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“The woods are lovely dark and deep, 

But I have promises to keep, 

And miles to go before I sleep, 

And miles to go before I sleep” 

 
 
 
 

- Robert Frost 

(1874-1963) 

From Stopping by Woods on a Snowy Evening 
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This work was aimed at developing novel tools that utilize HINT, an empirical 

forcefield capable of quantitating both hydrophobic and hydrophilic (hydropathic) 

interactions, for implementation in theoretical biology and drug discovery/design.  
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The role of hydrophobicity in determination of macromolecular structure and 

formation of complexes in biological molecules is undeniable and has been the subject 

of research across several decades. Hydrophobicity is introduced, with a review of its 

history and contemporary theories. This is followed by a description of various methods 

that quantify this all-pervading phenomenon and their use in protein folding and 

contemporary drug design projects – including a detailed overview of the HINT 

forcefield. 

The specific aim of this dissertation is to introduce our attempts at developing 

new methods for use in the study of antibacterial drug resistance and antiviral drug 

discovery. Multidrug efflux is commonly regarded as a fast growing problem in the field 

of medicine. Several species of microbes are known to have developed resistance 

against almost all classes of antibiotics by various modes-of-action, which include 

multidrug transporters (a.k.a. efflux pumps). These proteins are present in both gram-

positive and gram-negative bacteria and extrude molecules of various classes. They 

protect the efflux pump-expressing bacterium from harmful effects of exogenous agents 

by simply evacuating the latter. Perhaps the best characterized mechanism amongst 

these is that of the AcrA-AcrB-TolC efflux pump. Data is available in literature and 

perhaps also in proprietary databases available with pharmaceutical companies, 

characterizing this pump in terms of the minimum inhibitory concentration ratios (MIC 

ratios) for various antibiotics. We procured a curated dataset of 32 β-lactam and 12 

antibiotics of other classes from this literature. Initial attempts at studying the MIC ratios 

of β-lactam antibiotics as a function of their three dimensional topology via 3D-
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quantitative structure activity relationship (3D-QSAR) technology yielded seemingly 

good models. However, this methodology is essentially designed to address single 

receptor-ligand interactions. Molecules being transported by the efflux pump must 

undoubtedly be involved in multiple interactions with the same. Notably, such methods 

require a pharmacophoric overlap of ligands prior to the generation of models, thereby 

limiting their applicability to a set of structurally-related compounds. Thus, we designed 

a novel method that takes various interactions between antibiotic agents and the AcrA-

AcrB-TolC pump into account in conjunction with certain properties of the drugs. This 

method yielded mathematical models that are capable of predicting high/low efflux with 

significant efficiency (>93% correct). The development of this method, along with the 

results from its validation, is presented herein. 

A parallel aim being pursued by us is to discover inhibitors for hemagglutinin-

neuraminidase (HN) of human parainfluenza virus type 3 (HPIV3) by in silico screening. 

The basis for targeting HN is explored, along with commentary on the methodology 

adopted during this effort. This project yielded a moderate success rate of 34%, 

perhaps due to problems in the computational methodology utilized. We highlight one 

particular problem – that of emulating target flexibility – and explore new avenues for 

overcoming this obstacle in the long run. As a starting point towards enhancing the tools 

available to us for virtual screening in general (and for discovering antiviral compounds 

in specific), we explored the compatibility between sidechain rotamer libraries and the 

HINT scoring function. A new algorithm was designed to optimize amino acid residue 

sidechains, if provided with the backbone coordinates, by generating sidechain 
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positions using the Dunbrack and Cohen backbone-dependent rotamer library and 

scoring them with the HINT scoring function. This rotamer library was previously used 

by its developers previously to design a very successful sidechain optimization 

algorithm called SCWRL. Output structures from our algorithm were compared with 

those from SCWRL and showed extraordinary similarities as well as significant 

differences, which are discussed herein. This successful implementation of HINT in our 

sidechain optimization algorithm establishes the compatibility between this forcefield 

and sidechain rotamer libraries. Future aims in this project include enhancement of our 

current algorithm and the design of a new algorithm to explore partial induced-fit in 

targets aimed at improving current docking methodology. 

This work shows significant progress towards the implementation of our 

hydropathic force field in theoretical modeling of biological systems in order to enhance 

our ability to understand atomistic details of inter- and intramolecular interactions which 

must form the basis for a wide variety of biological phenomena. Such efforts are key to 

not only to understanding the said phenomena, but also towards a solid basis for 

efficient drug design in the future. 
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CHAPTER 1 

HYDROPHOBICITY: THEORIES, ESTIMATION AND APPLICATIONS 

 

1.1 HYDROPHOBICITY AND BIOLOGICAL PHENOMENA 

Hydrophobicity (or lipophilicity) is a well-known and extensively studied 

phenomenon.  It is commonly understood to be the tendency of non-polar molecules to 

form aggregates in order to reduce their surface of contact with polar molecules such as 

water [1].  Its manifestations include simple observable macroscopic phenomena such 

as the immiscibility of oil and water or modern techniques such as chromatographic 

separation. The importance of hydrophobic interactions at the atomic or molecular scale 

has long been recognized in various areas of science [1].  While the concepts have 

changed and the applications have expanded, the fact remains that hydrophobic 

interactions are often the driving force in a variety of physical and biological 

phenomena, although they are often complemented by hydrophilic interactions. 

Our hypothesis is that a large majority of biological phenomena can be explained 

by explicitly addressing the hydrophobic and hydrophilic interactions between 

molecules. In fact, we suggest that predictive models can be developed in order to 

explain such phenomena by explicitly quantitating the extent of these interactions. This 

work is a compilation of results aimed at demonstrating the validity of this hypothesis. 
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To begin, the concept of hydrophobic interactions is presented here, along with a 

very short history and discussion of theoretical and experimental studies on the 

phenomenon.  The same set of forces and interactions that partitions a molecule 

between polar and hydrophobic solvent phases, i.e. determines its hydrophobicity, is 

pervasive in all biological interactions including small molecule binding and protein 

folding. An in-depth perspective on computational studies involving hydrophobic 

interactions is presented. These studies include methods for estimation of the 

hydrophobic nature of small and large biological molecules and applications of this in 

drug discovery or design.   

These are followed by an example of quantitative modeling in order to effectively 

address some complex biological phenomena, specifically antibiotic transport by efflux 

pumps, followed by an implementation of these interactions in drug discovery for 

antiviral agents. Finally, a weakness of current methodology used in the aforementioned 

discovery process is discussed, followed by laying grounds for development of new 

hydropathy-based tools to address the same. 

1.2   A BRIEF HISTORICAL OVERVIEW OF HYDROPHOBICITY 

Even before the turn of the 20th century, the importance of hydrophobic 

interactions in biological phenomena, particularly drug activity, was recognized by the 

work of Meyer and Overton [2,3,4].  In 1937, Butler showed a linear relationship 

between heat of hydration and entropy of hydration [5].  He estimated the energies of 

interaction of different functional groups with water and showed that the heats of 
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hydration are additive in nature.  He also explained that the heats of hydration do not 

determine the free energy of interactions, but that there is a direct proportionality 

between them.  The reasons were unclear at this point, but it was hypothesized that 

entropy might be dependent on the size of the ―cavity‖ that contains the molecule.  The 

importance of H-bonds was also briefly discussed as formation of H-bonds between 

polar parts of the molecule causes an increase in entropy, which favors dissolution of an 

otherwise non-polar molecule. 

Frank and Evans, in the middle of the 20th century, described the formation of 

―icebergs‖ of water around non-polar parts of molecules [6].  Their findings were based 

on the deviation of entropy of vaporization for certain substances when dissolved in 

aqueous and non-aqueous solutions.  The formation of a regularized lattice-like 

structure of water molecules surrounding non-polar moieties has been experimentally 

validated with crystallography [7] and is now more or less taken for granted.  This theory 

was extended to proteins by Klotz, who explained the variation in pKa, molecular 

volume, denaturation and the masking of expected behavior of protein functional groups 

in terms of this ―iceberg‖ formation [8].  In fact, the association of two molecules can 

become energetically favorable due to the increase in entropy when these ordered 

water molecules are scattered or disordered (see Figure 1.1). 

Kauzmann first coined the term ―hydrophobic bond‖ in 1959, which caught the 

attention of many scientists at the time; this notion was supported by a number of 

research investigations of that era [9].  The work of Némethy, Scheraga and Steinberg 

also supported the use of this term [10].  Perhaps it was the tendency of the non-polar  
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Figure 1.1 The Hydrophobic Effect. Hydrophobic molecules are surrounded by an 
ordered cage of water molecules. When two such molecules come together, they 
aggregate in order to reduce their surface area in contact with the polar water 
molecules.  This causes a number of water molecules to be removed from their ordered 
formation, thus increasing disorder (increased entropy) and potentially making the 
process energetically favorable. 



 

 

5 

 

substances to form aggregates that caused scientists to draw parallelisms with the 

general definition of a bond – ―the tendency of two atoms to stay together in space‖.  

Hydrophobic bonds have been described as endothermic, i.e., as temperature 

increases their strength increases until a maximum value is reached at approximately 

60˚C [10].  However, the stability of proteins depends on not only these hydrophobic 

―bonds,‖ but also hydrogen bonds.  These have an inverse behavior, i.e., they become 

weaker with increasing temperature.  Thus, as temperature increases beyond 60˚C, 

both H-bonds and hydrophobic interactions decrease in strength, causing proteins to 

unfold. 

In the 1970s, Robert Hermann published a series of three papers on ―the theory 

of hydrophobic bonding‖ [11-13] where the large negative entropy of partitioning a 

hydrophobic molecule into a non-polar solvent was explained by the loss of order in 

water molecules in direct contact with the hydrophobic surface.  The ordered 

arrangement of water molecules on the surface of a molecule is due to dipole-dipole 

interactions with the immediate next layer of waters. In effect, this phenomenon is 

similar to surface-tension where the first layer arranges itself in order to reduce contact 

with the hydrophobic air, while less order exists in the second and succeeding layers.  

Order continues to decrease in layers away from the hydrophobic surface and there is a 

linear, but inverse, correlation between hydrophobic surface area and its solubility in 

water [11].  Hermann also determined that the free energy for hydration of a 

hydrophobic molecule is linearly related to the number of water molecules that can be 

packed around it. This first study did not take into account cavity curvature and was 
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restricted to small molecules. Later work [12] described a correlation between a 

molecule‘s hydrophobic surface area and its solubility in water. Hermann also 

addressed hydrophobic interactions at a distance [13] taking into account not only 

solubility, but also the distances between hydrophobic entities with the Lennard-Jones 

potential as has also been suggested by Reynolds et al [14].  Leo, Hansch and Jow 

established a relationship between hydrophobicity and two other factors – the nature of 

the solute surface and the molecular (CPK) volume [15].  The major innovation of this 

study is that they used the partition coefficient for 1-octanol/water (LogPo/w) as a 

measure of hydrophobicity rather than solubility. This parameter has been used almost 

ubiquitously in studies thereafter.  Most importantly, these observations could not be 

explained by the simple concept of a ―hydrophobic bond‖, but rather as a complex 

phenomenon involving the interplay of flexible molecules and solvent under particular 

conditions. 

The argument on semantics over the use of the term ―hydrophobic bond‖ has 

continued ever since, but the fact that hydrophobic phenomena can explain a multitude 

of observations in science cannot be ignored.  Here, we attempt to describe how 

naming and characterizing this effect has changed the realms of computational 

chemistry and drug design.  A comprehensive review of the research on hydrophobicity 

is available elsewhere [1] for those interested in the intricacies of experimental 

approaches towards the phenomenon. 
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1.3   CALCULATIONS OF HYDROPHOBICITY AND THE HYDROPHOBIC EFFECT 

1.3.1 Estimation of LogPo/w 

Hansch and Leo published their seminal paper on the determination and uses of 

partition coefficients in 1971 [16]. This paper was and perhaps continues to be, the most 

comprehensive article on the subject. It explains the fundamentals of partition 

phenomena and provides detailed descriptions of the history and theory of the same. It 

also contains a very comprehensive tabulation of LogP values for various substances.  

However, most interesting to theoreticians is the discussion of additive-constitutive 

properties wherein the utilization of the Hammett equation in calculations of partitioning 

free energy and the effects of various stereoelectronic effects on the partition coefficient 

are described.  Also, various uses of partition coefficients for such diverse research 

topics as countercurrent distribution, measurement of equilibria, hydrophile-lipophile 

balance, drug dissolution and ―hydrophobic bonding ability‖ are outlined.  Of note, the 

partitioning of alcohols between water and red blood cells was compared to their 

partitioning between water and 1-octanol.  The energy of partitioning per methylene 

group was the same for both cases, i.e., approximately -690 cal mol-1.  The 

repercussions of this quantification of hydrophobic interaction energies have been key 

to drug design projects as well as computational chemistry.  The Hansch and Leo 

method for theoretical estimation of molecular LogP values, which is the basis of the C-

LOGP method (vide infra), is also described in great detail.   

A loose categorization of different methodologies for estimation of LogP is 

provided in Table 1, complete with a few typical examples of each.  Here, the discussion 
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of these methods will be limited to a general overview highlighting the application of 

these methods in drug design and the relevance of accuracy for these prediction 

methods in that context.  Several comprehensive reviews of the computational 

estimation of octanol-water partition coefficients are available [17-21].   

To commence, it is a monumental understatement to say that a lot of good 

research has been done in this field.   Many diverse empirical methods exist today that 

predict LogP of various molecules with different degrees of context-dependent certainty 

[17, 20].  Some of the major types are discussed below. 

Table 1.1 Various types of methods for LogP calculations. This table shows a rough 
classification of methods used for theoretical prediction of LogP for compounds. 
Examples of all the different types are included. 

Approach Methodology Example(s) 

Substructure 
approaches 

Fragment-based 
methods 

Rekker’s method [22], Leo’s C-LOGP method 
[23-27], ACD/LogP method [28] 

Atom-based methods XLOGP method [33-35], Ghose-Crippen 
method [29-32] 

Whole molecule  
approaches 

Molecular Lipophilicity 
Potential and related 
approaches 

MLP [107-108] 

Topology descriptions MS-WHIP [40] 

Molecular Property 
descriptions 

Toulmin’s LogP method [41] 
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Fragment-based methods – Rekker‘s fragment based system was the first 

fragment-based computational method to estimate LogP [22].  Fragment-based 

methods implement and statistically deconvolve empirical data from experimental LogP 

values of compounds.  Scheme 1.1 contains a short example of this approach.  In order 

to explain the effect of inter-fragmental interactions, certain additive correction factors 

are introduced.  Several other algorithms of this type exist including the C-LOGP [23-27] 

and ACD/LogP [28] methods.  The criticism most often applied to this methodology is 

that the fragmentation of the target molecule is ―arbitrary‖.  This is not actually true for 

C-LOGP as there is a complete and unambiguous set of rules. However, they can be 

difficult to visualize and fragments can be much more complex than organic functional 

groups.  Thus, fragments observed in new molecules can be missing from the C-LOGP 

database library, yielding poor predictions of LogP [17,20].  However, there are also 

advantages to these methods: significant and complex electronic interactions are 

automatically taken into account when they exist within a library fragment [20]; when the 

fragments coincide with real organic functional groups their interpretation is intuitive; the 

correction factors can be used to understand the relationship between functional groups 

or the effect of the observed feature on solubility, e.g., factors representing aliphatic 

chain branching explain the increased water solubility of branched hydrocarbons; and 

since fragment methods are based on empirical data, their associated algorithms are 

very fast and practical to implement in software. 

Atom-based methods – These are similar to the fragment-based methods, but 

assume the hydrophobicity of a molecule to be the sum of the individual atomic 
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contributions.  Scheme 1.2 provides an overview of the principle behind atom-based 

additive methodologies.  Again, several methodologies of this type exist, including the 

well known Ghose-Crippen [29-32] and XLOGP [33-35] methods.  Mostly these 

algorithms avoid correction factors by taking into account these sorts of contributions 

with a large set of atom types according to the individual environment it exists in within 

the molecule [20].  In order to somewhat reduce the atom type set the XLOGP algorithm 

implements a small number of correction factors.  The reduced dependence on 

corrections is the major advantage of these methods.  As described by Buchwald and 

Bodor, the major disadvantage of this method is that often the molecule is ―more than a 

sum of its parts‖ [17].  Furthermore, human interpretability is reduced as the size of the 

atom database set grows and the correspondence with organic and medicinal chemistry 

principles is lost. 

Molecular methods – Over the last two decades quantum mechanical 

calculations have been increasingly used in applied research including drug discovery, 

particularly with respect to estimations of interactions between solute and solvent 

molecules.  A number of studies have used quantum chemical principles for estimation 

of molecular hydrophobicity [17].  Early work includes that of Rogers and Cammarata 

[36,37] and also that of Hopfinger and Battershell [38].  Klopman and Iroff used charge 

densities to calculate partition coefficients [39].  More recently, Bravi and Wikel 

described a method to predict LogP using a technology called Molecular Surface – 

Weighted Holistic Invariant Parameters (MS-WHIP) [40].  Unfortunately, a relatively 

large standard deviation between predicted and actual LogP was observed [18].  
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Toulmin et al. described another prediction method for octanol/water partition 

coefficients [41] that correlated minimized molecular electrostatic potentials with the H-

bonding capability of molecules.  In this method ΔLogP is defined as the difference 

between LogPoct (logarithm of the 1-octanol/water partition coefficient) and their 

predicted LogPhxd (logarithm of the hexadecane/water partition coefficient).  H-bonding 

capability has a profound effect on partition coefficients with a strong correlation 

between ΔLogP and Vmin (minimized molecular electrostatic potential).  A strong 

correlation was also reported between ΔLogP or LogPhxd and CNS penetration of 

compounds, i.e., through the blood-brain barrier. This highlights the importance of H-

bond donors and acceptors in normal partitioning phenomena. 

Livingstone et al. described a method that uses neural networks (NN) to predict 

LogP values from a training set of electrotopological descriptors [42] of 900 drug and 

pesticide-like compounds [43].  Other studies involving artificial-intelligence utilize 

parameters calculated by various methods in unsupervised-learning processes to 

develop predictive models [44,45].  Taskinen and Yliruuski provide an in-depth analysis 

of such models in their review on NN modeling [46]. They note that, while NN methods 

are accurate in predicting LogP values of molecules within the size, functional group, 

etc. confines of the training set, they are less accurate in predictions for molecules 

outside the training set. However, this is the case for all LogP estimation methods. 
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Scheme 1.1 Fragmental methods for determination of LogP values. Rekker‘s 
method is highlighted with an example adapted from Mannhold and van de 
Waterbeemd [18]. 

Fragmentation Methods 
 
This approach breaks a molecule into 
fragments and assumes that the total 
LogP of a molecule is the sum total of all 
contributions of each fragment. However, 
the molecular environment affects the 
contributions by each fragment. Hence, 
correction factors are included in the 
calculation as shown by the following 
equation: 
 

         

 

   

       

 

   

   

 
where,  
LogP =      log of the partition coefficient 
a        =     the number of fragments, 
f         =    fragmental constant 
bj       =    frequency of Fj 
Fj       =    correction factor for the jth 
fragment 
 
A simple calculation by Rekker‘s 
fragmental method is illustrated in the 
panel at the right. The experimentally 
determined value of LogP for quinidine‘s is 
3.44. 

                    N

O

OH
N

H

quinidine 
 

Fragments: 
 
1 quinolinyl (-1H) 
1 O (aromatic) 
1 OH (aliphatic) 
1 N (aliphatic) 

SUM 
CH residual:       C11H18 

SUM 
Corrections:  
Proximity effect (+2CM),  
Electronegativity facing bulk (-
2CM),  
O-C-Ar (+1CM) 

LogP 

 
 

+1.617 
-0.450 
-1.448 
-2.074 
-2.355 
+4.893 
2.538 

 
+0.438 
-0.438 
+0.219 

 
2.757 
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Scheme 1.2 Atom contribution methods; the calculation of LogP for quinidine by 
atom contributions is shown (adapted  from Mannhold and van de Waterbeemd [18]).  

Atom Contribution Methods 
This is an extension of the fragmental 
contribution method. It is assumed that the total 
LogP of the molecule is a contribution by each 
individual atom comprising it (instead of a 
contribution by fragments). Calculation as shown 
by the following equation: 

            

where,  
ni       =     the number of atoms of type i 
ai       =    fragmental constant 
A simple calculation by the Ghose / Crippen 
method is illustrated in the panel at the right. The 
experimentally determined value of Log P for 
quinidine is 3.44. 

 
 
 
 

         N

O

OH
N

H

Quinidine 

Type Description Frequency Contribution 

2 C in CH2R2 2 -0.9748 

3 C in CHR3 2 -0.7266 

5 C in CH3X 1 -1.0824 

6 C in CH2RX 2 -1.6740 

8 C in CHR2X 2 -1.0420 

15 C in =CH2 1 -0.1053 

16 C in =CHR 1 -0.0681 

24 C in R--CH—R 4 +0.0272 

25 C in R--CR—R 2 +0.3200 

26 C in R--CX—R 2 -0.2066 

27 C in R--CH—X 1 +0.0598 

46 H attached to C0
sp3 with no X next to C 1 +0.4410 

47 H attached to C1
sp3 or C0

sp3 16 +5.3488 

48 H attached to C2
sp3, C

1
sp3 or C

0
sp3 1 +0.3161 

50 H attached to heteroatom 1 -0.3260 

52 H attached to C0
sp3 with one X next to C 5 +1.8475 

56 O in alcohol 1 +0.1402 

60 O in Al - Al, Ar2O, R:R or R-O-C=X 1 +0.2712 

68 N in Al3N 1 +0.3954 

75 N in R--N--R or R--N—X 1 -0.1106 

LogP 2.852 

Key symbols: R is group connected to C; X is heteroatom; ―=‖ is double bond; ―:‖ is an 
aromatic single bond such as the C-N bond in pyrrole; subscripts give the hybridization 
state and superscripts the formal oxidation number. 
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Hydrophobicity of amino acids and proteins – Understanding the hydrophobic 

behavior of amino acids, peptides and proteins has implications far beyond the 

seemingly simple task of calculating LogP for twenty or so small molecules (the amino 

acids).  Abraham and Leo extended the Hansch and Leo fragment-based method of 

LogP calculation to amino acid zwitterions and side-chains [47].   Excellent agreement 

was reported for 19 out of the 20 natural amino acids.  Proline, however, was calculated 

to be more hydrophilic than in reality, probably due to poor fragment parameterization 

for its secondary cyclic amine.  With this method, hydrophobicity values for amino acid 

side chains were best predicted if a field effect was applied to the alpha-carbon.  The 

field effect is the sum total of polar proximity effects of both the backbone amidic 

(peptide) bonds surrounding the alpha-carbon atom of any given residue.  This field 

effect parameter accounts for the charge distribution on side-chain atoms and hence 

directly affects the hydrophobic/hydrophilic nature of the residue. Application of this 

effect allowed a higher correlation between predicted and calculated values of 

hydrophobicity for side-chains.  In additional studies, Buchwald and Bodor reported a 

correlation between the van der Waal‘s volume of peptides with their LogP values [48].  

Another approach was adopted by Steinmetz, where 3-D QSAR Comparative Molecular 

Field Analysis (CoMFA) studies were applied in a similar manner [49].  Experimentally 

determined LogP values of free and blocked di- and tripeptides were analyzed 

statistically to produce another set of parameters [50].  Akamatsu‘s work on the solvent 

partitioning of peptides using regression analysis of the experimental data to abstract 
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the hydrophobic parameters [51-54] is commonly regarded as the most convincing and 

accurate [55].  A comparison between software programs in predicting peptide LogPs 

was published recently [56].  In general, fragment-based methods are sensitive to 

composition but not to peptide sequence, which can be considered to be a major flaw of 

these programs.  Also, it is important to note that most current programs are inefficient 

and ineffective in calculating LogP values for long peptides.   

Summary of LogP estimation methods – A lot of effort has gone into devising 

methods for high prediction accuracy for LogP.  However, most methods are accurate 

for members or close relatives of their own training sets but continue to be less accurate 

outside their training sets.  It should also be pointed out that a considerable portion of 

the predictive inaccuracy may in fact lie with the data itself. Such data has often been 

obtained with experimental procedures whose accuracy varies with the method used 

[57].  One example brings this into focus: as many drugs and drug-like molecules 

contain ionizable functional groups, the conditions of measurement, particularly pH, are 

extremely relevant to measured LogP.  Thus, if a user attempts to estimate LogP for a 

molecule, e.g., by specifying a carboxylic acid-containing species, what LogP value 

should be reported?  The molecule in its acid form?  The molecule in its ionized 

(nominally pH 7) form?  Or the weighted average representing the equilibrium between 

the two forms?  (This is what the experiment, as performed on the molecules in the 

training set, measures.)  As other functional groups on the molecule can shift that 

equilibrium, how does this affect the contribution of the carboxylic acid/carboxylate 

fragment (or constituent atoms) to the predicted LogP? 
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While whole-molecule approaches are designed to estimate LogP values with 

great accuracy without extensive piecemeal (atom- or fragment-wise) empirical 

parameterization, their predictive nature in the end must also be compared to 

experimental data, limiting our ability to really judge the accuracy of predictions.  This 

begs the question: do we need to emphasize accuracy of predictions so much?  We 

suggest that when it comes to drug design, it is largely the ΔLogP changes between 

analogues that will drive the evolution in design with respect to physicochemical 

properties of the molecule.  Virtually all methods of estimating LogP can accurately 

describe the replacement of a proton by a hydroxyl, the halogenation of an aromatic 

ring, substitution of an amine for a methyl, or nearly any of the chemical modifications 

that would be performed in fine-tuning a lead compound.  The prediction of LogP for 

random organic compounds is probably not an important real world exercise.  Also, 

representing such an important physicochemical property as a simple scalar value 

underutilizes the information content of the molecule‘s 3-D topology and, particularly, its 

hydropathic structure.  The combination of topology and hydropathy provides us with 

structural details of immense importance, which play a direct role in intermolecular 

interactions, e.g., ligand binding, protein-protein associations, etc.  However, we do 

recognize the importance of LogP in QSAR studies and also in assessing the drug 

likeness of a compound, both of which will be discussed below.  

Can predictive methods for estimating the LogP of a peptide translate into a 

meaningful number for protein hydrophobicity?  The idea that an additive atom-based or 

fragment-based algorithm (or even a whole molecule approach) could describe the 
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dissolution of a protein into water and/or 1-octanol is probably preposterous.  To start, it 

is likely that a severe conformational change would occur if macromolecules pass from 

aqueous to organic solvents, e.g., hydrophobic residues would rearrange to the surface 

while the hydrophilic ones attempt to optimize hydrogen bonding and/or electrostatic 

interactions at the core.  In other words, a protein would be an entirely different 

chemical species when interacting with solvents of different polarity – if it could actually 

be solubilized.  However, the atomic, fragment or residue-level components of such a 

total LogP should be useful descriptors for understanding the forces and energetics of 

protein secondary, tertiary and quaternary structure and have been used in various 

schemes of describing and predicting protein folding for more than 20 years.    

While proteins might change their conformation drastically on partitioning 

between aqueous and 1-octanol phases, similar conformational changes are also 

expected in small molecules. Such changes occur regularly for small molecules in both 

aqueous and organic phases due to the comparatively lower energy barriers which 

separate these conformations. However, it is not hard to imagine that organic phases 

would stabilize conformations where intramolecular hydrogen bonds, ionic salt bridges 

or dipole-dipole interactions exist because Coulomb interactions are strengthened in 

these circumstances, while aqueous phases would stabilize those conformations which 

show a higher degree of hydrophobic interactions. On the other hand, LogP is a self-

contained parameter which accounts for all such conformational preferences because it 

is a bulk property and thus is the result of equilibrium between all such probable 

outcomes. 
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1.4   HYDROPHOBICITY SCALES AND PROTEIN FOLDING 

There has long been evidence that protein secondary structure is dependent on 

the hydrophobic properties of the amino acid residue side chains. There is, in fact, a 

reproducible pattern of these properties in well-defined secondary structural elements 

such as α helices and β sheets.  Thus, considerable effort has been expended in 

developing hydrophobicity scales that can aid in predictions of protein folding patterns.  

Some of these scales are based on water-ethanol transfer free energies [58,59], while 

others are based on partitioning between the bulk aqueous phase and the air-water 

interface [60], or on water-vapor partition free energies [61].  Kyte and Doolittle 

discussed the weaknesses of all three of these in a paper that also introduced their own 

hydrophobicity scale [62].  In their view, water-ethanol transfer free energy-based 

methods suffer because some amino acids are known to be insoluble in both water and 

ethanol and the latter may not be a truly inert solvent.  Using partition data from transfer 

between the aqueous phase and air-water interfaces was also problematical because 

the hydrogen bonds that must be broken and the charges that must be neutralized to 

remove a residue from the aqueous phase during the formation of the native structure 

probably remain unchanged at an air-water interface. Thus, they would not be a factor 

in the overall reaction. 

The ―hydropathy‖ parameter of Kyte and Doolittle [62] is an amalgam of water-

vapor transfer free energies and the interior-exterior distribution of amino acid side-

chains determined by Chothia [63].  A moving-segment approach that continuously 

determines the average hydropathy while it advances through a sequence is used to 
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obtain a plot of hydropathy as a function of sequence.  On this plot, any parts of the 

sequence that are above the average hydropathy for the sequence are termed 

hydrophobic and correspond well with experimentally determined ―internal‖ regions of 

proteins.  Conversely, sequence elements with hydropathy below the average are 

termed hydrophilic and correspond well with areas of the protein that are ―exterior‖ and 

likely to be in contact with the polar solvent.  The motivation is that analysis of these 

data may indicate the ―folding‖ pattern of the sequence.  To further exploit this, Wimley 

and White reported a new forcefield derived from partitioning two series of model 

peptides into the interface of neutral (zwitterionic) phospholipid membranes [64]. An 

alternative approach was introduced in 1986 by Eisenberg and McLachlan [65] for 

calculating the stability of protein structures in water based on atomic coordinates.  The 

contribution of each protein atom to the solvation free energy is estimated as the 

product of the solvent accessibility of the atom and an atomic solvation parameter.  

Li and Deber [66] used circular dichroism (CD) data to rank order helical 

propensity of proteins within membranes.  Residues such as Ile, Val and Thr, which 

usually exist as -sheets in an aqueous environment, prefer an -helical conformation in 

lipid membranes.  Thus, the helical propensity of amino acid residues correlates with 

the hydrophobic nature of the side chain.  More recently, Dyson, Wright and Scheraga 

have explained [67] how strict classification of side chains as polar or non-polar has 

obscured certain facts about protein folding.  For example, methylene groups present in 

large polar or charged amino acid side chains, like the four methylenes in the lysine side 

chain, can be considered non-polar.  Interestingly, this fact was imbedded as one of the 
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factors in the Hansch and Leo system for estimating LogP [68] nearly 30 years earlier!  

These methylenes can aggregate with other non-polar groups and assist in hydrophobic 

collapse of the sequence.   

Felitsky et al. introduced the use of a new parameter called ―average area buried 

upon folding‖ (AABUF) [69] that explains both local contacts and long-range 

interactions.  AABUF was used to study folding of apomyoglobin and provided 

additional insight into hydrophobic collapse and early folding events.  Studies on 

polyalanine and polyleucine helices in water by MacCallum et al. [70] confirmed that in 

folding many unfavorable enthalpic events are counterbalanced by favorable entropic 

contributions by the solvent. This indicates a very small free energy barrier for folding.  

Thus, folding is mainly a desolvation phenomenon.  Similarly, the Mardia and Nyirongo 

procedure for generating virtual protein Cα traces simulates the hydrophobic effect 

during folding [71] and produces models that are globular and compact. 

Another related application of hydrophobicity is in the development of algorithms 

to simulate folding of hydrophobic-polar (HP) models in 2 and 3 dimensions [72].  The 

concept is to simplify the complex problem of folding by reducing it to representing 

residues by spheres with H (hydrophobic) and P (polar) character.  The ensuing 

simulations are based on the observation that hydrophobic forces are the major forces 

determining native conformation of small globular proteins.  These model simulations 

have been used to develop mathematical strategies for solving the combinatorial 

explosion problem, rather than actually simulating the hydrophobic effect [73-74]. 
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As these studies have progressed over the past 20 years or so, the 

understanding of the hydrophobic effect and its impact on protein structure has 

matured.  The early emphasis of using hydrophobicity scales to define folding patterns 

has shifted to algorithms that define protein folding in terms of mathematical 

approaches to reduce the calculational combinatorial explosion caused by exhaustive 

sampling of conformational space.  However, it must be repeated that the same forces 

and energetics that drive solvent partitioning in the shake flask are at the core of protein 

folding.  The difficulty is to unravel them and define algorithms that can simulate folding 

in these terms. 

1.5   LogP IN DRUG DESIGN 

Small molecule hydrophobicity has long been a consideration in drug discovery 

and design.  The relationship between anesthetic effect of certain gases and their 

hydrophobicity has been extremely well established [4,75,76].  As described by Meyer 

in 1937 [3], chemically inert substances accumulate in ―lipoids‖ and at a certain 

concentration, produce narcosis.  The concentration itself is dependent on the animal, 

but independent of the narcotic itself.  Hansch et al. also confirmed the Meyer-Overton 

hypothesis about a direct relation between hydrophobic nature of a compound and its 

anesthetic capabilities [75] through statistical correlations.  However, Hansch suggested 

the additional involvement of a polar factor because molecules with polar hydrogens 

showed greater anesthetic action.  Hansch et al. also introduced a similar theory for the 

hypnotic effect of barbiturates [76].  Other studies also have shown the important 

correlation of partition coefficients with binding affinities of drugs to receptors [77,78].  
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McFarland used a very simple probabilistic treatment of drug diffusion from the site of 

administration to the site of action via a collection of hydrophobic and hydrophilic 

barriers (Scheme 1.3, [79]). His relationship included a ratio for the rates of permeation 

for drugs between aqueous and organic phases (k/l) which relates to the partition 

coefficient at equilibrium. Inclusion of the Hammett equation into this study gave an 

intuitively satisfying parabolic relationship between drug potency and hydrophobicity 

(Scheme 3): higher doses of drugs with unfavorable partition coefficients (either too high 

or else too low) are required for them to reach the site of action.  Recently, Kier has 

proposed a general theory of inhaled anesthetics [80]. 

1.5.1. The Lipinski “Rule of 5” 

Hydrophobicity, of course, has also been a key factor in Lipinski‘s ―rule of 5‖ 

[81,82].  In simple terms, Lipinski‘s rule can be stated as such: Poor absorption or 

permeation is more likely for a chemical entity when: a) there are more than 5 H-bond 

donors (sum of OHs and NHs); b) the molecular weight is over 500; c) the LogP is over 

5; or d) there are more than 10 H-bond acceptors (sum of Ns and Os).  The only 

exceptions to these rules were said to be substrates for biological transporters and 

natural products, which have a tendency to be highly complex molecules with multiple 

stereogenic centers and rarely contain nitrogen [83,84]. 
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Scheme 1.3 A parabolic relationship exists between drug potency and 
hydrophobicity. McFarland‘s equation relating probability and partition coefficient [79]. 

Model of n alternating aqueous phases and lipophilic membranes, in a hypothetical 
biological system is shown below: 

Aq0 Lip1 Aq2 Lip3 Aq4…………………………………………Lipn-2 Lipn-1 Aqn 

Assume that the rate of passage of molecules from aqueous to lipophilic zones is k, 
while the rate of passage of molecules in the opposite direction is given by l. Then, the 
partition coefficient of the molecule will be given by k/l. 
If Px,y is the probability of moving a molecule from layer x to layer y, the probability of 
moving a molecule from aq0 to aqn is given by: 

                                      

Although passage of molecules would actually be affected by a number of factors, 
unbiased passage of the molecule is assumed here. This reduces the entire problem to 
one of pure probability. So, we will have: 

                   

Similarly, the following equation can also be obtained: 
                 

Combining all three above equations, we have: 

           
          

    

Now, the number of molecules being transferred from aq0 to lip1 is proportional to k.  
The total number of molecules is proportional to the sum of k and l.  The probability of a 
molecule moving from layer 0 to 1 is given by P0.1, which is mathematically defined as: 

     
 

   
 

Dividing both numerator and denominator on the right hand side by l, we get: 

     
   

     
 

If P1.0 is the probability of a molecule passing from lip1 to aq0, 
            

Since we have assumed equal probabilities, we have: 
            

Substituting this equation into the fourth equation described above, we have: 

           
   

         
    

      
   

     
 

   

    
   

     
 

   

 

      
   

      
 

   

  
 

      
 
   

 

     
        

         
 

This relationship will be parabolic, indicating that there is an optimum range of LogP 
with respect to drug potency. 
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In 2000 Lipinski introduced changes to address terms such as ‗drug-like‘ 

because it was predicted that ADME (Absorption, Distribution, Metabolism and 

Excretion) screening of molecules (into drug-like or non-drug-like) would precede 

screening for activity at biological receptors [82].  The rule of 5 was further extended 

[85] to define a number of useful parameters: a) the presence of greater than 10 

rotatable bonds reduces oral bioavailability; b) 0 < LogD < 3 enhances the probability of 

good intestinal permeability (LogD is logarithm of the distribution coefficient D, which is 

in turn defined as the ratio of the sum of concentrations of all forms, whether charged or 

neutral, or different functional conformations of the substance distributed between two 

mutually immiscible phases); c) a polar surface area (PSA) of less than 60-70 describes 

CNS active compounds; d) an N+O count of less than or equal to 5 enhances the 

probability of passing the blood-brain barrier; e) if LogP – (N + O) > 0, the molecule 

tends to be CNS active; f) orally-active drugs have lower molecular weight and fewer H-

bond donors, acceptors and rotatable bonds; g) pulmonary drugs tend to have a larger 

PSA; and h) if the molecular weight < 300, LogP < 3, H-bond donors and acceptors < 3 

and rotatable bonds < 3, the compound can be called ―lead-like‖. 

This revolutionary work, which brilliantly summarized over 100 years of Medicinal 

Chemistry trial and error, made possible a number of rational filters and screens that, in 

principle, would improve the likelihood that a compound with promising ―activity‖ could 

produce a ―lead‖ and eventually yield a ―drug‖.  Muegge described various methods for 

classification of drug-like compounds in his 2003 publication [86].  Similar publications 

addressing the terms ‗drug-like‘ and ‗tool-like‘ were also made [87,88].  Oprea et al. 
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reported the presence of a ―medicinal chemistry lead-like space‖ and urged careful use 

of Lipinski‘s rules [89].  A very interesting discussion [82] on how the properties of drug 

candidates from two pharmaceutical companies have varied across time pointed out 

that stress on rational methods of drug design in Merck laboratories caused no 

significant change in MLogP (Moriguchi LogP [90]) values across time.  In contrast, 

there was a measurable increase in MLogP values for candidates from Pfizer since 

almost 50% of their hits were discovered with high-throughput screening (HTS) 

methods.  Because the easiest method to increase in-vitro potency is to appropriately 

position a hydrophobic moiety onto a lead compound, HTS methods almost invariably 

select more hydrophobic candidates.  Similar trends were observed [91] in that more 

than half of the molecules reported to have high-activity towards the end of the last 

century had a high LogP (> 4.25), high molecular weight (>425) and log of solubility in 

its neutral state (estimated from its molecular weight and LogP values), i.e., LogSw (< -

4.25), only about 35% of the true lead compounds had these properties.  It was also 

noted that as these molecules go through clinical trials, there is a distinct decrease in 

LogP values for compounds that make it to the market.  One thing is clear from these 

studies and an analysis by Proudfoot of drugs currently on the market [92]: the 

lipophilicity of molecules that make it all the way to commercialization has remained in 

the same range for a number of years.  In other words, there is a delicate balance 

between the hydrophobic and hydrophilic nature of a molecule that is absolutely 

essential for it to be transported to the site of action by diffusion across membranes.   
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1.5.2   Hydrophobicity in QSAR 

Similarity between molecules is often perceived by chemists both qualitatively 

and quantitatively.  A synthetic chemist would describe two molecules as similar if they 

have similar topologies, bond connectivities, functional groups or maybe synthetic 

strategies.  Structure-Activity Relationships (SARs) are based on such comparisons in 

the context of physiological function, but are mostly limited to qualitative or semi-

quantitative treatments of biological phenomena or activities.  However, more stringent 

definitions of similarity have been formulated and can be used with chemical computing 

software to perceive (and even predict) chemical equivalence provided the likeness is 

scrutinized critically.  Thus, a more mathematical and quantitative approach called the 

Quantitative Structure-Activity Relationship (QSAR), wherein affinities of ligands for their 

binding sites, inhibition constants, rate constants and other biological activities are 

correlated to molecular properties such as lipophilicity, polarizability, electronic and 

steric properties, was developed.  Comprehensive reviews have been published on the 

subject in the past [93,94], which should be referred to by those wishing to learn about 

the QSAR concept in depth. Here, we will focus on the key role of hydrophobicity in 

these studies. 

There are many different approaches used in classical QSAR studies, including 

establishment of relationships between activity and physicochemical properties such as 

steric properties (Hansch analysis, extrathermodynamic approach), structural features 

(Free Wilson analysis) [94], or topological descriptors (Kier-Hall indices) [42].  3D QSAR 

methods, especially those such as CoMFA, consider three-dimensional ligand 
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structures and use those to propose the binding modes of those ligands at a common 

protein active site [94].  Data is often analyzed by statistical methods such as Multiple 

Linear Regression (MLR), Partial Least Squares (PLS) or by use of artificial intelligence 

(AI) methods such as Neural Networks (NN) or Support Vector Machines (SVM) [95] in 

order to detect correlations between a target activity and various descriptors (like LogP). 

Hansch and Fujita first introduced their method and coined the term QSAR, for 

correlation of biological activity to chemical structure in the 1960s [78,96-98].  The 

method correlated, by the use of regression analysis, ligand structural variations with 

the biological activities of those ligands.  In time, these studies would become a distinct 

scientific field and a mainstay of drug discovery and design research.  Many 

applications have been reported across the past five decades.  A review by Kubinyi has 

described, in great detail, the various subtleties of the science [99].  Indeed, in the 

absence of a detailed target or receptor structure, this ligand-based drug design method 

gives invaluable quantitative information to drug designers.  It is important to note that 

the first publication on QSAR in 1962 [78] showed the importance of hydrophobicity 

through LogP.  Scheme 1.4 explains the general concept behind the Hansch Analysis 

technique where the free energy-based substituent constant  is based on the Hammett 

function .  is dependent on the substituent‘s chemical nature and, since molecules 

must repeatedly partition between lipid membranes to be effective drugs, the 

constituting fragments of should be such that their additive effect would allow easy 

partitioning into either membranous or aqueous phases.  
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Scheme 1.4 Hansch Analysis; a method to relate physicochemical parameters to drug 
potency. For details, refer to Hansch and Fujita [95]. 

The ‗extrathermodynamic approach‘ relates various free energy-like descriptors in a 
model: 

   
 

 
                       

(C, LogP and σ are the inhibition constant, log of the partition coefficient and steric 
parameters respectively, while a,b,c and k are constants.) This model explains that drug 
transport from site of application to the site of action depends on the lipophilicity of the 
drug and is non-linear under typical conditions.  Although special conditions could 
reduce this equation into simpler forms [73], this equation surmises the behavior of any 
molecule under normal diffusion conditions. 
A novel parameter π defines the lipophilicity of substituent X: 
 

                 
 
where LogP is the log of the partition coefficient. This equation was a variant of the 
Hammett Equation, 

                 
 
where the reaction equilibrium constants have been substituted with partition 
coefficients. 
 
Values for LogP and σ of different molecules may be correlated with their IC50 or Ki 
values by statistical analysis such as multiple linear regressions (MLR) or partial least 
squares (PLS).  Artificial intelligence methods such as Neural Networks (NN) and 
Support Vector Machines (SVM) have also been used.  These analysis methods have 
pros and cons: While MLR and PLS do a good job of finding linear relationships 
between variables, they tend to oversimplify. On the other hand, artificial intelligence 
methods tend to pick up on minute non-linear trends and tend to over-fit models. 

It must be noted, however, that hydrophobicity is not always the principal 

parameter determining activity [100].  For example, when DNA is the drug target, e.g., in 

binding to the major or minor groove, QSAR analyses often show negligible 

hydrophobic terms because the negatively charged phosphate groups of DNA are 

hydrophilic.  On the other hand, DNA intercalation would likely be a hydrophobic effect.  

Radical reactions also typically lack hydrophobic terms in QSAR analyses, although 

these studies are mostly on small datasets and more thorough studies would be 
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desirable.  Finally, it has been suggested from QSAR studies on Multiple Drug 

Resistance that this process might be accomplished without hydrophobic assistance, 

although this conflicts with the fact that efficiency of efflux pumps is often correlated with 

the hydrophobicity of their substrates [101]. 

3D QSAR methods like Comparative Molecular Field Analysis (CoMFA) [102] 

generate 3D field maps around aligned molecules to display zones of steric, electronic 

and lipophilic tolerance or intolerance.  This gives a visual understanding of biological 

activity that contrasts well with the often messy collection of molecular descriptors in 

classical QSAR studies, thereby allowing easier interpretation of results.  This, in turn, 

may lead to a better basis for designing novel scaffolds and/or chemical substituents to 

the existing scaffold.  The basic idea behind this method is explained in Figure 2.  

Kellogg et al. introduced a method for hydrophobic field calculation for CoMFA [103] 

using an empirical force field (Hydropathic INTeractions or HINT, discussed in Section 

1.7).  This was one of the first attempts in 3D QSAR to modify the purely enthalpic 

treatment of ligand-receptor binding by inclusion of an implicit entropic term.  

References to the use of HINT-CoMFA in drug design are available [103-106].  Another 

attempt to include hydrophobicity into CoMFA was made by Gaillard, Testa and 

coworkers in their papers [107,108] describing the use Molecular Lipophilicity Potential 

(MLP) in 3D QSAR along with its applications.  This alternative method of using 

hydrophobicity in CoMFA studies has found a number of applications in molecular 

modeling and drug design work [109-111]. 
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Molecules are overlapped and placed in a grid, which is spread all around the 
overlapped molecules up to the extent of several Angstroms in all directions. Each grid 
point is treated as a probe; neutral Carbon atoms are used as probes for van der Waal‘s 
interactions, while charged atoms can be used as Coulombic interaction probes. Groups 
can also be used as probes, especially when trying to elucidate H-bond donors or 
acceptors. Simple physics equations for interactions of different varieties can calculate 
energy of each grid point, thereby extracting data for analysis. This data can then be 
checked for trends using PLS, MLR or AI algorithms.  
 

 
 

The resultant map, shown above, is a map of regions where certain physicochemical 
parameters are tolerated (or not tolerated), which serves as an aid to chemists.  

 

Figure 1.2 3D QSAR; 3 Dimensional Quantitative Structure Activity Relationships (3D 
QSAR) are models generated by taking into account the 3 dimensional positions of 
various physicochemical characteristics of a set of overlapped molecules and the effect 
they have on drug potency. Refer [71] for details. 
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1.6   QUANTIFICATION OF HYDROPHOBIC INTERACTIONS 

Equations calculating energy from structure, a.k.a. force fields, have been in use 

for many years in computational chemistry and molecular modeling [112].  Generally, 

force fields have been restricted to enthalpic terms that are simple to correlate with 

bond formation or bond breaking and simple Newtonian physical phenomena like bond 

stretches and bends, electrostatics and dispersion.  The hydrophobic effect is, in some 

measure, an entropic phenomenon and is not easily derivable from these first principles.  

Nevertheless, a few examples of quantifying lipophilicity and its effect on biomolecular 

energetics have been reported [12,113-119].  Hermann and Chothia [12,113], among 

others, proposed that hydrophobicity can be quantified by the calculation of hydrophobic 

surface area.  Oobatake and Ooi present an excellent review of this approach [114].  

Cramer and Truhlar introduced a solvation model [115] that included charge 

distributions on solute molecules, the energetic effects of cavity formation and 

restructuring of water around such cavities and even subtle variations in charge 

distribution due to interactions between solute particles and surrounding solvent 

molecules. Sharp and coworkers introduced a new solvation model illustrating the 

dependence of the hydrophobic effect on curvature of the site [116].  This was an 

attempt to explain the difference between the calculated energy for hydration of 

hydrocarbons (about 25 cal mol-1 Å-2) and the surface tension at the water-hydrocarbon 

interface (about 75 cal mol-1 Å-2).  This altered surface area measurement suggested 

that the ―macroscopic‖ hydration energy is 47 cal mol-1 Å-2.  Indeed, the assumption that 

the energy of hydrophobic interactions is dependent on the area of the hydrophobic-
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water interface is the mainstay of much research in the area.  However, alternative 

approaches have had some success.  Cesari et al. presented a model describing the 

hydrophobic interactions within globular proteins based on analysis of X-ray data [117] 

where fold definitions were clearly shown to be a function of hydrophobicity.  Hummer 

described the development of a hydrophobic force field as an alternative to surface-area 

models [118].  A highly developed model for quantitating hydrophobic interactions is the 

HINT (Hydropathic INTeractions) system that is discussed below.  

1.7   THE HINT PARADIGM 

A notably different approach was taken by Kellogg and Abraham [119,120] in designing 

the ―natural‖ force field HINT (see Scheme 1.5). This non-covalent interaction force field 

is derived from partition coefficients based on the Hansch and Leo LogP estimation 

method.  It is very empirical in nature and approximates all components of biomolecular 

interactions, including hydrogen bonding, Coulombic interactions along with entropy and 

solvation/desolvation effects in addition to hydrophobic interactions because all of these 

effects are inherent in the experiments that measure LogP [68].  Interestingly, the 

Hansch and Leo method encodes many interaction effects within the ―correction‖ 

factors.  For example, intramolecular hydrogen bonding within a small molecule, which 

would make the molecule less polar (and seemingly more hydrophobic) because the 

involved polar hydrogen and its partner acceptor are less able to interact with water 

solvent, is encoded with a factor that gives an internally calibrated indication of the 

energetics of hydrogen bonding (0.6 – 1.0 LogP units, i.e., 0.8 – 1.4 kcal mol-1).   
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Figure 1.3 HINT map for the molecule of tyrosine. This map shows a hydrophobic 

area on the molecule represented as a cage around the benzene ring. The polar areas 

on the map are further depicted: acidic (light grey lobes) and basic (dark grey lobe). 
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Scheme 1.5 The HINT Paradigm. A ―natural‖ free energy force field based on LogP.  It 
is available as a toolkit, allowing flexibility in development of applications.  Refer to 
Kellogg and Abraham [118] for details. 

 

 
 
A representation of a 
shake flask. Substances 
distribute themselves 
between the water and 
octanol layers with 
concentrations Cwat and 
Coct, respectively, in a 
particular ratio called the 
partition coefficient. 

By definition, 

   
    
    

 

LogP can be considered the sum total of individual 
lipophilic propensities of each atom called hydrophobic 
atom constant (ai), i.e. 

         

The values of ai are readily available from various 
methods, as described earlier; HINT itself uses an 
adaptation of the Hansch and Leo C-LOGP approach [23-
27].  The HINT method calculates scores (bij) of each atom 
against all other atoms according to the equation 

                       

Where, ai is the hydrophobic atom constant for the ith atom 
and Sij is the solvent accessible surface area.  Tij is a 
variable which takes on the values of +1 or -1, depending 
on the acid and base properties of the pair of atoms being 
considered.  For example, if the atoms under consideration 
are both amino nitrogens, the interaction is unfavorable 
and Tij is -1.  In contrast, if one is a polar (amine) hydrogen 
and the other is a carboxyl oxygen, their interaction would 
be favorable and Tij is +1.  Rij is the exponential term e-r, 
where r is the distance between the i and j atoms.  rij is a 
van der Waal‘s term. 
The total HINT score would be the sum total of each atom-
atom score thus calculated, i.e. 

                                     

If G is the change in Gibb‘s Free Energy, R is the gas constant and T is the absolute 
temperature,  

we know that                                               and                          ; 
thus,                                                                                   . 
Hence, HINT scores reflect free energy by taking into account both enthalpic and 
entropic factors.  Because the absolute value of HINT score may not be predictive of a 
discrete biological association event, these absolute scores are not as important or 
relevant as differences in HINT score values between analogous systems, much the 
same as differences in free energy, i.e., ΔΔG.  The difference in Gibb‘s Free Energy 
between two states is a very important parameter as it tells us about the spontaneity or 
likelihood of the change, whereas the value for any one state itself is often of less 
consequence. 
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A key principle behind HINT is that significant understanding of biological phenomena, 

particularly interactions, can be revealed by representing hydrophobicity as a 3D ―field‖ 

property rather than as a simple scalar (number) [121].  For example, consider the 

tyrosine molecule shown in figure 3. Hydropathic properties of the molecule are mapped 

in three dimensions around the structure of tyrosine, creating a HINT map. The use of 

these maps creates a visual representation of properties that are often mentioned 

casually, such as hydrophobic or polar nature of functional groups. Not only does this 

methodology allow a chemist to form a qualitative understanding of the molecular 

topology, but also forms the basis for quantitative estimation of physicochemical 

properties by using the HINT force field.  This may further be used in the depiction of 

molecular interactions, which has a direct repercussion in drug design. 

1.7.1 Intermolecular Interaction Analysis  

Perhaps the most important application of HINT is in the assessment of 

intermolecular interactions.  HINT calculations derive an interaction score that in 

numerous studies [122-125] has been shown to correlate with free energy of interaction.  

Although it is data set dependent, i.e., for specific protein-ligand or polynucleotide-ligand 

systems, it is estimated that on average, 515 HINT score units correspond to 1 kcal mol-

1 free energy of binding [119].  A recent report indicated the value of the HINT score in 

ligand docking studies by a comparison to the scoring functions within FlexX, AutoDock 

and GOLD [123].  The most important advantage of the HINT methodology is that it 

inherently estimates enthalpic as well as entropic contributions to binding (Scheme 5).  

It has been shown [122,126] that errors in prediction for very diverse sets of protein-
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ligand complexes are approximately ± 2.6 kcal mol-1, although within a family of ligands 

binding to the same protein this error can approach ± 1 kcal mol-1. There often is an 

order of magnitude difference between values of Ki measured by different laboratories 

on the same protein-ligand complex, which corresponds to a possible 1.0-1.5 kcal mol-1 

experimental uncertainty.  Thus, the error value reported above between experimental 

results and HINT scores indicates that HINT is a robust method for binding affinity 

predictions.  Further sources of error include uncertainties in positions of atoms in 

models, incorrectly assigned atom types, or (often) missing solvent molecules in the 

source crystallographic structure data.  The HINT method has been used successfully in 

quite a number of projects [122,126-129].  In a recent example, Tripathi et al. generated 

a model capable of predicting antiproliferative activity of pyrrole derivatives against 

cancer cell lines.  In this study, experimentally determined IC50s of a number of 

compounds were correlated with HINT scores from docking these ligands to αβ-tubulin 

to generate molecular models that could be scored and yielded a significant correlation.  

This correlation could distinguish active molecules from inactive ones by the HINT score 

value and, thus, provides a basis for design of novel molecules with anticancer activity.  

In another interesting application the sequence specificity of anthracycline groove-

binding intercalators was evaluated and predicted by HINT score [130]. This work 

illustrated that the HINT score could be parsed into relevant free energy subsets that 

can be ranked and compared for particular intercalator functional groups and/or 

nucleotide bases in DNA double helix strands. 
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1.7.2   Computational Titration  

An extension of the HINT force field known as Computational Titration [124] is 

used to evaluate the ionization states of functional groups on ligands or residues at the 

binding site.  It is well known that these variations can have a strong influence on 

binding affinities.  The method models, in parallel, multiple ionization states for both 

ligand and protein creating a collection of ionization state ensembles.  Each distinct 

protonation state ensemble is optimized for hydrogen bonding, including water positions 

and analyzed by HINT score.  The best scoring complex indicates the optimum state for 

binding and suggests the corresponding pH for that optimum binding.  However, the pH 

at which crystals are grown and analyzed can be different from this optimum pH.  The 

resulting model can help reconcile the differences between in silico models and data. 

However, at room temperature, where binding data is measured, there are likely to be 

many protonation models of similar, accessible energy.  Computational Titration 

analysis helps develop an understanding of the relationship between these states.  

There is now a computational titration server for public use at 

http://hinttools.isbdd.vcu.edu/CT [131].  

1.7.3 Analysis of Bridging Waters  

Another factor relating to the stability of biomolecular complexes is the 

contribution of water molecules within the binding site and bridging between the ligand 

and biomolecule [125,132].  The presence of these bridging water molecules can be a 

very important factor in binding of molecules, but water molecules can play a variety of 

http://hinttools.isbdd.vcu.edu/CT
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roles as they facilitate biomolecular interactions and stabilize structure.  Often, due to a 

variety of experimental reasons, positions of water molecules in crystal structures are 

not well defined, even after x-ray crystallographic analysis. This mischaracterization and 

non-detection of water positions can be correlated with x-ray crystallographic resolution, 

with better resolution both locating a larger number of water molecules and placing their 

positions more accurately.  Thus, to thoroughly evaluate structure, it is often necessary 

to verify water molecules systematically with tools such as the GRID program of 

Goodford [133].  Concomitantly, it is desirable to know which of these waters are 

subject to displacement by ligands and which are conserved.  Using HINT score 

combined with a metric based on geometry, Amadasi et al. developed a robust method 

to calculate the relevance of binding site waters; those with particularly high relevance 

score would be expected to yield extra entropy if a ligand was designed to displace it, 

i.e., similar to the cyclic HIV-1 protease inhibitors [134].  In another study, the 

contribution of bridging water molecules to overall free energy of binding has been 

derived and quantitated [132].   

1.7.4   3D QSAR with HINT  

A very early application of the HINT force field was the introduction of field 

hydrophobicity parameters into 3D QSAR technology, to complement the original steric 

and electronic fields in CoMFA [103].  The steroid data set originally reported by Cramer 

et al. [102] was reexamined with the addition of a HINT-derived field.  While this study 

provided little advantage in terms of statistical improvement due to a variety of reasons 

described previously [119], it provided a distinct advantage in chemical interpretability 
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for chemists aiming to design new molecules based on such a QSAR study.  Quite a 

few reports of studies based on the HINT-CoMFA methodology have been reported 

since then [104-106,135-140] and some, particularly where the ligands or active sites 

are particularly non-polar, do show significant statistical improvement when hydrophobic 

fields are included.  Fields in 3D QSAR are another class of descriptor that often needs 

to be optimized for the data set [141] in that each data set has forces and structures that 

may be best represented hydrophobically, sterically, electrostatically, or with other types 

of fields. 

1.8   AIMS AND OVERVIEW OF WORK 

The overall aim of computational chemistry is manifold: (1) to develop bioactive 

agents, (2) to help understand and quantify complex biological phenomena and (3) to 

develop tools that aid in computational exploration of biological interaction events. The 

major tool used by us in order to achieve all three objectives is the HINT forcefield. 

Herein, we employ our in-house computational tools (HINT and the HINT Toolkit), which 

are an amalgamation of experimental and theoretical methods to explore biological 

functions of molecules and discover biologically active agents in this work. We also 

outline strategies to enhance already available computational tools here. 

As described earlier in the chapter, the HINT paradigm has been successfully 

applied in exploring biological phenomena, particularly in binding of macromolecules 

and also in drug design (vide supra). In most projects reported thus far in literature, the 

HINT forcefield has been applied to simple binding phenomena, i.e. interactions 

between macromolecules or those between a drug and its target. Given this fact, we 
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asked ourselves whether it is possible to explain complex biological phenomena (such 

as transporter-facilitated molecular efflux) in terms of hydropathic interactions using the 

HINT forcefield. In other words, our hypothesis is that HINT can explain protein-

mediated molecular transport in terms of successive, but independent binding events? 

One major field of interest for us is to explore new avenues and develop tools for 

exploration of chemical space in an attempt to simulate the motion of proteins during 

their interaction with ligands and its application in drug design. In accordance with this 

aim, we commenced a project to explore the compatibility between existing knowledge-

based databases of amino acid residue sidechains and the HINT scoring function. The 

major aims of this project were to set up grounds for the development of a novel 

algorithm that will assist in simulation of partial active site flexibility. With this in mind, 

we hypothesize that HINT can address intramolecular interactions as well as 

intermolecular ones. 

Herein, chapter 2 describes different approaches adopted in order to predict 

efflux of antibiotic substrates by the AcrA-AcrB-TolC efflux pump. A 3D-QSAR study of 

efflux yielded ostensibly predictive models, which were validated within a dataset 

obtained from literature. An alternative methodology was designed due to the inherent 

problems of 3D-QSAR, which have also been described. This alternative method led to 

interesting quantitative predictions of high/low efflux for substrates. 

Chapter 3 describes a virtual screening approach towards identification of agents 

which inhibit hemagglutinin-neuraminidase (HN) of human parainfluenza virus type III 
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(HPIV3). The current status of this project is discussed therein, along with problems with 

sidechain placement during the docking process. 

The following chapter expounds early attempts at development of a sidechain 

optimization algorithm aimed at creating a basis for the development of improved 

docking simulation tools in the future. The current status of the algorithm, along with 

future directions, is delineated. 
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CHAPTER 2 

PREDICTING EFFLUX OF ANTIBIOTICS BY ACRA-ACRB-TOLC PUMPS: 

A ‗SYSTEMS HYDROPATHY‘ APPROACH. 

 

2.1   Introduction 

Antimicrobial drugs have been crucial tools of healthcare for decades due to their 

effectiveness in control of bacterial infections.  However, soon after their discovery it 

was realized that some pathogens rapidly developed resistance to antibiotics [1,2].  

Initially, this problem was overcome by discovery of new classes of antibiotics such as 

aminoglycosides, macrolides and glycopeptides, but it soon became clear that bacteria 

had an impressive array of defensive mechanisms that conferred on them, resistance to 

many modes of attack [1].  Organisms that cause pneumonia and cutaneous infections, 

Streptococcus pneumonia, Streptococcus pyogenes and staphylococci, are now 

resistant to almost all of the older, first generation, β-lactam antibiotics [2] like penicillin, 

which were discovered through screening of mold samples and act in general by 

mechanically weakening cell walls and making them susceptible to osmotic lysis [3-5].  

Members of the Enterobacteriaceae and Pseudomonas families, which cause diarrhea, 

urinary infection and sepsis, are also resistant [2].  The development of bacterial 

resistance to antibiotics has mostly been attributed to their excessive use in the clinic as 

well as at home [1,2].  However, semisynthetic modifications of β-lactam antibiotics 

have given us second- and third-generation antibiotics that have prolonged the 

therapeutic usefulness of the drug class.   
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One primary mechanism of antibiotic resistance is extrusion of the foreign chemical, 

which is termed efflux.  In 1980, it was reported that tetracycline could be actively 

effluxed from the bacterial cell [6].  Since then, many efflux-related mechanisms have 

been discovered.  Efflux pumps are transporters involved in extrusion of toxic 

substances from cells, thereby limiting the detrimental effects of these substances [7].  

They may be substrate-specific and responsible for transporting biological compounds 

such as bile salts, or may be promiscuous and transport structurally-diverse compounds 

such as various classes of antibiotic drugs [8].  Overexpression of these structurally 

complex and versatile proteins may thus lead to antibiotic resistance.  While efflux pump 

proteins are present in both Gram-positive and Gram-negative bacteria and also in 

eukaryotes, antibiotic resistance due to efflux is more of a problem in Gram-negative 

bacteria than in Gram-positive bacteria [9]. This is due to the presence of an outer 

membrane in Gram-negative bacteria that demonstrates comparatively lower 

permeability and complements the efflux activity of these pumps. 

Several such pump systems have been described: Campylobacter jejuni (CmeABC) 

[10-11], Escherichia coli (AcrAB-TolC, AcrEF-TolC, EmrB, EmrD) [12], Pseudomonas 

aeruginosa (MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM) [12], 

Streptococcus pneumonia (PmrA) [13], Salmonella typhimurium (AcrAB) [14] and 

Staphylococcus aureus (NorA) [15].  These pumps basically fall into five major families, 

including the MF (major facilitator), MATE (multidrug and toxic efflux), SMR (small multi-

drug resistance), ABC (ATP-binding cassette) and RND (resistance-nodulation-division) 
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families [16].  It has been shown that co-expression of multiple types of efflux pumps 

can cause an additive or even multiplicative effect on drug resistance [17]. 

AcrAB was first described as an efflux system in 1995 [18].  AcrB is responsible for 

efflux of bile salts, thus protecting enteric E. coli from the detrimental effects of these 

powerful detergents [19].  As is typical with other members of the RND-type efflux 

protein systems, AcrAB is also a proton antiporter.  AcrA and AcrB homologues in 

Haemophilius influenzae HI0894 and HI0895 respectively, are also responsible for drug 

efflux [20].  The importance of AcrAB in multidrug resistance has been described in 

several publications, [21-27] where knock-out, knock-in and mutation studies were used 

to describe the extent to which the AcrA-AcrB-TolC transporter is responsible for 

expulsion of structurally diverse antibiotics from bacterial cells.  

One important observation from all these studies was that efflux pumps seem to 

preferentially extrude hydrophobic ligands [24].  However, despite extensive studies on 

the efflux of antibiotics by the AcrA-AcrB-TolC efflux pump, reliable and generalizable 

predictions for efflux by this pump continue to be elusive.  Such predictions would 

obviously be of tremendous interest to those engaged in design/discovery of antibiotics, 

as this would allow them to more efficiently channel effort and resources.  Interestingly, 

despite the tremendous importance of efflux as an ancillary consideration in drug 

discovery, very few computational studies designed to predict the effect on proteins 

other than P-glycoprotein [28-30] have been reported.  However, two-dimensional 

quantitative structure-activity relationship (QSAR) studies performed previously [31,32] 

yielded what appeared on the surface to be remarkable regression equations for efflux 
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of β-lactam substrates by the AcrA-AcrB-TolC pump from Salmonella thypimurium (16 

compounds, target: minimal inhibitory concentration for three strains, reported r2 from 

cross validation (q2) > 0.9).  No surprising conclusions were made in this study, i.e., 

molecules showing more hydrophilic character, including hydrogen bonding capability, 

were likely to be poor efflux substrates and that efflux correlated with properties like 

LogP (for partitioning the drug between 1-octanol and water), the y-axis component of 

electrostatic dipole moment, the surface area of hydrophobic carbons, the number 

fractions of carbons and heteroatoms and the number of charged groups and the 

number of nitrogen and sulfur atoms, all of which would supposedly influence 

interactions between pump and substrate [31].  However, the number of descriptors in 

the equations (up to 9) suggests serious overfitting of such a small data set and the 

inclusion of multiple methods of LogP prediction within the same QSAR equation is also 

a concern: while LogPs calculated by different methods do not necessarily encode 

exactly the same information about a molecule, they must be largely correlated and 

some of the other descriptors, e.g., surface area of hydrophobic carbons, also likely 

correlate with LogP.  Most importantly, it does not appear that this type of model has 

been embraced by potential users of efflux prediction in drug design, possibly because 

of its poor chemical and physical interpretability. 

In the present contribution, we describe a computational modeling method that 

allows us to successfully identify the extent of efflux of individual ligands by taking into 

account interplay between properties of the ligands as well as their molecular-level 

interactions with the AcrA-AcrB-TolC efflux pump.  Although an initial 3D-QSAR study 
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produced seemingly predictive models for the β-lactams, we decided to ―invent‖ a new, 

largely intuitive method based on what is known about efflux and found a successful 

prediction of efflux values for a structurally diverse dataset, composed of both -lactam 

and non--lactam antibiotics.  Our approach holds a superficial similarity to the ‗systems 

biology‘ approach, where the effects of a factor on multiple pathways are taken into 

account by compartmentalization in order to explain observed gross phenomena and 

we are thus calling our method ―systems hydropathy‖ (vide infra).  It is also interesting to 

note that our results suggest certain novel mechanistic details of efflux, hitherto 

untested and unreported. 

We further propose that this method may be extended to several complex 

transporter systems such as the ABC proteins, which are suspected to cause resistance 

to anticancer drugs [33].  

 

2.2 EXPERIMENTAL SECTION 

2.2.1 Crystal structures of AcrB and TolC.   

The crystal structures of AcrB and TolC (PDB codes 2drd and 1ek9 respectively) 

are available in the RSCB database [34,35].  The protein structures were modeled using 

Sybyl version 8.1 (Tripos International) [36].  Hydrogens were added, followed by 1000 

steps of Powell minimization with Gasteiger-Hückel charges while keeping the heavy 

atoms still. Then the entire structure was minimized to a gradient of 0.005 kcal mol-1 Å-1.  

Visual inspection revealed no unrealistic steric clashes between residues.  Where 
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required, the ligand was removed from the protein binding state (from PDB code 2drd) 

to void the docking region.  

2.2.2   Efflux data and substrate molecules.   

A review of literature produced a curated set of 32 β-lactam antibiotics (Scheme 2.1) 

and 12 non-β-lactam antibiotics (Scheme 2.2), for which efflux data has been reported 

[23-25,27,37].  This data was in the form of minimum inhibitory concentration (MIC) 

ratios (i.e., ratio of MIC in the presence of efflux pump to the MIC in the absence of 

efflux pump through knockout).  All reported MIC ratios for these compounds were 

taken and an average MIC ratio was obtained.  Because the experimental data are 

reported as powers of 2, i.e., 1, 2, 4, 8, 16, etc., logarithms (base 2) were calculated for 

these average MIC ratios and these logarithmic values were used as the dependent 

―efflux‖ parameter in our analyses (Table 2.1).  The range of MIC values for wild type 

(WT) pumps across all sources is also reported here. The narrow range of WT MIC 

values for each antibiotic clearly indicates that similar if not identical pump strains were 

used during experimental procedures reported in these referenced works such that 

these MIC ratios are directly comparable. 

As all of the substrate antibiotic molecules have acid and/or base functionalities, the 

structures were modeled in Sybyl in both their neutral (non-ionic) and charged (usually 

zwitterionic) forms and minimized to a gradient of 0.005 kcal mol-1 A-1.  An attempt was 

made to initially place each compound in its lowest energy conformation by manually 

selecting from available rotamers. 
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Scheme 2.1.  Chemical structures for the -lactam antibiotic compounds in the study.  
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Scheme 2.2.  The chemical structures for the non--lactam antibiotic compounds used 
in the study. 
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2.2.3   Docking and scoring.   

The initial methods development for this study was performed with only the β-lactam 

ligand set (Scheme 2.1) and then applied to the full, extended dataset.  All compounds 

were docked in both their neutral and charged forms using GOLD version 3.0 [38].  

When docked to different parts of the TolC cavity (see Figure 2.1 and Results and 

Discussion for further description), 100 positions for each compound in Scheme 2.1 

were obtained at each of eleven different overlapping areas of the protein, giving us a 

total of 1100 solutions per compound. However, a total of 2000 positions were obtained 

per compound when docked into the binding state or extrusion state of AcrB. The 

antibiotics in Scheme 2.2 were docked at four different positions as selected by the 

model found for the β-lactam compounds (see Results and Discussion), using identical 

procedures and parameters.  All docked positions were scored using the Hydropathic 

INTeractions (HINT) forcefield [39-41] as reported in previous work [42-43].  The HINT 

forcefield has been previously shown to not only estimate enthalpic contributions 

towards binding but also entropic and solvation contributions [39-43]. The pose 

corresponding to the highest HINT score for each ligand at each position was selected 

for further analysis. GOLD scores were ignored because the software is known to fail for 

hydrophobic systems [38]. The best docked positions were combined into protein-ligand 

structures that were minimized with 500 iterations. The interactions were re-scored at 

the minimized positions and these HINT scores were used as descriptors. Further 

explanation regarding application of the various HINT scores as utilized in this 

manuscript is given below.  
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Table 2.1.  Efflux and molecular parameters for data set molecules (see text for further description). 

No. Antibiotic 

Reported MIC ratiosa MIC range 
for WT 
pump  

(µg/ml) 

Avg 
MIC 
ratio 

Log2(avg. 
MIC ratio) 

LogP 
(AlogPs)c 

Mol. 
Width 
(Å)d 

Ref 
23b 

Ref 
24b 

Ref 
25b 

Ref 
27b 

Ref 
37b 

1 Cefoxitin 4 4    4 4 2 0.22 8.82 

2 Cefalothin 1 4    2-8 2.5 1.322 0.63 7.87 

3 Cephaloridine 2 2    2-8 2 1 1.67 8.47 

4 Ceftazidime 1     0.12 1 0 0.78 8.52 

5 Cephalosporin C  1    16 1 0 -2.18 8.16 

6 Cefotaxime  4 2   0.12 3 1.585 0.14 7.62 

7 Cefepime 1 1    0.0075 1 0 -1.54 8.73 

8 Cefpirome 1,2     0.015 1.5 0.585 1.57 8.99 

9 Ceftriaxone 1 2    0.015-0.12 1.5 0.585 -0.01 8.66 

10 Cefuroxime 16  8   1.56-2 12 3.585 -0.24 8.82 

11 Cefamandole 4, 8  4   4 5.33 2.415 -0.05 8.28 

12 Cefoperazone 2     0.03 2 1 -0.11 11.03 

13 Cefmetazole 1 1 2   0.05 1.33 0.415 -0.38 8.44 

14 Cefazolin 1 1    0.39-0.5 1 0 -0.4 8.32 

15 Cefsulodin 1 1    16-64 1 0 0.6 9.54 

16 Penicillin G 2 32    8-16 17 4.087 1.92 6.99 

17 Penicillin N  1    8 1 0 -1.43 7.82 

18 Carbenicillin 1, 4 4 1   1.56-8 2.5 1.322 1.13 7.07 

19 Ampicillin 2  2 4  0.78-12.5 2.67 1.415 0.88 7.07 

20 Amoxicillin 1     4 1 0 0.75 7.79 

21 Oxacillin 512  256   1024 384 8.585 2.05 8.77 

22 Sulbenicillin  4 1   8 2.5 1.322 0.37 7.33 

23 Mezlocillin 32     1 36 5.170 0.21 10.16 

24 Nafcillin  128 128   200 128 7 3.21 8.84 

25 Cloxacillin 128 256 128   256-512 171 7.415 2.61 8.56 
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Table 2.1 continued… 

26 Azlocillin 4, 8     16 6 2.585 0.2 9.92 

27 Piperacillin 16     4 16 4 0.67 10.92 

28 Aztreonam   1   0.05 1 0 0.06 7.87 

29 Mecillinam 2     0.5 2 1 1.41 6.95 

30 Faropenem   4   0.39 4 2 0.24 6.98 

31 Imipenem 1     0.12 1 0 -0.19 7.36 

32 Latamoxef  1    0.12 1 0 0.22 8.43 

33 Chloramphenicol    8 4 4-6.25 6 2.585 0.11 7.27 

34 Florfenicol    8  6.25 8 3 0.98 8.45 

35 Methotrexate    8  640 8 3 -0.91 9.48 

36 Acriflavine    128  400 128 7 2.56 9.39 

37 Proflavine    8  100 8 3 2.10 5.99 

38 Tetracycline    8  1.25 8 3 -0.56 8.88 

39 Sulfacetamide    1  2000 1 0 0.15 6.27 

40 Novobiocin 32  64 64  32-100 53.3 5.736 3.07 8.68 

41 Nalidixic acid    2  3.125 2 1 0.95 9.62 

42 Ethidium bromide    256  800 256 8 4.33 9.01 

43 Ciprofloxacin    4  0.01 4 2 -0.57 9.07 

44 Norfloxacin    1  0.004 1 0 -0.47 9.46 
aThe MIC ratio is the ratio of minimum inhibitory concentration (MIC) in the presence of efflux pump to the MIC in the absence of the 
pump. All reported MIC ratios are for the E. coli AcrAB-TolC pump, or the closely related S. typhimurium homolog.  
bAll WT strains used include JC7623, SH5014, TG1, HS414 and ECM1194 while all pump knockout strains include JZM120, 
SH7616, KAM3/pHSG398 or pHSG299, HS832 and ECM1694. 
cLogP was predicted by the ALogPs method [41-43].  
dThe molecular width of each efflux substrate was calculated by performing a molecular dynamics simulation of 1 ns duration, 
followed by aligning the farthest atoms along the Z axis and measuring the projection of all other atoms on the XY plane. Assuming 
that the molecule spins rapidly, the largest such projection gives us a rough measure of its molecular width. 
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Figure 2.1. Docking Efflux Substrates Into Different Regions of AcrB and TolC. All 

32 -lactam and 12 non--lactam structures were docked into AcrB and several 
overlapping regions of TolC. (A) The hydrophobic pocket of AcrB is shown for both 
binding state (blue) and extrusion state (green) conformations.  The numbered arrows 
indicate the specific locations of AcrB in which the substrate molecules were docked: 1) 
binding state, 2) intermonomer region, 3) the extrusion state.  (B) Molecular surface of 
the TolC channel shown colored according to cavity depth. The peaks are shown in 
copper brown, while troughs are shown in blue. (C) Ribbon cartoon of a TolC monomer, 
depicting its twisted shape. (D) The straightened cartoon avatar of one TolC monomer, 
showing different zones where antibiotic structures were docked. All the zones 
overlapped sufficiently to ensure a thorough investigation of molecular interactions 
between the entire TolC lumen surface and each antibiotic. 
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2.2.4 LogP calculations.   

LogP was calculated by using an online server [44], which gave values of multiple 

LogP prediction methods including ALogPs, ALogP, MLogP, XLogP2 and XLogP3 [44-

46] that are based on different principles and yet are known to predict LogP values quite 

well.  Our regressions, however, stipulated that only one set of LogP values could be 

used in any resulting equation in order to avoid using multiple highly correlated 

descriptors, which would have led to models with exaggerated statistical parameters.  

The best correlation between predicted LogP and efflux was shown by ALogPs values.  

For comparison and to evaluate the significance of differences between LogP calculated 

for charged and uncharged forms of the molecules, LogP values were also calculated 

for the β-lactams using HINT [39] (―calculate method‖, ―essential‖ hydrogens only).   

2.2.5 Prediction of molecular width by molecular dynamics simulations.   

Considering an efflux pump to be a tubular passage, one descriptor that we 

expected to correlate with efflux was molecular width, i.e., it should have a negative 

correlation with efflux, akin to a very large ball not being able to pass through a tubular 

pipe.  For this purpose, we used molecular dynamics simulations to calculate the 

effective width of the efflux substrates.  Figure 2.2 describes the physical concept 

behind our calculations: we aligned each structure with the z-axis and calculated the 

projections of its atoms on the x- and y-axes.  The largest projection for each structure 

was taken as its width.  For completeness, we ran a 1 ns simulation for each molecule 

using the Sybyl molecular dynamics module at 300K, recording snapshots every fs and 

performed width calculations every 100 fs of simulation.  The resulting average of 
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widths, calculated using 10,000 conformers for each ligand, was used as the molecular 

width descriptor.  

 

Figure 2.2. Calculation of Molecular Width. The figure shows ampicillin depicted in a 
3D coordinate system, with the longest pair of atoms aligned with the Z axis. Projection 
of an atom on the XY plane is shown and its length is depicted by R0. The largest X or Y 
component of all such projections was taken as the radius of a cylinder C that can hold 
the entire structure, which is an approximate measure of the width of the structure. 
 

2.2.6 3D-QSAR methods.   

The 3D-QSAR analyses were performed using the Comparative Molecular Fields 

Analysis fields (CoMFA) module of Sybyl.  The β-lactam molecules were manually 

aligned based on the common -lactam substructure and re-minimized to ensure no 

structures with high internal strain energy were present during analysis.  The set of 32 
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-lactams was divided into two sets, a training set of 24 compounds and a test set of 8 

compounds using a random number generator to avoid any bias in selecting training 

and test sets.  3D-QSAR studies were performed for the charged and neutral forms 

separately.  All compounds thus aligned were placed in a grid (spacing 1 Å, margin 4 

Å).  Both standard CoMFA fields (hydrogen bonding, electrostatic and steric 

parameters) and HINT fields (hydropathic) were calculated at each grid point.  Partial 

Least Squares (PLS) and Sample-distance Partial Least Squares (SAMPLS) [47] 

analyses were performed to correlate positions/properties of various chemical 

substituents with efflux values.  Various descriptor field combinations were 

comprehensively explored, creating several models to explore the predictability of each.  

The selected best models, i.e., those showing highest cross-validated r2 (q2) at a 

minimum (optimum) number of components, identified the descriptor field sets to be 

used for further analysis.  

 

2.2.7  The systems hydropathy method.   

Using solely the 32 β-lactams, a statistical analysis of docking/scoring scores and 

substrate physicochemical properties as descriptors was performed using PLS and 

SAMPLS.  During this investigation, only one predicted LogP value was used in any 

given regression equation to avoid using multiple correlated descriptors. An exhaustive 

search through the various HINT score sets calculated, as described above, for 

substrate binding to the various pump zones, singly and in combination, was performed 

to find the best possible descriptor combination.  This model (vide infra), i.e., the 



 

 

66 

 

combination of descriptors that best quantified β-lactam efflux values, was then 

extended to the non-β-lactam set. The complete set of 44 compounds was separated 

into training sets of 33 compounds and test sets of 11 compounds.  Cross-validation 

was performed on these training sets and test sets to confirm internal stability of the 

models. 

2.3  RESULTS AND DISCUSSION 

The intrinsic function of efflux pumps is to expel extraneously acquired molecules 

that could harm the cell.  These are promiscuous proteins that are largely responsible 

for antibiotic resistance in Gram-negative bacteria.  In contrast to normal receptors and 

enzymes that bind or else catalyze reactions involving small molecules at a specific site, 

the function of these proteins is to transport these small molecules – usually over fairly 

large distances.  Perhaps due to this difference in function and the multiple steps 

involved in what is clearly a dynamic rather than static process, their activity has been 

resistant to computational chemistry/biology attempts at prediction.  In fact, for a long 

time, the only useful known trait of the AcrA-AcrB-TolC efflux pump was that it 

transports hydrophobic molecules more easily [24].  However, recently available 

crystallographic data for the AcrB and TolC components of this efflux pump has enabled 

a more systematic and structural evaluation of the efflux mechanism [34].   

We believed that this emerging structural information for pump molecules, combined 

with modeling tools that effectively characterize hydrophobic interactions and related 

effects, could illuminate the process of efflux.  Our key technology is the HINT model 

[39-41], which is an empirical modeling tool based on the free energy of solvent transfer 
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between two phases, 1-octanol and water, representing hydrophobic and polar 

biological environments, respectively.  HINT has been used to evaluate ligand binding 

[42,43], protein-protein associations [48-50] and other phenomena involving biological 

molecules [51,52] and has been generally successful in quantitating the free energies of 

these interactions.  In addition, qualitative representations of biological processes 

involving molecular associations have been developed within the HINT paradigm; e.g., 

we recently developed molecular models validating previously proposed dual site 

mechanisms for inhibition of paramyxovirus hemagluttanin-neuramindase [53,54].   

In obtaining and curating a high quality and relevant data set for our analysis, we 

restricted this study to 32 -lactam compounds (see scheme 2.1) and 12 non-β-lactams 

from several families (see scheme 2.2), whose efflux data was available in published 

reports [23-25,27,37].  Although similar data for them is available, the aminoglycoside 

and macrolide classes of antibiotics are not included in the curated set; the former 

because they are hydrophilic and therefore not effluxed as readily by the AcrAB pump - 

the AcrD pump is apparently more responsible for their efflux than the AcrB pump 

[55,56] and the latter because of their large size relative to that of the AcrB entrance.  

However, we cannot discount the possibility that these antibiotics might enter TolC via a 

different route [57], thus still involving parts of the AcrA-AcrB-TolC pump (and 

concomitantly being affected by the pump knockout mutants).  We recognize that a 

much larger but proprietary set of data is very likely available within pharmaceutical 

companies, but wanted the entire data set to be available from the primary literature for 

this initial work.  The experimental measure of efflux used in this study is Log2(MIC 
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ratio), where the MIC (minimum inhibitory concentration) ratio is the MIC for a cell with 

an intact AcrA-AcrB-TolC pump normalized by the MIC for that cell with the pump 

knocked out.  Using this ratio in lieu of MIC itself has benefits as it more clearly 

represents the change in effectiveness of an antibiotic.  In contrast, MIC is a poorer 

target metric as it is dependent on a number of factors such as concentration of cells 

per unit volume of culture and is thus more laboratory and procedure-dependent.  

2.3.1  3D-QSAR.   

It seemed possible that binding in the AcrB pocket would affect the efflux of 

substrates more than binding elsewhere in the pump because it has been shown that 

this protein must undergo a conformational change in order to pass substrates into TolC 

[34].  One way to test this is to perform 3D-QSAR analyses where the interactions 

between substrates and a hypothetical but undefined receptor are simulated by the 

molecular fields of the substrates.   This approach was applied to the β-lactam data set 

after conformationally aligning these molecules to simulate their putative binding modes 

within a binding site presumed to be AcrB.  If such an analysis provided predictive 

results with respect to efflux, then we could at least partially address our goal of 

predicting high or low efflux.  We performed this 3D-QSAR study of the β-lactam data 

set with molecules in both their charged and neutral forms using the Comparative 

Molecular Field Analysis (CoMFA) method of Cramer [58].  The results seem promising 

for neutral compounds, with a cross-validated r2 (q2) = 0.53 (4 components) on the 

training set of 24 compounds and a (predictive) r2 = 0.80 for the test set of 8 

compounds, as illustrated for a typical run in Figure 2.3.  This model used the CoMFA 
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Standard Steric field, H-bond Steric field and H-bond Electrostatics field (0.35), with 

relative contributions of 27%, 38% and 35%, respectively.  Although their internal 

statistical metrics were initially acceptable, CoMFA models for β-lactam substrates in 

their charged state could not be validated.  

However, 3D-QSAR experiments are dependent upon the alignment of a common 

substructure, in this case the β-lactam.  Thus, this model formalism would not be 

utilizable for the extended dataset including the non-β-lactams.  Furthermore, these 

experiments are based on the assumption that substrates bind to a single site in the 

pump, whether in AcrB as we proposed or elsewhere, when in fact AcrB changes 

conformation between its binding and extrusion states [34].  Thus, there must be a 

dynamic change in its interactions with ligands as they are processed.  In fact, the 

binding pocket of AcrB is lined with a number of hydrophobic phenylalanine residues 

[34], indicating a preference for hydrophobic or, at a minimum, less polar substrates – 

suggesting that ligands would more favorably bind in their uncharged forms.   

    At the same time, we cannot ignore the possibility that the phenylalanine rings could 

also be acting as receptors for -cation interactions.  The 3D-QSAR results above 

support the assertion of ―neutral state‖ binding to AcrB and may be interpreted as 

evidence of at least transient binding at this site being a rate-limiting initial step.  In 

contrast, the TolC lumen is exposed to the extracellular environment due to its position 

on the bacterial outer membrane and this lumen is very likely solvated – suggesting that 

ligands bound here would favor their charged form.  The translocation of substrates 

from AcrB to TolC must expose them to water, providing a mechanism for transforming 
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them from their uncharged to charged forms.  Substrates by necessity interact with 

various parts of AcrB and TolC during their efflux extrusion and the process of efflux is 

certainly affected by a multitude of different interactions and thus cannot be completely 

addressed by simple methods such as 2D or 3D-QSAR that are based on molecules in 

a single state, bound within a single well-behaved binding site/mode with the 

concomitant assumption of a pharmacophore recognition-driven process.     

While the 3D-QSAR model is unfortunately not extensible to other substrate families 

because of the requirement that the molecules in the model have a common alignment, 

the results for the β-lactam data set are an indicator of key principles behind the pump 

mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

71 

 

 

 

Figure 2.3 Training set and test set validations for 3D-QSAR models. Two runs 
show variable predictions of efflux values of substrates.  The (A) training set and (B) 
test set for the first run are shown along with the (C) training set and (D) test set for the 
second run.  The cross-validated r2 (q2) is indicated for the training sets and the 
predictive r2 is indicated for the test sets.  While the first run shows a useful model, the 
second signifies instability of the model. 
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2.3.2   What factors might affect efflux?   

The extrusion of ligands through an efflux pump such as AcrA-AcrB-TolC must 

depend on a number of factors, including certain properties of the substrates 

themselves as well as their interactions with the protein complex as measured by 

docking/scoring calculations.   

First, the size of the substrate molecules would seem to be one of their most critical 

features.  Molecular widths were calculated by molecular dynamics simulations, as 

described above in the Experimental Section.  These values for each molecule are 

listed in Table 2.1.  In designing this parameter, we had presumed that there would be a 

negative correlation, i.e., molecules with larger cross sections would be effluxed with 

more difficulty.  Also, the previous reports of a correlation between LogP and efflux [31] 

mandated the use of this descriptor.  Although it would definitely be preferable to 

incorporate experimental LogP values in our study, they are not uniformly available.  

The LogP calculations were performed using several methods, but the best correlation 

between predicted LogP and efflux was shown by ALogPs (Table 2.1).  LogP alone (see 

Figure 2.4) is clearly insufficient to describe efflux effectively.  In addition, to account for 

the dynamic nature of efflux, intermolecular interactions between efflux substrates and 

various zones or compartments of the pump must be coordinated in order to transport 

the substrates through the pump.  Thus, the substrate molecules were docked into 

various locations within AcrB and TolC.  These docked positions are direct 

representations of interactions between substrate and the efflux pump subunits. Using 
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the HINT model to score these interactions gives us an additional advantage of taking 

desolvation energy and entropy into account at these loci [39].  

2.3.3 Systems hydropathy.   

Since efflux pumps conduct substrates from the periplasmic space to the extracellular 

medium, this process is affected in multiple ways by interactions of the substrates with 

the transporter protein, which can be simulated by docking the substrates in the AcrA-

AcrB-TolC pump.  However, as there are not specific and well-defined docking region(s) 

within the pump, the substrates were docked into multiple zones or compartments, in 

both their charged and uncharged forms, as illustrated in Figure 2.1.  Important sites 

were thus initially surveyed with -lactams within the binding and extrusion states of 

AcrB. Since the TolC lumen is open to the extracellular space, ligands present here 

should be solvated and exist mostly in their charged forms.  Again, the -lactams were 

used to survey the potential sites within TolC.  Compartmentalization of individual 

events (albeit of a different variety and on a different size scale) is also seen in the 

‗systems biology‘ approach; each compartmentalized effect is recorded individually, but 

the effects are viewed on a holistic level in order to study trends that cannot be 

observed by the reductionist approach.  Similarly, we interpret the larger efflux effect as 

partially being a result of compartmentalized hydropathic interactions between substrate 

and pump, leading us to call our method ‗systems hydropathy‘.  
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Figure 2.4 Correlation Between ALogPs Predicted LogP Values and Efflux. The 
plot of predicted LogP values versus efflux shows an r2 value of 0.48, illustrating the fact 
that LogP alone does not allow prediction of antibiotic efflux.  Also shown is the 
quadratic fit of Efflux with respect to LogP (Efflux = a + b*LogP + c*Logp2), which shows 
an r2 value of 0.55. 
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A partial least squares (PLS) analysis was conducted to explore the interplay 

between the substrate molecular properties and the interactions between the 

charged/uncharged -lactam antibiotics and the AcrB and TolC proteins.  Multiple 

equations of correlation were obtained through exhaustive exploration of the descriptor 

space.  Only those descriptors that showed both interpretable trends and significant 

contributions to a model fitting the set of 32 β-lactam molecules were retained.  With the 

important descriptors and binding sites thus identified, the 12 non-β-lactam substrates 

were docked and scored at those sites.  The best combination of descriptors yielded the 

final multilinear model: 

Efflux = - 1.31 – (1.7x10-4)*HINTnB – (5.3x10-4)*HINTcE + (6.9x10-4)*HINTAcrB(hole) – 

(1.0x10-3)*HINTZ3 + 1.10*LogP + 0.43*MolWidth                         (eq. 1) 

Here, HINTnB is the HINT score of the neutral substrate docked to the AcrB binding 

state. Similarly, HINTcE is the HINT score of the charged substrate in the AcrB extrusion 

state. HINTAcrB(hole) and HINTZ3 represent the HINT scores of the charged substrate at 

the intermonomeric space of AcrB and zone 3 of TolC, respectively.  LogP values are 

as predicted by the ALogPs algorithm, chosen as described above due to their better 

correlation with efflux and MolWidth is the molecular width. A table with all descriptor 

values for each compound is given in appendix B. 

Cross-validation with leave-one-out on the data set yielded a q2 of 0.56 and an r2 of 0.66 

with 2 components for equation 1.  Figure 2.5A displays the predictive model of 

equation 1 and table 2.2 sets out the predicted efflux and deviations calculated.  To 

further evaluate the predictive ability of the model, the data set of 44 compounds was 
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randomly divided into training sets of 33 compounds and test sets of 11 compounds.  

New models were built with leave-one- out cross-validation over the training sets and 

used to predict the efflux of their corresponding test sets.  The predicted test set efflux 

for a typical run of this nature is illustrated in Figure 2.6.  

It is probably more important to classify substrates as being susceptible or not to 

efflux than to predict their numerical MIC ratio.  Thus, using a definition of ―high‖ efflux 

as ≥ 4, the equation 1 model was able to identify low/high efflux molecules with a 

93.18% (41/44) success rate.  Other results, i.e., with different high/low cutoffs, are 

summarized in Table 2.3.  Note that even the predictions in error in terms of this binary 

classification scheme are often fairly close to the experimental efflux (Table 2.2).  In 

summary, this method allows reliable predictions for whether a given antibiotic is a good 

substrate for efflux by the AcrA-AcrB-TolC pump.  
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Table 2.2.  Efflux predictions for data set molecules. 

Antibiotic 
Average 

MIC ratio
a
 

MIC ratio prediction (Equation 1) MIC ratio prediction (Equation 2) 

MIC ratio Error MIC ratio Error 

1 4 3.34 -0.66 2.78 -1.22 

2 2.5 4.00 1.50 2.34 -0.16 

3 2 10.13 8.13 6.48 4.48 

4 1 3.31 2.31 2.73 1.73 

5 1 0.42 -0.58 1.22 0.22 

6 3 2.35 -0.65 1.89 -1.11 

7 1 0.69 -0.31 2.18 1.18 

8 1.5 6.21 4.71 6.39 4.89 

9 1.5 2.37 0.87 2.57 1.07 

10 12 3.64 -8.37 3.11 -8.89 

11 5.33 1.19 -4.15 1.45 -3.88 

12 2 3.46 1.46 4.97 2.97 

13 1.33 1.50 0.16 1.44 0.11 

14 1 1.61 0.61 1.28 0.28 

15 1 2.32 1.32 2.43 1.43 

16 17 13.70 -3.30 9.06 -7.93 

17 1 1.21 0.21 1.39 0.39 

18 2.5 8.77 6.27 5.16 2.65 

19 2.67 1.72 -0.94 1.55 -1.12 

20 1 2.88 1.88 1.48 0.48 

21 384 59.84 -324.17 83.29 -300.72 

22 2.5 2.09 -0.41 1.62 -0.88 

23 36 4.88 -31.12 4.04 -31.97 

24 128 64.80 -63.20 101.62 -26.38 

25 171 133.07 -37.60 437.76 267.10 

26 6 8.33 2.33 5.30 -0.70 

27 16 14.55 -1.45 8.80 -7.20 

28 1 1.80 0.80 1.33 0.33 

29 2 12.73 10.73 10.01 8.01 

30 4 4.49 0.49 4.25 0.25 

31 1 0.41 -0.59 0.79 -0.21 

32 1 3.49 2.49 2.46 1.46 

33 6 0.76 -5.24 1.67 -4.33 

34 8 11.73 3.73 5.61 -2.39 

35 8 2.89 -5.11 3.26 -4.74 

36 128 34.78 -93.22 30.80 -97.20 

37 8 9.09 1.09 6.29 -1.71 

38 8 4.35 -3.65 3.38 -4.62 

39 1 1.78 0.78 1.28 0.28 

40 53.3 43.32 -9.98 47.34 -5.96 

41 2 9.12 7.12 6.78 4.78 

42 256 100.92 -155.08 307.41 51.41 

43 4 2.56 -1.44 3.33 -0.67 

44 1 3.18 2.18 3.53 2.53 
a
The MIC ratio is the ratio of minimum inhibitory concentration (MIC) in the presence of efflux pump to the 

MIC in the absence of the pump. 
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Table 2.3  Classification accuracy of efflux predictive model. 

Definition of “High” 
Efflux 

% Correct 
Predictions (Eqn. 1) 

% Correct 
Predictions (Eqn. 

2) 

≥4 93.18 (41/44) 93.18 (41/44) 

≥3 79.55 (35/44) 84.09 (37/44) 

≥2 72.73 (32/44) 70.45 (31/44) 

≥1 77.27 (34/44) 72.73 (32/44) 
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Figure 2.5 Correlation Plots for Predicted vs. Experimental Efflux as Obtained 
with the Systems Hydropathy Approach. Predicted versus experimental efflux values 
plotted for all 44 ligands based on (A) equation 1 and (B) equation 2. 
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Figure 2.6 Systems Hydropathy Validation. Predicted Versus Experimental Efflux For 
Training and Test Set Substrates.  (A) Correlation between the predicted and 
experimental efflux values for training set of 33 compounds using leave-one-out cross-
validated model built with descriptors of eq. 1.  (B) Correlation between the predicted 
and experimental efflux values for independent test set of 11 compounds using equation 
of (A).  (C) Correlation between the predicted and experimental efflux values for training 
set of 33 compounds using leave-one-out cross-validated model built with descriptors of 
eq. 2 (D) Correlation between the predicted and experimental efflux values for 
independent test set of 11 compounds using equation of (C). 
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2.3.4 Model and descriptor interpretation.   

A key requirement for a universally useful predictive model is that the 

physicochemical implications of the model‘s descriptors are interpretable and intuitive.  

The descriptors must yield not only statistical information but also chemical information 

that can be applied to fruitful drug design.  However, when considered together, as in a 

regression equation, the model should have more value than the sum of its parts, i.e., 

the individual descriptors.  Table 2.4 shows the fractional contribution of each descriptor 

for the model.  All descriptors were found to have a significant contribution in the 

prediction of efflux values, with LogP having the largest, a nearly 41% contribution, to 

the model.  In this section the descriptors and their qualitative and quantitative 

contributions to the overall model are described.  

First, we should describe the roles that effects represented by LogP may play in the 

biological process.  LogP represents more than solubility and related phenomena. This 

is especially true in the study of MIC ratios because the phenomenon is composed of 

two independent events: influx of the antibiotic through the outer membrane, followed by 

extrusion of the same by an efflux pump. LogP plays an important role during 

permeation of the antibiotic through the outer membrane, as has repeatedly been 

described by Lipinski‘s rules [59,60]. Also, since the AcrB binding pocket, which 

captures antibiotics and other substrates to commence efflux, is hydrophobic, it is not 

hard to imagine the importance of this descriptor in the process of efflux.  Especially 

when the range of compounds is large, LogP can often be better represented in a 

quadratic form in QSAR equations, i.e., a + b*LogP + c*LogP2 [61,62].  This form allows 
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for the likely scenario that both too high and too low LogP are detrimental to the 

biological effect being modeled and that there is an optimum range of LogP.  In the case 

of efflux (i.e., log2[MIC ratio]), even though the linear relationship between LogP and 

efflux, i.e., Efflux = a + b*LogP, is fairly good (r2 = 0.48), there is a modest improvement 

with the quadratic to r2 = 0.55 (see Figure 2.4).  Both forms of the regression support 

our expectation that more hydrophobic moieties are more easily effluxed by the pump. 

The quadratic probably provides a better fit due to the peculiarities of the data – in that 

there is no negative efflux – presumably, compounds with very negative LogP would 

have an efflux of zero.  Overall, both support the model that ligands are initially captured 

by AcrB and then transported into the solvated TolC lumen and that those ligands with 

highly negative LogP values will be unable to enter the hydrophobic AcrB binding 

pocket.  We hypothesize that ligands with highly positive LogP values (more positive 

than in this data set) would be able to easily enter AcrB but then resist deposition into 

the polar environment of the TolC lumen and thus ―clog‖ the pump.  

Table 2.4.  Fractional contribution of descriptors to models.  

Descriptor 
Percent 

Contribution 
(Equation 1) 

Percent 
Contribution 
(Equation 2) 

LogP2 - 20.5 

LogP 40.9 22.0 

HINTZ3
2 - 12.7 

HINTZ3 18.2 10.9 

HINTAcrBhole
 2 - 4.2 

HINTAcrBhole 11.9 3.5 

HINTnB 2.6 0.7 

HINTcE 13.0 13.3 

MOLWIDTH 13.5 10.6 
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It is likely that HINTnB appears in the equation because these substrates should bind 

to the AcrB protein‘s binding state in their neutral form.  It has previously been proposed 

that efflux pumps capture antibiotics from the periplasmic region [34].  Since this region 

is lined on either side by lipid bilayers, this environment is less polar than that of the 

cytosolic medium.  This would, thus, partially shift the acid-base equilibria for ligands in 

the periplasmic space towards their non-ionic (more hydrophobic) forms.  As there are 

several phenylalanine residues in the AcrB binding pocket, it is thus quite hydrophobic 

and this, the entrance to the pump, would preferentially bind less polar ligands, or those 

that are in a non-ionic form at the time of capture.  This would suggest that a number of 

substrate molecules linger near the entrance and only pass within when their 

equilibrium-mediated ionization state matches the requirements of the AcrB binding 

pocket.  Confusingly, this term has a negative correlation coefficient that suggests 

strong binding here disfavors efflux.  This, in a sense, would appear to be true, as very 

strong binding to this site should cause the substrate to be ―stuck‖ and not effluxed.  Of 

course, negligible binding to this site should also be a negative factor, but presumably, 

intermediate binding should favor efflux.  Much as above, this should be a classic case 

for using quadratic descriptors (e.g., a + b*HINTnB + c*HINTnB
2) in constructing 

regression models, but as the contribution of HINTnB in the model of equation 1 is quite 

small (see Table 2.3), we should not expect a strong correlation in models using only 

this independent variable in any case.  Thus, as observed in figure 2.8A, the attempt to 

fit efflux with only the HINTnB quadratic descriptor yielded a poor regression (r2 = 0.030) 

compared to the linear fit of efflux with HINTnB (r2 = 0.028).  Moreover, it must be noted 
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that while a high HINTnB score would favor the capture of antibiotics by AcrB, this 

phenomenon can also be facilitated, at least in part, by simply ―partitioning‖ molecules 

into the AcrB binding pocket, a phenomenon that is likely encoded in the dominant LogP 

descriptor.  

After AcrB captures a ligand, it undergoes a conformational change as observed 

in its crystal structure (PDB code 2drd) [34], where both ligand-bound and unbound 

states were observed in the same multimeric structure.  The conformational change 

opens up the binding pocket towards the TolC lumen.  The ligand would now likely be 

bathed in water entering the AcrB binding pocket from the extracellular environment 

through TolC.  This (suddenly) now polar environment would shift the acid-base 

equilibria towards favoring charged forms of the ligands.  Thus, we propose the 

significance of the HINTcE descriptor that represents binding in the AcrB extrusion state 

in our models.  Similar to above for HINTnB, the HINTcE descriptor also has a negative 

correlation coefficient in the models and thus also represents a complex effect.  In this 

case the effect was not better modeled in this data set by using a quadratic 

representation: a + b*HINTcE + c*HINTcE
2 (r2 = 0.148) cf. linear (r2 = 0.148, figure 2.8B), 

so the simple explanation is that tight binding here is detrimental to efflux.  Substrate 

ligands washed out of the hydrophobic pocket of AcrB in their charged forms would 

have a higher affinity towards the intermonomeric region that has a higher density of 

charged residue sidechains.  The positive coefficient of HINTAcrBhole is indicative of the 

―pull‖ exerted on ligands by this region, enabling it to exit the extrusion state of AcrB 

towards the TolC channel.  For this descriptor, the quadratic representation (r2 = 0.044) 



 

 

85 

 

gives a slightly better correlation than that of the simple linear model (r2 = 0.003), but 

both are poor, in concert with the small contribution of this descriptor to the model.  This 

does suggest the possibility that both weak and tight binding can inhibit efflux. Linear 

and quadratic relationships between efflux and HINTAcrBhole are demonstrated in figure 

2.8C. 

On traversing through the TolC lumen, the substrate would successively interact with 

multiple positions on the protein. In accordance with our theory that stronger 

interactions slow down extrusion of ligands, the term HINTZ3 correlates negatively with 

efflux in our regression equations. This is easily explained by looking at the inner 

surface map of TolC (figure 2.9A). Zone 3, which happens to be a deep pocket, is found 

in the center of the TolC lumen surface (figure 2.9B).  Although a transient attraction 

between the substrate and the residues at this site may favor the substrate‘s passage, 

strong interaction with this deep pocket would slow or halt the passage of ligands 

through the TolC lumen, thereby reducing the extent of efflux by the pump.  This effect 

is somewhat better modeled with a quadratic descriptor (r2 = 0.219) rather than linear (r2 

= 0.192), which are delineated in figure 2.8D.  

Molecular width (MolWidth) appears in equation 1 and possesses an unexpected 

positive correlation coefficient; i.e., larger substrates are more favorably extruded by the 

pump.  We are proposing that this effect arises from ‗induced fit‘ of larger substrates on 

AcrB, thus forcing AcrB to transform from the unbound and flaccid access state to the 

much larger binding state.  Also, the substrate bulk could force a change in tertiary 

structure that causes AcrB to assume the extrusion state. There is experimental 
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evidence to support this hypothesis: the crystal structure (PDB ID 2drd) of AcrB clearly 

shows that the binding pocket is shrunken in the access state, while in the binding state 

it is wide open with an entrenched ligand [34].  After releasing the ligand, the pocket 

returns to its shrunken conformation in the extrusion state.  It has previously been 

suggested that the proton pump mechanism provides energy for conformational change 

[63].  We propose that binding of larger ligands might supplement (or trigger?) this effect 

by providing steric ―encouragement.‖ However, in agreement with our initial assumption, 

we still believe that transitioning beyond a certain size should also be detrimental for 

efflux. In other words, this descriptor also should be better represented in quadratic 

form. However, as observed in figure 2.8E, the quadratic relationship (r2 = 0.055) 

yielded only a small improvement when compared to the linear model (r2 = 0.054). This 

is possibly due to the small range of molecular width possessed by the compounds in 

our dataset. 

To consolidate the above information, we suggest equation 2, in which LogP, 

HINTAcrBhole and HINTZ3 are modeled in their quadratic forms: 

Efflux = - 2.09 – (4.9x10-5)*HINTnB – (6.1x10-4)*HINTcE + (2.3x10-4)*HINTAcrBhole – 

(6.8x10-4)*HINTZ3 + 0.66*LogP + 0.44*MolWidth + 0.22*LogP2 + (2.1x10-

7)*HINTAcrB(hole)
2 + (1.04x10-7)*HINTZ3

2                                                                (eq. 2) 

This model has q2 = 0.63 and r2 = 0.73 with 2 components.  Its results are presented in 

Figures 2.5B, 2.6C and 2.6D and Tables 2.2, 2.3 and 2.4.  While a noteworthy 

improvement in statistical parameters was observed, no apparent change in the model‘s 

ability to correctly predict high/low efflux (Table 2.3).  However, it must be 
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acknowledged that this model is at higher risk of being statistically invalid because of 

the addition of three more fitted parameters for the coefficients of the squared terms. 

 

 

Figure 2.7 Surface Maps for TolC. (A) An electrostatic surface map of TolC shows the 

surface of the TolC lumen (enclosed by the red circle) (B) Zone 3 of the TolC efflux 

pump is a deep cavity on the wall of the lumen, with blue depicting peaks while blue-

green depicts troughs.  
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Figure 2.8  Relationship between Efflux and Individual Descriptors. Linear and quadratic 
models for the relationship between efflux and each descriptor used in this study are 
demonstrated. Efflux as a function of (A) HINTnB and (B) HINTc# are demonstrated. 
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Figure 2.8 continued. Efflux as a function of (C) HINTAcrBhole and (D) HINTZ3 are 

demonstrated. 
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Figure 2.8 continued. Efflux as a function of (E) molecular width. 
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Figure 2.9 summarizes our proposed mechanism for the AcrA-AcrB-TolC efflux 

process. The dielectric environment within the periplasmic region is unknown, but it is 

likely that there is less water present between the two lipid bilayers than in either the 

extracellular or cytoplasmic regions (see Figure 2.9A that indicates the color scales 

used in the remaining panels of Figure 2.9).  Furthermore, the periplasmic space is 

occupied by peptidoglycan chains and a gel containing a wide variety of enzymes, 

which should tend to reduce the polarity.  Efflux substrates in the periplasm would exist 

in a reversible equilibrium between their charged and uncharged forms that slightly 

favors the uncharged forms (Figure 2.9B, inset) in this (slightly) more hydrophobic 

region.  The uncharged forms will be more likely captured by the AcrB hydrophobic 

pocket (Figure 2.9B), upon which AcrB will assume the extrusion state (Figure 2.9C) 

partly due to the bulk of the substrate, as indicated by the positive correlation between 

efflux and molecular width.  It should be pointed out that if a substrate molecule binds 

too tightly to the binding state form of AcrB, or if it cannot sterically trigger the extrusion 

state of AcrB, that substrate would appear to be immune from extrusion and may block 

the pump‘s function.  The absence of favorable substrate binding at this state would 

also preclude efflux.  Once the extrusion state is formed, the AcrB entrance is closed 

and thus isolated from the periplasmic space but now open towards TolC, exposing the 

substrate to water present in the TolC lumen (Figure 2.9C).  Similarly, the ligand‘s 

ionization equilibrium is concomitantly shifting towards the charged form (Figure 2.9D, 
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Figure 2.9 Proposed Efflux 
Mechanism. (A) Color ramps 
for hydrophobic-polar (green 
to purple) and acid-base 
(blue to red) spectra.  (B) 
Antibiotics present in the 
periplasmic region exist in 
equilibrium between their 
charged and uncharged 
states (inset). The uncharged 
forms predominate due to the 
local environment and are 
captured by the AcrB 
hydrophobic pocket. (C) AcrB 
assumes extrusion state 
partly due to the bulk of the 
substrate and is isolated from 
the periplasmic space. The 
cavity is now open towards 
TolC, exposing the substrate 
to water present in the TolC 
lumen. (D) The ionization 
equilibrium shifts towards the 
charged form (inset) and the 
substrate is released into the 
intermonomeric space of 
AcrB. (E) The charged efflux 
substrate is now able to 
diffuse through the water 
present in the TolC lumen. 
The electric field present 
inside the TolC lumen causes 
orientation of the substrate 
such that negatively and 
positively charged groups 
point towards opposite ends 
of the protein. (F) The efflux 
substrate is released into the 
extracellular space. 
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inset), leading to release of the substrate into the intermonomeric space of AcrB (Figure 

2.9D).  Again, if the substrate ligand binds too weakly or too tightly to the AcrB extrusion 

state, it may not be effluxed and, in fact, may in the latter case block the pump.  

However, both these ―clogging‖ events involve equilibria that may reverse to unclog the 

pump.  The charged efflux substrate can now diffuse through water present in the TolC 

lumen (Figure 2.9E).  Ultimately the substrate will be extruded into the comparatively 

polar extracellular medium (Figure 2.9F). 

 

2.4  CONCLUSIONS 

Despite the engineering of Nature to facilitate the extrusion of undesired molecules 

within a cell, there are likely to be multiple reasons why a particular substrate is 

resistant to efflux.  In addition to the obvious descriptors of hydrophobicity (LogP) and 

size (although the correlation with molecular width we observed was initially 

counterintuitive), the ligand‘s ability to bind and release from various pockets within the 

pump machinery is at least as critical as the aforementioned descriptors that are not 

cognizant of its interactions with the pump.  However, despite the relatively successful 

predictions of efflux by these models, there are a number of considerations inherent in 

the approach that should be discussed.  Primary is the dataset itself.  Unfortunately, the 

available data is both relatively small in quantity and skewed towards the lower efflux 

range, which corresponds to the range of molecules of more clinical interest.  Our 

development of regression model equations with six descriptors on 44 substrates using 

PLS is not ideal, while our expanded model with three of these variables represented in 
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quadratic form is potentially bordering on overfitting.  Although we have some comfort 

from the fact that these models were subjected to cross-validation, which yielded good 

statistical parameters, Wold and Dunn [64] state that, even when using PLS, regression 

studies are only valid when the number of independent variables is far less than the 

number of dependent target values. Clearly, we would like to have a larger data set, but 

restricted this analysis to the -lactam class of antibiotics and some non-β-lactam 

antibiotics because of their loose chemical similarities that, in turn, suggest efflux 

extrusion by the same pump and mechanism.  Data from a wider class of antibiotics are 

potentially available, but their use may be premature in testing a new computational 

method. 

In conclusion, we have proposed the systems hydropathy approach, which has been 

used in this work to predict efflux values of the AcrA-AcrB-TolC efflux pump.  The 

analogy to systems biology stems from our combining the various compartmentalized 

functions of the pump‘s protein components into a holistic model that has more value 

than a reductionist analysis of the pump.  Nevertheless, the model suggested some 

interesting mechanistic details about the efflux process that seem intuitively true.  On 

further development, this approach could be expanded to more non--lactam antibiotics, 

other efflux systems affecting antibiotic efflux and potentially mammalian efflux systems 

that have been shown to extrude, among other molecules, anticancer chemotherapeutic 

agents.  The key puzzle piece is obtaining structural data for the protein components of 

additional pump molecules. 
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CHAPTER 3 

TARGETING PARAINFLUENZA VIRUS TYPE 3 BY VIRTUAL 

SCREENING; THE NEED FOR NEW TOOLS 

3.1 AN INTRODUCTION TO HUMAN PARAINFLUENZA VIRUSES 

Among the four human serotypes of parainfluenza viruses, Human Parainfluenza 

Viruses (HPIV) 1, 2, 3 and 4, HPIV3 is mostly implicated in bronchial pneumonia [1]. All 

the serotypes are known to be causative agents of acute lower respiratory diseases in 

infants and children [1,2]. HPIV3, which belongs to the Paramyxoviridae family of 

negative-stranded RNA viruses, is responsible for approximately 11% of the 

hospitalizations of pediatric patients in the United States [2]. Cell mediated immunity is 

important for preventing parainfluenza related diseases. For example, HPIV3 infection 

in T-cell deficient children can cause fatal giant-cell pneumonia and HPIV pneumonia 

shows 30% mortality in bone-marrow transplant patients [2]. 

Unlike other viral diseases, HPIV primary infections are known to not confer 

permanent immunity [1]. For example, 30% of children with relatively high neutralizing 

antibody counts were reinfected with the virus [2]. In fact in the 1960s, clinical trials of 

the inactivated HPIV 1, 2 and 3 vaccines showed variable amounts of antibody 

responses in seropositive and seronegative individuals, but failed to produce immunity 

[1]. This inability of the human immune system to provide protection against these 
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versatile viruses is a worrying factor, especially due to fears raised by a recent flurry of 

related fatal avian and porcine influenza disease occurrences around the world. 

The plausible impact of these viruses on healthcare (especially pediatric 

healthcare) clearly delineates the importance of drug discovery efforts against the 

human parainfluenza virus. Such an effort has been undertaken, the procedures and 

results of which are described herein. 

3.2 HEMAGGLUTININ-NEURAMINIDASE IN HPIV3 REPLICATION 

The life cycle of HPIV3 starts with the recognition of sialic acid containing 

receptors on the host cell by hemagglutinin-neuraminidase (HN), which then triggers 

another membrane protein (F) [3]. The F protein is responsible for fusion of the viral 

membrane with the host cell membrane [2]. Although sialic acid alone is sufficient to 

trigger HN mediated F protein activity, it must be noted that not all sialic acid-containing 

receptors are recognized equally effectively [4]. Moreover, the neuraminidase function 

of HN is responsible for the release of new virions from the host cell [5] and thus is 

responsible for persistent infectivity of the virus. 

It has been shown that mutations on HN cause modulation of immune responses 

toward this pathogen [2]. However, it is amply clear that unlike the Influenza A virus, 

parainfluenza viruses do not evolve by mutation of this membrane glycoprotein [1]. In 

fact, these viruses show a high sequence homology of 75% between even the human 

and bovine variants. The hemagglutinin and neuraminidase epitopes of HN are 

conserved across both these strains of the virus [1], which suggests the importance of 
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this protein in its life cycle. It is thus logical to devise strategies in order to inhibit this 

protein. 

3.3 INHIBITION OF HEMAGGLUTININ-NEURAMINIDASE STOPS VIRAL ACTIVITY 

In order to understand the inhibition of HN and its mechanism, one must first 

understand the biology behind the assays used to study this phenomenon. Following is 

a description of assays described in literature, which are used to distinguish 

hemagglutination and neuraminidase functions of HN. 

3.3.1 Neuraminidase Assays 

Potier and coworkers introduced a simple fluorometric assay for the quantitative 

assessment of neuraminidase activity [6]. The basic principle of this assay is to 

spectroscopically measure the release of 4-methylumbelliferone from the sodium salt of 

2‘-(4-methylumbelliferyl)--D-N-neuraminic acid, when the substrate is exposed to a 

neuraminidase enzyme (figure 3.1). 
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E x c i t a t i o n: 365 nm
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Figure 3.1 Principle of the Fusion Assay. Release of 4-methylumbelliferone as a result of 
hydrolysis of 2‘-(4-methylumbelliferyl)-a-D-N-neuraminic acid by neuraminidase is measured by 
fluorescence spectroscopy 

 



 

 

103 

 

A similar assay was also developed by Warner and O‘Brien in the same year [7]. 

This method is accurate, with up to a 3% variation [6] observed in the original literature 

by these authors. 

This assay is used to assess the ability of the virus to cleave neuraminic acid 

from receptors of host cells, leading to the destruction of these proteins and enabling 

movement of new virions towards uninfected cells. Those viruses which lack 

neuraminidase activity (or else whose neuraminidase activity is reduced due to the 

presence of neutralizing agents such as antibodies and small molecule inhibitors) are 

unable to travel towards new plausible host cells in order to spread infection. Therefore, 

the most common use of this assay is to ascertain the persistent infective capabilities of 

the virus.  

3.3.2 Fusion Assay 

Horvath et al. have shown that the F protein can mediate membrane fusion of 

cells under the influence of HN [8]. However, in spite of the fact that both proteins are 

expressed by cells persistently infected with HPIV3, they do not fuse with each other, 

but readily fuse with non-infected cells [9]. This is because of the neuraminidase activity 

of HN, which cleaves neuraminic acid from receptors, thereby inhibiting cell fusion 

mediated by the protein. Further support for this theory comes from the fact that 

neuraminidase treated uninfected cells do not fuse with persistently infected cells [9]. 

This phenomenon has been utilized in the development of an effective and 

accurate assay in order to study the recognition of sialic acid (N-acetylneuraminic acid) 
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containing receptors by HN [10]. Cells containing the LacZ gene (genetic code for 

production of -galactosidase) under the control of HIV LTR (HeLa-LTR-gal cells) are 

infected with HPIV3 in order to cause a persistent infection, but as explained above, 

these infected cells do not fuse with one another. These persistently infected cells are 

then exposed to cells engineered to express the HIV Tat protein (HeLa-Tat cells). Only 

when these cells fuse does the Tat protein interact with the HIV LTR, thereby promoting 

the production of -galactosidase by expression of the LacZ gene. The expression 

levels of this enzyme can be measured readily, thereby revealing the extent of cell 

fusion as an indirect measure of HN-receptor interactions.  

3.3.3 Plaque Reductions Assay  

When Bloom, Jimenez and Marcus first introduced the plaque assay [11], it was 

aimed at studying the effect of various antigens on antigen-sensitive cells. Observations 

clearly suggested that on antigen activation, such cells became more capable of 

supporting viral replication. A monolayer of such cells was grown in a petri dish and 

then exposed to live viral cultures. Any free virus was washed away post inoculation 

and the infected cell culture was incubated. Infectious centers were observed as 

plaques, which were directly related to the degree of activation of the antigen-sensitive 

cells. A similar technique was also reported in later years [12]. 

Across time, this technique has been converted to a purely virology technique, 

where the degree of plaque formation suggests the ability of the virus to replicate [10]. 
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The number of plaques being formed is directly proportional to the degree to which the 

virus can replicate. 

 

3.3.4 Hemadsorption Assay 

When persistently infected cell lines are exposed to erythrocytes, whose cell 

membrane contains sialic acid containing receptors, they are adsorbed onto the surface 

of the infected monolayer [10]. An interesting fact is that the persistently infected cells 

fail to fuse with erythrocytes, perhaps because of a difference in membrane composition 

or cytoskeletal stiffness of the latter [13]. After incubation for a short time, washing 

removes any erythrocytes which are not adsorbed. Such adsorbed cells can then be 

visualized by phase contrast microscopy. The degree of adsorption is a direct 

representation of the HN expression levels of the infected cells and hence is a measure 

of hemagglutinin activity. 

3.3.5 Neuraminic Acid Interaction with HN Mediates Membrane Fusion 

It has been shown that cell fusion is mediated by the interaction between HN and 

sialic acid containing cell receptors [13]. When uninfected cells were treated with 

neuraminidase to destroy sialic acid containing receptors on their surface, membrane 

fusion was not observed in a fusion assay. Similarly, cells which do not produce sialic 

acid containing receptors did not show fusion with persistently infected cells in the 

fusion assay. Moreover, it has also been demonstrated that HN is specific in its 

selection of sialic acid containing receptors [4]. 
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3.3.6 DANA and GANA inhibit Hemagglutinin Function of HN 

2,3-dehydro-2-deoxy-n-acetyl neuraminic acid (DANA) is known to inhibit viral 

neuraminidase activity and its mode of action was investigated [10]. It was found that 

DANA blocked fusion as well as gal production at 10 mM concentrations. The abolition 

of hemadsorption in the presence of DANA suggests that it blocks HN-receptor 

interactions (hemagglutinin function). DANA could inhibit 90% of plaque formation at 

25mM concentrations. 

Similar assays with 4-guanidino-DANA (GANA, a.k.a. Zanamivir) revealed 

mechanistic details of this compound as well [14]. It blocked hemadsorption in C28a, a 

variant of the HPIV3 virus that lacks neuraminidase activity, attesting to its HN-receptor 

interaction blocking abilities. The plaque forming capabilities of both WT and C28a 

viruses were blocked by DANA, demonstrating its ability to block fusogenic activity of 

HN. The lack of neuraminidase function of C28a was corrected by adding exogenous 

neuraminidase, which cleaves the host cell sialic acid-containing receptors. Thus, newly 

formed virions are able to avoid attachment to the host cell and were released into the 

environment. GANA also allowed release of new virions into the environment, palpably 

by blocking HN mediated recognition of host cell receptors. In contrast, when cell lines 

were exposed to WT HPIV3, virion release could not be blocked by addition of GANA. 

This proves GANA inhibits HN by preventing binding to host cell receptors. 
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3.4 VIRTUAL SCREENING FOR HN INHIBITORS 

The above studies clearly showed the utility of sialic acid derivatives in inhibiting 

HN activity and also HPIV3 by consequence. Therefore, inhibition of HN is a plausible 

mode for antiviral activity. We therefore embarked on a search for inhibitors of HN. 

Following is a description of the methods adopted for the search, along with a 

discussion about problems encountered in the process. 

3.4.1 Pharmacophore Identification 

The crystal structures of HN in its unliganded form, bound to sialic acid, DANA 

and GANA were published by Lawrence et al. in 2004 (PDB ID: 1v3b, 1v3c, 1v3d and 

1v3e respectively) [15]. The protein shows a six-blade -propeller shape and was 

crystallized in a dimeric form.  

The unliganded binding pocket of HPIV3 HN is similar to that of influenza virus 

neuraminidase, which is published elsewhere [16]. Figure 3.2 shows the interactions 

between HN and its ligands. In spite of differences between sidechain positions of all 

three HN-ligand complexes, the core sidechain positions of HN itself remain similar: 

Three arginine residues (R192, R424, R502) project into one side of the cavity, while 

the floor of the same side contains a tyrosine sidechain (Y530) hydrogen bonded to 

E409. The sidechain position for Y530 varies across different forms of HN crystals 

obtained, perhaps an effect caused by the variety of crystallization conditions used. 

However, it is interesting that in one of the two observed sidechain positions of Y530, it 

is ―slotted in‖ so as to form interactions with two highly conserved residues – 
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hydrophobic pi-pi interactions with Y478 and hydrogen bonds with the P194 backbone. 

In the same conformation, Y530 also forms a hydrogen bond with a water molecule. 

R424 is also hydrogen bonded to E409. Another face of this cavity is partially 

hydrophobic due to the presence of Y319. All in all R192, R424, R502, Y530, E409, 

E549 and D216 form the active site residues. 

When crystals of HN were soaked in 5-acetylneuraminic acid (sialic acid), the 

crystal structure thus obtained (figure 3.2A) reveals that the carboxylate group on the 

ligand interacts favorably with the three arginine cluster (R192, R424 and R502), 

although only two of these (R192 and R502) are hydrogen bonded with it. The hydroxyl 

group of Y530 and the glycosidic oxygen of sialic acid are less than 2.3 Å apart, while 

the latter is only 3.5 Å away from the carboxylate group of E409. This suggests 

hydrogen bond formation between these residues and the sialic acid glycosidic hydroxyl 

group. The C7 and C9 hydroxyl groups of sialic acid are hydrogen bonded to E276, 

while the N-acetyl group forms a hydrophobic interaction with Y319. The largest 

structural perturbation caused by binding of sialic acid to HN observed in these crystal 

structures is the movement of Y530 into the binding site cavity, which was observed in 

the ―tucked in‖ conformation within the unliganded form in 30% of the crystals formed. A 

water molecule also exists near the triarginyl cluster and the ligand carboxylate group. 

The triarginyl cluster remains almost in the same position in the structure of HN 

bound to GANA, except for a short movement of the guanidino group of R192 closer 

towards the substrate carboxylate group (figure 3.2B). This suggests that an additional 
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hydrogen bond might be formed between the protein and ligand due to the change in 

position of the carboxylate caused by introduction of unsaturation in the pyranose ring. 
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 The water molecule observed in the HN-sialic acid complex was not observed in 

this complex, which perhaps contributes towards increased ligand affinity. The hydrogen 

bonds formed between the glycosidic hydroxyl group of sialic acid and the two residues 

E409 and Y530 are now lost, but these sidechains are stabilized by formation of an 

intramolecular hydrogen bond. The hydrogen bonds between the sidechain hydroxyl 

groups of sialic acid and E276 remained with DANA. 

The binding of GANA to HN causes a reversal of certain effects observed in the 

complex with DANA (figure 3.2C). The R192 sidechain guanidino group now moves 

away from the carboxylate of GANA, but forms a stacking interaction with the latter‘s 

guanidino group. The sidechain of Y530 now extends towards the guanidino group of 

GANA, forming a hydrogen bond with it. T193 is also hydrogen bonded with the 

guanidino group of GANA. All other interactions remain similar to those with DANA and 

sialic acid. The structures of sialic acid, DANA and GANA bound to HN are shown in 

figure 3.2. 

Based on these interactions, it was clear that hydrogen bond acceptors were 

desirable in the triarginyl region of the HN binding pocket, while a hydrogen bond donor 

in the region where the GANA guanidino group is bound also increases affinity. Also, 

the hydrogen bonds between the C7 and C9 of sialic acid were maintained throughout 

the three structures of GANA and DANA with HN. These observations helped identify 

key features of the pharmacophore for the creation of queries. 
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3.4.2 Design of Queries 

Two queries were designed based on the above pharmacophoric model. The 

pyranose ring of GANA was defined as a hydrophobic center, which was surrounded by 

three hydrogen bond donor features at the C7 and C9 hydroxyl groups and the 

guanidino group. A negative center was defined in the vicinity of the carboxylate group. 

The hydrophobic center was not defined for a query based on DANA, but was 

supplemented with an acceptor atom in the vicinity of the pyranose oxygen. Also, an 

acceptor atom and a steric feature were defined at the acetyl amino oxygen and methyl 

group respectively. Both queries are delineated in figure 3.3.  

3D flex searches were run on the ZINC database, which contained 3,820,641 

compounds at the time when this work was performed. These searches utilize a 

torsional minimizer in order to identify molecules which might adopt a conformation that 

fits the query being used. Approximately 3000 hits were identified from the queries, 

including a wide variety of chemical scaffolds.  
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Figure 3.3 Queries on the ZINC Database. Orange spheres represent hydrophobic 
centers. The following features were defined: DA, donor atom; HC, hydrophobic center; 
NC, negative center; AA, acceptor atom; SF, steric feature.  

 

3.4.3 Segregation of Drug-Like and Non Drug-Like Compounds 

Not all the hits contained drug-like properties. Hence, these hits were carefully 

screened for non drug-like properties. The molecules were segregated based on three 

criteria: (1) drug-like versus non drug-like scaffolds and (2) Lipinski‘s rule of five.  

3.4.3.1 Identification of drug-like and non drug-like scaffolds 

Although the ZINC database is regularly used for virtual screening in order to 

identify drugs, our hits contained a number of molecules which do not seem drug-like. 

These molecules were identified by visual inspection and eliminated from further study. 

A few examples of such hits are shown in figure 3.4. 
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3.4.3.2 Lipinski’s rule of five 

Lipinski published a set of rules which increase the chances of finding molecules 

with favorable permeation and absorption characteristics which have been outlined in 

Chapter 1 (vide supra). This set of rules has been implemented in the UNITY module of 

Sybyl, which was used for datamining purposes in this project. The inbuilt molecular 

screen identifies agents with less than 5 hydrogen bond donors and 10 hydrogen bond 

acceptors. Moreover, it identifies molecules with a molecular weight less than 500 D 

and a CLogP of less than 5. 
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Figure 3.4 Structures Rejected by Visual Inspection. Some examples of molecules that were 
deemed nondrug-like and excluded from further analysis. 

 

After trimming the list of ligands using these criteria, 1513 compounds remained. 

3.4.4 Docking 

The ability to theoretically predict interactions between molecules based on 

chemo-spatial considerations and the principles of physics has been of immense 
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interest to scientists across the decades. Research across several decades has given 

us multiple algorithms known as docking algorithms. Kuntz aptly described his docking 

algorithm as a method to explore geometrically feasible alignments of ligands and 

receptors of known structure [17]. The first examples of docking were perhaps those 

published by Levinthal et al. in 1975 and Salemme in 1976 [18,19], describing attempts 

at predicting structures of complexes in order to understand macromolecular 

interactions.  Kuntz‘s algorithm [17] was perhaps the first description of a program that 

attempted to address docking of small molecules into proteins. This is a problem of 

immense complexity due to the large number of degrees of freedom and the resultant 

local minima an algorithm has to explore in order to obtain appropriate and accurate 

predictions.  

Several strategies have evolved in order to address this complex and 

multifaceted problem, including incremental construction approaches such as FlexX 

[20], shape-based algorithms such as DOCK [21], genetic algorithms such as 

GOLD[22], systematic searches such as Glide [23], Monte Carlo simulations such as 

LigandFit [24] and surface-based molecular similarity methods such as Surflex [25]. In 

spite of the availability of several such algorithms, ligand docking does suffer from 

several problems [26]. However, its utility in computational ligand design is undeniable, 

especially due to the high benefit/cost ratio. 

We utilized GOLD 3.0 to dock those hits which remained from visual inspection 

of virtual screening results into the HN binding pocket. One hundred genetic algorithm 

(GA) runs per compound were executed in order to obtain multiple poses of putative 



 

 

115 

 

ligands within the binding site. The total number of ligands remaining after visual 

inspection of hits obtained from UNITY was 1513, thus resulting in 151,300 protein-

ligand complexes that needed to be scored. 

3.4.5 Scoring of Docked Positions 

The HINT forcefield [27,28] was used to score all protein-ligands complexes 

obtained via docking because scores obtained from this forcefield are known to 

correlate with binding free energy [29-32]. A list of top scoring compounds, along with 

their ZINC codes, is displayed in appendix A. The crystallographic structures of HN with 

Sialic Acid, GANA and DANA [15] showed HINT scores of 111, 1283 and 1673 

respectively. These compounds were suggested for purchase and biochemical 

evaluation. The decision to test these 137 compounds was based on the comparison of 

HINT scores with those of the ligands bound to the crystal structures. An increase of 

515 HINT units is associated with a 1kcal/mol increase in affinity; hence, many of these 

structures were expected to be strong binders of HN. 

3.5 PROBING ANTIVIRAL MECHANISM 

Anne Moscona‘s group at Weill-Cornell Medical School tested 50 of the 137 

compounds (vide supra) and found 17 inhibitors of HN. In order to probe the mechanism 

of action of these inhibitors, a further docking study was conducted. Selected 

compounds were docked into site II (vide infra) of HN. 

Previous studies by the Moscona and Kellogg research groups had already 

predicted the possibility of a second site on HN, which might interact with sialic acid 
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containing receptors [33-35]. It has been shown that mutations on this site of HN can 

cause premature triggering of the F-protein, thereby rendering the virus noninfectious 

[35]. In order to probe the possible effects of one of the 17 inhibitors of HN 

(ZINC02857325, Figure 3.5) identified by virtual screening, it was docked into site II and 

the HINT scores were compared to those of GANA at both sites (table 3.1). 

Table 3.1  HINT analysis of inhibitors at site I and II of HN 

Compound HINT Score 

HPIV3 HN Site I HPIV3 HN Site II 

GANA 2769 660 

ZINC02857325 2260 1108 
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Based on these scores, it is possible that both GANA and ZINC02857325 will 

bind site I of HN. However, it is possible that this compound will bind site II with a higher 

affinity compared to GANA based on its HINT score at the same site. It has already 

been shown that site II is resistant to GANA [33] and therefore validates our docking 

results, therefore strengthening our belief that this compound might interact at site II of 

HN. 

Furthermore, in the best docked position of GANA at site II of HN the guanidino 

group protrudes out of the protein into the surrounding medium and presumably 

interacts with water (figure 3.6A). It is highly possible that this causes the ligand to be 

solvated and thereafter vacates the binding site. It is possible that such an effect will not 

be observed with the much more hydrophobic ZINC02817325. 

3.6 PROBLEMS WITH DOCKING 

Several cases were identified, in which the rotation of sidechains could improve 

HINT scores. An example is delineated in figure 3.7. 

This test case is a complex of ZINC02857325 docked into HN. The docked 

position itself showed a HINT score of ~ -106. This was basically due to a clash between 

the phenolic hydroxyl of Tyr337 and the sulfonamidic hydrogen. This situation could 

easily be remedied by a simple rotation of the chi1 angle to alleviate the steric clash. 

When this was performed manually, an additional hydrogen bond was formed between 

the phenolic group of Tyr337 and the sulfonamidic hydrogen. This complex was then 

rescored using HINT and an improvement of over 106 HINT units was observed. Of 
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course, this was mostly due to the removal of the steric clash. An additional 

improvement was also visible when a different rotamer of Lys254 was placed, causing 

the formation of an additional H-bond between the triazole nitrogen and the protonated 

amino group of the residue. 

 This example clearly indicates the possibility that docking may not be able to 

accurately recreate the most probable binding pose for ligands without addressing 

target flexibility. Even after minimization, which would alleviate steric clashes, there is a 

chance that the most favorable binding pose may not be predicted because of the 

nature of minimization algorithms; they are designed to traverse downwards along the 

energy potential function and as a result will not overcome barriers in attaining the 

global minimum. In essence, it is probably not realistic to expect identification of the 

global minimum every time, but a reasonable investigation into target flexibility is 

required. We suggest rotating residue sidechain chi angles as a method for exploring 

induced fit. 
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Figure 3.6 Interactions of GANA and ZINC02857325 with site II of HPIV3 HN. (A) 
and (B) show the best docked positions of GANA and ZINC02857325 at site II of HN. 
(C) shows the depth of both ligands; the guanidino group of GANA protrudes into the 
surrounding environment, while the more hydrophobic ZINC02857325 shows no such 
protrusion. 
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3.7 SUMMARY 

A virtual screening for inhibitors of HPIV3 HN was conducted using datamining 

techniques, docking procedures and the HINT scoring function. This process identified 

several inhibitors of the protein, which are as of yet being tested for their mode of action 

in the Moscona laboratory at Weill Medical College of Cornell University. A 34% 

success rate has been observed so far (calculated as number of compounds found 

active for every 100 compounds tested experimentally). 

It is common knowledge that virtual screening is, as of yet, only in its infancy; a 

lot of work has to be done in order to improve the tools and procedures which are 

currently in use. These problems [30] include a number of issues, such as protein and 

ligand flexibility, role of water in binding and solvation, the combinatorial issue of 

protonation/deprotonation of ligand and residues and perhaps the biggest problem of all 

– scoring functions. Serious and long-term research needs to be performed in order to 

address this multi-faceted problem. 

In our quest to identify hits against HPIV3 HN, one problem we noticed was 

target flexibility; although some docking programs already take this into account, this led 

us to try and develop our own new tools. Chapter 4 addresses the current status of our 

attempts in this direction. 
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Figure 3.7 Rotation of residue sidechains improves docking scores. A situation is shown 
where simple rotation of amino acid sidechains increased HINT scores for ZINC02857325 
docked into site I of HPIV3 HN. This clearly indicates the possibility that the ―correct‖ binding 
pose for this ligand may not have been identified.  
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CHAPTER 4 

SIDECHAIN OPTIMIZATION USING BACKBONE-DEPENDENT 

ROTAMER LIBRARIES AND HINT 

4.1 THE INDUCED FIT THEORY 

In today‘s world of drug discovery/design that depends significantly on 

understanding intermolecular interactions, the contributions of Emil Fischer and Daniel 

Koshland are vital. Fischer first introduced the ―lock and key mechanism‖ in the late 19th 

century [1-2] and was revolutionary in many respects; it was perhaps the most important 

description of enzymatic activity as a result of precise and specific intermolecular 

interactions. However, theories are created in order to explain all facts known at the 

time of their formulation and must be modified intermittently to include explanations for 

all future discoveries that bring about discrepancies in them. Koshland wrote a review 

on his modifications of Fischer‘s ―key-lock mechanism‖ in the late 20th century [3], 

wherein he paid homage to the author while describing the then current status of his 

―induced fit theory.‖ While Fischer‘s key-lock theory described enzyme activity in terms 

of the analogy of a key fitting into a lock, thereby allowing the enzyme to act on it, 

Koshland‘s theory specifically expounded on the importance of structural changes in the 

protein at the same time. In his own words, the induced fit theory can be stated as ―a) 

the precise orientation of catalytic groups is required for enzyme action, b) the substrate 

causes an appreciable change in the three-dimensional relationship of the amino acids 



 

 

126 

 

at the active site and c) the changes in the protein structure caused by the substrate will 

bring the catalytic groups into the proper alignment, whereas a nonsubstrate will not.‖ 

4.2 EMULATING INDUCED FIT IN COMPUTATIONAL ALGORITHMS 

The importance of induced-fit is not restricted to enzymatic activity, but also to 

binding of non-competitive small molecule inhibitors or binding of drugs to non-

enzymatic proteins such as GPCRs, as well as between interacting macromolecules. 

Cozzini et al. describe the importance of the induced fit theory in drug discovery in their 

perspective [4]. They describe multiple theoretical and experimental methods used to 

explore induced fit in target-drug binding, laying special emphasis on the current status 

of applications that take target flexibility into consideration during the drug 

discovery/design procedure. The transition of molecular docking from its earliest 

incarnations, in which rigid molecules were docked into a rigid receptor, to the current 

algorithms and strategies employed to address this issue, has been described therein. 

For example, a popular docking program Autodock [5-7] has the ability to explore 

sidechain flexibility at the active site [8,9]. GOLD, FlexE, SLIDE and DOCK also use 

algorithms in order to explore sidechain flexibility in a variety of ways [10-13]. 

Incorporation of target flexibility in such popular docking programs is indicative of the 

importance of exploring induced fit in drug design endeavors. 

4.2.1   Basic Structure of Algorithms for Emulating Target Flexibility 

The degree of induced fit may vary between different protein-ligand interactions 

and the introduction of even partial flexibility at the protein binding site is a challenging 
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and computationally expensive task. This is especially true because exploring low 

energy conformations of the protein is a combinatorial problem even when sidechain 

flexibility alone is addressed. The overall algorithm for sidechain optimization can be 

broken down into independent but equally important components: 1) selecting a method 

for sidechain selection and positioning, 2) choice of a forcefield for evaluating sidechain 

positions and 3) deciding an approach to solve the combinatorial problem of sorting 

through the various permutations and combinations of sidechain positions in order to 

achieve reasonable results.  

4.3   DESIGNING OUR OWN ALGORITHM - THE COGS AND WHEELS 

In order to create our own sidechain optimization method, in this work we explore 

rotamer libraries as a source for sidechain coordinates. The choice of rotamer libraries 

is a conscious one, based on the following reasons: 1) These libraries contain 

coordinates for sidechain positions covering naturally occurring conformations and are 

thereby likely to place residues in reasonable positions and 2) having preordained 

positions for sidechains will probably translate into faster algorithms compared to 

randomized placement methods (e.g., Monte Carlo methods or molecular dynamics 

simulations) for achieving sidechain movement. 

Several studies of sidechain rotamer distributions have been reported, including 

those by James and Sielecki [14], Ponder and Richards [15], Janin et al [16], Dunbrack 

and Karplus [17] and Dunbrack and Cohen [18]. These studies vary in scope and width; 

for example, while James and Sielecki [14] described their findings about rotameric 
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preferences of residue sidechains from a single protein crystal structure, Ponder and 

Richards [15] described the development of a complete rotamer library and an algorithm 

meant to place sidechains on a protein backbone. 

4.3.1   Rotamer Libraries 

The different amino acid rotamer libraries in existence can be categorized as 

backbone-dependent and backbone-independent. 

4.3.1.1   Backbone-Independent Rotamer Libraries 

The most important feature of backbone-independent rotamer libraries is that the 

rotamer position is not related to the backbone geometry in any way. The Ponder and 

Richards rotamer library [15] is an example of this category; the authors demonstrated 

that only 67 sidechain rotamers are adequate to place 15 of the 18 naturally occurring 

amino acid residues in which sidechain positioning is required (Ala and Gly do not fall 

under this category). Met, Arg and Lys residues were not addressed in this study due to 

their inherent flexibility. They used a rotamer library based on only 19 PDB files and a 

simple van der Waal‘s term in order to pack these atoms. 

Another example of a backbone independent rotamer library was reported by 

Janin et al. [17] who, like Ponder and Richards, used a set of 19 PDB files as their 

source data for calculations. They described the preferred conformations for several 

protein sidechains. The fact that most of the χ1 angles for a variety of amino acid 

residues coincided with two of three steric energy minima calculated for a blocked Lys 
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was interesting. A blocked Lys residue is defined as one that is allowed to rotate along 

the Cα-Cβ bond to translate through χ1 angles, but all other χ angles are held constant. 

It was clear from these studies that sidechain geometry is severely restricted for 

a given main chain geometry. This fact is exemplified by the fact that more than 60% of 

sidechains adopted only one or two rotameric positions [17]. Moreover, the number of 

configurations adopted also depends on the position of the residue relative to the 

protein surface. Also, the rotamers which are rare for a surface residue are even rarer 

for an internal residue, implying a strong preference for certain values of the χ1 angle. 

Most importantly, steric energy was established as an important factor in sidechain 

rotamer placement. 

4.3.1.2   Backbone-Dependent Rotamer Libraries 

The major difference between backbone-dependent and backbone-independent 

rotamer libraries is the calculation of χ1 and χ2 probabilities as a function of Φ and Ψ 

angles.  

Dunbrack and Karplus introduced their sidechain optimization method based on 

a backbone-dependent rotamer library [18] from a study based of 126 structures from 

the Brookhaven Protein Database. The library was generated by assessing the 

probability of χ angle values for a specific range of Φ and Ψ angles, i.e. the Φ and Ψ 

angles were divided into bins incremented by 20˚ (0˚ to 20˚, 20˚ to 40˚, 40˚ to 80˚, etc.). 

It was observed that several regions of the Φ, Ψ map were underpopulated due to 

geometric restrictions on the backbone and the small bin size. For all amino acid 
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residues except Ala, Pro and Gly, the χ1 values were binned into the -120˚ to 0˚, 0˚ to 

120˚ and the 120˚ to -120˚ bins. Amongst the residues not covered, no χ values exist for 

Ala and Gly due to the absence of the C atom. The same bin values were used for χ2 

angle calculations for those residues where the χ2 angle exists, except for Pro, Asn, 

Asp, Phe, Tyr and Trp. For Pro, the χ1 angle was binned only into two bins – positive 

and negative values, corresponding to the two Pro conformations. The χ2 angles for 

Phe, Tyr and His were found to be mostly concentrated around the ±90˚ region, which 

were treated as equivalent by adding 180˚ to any negative χ2 angles. These residues 

show C2 symmetry across the C-C bond, which allows such equivalent treatment of 

these rotamers. Again, Asp and Asn χ2 and χ2+180˚values were treated as equivalent 

due to the symmetrical positions of the  atoms, but were binned into -90˚ to -30˚, 30˚ to 

-30˚ and 30˚ to 90˚ divisions.  Trp χ2 angles were binned into 0˚ to 180˚ and -180˚ to 0˚ 

because its rigid aromatic rings does not allow for more sterically favorable positions. χ3 

and χ4 angles were also binned for more flexible residues. Table 4.1 shows the χ1 and 

χ2 bin limits described above. The probability of finding χ1 in each bin was calculated for 

each Φ and Ψ bin combination. Similarly, the probability of finding χ2 in each of its bins 

was calculated, given that χ1 was in one particular bin. This is usually designated as 

χ1+2. Such binning and calculation of probabilities is the crux of backbone-dependent 

rotamer libraries.  

The authors observed specific preferences of sidechain conformations not only 

for α-helices and β-sheets, but also for other regions. Mostly, residues preferred either 

one sidechain conformation or else two nearly-equally favored conformations.  
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Dunbrack and Karplus designed a sidechain optimization algorithm using the 

CHARMM forcefield and probabilities calculated by the above method. Overall, it was 

observed that using backbone-dependent rotamer libraries enhanced the number of 

correct sidechain predictions. When compared to an optimization method that utilizes a 

backbone-independent rotamer library [19] it was found that most of the differences in 

predictions were due to χ1 allocation. 

Table 4.1. χ1 and χ2 bin limits are shown. These limits define the bin size during 
probability calculations, which were made for each 120˚ bin of Φ and Ψ angles. 

χ1 limits χ2 limits χ1 limits χ2 limits 

Lys, Arg, Met, Gln, Glu, Ile and Leu Ser, Thr, Cys, Val, Phe, His and Tyr 

0˚ to 120˚ 0˚ to 120˚ 0˚ to 120˚  

0˚ to 120˚ 120˚ to -120˚ 120˚ to -120˚  

0˚ to 120˚ -120˚ to 0˚ -120˚ to 0˚  

120˚ to -120˚ 0˚ to 120˚ Pro 

120˚ to -120˚ 120˚ to -120˚ 0˚ to 60˚ -60˚ to 0˚ 

120˚ to -120˚ -120˚ to 0˚ -60˚ to 0˚ 0˚ to 60˚ 

-120˚ to 0˚ 0˚ to 120˚ Asp and Asn 

-120˚ to 0˚ 120˚ to -120˚ 0˚ to 120˚ -90˚ to -30˚ 

-120˚ to 0˚ -120˚ to 0˚ 0˚ to 120˚ -30˚ to 30˚ 

Trp 0˚ to 120˚ 30˚ to 90˚ 

0˚ to 120˚ 0˚ to 180˚ 120˚ to -120˚ -90˚ to -30˚ 

0˚ to 120˚ -180˚ to 0˚ 120˚ to -120˚ -30˚ to 30˚ 

120˚ to -120˚ 0˚ to 180˚ 120˚ to -120˚ 30˚ to 90˚ 

120˚ to -120˚ -180˚ to 0˚ -120˚ to 0˚ -90˚ to -30˚ 

-120˚ to 0˚ 0˚ to 180˚ -120˚ to 0˚ -30˚ to 30˚ 

-120˚ to 0˚ -180˚ to 0˚ -120˚ to 0˚ 30˚ to 90˚ 

 

It was found that predicted sidechain positions were more accurate for buried 

residues. The predictions were accurate for hydrophobic residues except Leu and 
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aromatic residues except Trp. Cys residues were well predicted, perhaps because most 

of these were present in pairs and formed disulfide bonds, which were specifically 

identified before other sidechains were optimized. Thr sidechains were placed more 

accurately compared to Ser, perhaps because there is less room for maneuvering due 

to the presence of an extra C atom. Asp and Glu were least well placed by this 

algorithm because these are mostly on the surface and have a lot more freedom to 

move. Moreover, contacts between successive units which exist in crystals were 

completely ignored in the optimization process. 

Dunbrack and Cohen introduced an enhanced version of the Dunbrack and 

Karplus backbone-dependent rotamer library in 1997. They used Bayesian statistics in 

order to address the likelihood of obtaining one rotamer, given an original probability 

distribution similar to that of the Dunbrack and Karplus rotamer library. The analysis was 

simple in terms of assumptions; only one was employed – that the probability of one 

particular dihedral is dependent only on the value of the previous dihedral. For example, 

the probability of obtaining a χ1 value depends on what the Φ and Ψ dihedrals are. 

Likewise, the probability of obtaining a particular χ2 value depends only on what the χ1 

value is. The same assumption can be made for χ3 and χ4 as well. Using this rotamer 

library, Bower, Cohen and Dunbrack created a sidechain optimization algorithm - 

SCWRL [20]. 
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4.3.2   Choice of Scoring Function 

Traditionally, sidechain optimization algorithms have employed scoring functions 

that pack atoms together. This is especially advantageous because the function of 

these packing methods is quite complementary to the nature of crystal structures – in 

both cases, atoms are packed as tightly together as possible. However, such packing 

algorithms usually overlook phenomena such as electrostatic interactions, hydrophobic 

interactions, H-bond formation and pi-cation interactions. 

One obvious improvement in such algorithms would be to explore the effect of 

force fields that can address these currently neglected interactions. We decided to use 

our in-house HINT scoring function [21,22]. Our hypothesis is that HINT will be 

complementary to steric-based potential functions for a number of reasons: (A) HINT 

employs a van der Waal‘s interaction function quite similar to the steric-based Lennard-

Jones potential of SCWRL-like programs, (B) HINT addresses hydrophobic interactions, 

which have been shown to depend on surface area contacts [23,24], which is quite 

similar to traditional contact-based scoring functions and as explained above, (C) HINT 

takes several different types of interactions such as hydrogen bonding into account, 

while packing methods do not share this capability. 

4.4 THE SCWRL ALGORITHM 

Dunbrack‘s group introduced a popular program called SCWRL [20] (SideChain 

optimization With Rotamer Libraries) whose main aim was to predict crystal structure 

sidechain positions, given the backbone coordinates. This program was based on a 
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backbone-dependent rotamer library [18] and employed a modified Lennard-Jones 

potential equation for energy calculation purposes. In order to solve the combinatorial 

problem of parsing through rotamers, each sidechain is initially placed in its most 

favorable rotamer and clashes are identified as those residues which exceed a cutoff 

value for the steric potential. ―Clusters‖ of clashing residues are identified as those that 

clash with each other and are solved by a combinatorial parsing of rotamer 

permutations and combinations. 

4.4.1 SCWRL “Successfully” Identifies “Correct” Sidechain Positions 

Dunbrack et al. have shown considerable success in identification of sidechain 

positions, if provided with the coordinates of backbone atoms [20]. The structure of this 

algorithm is highlighted below. 

4.4.1.1 Initial Sidechain Rotamer Placement 

The initial step used by SCWRL is very simple: after the backbone atoms have 

been read in, it places the sidechain atoms in their most probable form which does not 

clash with the backbone. Backbone clashes are detected by using a modified (linear) 

van der Waal‘s equation, which calculates a minimum value of 0 kcal/mol for no steric 

interaction or 10,000 kcal/mol for steric clashes. Favorable van der Waal‘s interactions 

were sacrificed to improve search speed. 

 

 



 

 

135 

 

4.4.1.2 “Cluster” Parsing Method 

―Clusters‖ of clashing residues are identified and solved by a combinatorial 

parsing of rotamer permutations and combinations, intermittently employing a cluster-

dividing technique if the number of residues within a ―cluster‖ exceeds 15 residues. In a 

case where the number of residues does exceed this number, the residue whose 

sidechain has most clashes is identified and placed in its most probable position which 

does not clash with the backbone, thereby dividing the large cluster into smaller clusters 

that are more easily manageable. Each such division of the large cluster is then treated 

as a smaller cluster and a combinatorial search for sterically favorable sidechain 

rotamers is conducted. A favorable combination of rotamers is defined as one which 

has zero steric energy, as decided by the modified Lennard Jones potential equation. 

However, if no such combination is found, the set of rotamers showing lowest steric 

clashes is selected. 

4.4.1.3 Criteria for “Success” 

The authors of the SCWRL program compare χ1 angles directly with the original 

PDB files in order to measure the success of their algorithm. However, their metric for 

comparison is whether the program correctly identifies this dihedral angle within ±40˚ of 

the actual χ1 value from the original crystal structure. However, seeing that it uses 

backbone-dependent rotamer libraries, which are essentially programmed with the 

probabilities of χ angles existing given the Φ and Ψ angles of the backbone, it is hardly 

surprising that these angles were successfully predicted. Moreover, the χ2 angles are 
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only compared for those cases in which χ1 angles are ―correctly‖ predicted (χ1+2 

predictions).  

Overall it was shown that the χ1 angle was correctly predicted 77% of the time, 

while χ1+2 predictions were correct on 66% occasions. The percent correct predictions 

varied between different types of amino acid residues. For aromatic residues such as 

Phe and Tyr, the χ1 determination was 90% accurate. SCWRL also accurately predicted 

the χ1 values for residues with β- and - branched sidechains such as Val, Thr, Ile, Leu, 

His and Trp (>80% correct). SCWRL performed less well with Ser and those residues 

with long unbranched sidechains such as Met, Glu, Gln, Arg and Lys (60 to 72% 

correct). The χ1 values for both Asp and Asn were predicted correctly over 73% of the 

time. An evaluation of χ2 prediction showed that the degree of accuracy was lower than 

that for χ1. However, this is expected because SCWRL is a method that depends on 

packing. As the distance of a sidechain atom from the backbone increases, the ability of 

the atom to move also increases due to lower steric interactions with the backbone. It 

can hardly be expected that the atoms responsible for the χ2 dihedral angle will be 

packed as tightly as the C atom unless these are completely buried within the bulk of 

the protein. 

4.4.2 Can the HINT Scoring Function Complement the SCWRL Rotamer Library? 

The ability of SCWRL to predict correct sidechain positions in crystal structures 

perhaps can, at least partially, be attributed to the inclusion of rotamer probabilities. 

When conducting molecular modeling or drug discovery studies, it becomes more 
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important to study proteins in their native state, e.g., the dominant state of a cytosolic 

protein in an aqueous environment. This cannot be achieved by using SCWRL‘s 

modified Lennard-Jones potential scoring function, because it completely ignores intra-

protein interactions other than sterics. In accordance with our long term goal of creating 

an algorithm that can simulate sidechain flexibility in docked structures, we decided to 

test the compatibility between Dunbrack‘s backbone-dependent rotamer library [18] and 

the HINT scoring function, which should theoretically be able to address those 

interactions within the protein that are completely neglected by SCWRL. However, it 

must be noted here that the newest version of SCWRL (ver. 4.0 [25]) is capable of H-

bond detection. The results of our pilot study aimed to analyze whether or not the 

SCWRL 1.0 rotamer library is compatible with the HINT scoring function are reported 

herein.  

One way of approaching this question is to try to emulate SCWRL‘s original 

function of sidechain prediction for known crystal structures. If the HINT scoring function 

is at least as successful as SCWRL, or even if it comes close to doing so, we can 

perhaps safely conclude that HINT may be used to complement the SCWRL backbone-

dependent rotamer library, or, in other words, that these two technologies are 

synergistic in molecular model-building applications. 

4.5 THE HINTASCWRL ALGORITHM 

The HINTaSCWRL (HINT assisted SCWRL/Hydropathic INTeractions Assisted 

SideChain optimization With Rotamer Libraries) Algorithm was designed using a 
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backbone-dependent rotamer library and a hydropathic forcefield, whose pseudocode is 

described below: 

 

Read input PDB 

Select protein from PDB 

Calculate Φ and Ψ angles 

Get χ values from sidechain data 

Build multiple sidechain conformations for all residues 

Check all rotamers for backbone clashes 

Find best rotamer 

{ 

 for all residues 

 { 

 Add Hydrogens 

 For each rotamer with no backbone clashes 

{ 

  Calculate HINTaSCWRL score 

  Keep rotamer with highest HINTaSCWRL score 

 } 

} 

} 

Perform second round of optimization 

Delete any Hydrogens present 

Write output PDB 
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The program was written in C, using the HINT toolkit and the backbone-

dependent rotamer library from SCWRL 1.0 (referred as SCWRL hereon). The 

algorithms are still in a very preliminary state and come with no additional features 

aimed at improving prediction capabilities; no mathematical strategies have been 

adopted in order to solve combinatorial issues, nor has any special modification been 

made in order to obtain optimum predictions. Indeed, this is the very first form of our 

protocol, which will need many cycles of refinement in order to improve its functioning. 

4.5.1 The Backbone-Dependent Rotamer Library 

HINTaSCWRL employs the same backbone-dependent rotamer library as 

SCWRL. The selection of the Cohen-Dunbrak backbone-dependent rotamer library was 

chosen in order to enable direct comparison with SCWRL generated sidechain 

positions. 

4.5.2 The HINTaSCWRL Scoring Function 

The HINTaSCWRL scoring function that was employed in this program can 

mathematically be denoted as follows: 

                 
                   

                         
 

The Log values of probabilities were taken because that linearizes the data. 

However, this caused a problem because probability values were all fractional and 

yielded negative values when converted to Log form, thereby reversing the sign 

(favorable/unfavorable) of the final score that should be supplied by HINT. This problem 
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is easily solved by normalizing against log(probability) of the most probable rotamer. 

This also allows us to measure the comparative likelihood of obtaining the current 

rotamer against the most probable rotamer.  

A similar approach where the probability of the current rotamer was multiplied 

with its HINT score was also considered, but was not found to be as useful as the above 

scoring function because a few rotamers were frequently found to be several times 

more probable than all other rotamers combined. This caused probability to dominate 

the decision making process, thus making the HINT score virtually redundant (except in 

the case of a sign change facilitated by it). Additionally, it effectively reduced the 

conformational space explored because the lowest probability conformations (with 

probabilities ranging up to the 10-6 region) were virtually never considered. 

4.5.3 Sorting Through Clashes and Bad Interactions 

After the initial placement of sidechains, the residues with the worst scores were 

identified and optimized a second time. While the initial placement of sidechains took 

probability into account, this time only the HINT score was used. 

4.6 THE TEST SET 

A data set of 129 PDB files containing no ligands and with resolutions between 1-

1.5 Å were downloaded from the RSCB Protein Data Bank and prepared by removal of 

all alternative conformations for sidechains. The PDB list is as follows: 
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2BCM, 2BN3, 2BOG, 2BZV, 2CG7, 2CIT, 2CL2, 2CYG, 2DF6, 2DPL, 2E0Q, 2E10, 

2E3H, 2E3Z, 2ERF, 2ERW, 2FHZ, 2FQ3, 2FR2, 2FRG, 2FWG, 2G69, 2G7O, 2GBJ, 

2GEC, 2GKG, 2GKT, 2GOM, 2GQV, 2GRC, 2GUV, 2GXG, 2GZV, 2H3L, 2H8E, 2HLR, 

2I3F, 2IBL, 2IC6, 2ICC, 2IGD, 2IPR, 2IVY, 2IWN, 2IXM, 2J6B, 2J73, 2J8B, 2JCP, 2JIC, 

2JLJ, 2LIS, 2NRR, 2NWD, 2O37, 2OCT, 2OEI, 2OHW, 2OKT, 2OLX, 2OVA, 2OZF, 

2P4H, 2PMR, 2PND, 2PPO, 2PV2, 2QHT, 2QOL, 2QT4, 2QVK, 2R6Q, 2RB8, 2RK3, 

2RK5, 2VC8, 2VIM, 2VY8, 2W1R, 2W2A, 2W6A, 2WJ5, 2WLV, 2YXF, 2YZ1, 2ZO6, 

3A7L, 3BA1, 3BB7, 3BOI, 3BPV, 3BQS, 3BZT, 3BZZ, 3C8P, 3CA7, 3CJW, 3CKF, 

3CT5, 3CTG, 3CX2, 3CZZ, 3D9X, 3DFG, 3DS4, 3DWV, 3EVP, 3EXV, 3EY6, 3EYE, 

3FKE, 3FPO, 3FTD, 3FTK, 3FVA, 3HFO, 3HNX, 3HNY, 3HZ8, 3I4O, 3IVV, 3KB5, 

3KGK, 3KJT, 3KTP, 3L32, 3L3E, 4EUG and 4PTI. 

The algorithm was not trained on any of these structures, which contain up to 

919 residues.  

4.7 HINTASCWRL OUTPUT ANALYSIS 

Since the main aim of this project was to test the ability to use the HINT forcefield 

with rotamer libraries and not necessarily to improve sidechain placement algorithms 

such as SCWRL, the most important aim of the HINTaSCWRL algorithm is to predict 

structures approximately as well as SCWRL. If this were true, it would demonstrate the 

ability to use HINT in conjunction with rotamer libraries. On the other hand, it would 

definitely be advantageous if we could improve sidechain predictions. With these aims 
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in mind, the output of HINTaSCWRL will be compared with the same from SCWRL 

through the rest of this chapter. 

4.7.1 Analysis of Sidechain RMSD 

The RMSD for each sidechain of the HINTaSCWRL and SCWRL output PDBs 

from the original PDB were calculated. Figure 4.1 shows line plots of RMSD for all 

residue sidechains across all 177 test structures. The first column consists of RMSD for 

each amino acid residue for HINTaSCWRL output PDB files, while the second column 

shows the same for SCWRL output files. The third column shows an RMSD difference 

between HINTaSCWRL and SCWRL output files. It must be noted at this point that 

these residues have been sorted in order of their solvent accessible surface area 

(SASA) before the plots were generated. 

HINTaSCWRL results – Cys, Pro, Ser, Thr and Val residues showed the lowest 

deviation (up to 1.5 Å) from the original PDB, while Asn, Asp, Gln, Glu, Ile, Leu and Met 

showed a higher RMSD value (up to 2.5 Å) in comparison. Arg, His, Lys, Trp and Tyr 

showed the highest deviations (up to 5 Å) from the original crystal structures.  

Comparison with SCWRL output files – All amino acid residues showed similar 

deviations from the original PDB, as is witnessed by the similarity between the first two 

columns (Figure 4.1). The third column shows the deviation of HINTaSCWRL output 

structures from SCWRL predicted ones. Most of the residues show very low to no 

deviation, which means that the output structures are extremely similar to each other. 
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Figure 4.1 RMSD values for individual amino acid residue sidechains. (A) RMSD 
for HINTaSCWRL output PDB files (B) RMSD for SCWRL output. (C) RMSD between 
HINTaSCWRL and SCWRL output files. 
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Figure 4.1 continued. 
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Figure 4.1 Continued 
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Figure 4.1 continued 
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Figure 4.1 continued. 

 

4.7.2 RMSD as a Function of Solvent Accessible Surface Area 

Figure 4.2 shows RMSD of amino acid residue types as a function of Log(SASA) 

in HINTaSCWRL predicted structures. A prominent increase in the RMSD of residues is 

observed with increase in SASA. Therefore, residues closer to the outer surface of a 

protein have higher solvent accessibility. Such residues which are closer to the outer 

surface have a higher degree of steric freedom, resulting in poorer predictions. 
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Figure 4.2 RMSD as a function of Log(SASA) in HINTaSCWRL output files.  
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Figure 4.2 continued 
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Poor predictability is expected in these cases; solvent accessible residues would 

have a higher degree of movement in their native environment. Hence, the inability of 

HINTaSCWRL to predict exact positions for these residues does not raise any 

concerns. However, Phe, Tyr and Trp show a regular trend of poor predictions 

irrespective of the SASA of any particular residue, but the increased incidence of poor 

predictions with increase in SASA is clearly visible in these residues. 

The trend of increased RMSD compared with original PDBs is clearly visible in 

figure 4.3, where RMSD for all residues has been plotted against their SASA for both 

HINTaSCWRL and SCWRL predicted structures. 

 

Figure 4.3 Overall RMSD across all residues as a function of Log(SASA). (A) is for 
the HINTaSCWRL output structures, while (B) shows the same data for SCWRL 
predicted structures. 
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4.7.3 Analysis of Average RMSD per Residue Type 

The plot of average RMSD for each residue type in each structure is shown in 

figure 4.4. The red lines depict average RMSD for each residue type in HINTaSCWRL 

generated output structures, while the same for SCWRL output files are illustrated with 

a blue line. While smaller residues such as Cys, Ile, Leu, Ser, Thr and Val, along with 

sterically restricted residues like Pro, demonstrate lower average RMSD values, others 

such as Arg show a much higher value.  

The higher average RMSD value for hydrophilic residues such as Arg, Lys, His, 

Asp, Glu, Asn and Gln is expected because they are usually found on the solvated 

surfaces of proteins. However, aromatic residues Phe, Tyr and Trp show a range of 

average RMSD values; from high to low. This could possibly be because of their 

equivocal distribution; they exist on the surface of proteins and also in their bulk. This 

would explain why these residues demonstrate a wide range of average RMSD values. 

It is remarkable that all types of amino acid residues show very similar average 

RMSD value for both HINTaSCWRL as well as SCWRL. 
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Figure 4.4 Average RMSD for each type of amino acid residue. HINTaSCWRL 
output is depicted by the red line, while SCWRL output is shown in blue. 
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Figure 4.4 continued 
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4.8 SELECTED HINTASCWRL OUTPUT STRUCTURES 

4.8.1 Specific Case Studies 

Considering the aims of this project, it is of immense interest to compare the 

output structures of HINTaSCWRL and SCWRL with the original PDB and then to 

compare both output structures to each other. This will tell us how successful either 

program is in predicting sidechain positions. More importantly, since we are mainly 

interested in assessing the compatibility between Dunbrack‘s rotamer library and the 

HINT scoring function, we would ideally like to see similar predictions by both 

algorithms. It would be even better if HINTaSCWRL is able to predict structures that are 

closer to the original PDB. 

Thus, the minimum expectations from the structures predicted by our algorithm in 

order to claim success are: (A) the structures should be very close to the SCWRL 

predicted structures, unless they are closer to the original PDB and (B) most of the 

deviations should be localized near the surface of the structures, where residues enjoy 

a greater steric freedom that allows greater movement. Three randomly chosen protein 

structure predictions are presented with these aims in mind. 

Only a few residues show a high RMSD in both HINTaSCWRL and SCWRL 

programs, designated in red, while most residues have a low RMSD. For 2CYG, the 

predicted residue positions are exactly the same for both programs, as visible by the 

entirely green color in figure 4.5 (C). In retrospect, the output created by both programs 



 

 

155 

 

were not always exactly the same and varied to a certain degree, as is visible from 

figure 4.5 (F) and (I). However, the similarity between the two programs is striking 

despite a small degree of differences. 

The degree of structural deviation is described by the plots of RMSD for each 

structure in figure 4.6. While parts (A), (C) and (E) show plots of RMSD for each residue 

when compared with the original crystal structure, (B), (D) and (F) show the how much 

the two output structures deviate from each other. 

Both algorithms show similar RMSD profiles when compared to the original PDB, 

as witnessed in figure 4.6 (A), (C) and (E). In two of the three test cases showed here, 

the structures produced by HINTaSCWRL and SCWRL are very similar to each other. 

However, these two algorithms predicted vastly different structures for 4EUG, as shown 

by figure 4.6 (F). A visual inspection of the structure of 4EUG demonstrated that most of 

the RMSD between the output structures predicted by both algorithms was due to 

residues on the surface of the protein, shown in figure 4.5 (I) and hence is quite 

acceptable. 

While there was no difference between the HINTaSCWRL and SCWRL output 

structures for 2CYG, there were differences between the same for 2VC8 and 4EUG. 

The residues with the largest RMSD values for both 2VC8 and 4EUG were identified: 

Asn13 for 2VC8 and Lys171, which were both found to be on the surface. A close 

inspection of these two residues showed differences in interactions. While Lys171 for 

the HINTaSCWRL output structure showed formation of an extra H-bond, as observed 
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Figure 4.6 RMSD values plotted for each residue of 2CYG, 2VC8 and 4EUG in the 
first, second and third rows respectively. (A) (C) and (E) show RMSD values for 
HINTaSCWRL and SCWRL predicted structures in red and blue respectively. (B) (D) 
and (F) show deviations between the structures predicted by both programs in green. 

0

1

2

3

4

5

6

1 51 101 151 201 251 301

Δ
R

M
SD

 (
Å

)

A HINTaSCWRL

SCWRL

0

0.2

0.4

0.6

0.8

1

1 51 101 151 201 251 301

Δ
R

M
SD

 (
Å

)

B

0

0.5

1

1.5

2

2.5

3

1 11 21 31 41 51 61 71

Δ
R

M
SD

 (
Å

)

C HINTaSCWRL

SCWRL

0

0.5

1

1.5

2

2.5

1 11 21 31 41 51 61 71

Δ
R

M
SD

 (
Å

)

D

0

1

2

3

4

5

6

1 51 101 151 201

Δ
R

M
SD

 (
Å

)

E HINTaSCWRL

SCWRL

0

1

2

3

4

5

1 51 101 151 201

Δ
R

M
SD

 (
Å

)

F



 

 

160 

 

in figure 4.7 (B). Interestingly, as is visible in figure 4.7 (A), Asn13 in the SCWRL output 

structure showed formation of an extra H-bond, which was unexpected. In contrast, the 

HINTaSCWRL output structure avoided bad hydrophobic-hydrophilic interactions with a 

nearby Ile. The formation of an additional H-bond in Asn13 within the SCWRL output 

structure must be a coincidence because this program only considers van der Waal‘s 

interactions. 

4.9 CONCLUSIONS 

The performance of our algorithm was comparable to that of SCWRL. The trend of 

RMSD distribution across 129 high resolution structures was similar for both programs, 

as was the dependence of RMSD values on solvent accessibility of the residue 

involved. It is remarkable that a number of residues were predicted very near their 

native conformations in the original PDB itself, as was shown by the random test cases 

(vide supra). It was observed that our algorithm would select different conformations of 

residue sidechains when it detected energetically favorable interactions that were not 

detected by SCWRL. The RMSD profiles of SCWRL and HINTaSCWRL predicted 

structures were similar to each other. In two of the three cases, both algorithms 

predicted very similar positions for all sidechains. However, there was one case in 

which the predictions were notably different. On the other hand, it was clearly shown 

that the all the residues which were predicted differently by the two algorithms existed 

on the surface of the proteins. Thus, this was not a concern because the higher steric 

freedom afforded to the surface residues allows movement and thus deviation is 

expected. 
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Figure 4.7 Positions of Sidechain Showing Highest Deviation. (A) Asn13 of 2VC8 in 
the SCWRL structure shows an extra H-bond while the same in the HINTaSCWRL 
structure shows none. (B) Lys171 of the HINTaSCWRL structure shows an additional 
H-bond compared with the same in the SCWRL predicted structure. 
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With these facts in mind, we may again ask ourselves: Are we able to emulate 

SCWRL and its ability to optimize sidechains? Since the structures predicted by both 

algorithms are very close to each other, with the major deviations isolated on the 

surface of the protein, we can assuredly say yes! We cannot, however, make a claim 

about improving sidechain prediction capabilities of SCWRL, at least with regard to 

emulating crystal structures.  

However, the major aim of this project was not to emulate or improve sidechain 

optimization already provided by SCWRL, but to ascertain the ability to use HINT in 

conjunction with backbone-dependent rotamer libraries. Since the output structures 

obtained from our algorithm were extremely close to those produced by SCWRL and 

the differences were ascertained in the sample test cases to be caused by improved 

interactions, we have successfully fulfilled this aim. 

At the same time, this project is still in its infancy. Therefore, we must stress the 

possibility that further experimentation with the sidechain placement algorithm and 

scoring function could possibly provide us with much improved sidechain placement. 

4.10 FUTURE DIRECTIONS 

With the implementation of the HINTaSCWRL algorithm, the compatibility 

between HINT and sidechain rotamer libraries has been established. The next stage of 

this project will be to create an algorithm that optimizes residue sidechains in the 

immediate vicinity of docked ligands. This new algorithm will be somewhat different from 

the current state of HINTaSCWRL because at present the latter only considers 
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interactions within the protein; the sidechain positioning in the next stage will have to 

balance intra-protein interactions with protein-ligand interactions. Moreover, the role of 

backbone-dependent vs. backbone-independent rotamer libraries in such an algorithm 

will have to be investigated. 

Simultaneously, modifications in the sidechain placement strategy and scoring 

function must be explored in order to attempt improvement of the algorithm itself. The 

scaling of steric and hydropathic components of the HINT score is one possible avenue 

for exploration. This will be an interesting avenue to explore because packing methods 

have traditionally been adequate to place sidechains in algorithms such as SCWRL. 

Packing methods (i.e., using steric potentials such as the Lennard-Jones potential 

function and its variants) have proven to be especially useful due to the ease of 

implementation and enhanced speed of execution, thereby providing reasonable results 

within shorter runtimes. In contrast, a scoring function such as HINT takes longer to 

execute. However, it can account for several other kinds of interactions other than (and 

including) sterics. This should, at least in theory, allow better sidechain placement 

compared to algorithms that employ simple Lennard-Jones potentials. 

Furthermore, weighting the probability factor could possibly enhance the quality 

of sidechain optimization. However, it is unlikely that simple modulation of the HINT 

score and probability factors alone will allow better emulation of crystal structures 

(compared to SCWRL), especially if the sidechain positions are being provided by a 

rotamer library. Unless such rotamer libraries are exhaustive, it might be difficult to 

cover sufficient conformational space to achieve highly accurate predictions. Thus, 
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sidechains might have to be rotated, in which case a strategy will have to be devised to 

overcome the combinatorial explosion which is imminent. This strategy can perhaps 

also be implemented during resolution of sidechain clashes. 
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CHAPTER 5 

CONCLUSIONS 

Hydrophobicity impacts every aspect of drug design and even delivery, as has 

been repeatedly pointed out over the past century and within this dissertation.  Studies 

of this phenomenon have resulted in multiple theories, algorithms and tools for applying 

the concept.  A large amount of effort has been put forth into studying the partition 

coefficient both experimentally, especially in terms of its prediction because of its 

importance in ―druggability‖ of compounds.  Many theoretical methods are robust in 

estimating LogP for molecules similar to their training set, but large errors are fairly 

common for compounds with large chemical and structural differences from that set.   

Since Hansch and Fujita introduced the QSAR method, drug design projects 

have repeatedly found use for hydrophobic parameters.  This dependence of drug 

design on lipophilicity is intuitive, arising from drugs and proteins coming together, or 

proteins folding, in order to reduce the surface area in contact with polar water 

molecules.  Quantification of this phenomenon has taken many forms, such as 

calculating of hydrophobic surface contact area to represent hydrophobic interactions, 

supplementing 3D QSAR with hydrophobic fields (HINT and MLP) [1-3] and direct 

quantification of intermolecular interactions with HINT [4-8].  While there are numerous 

force fields available, most are Newtonian in origin and concentrate on H-bonding, 

Coulombic interactions, van der Waal‘s interactions and London forces for estimating 

the strength of molecular interactions, all of which are mostly if not entirely enthalpic.  
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HINT is different in that it accounts for both hydrophobic and hydrophilic interactions 

and is therefore representative of enthalpic, as well as that of entropic contributions 

towards biological interactions, being derived from a free energy experiment.  The 

availability of the HINT toolkit [9] makes it possible to develop application programs for 

computer-aided drug discovery and design. 

In this work, we presented current state of the projects aimed at exploring our 

hypothesis that most biological phenomena can be explained by addressing 

hydrophobic and hydrophilic interactions. The efflux pump project best epitomized the 

validity of this hypothesis. While the HINT force field has been successfully 

implemented in characterizing binding of small molecules to macromolecular targets 

and also intermacromolecular interactions in the past [4-8], these multidrug transporters 

posed a significantly different and complex challenge. The very fact that these huge 

proteins do not just bind small molecules, but transport them, was the root of this 

challenge. In theory, any such transport mechanism should be addressable by treating it 

as a series of consecutive and independent binding events. In accordance with this, we 

devised a method where HINT scores (representing these consecutive binding events) 

were used to successfully predict MIC ratios of multiple antibiotics of various classes, in 

conjunction with certain properties of the antibiotics themselves. It was found that LogP 

was a major contributor in the statistical models generated therein. However, the same 

descriptor alone was insufficient to achieve the same degree of predictability. More 

importantly, LogP itself is a measure of the efflux substrates hydrophobic nature and its 
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contribution towards the final model represents another way in which hydrophobic 

interactions might affect biomolecular phenomena and thereby supports our hypothesis. 

The third chapter described our attempts at discovery of antiviral agents, which 

resulted in identification of several interesting compounds, of which 34% were found to 

inhibit hemagglutinin-neuraminidase. This project produced only moderate success 

rates, partly due to some problems with the tools employed therein – particularly the 

inability of docking methods to effectively address induced-fit during binding of small 

molecules. We chose to design new in-house tools in order to address these problems 

in the long run and have presented our preliminary investigation towards establishing 

feasibility of the project herein. Our studies showed that even at the simplest level of 

implementation, the HINT scoring function successfully placed sidechains for residues, 

given the backbone coordinates, which is another example where our hypothesis 

appears to be true. It must be admitted though, that work on this project has only just 

begun and a lot more needs to be done before we can claim that our hypothesis is true 

beyond doubt in the context of this project. With the results of this project in mind, we 

have chosen rotamer libraries and the HINT scoring function as our basis for design of 

new tools to simulate target flexibility. Further attempts at optimizing the sidechain 

optimization algorithm will also continue. It is generally accepted that proteins fold in 

such a way that hydrophobic groups are largely shielded from water by hydrophilic 

groups. While evaluating the factors that affect prediction of protein folds, Park et al. 

noted that hydrophobicity of residues is the largest force defining protein structure, but 

that other factors were involved as well [10].  Accurate hydrophobicity measurements 
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and estimation of hydrophobic interactions could therefore have a tremendous impact 

on the modeling of not only protein folding, but also side chain orientation.  Better 

modeling and representation of both protein folding as well as side chain positioning, 

will also contribute to the understanding of biological processes which are significantly 

altered by macromolecular flexibility. 

Overall, good progress was made towards the implementation of our hydropathic 

force field in predictive model building and the design of new tools. There is no doubt in 

our mind that application of this methodology in computational life sciences and 

computer-aided drug design will lead to accurate theoretical prediction of biological 

phenomena. The complex phenomena of hydrophobicity and hydrophobic interactions 

are still only poorly understood and remain quite difficult to simulate. However, 

understanding and exploiting the hydrophobic effect in drug design, e.g., docking, target 

structure prediction, etc., will undoubtedly be increasingly important in the future. 

Hydrophobicity may not be the ―Holy Grail‖ of biomolecular phenomena, but it is 

definitely the one of the ―Commandments‖. 
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APPENDICES 

Appendix A 

List of Hits from Virtual Screening for Hemagglutinin-Neuraminidase Inhibitors 
ZINC ID HINT Score Database 

ZINC04552407 6783.014 Sigma Aldrich 

ZINC04533949 6772.188 Sigma Aldrich 

ZINC01530138 6701.919 Sigma Aldrich 

ZINC04825403 6504.188 Sigma Aldrich 

ZINC01737956 6410.739 Sigma Aldrich 

ZINC02384787 6387.623 Sigma Aldrich 

ZINC03873854 6317.374 Sigma Aldrich 

ZINC03873852 6260.759 Sigma Aldrich 

ZINC03873853 6125.606 Sigma Aldrich 

ZINC03873185 6120.066 Sigma Aldrich 

ZINC03873855 5931.146 Sigma Aldrich 

ZINC04544949 5902.57 Sigma Aldrich 

ZINC04545884 5895.988 Sigma Aldrich 

ZINC02390911 5886.638 Sigma Aldrich 

ZINC03871260 5865.923 Sigma Aldrich 

ZINC03830892 5855 Sigma Aldrich 

ZINC04899504 5842.17 Sigma Aldrich 

ZINC01529261 5760.611 Sigma Aldrich 

ZINC03873184 5660.111 Sigma Aldrich 

ZINC05274030 5658.885 Sigma Aldrich 

ZINC04544668 5558.37 Sigma Aldrich 

ZINC04556739 5543.093 Sigma Aldrich 

ZINC05295094 5479.984 Sigma Aldrich 

ZINC03873183 5478.967 Sigma Aldrich 

ZINC04556499 5465.758 Sigma Aldrich 

ZINC03014483 5445.177 Sigma Aldrich 

ZINC04899413 5437.815 Sigma Aldrich 

ZINC02508221 5420.523 Sigma Aldrich 

ZINC05274031 5374.107 Sigma Aldrich 

ZINC03870127 5365.563 Sigma Aldrich 

ZINC04533780 5351.754 Sigma Aldrich 

ZINC05274029 5350.48 Sigma Aldrich 

ZINC04533783 5330.799 Sigma Aldrich 

ZINC04214182 5325.671 Sigma Aldrich 

ZINC03873186 5316.4 Sigma Aldrich 

ZINC03830893 5265.247 Sigma Aldrich 

ZINC04556495 5250.292 Sigma Aldrich 

ZINC04533725 5241.01 Sigma Aldrich 

ZINC02390912 5217.136 Sigma Aldrich 

ZINC03871275 5209.737 Sigma Aldrich 

ZINC03873187 5182.773 Sigma Aldrich 
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ZINC05273655 5153.94 Sigma Aldrich 

ZINC04533726 5144.388 Sigma Aldrich 

ZINC03830452 5120.193 Sigma Aldrich 

ZINC01569744 5117.354 Sigma Aldrich 

ZINC03873182 5082.202 Sigma Aldrich 

ZINC03871276 4990.011 Sigma Aldrich 

ZINC03873188 4983.702 Sigma Aldrich 

ZINC01575534 4962.166 Sigma Aldrich 

ZINC02384673 4912.327 Sigma Aldrich 

ZINC00236772 4869.534 Vitas 

ZINC04556815 4853.672 Sigma Aldrich 

ZINC04533731 4853.62 Sigma Aldrich 

ZINC04552406 4840.231 Sigma Aldrich 

ZINC02707649 4832.24 LifeChemicals 

ZINC05274037 4823.205 Sigma Aldrich 

ZINC03869424 4815.127 Sigma Aldrich 

ZINC03014482 4809.821 Sigma Aldrich 

ZINC04531662 4791.451 Sigma Aldrich 

ZINC05257890 4786.626 LifeChemicals 

ZINC04820544 4744.787 Sigma Aldrich 

ZINC04106683 4699.967 Keyorganics 

ZINC05274006 4696.594 Sigma Aldrich 

ZINC01607828 4689.038 Sigma Aldrich 

ZINC05257957 4688.907 LifeChemicals 

ZINC05257889 4684.735 LifeChemicals 

ZINC04556493 4681.904 Sigma Aldrich 

ZINC04533734 4643.627 Sigma Aldrich 

ZINC03872461 4643.069 Sigma Aldrich 

ZINC04533843 4641.547 Sigma Aldrich 

ZINC03873181 4634.583 Sigma Aldrich 

ZINC01210754 4615.563 Vitas 

ZINC05273546 4585.158 Sigma Aldrich 

ZINC03871263 4572.668 Sigma Aldrich 

ZINC02575474 4554.932 Sigma Aldrich 

ZINC04533732 4552.692 Sigma Aldrich 

ZINC04939701 4546.525 LifeChemicals 

ZINC04533735 4496.596 Sigma Aldrich 

ZINC03870005 4465.234 Sigma Aldrich 

ZINC05274008 4386.57 Sigma Aldrich 

ZINC03872463 4378.871 Sigma Aldrich 

ZINC04760528 4363.481 Sigma Aldrich 

ZINC04544665 4358.829 Sigma Aldrich 

ZINC04511392 4318.523 Asinex 

ZINC04514036 4302.86 Sigma Aldrich 

ZINC04513860 4294.716 Sigma Aldrich 

ZINC04556886 4291.104 Sigma Aldrich 

ZINC04543872 4283.146 Sigma Aldrich 
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ZINC05273678 4276.885 Sigma Aldrich 

ZINC04566466 4269.913 Sigma Aldrich 

ZINC06142968 4261.341 Otava 

ZINC01893413 4243.928 Otava 

ZINC04739725 4236.693 Vitas 

ZINC04566465 4205.4 Sigma Aldrich 

ZINC05273548 4201.266 Sigma Aldrich 

ZINC05511105 4191.064 Otava 

ZINC01638013 4186.778 Sigma Aldrich 

ZINC04533969 4184.555 Sigma Aldrich 

ZINC04024388 4177.399 Keyorganics 

ZINC04291876 4159.401 LifeChemicals 

ZINC04291877 4154.487 LifeChemicals 

ZINC03872462 4152.638 Sigma Aldrich 

ZINC04099087 4145.463 Sigma Aldrich 

ZINC03999322 4136.824 Sigma Aldrich 

ZINC01607692 4134.645 Sigma Aldrich 

ZINC05260452 4134.227 Sigma Aldrich 

ZINC04557073 4121.642 Sigma Aldrich 

ZINC03869383 4119.558 Sigma Aldrich 

ZINC02575489 4091.542 Sigma Aldrich 

ZINC04514038 4079.696 Sigma Aldrich 

ZINC04556887 4048.887 Sigma Aldrich 

ZINC04545848 4048.283 Sigma Aldrich 

ZINC04544666 4045.601 Sigma Aldrich 

ZINC02685419 4044.966 LifeChemicals 

ZINC04159200 4032.111 LifeChemicals 

ZINC04533971 4030.039 Sigma Aldrich 

ZINC05511098 4024.855 Otava 

ZINC02685397 4023.99 LifeChemicals 

ZINC02685329 4003.465 LifeChemicals 

ZINC02685344 3997.909 LifeChemicals 

ZINC04535978 3996.699 Sigma Aldrich 

ZINC03871262 3987.519 Sigma Aldrich 

ZINC02685352 3980.843 LifeChemicals 

ZINC05545049 3971.142 Otava 

ZINC05273579 3967.291 Sigma Aldrich 

ZINC04514042 3961.863 Sigma Aldrich 

ZINC01893410 3958.873 Otava 

ZINC00236768 3958.214 Vitas 

ZINC01805621 3951.552 LifeChemicals 

ZINC02685380 3927.787 LifeChemicals 

ZINC00574780 3927.28 Vitas 

ZINC04040894 3923.655 Keyorganics 

ZINC05511073 3918.173 Otava 

ZINC05260460 3916.985 Sigma Aldrich 

ZINC04660887 3913.51 Otava 
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ZINC05273547 3908.913 Sigma Aldrich 

ZINC01893416 3874.391 Otava 

ZINC00816404 3862.188 Otava 

ZINC01576098 3857.324 Sigma Aldrich 

ZINC02685391 3856.261 LifeChemicals 

ZINC04507507 3842.097 Sigma Aldrich 

ZINC05274009 3832.105 Sigma Aldrich 

ZINC03394329 3823.13 Enamine 

ZINC04556744 3821.942 Sigma Aldrich 

ZINC04513863 3818.507 Sigma Aldrich 

ZINC04533809 3811.679 Sigma Aldrich 

ZINC04521828 3811.322 Sigma Aldrich 

ZINC06143684 3808.482 Otava 

ZINC01120022 3806.062 Otava 

ZINC02043137 3802.661 Sigma Aldrich 

ZINC04552284 3801.73 Sigma Aldrich 

ZINC01805618 3798.232 Otava 

ZINC02685333 3785.887 LifeChemicals 

ZINC05260454 3780.27 Sigma Aldrich 

ZINC04545932 3778.958 Sigma Aldrich 

ZINC05511099 3776.205 Otava 

ZINC05235949 3771.423 Otava 

ZINC02685401 3754.075 LifeChemicals 

ZINC03870800 3743.268 Sigma Aldrich 

ZINC02685375 3740.393 LifeChemicals 

ZINC04556500 3733.955 Sigma Aldrich 

ZINC05258510 3732.108 LifeChemicals 

ZINC02685370 3731.883 LifeChemicals 

ZINC02252499 3729.479 Vitas 

ZINC04552272 3716.438 Sigma Aldrich 

ZINC03871402 3712.854 Sigma Aldrich 

ZINC03870109 3712.259 Sigma Aldrich 

ZINC04735783 3706.273 Otava 

ZINC04523248 3701.213 Sigma Aldrich 

ZINC04533781 3700.264 Sigma Aldrich 

ZINC04534321 3685.927 Sigma Aldrich 

ZINC04543589 3664.898 Sigma Aldrich 

ZINC04660890 3648.144 Otava 

ZINC04552275 3638.23 Sigma Aldrich 

ZINC05511076 3623.76 Otava 

ZINC05545035 3621.934 Otava 

ZINC02522613 3618.054 Sigma Aldrich 

ZINC04735797 3616.808 Otava 

ZINC04534319 3616.223 Sigma Aldrich 

ZINC04672996 3613.007 Vitas 

ZINC04523366 3605.412 Sigma Aldrich 

ZINC04065004 3598.52 Vitas 
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ZINC05885060 3586.05 Enamine 

ZINC05260451 3577.245 Sigma Aldrich 

ZINC05273572 3568.69 Sigma Aldrich 

ZINC04735821 3558.965 Otava 

ZINC01893395 3554.209 Otava 

ZINC06590276 3528.214 Enamine 

ZINC02047153 3528.206 Sigma Aldrich 

ZINC04514046 3514.745 Sigma Aldrich 

ZINC04677137 3492.472 Vitas 

ZINC04083848 3490.832 Vitas 

ZINC04187766 3476.841 Vitas 

ZINC05511070 3470.568 Otava 

ZINC05511066 3463.047 Otava 

ZINC05511089 3443.054 Otava 

ZINC04735769 3406.209 Otava 

ZINC03268222 3401.479 Enamine 

ZINC04304712 3385.03 Otava 

ZINC04739051 3373.027 Vitas 

ZINC01122862 3367.326 Vitas 

ZINC04167058 3300.651 LifeChemicals 

ZINC00969636 3290.01 LifeChemicals 

ZINC05511112 3261.722 Otava 

ZINC01206008 3237.435 Otava 

ZINC00038207 3231.201 TimTec 

ZINC05235951 3228.151 Otava 

ZINC04939716 3220.544 LifeChemicals 

ZINC00653397 3201.981 TimTec 

ZINC03305588 3164.451 Enamine 

ZINC02700719 3131.295 LifeChemicals 

ZINC04373351 3124.746 Asinex 

ZINC00556918 3109.576 Otava 

ZINC02699820 3093.368 LifeChemicals 

ZINC05516169 3086.172 Otava 

ZINC00783224 3050.043 Asinex 

ZINC03274602 3048.249 Enamine 

ZINC03218782 3035.004 Enamine 

ZINC03248836 2934.242 Enamine 

ZINC01782161 2869.992 Otava 

ZINC02710650 2829.9 LifeChemicals 

ZINC04106684 2818.322 Keyorganics 

ZINC03217938 2801.973 Enamine 

ZINC04513866 2798.426 TimTec 

ZINC00839413 2732.374 TimTec 

ZINC04373354 2729.865 Asinex 

ZINC06590275 2702.556 Enamine 

ZINC00783223 2678.131 Asinex 

ZINC03358847 2656.639 Enamine 
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ZINC00074476 2629.257 Asinex 

ZINC04482492 2608.585 Enamine 

ZINC02685062 2599.128 Otava 

ZINC05827290 2584.551 Enamine 

ZINC07157728 2554.532 Enamine 

ZINC04993151 2544.796 Asinex 

ZINC03269810 2523.898 Enamine 

ZINC04660889 2522.86 Otava 

ZINC04037814 2517.244 Asinex 
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APPENDIX B 

Descriptor Values for All Antibiotics  

Antibiotic Efflux LogP MolWidth HINTnB HINTZ3 HINTcE HINTAcrBHole 

1 2 0.22 8.824 1421.4049 349.9535 269.3283 -358.842 

2 1.322 0.63 7.8673 -48.9615 208.3675 803.6375 -192.874 

3 1 1.67 8.4704 359.8735 -19.4607 759.0005 -563.7534 

4 0 0.78 8.5204 895.124 609.4122 1161 -141.4805 

5 0 -2.18 8.1583 1180.493 -407.6976 1681.1809 -511.7244 

6 1.585 0.14 7.6195 684.2153 654.4504 676.4913 365.8505 

7 0 -1.54 8.7335 -234.6077 1042.9979 823.7745 265.72 

8 0.585 1.57 8.9935 219.3652 892.0615 1536.8369 152.3447 

9 0.585 -0.01 8.6566 727.4464 694.5172 395.6584 -171.2888 

10 3.585 -0.24 8.8245 1036.7676 281.1794 -310.9403 -83.5398 

11 2.415 -0.05 8.2824 1369.0051 626.1984 624.5814 -1084.8589 

12 1 -0.11 11.03 531 840.4 460.5 -476.7 

13 0.415 -0.38 8.4421 11.3957 320.7032 -437.5324 -1774.9761 

14 0 -0.4 8.3236 1086.635 -342.8607 1831.3839 -471.9541 

15 0 0.6 9.5402 420.3004 701.2516 798.1672 -1500.9824 

16 4.087 1.92 6.9961 -169.3248 -33.8065 -321.4585 -398.8438 

17 0 -1.43 7.8187 266.208 -427.9128 1417.8339 264.2717 

18 1.322 1.13 7.0743 673.8554 -441.0727 154.8593 -135.5974 

19 1.415 0.88 7.066 883 1188.2214 2641.8313 1230.6249 

20 0 0.75 7.7892 1033 724.1004 2229.8894 1100.3538 

21 8.585 2.05 8.7708 897.123 -1201.1604 -372.9877 -116.3972 

22 1.322 0.37 7.3337 1031.1724 -749.2806 653.3875 -2067.1899 

23 5.170 0.21 10.16 576.3 354.8 234.4 -604 

24 7 3.21 8.8458 302.0901 -645.2233 12.4986 -891.8931 

25 7.415 2.61 8.5613 876.5013 -1601.5297 -667.899 -30.9436 

26 2.585 0.2 9.9196 183.9795 -330.1823 355.9706 -324.9861 

27 4 0.67 10.9224 49.3987 147.8679 -35.149 -172.376 

28 0 0.06 7.87 891.5 265.4 1209.4 -321.2 

29 1 1.41 6.9541 1038.7643 -668.0494 -547.1687 -517.5837 

30 2 0.24 6.9829 351.8297 -862.1061 -127.8168 -968.7239 

31 0 -0.19 7.3593 1248.1177 1084.7677 2562.1274 -356.574 

32 0 0.22 8.4364 914.1481 -276.4886 604.3444 -809.584 

33 2.585 0.11 7.2725 520.443 1222.7812 1487.6881 -311.5596 

34 3 0.98 8.4555 -744.2012 -80.3125 164.3973 42.7482 
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35 3 -0.91 9.4782 -278.7676 -67.7812 -786.8657 -1105.425 

36 7 2.56 9.3903 419.9081 248.6562 172.3196 -25.4482 

37 3 2.1 5.9864 436.4709 339.5 259.7588 231.7992 

38 3 -0.56 8.881 -879.8488 -272.5312 -110.5498 -358.8451 

39 0 0.15 6.2727 440.6515 259.0312 314.0884 -305.9413 

40 5.736 3.07 8.6761 -394.235 -420.5938 982.9062 -493.9512 

41 1 0.95 9.6246 360.6436 321.3438 -264.627 -638.6501 

42 8 4.33 9.0142 318.0577 110.0312 921.7446 -49.2852 

43 2 -0.57 9.0729 62.2588 587.7812 -621.0016 -471.9078 

44 0 -0.47 9.4612 -44.4861 440.125 -599.4806 -651.1274 

 
 

 

  



 

 

180 

 

 

VITA 

 

Aurijit Sarkar was born on October 19, 1979, in Indore, M.P., India and is an Indian 

citizen. He graduated in 2000 A.D. with a Bachelor‘s degree in Science, specializing in 

pharmaceutical chemistry, chemistry and zoology from G.M.C. Holkar Science College 

and Devi Ahilya University, Indore. In 2003 A.D. he received his Master‘s degree in 

Science, specializing in applied chemistry and specifically in fine chemicals and drugs 

from Shri G.S. Institute for Technology & Science, Indore and Rajiv Gandhi Technical 

University, Bhopal, where he conducted research in chemical kinetics. He subsequently 

went on to work as a faculty member at two different engineering colleges – Shri G.S. 

Institute for Technology & Science, Indore and Central India Institute of Technology, 

Indore – for approximately 18 months before joining the Department of Medicinal 

Chemistry at Virginia Commonwealth University for his PhD. He has received several 

honors during his graduate career, including the 2010 J. Doyle Smith Award for 

exemplary performance as a graduate student in the department and the Charles T. 

Rector & Thomas W. Rorrer, Jr. Dean‘s Award during the same year for distinguished 

achievements in the areas of scholarship, research, teaching and service. He has been 

actively involved in student organizations, having served as the President of the 

Department of Medicinal Chemistry Graduate Student Association and the Alpha 

Student Chapter of the American Chemical Society‘s Medicinal Chemistry Division 

during the year 2009. 


	Virginia Commonwealth University
	VCU Scholars Compass
	2010

	DEVELOPMENT AND APPLICATIONS OF THE HINT FORCEFIELD IN PREDICTION OF ANTIBIOTIC EFFLUX AND VIRTUAL SCREENING FOR ANTIVIRALS
	Aurijit Sarkar
	Downloaded from


	tmp.1404866539.pdf.EBWGc

