectively for seeds
with radio-opaque components having an aspect ratio no larger than 2:1 ratio characteristic of the
Model 200 '”Pd source. Other currently available brachytherapy seeds satisfying this criteria
include the Prospera Model MED3631%, IsoAid Advantage™ Model IAPd-103A", and Best
Model 2335 sources.”’ The point-seed model can not reproduce the alignment (orientation) of
highly elongated seed, such as Model 6711 '*°I. The IFPM method described in paper I does not
accurately localize seeds centers with un-process highly elongated radiographic markers. This is
because the disk-shaped binary seed image modeled by the forward projector within the
algorithm does not reproduce the binary images produced by cylindrical seeds in shape and size,
which can vary from a small disk to highly elongated rectangles depending on seed orientation.
For highly elongated seeds such as Model 6711 '*I, which dominate the market there are two

additional degrees of freedom for each seed that describe their orientation in the 3D space.
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Therefore, our next developmental priority is to model an entire elongated line-seed and match
with the measured projections. This allows IFPM to estimate individual seed orientations and
locations that has been characterized by five degrees of freedom of each line-seed model (paper

).

Innovation/Impact

Our results demonstrate ~1 mm accuracy in reconstructing the 3D positions of
brachytherapy seeds from the measured 2D projections of the post-implant patients. IFPM
successfully localizes overlapping clustered and highly migrated seeds in the implant. Post-
implant imaging is currently done four weeks after implant but can potentially be done
intraoperatively via CBCT to permit immediate post-implant dosimetry assessments. The fully
automatic IFPM algorithm is accurate, robust, and capable of completing a reconstruction in a
few minutes using state-of-the-art workstations and is therefore a highly promising tool for

implementing fusion-based intraoperative brachytherapy planning a reality.

B.4  Sinogram interpolation and CBCT image reconstruction

Metallic '®Pd or '*1 seeds cause moderate to severe streaking artifacts on CBCT images
introducing errors in soft-tissue segmentation, deformable image registration and CT-based dose
calculation. Accurate identification of the metal seed boundary and its orientation in the
sinogram region is very important for metal streaking artifacts suppression. Overestimation of
the seed regions on the sinogram projections results in the loss of sofi-tissue information on the
boundary regions where as underestimation results in the residual streaking artifacts from

metallic seeds themselves.

Once the accurate feature (metal object boundaries) of the implanted seed from the
measured sinogram is obtained, the seed only image can be subtracted from the original
projections. The missing soft-tissue information’s obscured by the metal seed can be recovered

by 2D interpolation between the edges of the each metal seed region as shown in Figure 10.
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Fig.10. Seed features extraction and removal from the sinogram projections for a post-implant patient, (a) raw
projection image showing implanted 60 '*Pd brachytherapy seeds in one projection, (b) filtered image region of
interest (ROI), (c) seed only image ROI, and (d) same projection image after using 2D natural-neighbor
interpolation over each metal seed region only.

The 2D natural-neighbor interpolation method*® was used to interpolate inward from the
pixel values corresponding to the boundary of the nonzero pixels in the grayscale image. After
completing interpolation (i.e. recovering missing soft-tissue information obscured by the
implanted metal seeds), the processed ROI encompassing implant was inserted into the original
projection (see Figure 10) and the corrected projections were sent for CBCT image
reconstruction. An in-house FDK algorithm® was used to reconstruct CBCT images with and
without removing seed images from projections. Projection images were normalized by dividing
with the norm phantom calibration data. The reconstructed images were 512 x 512 with voxel
0.5 x 0.5 x 3 mm’. Ramp filter was used to filter sinograms before back-projection. In Figure 11
(a) and (b) it shows the reconstructed ROI of a transverse central slice images with seeds and
removed seeds. The corrected images exhibit significantly improved image quality in and around

the prostate.
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Fig.11. Central slice of the reconstructed CBCT image-ROI of Patient I, (a) without seed projection removal
showing streaking artifacts, and (b) with projected seed image suppression showing significant streak reduction;
some residual artifact remains because only about 30% of seeds could be segmented in the right/left lateral
projections.
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Fig.12. Comparison of image-intensity profiles along horizontal red lines in Figure 7, showing 4.5-fold reduction of
streaks after correction, (b) uncorrected minus corrected difference image, clearly illustrating global effects of metal
streaking artifacts.

The image profiles and a difference image on a single central slice are shown in Figure
12 (a) and (b). The streaking artifact is reduced by a factor of 4.5 and artifact spatial extend. Our
preliminary results indicate that this method can be used to mitigate metal streaking artifacts
specific to the brachytherapy seed implant geometry. By reducing streak and associated noise
propagation artifacts, significant clinical value can be added to brachytherapy CBCT imaging.
Improving the auto-segmentation method particularly in the lateral views and applying scatter
subtraction with beam-hardening correction will improve the CBCT image quality for the

intra/postoperative brachytherapy patient’s images.
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Our 5-parameter model (see section C) can be extended from CBCT sinogram projections
to fan-beam CT sinogram to estimate the seed pose. Affer obtaining the elongated metal seed
features, one can interpolate the sinogram over seed only regions and reconstruct images with
removed seed. IFPM has a potential to replace seed localization method based on post-

reconstructed 3D CT images and become the new industry standard.

C RECONSTRUCTIONS OF SEED ORIENTATION AND POSITION VIA
GENERALIZED IFPM ALGORITHM —line seed model

Point-seed model (paper I) does not reproduce the alignment (orientation) of highly
elongated line seeds. For the highly elongated line seeds such as Model 6711 'L, there is
sufficient information in the projections to constrain not only the seed locations but also the two
additional degrees of freedom per seed that describe their orientations in the 3D space. The

point-seed matching IFPM algorithm”>"°

was generalized (gIFPM) to reconstruct individual seed
orientations as well as positions. This extended 5-parameter line-seed model finds the set of seed
pose parameters that minimizes the pixel-by-pixel SSQD between computed and measured auto-
segmented projections of implanted seeds. The gI[FPM starts with an initial approximation to the
seed configuration, e.g., TRUS pre-planned seed arrangement, and then iteratively refines the 3D

75-76

seed poses and imaging viewpoint parameters until the SSQD converges. Then the

(x,y, z, 9,(p) coordinates of each seed are independently adjusted in an iterative search process

until the computed images optimally match the measured images.

The rationales for extending our 3-parameter point-seed to 5-parameter line-seed model are as
follows,

a) Our previous work (paper I) demonstrated that the point-seed model can not accurately
estimate the centroids of un-processed elongated line seeds because of the requirement
that computed projections produce seed shadows that closely approximate the shape and
size of the actual seed binary images. glFPM is better because it does not require an extra
image processing step to isolate each individual seed and will be more accurate than

IFPM because it is working with more information in the 2D projections.
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b) As currently practiced, conventional seed localization methods only attempt to find the
center of the elongated line seeds (i.e., point source approximation) for dose calculation.
Resolving overlapping seed clusters in the implant is another major difficulty of the
conventional methods. By directly measuring the individual 3D pose of each implanted
brachytherapy seed, more accurate Monte Carlo-based dose calculations (or 2D TG-43
dose calculations*’) can be employed to include the effect of 2D anisotropy and interseed

attenuation on the resultant dose distribution.

c) Digital extraction and removal of elongated line seed features (metal object boundary and
its orientation) from measured 2D sinogram projections is worthwhile for reducing metal
streaking artifacts by re-projecting each metal seed boundary onto the sinogram so that
the missing information can be recovered from the surrounding soft-tissue image texture
by 2D interpolation. By reducing streak and associated noise propagation artifacts,

significant clinical value can be added to brachytherapy CBCT imaging.

The main aim of this study was to generalize and experimentally validate a novel algorithm for
reconstructing the 3D pose of implanted brachytherapy seeds from a set of a few measured 2D
CBCT x-ray projections. Numerical simulations of clinically realistic brachytherapy seed
configurations were performed to demonstrate the proof of principle. A precision-machined
multi-configuration brachytherapy seed phantom was designed and fabricated to experimentally
validate this algorithm. This phantom supports precise specification of seed position and
orientation of up to 100 seeds at known values for computed implant geometries. The details of

this research are accepted for publication in Medical Physics, which is included as paper I.”

C.1  Characteristics of gI[FPM algorithm and the objective function
The general characteristics of the line-seed model (paper II) are highlighted below.

a) An initial estimate of the seed configuration is obtained from the clinical pre-treatment

TRUS volume studies of the actual patient as described in paper 1.
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b)

d)

In practice, the Bresenham line drawing algorithm™ is used to represent each seed by a
finite set of equally-spaced points between two end points, r; and r; of the seed in the 3D

space as shown in Figure 13.

The similarity metric (objective function) and the gradients of the similarity with respect

to three positional (x,y,z) and two orientation(6,®)coordinates of each seed can be

computed analytically.

Provided that the 2D seed images can be segmented, it is not necessary to calculate
complete DRRs of the estimated seed configuration via attenuation ray tracing through
the patient’s anatomy —it is sufficient to project line segments modeling the 3D structure
of each seed along the rays from x-ray source to detector. This avoids the time-

consuming task of computing complete DRRs.

Our IFPM approach does not require transforming cylindrical seed images into point-like
landmarks. Instead, we match elongated line-seed features in the 2D images including
overlapping seed clusters. This avoids a major difficulty encountered by BP methods:

resolving seed clusters and isolating each seed centroid before reconstruction.

Reconstruction accuracy of overlapping seed clusters and highly migrated seeds can be
improved by adapting a two-step blurring scheme, in which the output of the 1* step
convergence is used as an input for the 2™ step with reduced Gaussian blurring (paper I
and II). The optimal values of ¢; and o, were obtained from trial and error for each seed

configuration.
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Fig.13. Elongated line seed of length, L is characterized by the seed center (black dot) positions, (X, y,z) and

orientation coordinates, (9, (p) angle-pair in the world coordinates frame; where, z is the axis of implantation.

Similarity metric and gradient search

The metric sum-of-squared-differences (SSQD), which describes the “similarity”
between all grayscale images, /, (u,v | {rk,Qk} ,0',7) of a candidate set of the seed poses {rk,Qk}
and the corresponding experimentally acquired or “measured” images, I, (u,v | 0',;/) at

nominal gantry angle vy, is given by (paper II),

sSOD ({r,. @, }1o.7) =2 3 [1. (v {r,.Q,}.o.7) -1, (uv]o.r)] )

u,v

where, Q, =(sin&cos ¢,sin fsinp,cos @), is the direction cosine vector which is related to the

original pose angular variables(6,¢) for each seed k in the 3D space and (u,v) is the 2D

detector plane. The nonlinear gradient of the similarity, SSQD with respect to three positional
and two orientations degrees of freedom were analytically computed, for example, with respect

to x coordinate,

o(SSOD)/éx, :2Z£Z[IC(M,V| {r.Q},0,7)-1,(uv] 0',7/)} o (u,v| {ljk,ﬂk},O',j/)/aka (3)
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Since, the brachytherapy line seed has rotational symmetry around the axis of rotation; we
computed one derivative per seed per degree of freedom with respect to the each seed center

coordinates. Because the image grayscale intensities are represented entirely by the Gaussian
blurring function, the grayscale image gradient, 0, (u,v | {rk,Qk},J,y) / ox, for each seed was

calculated analytically from the computed image for that degree of freedom. Similarly, we
computed the first derivatives of SSQD with respect to the other spatial and angular coordinates.
Detailed derivations of the gradient calculation can be found in the appendix (paper II). See

algorithm workflow in appendix 1.

The perturbation to each degree of freedom was computed from the gradient of SSQD
with respect to that degree of freedom. Since, the brachytherapy line-seed has rotational
symmetry around the axis of rotation; we computed one derivative per seed per degree of
freedom with respect to each seed center coordinates. The steepest-descent search process with a
parabolic approximation uses the gradient to iteratively refine the 3D seed pose and imaging
viewpoint parameters until the iterative process converges (typically 6 to 20 iterations). At least
two, but preferably three or more pairs of computed and measured projection image datasets with

corresponding imaging geometry are required for one reconstruction process.
C.2  Validation via simulated implant geometries

Simulated line-seed implants were created by obtaining clinical pre-plan seed
configurations based upon pre-treatment TRUS volume studies of actual patients, which gave the
x, y, and z coordinates of each seed centroids within the planning target volume. These
coordinates are transferred to the CT coordinates system and then modified to obtain extended
line seeds (L = 4.5 mm and 0.8 mm diameter) in 3D space and assigned 8 = 0, ¢ = 0 for each
seed as shown in Figure 9, where, z —needle direction. More realistic synthetic measured
projections (3 to 10) were created by randomly sampling centroid locations, from uniform £2.0
mm distributions in each direction. Similarly, 6 and ¢-values were sampled from the uniform [-

n/6, m/6] and [-n/2, m/2] distributions, respectively.
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Fig.14. An illustration of the convergence process for a 60 seed simulated implant, (a) initial estimated seed
configuration with “straight seeds” derived from a patient pre-plan, (b) computed images after convergence with o;
= 2.8 mm, (c) computed images after convergence with o, = 1.8 mm and using poses (b) as the initial configuration;
and (d) the true/synthetic measured images, where the rows represent different gantry angles. The gIFPM algorithm
was able to reproduce orientation of each individual seed including overlapping clustered and highly migrated seeds.

Using these perturbed seed configurations, three synthetic measured projection images
were computed for different CBCT gantry angles. The perturbed seed distribution represented
the true configurations which we wished to determine. The source to detector distance was 150
cm and source to object distance was 100 cm with magnification factor of 3/2. The images were
288 x 288 pixels square and had a resolution of 0.388 mm/pixel. These images were submitted to
the seed reconstruction process. When iteration starts with the initial estimate of the seed
configuration for each trial it finds the new estimate of the 3D pose and the imaging viewpoint

parameters, such as gantry angles until the computed projections match the measured ones.

Figure 14 shows an example of the iterative matching process for a simulated implant
consisting of 60 seeds. The three projections have gantry angles of 0°, £30°. The initial seed

configuration was obtained from a patient’s pre-planned implant geometry assuming the seed
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axes to be parallel to the gantry axis. Comparison of the final computed images 14 (c) to the
measured images (d) shows excellent agreement, including reproducing overlapping seed
clusters which appear as brighter and/or extended seed group image features (paper II). The
gIFPM algorithm successfully found seeds that were placed as far as 5 mm from their pre-
planned positions. This case required 11 iterations in the 1% step (Gaussian width, o; = 2.8 mm)
with computation time of about 12 min/iteration and 4 iterations in the second step (o> = 1.8
mm), with computation time of about 16 min/iteration on a 1 GHz processor (computation time
depended upon number of seeds used in the implants, i.e., the number of free parameters to

optimize in each iteration).

16000 .
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I‘ = Patient -1l (60 seeds)
[t I P —v— Patient -1l (66 seeds)
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Fig.15. The similarity metric score vs. iteration number for the two step gIFPM algorithm for the four simulated
patient cases: 56, 60, 66, and 70 seed configurations. The transition from larger to smaller blurring for the 66 seed
configuration is shown by the black arrow. The one-dimensional image-intensity profiles in the inset illustrate the
difference in capture range for the two blurring levels.

Figure 15 shows the convergence of the objective function score for the four simulated
patient implants, where the black arrow indicates the plateau regions of the similarity when
switching from first step to second step iterations. Similar transitions can be seen for the other
patient cases convergence histories. Several experiments were performed to test the accuracy and
robustness of the gIFPM algorithm, including arranging the seed geometry to simulate seed
clusters and overlaps of increasing complexity in more than one or more projections (e.g., 2, 3 or

seeds overlapping in one or more than one projection, etc.). Figures 14 and 16 illustrate
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successful resolution of more than 4 seed clusters consisting of up to 5 seeds in the cluster on
more than one projection. We found that gIFPM could accurately determine seed poses with
clusters consisting of as many as five seeds. Table II summarizes the accuracy of gIFPM
reconstructions for four simulated implants derived from patient cases. In all cases, the RMS
seed position error was less than 0.7 mm and the maximum error did not exceed 1.5 mm. The

RMS orientation errors were found to be about 5° for the both angular coordinates.

Table II. Accuracy of gIFPM reconstructed poses for 4 simulated implants derived from patient pre-
plans. The root-mean-square (RMS) value and standard deviation for the positional and orientation
coordinates are reported. The maximum displacement (Max. error) of the seed position is also reported.

Patient # Gantry Total no. of
(No. of seeds) angles (°) iterations gIFPM vs. true seed pose
RMS error Max. RMS error in
in seed position  error seed orientation (°)
(mm) (mm) 0 7
0
1(56) +20 15 0.63+0.45 1.32 44+32 53+3.1
-20
0
11 (60) -30 14 0.53+0.43 1.19 39+£2.7 44+38
+30
0
111 (66)* -20 11 0.68 +£0.54 1.46 52+£57 58+53
+20
0
IV (70) +30 16 0.65+0.52 1.38 6.0+£2.8 62+32
-30

* Two extra seeds in the pre-plan

Figure 16 illustrates the convergence process for Table II Case III in which ambiguities
are created by incomplete (two seeds missing from the true implant but present in estimate) and
excessive (one additional seed-like artifact in the measured projections with no counterpart in the
computed images) data. The difference images in Figure 16 (d) shows that in both cases the two-
step iterative convergence process closely reproduces the measured seed projections (paper II).
However, the gIFPM algorithm converged robustly to an optimal solution of the seed
configuration that was only slightly perturbed in the region adjacent to the additional or missing
seed images. Since difference images readily identify the additional and/or missing seeds, gIFPM
could be rerun with a modified initial configuration having the correct number seeds and/or seed-

like objects which would slightly improve reconstruction accuracy.
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(a) (b) (c) (d)

Fig.16. Illustration of gIFPM seed reconstruction for simulated case III in Table I for a single projection. In the first
row (+20°), 66 seeds are present in the simulated implant derived from the preplan but 68 are assumed in the initial
seed configuration, (a) with seed axes parallel to the gantry axis. In the second row (+20°), 66 seeds are present both
in the initial estimated configuration and in the simulated implant along with an additional seed-like artifact which is
present in the measured images, (a) initial estimate of the seed configuration, (b) computed images at final
convergence, (c) the synthetic measured images corresponding to the “true” seed configuration, and (d) difference
between images (b) and (c). The red arrow and ellipse in (d) indicates the extra seed(s) found by gIFPM at
convergence.

C.3  Validation via physical phantoms —integration to clinical practice

Brachytherapy phantom design —a multi-configuration prostate seed phantom

An in-house precision-machined phantom that realizes clinically realistic Model-6711
seed prostate implants with known positions (0.1 mm accuracy) in each direction and
orientations (+1° for 6 and ¢ angles) was built [see Figure 17 (a) and (b)]. As the acrylic plates
are interchangeable individual seed poses are adjustable and many different seed configurations
can be realized. In this study, three clinically realistic brachytherapy seed configurations
containing totals of 50, 72 and 76 seed datasets were realized on the phantom. For the 50 seed
case, decayed Model 6711 1251 seeds obtained from Oncura Inc. were used. In that case, we
modeled only 3 mm radio-graphically visible radio-opaque marker. For the remaining cases,

machined stainless steel cylinders (4.5 mm long by 0.8 mm in diameter) were used.
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(b)

Fig.17. Close-up photographs, (a) an acrylic slab of the phantom containing Model 6711 '*°I seeds; where the polar
angle 0 is defined as the angle between implant axis and the major axis of the seed. It was assigned across the slab at
different orientation for each seed (see inset). The azimuthal angle, ¢ was assigned by using the adjustable reference
grid drawn for each seed in known orientation, and (b) multi-configuration precision-machined phantom assembly
with all 8 replaceable slabs. This phantom was used to create different seed configurations to test the gIFPM
algorithm seed localization accuracy in the clinical setting (see paper II for more detailed).

Acquisition and processing of measured radiographic projections

To experimentally validate this algorithm, the phantom was imaged on a Varian
ACUITY imaging system which is used for performing image-guided brachytherapy insertions
in our dedicated brachytherapy suite. CBCT images of the phantom were acquired for a complete
gantry rotation around the phantom capturing approximately 660 projections through 360° using
a Varian 4030CB flat panel detector. Three to ten radiographic projections at 5° to 10° angular
intervals were selected from the full set CBCT x-ray projections between +30° gantry angles.
The choice of perspectives was based on maximizing visibility of the implanted seeds in the

projections and avoiding excessively small parallaxes.

The image post-processing was performed as described earlier (see B.1 for more detailed)
except the gIFPM method does not require transforming cylindrical seed images into point-like
landmarks. Instead, we matched elongated line-seed features in the 2D images including
overlapping seed clusters. This avoids a major difficulty encountered by back-projection
methods: resolving seed clusters and isolating each seed centroid before reconstruction. The
binary images were then convolved with the same 2D Gaussian blurring function that was used
for the computed projection to create diffuse elongated seed lines with a known intensity

distribution. This produces smoothly-varying grayscale image gradients that can be calculated
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analytically in the computed projections to guide towards minimization of the objective function,

SSQD and speed up the convergence of the matching process. An example case of image post-

processing is shown in Figure 18.

(@) (b) (d)
Fig.18. An example case of the image post-processing of the projection images obtained from the Varian 4030CB

digital simulator, (a) raw projection image, (b) filtered image, (c) binary seed only bitmap image, and (d) blurred
grayscale image using the gI[FPM algorithm for 76 seed phantom datasets.

3D view of reconstructed (glFPM) and
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Fig.19. (a) Similarity metric score vs. iteration number for the two-step gIFPM algorithm for the three example
physical phantom seed configurations. The transition from larger to smaller blurring filter for the 50 seed
configuration is highlighted by the black arrow, and (b) superposition of measured seed images (black line seeds)
with automatically detected seed poses (green line seeds) for 76 seed phantom datasets.

Figure 19 (a) shows the convergence of the objective function for the three example seed
configurations derived from the same phantom, where the black arrow indicates the plateau
region where the algorithm transition from the larger to smaller Gaussian width. Figure 19 (b)

shows seed-by-seed superposition of the reconstructed (green) and measured (black) showing
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near coincidence achieved by 3D-to-2D image registration and seed reconstruction in a unified

method.
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Fig.20. Histograms of the seed localization error for the 76 seed phantom datasets, (a) positional, and (b)
orientations error.

The seed reconstruction error was computed by directly comparing the computed seed
coordinates with the known seed poses obtained from the precision-machined phantoms. We
performed ad hoc post-reconstruction matching by finding, for each ground truth 3D seed pose,
the nearest reconstructed seed pose that minimizes the 3D Euclidean distance and angular
variables between computed (gIFPM) and physically measured seed pose. For the 76 seed
phantom case, from one-to-one correspondence between the two sets of seed coordinates the
RMS error was (0.78 £ 0.57) mm. The 8 and ¢ angle distributions when using three projections
were found to be (5.7 £ 4.9)° and (6.0 + 4.1)°, respectively. The seed reconstruction error is
reported in the histograms in Figure 20 (a) where it shows that 97% of the reconstructed seed
positions are within 1.5 mm from the measured seed locations, (b) shows that greater than 95%
of the reconstructed seed orientations are within 8° from the measured seed orientations. This
case required 15 iterations in the 1% step (Gaussian width, o; = 2.8 mm) with computation time of
about 18 min/iteration and 4 iterations in the second step (o> = 1.8 mm) with computation time of
about 22 min/iteration or more on a 1 GHz processor. Table III summarizes the accuracy of

gIFPM reconstructions for three measured implants derived from the same phantom. With 6

projections these errors reduced by approximately a factor of J2 at the cost of doubling

computation time.
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Table III. Accuracy of seed poses deduced by the gIFPM algorithm for three seed configurations
realized by our physical phantom and imaged on the VCU ACUITY system. The root-mean-square
(RMS) value and standard deviation for the positional and orientation coordinates are reported while using
3 vs. 6 experimentally acquired projections. The maximum displacement (Max. error) of the seed position
is also reported.

No. of No. of Total no. of glFPM vs. true seed pose
seeds projections iterations . .
RMS error in Max. error RMS error in
seed position (mm)  (mm) orientation (°)
0 2
3 19 0.78 £ 0.57 1.88 57+49 6.0+4.1
76**
6 21 0.67 +0.47 1.56 4.6+3.6 45+33
3 17 0.72 +0.48 1.74 50+3.8 57+33
72**
6 18 0.56 £ 0.52 1.37 3.8+£29 42+3.7
3 15 0.75+0.46 1.78 49433 53+3.8
50*
6 16 0.59+0.42 1.44 32+£238 43+29

** Line seed made up of stainless steel (4.5 mm long and 0.8 mm in diameter)
*  Actual Model 6711 '*T dummy seed (3.0 mm x 0.5 mm radio-opaque marker)

An example of the reconstructed seed configurations projected onto imaging planes is
presented in Figure 21. For all non-clustered computed seed images, we empirically calculated
the seed centroids (center of mass of each seed region) and orientation angles (angle between the
x-axis and the major axis of each seed) in each 2D image plane and compared with those
obtained from the measured seed images at convergence. The residual 2D registration errors
were 0.69 +0.55 mm (+5 degree), 0.83 £0.56 mm (-20 degree), and 0.79 + 0.58 mm (+20
degree) for nearest-neighbor displacement and 5.4 +3.9° (+5 degree), 6.9 £ 6.2° (-20 degree),
and 6.7 +5.1° (+20 degree), respectively for polar angle (paper II). This indicated very good

agreement between measured and computed seed images.
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Fig.21. Superposition of measured (white) and computed (black) line seed images projected on the detector planes
for gantry angles of (a) +5°, (b) -20°, and (c) +20° for 76 seed phantom configuration. While many computed seeds
coincided exactly with the measured ones, a few still reveal small discrepancies.

A novel algorithm for accurately recovering 3D pose of implanted brachytherapy seeds
from as few as 3 projections was developed. The generalized IFPM algorithm provides better
than 0.7mm/6° accuracy in reconstructing the 3D pose of brachytherapy seeds when tested on 50
to 76 seed phantom datasets using CBCT x-ray projections. The test trials converged in 10 to 20
iterations when using two-step blurring and always arrived at the global minimum. By
comparing overall image content rather than individual seed poses, the glFPM method does not
face a correspondence problem between seed identities in the several images as standard BP
methods. It corrects for uncertainties in the measured projection geometry by adjusting the

imaging system viewpoint.

As of now, subtracting the measured images from the computed images at convergence,
one can locate extra-seed(s) in the implant. As future work, one could consider automatically
correcting over- and under-counted seed(s) in the implant and re-running the reconstruction
process to obtain the optimal match. More extensive investigation of the initial estimate of the
seed configurations using TRUS pre-plan geometry along with the post-implant seed
arrangement of the model 6711 '*°I seed patient’ need to be performed to further validate this
algorithm. This iterative pose search method has not been fully optimized for speed. Improving
the computation efficiency will involve not only the code development but also investigation of
other gradient search algorithms (such as conjugate gradient, Newton’s method, etc.) which is

also an area of future development.
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The results presented in this part of the research demonstrate that the gIFPM algorithm
works well for seeds with radio-opaque markers having an aspect ratio equal to 6:1or larger
(characteristic of the Model 6711 '*I source). Other '*I brachytherapy seeds satisfying this
constraint include the selectSeed49, (Amersham 6733 seed, IsoAid Advantage, DraxImage LS-1,
Source Tech Medical STM1251)50, Model symmetra“, Model 9011, and Best Model 2301
sources allowing gIFPM estimate individual seed orientations as well as locations. Extension of
this IFPM approach to localize larger metal objects in the brachytherapy treatment, for example
ICB applicators (tandem and colpostats) of arbitrary-shaped, is being investigated as further
generalization of this method (paper IIl). By incorporating five degrees of freedom search
capability, the IFPM approach (which does not require matching of corresponding images on
each projection) can be easily extended to localization of cylindrically symmetric objects (e.g.

implanted fiducial markers or brachytherapy needles, whose aspect ratios are 6:1 or larger).

Innovation/Impact

gIFPM is a novel approach which is able to accurately reconstruct individual seed
orientation as well as position, thereby permitting more accurate Monte Carlo-based or 2D TG-
43 report”” dose calculations to be performed. In addition, generalized IFPM is more robust and
tolerant of missing data than BP methods and has the potential to make intraoperative dose
reconstruction more feasible. Post-implant dosimetry performed four weeks after implant may
now be supplemented by intraoperative dose reconstruction via CBCT to provide more
immediate dosimetric feedback and assessment via gIFPM seed localization from 2D

radiographic projections.

Another potential application could be improvement of CBCT image quality for the
intra/postoperative brachytherapy patient’s images. Accurate identification of the metal seed
boundary and its orientation in the sinogram projections is very useful for suppressing metal
streaking artifacts by re-projecting each metal seed boundary onto the sinogram so that the
missing soft-tissue information can be recovered by interpolation from the surrounding soft-
tissue image texture (see section B.4 for more detailed). Reconstruction of CBCT images with

corrected (i.e., removed seeds) sinogram projections can then be performed.
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D LOCALIZING INTRACAVITARY BRACHYTHERAPY APPLICAOTRS VIA
GENERALIZED IFPM ALGORITHM -applicator models

The IFPM algorithm” "’ was further generalized to localize 3D pose of non-cylindrically
symmetric rigid objects, such as intracavitary brachytherapy (ICB) applicators. Because of the
non-rotational symmetry of the arbitrarily-shaped ICB applicators, we must extend our 5-
parameter pose-search approach to 6-parameter applicator models which is needed to completely
characterize the ICB applicators. Starting with an initial estimate of the applicator poses, this 6-
parameter expanded applicator-model finds the set of applicator pose parameters that minimizes

the pixel-by-pixel sum of the square intensity difference (SSQD) between blurred computed and

measured auto-segmented projections of the applicators. Then the three positional (x,y,z) and

three orientations (oc, B,y) coordinates of each applicator model are independently adjusted in an

iterative search process until the computed projections optimally match the measured images.

See algorithm workflow in appendix 2.

The main aim of this study was to present a novel method for localizing the 3D pose of
radio-opaque objects of known but arbitrarily shape from a small set of 2D x-ray projections, in
support of intraoperative brachytherapy planning. The applicator model is a mesh of discrete
points derived from a complex combinatorial geometric (CCG) modeling™ of the actual
applicator. Numerical simulations of clinically realistic ICB configurations were performed to
demonstrate the proof of concept. Actual intrauterine tandem and bilateral colpostats images
obtained from the ACUITY imaging system in our brachytherapy imaging suite were used to
experimentally validate this algorithm. The details of this research are accepted for publication in

Medical Physics, which is included as paper IIL."®

D.1  Description of Fletcher-Weeks applicator

A low dose-rate (LDR) manual afterloading system using '*’Cs sources loaded into
Weeks”’ CT-compatible Fletcher-Suit applicator [see Figure 22] was used in this study. The
applicators consist of thin-walled central tandem and aluminum colpostats. It contains retractable

tungsten-alloy shields. The main purpose of using retractable shields is two-fold. First, it reduces
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the dose delivered to bladder and rectum (photons emitted by the source toward the rectum and
bladder are obliquely filtered) and second, it produces relatively artifact-free CT images showing
the implant location relative to the pelvic soft-tissue structures (only the thin-walled aluminum
applicator casing was present in the CT studies). During an intracavitary procedure, the
applicators as shown in Figure 22 without radioactive sources or tungsten shields are inserted in
the patient. After imaging the applicator system, the radioactive sources along with tungsten

shields are afterloaded into the applicator through the channels in the colpostats and tandem

handles and treats the patient until the prescribed dose is delivered.

Fig.22. ICB applicator system used to treat locally advanced cervical cancer

D.2  Origin and features of PTRAN geometric modeling system

The PTRAN Monte Carlo photon-transport code®® ®* °' was used to model arbitrary-
shape ICB applicators. The code, initially created for dosimetry applications in brachytherapy,
was adapted to the problem of computing kilovoltage radiographic projections of the ICB
applicators. The photon transport model includes photoelectric absorption with production of
fluorescent photons, Compton scattering including electron binding effects, coherent scattering
and production of bremsstrahlung radiations. Many different estimators and post-processing
options are supported. Given a completed geometric model, the code package supports point and

segment classification as well as advanced ray-racing through the applicator components.

The volume based CCG modeling code®® was used to obtain the initial estimate of the 3D
applicator models (i.e., mathematical representation of the applicator models including internal

structure as well as outer surface). PTRAN uses set theoretic definitions of region boundary,
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interior, and exterior, and complex regions as set-theoretic unions, intersections and differences
of the complex regions (i.e., mathematically defined geometric objects). Each component of the
complex applicator region in a 3D model was characterized by its position, orientation, shape
and size (paper III). These parameters were extracted from the micrometer measurements and
orthogonal radiographs of the complicated applicators.’” ' Such complex modeling of the
applicator geometry is essential to obtain partial transmission through the applicator components

and to obtain more accurate Monte Carlo dose distributions.
D.3  Geometric modeling of Fletcher-Weeks applicator

A model of the CBCT projection geometry is made and positioned at M different
locations and orientations specified by translation and rotation matrices for each projection. A
phantom made up of uniform elliptical water sphere of volume 1100 mm’® was modeled. After
successful modeling of the applicator components in the 3D space as described above, 2D
projection images were computed using CBCT projection geometry. As shown in Figures 23 (a),
(b), and 24 (a), (b), (c) detailed 2D images of the 3D geometric models of each applicator
component can be computed by applying advanced ray-tracing routine. The source-to-detector
distance was 150 cm and the source-to-isocenter distance was 100 cm. The detector was 40 cm X

30 cm with a 1024 X768 image size and pixel resolution of 0.388 mm each.

-

Al

@ (b)

Fig.23. CBCT projection images obtained from the PTRAN Monte Carlo ray-tracing routine, (a) central intrauterine
tandem (with 42.44° curvature), and (b) left colpostat model, where the grayscale image background represent
uniform elliptical water cylinder. The black line segments in the tandem clearly show the stepping source position at
different dwell time. The line source position is also shown in the left colpostat. The image intensity values
represent an arbitrary integer number assigned to each material component in the model (paper III).
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Fig.24. Computed CBCT projection images of the bilateral colpostats and central intrauterine tandem, reproducing
clinical LDR treatment arrangement when using merge code.”” Any angle projection around 360° gantry rotation can
be acquired, for example, in this case, (a) projection with -30°, (b) projection with 0°, and (c) projection with +30°
gantry angle, respectively.

The PTRAN Monte Carlo-based ray-tracing approach successfully obtained partial
transmission through the applicator components. However, as it is now, the major downside is
the large computation time (several minutes) required to compute one single projection of the
applicator geometry. Projection computation efficiency can be improved either using graphic
processor unit (GPU) or some other fast DRR calculation scheme. For now, in order to overcome
this difficulty, we have represented the entire applicator geometry by a fine mesh of discrete
points (i.e., mathematical representation of the entire applicator) uniformly distributed over an
Aluminum shell of an actual applicator that were derived from PTRAN voxelized geometric
modeling. The voxelized applicator model was then integrated into the geometric forward
projector (see algorithm workflow in appendix 2) for computing updated DRRs and iteratively

matched with the measured projections.
D.4  Adapting 5-parameter model objective function to 6-parameter pose search

Our generalized IFPM algorithm described in paper Il can not accurately localize ICB
applicators of arbitrary-shape. This is because of the non-cylindrical symmetry about the axis of
rotation of the complex shape of the large ICB applicators. To solve this problem, we have
further generalized our 5-parameter line-seed pose-search algorithm to 6-parameter applicator

models to completely localize the ICB applicators in 3D space. The new generalized IFPM
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algorithm requires six pose parameters to fully describe each of the N applicators k£ =1,---, N

(typically N = 3 for a tandem and bilateral colpostats) in the world coordinate system (WCS)
which takes the isocenter of the imaging system as its origin and has X, Y, Z directions defined
by the x axis is left-right, the y axis is anterior-posterior, and the z axis is superior-inferior

direction, for a patient in supine position with feet pointing away from the gantry stand. For the

k-th applicator model (tx,ty,tz,a, ,B,}/)k where, t, =(t t,t )k, denotes the WCS coordinates of

x2%y27z
the origin of k-th applicator’s local coordinate system and the three Euler angles @, = (a, B, ]/)k

describe its orientation of this local coordinate system in WCS relative to CBCT isocenter

around the x, y, z axes, respectively. Each applicator model is described by a fine mesh of Q,
points: {r} ={r, | r, € 4,,i=1:---,0,}derived from the CCG applicator model when @, =0

and t, =0 as described above. Typically, amesh of 1 x 1 x 1 mm® was used.

A model of the CBCT projection geometry was made and positioned at M locations and
orientations (gantry angles for ACUITY) specified by translation and rotation matrices for each

image viewpoint. In the extrinsic detector model, the orientation of each isocentric projection in

the world coordinate frame was defined by the angles ((p,\y,n) which describe rotations of the

detector image plane around the x, y, z axes, respectively. After this, the mathematical
representations of the actual applicator models were positioned at a simulator couch relative to
the CBCT isocenter (aligning along the z-direction) by defining its translations and rotations. The
detector model was parameterized by describing its magnification, image center, image size and
pixel resolution. The source to isocenter and isocenter to the detector distances were denoted by
S and D, respectively. The parameterized 3D applicator model was then forward projected
(geometric projection) on the 2D detector planes using CBCT projection geometry and updated

iteratively to match with the measured projection images.
In this approach, each applicator model moves (rotates and translates) independent to the

others in the 3D space, computes new projections at different gantry angles and then iteratively

match with the measured projections until the SSQD converges. In this way, the voxelized 3D
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geometric model of arbitrary shape is integrated into the forward projection matching method for

computing the 2D projection images of the 3D ICB applicators geometry, iteratively (paper III).
Similarity metric and gradient search

The overall similarity metric, SSQD is the total of the pixel-by-pixel sum of the squared

intensity differences for all M blurred computed, /, (u,v | {rk,G)k},a,n) and the experimentally

acquired (measured) /, (u, v|o, 77) applicator image pairs (paper III),
2
SSQD({rk, |(777) ZZ[ (l/l V| rk) },0'977)_1," (U,V|O',77)] (4)
n u,y

The initial pose parameters {rk ,0 k} of each applicator were iterated by simultaneously adjusting
3D applicator pose while projecting computed updated image /. (u,v | {rk,('Dk},a,n) for each

gantry angle 7 and re-evaluating the objective function, Equation (4). The pose updates were

calculated from the first derivatives of SSQD with respect to each degree of freedom. The
Gaussian blurring used in the projection images provides analytical grayscale image gradient that
extended away from the applicator components. The blurring creates a “source attractive”
potential well around each applicator that extended its tail beyond the applicator itself. It had the
effects of attracting applicators to each other between the measured and computed projection

images and accelerating the convergence of the iterative minimization search.

The nonlinear gradient of the similarity, SSQD with respect to 3 positional and 3
orientations degrees of freedom were computed analytically; for example, with respect to x-

coordinate,

o(Sso)/ax,, =22(2[1€(u,v|{rk,ek},a,n)—lm(u,wa,n)]alc(u,w{rk,e)k},a,n)/axi,kj (5)
n \ u,v

and similarly for the remaining pose coordinates. The grayscale image gradients,

(i.e., ol (u,v | {rk,(')k},o;n)/ﬁxi,k and so on) with respect to (X, y, z) positions and (a, B, y)

orientations coordinates were computed from the blurred computed images for each applicator

model and obtained the best (mean) gradients. That is, to provide a single derivative with respect
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to each degree of freedom for updating {r,,®,}, oI, (u,v)/éx, was averaged over all pixels

(u,v) contained within the shadow of the k-th arbitrary-shape applicator model (i.e.,

ol, (u,v) / ox, and so on). The applicator components such as a tandem and bilateral colpostats

were treated as an individual rigid object, making sure that each applicator had 6 degrees of
freedom in 3D space. Detailed derivations of gradient calculation can be found in the appendix
(paper III). The same steepest-descent gradient search method as described in section C.1 was

used for updating the pose parameters in the iterative matching process.
D.5  Validation via simulated applicators geometries
Intrauterine tandem localization

The numerical simulation studies have been performed to demonstrate the reproducibility
of the known 3D pose of the intrauterine tandem. The 3D model of the intrauterine tandem was

obtained from the PTRAN CCG modeling when ®, =0 and t, =0 described in the previous

section. After obtaining the 3D model of the applicator, user specified pose parameters for each
applicator component relative to CBCT isocenter and the models were aligned along the z-
direction. This was the true pose of the applicator model which we wished to determine. Using
this applicator model, three true/ synthetic measured projection images were computed using the
CBCT projection geometry at different gantry angles. The projected applicator on the imaging
plane was masked to create the binary bitmap images, making sure image intensity = 0 in the
background and intensity = 1 over the area of the projected applicator. The 3D applicator model
was shifted by a displacement +2.5 mm in each coordinate axis and rotated +8° around each
rotation axis. This was our initial estimate. Both the true/ synthetic measured and computed
images were blurred using 2D Gaussian blurring function with a known intensity distribution.
This produces smoothly-varying grayscale image gradient that can be calculated analytically in
the computed projections to guide towards minimization of the objective function. The source to
detector distance was 150 cm and source to object distance was 100 cm with magnification

factor of 3/2. The images were 576 x 576 pixels square and had a pixel resolution of 0.388 mm.
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The true/synthetic measured images were submitted to the applicator reconstruction
process. When iteration starts with the initial estimate of the applicator model for each trial it
finds the new estimate of the 3D pose parameters until the computed projections match the

measured ones.

convergence rate of glFPM algorithm 3D applicator model: Tandem
10000 }----- —8— digital tancdem 304 : . gl;een: measured
) : : r black: reconstructed
8000 20+
S % _f : 104
Z £ o
é : : : : a;
w 10 <
2000 20+
0 i i 20 10 0 -10 20 -30 -10
0 2 4 6 8 10 (/R
number of iterations y[A/P}/mm k
(a) (b)

Fig.25. The similarity metric score vs. iteration number of gIFPM algorithm for a synthetic measured digital-tandem
datasets, (b) point-by-point superposition of the reconstructed tandem (black) with synthetic measured tandem
(green); showing near coincidence achieved by 3D-to-2D applicator registration.

In Figure 25 we show convergence rate history for the digital-tandem for one of the trial.
In this case the convergence was reached in 9 iterations with a total computation time of 40
second on a 1 GHz processor. All test trials converged in 8 to 12 iterations. The voxel-by-voxel
coordinates of the reconstructed tandem (black) were overlaid with the true/synthetic measured
tandem (green), demonstrating the overlap achieved by the applicator localization method. The
mean positional and angular error was found to be (0.28, 0.3, 0.37) mm, and (0.9, 0.8, 1.0)°,

respectively (paper III).

Combined applicators —Intrauterine tandem and bilateral colpostats

The 3D models of the applicator components (tandem, right and left colpostats) were
obtained from the PTRAN combinatorial geometric modeling as described earlier. The tandem
and colpostats were placed so the tandem bi-sects the colpostats on the lateral view. The tandem
fell midway between the colpostats and parallel to the body axis on AP view. The separations

between colpostats were 25 mm, 35 mm and 45 mm for each trial, respectively. This was the true

57



pose of the applicator models which we wished to determine. Using these applicator models,
three true/ synthetic measured projection images were computed using the CBCT projection

geometry at different gantry angles.

gantry
angle

00

-30°

+30°

(a) (b) (©) (d)

Fig.26. An illustration of the iterative convergence process for a simulated implant consisting of tandem and
bilateral colpostats for a 25 mm colpostats separation. Column (a) initial estimate of the applicator configuration, (b)
computed images at convergence, (c) the true/synthetic measured images, and (d) the difference between (b) and (c),
where the rows represents different gantry angles. The red line in the 3™ row indicates that the reference of the initial
estimate with respect to the measured images in part (¢). The generalized IFPM algorithm was able to reproduce
each applicator pose, as well as overlapping components.

The projected applicators on the imaging plane were masked to create the binary bitmap images.
Each 3D applicator model was shifted by a displacement £2.5 mm in each coordinate axis and
rotated +8° around each rotation axis. This was our initial estimate of the applicator
configurations. Both the true/ synthetic measured and computed images were blurred using 2D
Gaussian blurring as described above. For each trial, the iteration took the initial estimate of
applicator poses and then the 3D pose parameters of each applicator model were independently

adjusted until the computed projections matched with the measured ones.

Figure 26 shows an example of the iterative matching process for a simulated implant

consisting of full ICB applicators (intrauterine tandem and bilateral colpostats). The three
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projections have gantry angles of 0°, £30°. The small difference in Figure 26 (d) shows very
good agreement between the measured and computed binary images at convergence, including
reproducing overlapping applicator components. Figure 27 shows convergence rate histories for
the combined applicator geometries. All test trials converged in 10 to 12 iterations with a total

computation time of about 1 minute on a 1 GHz processor.

10000 —&— 45 mm colpostat separation
—e— 35 mm colpostat separation
25 mm colpostat separation

9000

010 0) PSR R ........... ...........

4000 f----------i-

Similarity, SSQD

2000 s et S

1000

v

e

i i H i 'T‘
0 2 4 6 8 10 12
number of iterations

0

Fig.27. Convergence matching rate of generalized IFPM algorithm for the three simulated full ICB applicator
configurations.

The comparison is summarized for all three simulated cases in Table I'V. In all trials the
difference errors were less than 1 mm and 2° for each of the positional and angular coordinates,

respectively (paper III).

Table IV. Accuracy of gIlFPM reconstructed poses for 3 simulated full applicator system configurations. The
difference for the each applicator component position and orientation coordinates is reported.

Separation Image Applicator gIFPM vs. true applicator pose
between the viewpoint components  Difference in applicator Difference in applicator
colpostats (mm)  used (°) position (mm) orientation (°)
Ax Ay Az Ao AP Ay
Tandem 0.41 0.59 -0.38 -0.98 0.78 1.86
25 0, -30, +30 R. colpostats 0.18 -0.56 0.48 2.03 1.71 -0.89
L. colpostats -0.38 -0.48 0.61 -0.85 2.04 1.95
Tandem 0.15 -0.37 0.46 0.89 0.95 -0.86
35 0, +20, -20 R. colpostats -0.32 -0.15 0.36 1.56 -0.74 1.62
L. colpostats -0.28 0.54 -0.51 -0.87 1.42 0.73
Tandem -0.18 0.27 0.34 -0.86 -0.64 -0.72
45 0, -30, +30 R. colpostats 0.14 0.18 -0.35 0.46 0.58 0.65
L. colpostats -0.20 0.34 0.52 0.87 1.06 -0.56
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Several experiments were performed using different gantry angle combinations as well as
different initial starting configurations of the applicators in the course of this study.
Theoretically, one should expect SSQD = 0 at the convergence, i.e., all computed applicators
images should exactly match with those measured. However, from Figure 27, for the combined-
applicators geometries, it is evident that the SSQD did not exactly converge to zero (i.e. less than
3% difference between measured and computed applicator images), showing less than optimal
convergence (i.e., trapping in local minima). That means if the initial estimate of the applicators
configuration is far apart from the measured configuration there is a chance of less than optimal
matching. Finite width of the detector pixel size may also affect the convergence rate of gIFPM

algorithm (in principle the larger the pixel size, the less than optimal the convergence).

D.6  Validation via actual applicators geometry —integration to clinical practice

Acquisition and processing of radiographic projections

The projection images of the actual applicators (tandem and bilateral colpostats) were
obtained from the ACUITY CBCT digital-simulator used for image-guided brachytherapy
procedures in our institute. The detector was 40 cm x 30 cm with a 1024 X 768 image size and
pixel resolution of 0.388mm/pixel. The image post-processing involved a) cropping the images
to 576 x 576 pixels square; b) normalizing the image intensity by finding its maximum and
minimum values in the image; ¢) morphological top-hat-filtering to suppress the background,
and d) automatic thresholding using the 3-standard deviation value of the pixel intensity
histogram to create binary applicator only images in each projection in order to separate the
applicators from the background. This produced binary bitmap images with intensity = 0 in the
background and intensity = 1 over the area of the projected applicator. One example case of
some of the major steps of the image post-processing is shown in Figure 28. The binary images

were then convolved with a 2D Gaussian blurring function to use by gIFPM algorithm.

The initial estimates of the applicators configurations were derived as described in
section D.5 above. For each trial, the separations between the colpostats were 30 mm, 40 mm,

and 50 mm, respectively.
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Fig.28. One image viewpoint showing the image post-processing steps of the experimentally measured applicator
components, a) original raw image, b) filtered image, c) applicator only binary image and d) blurred applicators

image with known intensity distribution used by generalized [FPM algorithm.

For the measured applicator images, there were no ground truth applicator coordinates.
The applicator registration error was computed by re-projecting the g[FPM applicator poses at
convergence onto the 2D image planes, overlying the computed and measured applicator
projections, and calculating the nearest-neighbor positional difference between the measured and
computed applicator positions in each image plane. An example of the automatically

reconstructed applicator poses projected on the measured digital simulator images is presented in

Figure 29.

(b)

Fig.29. Superposition of experimentally acquired binary images (white) with automatically reconstructed applicators

positions (black) projected onto the detector planes, (a) 0° gantry angle, (b) -30° gantry angle, and (c) +30° gantry
angle, respectively when using 40 mm colpostats separation. The residual 2D registration error was less than 1 mm

for the intrauterine tandem and about 1.5 mm for the bilateral colpostats on each image plane.

From these images, we empirically calculated the residual 2D registration error between the

computed and experimentally measured applicators image pairs at convergence (paper III). The
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center of mass difference between measured and computed tandem for the entire tandem was
used, while the center of mass difference between the measured and computed source center
location for the bilateral colpostats was estimated.

Table V. The residual 2D registration error between computed and measured applicator projection in
terms of 2D radial difference in each image plane. The center of mass difference between measured and
computed tandem of the entire tandem at convergence is reported, whereas the center of mass of the
difference between the measured and computed source position at convergence is empirically calculated
for the right- and left colpostats.

Separation Applicator gIFPM vs. measured applicator position at convergence:
between the components residual 2D registration error (mm)
measured
colpostats (mm) gantry = 0° gantry = -30° gantry = +30°
Tandem 0.88 1.12 1.16
30 R. colpostats 0.93 1.88 1.57
L. colpostats 1.25 1.75 1.93
Tandem 0.67 0.89 0.78
40 R. colpostats 1.14 1.46 1.81
L. colpostats 0.96 1.67 1.66
Tandem 0.58 0.91 0.75
50 R. colpostats 0.87 1.46 1.42
L. colpostats 0.72 1.58 1.54

Table V shows the residual 2D registration errors between the measured and computed
applicator components in each image plane. In all cases, the majority of the 2D radial difference
of the applicator registration error was about 1.5 mm or less and no error exceeded 2.0 mm in the
detector plane. This indicated good agreement between measured and computed applicators
projections. Several experiments were performed to test the accuracy and robustness of the
gIlFPM algorithm, starting with different initial estimates and gantry angle combinations. This
novel algorithm is accurate, fast and completely automatic to localize radio-opaque applicators
of arbitrary shape from measured 2D x-ray projections and has a potential for intraoperative

brachytherapy planning.

To improve the accuracy of the applicator localization validation study, one could
consider designing a precision-machined pelvic phantom that houses ICB applicators and test the
glFPM performance against a more rigorous ground truth. It is observed that the computed
applicator poses at convergence vary to some extent (see section D.5 for detailed explanation),
depending on the initial starting configuration, indicating less than optimal convergence, i.e.,

trapping in local minima. The dependence of convergence rate and accuracy on the initial
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estimate needs more extensive investigation. Our current g[FPM implementation is limited to
estimating the 3D applicator pose. Incorporating geometric uncertainties such as gantry angle
inaccuracy and detector displacement and orientation into the estimation model is an area of
future development. Clinically, applicator rotation errors can be as large as 45 degrees for bad
implant or antiverted uterus. The maximum discrepancy between initial and actual pose of the

applicator that allows gIFPM to correct pose parameters is under investigation.

Innovation/Impact

A novel, accurate, fast and completely automatic method to localize radio-opaque ICB
applicators of arbitrary shape from measured 2D x-ray projections is presented, in support of
intraoperative brachytherapy dose reconstruction and adaptive replanning. By accurately
localizing entire applicator attenuation maps, it has a potential to perform more accurate Monte

Carlo based dose calculations and suppress metal streaking artifacts in the CBCT images.

E SUMMARY AND CONCLUSIONS

IFPM has been shown to be a robust and more accurate tool for localizing a broad range
of rigid objects from the measured 2D projections, ranging from small symmetrical spherical
seeds to large and complex objects without any rotational symmetry axes in 3D space. Unlike
standard back-projection methods, IFPM avoids the need to match corresponding seed images on
the projections. It can accommodate incomplete data by iteratively recreating overlapping seeds
in the computed projections. By using high resolution 2D projections to localize 3D pose of
elongated line-seed and applicator, it can overcome the major difficulties of CT-based method
including streaking artifacts and slice thickness limitations. Also, it has some flexibility in the
detector model calibration to optimize the gantry angle uncertainties to obtain the best possible

projection match.

In paper I it has been shown that starting with a clinically-realistic initial estimate of the

seed configuration (TRUS pre-plan), the two-step [FPM algorithm can accurately reconstruct the
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brachytherapy seed configuration in the post-implant (week four) patient when using 2D

measured projections.

For elongated line seeds (such as Model 6711 "I seed, which has a 3 mm x 0.5 mm
cylindrical radio-opaque marker), there are two additional degrees of freedom for each seed that
describe their orientations in 3D space. The IFPM method described in paper I can not accurately
localize seeds centers with un-processed highly elongated radiographic markers. This is because
the disk-shaped binary seed image model assumed by the forward projector within the algorithm
does not reproduce the binary images produced by cylindrical seeds in shape and size, which can
vary from a small disk to highly elongated rectangles depending on seed orientation. To
overcome this difficulty, we have introduced generalized IFPM algorithm (5-parameter model)
that allows reconstruction of seed positions as well as orientations. Numerical simulations of
clinically-realistic brachytherapy seed configurations were performed to demonstrate the proof of
concept of this algorithm (paper II). An analytical solution was found for both the similarity
metric (objective function) and the gradients of the similarity with respect to all five degrees of
freedom of each seed. To rigorously test the accuracy of this new algorithm, a novel precision-
machined prostate seed implant phantom, capable of realizing multiple seed configurations of up

to 100 seeds to be set with an accuracy of 0.1 mm was developed.

The accuracy of the novel generalized IFPM method using a multi-configuration
phantom was about 0.7 mm/6°. Considerable improvement in accuracy is obtained as compared
to the VariSeed planning, when the seed orientation is taken into account. In paper I, the robust
performance of the generalized IFPM in the presence of overlapping seed clusters, highly
migrated seeds, missing seed count and errors in accounting the radiographic projection
geometry have been shown. By accurately reconstructing the individual seed orientation as well

as position, more accurate Monte Carlo-based or 2D TG-43 dose calculation can be performed.

By obtaining the accurate 3D model of the ICB applicators from an external
combinatorial geometric modeling code, the IFPM algorithm was further generalized to
accurately localize non-cylindrically symmetric objects of arbitrary shape and was applied to

ICB applicator pose estimation from a small (3 to 10) set of 2D x-ray projections, in support of
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intraoperative brachytherapy planning (paper III). Because of the non-cylindrical symmetry
about the axis of rotation, extension from 5-parameter to 6-parameter pose-search algorithm was
essential to completely localize arbitrarily-shaped ICB applicators. Using the [IFPM approach, we
obtained the analytical solution for the similarity metric (objective function) and the gradients (3
positional and 3 orientations) of the similarity with respect to each degree of freedom for each
applicator model in the configuration. Unlike conventional approach, this is a fully automated
process. It does not require lateral films, which avoids the image quality issues of conventional
methods. The novel generalized IFPM algorithm was experimentally validated using the both
synthetic-measured and actual-measured images of intrauterine tandem and bilateral colpostats
arrangement (paper III). The mean registration error was less than 1 mm for the intrauterine
tandem and about 1.5 mm for the bilateral colpostats when compared against the measured

projections.

In contrast to conventional single-source-dose-superposition algorithm, the Monte Carlo-
based method can be accounted for interseed attenuation, 2D anisotropy, and intra/inter
applicator shielding. By accurately localizing radioactive sources as well as full 3D poses of
brachytherapy seeds/ICB applicators, the effect of interseed attenuation, 2D anisotropy and
inter/intra applicator attenuation can be included in the resultant Monte Carlo or other dose
calculations. In combination with advanced image reconstruction algorithms, accurate 3D
localization of metal attenuation maps in the patient could contribute to mitigation of metal
streaking artifacts on CT/CBCT images. The fully automatic IFPM method is accurate, robust,
and capable of completing a reconstruction in a few minutes and is a highly promising tool for

implementing in the clinical practice for fusion-based intraoperative brachytherapy planning.

F FUTURE RESEARCH DIRECTIONS AND POTENTIAL CLINICAL IMPACT

Explore projection matching using un-segmented images

Because of the poor imaging contrast of the implanted seeds in the TRUS images,

utilization of the x-ray projections is essential, in support of the intraoperative brachytherapy

planning. Image registration, seed/applicator, and implanted fiducial marker matching is

65



essential for image-guided brachytherapy procedures. The results of this thesis have shown that
the 3D pose of the implanted brachytherapy seed/applicator can be localized accurately using
measured 2D x-ray projections. Thus the clinical implementation of this algorithm is to develop
a novel iterative method using un-segmented grayscale images (matching raw projection images,
intraoperatively). As a result, partial transmission through the implanted seed/applicator could be
accounted. It is a difficult problem to accurately isolate (segment) bone and plastic applicator
images when they overlap one another. The grayscale image matching could avoid one of the
major problems of segmenting and thresholding fully plastic applicators’’ and brachytherapy
seeds having low Z material components. By computing x-ray projections that analytically
describe seed/applicator geometry, voxel-based patient anatomical information, DRRs; and
matching those DRRs with measured projections could avoid several difficulties including image
processing. The computed images should contain at least bony structures and soft-tissue
information along with the brachytherapy seed configurations or applicator geometry in the

images.

Potential improvement of Monte Carlo-based or TG - 43 dose calculation

The '°I and '"Pd seeds exhibit considerable anisotropy in their dose distributions due to
their internal geometry. The “self-attenuation” by the material along the seed’s major axis is the
main cause for the seed anisotropy. Our method exploits the individual 3D pose of the implanted
brachytherapy seed that can be measured automatically in the clinical setting. After computing
3D pose parameters, it is easy to calculate the more accurate dose that is delivered (by
incorporating 2D anisotropy and interseed attenuation) to the patients by using TG-43 report*’

2D line-seed formalism or Monte Carlo-based dose calculation.®” %

Similar argument can be employed to ICB treatment of cervix. Monte Carlo studies have
shown that applicator shielding reduces doses up to 25% when the dose distributions from the
bilateral colpostats and intrauterine tandem are included.”® By localizing the applicator internal
structure as well as radioactive sources, the effect of intra- and inter-applicators attenuation map

can be included in the resultant Monte Carlo or other dose calculation.

Improve geometric targeting accuracy
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Unlike EBRT, brachytherapy has no well-defined method to evaluate geometric targeting
uncertainties (systematic and random errors) —so that meaningful PTV margins can be rationally
estimated. IFPM">”® can contribute in improving targeting accuracy by using both the accurate
modeling of seed/applicator geometry and high spatial resolution projections in the OR
intraoperatively, rather than streak-limited CT images for seed and applicator localization. TRUS
can be used to localize soft tissues boundaries. It could allow for the identification of under-
dosed regions, remedial seed or applicator placement and update the dose distribution, thus
making sure that the entire tumor volume receives the prescribed dose while minimizing the dose
to the normal-tissues (i.e., rectum and bladder). In the matching process (rigid or non-rigid image
registration —3D/2D free-form deformation), IFPM uses natural features in the images (e.g.,
seeds or applicators themselves, rather than artificial calibration landmarks to constrain the
optimization parameters) which could ultimately improve the geometric targeting accuracy as
well as studying random and systematic source positioning errors. It could also improve post-
implant seed/applicator localization by replacing reconstructed CT-based seed localization by
extending 5 and 6-parameter models IFPM approach to multi-slice spiral CT sinogram as well as
planar projections. In addition, to improve targeting accuracy, IFPM could facilitate studies to
further investigate and quantify inter- and intrafractional targeting uncertainties (because of
intrafractional source movement) in the implant by using rigid/non-rigid image registration of the

implanted seeds/applicators themselves.

Improve CBCT image quality for brachytherapy planning

Applying conventional filtered back-projection algorithms to projection data acquired in
the presence of bulky ICB shielded applicators or permanent prostate seed implants results in
severe streaking artifacts on CBCT images. The resulting streaking artifacts make segmentation
of soft-tissues difficult and introduce large error in dose calculations. For the small foreign metal
objects such as seeds, sinogram interpolation (see section B.3 for more detailed) indicates the
improvement of CBCT image quality. In addition, scatter subtraction and beam-hardening

corrections will further improve the CBCT image quality.
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By working with higher resolution 2D projection images (sinograms), IFPM avoids the
major difficulties of CT-based localization, such as limited spatial resolution due to slice
thickness limitation and ambiguities created by metal streaking artifacts. This ultimately
improves the accuracy of seed/applicator localization in the 3D space. Accurate modeling of the
brachytherapy seed and applicator internal structure, material components as well as external
geometry will allow us to accurately estimate the partial transmission through the applicator
component (i.e. incomplete data) in the sinogram region and may be accounted to improve the
CBCT image quality. Because the interpolation method does not work well for large metal object
such as ICB applicators, this problem can be addressed through restoration of tissue-induced
sinogram information obscured by metal objects using images acquired priori to applicator
insertion (pre-operative metal-free images). Accurate knowledge of seed/applicator pose
minimizes region in sinogram space that has to be restored and maximizes useful soft-tissue

information in sinogram.

Since the x-rays traversing through metal objects are attenuated much more strongly; far
fewer photons arrive at the detectors (i.e., inadequate primary photon count rates behind metal
objects). As a result, the non-linear effects such as background scatter, beam hardening and
stochastic noise due to photon starvation become significant, in the image reconstruction process.
Another approach to include the non-linear effects in the image formation process is to use
iterative statistical image reconstruction methods.”””* ** An evaluation of novel algorithms such
as AM iterative reconstruction for reconstructing CT images from incomplete sinogram date
could be performed.” However, this approach require a priori knowledge of the implanted metal
object including its pose, shape, and attenuation map is essential when using AM image
reconstruction to mitigate metal streaking artifacts. IFPM could provide the full 3D attenuation
map of the implanted metal objects as a potential input for the AM image reconstruction to
suppress the metal streaking artifacts. Extension of this method to broader classes of foreign
metal objects (such as stirrups, retractors, and table supports, including parameters to describe
flex or internal motion within the applicators, partial transmission objects) are potential avenues

for future development.
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APPENDIX 1

Summary of the algorithm workflow of the elongated seed pose reconstruction
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The above flow diagram shows the algorithm workflow of the line seed pose
reconstruction process. First part of the diagram (a) represented the initial estimate of seed
configuration derived from TRUS pre-plan data which was transferred to the CBCT reference
frame. Part (b) of the flow diagram is about the measured elongated line seed images obtained
from the clinic. These images are the actual measured images we are trying to match. Second
part of the diagram (a) is an iterative loop of the main code. In this process, once we obtained the
initial estimate of the seed configurations from TRUS pre-plan datasets, transformed the seed
centroid positions to the line seed-model, computed the gradient of the similarity metric with
respect all five degrees of freedom for each seed and used that gradient information to the
steepest-descent gradient search method to adjust the individual seed pose parameters by

iteratively computing the updated DRRs and matched with the measured images.
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APPENDIX 2

Summary of the algorithm workflow of the ICB applicators localization
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The above flow diagram illustrates the algorithm workflow of the arbitrary-shaped ICB
applicator localization process, iteratively. The initial estimate of the applicator models were
derived from voxel-based CCG modeling of the applicator geometry which is represented in part
(a). Part (b) of the diagram shows the measured applicator images obtained from the clinic.
These are the target images which we wish to match. Block (c) of the flow diagram is an iterative
loop of the main code. In this process, we need to obtain the initial estimate of the arbitrary-
shaped applicator models only once. Then the analytical gradient of the similarity metric with
respect to all six degrees of freedom for each applicator model is computed. The gradient
information is used to adjust the pose parameters into the steepest-descent method and iteratively

match the updated computed applicator model with the measured ones.

72



REFERENCES
'J. F. Williamson, “Brachytherapy technology and physics practice since 1950: a half-century of progress,” Phys.
Med. Biol. 51, R304-25 (2006)

’A. Inciura, L. Jarusevicus, K. Vaiciunas, and E. Juozaityte, “Review on the effectiveness of prostate brachytherapy

(abstract),” Medicina 45, 660-71 (2009)

*N. N. Stone and R. G. Stock, “Permanent seed implantation for localized adenocarcinoma of the prostate

(abstract),” Urology Reports 3, 201-06 (2002)

*Y. Yu, L. L. Anderson, Z. Li, D. E. Mellenberg, R. Nath, M. C. Schell, F. M. Waterman, A. Wu, and J. C. Blasko,
“Permanent prostate seed implant brachytherapy: Report of American Association of Physicists in Medicine Task

Group Vo. 64,” Med. Phys. 26, 2054-76 (1999)

S Nag, J. P. Ciezki, R. Cormack et al., “Intraoperative planning and evaluation of permanent prostate

brachytherapy: Report of the American brachytherapy society,” Int. J. Radiat. Oncol Biol. Phys. 51, 1422-30 (2001)

B. H. Han, K. Wallner, G. Merrick, W. Butler, S. Sutilef, and J. Sylvester, “Prostate brachytherapy seed
identification on post-implant TRUS images,” Med. Phys. 30, 898-900 (2003)

L. Gong, P. S. Cho, B. H. Han, K. E. Waller, S. G. Sutlief, S. D. Pathak, D. R. Haynor, and Y. Kim,
“Ultrasonography and fluoroscopic fusion for prostate brachytherapy dosimetry,” Int. J. Radiat. Oncol., Biol., Phys.
54, 1322-30 (2003)

1. N. Roy, K. E. Wallner, P. J. Harrington, C. C. Line, and L. L. Anderson, “A CT-based evaluation method for
permanent implants: Applications to prostate,” Int. J. Radiat. Oncol Biol. Phys. 26, 163-69 (1993)

W. S. Bice, D. F. Dubois, J. J. Prete, and B. R. Prestidge, “Source localization from axial image sets by iterative

relaxation of nearest neighbor criterion,” Med. Phys. 26, 1919-24 (1994)

%, Feygelman, B. K. Noriega, R. M. Sanders, and J. L. Friedland, “A spreadsheet techniques for dosimetry of
transperineal implants,” Med. Phys. 22, 79-100 (1995)

"D. H. Brinkmann and R. W. Kline, “Automated seed localization from CT datasets of the prostate,” Med. Phys. 25,
1667-72 (1998)

73



”N. Yue, Z. Chen, J. E. Bond, Y. H. Son, and R. Nath, “Combined use of transverse and scout computed
tomography scans to localize radioactive seeds in an interstitial brachytherapy implant,” Med. Phys. 26, 502-05
(1999)

B7 Li, I. A. Nalcacioglu, S. Ranka ef al., “An algorithm for automatic, computed-tomography-based source

localization after prostate implant,” Med. Phys. 28, 1410-15 (2001)

“H. Liu, G. Cheng, Y. Yu, R. Brasacchio, D. Rubens, J. Strang, L. Liao, and E. Messing, “Automatic localization of
implanted seeds from post-implant CT images,” Phys. Med. Biol. 48, 1191-03 (2003)

15C. Rasch, I. Barillot, P. Remeijer, A. Touw, M. van Herk, and J. V. Lebesque, “Definition of the prostate in CT
and MRI: a multi-observer study,” Int. J. Radiat. Oncol Biol. Phys. 43, 57-66 (1999)

"International Commission on Radiation Units and measurement, report No. 38 Dose and volume specifications for

reporting intracavitary therapy in gynecology, (1985)

R. L. Siddon and L. M. Chin, “Two-film brachytherapy reconstruction algorithm,” Med. Phys. 12, 77-83 (1995)

"H. 1. Amols and I. I. Rosen, “A three-film technique for reconstruction of radioactive seed implants,” Med. Phys.

8,210-14 (1981)

D. D Jackson, “An automated method for localizing radioactive seeds in implant dosimetry,” Me. Phys. 10, 370-72
(1983)

p. J. Biggs and M. D. Kelley, “Geometric reconstruction of seed implants using a three-film technique,” Med.

Phys. 10, 701-04 (1983)

2'M. D. Altschuler, P. A. Findlay, and R. D. Epperson, “Rapid accurate, three-dimensional location of multiple
seeds in implant radiotherapy treatment planning,” Phys. Med. Biol. 28, 1305-18 (1983)

M. S. Rosenthal and R. Nath, “An automatic seed identification technique for interstitial implants using three

isocentric radiographs,” Med. Phys. 10, 475-79 (1983)

M. D. Altschuler and A. Kassaee, “Automated matching of corresponding seed images of three simulator

radiographs to allow 3D triangulation of implanted seeds,” Phys. Med. Biol. 42, 293-302 (1997)

74



D. Tubic, A. Zaccarin, J. Pouliot, and L. Beaulicu, “Automated seed detection and three-dimensional

reconstruction-I. Seed localization from fluoroscopic images or radiographs,” Med. Phys. 28, 2265-27 (2001)
D. Tubic, A. Zaccarin, L. Beaulicu, and J. Pouliot, “Automated seed detection and three-dimensional
reconstruction-II Reconstruction of permanent prostate implants using simulated annealing,” Med. Phys. 28, 2272-

79 (2001)

A. Y. C. Fung, “C-Arm imaging for brachytherapy source reconstruction: Geometrical accuracy,” Med. Phys. 29,

724-26 (2002)

2D, A. Todor, G. N. Cohen, H. 1. Amols, and M. Zaider, “Operator-free, film-based 3D seed reconstruction in
brachytherapy,” Phys. Med. Biol. 47, 2031-48 (2002)

2D, A. Todor, M. Zaider, G. N. Cohen, M. F. Worman, and M. J. Zelefsky, “Intraoperative dynamic dosimetry for
prostate implants,” Phys. Med. Biol. 48, 1153-71 (2003)

YE. K. Lee and M. Zaider, “Intraoperative dynamic dose optimization in permanent prostate implants,” Int. J.

Radiat. Oncol Biol. Phys. 56, 854-61 (2003)

L. Liu, D. A. Bassano, S. C. Prasad et al., “On the use of C-arm fluoroscopy for treatment planning in high dose

rate brachytherapy,” Med. Phys. 30, 2297-302 (2003)

'M. Zhang, M. Zaider, M Worman, and G. Cohen, “On the question of 3D seed reconstruction in prostate

brachytherapy: the determination of x-ray source and film locations,” Phys. Med. Biol. 49, N335-45 (2004)

32S. Narayanan, P. S. Cho, and R. J Marks II, “Fast cross-projection algorithm for reconstruction of seeds in prostate

brachytherapy,” Med. Phys. 29, 1572-79 (2002)

3. Narayanan, P. S. Cho, and R. J Marks II, “Three-dimensional seed reconstruction from an incomplete data set

for prostate brachytherapy,” Phys. Med. Biol. 49, 3483-94 (2004)

Y. Su, B. J. Davis, M. G. Herman, and R. A. Robb, “Prostate brachytherapy seed localization by analysis of
multiple projections: Identifying and addressing the seed overlap problem,” Med. Phys. 31, 1277-87 (2004)

S T Lam, P. S. Cho, R. J. Mark, and S. Narayanan, “Three-dimensional seed reconstruction for prostate

brachytherapy using Hough trajectories,” Phys. Med. Biol. 49, 557-69 (2004)

75



S T Lam, P. S. Cho, R. J. Mark, and S. Narayanan, “Detection and correction of patient movement in prostate

brachytherapy seed reconstruction,” Phys. Med. Biol. 50, 2071-87 (2005)

7A. K. Jain, Y. Zhou, T. Mustufa et al., “Matching and reconstruction of brachytherapy seeds using the Hungarian
algorithm (MARSHAL),” Med. Phys. 32, 3475-92 (2005)

3F_ A. Siebert, A Srivastav, L Kliemann ef al., “Three-dimensional reconstruction of seed implants by randomized
rounding and visual evaluation,” Med. Phys. 34, 967-75 (2007)

1

*R. E. Wallace and J. J. Fan, “Dosimetric characterization of a new design '“palladium brachytherapy source,”

Med. Phys. 26, 2465-70 (1999)

YA, S. Meigooni, S. A. Dini, S. B. Awan, K. Dou, R. A. Koona, “Theoretical and experimental determination of
dosimetric characteristics for ADVANTAGE™ Pd-103 Brachytherapy source,” Applied Radiation and Isotopes 64,
881-87 (2006)

*TA. S. Meigooni, Z. Bharucha, M. Yoe-Sein, and K. Sowards, “Dosimetric Characteristics of the Best® double-wall
103Pd brachytherapy source”, Med. Phys. 28, 2568-75 (2001)

#J. Lee, C. Labat, A. K. Jain, D. Y. Song, E. C. Burdette, G. Fichtinger, and J. L. Prince, “Optimal matching for
prostate brachytherapy seed localization with dimension reduction,” Medical Image Computing and Computer-

Assisted Intervention: MICCAI 12, 59-66 (2009)

“*M. Brunet-Benkhoucha, F. Verhaegen, S. Lassalle, D. B. Nadeau, B. Reniers, D. Donath, D. Taussky, and J.-F.
Carrier, “Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative

postimplant dose evaluation in low dose rate prostate brachytherapy,” Med. Phys. 36, 5235-44 (2009)

“J.F. Corbett, J. J. Jezioranski, J Crook, T. Tran, and I. W. T. Yeung, “The effect of seed orientation deviations on

the quality of '*I prostate implants,” Phys. Med. Biol. 44, 2785-2800 (2001)

“p. Lindsay, J. Battista, and J. V. Dyk, “The effect of seed anisotropy on brachytherapy dose calculations using '*°I

and 'Pd,” Med. Phys. 28, 336-45 (2001)

“A. S. Glassner, “GRAPHIS GEMS”, UK: Academic Press Limited, 98-104 (1990)

*'M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J.
F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose
calculations Dose distributions,” Med. Phys. 31, 633-74 (2004)

76



8. C. Prasad, D. A. Bassano, and P. 1. Fear, “Dose distributions for '*I implants due to anisotropic radiation

emission and unknown seed orientation,” Med. Phys. 14, 296-98 (1987)

*P. Karaiskos, P. Papagiannnis, L. Sakelliou, G. Anagnostopopulos, and D. Baltas, “Monte Carlo dosimetry of the
selectSeed '*°I interstitial brachytherapy seed,” Med. Phys. 28, 1753-60 (2001)

%M. J. Rivard, W. M. Butler, L. A. DeWerd, M. S. Hugq, G. S. Ibbott, A. S. Megiooni, C. S. Melhus, M. G. Mitch,
R. Nath, and J. F. Williamson, “Supplement to the 2004 update of the AAPM Task Group No. 43 Report,” Med.
Phys. 34, 2187-05 (2007)

SH. Hedtjarn, G. A. Carlsson, and J. F. Williamson, “Monte Carlo-aided dosimetry of the symmetra model 125.S06
121 intestinal brachytherapy seed” Med. Phys. 27, 1076-85 (2000)

2M. J. Rivard, “Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 '*°I

brachytherapy sources,” Med. Phys. 36, 486-91 (2009)

K. T. Sowards and A. S. Meigooni, “A Monte Carlo evaluation of the dosimetric characteristics of the Best Model

2301 1251 brachytherapy source,” Applied Radiation and Isotopes 57, 327-33 (2002)

>*S Nag, C. Chao, B. Erickson et al., “The American brachytherapy society recommendations for low-dose-rate

brachytherapy for carcinoma of the cervix,” Int. J. Radiat. Oncol Biol. Phys. 52, 33-48 (2002)

3C. A. Pelizzari and G. T. Y. Chen, “A new method for localization of sources in Fletcher-Suit tandems,” Int. J.

Radiat. Oncol. Biol., Phys.15 (1988)

W. L. Saylor and M. Dillard, “Dosimetry of 137Cs sources with the Fletcher-Suit gynecological applicator,” Med.
Phys. 3, 117-19 (1976)

’K. J. Weeks and G. S. Montana, “Three-dimensional applicator system for carcinoma of the uterine cervix,” Int. J.

Radiat. Oncol. Biol., Phys.37, 455-63 (1988)

7. Li and J. F. Williamson, “Volume-based geometric modeling for radiation transport calculations,” Med. Phys.
19, 667-77 (1992)

M. J. Price, K. A. Gifford, J. 1. Horton et al., “Monte Carlo model for a prototype CT-compatible, anatomically
adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer,” Med. Phys. 36, 4147-
55 (2009)

77



603, Markman, J. F. Williamson, J. F. Dempsey, and D. A. Low, “On the validity of the superposition principle in
dose calculations for intracavitary implants with shielded vaginal colpostats,” Med. Phys. 28, 147-55 (2001)

'F. A. Lerma and J. F. Williamson, “Accurate localization of intracavitary brachytherapy applicators from 3D CT

imaging studies,” Med. Phys. 29, 325-33 (2002)

02K 7. Weeks, “Monte Carlo dose calculations for a new ovoid shield system for carcinoma of the uterine cervix,”

Med. Phys. 25, 2288-92 (1998)

%K. A. Gifford, F. Mourtada, S. H. Cho et al., “Monte Carlo calculations of the dose distribution around a

commercial gynecologic tandem applicator,” Radiother. Oncol. 77, 210-15 (2005)

%N. R. Datta, R. Basu, K. J. Das, et al., “Problems and uncertainties with multiple point A's during multiple high-
dose-rate intracavitary brachytherapy in carcinoma of the cervix,” Clini. Oncol., 16, 129-37 (2004)

L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” Journal of the Optical Society of
America A,” Optics, Image Science, and Vision 16, 612-19 (1984)

K. A. Gifford, J. L. Horton, Jr., C. E. Pelloski, et al., “A three-dimensional computed tomography-assisted Monte
Carlo evaluation of ovoid shielding on the dose to the bladder and rectum in intracavitary radiotherapy for cervical

cancer,” Int. J. Radiat. Oncol. Biol., Phys. 63, 615-21 (2005)

c. C. Ling, M. C. Schell, K. R. Working et al., “CT assisted assessment of bladder and rectum dose in
gynecological implants,” Int. J. Radiat. Oncol. Biol., Phys. 13, 1577-82 (1987)

%G. H. Golver and N. J. Pelc, “An algorithm for the reduction of metal clip artifacts in CT reconstruction,” Med.

Phys. 8, 799-807 (1981)

W. A. Kalender, R. Hebel, and J. Ebersberger, “Reduction of CT Artifacts Caused by Metallic Implants,”
Radiology, 164, 576-77 (1987)

3. Hsieh, “Adaptive streak artifacts reduction in computed tomography resulting from excessive x-ray photon

noise”, Med. Phys. 25, 2139-47 (1998)

"D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffary, “High-contrast object localization and removal in cone-beam

CT,” Proc. of SPIE Vol.5745, 40-50 (2005)

78



"2A. Docef, M. Murphy, P. Keall ez al., “Deformed CT reconstruction from limited projections,” Proc. of CARS
Vol. 1281, 104-8 (2005)

R. J. Murphy, S. Yan, J. A. O’Sullivan, D. L. Snyder, B. R. Whiting, D. G. Politte, G. Lasio, and J. F. Williamson,
“Pose estimation of known objects during transmission tomographic image reconstruction,” IEEE transactions on

medical imaging, vol. 25, no. 10 (2006)

J. F. Williamson, B. R. Whiting, J. Benac, R. J. Murphy, G. J. Blaine, J. A. O’Sullivan, D. G. Politte, and D. L.
Snyder, “Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using

statistical image reconstruction,” Med. Phys. 29, 2404-18 (2002)

M. I. Murphy and D. A. Todor, “Demonstration of a forward iterative method to reconstruct brachytherapy seed

configurations from x-ray projections,” Phys. Med. Biol. 50, 2715-37 (2005)

*D. Pokhrel, M. J. Murphy, D. A. Todor, E. Weiss, and J. F. Williamson, “Clinical application and validation of an
iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT

x-ray projections,” Med. Phys. 37 (9), 5092-5101 (2010)

"D. Pokhrel, M. J. Murphy, D. A. Todor, E. Weiss, and J. F. Williamson, “Reconstruction of brachytherapy seed
positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching,”

accepted for publication in Med. Phys. (September 2010)

®D. Pokhrel, M. J. Murphy, D. A. Todor, E. Weiss, and J. F. Williamson, “Localizing intracavitary brachytherapy
applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm,”

accepted for publication in Med. Phys. (October 2010)
S, L. Schoeppel, B. A. Frass, M. P. Hopkins et al., “A CT-compatible version of the Fletcher system intracavitary
applicator: clinical application and 3-dimentional treatment planning,” Int. J. Radiat. Oncol. Biol., Phys. 17, 1103-

09, (1989)

N. Milickovic, S. Giannouli, D. Balats et al., “Catheter autoreconstruction in computed tomography based

brachytherapy treatment planning,” Med. Phys. 27, 1047-57 (2000)

81, Li, C. A. Pelizzari, C. Reft, H. G. Sutton, and G. T. Y. Chen, “Computer-aided geometric reconstruction of
Fletcher-Suit source positions,” Med. Phys. 21, 1123-30 (1994)

79



%2S. Haack, S. K. Nielsen, J. C. Lindegaard et al., “Applicator reconstruction in MRI 3D image-based dose planning
of brachytherapy for cervical cancer,” Radiother. Oncol. 91, 187-93 (2009)

BA. C. Leeuw, M. A. Moerland, C. Nomden et al., “Applicator reconstruction and applicator shifts in 3D MR-based
PDR brachytherapy of cervical cancer,” Radiother. Oncol. 93, 341-46 (2009)

843 P. Calatayud, F. Kuipers, F. Ballester et al., “Exclusive MRI-based tandem and colpostats reconstruction in

gynecological brachytherapy treatment planning,” Radiother. Oncol. 91, 181-86 (2009)

%J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a flat-panel imager: magnitude and

effects of x-ray scatter,” Med. Phys. 28, 220-31 (2001)

%6R. Sibson, “A brief description of natural neighbor interpolation (Chapter 2) Interpreting Multivariate Data,” John
Wiley, 21-36 (1981)

"H. Afsharpour, M. D’Amours, Benoite Cote ef al., “A Monte Carlo study on the effect of seed design on the
interseed attenuation in permanent prostate implants,” Med. Phys. 35, 3671-81 (2008)

8%0. Chibani, J. F. Williamson, and D. Todor, “Dosimetric effects of seed anisotropy and interseed attenuation for

1pd and '*°I prostate implants,” Med. Phys. 32, 2557-66 (2005)

Y)-F Carrier, L. Beaulieu, F. Therriault-Proulx, and R. Roy, “Impact of interseed attenuation and tissue composition

for permanent prostate implants,” Med. Phys. 33, 595-04 (2006)

G. Leclerc, M.-C. Lavallee, D. Tubic, J. Metivier, E. Vigneault, and L. Beaulieu, “Idealized line source

configuration for permanent 1251 prostate implants,” Radiother. Oncol. 72, 213-20 (2004)

°ID. Tubic and L. Beaulieu, “Sliding slice: A novel approach for high accuracy and automatic 3D localization of

seeds from CT scans,” Med. Phys. 32, 163-74 (2006)

2W. L. Smith, C. Lewis, G. Bauman, G. Rodrigues, D. D'Souza, R. Ash, D. Ho, V. Venkatesan, D. Downey, and A.
Fenster, “Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR,” Int. J. Radiat.

Oncol., Biol., Phys. 67, 1238-47 (2007)
“H. Westendorp, C. J. Hoekstra, A. van't Riet, A. W. Minken, and J. J. Immerzeel, “Intraoperative adaptive

brachytherapy of iodine-125 prostate implants guided by C-arm cone-beam computed tomography-based
dosimetry,” Brachytherapy 6, 231-37 (2007)

80



#J. A. Fessler, “Statistical Image Reconstruction Methods for Transmission Tomography,” in Handbook of Medical
Imaging, Medical Image Processing and Analysis, edited by M. Sonka and J. M. Fitzpatrick, SPIE, Vol. 2, 1-70
(2000)

“D. L. Snyder, J. A. O’Sullivan, R. Murphy, D. G. Politte, B. R. Whiting, and J. F. Williamson, “Image
reconstruction for transmission tomography when projection data are incomplete,” Phys. Med. Biol. 51, 5603-19

(2006)

%R. R. Liu, S. Rudin, and D. R. Bednarek, “Super-global distortion correction for a rotational C-arm x-ray image

intensifier,” Med. Phys. 26, 1802-10 (1999)

Paper 1

Paper 11

Paper 111

81



Paper |

Clinical application and validation of an iterative forward projection matching

algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray

projections

Damodar Pokhrel

Martin J Murphy

Dorin Todor

Elisabeth Weiss

Jeffrey F Williamson

Medical Physics, 37 (9), 5092-5101 (2010)



Clinical application and validation of an iterative forward projection
matching algorithm for permanent brachytherapy seed localization

from conebeam-CT x-ray projections

Damodar Pokhrel, Martin J. Murphy, Dorin A. Todor,
Elisabeth Weiss, and Jeffrey F. Williamson®

Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University,
Richmond, Virginia 23298

(Received 7 May 2010; revised 29 July 2010; accepted for publication 30 July 2010;
published 31 August 2010)

Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of im-
planted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection
images.

Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry
that minimizes the sum of the squared intensity differences between computed projections of an
initial estimate of the seed configuration and radiographic projections of the implant. In-house
machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this
method. Also, four '®Pd postimplant patients are scanned using an ACUITY digital simulator.
Three to ten x-ray images are selected from the CBCT projection set and processed to create binary
seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward pro-
jected and overlaid on the measured seed images to find the nearest-neighbor distance between
measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates
are compared to known seed positions in the phantom and clinically obtained VariSeed planning
coordinates for the patient data.

Results: For the phantom study, seed localization error is (0.58 +0.33) mm. For all four patient
cases, the mean registration error is better than 1 mm while compared against the measured seed
projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/
iteration on a 1 GHz processor.

Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection
as required by standard back-projection methods. The authors’ results demonstrate ~1 mm accu-
racy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections.
This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the
implant. © 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3480962]
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X-ray projections

I. INTRODUCTION

In the past decade, permanent implantation of radioactive
1251 or '%pd seeds into the prostate has become a common
treatment option for patients with organ-confined prostate
Current clinical practice involves creating an
ultrasound-based preimplant plan about a week before treat-
ment. A postimplant dose evaluation is then performed using
3D CT images acquired at week four, following the implan-
tation to document the delivered dose. However, as presently
practiced, this process does not allow for intervention during
the implant procedure to improve the actual treatment.
Recent advances in imaging and treatment delivery tech-
nology now provide the opportunity to perform intraopera-
tive dose reconstruction to further optimize the implant. A
key step in intraoperative planning is identifying the loca-
tions of all seeds with respect to the underlying anatomy. In
principle, one can use in-room fan-beam CT (FBCT) for this
purpose. Reconstruction of seed coordinates from postim-
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plant 3D CT images is already routinely applied in clinical
practice.2’3 However, in addition to poor soft-tissue contrast
and large (up to 8 mm when compared to axial magnetic
resonance images) prostate contouring errors,* FBCT suffers
from streaking artifacts arising from the implanted metal
seeds, overlapping seed clustering, and resolution limited by
the slice thickness. Also, intraoperative FBCT installations in
brachytherapy suites are uncommon.

A more common approach to seed localization is back-
projection of seed positions in 2D x-ray projections using
two-film® and three-film®"! techniques. The reconstructed
implant geometry is then fused to intraoperatively acquired
ultrasound images, upon which dose planning can be per-
formed. However, in back-projection methods, correspond-
ing seeds in each projection must be identified and
matched.'>™" This problem is not always soluble because of
seed clustering and overlapping, resulting in inaccurate seed
localization due to mismatched or missing seeds. Patient mo-

© 2010 Am. Assoc. Phys. Med. 5092
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tion and uncertainty in imaging device positioning during
image acquisition can further confound seed localization
when using back-projection methods.

With the introduction of dedicated conebeam-CT (CBCT)
imaging systems for seed placement, we can combine the
advantages of a rigidly mounted intraoperative imaging sys-
tem, seed reconstruction from 2D projection radiographs,
and reconstruction of 3D anatomy in the same coordinate
system from a full set of projections. However, even with the
resulting improvements in the calibration and stability of the
imaging geometry, reconstruction via back-projection re-
mains problematic.

This study assesses the robustness and accuracy of a
promising new reconstruction method, the “iterative forward
projection matching” (IFPM) algorithm, which was intro-
duced by Murphy and Todor® for reconstructing 3D coordi-
nates of implanted seeds from 2D radiographic projections.
The IFPM method was designed to avoid the problems of
back-projection localization methods, such as the need to
determine the seed correspondences between different pro-
jections, the ambiguities presented by clustered or missing
seeds in the projections, and uncertainties in the projection
geometry such as gantry angle inaccuracy and possible pa-
tient motion between image acquisitions. It accomplishes
this by iteratively adapting an initial estimate of the 3D seed
configuration until the agreement between the acquired pro-
jections of the implanted seeds and the computed projection
images of the estimated seed configuration is maximized. By
matching the projection of the full seed configuration rather
than individual seed projections, IFPM intrinsically accom-
modates incomplete and ambiguous data by recreating the
overlapping seeds in the matching computed images. The
algorithm also allows the imaging viewpoints (projections)
for the digitally reconstructed radiographs (DRRs) to be ad-
justable parameters to accommodate gantry angle uncertain-
ties up to 8° with respect to the first projection. This is a
particularly useful feature if the images have been acquired
using a mobile C-arm. In this study, we experimentally vali-
date IFPM using a dummy seed (nonradioactive) containing
phantoms and demonstrate its ability to reconstruct clinical
patient implants.

Il. MATERIALS AND METHODS
Il.LA. IFPM algorithm

The IFPM algorithm20 works with a set of M 2D projec-
tion images of the actual seed configuration in the patient.
The imaging geometry for the M projections is measured to
obtain the detector model.”” The IFPM algorithm starts with
an initial estimate of the seed configuration. The (X,y,z) co-
ordinates of the center of each seed are free parameters. The
initial estimate of the 3D seed configuration is forward pro-
jected onto each 2D detector plane via a detector model
simulating that of the acquired projection to produce M com-
puted projection images of the seeds that emulate the ac-
quired images. The computed projections are compared to
the actual projections by calculating the pixel-by-pixel
squared intensity differences (SSQD) of the image intensi-
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Imaging plane

FiG. 1. The perspective projection geometry for the imaging system. The 3D
seed configuration is in the world coordinate system, which is defined by
three translational and three rotational coordinates relative to the CBCT
isocenter. The image receptor plane is defined by the imaging viewpoint
angles («,f,7), where S and D denote the constant values between the
source to isocenter and detector to isocenter distances, respectively. The
imaging axis rotates by angle « around the x axis. The pixel index (i,))
denotes the projected seed in the 2D imaging plane (u,v).

ties. The (x,y,z) coordinates of each seed are then indepen-
dently adjusted in an iterative process until the computed
projections optimally match the acquired images (i.e., when
the total SSQD for the M image pairs has been minimized).

The world coordinate frame is defined by three transla-
tional variables (x,y,z), where the X, y, and z axes are left/
right lateral, anterior/posterior, and superior/inferior direc-
tions, respectively, relative to the CBCT isocenter for a
supine patient with the head toward the gantry base. Figure 1
shows a schematic of the perspective projection geometry
used to create each of the M projection images of the seed
configuration. In the world frame, the 3D seed configuration
of N total seeds is defined by {r,},k=(1,N). In the extrinsic
detector model, the orientation of each isocentric projection
in the world coordinate frame is defined by the angles
(a,B,7), which describe rotations of the detector image
plane around the x, y, and z axes, respectively. In practice,
a=90° B=0°, and v is the gantry angle for each M image
viewpoint. However, the complete extrinsic detector model
allows for a precise calibration of the imaging plane orienta-
tion (a, B, 7y) at each gantry angle to allow for tilting and/or
twisting of the image plane due to gantry flex and other
mechanical imperfections. The intrinsic detector model is pa-
rametrized by describing its magnification, image center, im-
age size, and pixel resolution. S and D denote the constant
values between the source to isocenter and detector to iso-
center distances, respectively, and (u,v) is the 2D detector
plane.

As mentioned earlier, IFPM not only adjusts the indi-
vidual seed positions until the computed and measured pro-
jections match, but can also simultaneously adjust each x-ray
projection, with six degrees of freedom relative to the first
projection (i.e., the reference projection, which is fixed) to
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FIG. 2. (a) The ACUITY imaging system in the brachytherapy imaging suite
and a phantom setup. (b) Schematic of the geometrical configuration of a
precision-machined phantom containing 72 dummy seeds arranged as four
nine-seed slabs alternating with three 12-seed slabs in a rectangular grid.
This phantom was used to test the IFPM seed localization accuracy. The
centers of the seeds were coplanar and perpendicular to the plane of the
slabs.

account for uncertainties in the detector model calibration
(i.e., the uncertainties in the relative imaging viewpoints).

To avoid the time-consuming task of computing complete
DRRs of the simulated seed configuration via attenuation
ray-tracing through the patient’s anatomy, it is sufficient for
IFPM to project the centers of the seeds in the model con-
figuration along the rays from x-ray source to the detector.
This produces binary 2D images of the centers of the seeds.
The center of each projected seed on the detector plane is
dilated to represent a small disk of uniform brightness of
thickness #, which is approximately equal to a Theragenics
Model 200 '®Pd seed (Theragenics Corporation, Buford,
GA) radiographic marker, so that the unblurred projections
of each binary seed image are approximately equal to the
measured projections in shape and size. The acquired images
are then filtered to highlight the seeds, also yielding a set of
binary images. Both sets of binary images are then con-
volved with a Gaussian blurring function to produce gray-
scale images in which the seeds appear as fuzzy spots. The
blurring process produces smoothly varying grayscale image
gradients that facilitate gradient-driven minimization of the
SSQD. The algorithm then computes the gradient of the
SSQD with respect to each seed’s three degrees of freedom
to drive the iterative minimization process. It also computes
the gradient of the SSQD with respect to the degrees of free-
dom, e.g., («,B,7), in the detector model to adjust the im-
aging geometry for an optimal match.

II.B. Image acquisition details and autosegmentation
of the seeds

Both the phantom and patient validation tests reported
here use projection images obtained with the Varian ACU-
ITY intraoperative imaging system (Varian Inc., Palo Alto,
CA), which is used for image-guided brachytherapy proce-
dures in our dedicated brachytherapy suite. This imaging
system can be operated in CBCT, fluoroscopic, and/or radio-
graphic modes. Figure 2(a) shows the phantom setup in the
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ACUITY system and Fig. 2(b) shows the geometric configu-
ration of the 72-seed phantom used in this study (see Sec.
II D 1 for more details).

The projection images are acquired with the Varian
4030CB flat panel detector. This detector is 40X 30 cm?
with a 1024 X 768 image size, pixel size of 0.388 mm/pixel,
and 16-bit depth. The ACUITY imaging geometry has a 100
cm source to isocenter distance and a 150 cm source to de-
tector distance, giving a magnification factor of 3/2. Ap-
proximately 660 CBCT images are obtained for a complete
360° gantry rotation. Subsets of three to ten images each are
used for the IFPM tests.

For the model 6711 '*1 dummy seeds (Medi-Physics Inc.,
Arlington Heights, IL) used in the phantom study, the radio-
opaque components include 3 0.5 mm? cylindrical silver
markers that are represented by their center locations. This
requires postprocessing of the acquired projection images to
find and highlight the marker projections. The postprocessing
involves (a) cropping the images to a 256 X 256 pixel square
region of interest, (b) normalizing the image intensity by
finding its maximum and minimum values in the image, (¢)
morphological top-hat filtering to suppress the background,
and (d) automatic thresholding using the three standard de-
viation value of the pixel intensity histogram to create a bi-
nary marker for each seed in each projection in order to
separate the seeds from the background. This produces bi-
nary bitmap images with intensity=0 in the background and
intensity=1 over the area of each projected seed marker. The
center locations of each seed projection image in the 2D
detector plane are obtained by computing the center of mass
for each radio-opaque marker. The binary images are then
convolved with a 2D Gaussian blurring function to create
diffuse seed spots with a known intensity distribution. This
produces smoothly varying image gradients that can be com-
puted analytically in the test projections to guide the objec-
tive function minimization and speed up the convergence of
the matching process.

For the patient study (see Sec. II D 2 for more details),
image processing is identical to that applied to the phantom
implant projections, except that we retain the binary image
of the entire radio-opaque marker (1.09<0.5 mm?) in the
model 200 'Pd seed, which avoids resolving seed clusters
in the 2D measured projections.

Il.C. Algorithm details

I.C.1. Initial seed configuration estimates and
computed projection images

For the phantom study, the initial seed configuration {r}
is chosen as follows, where k=(1,N) is the seed number and
N is the total number of seeds. For each seed k, the known
3D seed coordinates {ry o} are randomly perturbed by adding
a displacement d,, such that r.=ryo+dy, where d is ran-
domly sampled from a uniform distribution [ —2 mm, 2 mm]
in each of the three orthogonal directions, resulting in a mean
displacement of 1.98 mm. To construct the computed projec-
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tion images at each iteration, the initial configuration {r,} is
rotated and translated to each imaging viewpoint and then
projected on the (u,v) imaging plane.

For each patient case, {r,} is derived from the pretreat-
ment transrectal ultrasound (TRUS) volume study, which
gives X, y, and z coordinates of each seed centroid in an
image coordinate system that is fixed to the TRUS planning
target volume structure. Since the 2D measured projection
images used by IFPM are taken in the CBCT reference
frame, we transform the seed centroid TRUS coordinates to
the CBCT coordinate system by using rotation, translation,
and scaling. The reference frames of both imaging systems
are orthogonal, right-handed coordinate systems. Therefore,
the translation is performed by aligning the isocenters (cen-
troids) of the two imaging systems and the rotation is ob-
tained by finding the conventional x, y, and z coordinates of
the ultrasound imaging system used in our clinic and trans-
forming them to the known CBCT imaging coordinate sys-
tem. As with the phantom study, the transformed 3D seed
configuration (ultrasound-to-CBCT reference frame) is ro-
tated and translated for each imaging viewpoint and then
projected on the imaging plane.

For each imaging gantry position 7, each seed’s position
projected onto the imaging plane (u,v), where it is repre-
sented by a small disk of uniform brightness of thickness f,
which is approximately equal to a model 200 '“Pd seed
radiographic marker. This produces a binary bitmap image of
the seed projections. These images are then convolved with
the same 2D Gaussian blurring filter (with standard deviation
o) that is used for the measured projections to produce gray-
scale images and denoted by I.(u,v|{r},o,y), where u and
v are pixel indices along the 2D imaging plane.

The purpose of blurring the projected seed disks with a
Gaussian is to create grayscale images with smoothly vary-
ing gradients that extend beyond the seed’s projected cross
section. This facilitates the use of a gradient-driven iterative
solution. If the binary bitmap images were used directly,
there would be large areas with no gradient to guide the
iterative search. The blurring can be thought of as creating a
potential well around each seed that attracts neighboring
seeds and accelerates convergence. Increasing the width of
the Gaussian increases the capture range (i.e., the maximum
distance over which seeds in the two images can be drawn
together).

I.C.2. Similarity measure and gradient search

The metric used to assess the overall similarity of the
images is computed by combining the pixel-by-pixel SSQD
for all computed [I.(u,v|{r},0,y) and measured
I,(u,v|o,y) seed image pairs.

SSQD({r o, y) = 2 X [1(u,vfir,0,7)

Y ouv

a9 ], (1)

where (u,v) are pixel indices in the 2D image plane and 7 is
the gantry angle. The seed positions {r,} and the initial im-
aging viewpoint parameters except for the first projection

-1, (u,v
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(i.e., the reference viewpoint) are iterated simultaneously by
a steepest descent search algorithm. Unlike the reference
viewpoint, which is not allowed to vary, other imaging view-
points are defined relative to the first projection in terms of
rotation and translation. Because the image grayscale inten-
sities are described entirely by the Gaussian blurring func-
tion, the gradients of SSQD with respect to all of the free
parameters can be calculated analytically.20 Since the brachy-
therapy seed marker represented by a small disk in this study
has rotational symmetry, we use seed center coordinates to
calculate one derivative per seed per degree of freedom.

After computing the analytical gradients to adjust all free
parameters, the process iteratively refines the 3D seed posi-
tions and projection orientations (a,f3,7), until the agree-
ment between the computed and measured seed projections
is maximized. To iteratively adjust the free parameters that
minimize SSQD, we use a nonlinear gradient search method
that combines the steepest descent gradient search with a
parabolic approximation of the SSQD surface around the
global minimum.”® The computed and measured projections
must have the same imaging geometry, image size, and pixel
resolution. At least two, but preferably three or more, pairs of
computed and measured projection image data sets with cor-
responding imaging geometry are required for one recon-
struction process. The 3N seed positions plus six (M —1) de-
grees of freedom of the imaging viewpoints are the freely
moveable parameters in each iteration, where M is the total
number of projections.

II.C.3. Two-step adaptive Gaussian blurring

From the phantom studies, it is observed that the com-
puted seed locations at convergence vary somewhat (i.e.,
trapping in local minima). That means if the initial estimate
of the seed configuration is far apart from the measured con-
figuration, there is a chance of less than optimal matching.
To improve the accuracy of the patient study, we apply a
two-step adaptive blurring scheme: We use a larger 2D
Gaussian spreading (i.e., o) to achieve initial convergence
and then recompute the images using a smaller Gaussian
blurring filter (i.e., o), using the optimal o seed configura-
tion as initial conditions for the o, search. The two-step
Gaussian blurring strategy uses more diffuse seed spots (i.e.,
increases the capture range) in the configuration at the begin-
ning to draw the computed and measured seeds into close
proximity and then increases the sharpness of the seed spots
to get the optimal match near convergence. The optimal val-
ues of two-step blurring, o, and o,, are obtained from trial
and error for each patient seed configuration and are between
3.8 and 3.0 mm, and 2.6 and 2.0 mm, respectively.

II.D. Algorithm validation
II.D.1. Brachytherapy phantom design

Two different in-house brachytherapy phantoms were de-
signed and fabricated using acrylic plates with dummy seeds
in known configurations. In the acrylic plates, a matrix of
parallel holes was drilled such that each hole is of 0.9 mm
diameter so that seeds can be placed in the holes. The model
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6711 I seeds are each 4.5 mm long and 0.8 mm in diam-
eter. The seeds were arranged in rectilinear layers separated
by 6 mm, with 8—12 mm interseed spacing within a plate.
After loading the seeds, the plates were mounted tightly to-
gether with screws. Both phantoms were 10X 10X 7 cm?.
The first phantom contains 12 seeds. The second phantom
contains 72 seeds, a more clinically realistic brachytherapy
phantom. For the 72-seed phantom, the seeds were arranged
by four nine-seed slabs alternating with three 12-seed slabs
in a rectangular grid as shown in Fig. 2(b).

To evaluate the positional accuracy, the known 3D seed
centroids obtained from the machined phantoms were com-
pared to the corresponding reconstructed IFPM seed cen-
troids. Accurate comparisons of the seed positions can be
made since the absolute positions of the seeds in the phan-
tom are known within the machining precision of 0.2 mm.

Il.D.2. Patient data acquisition

Following the phantom tests, the IFPM algorithm was ap-
plied to the more difficult problem of brachytherapy seed
reconstruction for actual patients, using images acquired 1
month after the permanent seed implants. The four selected
patients (I-IV) all had been treated for low risk stage I pros-
tate adenocarcinoma and were imaged postoperatively, i.e.,
approximately 4 weeks postimplant using a Varian ACUITY
digital simulator equipped with a CBCT imaging system.
The preloaded permanent seed implants consisted of 67, 62,
81, and 60 model 200 '*Pd interstitial sources, respectively.
The 660 CBCT projections were acquired in a 360° gantry
rotation using the Varian 4030CB imager in full-fan/half-fan
mode. The images were acquired at 125 kVp, 80 mA, and 25
ms per projection. For those postoperative scans, the patients
were positioned head first and supine with legs down.

To make up the measured projection data set, we selected
three to ten x-ray images from the CBCT projection data sets
acquired from the ACUITY digital simulator. The choice of
perspectives was based on visibility of the large number of
seeds on the projection images and also to avoid imprecision
caused by excessively small parallaxes. For the patients I, III,
and IV, the images were selected at 8°—12° angular intervals
over a *40° range of gantry angles. Since patient II was
scanned in half-fan mode, the images were selected at the
same angular interval as the other patients but over *160°
(i.e., posterior/anterior view) range of gantry angles. The im-
ages were postprocessed as described in Sec. II B. One ex-
ample case of the image postprocessing and seed detection
for a patient is presented in Fig. 3. The binary seed images
are then convolved with a 2D Gaussian blurring function.
Three to six pairs of selected gantry angle projection images
were used in each seed reconstruction process.

I.D.3. Assessment of seed registration/
reconstruction error

For the phantom study, the seed reconstruction error was
computed by directly comparing the computed seed coordi-
nates with the physically measured (with machined uncer-
tainty of =0.2 mm) seed coordinates. For the patient data
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(d)

FiG. 3. An example case of the image postprocessing of the projection im-
ages obtained from the Varian 4030CB digital simulator. (a) Raw projection
image, (b) filtered image, (c) seed-only image, and (d) blurred image using
the IFPM algorithm for patient III (81 implanted Theragenics model 200
103p( geeds).

sets, there are no ground truth seed coordinates. Assessment
of seed reconstruction error was performed in two ways.
First, seed registration error is calculated by reprojecting the
IFPM seed coordinates at convergence onto the 2D image
planes, overlaying the computed and measured seed projec-
tion and calculating the nearest-neighbor distance between
the measured and computed seed positions in each image
plane, making sure that no measured seed projection was
matched to more than one computed image. In the second
approach, we compared the IFPM 3D coordinates from the
reconstructed CBCT image sets to those obtained by the
VariSeed planning system. For each candidate IFPM seed
position, we find the VariSeed source position that mini-
mized the 3D distance between the IFPM and VariSeed co-
ordinates. The seed reconstruction error was quantified by
computing the vector and scalar displacement between the
IFPM and VariSeed coordinates. In the VariSeed planning
system, the resultant seed centroids have limited accuracy
because of slice thickness limitations, metal streaking arti-
facts, and problems of resolving seed clusters. These uncer-
tainties are included in our estimation of the accuracy of the
IFPM solution for the seed positions.

lll. RESULTS
lll.A. Validation test with phantoms

The phantom study is the best way to test the accuracy of
the IFPM algorithm since the reconstructed seed positions
can be compared to the measured precision-machined seed
positions. Figure 4 shows the convergence of the objective
function Eq. (1) as defined in Sec. I C 2, for the 12-seed and
72-seed phantom data sets. In these cases, we used a one-step
(0=2.4 mm) convergence process. For the 72-seed phantom
case, the root-mean-square (RMS) error, in terms of 3D dis-
tance between IFPM and benchmark coordinates, was found
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FiG. 4. The convergence rate of the IFPM algorithm for the two example
cases: 12-seed and 72-seed phantom data sets.

to be (0.58 £0.33) mm. For the 12-seed phantom case, the
RMS error was even smaller (0.43 +0.24) mm. The distri-
bution of seed reconstruction errors is shown in Fig. 5 where
we show that greater than 96% of the reconstructed seed
positions are within 1 mm from the measured seed positions
(72-seed phantom). The reconstructed values of relative
(a,B,7y) deviated from their nominal values with respect to
0° gantry angle (i.e., reference viewpoint) by 0.08°, 0.06°,
and 0.7° for —20° gantry angle and 0.09°, 0.03°, and 0.6° for
+20° gantry angle. Experiments showed that relative view-
points uncertainties as large as *+8° could be accommodated.

All test trials for 12-seed phantom data sets converge in
four to six iterations with a total computation time of 2.8—4
min and for 72-seed phantom data sets the objective function
converges on eight to ten iterations with a total computation
time of 30-53 min on a 1 GHz processor (running time de-
pends on number of seeds used in the implants, i.e., the
number of free parameters to optimize). Several experiments

-72 seed phantom

number of seeds

localization error [mmy]

FIG. 5. Histograms of the seed positional error for the 12-seed and 72-seed
phantom study.
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FIG. 6. An illustration of the iterative sequence morphing of the conver-
gence process. (a) Initial estimate of the seed configuration, (b) computed
images after first step of convergence, (c) computed images after second
step of convergence, and (d) the measured images at different gantry angle
for patient III. Despite large differences between the preplanned seed geom-
etry (based on a TRUS volume study acquired about a week before the
implant) and that observed 4 weeks after the implant, [FPM was able to
accurately reproduce the desired seed configuration.

were performed using different gantry angle combinations as
well as different initial starting configurations in the course
of this study. Theoretically, one should expect SSQD=0 at
the convergence, i.e., all computed seed images exactly
match with those measured. However, from Fig. 4, for the
72-seed phantom data sets, it is evident that the SSQD does
not exactly converge to zero (i.e., less than 3% difference
between measured and computed seed images), showing less
than optimal convergence. To improve the accuracy of the
reconstructed seed positions in the patient study, we used a
two-step blurring scheme as described earlier.

lll.B. Patient study

For each of the four postimplant prostate patient data sets,
we followed the two-stage iterative process as described in
Sec. II C 3. Figure 6 illustrates the convergence process for
the 81-seed implant performed on patient III. Three projec-
tions, at 0° and *20° gantry angle, were used. Column (a)
shows the initial seed configuration estimate derived from
the TRUS-based preplan while column (d) shows the projec-
tions acquired four weeks after the procedure. Columns (b)
and (c) show projections of the converged seed configura-
tions for the initial (o) and final (o) Gaussian blurring
models. Comparison of (c) and (d) shows good agreement,
including successful replication of overlapping seed clusters,
which appear as brighter or elongated seed features in the
images. For this case, the first stage (Gaussian width
07,=3.6 mm) required 23 iterations with a computation time
of about 2.4 min/iteration and five iterations in the second
stage (0,=2.4 mm), with a computation time of about 2.8
min/iteration on a 1 GHz processor. Figure 7 shows the two-
stage convergence rate of the objective function for the four
example patient cases. An example of the reconstructed seed
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FIG. 9. Seed registration error calculated from the nearest-neighbor distance
between measured and computed seed position on each detector plane for
2000 patient III. The RMS error was found to be (0.78 = 0.56) (0°), (0.89 = 0.49)
(+20°), and (0.82£0.54) mm (—20°) gantry angles, respectively.
0
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FI1G. 7. The similarity metric convergence for the two-step IFPM algorithm
for the four patient cases. The arrow in the button of the figure indicates the
transition from larger to smaller Gaussian spread for patient III. The one-
dimensional image-intensity profiles in the inset illustrate the capture ranges
of the two-step filtering operations.

positions projected on the digital simulator images is pre-
sented in Figs. 8(a)-8(c). The distribution of nearest-
neighbor distances between the computed and measured pro-
jected seed centroids is presented in Fig. 9. The RMS errors
are  (0.78£0.56) (0°), (0.89x0.49) (+20°), and
(0.82+0.54) mm (—20°), respectively. We see that most
seed positions agree to within 1.5 mm and no error exceeds
2.5 mm in the detector plane.

For patient III, Fig. 10 shows the seed-by-seed vector dis-
placement between IFPM and VariSeed seed coordinates.
The mean values along the x, y, and z directions were found
to be (0.22+0.96), (-0.24+0.97), and (0.23+0.92) mm,
respectively. The 3D RMS error was (1.58 £0.56) mm. The
comparison is summarized for all four patients in Table I.
Since we do not know the ground truth for the patient study,
this seed localization error includes not only the error from
the IFPM algorithm but also the error contributed by the

(a) (b)

FIG. 8. Superposition of measured seed images (white seeds) with automati-
cally detected seed positions (black markers) projected on the detector
planes. (a) 0° gantry angle, (b) —20° gantry angle, and (c) +20° gantry angle
for patient III. While many seeds coincided exactly, a few still exhibit sig-
nificant discrepancies.
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VariSeed planning system. Table I also shows the residual
2D registration error between the measured and computed
seed projections in each image plane. In all cases, the RMS
value of the seed registration error is within 1 mm and the
maximum seed displacement (d,,,,) did not exceed 2.5 mm.
Increasing the number of projections from three to six re-
duces this error by a factor of \E at the cost of doubling
computation time.

In Fig. 11, we overlay measured seed images (white
seeds) with automatically detected seed positions (black
markers) projected on the detector planes for patient IV, who
presented an example of incomplete data due to more seeds
existing in the preplan than observed on postimplant projec-
tions (i.e., missing seeds). In this case, the clinical records
(and preplan) showed that 60 '“Pd seeds were implanted,
but only 59 seeds could be localized on the postimplant im-
ages acquired 4 weeks after the procedure. Thus the 3D
model seed configuration had one more seed than was
present in the computed images; gantry angle 0° is shown in
Fig. 11(a), —20° is shown in Fig. 11(b), and +18° is shown
in Fig. 11(c), respectively. The red circle indicates the pro-
jected position of the extra seed in the 3D preplan, which has

difference between computed (IFPM) & measured (VariSeed)
seed coordinates: Patient -Il|

-y

difference [mm]
-

|
N

'
W

0 10 20 30 40 50 60 70 80

seed number

FiGg. 10. Seed-by-seed vector difference between IFPM coordinates and
those obtained from the VariSeed planning system for patient III data sets.
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TaBLE I. Summary of the comparisons of the seed positions deduced by the IFPM algorithm and by the VariSeed planning system for all example case
patients. The mean value, standard deviation (sd) in each of the three directions, and overall 3D RMS error is reported. The seed registration error in the 2D
image plane in terms of RMS value. The sd and the maximum displacement (d,,,,) of the seed is also presented.

IFPM vs VariSeed

2D registration error
in each image plane

(mm) (mm)
Image viewpoint used — p— —
Patient no. (deg) Total no. of iterations ox *+sd oy +sd oz *sd 3D RMS error RMS error dax
I 0 28 0.38£0.97 0.20+0.98 0.25+0.87 1.64+0.54 0.63*+0.86 1.96
+15 0.74*0.53
—16 0.78£0.72
I 180 25 0.35+£0.98 0.19*1.08 0.26£0.89 1.76 £0.59 0.82£0.83 2.44
—160 0.94+0.74
+165 0.8620.92
i 0 26 022*£096 -024*+097 0.23+0.92 1.58+0.56 0.78 £0.56 2.35
-20 0.89+0.49
+20 0.82*£0.54
v 0 27 037*x1.16 -029*+1.04 0.28+0.98 1.86+0.68 0.83£0.63 2.48
—20 0.98*x1.22
+18 0.96+0.82

“Incomplete data case.

no counterpart in the measured images. The IFPM algorithm
converged robustly to an accurate estimate of the seed con-
figuration that was only slightly perturbed in the vicinity of
the extra seed. Comparing measured and computed seed im-
ages shows that the two-step iterative convergence process
closely reproduces the desired seed distribution. In the same
case of patient IV, the IFPM algorithm was able to account
for seeds that had migrated as far as 5 mm from their pre-
planned positions (which appear in the lower left corner of
the postimplant images). Clusters of two to four overlapping
seeds were also reproduced on the computed projections.

IV. DISCUSSION

We have experimentally validated a novel iterative for-
ward projection matching method to reconstruct 3D brachy-
therapy seed coordinates from measured 2D projection im-
ages. The iterative process does not require one to establish
seed correspondences between the projection images. Also, it

(c)

FIG. 11. Overlay of the measured seed images (white seeds) with automati-
cally detected seed positions (black markers) projected on the detector
planes for patient IV, who presents with incomplete data: 60 seeds are
thought to be implanted but only 59 seeds are found on the week four
postimplant dosimetry study. Gantry angle 0° is shown in (a), —20° is
shown in (b), and +18° is shown in part (c). The circle in part (b) indicates
the extra seed found by IFPM at convergence. The IFPM algorithm con-
verged accurately, recreating the identified 59 seed positions, including over-
lapping clustered and highly migrated seeds.
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avoids the intraobserver and interobserver variability of seed
finding that is often observed when using three-film
methods.” ™! Tt can correct for errors in the measured imag-
ing geometry by iteratively adjusting the imaging gantry po-
sitions used in the iterative projection process.

Current clinical practice relies on reconstructed 3D CT
images for reconstructing seed positions.ZI’22 As reported in
the literature™'? and found in our clinical experience with
VariSeed planning, this method frequently finds more than
the actual number of implanted seeds, as the same seed may
appear in more than one slice. Also, the 3D CT method is
hampered by metal streaking artifacts.

Because the spatial resolution of the seeds in the 2D im-
age planes is superior to CT, IFPM has the potential to re-
construct 3D seed positions more accurately than the 3D CT
method. By using CBCT projections, the IFPM method pro-
vides the potential for intraoperative brachytherapy planning.
Several methods are available for reconstructing brachy-
therapy seeds from 2D projection imageslz_19 but they are
limited by the requirement that all seeds must be accurately
identified in each projection. It is a difficult problem because
the large number of implanted seeds in a relatively small
prostate volume often results in seed clustering and overlaps
in the projections. Lee et al.*® have proposed a fluoroscopy
based algorithm to solve the overlapping seed problem using
dimensionality reduction. A brachytherapy seed reconstruc-
tion method based on digital tomosynthesis has recently been
applied in clinical practice.27 In one clinical experience,
nearly 20% of the implanted seeds overlapped with other
seeds in at least one projection.19 Tubic et al.'* have shown
that their method can handle seed localization in small clus-
ters of two or three overlapping seeds in the projection but
fail to correctly reconstruct seeds in large clusters.

Our method reproduces overlapping seed clusters and
highly migrated seeds in the postimplant data analysis by
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finding the best solution that accounts for the data available.
In our approach, individual seed identities do not matter; the
algorithm works with the images of the complete seed con-
figuration so it can easily accommodate incomplete data as
well. For the case of patient IV, which showed a missing
seed on the measured projection images (i.e., incomplete
data), the algorithm converged to an accurate solution that
was only slightly perturbed near the extraneous seed. Identi-
fication of the extra seed(s) in this way allows one to modify
the initial 3D seed configuration and to correct the preplan
before rerunning the reconstruction.

To improve the accuracy of the seed localization valida-
tion study, we plan to design a more precise prostate seed
implant phantom and test IFPM performance against a more
accurate ground truth. Also, more extensive investigation of
the initial estimate of the seed configurations as well as a
more optimal search of the blurring parameter will be per-
formed to further validate this algorithm. Other geometric
uncertainties such as detector in/out of plane motion and
inaccuracy in the magnification factor are also an area of
future investigation.

For elongated seeds (such as the model 6711 1251 seed,
which has a 3 mm long by 0.5 mm diameter cylindrical
marker), there are two additional degrees of freedom for each
seed that describe their orientations in 3D space. The IFPM
method described herein does not accurately localize seeds
with highly elongated radiographic markers. This is because
the disk-shaped binary seed image model assumed by the
forward projector within the algorithm does not reproduce
the binary images produced by cylindrical seeds in shape and
size, which can vary from a small disk to highly elongated
rectangles depending on seed orientation. The data presented
here suggest that the IFPM algorithm works effectively for
seeds with radio-opaque components having an aspect ratio
no larger than the 2:1 ratio characteristic of the model 200
103pd source. Other currently available brachytherapy seeds
satisfying this constraint include the Prospera (North
America Scientific Inc., Chatsworth, CA) model
MED3631,% IsoAid (IsoAid LLC, Port Richey, FL) Advan-
tage™ model IAPd-103A,** and Best (Best Medical Interna-
tional, Inc., Springfield, VA) model 2335 sources.” Because
sources with radio-opaque components with an aspect ratio
larger than this dominate the market (i.e., model 6711 1257
seed), our next developmental priority is to model entire
elongated line seeds, allowing IFPM to estimate individual
seed orientations as well as locations. IFPM is also being
extended to localization of larger metal objects, e.g., surgical
needles and brachytherapy applicators (i.e., tandem and col-
postats).

V. CONCLUSIONS

In this paper, we described a clinically useful and refined
implementation of the [FPM algorithm, which was described
conceptually and tested on synthetic data sets by Murphy and
Todor. Testing on phantoms demonstrates that seed localiza-
tion error is =0.5 mm or better on average, which is less
than the estimated uncertainty of the seed centroid coordi-
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nates taken as the gold standard for validating accuracy. Ap-
plication of the algorithm to four patient data sets demon-
strates the potential for accurate implant reconstruction in
clinical settings, with average 2D convergence errors less
than 1 mm. The outcomes on these early test cases, while not
comprehensive, suggest that [IFPM performance is not nega-
tively impacted by seed clusters or missing seeds. In its cur-
rent form, clinical implementation of IFPM is limited to seed
models containing internal radio-opaque markers with an as-
pect ratio of approximately 2:1 or less.

Postimplant imaging is currently done 4 weeks after im-
plant but can potentially be done intraoperatively via CBCT
to permit immediate postimplant dosimetry assessments.
This requires a fast, automatic, and robust method to recon-
struct the seed configuration at the time of implantation. The
fully automatic IFPM algorithm is accurate, robust, and ca-
pable of completing a reconstruction in a few minutes using
state-of-the-art workstations and is therefore a highly prom-
ising tool for implementing fusion-based intraoperative
brachytherapy planning.
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Abstract

Purpose: To generalize and experimentally validate a novel algorithm for reconstructing
the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a
few measured 2D cone-beam CT (CBCT) x-ray projections.

Methods and materials: The iterative forward projection matching (IFPM) algorithm
was generalized to reconstruct the 3D pose, as well as centroid, of brachytherapy seeds
from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed
poses that minimizes the sum-of-squared-difference (SSQD) of the pixel-by-pixel
intensities between computed and measured auto-segmented radiographic projections of
the implant. Numerical simulations of clinically realistic brachytherapy seed
configurations were performed to demonstrate the proof of principle. An in-house
machined brachytherapy phantom, which supports precise specification of seed position
and orientation at known values for simulated implant geometries, was used to
experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT
digital simulator over a full 660 sinogram projections. Three to ten x-ray images were
selected from the full set of CBCT sinogram projections and post-processed to create
binary seed-only images.

Results: In the numerical simulations, seed reconstruction position and orientation errors
were approximately 0.6 mm and 5°, respectively. The physical phantom measurements
demonstrated an absolute positional accuracy of (0.78 + 0.57) mm or less. The 6 and ¢-
angle errors were found to be (5.7 £ 4.9)° and (6.0 + 4.1)°, respectively or less when
using three projections; with six projections results were slightly better. The mean
registration error was better than 1 mm/ 6° while compared against the measured seed
projections. Each test trial converged in 10 — 20 iterations with computation time of 12 —

18 min/iteration on a 1 GHz processor.



Conclusion: This work describes a novel, accurate, and completely automatic method for
reconstructing seed orientations as well as centroids, from a small number of
radiographic projections, in support of intraoperative planning and adaptive replanning.
Unlike standard back-projection methods, gIFPM avoids the need to match
corresponding seed images on the projections. This algorithm also successfully
reconstructs overlapping clustered and highly migrated seeds in the implant. The
accuracy of better than 1 mm and 6° demonstrates that gIFPM has the potential to support

2D Task Group 43 calculations in clinical practice.

Key words: Brachytherapy Seed Orientation, Localization, gIFPM, Cone-beam CT, X-

ray projections.

I. INTRODUCTION

Post-implant localization of brachytherapy seeds implanted in the prostate allows
for validation against the planned seed poses (positions and orientations) as well as the
opportunity to recalculate the actual delivered dose. Transrectal ultrasound (TRUS)
guidance implantation provides adequate imaging of the soft tissue anatomy but is not
able to accurately reconstruct individual seed poses relative to the prostate during or after
the implantation.' Currently, post-implant CT is the standard of practice for evaluating
and reporting dose””’, however, it does not allow for altering and optimizing the treatment
plan intraoperatively. The 3D CT method is hampered by metal streaking artifacts and
limited spatial resolution due to slice thickness effects as well as lack of intraoperative

CT imaging capability.

With the introduction of dedicated ACUITY (Varian Medical System, Palo Alto,
CA) cone-beam CT (CBCT) digital simulator for seed placement, we can combine the
advantages of a rigidly-mounted intraoperative imaging system, for the both seed
reconstruction and reconstruction of 3D anatomy of the patient which could be used for
contouring.® However, the ACUITY CBCT imaging system in our procedure room
requires about four minutes to acquire CT images and can not provide useful images with

the TRUS probe and metal stirrups that are located within or occlude the field of view.



Reconstructing seeds from a few sinogram projections can overcome some of the
problems associated with the CT-based method, such as limited spatial resolution due to
slice thickness effect, ambiguities created by the metal streaking artifacts, and reduced
imaging time since neither a full sinogram nor a reconstructed 3D image are necessary.
By fusing the seed coordinates reconstructed from radiographs with TRUS images’’,
rapid intraoperative seed reconstruction can be combined with the higher soft tissue
contrast characteristic of TRUS.'"® However, widely used conventional back-projection
(BP) methods'®™ for localizing seeds from projection images require corresponding seed
images in each projection to be matched. When a large number of elongated seeds are

projected into a small area in each projection, it can be very difficult to completely

resolve seed clusters and isolate each seed centroid.

As currently practiced, conventional seed localization techniques only attempt to
find the center of the elongated line seeds (i.e., point source approximation) for dose
calculation. By directly measuring the individual 3D pose of each implanted
brachytherapy seed, more accurate Monte Carlo-based dose calculations (or 2D TG-43
dose calculations®") can be employed to include the effect of 2D anisotropy and interseed
attenuation on the resultant dose distribution. Corbett ef al.*® found that incorporating 2D
anisotropy functions into the dose calculation slightly improved (~1%) dose volume
histogram (DVH) accuracy relative to the isotropic point-seed model, but they did not
report on local dose differences. However, for '’I and '®Pd implants, Lindsay et al.”’
showed that omitting 2D anisotropy corrections introduced large local dose variations
that collectively exceeded 10% in 20% to 40% of the target volume. Monte Carlo-based

dose evaluations demonstrate that interseed attenuation*” **

may reduce Dyy doses by as
much as 5% and dose-calculation models that account for the local seed anisotropy®' may
deviate by as much as 7.5% from one-dimensional point-source dose computations.
While a few investigators have developed generalized BP**** and CT-based algorithms*’
for estimating seed orientation as well as position, they suffer from the same limitations

as their more widely used centroid localization counterparts.

In a companion paper we have introduced® and experimentally validated on both

phantom and patient datasets a novel algorithm®, iterative forward projection matching



(IFPM), which overcomes many of the disadvantages of CT-based and BP methods for
localizing seed centroids from radiographic images. In this paper, we introduce a
generalized IFPM (gIFPM) algorithm that allows reconstruction of seed orientations as
well as positions. g[FPM uses a model of the projection geometry and pre-plan seed
positions, and then iteratively adjusts the imaging system model parameters and the 3D
seed poses to maximize agreement between the computed forward projections and
measured (acquired) projections. Our method eliminates the need to match corresponding
seed images, resolves overlapping seed clusters, and has the potential to accommodate
incomplete data due to missing seeds. We demonstrate the accuracy and robustness of
five degrees-of-freedom gIFPM using both synthetic datasets and experimentally

measured projections of an in-house precision-machined prostate seed implant phantom.

II. MATERIALS AND METHODS
A. Generalized IFPM algorithm
The IFPM algorithm® was adapted from Murphy and Todor®® and generalized to

reconstruct seed orientations as well as positions. This expanded line seed-model requires

five free pose parameters, (x, ,2,0, (o)k for each of the seeds k=1,---,N in the world
coordinate system; where, r, = (x, y,z)k denotes the coordinates of the k-th seed center

and (49,(/))k describes its orientation. The length of the radiographically visible seed
components is denoted by L as shown in Figure 1. A model of the CBCT projection
geometry is made and positioned at M different locations and orientations specified by

translation and rotation matrices, 7,  _ and [R] 5y for each image viewpoint. The origin

of the world coordinate is at the CBCT isocenter; the x axis is left-right, the y axis is

anterior-posterior, and the z axis is superior-inferior direction, for a patient in supine
position with feet pointing away from the gantry stand. The three angles, (OL,B,y)
describe the orientation of CBCT central ray and detector panel relative to the three world
coordinate system axes for each image viewpoint. In practice, o = 90°, and B = 0° and y

is the gantry angle for each M image viewpoint. The detector model is parameterized by



describing its magnification, image center, image size and pixel resolution. The source to

isocenter and isocenter to the detector distances are denoted by S and D, respectively.
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Fig.1. Elongated line seed of length, L is characterized by the seed center (black dot) positions, (x, V, Z)

and orientation coordinates, (9,(0) angle-pair in the world coordinates frame; where, z is the axis of
implantation.

Each of the N seeds, is characterized by its centroid location, r,, direction
cosines, €, describing the k-4 seed axis orientation, and radiographically visible length,
L. The direction cosine vector is related to the original pose Variables(e, ?) , in the world
coordinate system by,

Q, =(sin@cosp,sin Osin @,cos 0), (1)
The endpoint coordinates of the seed marker are denoted by r,, andr,,
where|r,, —1,, |=L, so thatr,, =(L/2)-Q, +r, and r,, =—(L/2)-Q, +r,. In this

study, we used either the Model 6711 '*°I seed which has a 3.0 mm x 0.5 mm cylindrical
radio-opaque marker for 6711, giving an L = 3 mm or machined stainless steel cylinders
of 0.8 mm x 4.5 mm having an L = 4.5 mm. In general, each seed can be represented by a

locus of points in the CBCT rotated and translated projection frame, such that,

{r'}k ={r'\r'=rk +7Q,, ne[—L/2,L/2]}. In practice, the Bresenham line drawing



algorithm® is used to represent each seed by a finite set of Q equally-spaced points to

represent the seed in the world coordinate frame, such that,
i} ={r e =n+((j-1)-64,-L/2)-Q,,j =10 2)
where, &I, =L/(0—1) is the interval between two adjacent points and

(( j-1)-6l, —L/ 2) = [, represents the total length of the k-th seed.

Each member of {r' }k projects onto the detector plane defined by gantry angle y
with coordinates (u}k ,v'jk )y in each rotated and translated image plane. Then, we obtained
the initial estimate of the computed binary image intensity, (u,v | {rk Q2 } , 7/) which is
set to unity for all detector pixels (u,v) containing a projected point from the set

{r'}k and zero elsewhere. More explicitly, the digitized line seed image pixels intensity is

given by,

1, (u,v|{rk,ﬂk},7/):{

1 if3j,k suchthat P, (r,, ) e(u,v), 1<j<Q, 1Sk<N
0 ifnot.

3)

where, P, (r)= (uk,vk) are the coordinates of the point r in the detector plane for a
‘ 4

gantry angle of y and {rk,ﬂ k} denotes the set of N seed centroids and direction cosines.

The projected seeds on the detector plane were dilated one pixel along each
direction, yielding a line segment of uniform brightness and thickness ¢, which is
approximately equal to the width of the shadow cast by a Model 6711 '*°I 0.5 mm
diameter radiographic marker. This ensured that each computed binary seed projection
had approximately the same shape and size as binary seed images segmented from
experimentally acquired projections. In our notation, the index j is dropped because after
projecting the points corresponding to a line seed, it was represented by a line segment of
uniform intensity on the 2D detector plane. The binary mask representation of the

projected line seed was then blurred by convolving it with a 2D Gaussian blurring



function with a standard deviation . For a set of N line seeds projected from the world
frame then the total computed image is,

L(uv|{r,Q},0.7)= ZZIO (u;,v; |rk,Qk,7) eXp|:—(u _— )2/2(;2 _(v—v;)z/zaz} 4)

k w v
where, (u—uk) and (v—v}() denote the distances between the corresponding pixel

centers. The main purpose of the Gaussian blurring is to create a continuous-value
grayscale image to which a gradient-driven iterative search process can be applied. In the
absence of any blurring on the images, large areas of the intensity map would have zero
intensity, providing no gradient to guide the similarity minimization search. The blurring
creates a “source attractive” potential well around each seed with tails extending beyond
the seed footprint, causing computed seed images to be pulled towards measured seed

images, and accelerating the convergence of the iterative minimization search.

The metric sum-of-squared-differences (SSOD), which describes the “similarity”

between all grayscale images, /, (u,v | {rk,Qk },a, 7) of a candidate set of the seed poses
{rk,Qk} and the corresponding experimentally acquired or “measured” images,

I, (u,v|o,y) at nominal gantry angle y, is given by,

SSOD ({rk,ﬂk}|a,y)= Z Z [Ic (u,v|{rk,9k},a,y)—1m (u,v|a,y)}2 5)

u,v

The seed pose parameters, {rk,Q ‘ } were iteratively adjusted by simultaneously adjusting

the seed poses and the imaging viewpoint parameters relative to the first projection™*’

(i.e., the reference viewpoint, which is not allowed to vary; other imaging viewpoints are

defined relative to the first projection in terms of rotation and translation) and then
computing updated 7, (u,v| {l'k,ﬂk},O',}/). By allowing the projection viewpoints to

vary, we were able to correct for imprecision in the measured gantry positions and
thereby obtain a more precise projection match. The parameter adjustments were
calculated from the first derivatives of SSOD with respect to each degree of freedom. For
example, the derivative with respect to the x-coordinate of the k-th seed was computed as

follows;



o(SSoD)/ex, :22(2[16 (u,v| {r.Q}, o, 7/) -1, (u,v|o, 7/)} ol (u,v| {r.Q},o, 7/)/6ka (6)

Because the image grayscale intensities are represented entirely by the Gaussian blurring

function, the grayscale image gradient, oI, (u,v | {rk,ﬂk},a,y) /6xk for each seed was

calculated analytically from equation (4) for that degree of freedom. Similarly, we
computed the first derivatives of SSOD with respect to the other spatial and angular

coordinates. Detailed derivations of the gradient calculation can be found in the appendix.

After computing the analytical gradients to adjust all free parameters, the process
iteratively refined the 3D seed’s pose and each imaging viewpoint parameter (except first
projection) until the computed projections optimally matched the measured projections of
the seed geometry. The computed and measured projections must have the same imaging
geometry, image size and pixel resolution. At least two, but preferably three or more
pairs of computed and measured projections with corresponding imaging geometry are
required for a stable reconstruction process. The SN seed pose plus 6 (M -1) degrees of
freedom for the relative viewpoints (i.e., excluding the first fixed projection) are the

freely moveable parameters in each iteration, where, M is the total number of projections.

To iteratively adjust the free parameters, leading to the minimization of SSOD, we

28,29
d->

used a nonlinear gradient search metho that combined a steepest descent gradient

search with a parabolic approximation of the SSOD surface around the global minimum.

For overlapping clusters and highly migrated seeds, it was observed that the
computed seed pose at convergence varied somewhat with initial starting configuration.
This indicated less than optimal convergence matching. For example, if the initial seed
position estimates are far from the measured configuration, the gIFPM algorithm may not
converge to an optimal configuration. To improve the accuracy in such settings, we
applied a two step adaptive blurring scheme in which a larger 2D Gaussian blurring (i.e.,
o;) was used for the initial iterations. The output of the first-step convergence was taken
and used as an initial estimate with a reduced gaussian spreading (i.e., g;) for the

remaining iterations. The two-step blurring strategy used a more diffuse computed image



with larger capture range in the beginning to draw the computed seeds closer to the
measured ones and then increased the sharpness of the computed image to improve
accuracy at the final convergence. The optimal values of two-step blurring, ¢; and o,
were obtained from trial and error for each seed configuration and were between (3.0 —

2.2) mm and (2.0 — 1.4) mm, respectively.

B. Validation via simulated implant geometries

The numerical simulation studies used computational models of configurations of
56 to 70 elongated line seed sources in 3D space. Clinically realistic initial estimates of
the seed configuration and synthetically- produced projections were obtained from patient

pre-plans based upon a pre-treatment ultrasound volume study, which give the centroid

coordinates {rk} relative to the planning target volume (PTV) for each patient. Since our

gIFPM algorithm used the CBCT reference frame, the ultrasound-based preplan
coordinates were transformed to the CBCT coordinate system by using rotation,

translation and scaling.

Then line seeds of length L (3.0 mm x 0.5 mm cylindrical radio-opaque marker of

Model 6711 '*°I seed) were centered at the transformed {r,} centroid coordinates and

aligned with the axis of implantation (i.e. € =0, =0) which we called the “straight

seed” implant. This was our initial estimate of the implant seed configuration. The 3D

position of each seed in the configuration was shifted by a displacement, d, randomly

sampled from the uniform distribution [-2 mm, 2 mm] in each of the three directions,
resulting in a mean displacement of 1.98 mm. The # and ¢-values were randomly
sampled from the uniform [-m/6, w/6] and [-m/2, m/2] distributions, respectively. To
simulate migrated seeds in the implant, we manually adjusted the 3D pose of a few seeds
after perturbing the configuration. These configurations were used to compute three
“synthetic measured” projection images, i.e., projections of the configuration that we
wished to determine. The source to isocenter distance was 100 cm and source to detector
distance was 150 cm. The images were 288 x 288 pixels square and had a resolution of

0.388 mm/pixel.
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The accuracy of each trial was quantified by calculating the root-mean-square
(RMS) difference and the standard deviation between the estimated and known 3D seed

poses.

C. Validation via physical phantoms

A validation phantom (see Figure 2) was designed and fabricated from eight
interchangeable 9.5 cm % 9.5 cm % 0.6 cm acrylic slabs, allowing up to 100 decayed
Model 6711 '*1 seeds to be placed at known locations and orientations. Each slab, which
represents a single plane of seeds, contains 10 mm diameter removable cylindrical plugs,
each of which can contain a single dummy seed. The position and polar orientation, 6, of
each seed are determined by the location and angle (with respect to plug rotational axis)
of the seed cavity created by a digital milling machine. The azimuthal angle ¢ can be
controlled by rotating the plug within its slab and is quantified by means of an angular
scale [see Figure 2 (a)]. Because plugs and planes are interchangeable, one can realize
many different seed configurations. The seeds were arranged in rectilinear layers
separated by 6 mm, with 6 mm to 10 mm interseed (center-to-center) spacing within each
slab. Up to 10 clusters of as many as 5 seeds were physically modeled in the implants (for
example, see Figure 3) in order to test the robustness of gIFPM in the presence of both
clustered and non-overlapping seeds. The slabs are held in rigid configuration by placing
them inside a hollow acrylic rectangular box designed for this purpose [see Figure 2 (b)]
prior to scanning. The positional accuracy of the known 3D seed centroids of the
precision-machined phantom was +/-0.1 mm in each of the three directions and about 1°

angular accuracy for the 6 and ¢ angle-pair.

11



(a) (b)

Fig.2. Close-up photographs, (a) an acrylic slab of the phantom containing Model 6711 '*°I seeds; where
the polar angle @ is defined as the angle between implant axis and the major axis of the seed. It was
assigned across the slab at different orientation for each seed (see inset). The azimuthal angle, ¢ was
assigned by using the adjustable reference grid drawn for each seed in known orientation, and (b) multi-
configuration precision-machined phantom assembly with all 8 replaceable slabs. This phantom was used
to create different seed configurations to test the gIFPM algorithm seed localization accuracy in the clinical
setting.

Initial estimates of each seed configuration were obtained by randomly perturbing
the known 3D seed configuration, as described earlier. The initial estimates of 4 and ¢-
values were also randomly sampled from the uniform [-n/6, n/6] and [-m/2, 7/2]
distributions, respectively. To make the computed projection images, the perturbed seeds

configuration was rotated and translated to each imaging viewpoint and then projected on

the (u,v) detector planes. The seed centroids were transformed to obtain extended line

seeds before making projections as described in 8 II (A).

In this study, three clinically realistic brachytherapy seed configurations
containing totals of 50, 72 and 76 seed datasets were realized on the phantom. For the 50
seed case, decayed Model 6711 '*1 seeds obtained from Oncura Inc. were used. In that
case, we modeled only 3 mm radio-graphically visible radio-opaque marker. For the
remaining cases, machined stainless steel cylinders (4.5 mm long by 0.8 mm in diameter)

were used.

D. Acquisition and processing of radiographic projections

12



To experimentally validate this algorithm, the phantom was imaged on a Varian
ACUITY imaging system which is used for performing image-guided brachytherapy
insertions in our dedicated brachytherapy suite. The Acuity system can be operated in
CBCT, fluoroscopic, or radiographic mode. CBCT images of the phantom were acquired
for a complete gantry rotation around the phantom capturing approximately 660
projections through 360° using a Varian 4030CB flat panel detector (FPD). The detector
is 40 cm X% 30 cm with a 1024 x 768 image size and pixel resolution of 0.388 mm/pixel
and a 16-bit depth. The ACUITY imaging geometry consists of a 100 cm source to
isocenter distance and a 150 cm source to detector distance. Three to ten radiographic
projections at 5° to 10° angular intervals were selected from the full set CBCT x-ray
projections between +30° gantry angles. The choice of perspectives was based on
maximizing visibility of the implanted seeds in the projections and avoiding excessively

small parallaxes.

The post-processing involved a) cropping the images to 288 x 288 pixels square;
b) normalizing the image intensity by finding its maximum and minimum values in the
image; c¢) morphological top-hat-filtering to suppress the background; and d) automatic
thresholding using the 3-standard deviation value of the pixel intensity histogram to
create binary line-seed images in each projection in order to separate the seeds from the
background. This process resulted in binary bitmap images with zero intensity in the

background and intensity 1 over the area of each projected line seed.
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Fig.3. An example case of the image post-processing of the projection images obtained from the Varian
4030CB digital simulator, (a) raw projection image, (b) filtered image, (c) binary seed only bitmap image,
and (d) blurred grayscale image using the gIFPM algorithm for 76 seed phantom datasets.

@ (b)
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The gIFPM method does not require transforming cylindrical seed images into
point-like landmarks. Instead we match elongated line-seed features in the 2D images
including overlapping seed clusters. This avoids a major difficulty encountered by back-
projection methods: resolving seed clusters and isolating each seed centroid before
reconstruction. The binary images were then convolved with the same 2D Gaussian
blurring function that is used for the computed projection to create diffuse elongated seed
lines with a known intensity distribution. This produces smoothly-varying grayscale
image gradients that can be calculated analytically in the computed projections to guide
towards minimization of the objective function, SSOD and speed up the convergence of

the matching process. An example case of image post-processing is shown in Figure 3.

E. Assessment of the seed reconstruction/ registration error
In the simulated implant study, the accuracy of each trial was quantified by
calculating the root-mean-square (RMS) difference and the standard deviation between

all estimated and true/synthetic measured 3D pose parameters.

For the phantom studies, the seed reconstruction error was quantified in three
ways. First, the seed reconstruction error was computed by directly comparing the
computed seed coordinates with the known seed poses obtained from the precision-
machined phantoms. In the second approach, the seed registration error was evaluated by
re-projecting the gIFPM line seed pose at convergence onto the 2D image planes,
overlaying the computed and measured seed projection, and calculating the nearest-
neighbor difference between the measured and computed seed poses in each image plane.
In this approach, for all non-clustered computed seed images, we empirically calculated
the seed centroids (center of mass of each seed region) and orientation angles (angle
between the x-axis and the major axis of each seed) in each 2D image plane and

compared with those obtained from the measured seed images at convergence.
In the third approach, we compared the gIFPM positional coordinates to those

obtained by the VariSeed planning 8.0 software (Varian Medical System, Palo Alto, CA)

operating on the CBCT dataset reconstructed from the same set of projections from

14



which the glFPM measured projections were selected. VariSeed automatic seed finder
tool was used. Since VariSeed frequently detected more seeds than were actually
implanted, manual corrections were performed to estimate the approximate seeds
locations. As VariSeed does not provide the individual seed orientations coordinate, we
compared only the seed centroids. Accuracy was quantified in terms of the minimum 3D
distance between each gIFPM seed centroid position and the nearest VariSeed seed
location. The seed reconstruction error was quantified by computing the vector and scalar
displacement between the gIFPM and VariSeed positions. VariSeed seed centroids have
limited accuracy due to the CT partial volume artifacts, metal streaking artifacts, and
difficulty in resolving overlapping seed clusters. These uncertainties were included in our

estimation of the accuracy of the glFPM solution for the seed positions.

II1. RESULTS
1. Simulated implants

In Figure 4 we illustrate an example, of the iterative matching process for a
simulated implant consisting of 60 seeds. The three projections have gantry angles of 0°,
+30°. The initial seed configuration was obtained from a patient’s pre-procedure planned
implant geometry assuming the seed axes to be parallel to the gantry axis. Comparison of
the final computed images 4 (c) to the measured images (d) shows excellent agreement,
including reproducing overlapping seed clusters which appear as brighter and/or extended
seed group image features. The gIFPM algorithm successfully found seeds that were
placed as far as 5 mm from their pre-planned positions. This case required 11 iterations in
the 1% step (gaussian width, o; = 2.8 mm) with computation time of about 12
min/iteration and 4 iterations in the second step (¢, = 1.8 mm), with computation time of
about 16 min/iteration on 1 GHz processor (computation time depended upon number of
seeds used in the implants, i.e., the number of free parameters to optimize in each

iteration).

15



gantry
angle

OO

-30°

+30°

(a) (b) (c) (d)

Fig.4. An illustration of the convergence process for a 60 seed simulated implant, (a) initial estimated seed
configuration with “straight seeds” derived from a patient pre-plan, (b) computed images after convergence
with o; = 2.8 mm, (c) computed images after convergence with o, = 1.8 mm and using poses (b) as the
initial configuration; and (d) the true/synthetic measured images, where the rows represent different gantry
angles. The gIFPM algorithm was able to reproduce orientation of each individual seed including
overlapping clustered and highly migrated seeds.

Figure 5 shows the convergence of the objective function score for the four
simulated patient implants, where the black arrow indicates the plateau regions of the
similarity when switching from first step to second step iterations. Similar transitions can
be seen for the other patient cases convergence histories. For the 60 seed test case, from
one-to-one correspondence between the true/synthetic measured and computed sets of
seed coordinates, the glFPM absolute accuracy was (0.53 = 0.43) mm for position and
(3.7 £2.7)° and (4.4 £ 3.8)° for polar and azimuthal angles, respectively. Figure 6 shows
the histograms of the seed localization errors. More than 98% of the reconstructed seed
positions are within 1 mm of their true positions, and more than 95% of the reconstructed

seed orientations are within 5° of their true orientations.
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Fig.5. The similarity metric score vs. iteration number for the two step gIFPM algorithm for the four
simulated patient cases: 56, 60, 66, and 70 seed configurations. The transition from larger to smaller
blurring for the 66 seed configuration is shown by the black arrow. The one-dimensional image-intensity
profiles in the inset illustrate the difference in capture range for the two blurring levels.

Several experiments were performed to test the accuracy and robustness of the
glFPM algorithm, including arranging the seed geometry to simulate seed clusters and
overlaps of increasing complexity in more than one or more projections, e.g., 2, 3 or
seeds overlapping in one or more than one projection, etc. Figure 4 illustrates successful
resolution of more than 4 seed clusters consisting of up to 5 seeds in the cluster on more
than one projection. We found that gIFPM could accurately determine seed poses with
clusters consisting of as many as five seeds. Table I summarizes the accuracy of glFPM
reconstructions for four simulated implants derived from patient cases. In all cases, the
RMS seed position error was less than 0.7 mm and the maximum error did not exceed 1.5

mm. The RMS orientation errors were found to be about 5° for the both angular

coordinates.
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Fig.6. Histograms of the seed localization error for the 60 seed simulated patient configuration, (a)
positional error in terms of 3D distance between reconstructed and true location, and (b) orientation error.
The gIFPM absolute accuracy was (0.53 + 0.43) mm for position, and (3.7 = 2.7)° and (4.4 + 3.8)° for 6
and ¢ angles, respectively.

Table I. Accuracy of gI[FPM reconstructed poses for 4 simulated implants derived from patient pre-plans.
The root-mean-square (RMS) value and standard deviation for the positional and orientation coordinates
are reported. The maximum displacement (Max. error) of the seed position is also reported.

Patient # Gantry Total no. of
(No. of seeds) angles (°) iterations gIFPM vs. true seed pose
RMS error Max. RMS error in
in seed position error seed orientation (°)
(mm) (mm) 0 o
0
1(56) +20 15 0.63 £ 0.45 1.32 44+32 53+3.1
-20
0
11 (60) -30 14 0.53+£0.43 1.19 39+2.7 44+338
+30
0
III (66)* -20 11 0.68 £0.54 1.46 52+5.7 58+53
+20
0
IV (70) +30 16 0.65 +0.52 1.38 6.0+2.8 62+32
-30

* Two extra seeds in the pre-plan
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Figure 7 illustrates the convergence process for Table I Case III in which
ambiguities are created by incomplete (two seeds missing from the true implant but
present in estimate) and excessive (one additional seed-like artifact in the measured
projections with no counterpart in the computed images) data. Figure 7 (d) shows that in
both cases that the two-step iterative convergence process closely reproduces the
measured seed projections. However, the gIlFPM algorithm converged robustly to an
optimal solution of the seed configuration that was only slightly perturbed in the region
adjacent to the additional or missing seed images. Since difference images readily
identify the additional and/or missing seeds, glFPM could be rerun with a modified initial
configuration having the correct number seeds and/or seed-like objects, which would

slightly improve reconstruction accuracy.

(a) (b) ©) (d)

Fig.7. Nllustration of gIFPM seed reconstruction for simulated case III in Table I for a single projection. In
the first row (+20°), 66 seeds are present in the simulated implant derived from the preplan but 68 are
assumed in the initial seed configure, (a) with seed axes parallel to the gantry axis. In the second row
(+20°), 66 seeds are present both in the initial estimated configuration and in the simulated implant along
with an additional seed-like artifact which is present in the measured images, (a) initial estimate of the seed
configuration, (b) computed images at final convergence, (c) the synthetic measured images corresponding
to the “true” seed configuration, and (d) difference between images (b) and (c). The red arrow and ellipse in
(d) indicates the extra seed(s) found by gIFPM at convergence.

2. Validation test with phantoms
Physical phantoms with different seed configurations were imaged in order to
evaluate the gIFPM algorithm in a more clinically realistic setting. Figure 8 shows the

convergence of the objective function for the three example seed configurations derived
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from the same phantom; where the black arrow indicates the plateau region where the

algorithm transition from the larger to smaller Gaussian width.

Table II. Accuracy of seed poses deduced by the gIFPM algorithm for three seed configurations realized
by our physical phantom and imaged on the VCU ACUITY system. The root-mean-square (RMS) value
and standard deviation for the positional and orientation coordinates are reported while using 3 vs. 6
experimentally acquired projections. The maximum displacement (Max. error) of the seed position is also
reported.

No.of  No. of Total no. of glFPM vs. true seed pose

seeds projections iterations

RMS error in Max. error  RMS error in
seed position (mm)  (mm) orientation (°)
0 2
3 19 0.78 £0.57 1.88 57+49 6.0+4.1
’76**
6 21 0.67+0.47 1.56 46+3.6 45+33
3 17 0.72+£0.48 1.74 50+3.8 57+33
72**
6 18 0.56 £0.52 1.37 3.8+29 42+37
3 15 0.75+0.46 1.78 49+33 53+3.8
50*
6 16 0.59+0.42 1.44 32+2.8 43+£29

** Line seed made up of stainless steel (4.5 mm long and 0.8 mm in diameter)
*  Actual Model 6711 '°I dummy seed (3.0 mm x 0.5 mm radio-opaque marker)

As shown in Table II and Figure 9, the phantom study shows good agreement between
the generalized IFPM and the known seed coordinates realized by the phantom. Table II
shows RMS reconstruction errors ranging from 0.56 mm to 0.78 mm with angular
coordinate RMS errors ranging from 3° to 6°. These errors are only slightly larger than
those of the idealized simulated implant study, indicating that the additional errors
associated with determination of the seed poses in the phantom and Acuity forward-

projection modeling errors are not significant. Increasing the number of projections from

3 to 6 reduced these errors by approximately a factor of V2 at the cost of doubling

computation time. For the 76 seed phantom case, from one-to-one correspondence
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between the two sets of seed coordinates, the RMS error was (0.78 £ 0.57) mm. The 0
and ¢ angle distributions were found to be (5.7 £ 4.9)° and (6.0 + 4.1)°, respectively
when using three projections. The seed reconstruction error is reported in the histograms
of Figure 9 (a) show that 97% of the reconstructed seed positions are within 1.5 mm from

the measured seed locations, and (b) 95% of the reconstructed seed orientations are

within 8° of their known orientations.
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Fig.8. The similarity metric score vs. iteration number for the two-step gIFPM algorithm for the three
example physical phantom seed configurations. The transition from larger to smaller blurring filter for the
50 seed configuration is highlighted by the black arrow.
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Fig.9. Histograms of the seed localization error in 3D space between reconstructed and true pose for the 76
seed phantom configuration for three projection images, (a) positional error, and (b) orientation error. The
RMS error was found to be (0.78 + 0.57) mm for position. The 8 and ¢ angle distributions were found to be
(5.7 £4.9)° and (6.0 + 4.1)°, respectively.
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Fig.10. Superposition of measured (white) and computed (black) line seed images projected on the detector
planes for gantry angles of (a) +5°, (b) -20°, and (c) +20° for 76 seed phantom configuration. While many
computed seeds coincided exactly with the measured ones, a few still reveal small discrepancies.

An example of the reconstructed seed configurations projected onto the imaging
planes is presented in Figure 10. For the subset of seed images that do not overlap, the
residual 2D RMS error in computed vs. measured seed images were 0.69 + 0.55 mm (+5
degree), 0.83 + 0.56 mm (-20 degree), and 0.79 +0.58 mm (+20 degree) for nearest-
neighbor displacement and 5.6 + 3.7° (+5 degree), 6.9 + 6.2° (-20 degree), and 6.7 £ 5.1°
(+20 degree), respectively, for polar angle. This indicated very good agreement between
measured and computed seed images.

difference between reconstructed (glFPM) and
measured (VariSeed) coordinates: 76 seed phantom
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Fig.11. Seed-by-seed vector difference between gIFPM positions and those obtained from the VariSeed
planning system for 76 seed phantom datasets. The 3D RMS error was (1.69 + 0.63) mm.
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Figure 11 shows the seed-by-seed vector displacement between gIFPM and
VariSeed coordinates. The mean (and RMS) values along the x, y, and z directions were
found to be 0.39 £ 1.02 mm (0.87 = 0.54 mm), -0.27 = 1.06 mm (0.90 £ 0.52 mm), and
0.35+ 0.98 mm (0.72 + 0.48 mm), respectively. The 3D RMS error was 1.69 + 0.63 mm.
This level of agreement seems reasonable given uncertainties in VariSeed centroid
localization due to metal streaking artifacts, partial volume averaging, and finite CT slice

width.

IV. DISCUSSION

A novel IFPM algorithm has been successfully extended to the more complex five
degrees-of-freedom problem of reconstructing the 3D pose, as well as centroid, of radio-
opaque cylindrically symmetric implanted objects such as implanted brachytherapy seeds
from a limited number of radiographic projections. IFPM approach does not require
solution of the challenging NP3 seed image matching problems unlike standard BP
methods. It avoids the intra- and inter-observer variability in localizing seeds that is

frequently observed on three-film methods.”'®

This method also allows the imaging
viewpoints for the digitally reconstructed radiographs (DRRs) to be free parameters to
adjust gantry angle uncertainties relative to the first projection. In addition, a novel
precision-machined prostate seed implant phantom, capable of realizing multiple seed
configurations with an accuracy of 0.1 mm, was developed for rigorously testing the new

algorithm.

Several algorithms are available for reconstructing 3D seed pose, including seed
orientation, from measured 2D projections.'*?% *** The algorithms presented by Tubic
et al."*" use mathematical morphology to detect the center of the seeds as well as their
orientation on the 2D image plane. This information (seed center and orientation in 2D)
was then used to perform 3D reconstruction of each individual seed including
orientation.** However, their method fails to correctly reconstruct seeds in large clusters
of more than three seeds. Another approach, proposed by Siebert ez al.*®, separately back-
projects the tip and end positions of each seed image and uses a heuristic search

algorithm to efficiently solve the NP3 matching problem. While in principle this method
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identifies seed orientation, no quantitative data are shown. A promising brachytherapy
seed reconstruction method using seven digital-tomosynthesis (DTS) projections has
recently been applied to clinical datasets.”” In their method, seed-only 3D binary images
were obtained by back-projecting each detector pixel shadowed by an elongated seed
based upon pre-reconstruction binarization of each projection. They were then able to
estimate orientation by finding the major and minor axes of the each reconstructed 3D
binary voxel cluster. However, their method can not distinguish between orientations of
seed clusters and individual seeds. The methods discussed above all have the
disadvantages of BP, including intolerance to incomplete and inconsistent data as well as
difficulty of resolving overlapping clusters. By accurately modeling each elongated line
seed in 3D space and iteratively finding the best solution that accounts for the measured
projections, our method explicitly detects the orientation of each individual seed and is
capable of reproducing overlapping seed clusters and highly-migrated seeds in the
implants. By using a few CBCT projections, the glFPM has the potential for fusion-based

intraoperative brachytherapy planning.

Tubic and Beaulieu™ have proposed a new brachytherapy seed reconstruction
technique that seeks to extract seed pose by analyzing the seed projections in the raw CT
sinograms rather than reconstructed CT images. Essentially, their method involves
segmenting the sinusoidal trace produced by each seed and fitting a mathematical model
to each trace from which the centroid (derived from centerline of trace) and orientation
(modulation of trace width as a function of gantry angle) can be derived. By working
with higher resolution sinograms, their method avoids the major difficulties of CT-based
localization, such as limited spatial resolution due to slice thickness limitation and
uncertainties created by metal streaking artifacts. Excellent results were obtained for an
idealized 16 seed phantom. However, automatically segmenting the sinusoidal seed
projections, especially in the presence of realistic anatomic structure and image noise,
remains a significant and unsolved technical challenge. Similarly, detecting variable-
width traces, quantifying trace width, dealing with seeds normal to the scanner axis, and
resolving tightly bunched seed clusters also challenge this algorithm. While we have not

yet applied our five degrees-of-freedom gIFPM algorithm to actual clinical data, in our
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previous study® our relatively simple filtering and segmentation algorithms were
successfully applied to anterior and oblique x-ray images of four Model 200 '*Pd seed

implants.

The'*I and '"*Pd seeds exhibit considerable anisotropy in their dose distributions
due to their internal geometry. The “self-attenuation” by the material along the seed
major axis is the main cause for the seed anisotropy. However, identification of the seed
orientations on CT images is difficult primarily because of the slice thickness and voxel
size limitations. To avoid this difficulty, the AAPM TG-43"' one-dimensional point-
source approximation, employing an average distance-dependent anisotropy correction,
the 1D anisotropy function, is used almost universally in clinical treatment planning. This
approach is valid for a multi-seed implant if all seed orientations are equally probable.
However, Corbett er al.*® demonstrated that the seeds are preferentially orientated along
the needle directions, based upon the distribution of the polar angle, 6, derived from
analysis of seed projection angles on one-month post-implant anterior-posterior

radiographs of ten patients. By averaging the dose over an ensemble of '*°

I implants with
identical centroids but randomly sampled orientations from the above distributions,
Corbett e al.”® demonstrated that seed orientation had little effect on DVH parameters,

e.g., Doy, commonly used for clinical dose specification.

However, the theoretical study presented by Prasad et al.*> concluded that the
actual dose rate may differ from the expected dose rate by a factor of 2 when taking

account of the anisotropy of the individual seeds. In the post-implants geometry using '*°I

and 'Pd seed, Lindsay et al.”’

showed that the 1D TG-43 treatment of anisotropy
resulted in significant local dose computation errors (£10% for CTV and +5% for the
rectum) compared to the more accurate 2D line-seed model which requires specification
of the seed orientation. However, none of these studies had available actual seed
orientations for their studies nor did they present a practical method for measuring

orientation. Our five parameter model allows the individual seed position and orientation

distribution to be determined for each implant. By directly measuring the individual 3D
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pose of each implanted brachytherapy seed, our method allows the 3D dose distribution

to be more rigorously computed using the full 2D TG-43 line-seed formalism.”!

As reported in the literature™ and found in our clinical experience, metallic '**Pd
or "I seeds cause moderate to severe streaking artifacts on CBCT images which
introduce errors in soft-tissue segmentation, deformable image registration, and CT-based
dose calculation. Accurate identification of the metal seed boundary and its orientation in
the sinogram projections is very useful for suppressing such artifacts by projecting each
metal seed boundary onto the sinogram so that the missing soft-tissue information can be
recovered by interpolation from the surrounding soft-tissue image texture. Reconstruction
of CBCT images with corrected sinogram projections can then be performed. Thus,
another application of gIFPM is aiding in the accurate identification of seed traces in
support of interpolative sinogram corrections. By reducing streak and associated noise

propagation artifacts, significant clinical value can be added to CBCT imaging for image-

guided brachytherapy.

By subtracting the measured images from the computed images at convergence, in
the current version of g[FPM, one can locate extra-seed(s) in the implant. Future versions
of glFPM will automatically correct for over- and under-counted seed(s) in the implant
and re-run the reconstruction process to obtain a more optimal match. More extensive
investigation of the initial estimate of the seed configurations using TRUS pre-implant
geometry of the actual patient will be performed to further validate this algorithm. This
iterative pose search method has not been optimized for speed. Improving the

computation efficiency is also an area of future development.

The data presented in this paper demonstrate that the gIFPM algorithm works
effectively for seeds with radio-opaque markers having aspect ratios of 6:1 or larger.
Besides the Model 6711 '*°I seed, other seed models satisfying this constraint include the
selectSeed33, (Amersham 6733 seed, [soAid Advantage, DraxImage LS-1, Source Tech
Medical STM125 1)34, symmetra35 , Model 9011°® and Best Model 2301°7 sources. Our

previous work™ demonstrated that the three degrees-of-freedom IFPM algorithm can not
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accurately estimate the centroids of such elongated seeds because of the requirement that
computed projections produce seed shadows that closely approximate the shape and size
of the actual seed binary images. The centroid-only IFPM localization algorithm was
shown to accurately reconstruct the positions of Model 200 '®Pd seeds, which contain
cylindrical lead markers with a 2:1 aspect ratio. Thus, to apply IFPM reconstruction to
Model 6711 '*I implants, the gIFPM is essential. The gIFPM method is further being
generalized to reconstruct larger and non-cylindrically symmetric metal objects in
brachytherapy treatment, e.g., intracavitary applicators (i.e., colpostats and tandem) of

known but arbitrary shape from a small set of 2D x-ray projections.

V. CONCLUSION

We have presented a new approach to brachytherapy seed localization, gIFPM
able to accurately recover the orientation as well as location of individual seeds within a
densely implanted volume from a limited set of measured 2D x-ray projections. By
knowing the full 3D pose of each implanted seed, more rigorous Monte Carlo-based or
2D TG-43 dose calculations can be performed. Based on both physical and simulated
implants, seed reconstruction errors were about 0.7 mm and 6° for 8 and ¢-angles. The
algorithm exhibits robust performance in the presence of overlapping seed clusters,
highly migrated seeds, erroneous seed count, and errors in specifying the radiographic
projection geometry. By incorporating a five degrees-of-freedom search capability, the
IFPM approach, which does not require matching of corresponding images on each
projection, can be extended to localization of cylindrically symmetric objects, e.g.
implanted fiducial markers, whose aspect ratios are 6:1 or larger. This algorithm is more
robust and tolerant of incomplete data than back-projection and has the potential to make
intraoperative dose reconstruction and adaptive replanning from fused TRUS images and

a few quick radiographic projections feasible.
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APPENDIX: ANALYTIC GRADIENT OF THE SIMILARITY, SSQD WITH
RESPECT TO FIVE DEGREES OF FREEDOM OF EACH SEED

Recalling equation (2), for each line seed k, in the rotated and translated CT frame,

e} =l =r+((j-1)-6L,-L/2)-Q,, j=10] (A1)
where, j=1,---,0 is a finite set of Q points spaced at interval o/, = L/(Q - l) that
represents the k-th seed.

Now, rotate and translate the CT frame to the each projection coordinate system (in

which z axis corresponds with its central axis), rewriting equation (A1) more explicitly,

x X, sin @ cos @
y =[R]aﬁ‘y ¥ +((j—1)~§lk —L/2) sin@sing o |=T, . (A2)
z . z | cos @ .
R11 R12 RI3
where, [R]aA 5y = R21 R22 R23 is the complete rotation matrix for each image

R31 R32 R33
a.p.y

viewpoint, and (( J —l)-§lk -L/ 2) = L, represents the total length of the k-#h seed. No

translation is applied, i.e., T

X, ¥,z

= 0. The complete rotation matrix was obtained by taking

the product of the three rotation matrices defined in the world coordinate system, for each
image viewpoint. The line seeds in the CT frame project to the detector plane (u,v) are
given by,

(u;c,v,'()zM(z}c)(x;,y,;) (A3)
where, M, = (S + D/ S+ zk) is the magnification factor, which is different for each
endpoints; S and D are the source-to-isocenter and isocenter-to-detector distances,
respectively. Since, the brachytherapy line seed has rotational symmetry around the axis
of rotation; we computed one derivative per seed per degree of freedom with respect to

the each seed center coordinates (note that: the index j has been dropped). From equation

(4), the image grayscale gradient for x-degree of freedom was calculated as follows,

28



1 (u,v|{rk,9k},a,7/)/8xk =;Z(Io(u}(,v}{ |rk,Qk,}/)/0'2)[(u—u,;)8u}(/8xk

+(v—v}c)8v,;/&vk}.g(u—u}(,v—v,; |0')
(A4)
Where,g(u —u,,v—v, |G) = exp[—(u —u, )2/20'2 —(v—v,'{ )2/202}and7 is the estimate

of the imaging viewpoint.

Finally, from equations (A2) and (A3), using chain rule, we get,

ou, Jox = M, [Rn—(R31)x‘k/(S+zk)]}

A
o, fox = M, | R21-(R31)y, /(S +7,) | (A5)

and similarly for the y and z coordinates of each seed. The analytical gradient of the
similarity, SSOD with respect to #-angle coordinate for each seed was calculated from

equation (5) as follows,

8(SSQD)/86}C=2 Z[Ic(u,vl{rk,Qk},a,y)—Im(u,vla,y)J 8Ic(u,v|{rk,9%},o;7/)/89k] (A6)

Again, from equation (4) we computed the image grayscale gradient with respect to 6-

degree of freedom,

ol (u,v\ {rk,ﬂk},a,y)/aﬁk =ZZ(IO (u,;,v,; \rk,Qk,y)/62)[(u—u%)@u,;/aﬁk

k1,
+(v—v,;)Gv}(/aé’k].g(u—u}(,v—vk | O')
(A7)
Finally, from equations (A2) and (A3), using chain rule, we get,
ou, /06, =M, L, [ (R11.cos Ocos p+ R12.cos Osin p— R13.sin 6)
—(R31.cos0005(/)+R32.cost95in(0—R33.sin¢9)x'k/(S+z}( )J
o, /06, = M, L, | (R21.cos Ocos o+ R22.cos Osin - R23.sin 6)

—(R31.cos9005(p+R32.c0s95in¢)—R33.sin6?)y}c/(S+z,; )]

(A8)
Similarly, we have computed analytical gradient of SSQD with respect to ¢@-angle

coordinate of each seed.
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Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray

projections via a novel iterative forward projection matching algorithm
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Richmond, Virginia 23298
Abstract

Purpose: To present a novel method for reconstructing the 3D pose (position and
orientation) of radio-opaque applicators of known but arbitrary shape from a small set of
2D x-ray projections in support of intra-operative brachytherapy planning.

Methods and materials: The generalized iterative forward projection matching (gIFPM)
algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing
the sum-of-squared-intensity-differences (SSQD) between the computed and
experimentally-acquired auto-segmented projection of the objects. Starting with an initial
estimate of the object’s pose, gI[FPM iteratively refines the pose parameters (3D position
and three Euler angles) until the SSQD converges. The object, here specialized to a
Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine
mesh of discrete points derived from complex combinatorial geometric models of the
actual applicators. Three pairs of computed and measured projection images with known
imaging geometry are used. Projection images of an intrauterine tandem and colpostats
were acquired from ACUITY cone-beam CT (CBCT) digital-simulator. An image post-
processing step was performed to create blurred binary applicators only images. To
quantify glFPM accuracy, the reconstructed 3D pose of the applicator model was forward
projected and overlaid with the measured images and empirically calculated the nearest-
neighbor applicator difference for each image pair.

Results: In the numerical simulations, the tandem and colpostats positions (x, y, z) and
orientations (o, B, Y) were estimated with accuracies of 0.6 mm and 2°, respectively. For
experimentally acquired images of actual applicators, the residual 2D registration error
was less than 1.8 mm for each image-pair corresponding to about 1 mm positioning
accuracy at isocenter with a total computation time of less than 1.5 min on a 1 GHz

processor.



Conclusion: This work describes a novel, accurate, fast and completely automatic
method to localize radio-opaque applicators of arbitrary shape from measured 2D x-ray
projections. Our results demonstrate ~1 mm accuracy while compared against the
measured applicator projections. No lateral film is needed. By localizing the applicator
internal structure as well as radioactive sources, the effect of intra- and inter-applicator
attenuation can be included in the resultant dose calculations. Further validation tests
using clinically acquired tandem and colpostats images will be performed for the accurate

and robust applicator/sources localization in ICB patients.

Key words: Intracavitary Brachytherapy Applicators, Localization, Generalized Iterative

Forward Projection Matching, Cone-beam CT, X-ray projections.

I. INTRODUCTION

Despite more than a century of routine clinical use, intracavitary brachytherapy
(ICB) treatment planning for gynecological malignancies continues to be dominated by
the six-decade old practice of using orthogonal 2D radiographs to localize the radioactive
sources in the patient.' Because this process involves manual drawing of the source
positions on films or digital images; it is time consuming and may be error prone.
Tandem sources are difficult to visualize in the 30% of cases for larger patient (thickness
greater than 38 cm) due to poor lateral radiograph quality while the colpostats edges are
almost always obscured in the lateral view because of the pelvic bone and the overlap of
the two colpostats.” Brachytherapy applicators have complex internal structures®®, the
pose (position and orientation) of which relative to the patient’s anatomy needs to be

>19 or utilizing

determined for more accurate dose evaluation via Monte Carlo simulation
Acuros™ (Transpire, Inc., Gig Harbor, WA), a grid-based Boltzmann solver algorithm to

account for dose perturbations due to inhomogeneities.

The conventional ICB clinical workflow involves moving and repositioning the
patient with applicator insert on the fan beam CT table often inaccurately and then
returning the patient to the treatment room. This can result in patient discomfort and large

(up to 10.4 mm) uncertainties due to moving the applicators relative to the central pelvic



organs.'' Also, it does not allow for altering and optimizing the treatment plan intra-
operatively. In order to obtain a true intra-operative optimized plan, one must
automatically identify the 3D pose of the applicator and source position with respect to
the patient 3D anatomy in near real time. Brachytherapy procedure tables equipped with
intra-operative 3D cone-beam CT (CBCT) or planar imaging systems have the potential
to support more accurate source localization, intra-operative correction of implants, and
more accurate post-implant dose evaluation without moving or repositioning the patient.
However, the 3D CT method is severely hampered by metal streaking artifacts, time
required to manually segment or threshold the applicator surface, and limited spatial
resolution due to slice thickness effects. The ACUITY CBCT imaging system in our
procedure room requires over two minutes to acquire CBCT images'? and can not

provide useful images with the metal applicators in the field of view.

The problem of localizing applicators is closely related to the problem of metal

13-14 are known to cause

streaking artifacts. The widely-used shielded vaginal applicators
severe streaking artifacts limiting the value of CT imaging for segmenting critical organs
at risk relative to the implanted applicators. Over the past few decades, the problem of
metal artifact suppression has been studied extensively by restoring the missing
information’s in the sinogram region either using interpolation techniques™'® or
registering a prior metal-free CT images."” Another more general approach is to use
iterative solutions. The alternating minimization (AM) and other iterative statistical

algorithms®*?'

can provide artifact-free CT images of the soft tissues near implanted
foreign metal bodies; provided that a priori model of the metal object, including its pose,
shape, and attenuation map is essential when using AM image reconstruction to suppress
metal streaking artifacts. The iterative forward projection matching (IFPM) approach®*
contributes to this solution by using high spatial resolution projections, rather than streak-
limited CT images for applicator localization and by making accurate applicator pose

estimates available as an input to the iterative reconstruction algorithm.

Because the spatial resolution of the applicators in the 2D image planes is

superior to CT, reconstructing applicators from radiographic images can address some of



the problems associated with the post-operative CT as described above. This can be done
using the ACUITY imaging system in the brachytherapy treatment room with applicator
reconstruction from measured 2D CBCT projections. To accomplish these goals, we have
further generalized the IFPM (gIFPM) algorithm®™* from five degree-of-freedom needed
to reconstruct permanent implant seed centroids and orientations, to the six degree-of-
freedom needed to reconstruct the 3D pose of arbitrary-shaped objects from the measured
2D x-ray projections. The applicator model is a fine mesh of discrete points derived from
a complex combinatorial geometric (CCG) modeling’ of the actual applicators. Each
applicator model has three translational and three rotational degrees of freedom. The
parameterized 3D applicator model was forward projected on the 2D detector planes
using CBCT projection geometry and then adjusted iteratively to match with the
measured images. In this approach, each applicator model moves independent of the
others in the 3D space. The numerical simulation studies with tandem and colpostats
were performed to demonstrate the proof of concepts of this method. Also, we used
measured images of the actual applicator configurations to experimentally validate the

new algorithm in a clinical setting.

II. MATERIALS AND METHODS
A. Example shielded applicator system

A low dose-rate (LDR) manual afterloading system using "*'Cs sources loaded
into Weeks® CT-compatible Fletcher-Suit applicator is used in this study [see Figure 1
(a)]. The applicators consist of thin-walled central tandem and aluminum colpostats. The
volume based CCG modeling code’ was used to obtain the initial estimate of the 3D pose
of the applicator models (i.e., mathematical representation of the applicator models
including internal structure as well as outer surface). Given a completed geometric
model, the code package supports point and segment classification as well as advanced
ray tracing through the applicator components. As shown in Figure 1 (b), detailed 2D
images of the 3D geometric models of each applicator component were generated by
using CBCT projection geometry. It uses set theoretic definitions of region boundary,
interior, and exterior, and complex regions as set-theoretic unions, intersections and

differences of the complex regions (i.e., mathematically defined geometric objects). Such



complex modeling of the applicator geometry is essential to obtain partial transmission

through the applicator components and to obtain accurate Monte Carlo dose distributions.

(@)

Fig.1. (a) Close-up photograph of the Fletcher-Weeks CT-compatible after-loadable colpostats and one of

| (b)

the tandems used in this study, (b) computed CBCT projections of the 3D tandem and right colpostat
models, where the image background represent uniform elliptical water cylinder. The image intensity

values represent an arbitrary integer number assigned to each material in the model.

B. Generalized IFPM algorithm and initial estimates
The IFPM algorithm®?* was further generalized to accurately localize ICB
applicators of known metal body shape, known materials but unknown locations and

orientations inside the 3D anatomy using only a few CBCT projection images.

The generalized IFPM algorithm requires six pose parameters to fully describe

each of the N applicators k =1,---, N (typically N = 3 for tandem and colpostats) in the

world coordinate system (WCS) which takes as its origin the isocenter of the imaging
system and has X, Y, Z directions defined by the x axis is left-right, the y axis is anterior-

posterior, and the z axis is superior-inferior direction, for a patient in supine position with

feet pointing away from the gantry stand. For the k-t4 applicator, (tx,ty,tz,a, B, ]/)k

where, t, = (tx,ty,tz )k denotes the WCS coordinates of origin of the k-4 applicator’s local
coordinate system and the three equal-spaced angles O, = (a, B, ;/) ., describe its

orientation of this local coordinate system in WCS relative to CBCT isocenter around the

X, ¥y, z axes, respectively. Each applicator is described by a fine mesh of O, points:



{r} ={r,| r, e4,i=1--,0} derived from the CCG applicator model when @, =0

and t, =0 described in the previous section. Typically, a mesh of 1 x 1 x 1 mm® is used.

A model of the CBCT projection geometry is made and positioned at M locations and
orientations (gantry angles for ACUITY) specified by translation and rotation matrices

for each image viewpoint. In the extrinsic detector model, the orientation of each

isocentric projection in the world coordinate frame is defined by the angles((p, \V,n)

which describe rotations of the detector image plane around the x, y, z axes, respectively.
The detector model is parameterized by describing its magnification, image center, image
size and pixel resolution for each image viewpoint. The source to isocenter and isocenter

to the detector distances are denoted by the symbols S and D, respectively.

The mesh of discrete points, {r} , derived from a CCG modeling’ of the actual
applicator, needs to be done only once. For a candidate pose, (t,,®,), we obtain the
rotated and translated set of mesh points,

(F1(t.0,)) = =[R,,, @) +t,1, e 4.i=1,0,] (1)
where, the rotation matrix [Rm M(@,{)} is derived in the appendix. Each point in

r, € {r | (tk,(D . )}k is projected onto the detector plane defined by gantry angle 7, giving

rise to a 2D coordinate position B, (rlk) = (uik,vik )77 where P, (r) denotes the continuous

coordinates of the point r in 3D space projected into the detector plane for a gantry angle

of 7. Then, we obtain the computed binary image of the N applicators,
I, (u,v | {r(tk ,0, )}k ,77) , corresponding to the initial set of pose estimates, {r(tk ,0, )}k ,
by setting to unity all those detector pixels (u,v) that contain one or more projected
points (u;k,v;k )ﬂ from one of the applicator mesh projections and zero elsewhere. More
explicitly, the discretized applicator image pixels intensity is given by,

Io(u,v\{rk,(ak},n):{

1 if34,k such that for r, e{r|(t,,0, )}k P (r,.,k) e {u,v}
0 ifnot.

2)



where {u,v} denotes the set of 2D coordinates contained with the detector pixel indexed

by u and v. The binary mask representation of the projected applicator is then blurred by
convolving it with 2D Gaussian blurring function with a standard deviation, . For a set
of N applicators projected from the world frame then the total computed image is,

! ' v \2 v\ 2
1. (u,v |{r,.0,} ,0',77) = Z 1, (u[k,v[k | rk,G)k,i])eXp[—(u —u[k) /262 —(v—vik) /2(72} ()

where (”,k ,v;k) denote the center spatial coordinates of the image plane pixel indexed by

u and v. The main purpose of the Gaussian blurring is to create a continuous-value
grayscale image to which a gradient-driven iterative search process can be applied. In the
absence of any blurring on the images, large areas of the intensity map would have zero
intensity, providing no gradient to guide the similarity minimization search. The blurring
creates ‘“‘source attractive” potential well around each applicator with tails extending
beyond the applicator footprint, causing computed applicator images to be pulled towards
measured applicator images, and accelerating the convergence of the iterative

minimization search.

The overall similarity metric, SSQD is the total of the pixel-by-pixel sum of the

squared intensity differences for all M computed, I, (u,v|{rk,®k},a,77) and the

experimentally acquired (measured) blurred 7/, (u, v|o, 77) applicator image pairs,

SSOD({r,.®,}|o.n)= 3 3 [ L (v |{r.0,}.0.0)~ 1, (uvo.n)] @

noouy

The applicator poses parameters, {rk,G)k} , are iteratively updated by simultaneously
adjusting poses of all applicators, computing updated images /, (u,v | {rk 0, } ,0',77) , and

re-evaluating the objective function, Equation (4). The pose updates are calculated from
the first derivatives of SSQD with respect to each degree of freedom. For example, the
derivative with respect to the x-coordinate of the k-t4 applicator was computed as

follows;

o(SSOD)/ax, =2 Z[Ic(u,w{rk,Gk},a,n)—Im(u,v|0',77)} 8lc(u,v|{rk,®k},0',77)/6xkj (5)



Because the image grayscale intensities are represented entirely by the Gaussian blurring
function, each grayscale partial derivative, such as oI, (u,v | {rk , 0, },0',77) / ox, , was

calculated analytically for each applicator pixel (u,v) and found the best gradients. That

is, to provide a single derivative with respect to each degree of freedom for

updating{r,,®,}, oI (u,v)/ox, was averaged over all pixels (u,v)contained within the

shadow of the k-th arbitrary-shape applicator model (i.e.,alc(u,v)/ﬁxk and so on).

Similarly, we computed the first derivatives of SSQD with respect to all other spatial and
angular coordinates. Detailed derivations of the gradient calculation can be found in

appendix.

After computing the gradients, the free parameters were updated using a nonlinear
gradient search method”” that combines steepest descent gradient search with a parabolic
approximation of the SSQD surface around the global minimum. The process iteratively
refines the 3D applicator pose parameters until the closet match between computed and
measured projections is achieved. The computed and measured images should have the
same imaging geometry, image size and pixel resolution. Each three pairs of computed
and measured images datasets with corresponding imaging parameters are required for
one reconstruction process. In this way, the voxelized 3D geometric model of arbitrary
shape was integrated into the forward projection matching method for computing the 2D

projection images of the 3D ICB applicators, iteratively.

C. Validation via simulated applicator models

Numerical simulation studies were performed to demonstrate the feasibility of our
approach. The 3D geometry of the Fletcher-Weeks tandem and colpostats was modeled
as described in §II.A, producing a fine mesh of points to represent the applicator. Two
different types of experiments were performed: (a) applicator reconstruction using
intrauterine tandem only; (b) applicator components reconstruction using the entire
applicator system consisting of bilateral colpostats plus tandem. In these simulation
studies, the true applicator system pose consisted of tandem was placed in the middle of

the field of view; bilateral colpostats were placed on either side of the tandem, had



equivalent transaxial bisecting planes, and centers 25 mm, 35 mm, and 45 mm apart. This
is the true pose of the applicators configuration which we wished to determine. Using
these applicator configurations, synthetic measured projection images were computed
using the CBCT projection geometry at different gantry angles within +30°. The
projected applicators on the imaging plane were masked to create the binary bitmap
images. In 3D space, each applicator component was shifted by a displacement +2.5 mm
in each coordinate axis and rotated +8° around each rotation axis. This was our initial
estimate. Both the true/synthetic measured and computed images were blurred using 2D
Gaussian blurring function (¢ = 3.0 mm to 4.0 mm) with a known intensity distribution.
The source to detector distance was 150 cm and source to object distance was 100 cm.
The images were 288 x 288 pixels square and had a pixel resolution of 0.388 mm/pixel.
Several trials were performed by varying colpostat separation distance from 25 mm to 45

mm.

D. Validation via physical (actual) applicators

To experimentally validate this algorithm, the applicators (tandem and colpostats)
were imaged on a Varian Acuity imaging system (Varian Inc., Palo Alto, CA) which is
used for performing image-guided brachytherapy insertions in our dedicated
brachytherapy suite. Projection images of the actual applicators were acquired in different
gantry angle positions within +30° using the Varian 4030CB imager. The detector is 40
cm x 30 cm with a 1024 x 768 image size and pixel resolution of 0.388 mm/pixel. The
image post-processing involved a) cropping the images to 576 x 576 pixels square; b)
normalizing the image intensity by finding its maximum and minimum values in the
image; c) morphological top-hat-filtering to suppress the background; and d) automatic
thresholding using the 3-standard deviation value of the pixel intensity histogram to
create binary applicator images in each projection in order to separate the applicators
from the background. This process resulted in binary bitmap images with zero intensity in
the background and intensity one over the area of each projected applicator model. The
binary images were then convolved with a 2D Gaussian blurring function chosen from ¢

= 3.0 mm to 4.0 mm. An example case of image post-processing is shown in Figure 2.
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Three different experiments were performed by keeping the colpostat separation at 30

mm, 40 mm, and 50 mm, respectively.

. NRAg

(a) (b) (©) (d)

Fig.2. An example illustrating post-processing of experimentally acquired ACUITY projection images, (a)
raw projection image, (b) top-hat filtered image, (c) binary image, and (d) blurred grayscale image used as

an input to the generalized IFPM algorithm.

Initial estimates of the applicator model were obtained by perturbing the known
3D applicator components, as described earlier. To make the computed projection

images, the perturbed applicators configuration was rotated and translated to each

imaging viewpoint and then projected on the (u,V) detector planes. For each candidate

set of poses,{rk,(') k} , computed applicator images were evaluated as described in §I11.B

using the same CCG geometric model.

E. Assessment of the applicator reconstruction/registration error

For the simulation study, the actual known pose of the applicators was used to
benchmark gIFPM. First, the accuracy of each trial was quantified by calculating the
difference between all estimated and the true 3D pose parameters of the each applicator
component. In addition, agreement was qualitatively assessed by calculating the
difference between the measured and final computed images for each gantry angle. In the
second approach, the residual 2D registration error was computed by re-projecting the
applicator pose at convergence onto the 2D image planes, overlaying the computed and
measured applicator projections, and calculating the nearest-neighbor positional
difference between the measured and computed applicator positions in each image plane.
In this approach, for all computed applicator components, we empirically calculated the

applicator center location in each 2D image plane and compared with those obtained

11



from the measured applicator components images at convergence. The center of mass
position of the entire tandem was used. For the bilateral colpostats we empirically

calculated the center of mass of the each source position.

For the physical applicator study, there were no ground truth coordinates. The
applicator registration error was computed in terms of residual 2D radial difference
between computed and measured applicator images at convergence in each image plane

as described above.

III. RESULTS
1. Simulated applicator models

Several experiments were performed to test the accuracy and robustness of this
algorithm, including different initial estimates of the digital tandem. Figure 3 (a) shows
one of the convergence rate graphs of the gIFPM for a digital tandem, and (b) shows
reconstructed 3D view overlaid with the true/measured tandem. This case required 9
iterations (Gaussian width, ¢ = 3.6 mm) with a total computation time of less than 40

second on a 1 GHz processor. The error in positional and angular pose components was

found to be (0.32, 0.46, -0.37) mm and (1.03, 0.87, 1.16) °, respectively.

convergence rate of glFPM algorithm 3D applicator model: Tandem
10000 ----- Bp--eviveresseeeecee] e —a— digital tandem‘ 304 green: measiired :
: : : : %t black: reconstructed
8000 204
S 104
g 6000 £
£ £ o-
5 3
£ 4000 N
(%] -10 ]
2000 -20
0 | j i 320 10 0 0 2 30 -10
0 2 4 . 6. 8 10 [A/PY/mm x[L/B]Y/mm
number of iterations ¥
(@ (b)

Fig.3. Results of a simulation of tandem localization by gIFPM. (a) The similarity metric score vs. iteration

number and (b) point-by-point overlay of the reconstructed tandem (black) with the true/ synthetic
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measured tandem (green), demonstrating near coincidence achieved by the 3D/2D gIFPM registration

process.

Figure 4 shows an example of the iterative matching process for simulated full
ICB applicator system, i.e., intrauterine tandem and bilateral colpostats. The three
projections have gantry angles of 0°, +£30°. The small difference in Figure 4 (d) shows
very good agreement between the measured and computed binary images at convergence,

including reproducing overlapping applicator components.

Table I. Accuracy of gI[FPM reconstructed poses for 3 simulated full applicator system configurations. The
difference for the each applicator component position and orientation coordinates is reported.

Separation Image Applicator gIFPM vs. true applicator pose
between the viewpoint components  Difference in applicator Difference in applicator
colpostats (mm)  used (°) position (mm) orientation (°)
Ax Ay Az Aa AB Ay
Tandem 0.41 0.59 -0.38 -0.98 0.78 1.86
25 0, -30, +30 R. colpostats 0.18 -0.56 0.48 2.03 1.71 -0.89
L. colpostats -0.38 -0.48 0.61 -0.85 2.04 1.95
Tandem 0.15 -0.37 0.46 0.89 0.95 -0.86
35 0, +20, -20 R. colpostats -0.32 -0.15 0.36 1.56 -0.74 1.62
L. colpostats -0.28 0.54 -0.51 -0.87 1.42 0.73
Tandem -0.18 0.27 0.34 -0.86 -0.64 -0.72
45 0, -30, +30 R. colpostats 0.14 0.18 -0.35 0.46 0.58 0.65
L. colpostats -0.20 0.34 0.52 0.87 1.06 -0.56

In Figure 5 we show the cost function convergence as a function of iteration
number for all three simulated example cases. All test trials converged in 10 to 12
iterations (Gaussian width, o= 3.8 mm) with a total computation time of about 1.5 min on
a 1 GHz processor. The comparison is summarized for all three cases in Table 1. In all
trials the difference errors were less than 1 mm and 2° for each of the positional and

angular coordinates, respectively.
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Fig.4. An illustration of the iterative convergence process for a simulated implant consisting of tandem and

(d)

bilateral colpostats for a 25 mm colpostat separation; Column (a) initial estimate of the applicator
configuration, (b) computed images at convergence, (c) the true/synthetic measured images, and (d)
difference between (b) and (c), where the rows represents different gantry angles. The red line in the 3™
row indicates that the reference of the initial estimate with respect to the measured images in (c). The
generalized IFPM algorithm was able to reproduce each applicator pose, as well as overlapping

components.

Large numbers of experiments were performed using different gantry angle
combinations as well as different initial starting configurations of the applicator models
in the course of this study. Theoretically, one should expect SSQD = 0 at the
convergence, i.e., all computed applicators images exactly match with those measured.
However, from Figure 5, for the combined-applicators geometries, it is evident that the
SSQD does not exactly converge to zero (i.e. less than 3% difference between measured
and computed applicators images), showing less than optimal convergence (i.e., trapping
in local minima). That means if the initial estimate of the applicators configuration is far

apart from the measured configuration there is a chance of less than optimal matching.
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Finite width of the detector pixel size may also affect the convergence rate of gIFPM

algorithm (i.e., larger the pixel size less than optimal the convergence).

convergence rate of glFPM algorithm

10000 b --ocbommmneeead —&— 45 mm colpostat separation
L —&— 35 mm colpostat separation
9000 f------4----bommmoooeeo *— 25 mm colpostat separation

8000 |- - o e .
000}
6000 I | | | |
5000

4000

Similarity, SSQD
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number of iterations

Fig.5. The similarity metric score vs. iteration number for the generalized IFPM algorithm for the three

simulated full ICB applicator configurations.

2. Validation test with measured images

Several experiments were performed using projection images of the actual
intrauterine tandem and bilateral colpostats acquired from the ACUITY digital simulator
to validate this algorithm. An example of the reconstructed applicators projected onto the
imaging planes is presented in Figure 6 when using colpostat separation of 40 mm. In this
case, the residual 2D registration error in computed vs. measured applicators image at
each gantry angle were less than 1 mm for the intrauterine tandem and about 1.5 mm for

the bilateral colpostats.
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(b)

Fig.6. Superposition of experimentally acquired binary images (white) with automatically reconstructed

applicators positions (black) projected onto the detector planes, (a) 0° gantry angle, (b) -30° gantry angle,
and (c¢) +30° gantry angle, respectively when using 40 mm colpostat separation. The applicator registration
error was less than 1 mm for the intrauterine tandem and about 1.5 mm for the bilateral colpostats on each
image plane.

Table II. The residual 2D registration error between computed and measured applicator projection in
terms of 2D radial difference in each image plane. The center of mass position of the entire tandem is

reported, whereas center of mass of the source position is empirically calculated for the right- and left
colpostats.

Separation Applicator gIFPM vs. measured applicator position: 2D residual error (mm)
between the components
measured
colpostats (mm) gantry = 0° gantry = -30° gantry = +30°
Tandem 0.88 1.12 1.16
30 R. colpostats 0.93 1.88 1.57
L. colpostats 1.25 1.75 1.93
Tandem 0.67 0.89 0.78
40 R. colpostats 1.14 1.46 1.81
L. colpostats 0.96 1.67 1.66
Tandem 0.58 0.91 0.75
50 R. colpostats 0.87 1.46 1.42
L. colpostats 0.72 1.58 1.54

Table II shows the residual 2D registration error between the measured and computed
applicator components in each image plane. In all cases, the majority of the 2D radial
difference of the applicator registration error was about 1.5 mm or less and no error
exceeded 2.0 mm in the detector plane. These preliminary results indicated that good

agreement between measured and computed applicators images.

IV. DISCUSSION
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A novel IFPM algorithm has been successfully extended to more complex six
degree-of-freedom problem of automatically reconstructing the 3D pose of radio-opaque
non-symmetric objects (e.g., ICB applicators) from measured 2D projections. No lateral
film is required. With further testing and integration into the clinical workflow, our
gIFPM has the potential to support real-time, robust, and unsupervised reconstruction of
implanted object pose for the purpose of supporting intra-operative ICB planning, dose

evaluation, or plan adaptation.

Several methods are available for automatically localizing ICB sources and

72 including brachytherapy catheters reconstruction.*

applicators from 3D CT studies
The plastic applicators developed by Schoeppel et al.”’, does not produce streaking
artifacts in the CT images and has the ability to shield portions of the bladder and rectum
by retaining through the use of tungsten alloy shields which are after-loadable with the
radioactive sources. However, the physical size of the applicators geometry was too
large. An approach developed by Lerma and Williamson’ in which a 3D rigid model of
the external applicator shape is rigidly registered to the corresponding surface manually
contoured in the reconstructed CT images. For typical ICB applicator orientations, they
demonstrated that the localization accuracy was about 1/3 the slice thickness. Because 2D
projection image resolution is superior to that of 3D CBCT, gIFPM has the potential to
reconstruct 3D applicator poses more accurately than the 3D CT method. Another
advantage of g[FPM over the 3D CBCT method is that the latter requires acquisition and
reconstruction of entire 3D image, which currently requires 2 to 4 minutes for the Varian
ACUITY system plus repositioning of the patient to enable a 180° sinogram acquisition
orbit, compared few seconds for acquiring 3 projections within 30 degrees of an en face

anterior view.

Another 2D radiographic approach developed by Li et al?’, is based on
identifying several corresponding landmark points on the 2D projections, which allows
the pose of the object to be reconstructed. gIFPM can be viewed as a generalization of
this process which does not require manual identification of landmark points and uses all

information available in the applicator footprint. Because of the excellent soft-tissue
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28-30 could be the future trend. However, as

contrast, MRI-based applicator reconstruction
it is now, the cost associated with intra-operative MRI in brachytherapy suite causes their

installation to be uncommon and MR-compatible applicators are expensive themselves.

For ICB applicators containing high-atomic number structural (steel, brass) or
shielding materials (tungsten alloys), the often cause severe metal streaking artifacts'>™'*
further challenge the 3D CT method. Such artifacts reduce the accuracy of applicator
body delineation as well as difficult in visualization of the soft tissue organ boundaries
and introduce large error in the dose calculations, clearly hindering integration of CT into
the planning process. The streaking artifacts are sufficient to defeat deformable image
registration, commonly use for image-guided procedures. Our six parameter model
exploits 3D pose of the each applicator component using few CBCT projections
sinogram. In the future, we therefore plan to use the accurate 3D pose of each applicator
component into the CT images reconstruction process. That is after extracting the actual
metal object boundaries from the sinogram region, we can recover the missing soft-
tissues information’s obscured by the ICB applicators either from pre-operative metal-

20-21

free projections'” or using AM reconstruction algorithm to suppress the metal

streaking artifacts.

To improve the accuracy of the applicator localization validation study, we plan
to design a precision-machined pelvic phantom that house ICB applicators and test the
gIFPM performance against a more realistic ground truth. Also, the dependence of
convergence rate and accuracy on the initial estimate needs more extensive investigation.
Our current IFPM implementation is limited to estimating the 3D applicator pose.
Incorporating geometric uncertainties such as gantry angle inaccuracy and detector
displacement and orientation into the estimation model is an area of future development.
The algorithm could also be extended to other types of objects, e.g., stirrups, retractors,
and table supports, including parameters to describe flex or internal motion within the
applicators, partial transmission objects, and matching of un-segmented grayscale images

are fruitful avenues for future development.
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V. CONCLUSION

We have presented a new approach to brachytherapy applicator localization,
glFPM that we believe to be the first fully automatic approach described in the literature
able to accurately recover the orientation as well as location of individual applicator
components using few 2D x-ray projections. By localizing the applicator internal
structure and the sources, the effect of intra- and inter-applicator attenuation can be
included in the resultant Monte Carlo or other dose calculations. Based on both simulated
and actual applicator models, the localization errors were less than 1.5 mm and 2° for
orientation angles. By incorporating six degrees of freedom search capability, the [FPM
approach, can be extended to pose estimation of any shape radio-opaque object that can
be geometrically modeled. The gIFPM algorithm is fast and has the potential to support
intra-operative dose reconstruction and adaptive replanning. In combination with
advanced image-reconstruction algorithms, accurate 3D localization of metal attenuation

maps in the patient could contribute to mitigation of metal artifact streaking artifacts.
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APPENDIX: ANALYTIC GRADIENT OF THE SIMILARITY, SSQD WITH
RESPECT TO SIX DEGREES OF FREEDOM OF THE APPLICATOR MODEL

For each of the i-¢th coordinates of the k-th applicator model in the rotated and translated
CT frame,

{r' | (tk=®k )}k = {rzk | 1, = [Ra.ﬂ.y(e)k)}rik +t, 1 €40 = 1""’Qk} (AD)
Rewriting equation (A1) more explicitly,
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X X

Vi =[Rep, | iv +t (A2)
z ] z),
where,

RI1 RI2 RI3 cosycosf cosysinfsina—sinycosa  cosysin feosa+sinysina

[Raﬂy]k =|R21 R22 R23| =|sinycos sinysinfsina+cosycose sinysin Fcosa—cos ysina
R31 R32 R33| —sin cos fsina cos fcos A
is the complete rotation matrix. The complete rotation matrix was obtained by taking the

product of the three rotation matrices defined in the world coordinate system, for each

image viewpoint. No translation is applied (i.e.,t, = 0). The equation (A2) can be written

as,

X, =(R11.xi )k +(R12.yl. )k +(R13.Zl. )k

v, =(R21.x,), +(R22.y,) +(R23.z,), (A3)
z, =(R31.xl. )k +(R32.yi )k +(R33.Z[)k

Rewriting equation (A2) more explicitly,

X, =(cosy.cosﬂ.xi )k +(cos%sin,6’.sina.yi —siny.oosoayi)k +(oos;/.sinﬁ.oosoazi +sin;/.sina.zl,)k

¥, =(siny.cos fx. ) +(siny.sin Asinay, +cosy.cosay, ), +(siny.sinfcosauz, —cosy.sinaz,), r(A4)

z, =(-sinfix ), +(cos Bsinery, ) +(cos foosaz,),

The applicator models in the rotated CT frame project to the detector plane(u,v) are
given by,

(v ) =M () (01 (A5)
where, M, = (S + D/ S+ zk) is the magnification factor, which is different for each point

mesh; S and D are the source-to-isocenter and isocenter-to-detector distances,
respectively. Since, the brachytherapy applicator has non-rotational symmetry (i.e.,
arbitrary shape) around the axis of rotation; we computed one derivative per point per
applicator per degree of freedom and found the best derivative for that degree of freedom.
From equation (3), the image grayscale gradient for x-degree of freedom was calculated

as follows,
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al, (u’v|{rk’®k} | Gaﬂ)/axk = z (10 (u;k’v;k ’rk’gk)/gz)[(u_u;k)&'t;k/axik
i Vi (A6)

+(V_V;k)av;k/8)cikj|'g(u_u;k’v_‘};k |O')
where, g(u—u;.k,v—v;k |0'):exp[—(u—u;k)2/2az —(v—v;.k)z/20'2}, nis the gantry angle

and O, related to the original pose variables (a,B,y)k in the 3D space.

Finally, from equations (A3) and (AS5), using chain rule, we get,

ouy fox, = M, [ R1L—(R31)x, /(S + 2, )]}

A7
oo, 0[R20 (R3[4 o

and similarly for the y and z coordinates of each applicator model. The analytical
gradient of the similarity, SSQD with respect to a-angle coordinate for each applicator

model was calculated from equation (4) as follows,

8(SSOD) /éa, =2Z(Z[1L, (wvl{5.0,}.0:n) -1, (uv| o) | o, (] {rk,G)k},a,n)/aakj (A8)

Again, from equation (3) we have computed the image grayscale gradient with respect to
a-degree of freedom,
ol (“:V| {rk’G)k}’G’n)/aak = z (]o (uzk Vi 11,09, )/OJ)[(“ — )auzk /aak
Ui Vi (A9)
+(v—v;.k)Gﬁk/aak].g(u—u;k,v—v;k ] J)

Finally, from equations (A4) and (AS), using chain rule, we get,

o, [0a, =M, {[cos ysin Beosar+sinysinal y,, —[cos ysin Bsina—siny cosa] z,,

_(Sfr—"zl){[cosﬁcosa] Vi —| cos Bsina] Zi,k}}
¢ (A10)

av;k/aak =M, {[sin}/sinﬂcosa—sinacosy] Vik —[sin;/sin,Bsina+cosycosa]zi,k

%
(S+z'k)

{[cosﬁcosa]yhk [cosﬁ’sina]ziwk}}

21



Similarly, we have computed analytical gradient of SSQD with respect to § and y-angle

coordinates of each applicator model and obtained the best derivatives (i.e., du, / oo, ,

v, /0a, and so on).
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