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Abstract 

 

 

 

A supply of clean, carbon neutral and sustainable energy is the most scientific and 

technical challenge that humanity is facing in the 21
st
 century. Though there is enough fossil 

fuels available for a few centuries, their use would increase the level of CO2 in the atmosphere.
1
 

This would lead to global warming and may pose serious threats such as rising of sea level, 

change in hydrological cycle, etc. Hence there is a need for an alternative source of fuel that is 

clean and sustainable. Among the many resources considered as an alternative power source, 

hydrogen is considered one of the most promising candidates. To use hydrogen commercially, 

appropriate hydrogen storage system is required. 

Various options to store hydrogen for onboard use include gaseous form in high-pressure 

tanks, liquid form in cryogenic conditions, solid form in chemical or metal hydrides, or by 

physisorption of hydrogen on porous materials.
2
 One of the emerging porous materials are metal-

organic frameworks (MOFs) which provide several advantages over zeolites and carbon 

materials because the MOFs can be designed to possess variable pore size, dimensions, and 

metrics.
3
 In general, MOFs adsorb hydrogen through weak interactions such as London 

dispersion and electrostatic potential which lead to low binding enthalpies in the range of 4 to 10 

kJ/mol. As a result, cryogenic conditions are required to store sufficient amounts of hydrogen 

inside MOFs. Up to date several MOFs have been designed and tested for hydrogen storage at 

variable temperature and pressure levels. The overall results thus far suggest that the use of 



 xiv 

MOFs for hydrogen storage without chemical and electronic modifications such as doping with 

electropositive metals or incorporating low density elements such as boron in the MOFs 

backbone will not yield practical storage media. Such modifications are required to meet 

gravimetric and volumetric constraints. With these considerations in mind, we have selected a 

Cr-based MOF (MIL-101; Cr(F,OH)-(H2O)2O[(O2C)-C6H4-(CO2)]3·nH2O (n ≈ 25)) to investigate 

the impact of nickel inclusion inside the pores of MIL-101 on its performance in hydrogen 

storage. MIL-101 has a very high Langmuir surface area (5900 m
2
/g) and two types of 

mesoporous cavities (2.7 and 3.4 nm) and exhibits exceptional chemical and thermal stabilities.
 
 

Without any modifications, MIL-101 can store hydrogen reversibly with adsorption enthalpy of 

10 kJ/mol which is the highest ever reported among MOFs. At 298 K and 86 bar, MIL-101 can 

store only 0.36 wt% of hydrogen.
4
 Further improvement of hydrogen storage to 5.5 wt% at 40 

bar was achieved only at low temperatures (77.3 K).
5
  As reported in the literature, hydrogen 

storage could be improved by doping metals such as Pt. Doping is known to improve hydrogen 

storage by spillover mechanism 
6
 
7
 and Kubas

8
 interaction. Hence we proposed that doping MIL-

101 with a relatively light metal possessing large electron density could improve hydrogen 

adsorption. Preferential Ni doping of the MIL-101’s large cavities which usually do not 

contribute to hydrogen uptake is believed to improve hydrogen uptake by increasing the potential 

surface in those cavities. We have used incipient wetness impregnation method to dope MIL-101 

with Ni nanoparticles (NPs) and investigated their effect on hydrogen uptake at 77.3 K and 298 

K, at 1 bar. In addition, the impact of metal doping on the surface area and pore size distribution 

of the parent MIL-101 was addressed. Metal content and NPs size was investigated by ICP and 

TEM, respectively. Furthermore, crystallinity of the resulting doped samples was confirmed by 
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Powder X-ray Diffraction (PXRD) technique. The results of our studies on the successful doping 

with Ni NPs and their impact on hydrogen adsorption are discussed. 
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Chapter 1 
 

 

 

 

Introduction 

All living things need energy to survive. The primary source of energy in the past was 

provided mainly from biomass, primarily wood. But after the industrial revolution, the increasing 

demand of energy was met from fossil fuel, mainly coal, for machines to work. In the past two 

centuries, the energy source has shifted from being dominated by coal to oil and natural gas. 

Currently the major fossil fuels that we are dependent on are petroleum, natural gas and coal. 

Fossil fuels primarily petroleum and recently natural gas are used in automobile industry. But 

consumption of these fossil fuels has serious consequences on the environment. Natural gas is 

widely used as a fuel. Our increasing demands for natural gas far exceed its current rate of 

production. It has been estimated that 60-160 years of natural gas reserves are available. 

However, burning of natural gas releases CO2 into the atmosphere and it is considered to be a 

non-renewable source of energy. The petroleum reserve would last for another 50-150 years. But 

the use of oil and petroleum is increasing and projected to increase more as the population and 

the economy grow. Though the consumption is increasing, the production reached its peak 

during 1970’s and is currently in a declining phase. Hence petroleum reserves would deplete 

soon. To meet the ever increasing need for oil, a large portion of it is imported from other 

countries which increases the cost and will make countries depend on other oil producing 

countries for fuel. In addition, burning of fossil fuel emits CO2 into the atmosphere. The 

atmospheric CO2 concentration has been between 210 and 300 ppm for the past 420,000 years. 
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But due to the CO2 emission from the use of fossil fuel, the concentration of CO2 in the past 50 

years have been rising, and  is now in excess of 380 ppm.
1
 It has been projected to increase to 

750 ppm by 2050. But the goal is to stabilize the atmospheric CO2 to 550-650 ppm range. Even 

at the 550 ppm range issues such as rise in sea level, change in the hydrological cycle and other 

effects are predicted.
9
 Hence there is an increased concern for a future fuel that would be 

environmentally benign. 

1.1. Need for Alternative Source of Fuel 

A supply of clean, carbon neutral and sustainable energy is the most scientific and 

technical challenge that humanity is facing in the 21
st
 century. Non-renewable energy like 

petroleum would deplete soon if used at the current rate. In addition their use would increase the 

level of CO2 in the atmosphere. Since carbon based fuels are becoming serious threats to the 

environment by increasing green house gas, there is need for alternative source of fuel that would 

have no or very few adverse environmental impacts. Nontraditional source made from biomass 

resource, for example ethanol, methanol, biodiesel and gaseous fuels such as hydrogen and 

methane are considered as alternative fuels for future.  

1.1.1 Aspects of Hydrogen as an Alternative Fuel 

Hydrogen is considered one of the most promising alternative sources of energy. The 

question that arises is how and why hydrogen is a desirable fuel. The first reason is its 

availability. Hydrogen is the third most abundant element on earth. It is mostly present in the 

form of water and hydrides and organic molecules. Hydrogen can be produced from biomass and 

natural gas which are basically hydrocarbon
10

. Hydrogen can be produced by splitting water, 

either by electrolysis or using sunlight as well as enzymes. The most successful method is using 

electrolysis. But if electricity used for electrolysis comes from fossil fuel, then it is again not 
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clean. It is, therefore, desirable that electricity used to split water comes from clean renewable 

energy sources. The sources for hydrogen are available in all countries. This would essentially 

allow us to achieve energy independence. The second reason is that it is a clean source of fuel. 

Combustion of hydrogen with oxygen produces pure steam which again has many applications in 

industrial processes and space heating. Due to absolutely no green house gas emission and direct 

combustion in engines with water as the only byproduct, hydrogen could be used for generating 

electricity from fuel cells to drive vehicles for future transportation. As water can be recycled 

back to produce hydrogen it can be sustainable, which is another desirable feature. Green house 

gas emission is highest for vehicles which run on gasoline. Hybrid electric vehicles which are 

currently available in the market have reduced the green house gas emission to a certain level. 

But if we start using hydrogen fuel cell vehicles we can significantly reduce the green house gas 

emission. This is evident from the fact that the car manufacturers are competitively 

experimenting to produce hydrogen based fuel cell cars. 

1.2. Hydrogen Storage 

  Hydrogen is very high in energy content by weight (about 3 times more than gasoline), 

but has a very low energy content by volume (about 4 times less than gasoline).
11

 This makes 

hydrogen storage a great challenge, particularly within the size and weight constraint of a 

vehicle. The target set by US department of energy for on board hydrogen storage by the year 

2010 is 6.0 wt% (gravimetric) and 4.5 g/L (volumetric) at ambient temperature (from -40 to 85 

°C) and 100 atm or less pressure.
12

  By 2015 the capacity should to be increased to 9.0 wt% and 

8.1 g/L. Thus to use hydrogen commercially, an appropriate hydrogen storage system is needed 

that would be able to charge and discharge huge amounts of hydrogen at a rapid rate under 

ambient conditions with the above mentioned capacity, to meet commercial requirements. The 
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modern cars with combustion engine which are available in the market burn about 24 kg of 

petrol to run for 400 km. However, 8 kg of hydrogen needed for combustion engine version and 

only 4 kg hydrogen for electric car with fuel cell to cover the same range.
2
 Unfortunately, 

hydrogen is very difficult to compress for on-board storage. For example, in gas phase 4 kg of 

hydrogen occupies 45 m
3
 at room temperature and atmospheric pressure.

2
 

1.3. Hydrogen Storage Methods 

In this section, we summarize the various ways of storing hydrogen and recent developments in 

this field. 

1.3.1. Conventional Hydrogen Storage Methods 

1.3.1.1. Compressed Gas.  Hydrogen is stored in high pressure tanks in the form of compressed 

gas. This way of transporting hydrogen is not safe.  It is also not cost effective. Also 

compressed hydrogen gas tanks are large and heavy. The main disadvantages associated 

with gaseous hydrogen are low density and large storage volume as opposed to liquid 

hydrogen. A very high pressure is required to store hydrogen at room temperature (300-700 

bar).
11

. 

1.3.1.2. Cryogenic Liquid.  Liquefied hydrogen is denser and has higher energy content than the 

gaseous hydrogen at a given volume. Liquid hydrogen tanks store more hydrogen than the 

compressed gas tanks, but it takes energy to liquefy hydrogen and tank insulation is 

required. It is difficult to keep hydrogen in the liquid form because of the low liquid-gas 

phase change enthalpy of 0.45 kJ/g hydrogen.
5
 Conventionally hydrogen is liquefied at 

high pressure and stored in tanks. In most countries high pressure tanks are made from 

inexpensive steel and can take up a pressure of up to 200 bar. These high pressure 

containers have major limitations, the fuel would be available only when the pressure is 
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dropped from 450 bar to zero overpressure, and hence additional pressure control is 

needed. The critical temperature of hydrogen is -241 °C, hence to prevent overpressure the 

liquid hydrogen containers are open systems.
2 

 So there is always loss of hydrogen. In 

addition, long distance transportation of hydrogen is only done as cryogenic liquid.  But the 

problem is to maintain the low temperature (-253 °C) while transporting.
11

 It is a technical 

challenge to manufacture a suitable cylinder which can maintain cryogenic temperature in 

order to store hydrogen for onboard storage.  

Hence the conventional types of storage are not preferred due to their inherent drawbacks; 

other option is storing hydrogen chemically in the form of hydrides.  

1.3.2. Chemical Hydrogen Storage Methods.   

One of the methods to store hydrogen is to break dihydrogen molecules into hydrogen 

atoms and then incorporate them into solid lattice framework by surface adsorption. At low 

pressure and at ambient temperature, it is possible to store large amounts of hydrogen in a 

small volume. Typical materials are various hydrides like intermetallic, complex or 

chemical hydrides. Metal hydrides store hydrogen in a discrete M-H bond. Metal hydrides 

have high heat of enthalpies in the range of 80 KJ/mol. Hence energy is required to drive 

off hydrogen for use while huge amount of energy is released on recharging.
13

 

1.3.2.1. Intermetallic Hydrides.  Hydrogen can be reversibly stored in alloys in the form of 

intermetallic hydride (LaNi5H6.5). The advantage is that adsorption and desorption of 

hydrogen can be done at moderate pressures unlike elemental hydrides which need higher 

temperature and lower pressures for desorption.  The alloys resulting from LaNi5   shows 

fast and reversible sorption, however its use for hydrogen fuel tanks is not appropriate due 

to low H2 weight percentage. Some intermetallic compounds form hydrides that contain up 



 6 

to 9 mass% hydrogen. However hydrogen release from these hydrides is not reversible 

within the desired temperature and pressure ranges.
2
 

1.3.2.2. Complex Hydrides. Generally, these are main group metal hydrides such as LiAlH4. It is 

a complex formed from negatively charged metal hydride balanced by alkali metals Li, Na, 

etc. The main advantage of complex hydrides is that they can store higher hydrogen wt%, 

but their poor reversibility limits their use and make them undesirable.
13

  

1.3.2.3. Chemical Hydrides: Hydrogen can also be stored in form of organic hydrides. For 

example, decalin is formed by heating naphthalene and hydrogen at 200 
o
C. Since covalent 

bonds are formed between hydrogen and the metal, low temperature is required for 

adsorption. Desorption requires higher temperature, which is not desirable for on-board 

storage. The problem associated with chemical hydrides is irreversible storage of hydrogen 

which requires heating and cooling for hydrogen discharging and charging respectively.
11, 2

 

1.3.3. Physical Hydrogen Storage Methods 

During physical storage, molecular hydrogen gets adsorbed through relatively weak 

interaction. When the interaction is governed by weak van der Waals force (dispersion 

interaction), then physical adsorption (physisorption) of molecular hydrogen on high surface area 

porous materials takes place.
14

 Hydrogen gets adsorbed into high surface area porous materials 

and are dependent on the temperature and pressure. 

1.4. Hydrogen Storage in Porous Materials 

Porous materials are broadly divided into three categories depending on their size of the 

pores, (1) Microporous (diameter of the pore less than 2 nm/ 20Å), (2) Mesoporous (2-50 nm/ 

20-500Å) (3) Macroporous (more than 50 nm/ 500Å). 



 7 

Porous materials  such as zeolites, MOF,
15

 
16

 carbon materials (carbon nanotubes,
17

 

activated carbon,
18

 nanostructured carbon, carbon nanofibres,
18

 mesocarbon microbead,
19

 carbon 

aerogels,
20

 ordered mesoporous carbon,
21

 carbon monoliths),
22

 are capable of storing hydrogen at 

low temperatures with variable performance. Physisorption of hydrogen by these high surface 

area materials needs cryogenic conditions. Porous materials are capable of storing physisorbed 

molecular hydrogen reversibly with fast kinetics as opposed to chemical adsorption. However 

physical adsorption of hydrogen is associated with issues like low adsorption enthalpy that result 

in low storage capacity at ambient conditions. 

1.4.1. Hydrogen Storage in Zeolites and Molecular Sieves 

Hydrogen could be stored in zeolite and molecular sieves by adsorption into the hollow 

space of the host molecule. It was found that the sodalite cages are the host where hydrogen is 

adsorbed. This is due to the fact that the kinetic diameter of hydrogen molecule is 0.29 Å and 

overlapping potential is possible only in sodalite cages. Also hydrogen can be stored in zeolites 

that only have sadalite cages. It is not conceivable to entrap hydrogen in the α-cages. It is 

possible to reversibly adsorp and desorp hydrogen; however the storage capacity is 9.2 cm
3
/g at 

573 K and 10.0 MPa which is much less than metal hydride storage systems which are about 150 

to 700 cm
3
/g.

23
 

1.4.2. Hydrogen Storage in Carbon Nanotubes 

Carbon nanofibers, single walled carbon nanotubes (SWCNT) and multiwalled carbon 

nanotubes (MWCNT) shows promising potential to store hydrogen.  This is due to the electronic 

nature resulting from sp
2 

hybridization, large surface area and molecular sized pores present in 

these carbon based materials. At moderate temperature and pressure, SWCNT show potential for 
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hydrogen storage. Results from literature shows MWCNT could store hydrogen from 1.975 at 40 

bars to 6.3 wt% at 148 bar.
17a

 

1.4.3. Metal-Organic Frameworks 

MOFs are one, two or three dimensionally linked  networks consisting of nodes, which 

are metal cations or di- tri- or tetra- or polynuclear metal cation cluster, connected to organic 

ligands commonly, di- tri- or tetradentate ligands. The organic linkers are primarily covalent 

while the inorganic part is ionocovalent (i.e. the bond involves electrostatic force (ionic part) and 

covalent forces resulting from the combination of atomic orbital of cations and anions). The 

coordination bonds between metals and ligands are strong and this gives rise to 

crystallographically well-defined open structure which is stable upon removal of guest molecules 

giving permanent porosity. A major feature of MOFs over zeolites and CNTs is that it can be 

designed
3
 and then synthesized which is made possible by the concept of reticular synthesis. 

1.4.3.1. Reticular synthesis  

Building extended structures from metal ions and organic linkers is not efficient because simple 

metal ions possess little directional information. This deficiency in directional information 

causes flexibility around metal ion and diversity of possible structure and lack of control. In 

addition starting entities lose their structure during the course of reaction, which leads to poor 

correlation between reactant and product. These issues are addressed in “reticular chemistry”, the 

new emerging field of science where molecular building units, also known as secondary building 

units (SBU), are stitched into extended structure through strong bonds to form crystalline solid 

state materials with fixed topology.
3
 In reticular synthesis, the use of specific reaction conditions 

leads to in-situ formation of rigid and well-defined molecular building blocks that maintain their 

structural aspect and rigidity throughout the synthesis. Hence utilizing reticular synthesis, wide 
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range of MOF’s are constructed from polyatomic inorganic metal cluster, usually first row 

transition metal (inorganic SBU) linked by polytopic chelating linkers (the organic SBU). Both 

the inorganic and organic SBUs can be of a variety of geometry ranging from linear to polygonal 

structures. In figure 1, geometries of some inorganic SBUs and organic SBUs are shown. 

Inorganic SBUs figure 1 (a, b, c and d) can be triangular, square, octahedral and prismatic and 

organic SBUs figure 1 (e, f and g) can be triangular, tetrahedral and square planar.
24

  The metal 

ions are chelated by the carboxylate functionality of organic linker and lock them into rigid 

structure. These metal-oxygen-carbon clusters provide direction and point of extension. The 

carbon atoms in the cluster define the geometric shapes of the SBU. SBUs provide directionality 

for construction of MOF and also impart framework robustness. Thus the concept of SBU is 

advantageous in rationalizing the topologies of MOF structure. By utilizing structurally diverse 

inorganic and organic SBUs, large number of geometric structures can be synthesized. Formation 

of the predesigned network is a possibility if the reaction conditions are properly identified to 

produce an SBU in-situ with particular geometry.  Thus, reticular chemistry involves designing, 

synthesizing and characterization of the structure in a predictable fashion.  

This type of crystal chemistry offers MOF immense possibility to design structure and 

properties to a greater extent than that of zeolite where the main building block is the silicate 

tetrahedron rather than the SBU.
24

 In MOFs the different functionalized organic linkers are 

directly added as reactant into the syntheses and the metal based units assemble in-situ during 

crystallization. Hence it is possible to generate series of compounds with same topology but 

different composition and dimension, both in principle and in practice by using organic linkers 

with same geometric arrangements of bonding group (commonly carboxylates and amines) but 

different organic molecules. 
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Figure 1: Inorganic SBUs (a, b, c, d) a: trigonal planar, b: square paddle-wheel, c: octahedral 

and d: trigonal prism. Organic SBUs (e, f, g) e: trigonal planar, f: tetrahedral and g: square 

planar. Blue dotted lines depict the geometry. 
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If inorganic moiety and organic linkers are chosen carefully, formation of desired kinds 

of pores are possible. Moreover the capability to modify the organic linker chemically, by 

organic synthesis, allows foreseeable synthesis of functionalized MOFs. The tunability and 

predictable design of MOF increases its usability in various applications. For the past 15 years, 

hybrid organic-inorganic mesoporous solids have gained significant importance for wide range 

of structures and properties such as their notable adsorption properties, high surface area, large 

pores size, and flexibility in structure, thermal stability, uncoordinated metal adsorption sites, 

high crystallinity and functionality of the framework, permanent porosity, dynamic porous 

properties, functionality of metal ion and organic ligands besides their key characteristic such as 

structural flexibility, design ability and regularity. In addition MOF are amazingly light and 

porous such that the surface area of one gram could cover an entire football ground. MOFs 

possess novel chemical, physical, electronic and magnetic properties. These properties allow 

wide range of applications in diverse fields such as optics, catalysis, ion exchange, gas storage, 

gas separation, sensing, polymerization and drug delivery, molecular electronics etc. 

1.5. Advantages of MOFs over Related Zeolites and Carbon nanotubes (CNT) 

Porous material like zeolite,
23

 activated carbon,
25

 
26

 
27

 and carbon nanotubes
17a

 are used 

for gas storage purposes. However, MOF provides advantages over these materials because the 

size- and shape of pores inside MOFs are tunable.
28

 So far MOFs are the one of best materials 

used for physical hydrogen storage. Porous MOFs permits guest molecules to penetrate through 

the pores without destroying the framework. Also the weakly coordinated species i.e. the guest 

water molecules are easily removed thermally or chemically and unsaturated metal sites are 

formed, which can further increase the adsorption of hydrogen. Hence metal-organic frameworks 

(MOF) are potential candidates to store substantial amounts of hydrogen at cryogenic conditions 



 12 

(low temperature) and high pressure. Due to the small kinetic diameter (2.89 Å) of hydrogen 

molecules it interacts only with high potential surfaces. MOFs adsorb hydrogen through weak 

interactions such as London dispersion and electrostatic potential. Due to the low binding 

enthalpy 4-10 kJ/mol, resulting from such interactions, cryogenic conditions are preferred. The 

polarizability of the MOF material determines the dispersion interactions and the distance 

between the H2 and potential surface. Hence, there is a preferential adsorption of hydrogen on the 

MOF within the pores in which the overlapped potential fields from both sides of pores 

strengthen the potential interaction.  So increasing the following aspects would lead to enhanced 

hydrogen adsorption in MOFs: (i) High potential surface, (ii) Exposed metal sites,
29

 
30

 (iii) 

Binding enthalpy (20-30 kJ/mol). 

1.6. Improved H2 Storage in Zeolite and CNT by Doping with Transition Metals 

In gas phase, chemical adsorption i.e. chemisorption of atomic hydrogen on CNT is not 

possible because dissociation energy of 440 kJ/mol is required to break the molecular H-H bond. 

However, transition metals for example Ni, Co, Pt has been found to act as active dissociative 

catalysts for hydrogen.
31

 
32

 It has been found in several studies, how metal doped porous 

materials have increased hydrogen uptake. In one such study Ni doped on MWCNT was 

investigated. Different loadings of 3, 6, 13, 40 wt% Ni nanoparticles dispersed on MWCNT was 

studied. In the gas phase Ni can dissociate hydrogen molecule and the atomic hydrogen thus 

formed interacts with surface of MWCNT through chemical bonds. This was confirmed by the 

fact that desorption activation energy was higher which means that the mechanism by which 

hydrogen gets stored is associated with some chemical interaction between hydrogen and carbon. 

In this study it was found that hydrogen uptake were 1.2, 2.8, 1.8, 0.4 wt% respectively at 

moderate temperature and pressure for 3, 6, 13, 40 wt% metal loading. The 6 wt% Ni loaded 
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MWCNT showed highest hydrogen uptake than the MWCNT without good Ni dispersion. It was 

also found that as more Ni distribution on MWCNT increased, proportionately the desorption 

temperature also increased. TEM images for the 6 wt% Ni shows that the Ni nanoparticles were 

~1.2nm and were well distributed over MWCNT and showed maximum uptake. On the other 

hand, for higher Ni loading concentration of 40 and 13 wt%, TEM showed that the Ni 

nanoparticles aggregated and were about 10nm in size. For 3 wt% loading the Ni nanoparticles 

formed islands on the surface and does not show improvement in uptake.
33

 These suggest that Ni 

nanoparticle plays a significant role in hydrogen adsorption on CNT surface and also 

dissociation of the hydrogen molecule.  

1.7. Different Doping Methods 

There are various methods of preparations of metal nanoparticles. The following table 

summarizes all different routes.
34

 

 

 

Table 1.1 Different doping methods for porous materials 
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1.8. Mechanisms by which Doping Improves Hydrogen Storage 

1.8.1. Kubas Interaction 

Nano sized metal clusters can interact with H2 to form 3c-2e bonds through what is called 

Kubas interaction.
8
 

35
 In this kind of interaction, the bonding orbital of H2 interact with the 

antibonding orbital of the metal. If the interaction is weak H2 is just adsorbed to the d-orbitals of 

transition metals. If this interaction is strong the bond holding the H atoms break and atomic 

hydrogen forms. This exactly is what happens in spillover mechanism.  

 

Figure 2. Interaction diagram of hydrogen molecule and metal d-orbital (Kubas interaction) 
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1.8.2. Spillover Mechanism 

Hydrogen spillover is dissociative chemisorptions of hydrogen on the metal and 

subsequent migration of atomic hydrogen onto the surface of support. The support is the primary 

receptor for atomic H2.
36

 
37

 
7
  

 

 

Figure 3. Hydrogen Spillover by metal nanoparticles 

1.8.3.    Charge Polarization Mechanism 
 

Hydrogen interacts with the neutral atom through Kubas interactions or Spillover mechanism. 

However, hydrogen interacts with metal ion in a completely different fashion. When hydrogen 

molecule comes near transition metal ion, the metal ion is energetically incompetent to transfer 

electron to the hydrogen molecule. This is due to the fact that removing electrons from positive 

ion is not easy, because the second ionization potential of the transition metal atom is much 

higher than the first. Alternatively the metal ion polarizes the nearby hydrogen molecule by 

charge polarization mechanism. By dipole mechanism, bonding between metal ion and the 

hydrogen molecule takes place through simple electrostatic interaction. Hence, through charge 

polarization mechanism transition metal ions are capable of binding large number of molecular 

hydrogen and increase hydrogen uptake. It has been shown in literature that one Ni
+
 ion could 
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trap about ten hydrogen molecules. That is hydrogen is “chemisorbed” on the Ni
+
 ions in its 

molecular form. 
38

 

 

 

Figure 4. Charge polarization of hydrogen molecule by metal ion 

The binding energy and geometry of hydrogen molecule interacting with Ni
+
 ions have been 

studied in the literature. The Ni
+
 ion has open electronic shells while hydrogen molecule has 

closed electronic shell but with high polarizability. Using Atkins model it is possible to 

determine the number of hydrogen molecules or atoms that could bind to a metal cation. 
39

 

 It has been found in literature that the size of the metal cluster ion also plays an important role in 

hydrogen absorption. It has been found that small cluster with large ionization potential favors 

molecular bonding. It is energetically not favorable to donate electron to the anti-bonding orbital 

of H2. Hence, the binding is associative. On the other hand large clusters with low ionization 

potential could prefer to donate electron to the anti-bonding orbital of H2 and favor atomic 

bonding i.e. dissociative binding. 
40

 
41
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1.9. Different Methods of Preparation of MOF 

Solvothermal Syntheses. Solvothermal syntheses are carried out above temperature of 100 ºC. 

The important factors are acidic pH, temperature and concentration. The most essential is the 

temperature. Normally water is used as the main solvent, but alcohols, dialkyl formamides, 

pyridines are also used. 

Hydrothermal Synthesis. The dielectric properties of the solvent changes during hydrothermal 

conditions and that lead to weak interaction between solvent molecules and hence dissociation of 

the solvent molecules.  For hydrothermal synthesis a mixture of non miscible solvents (for 

example heavy alcohol and water) are used.  At the interface of biphasic mixture, the solid forms 

and most of the time gives a single crystal of the preferred phase.  

Electrochemical Route. In electrochemical cells, bulk copper plates (thickness 5mm) are 

arranged at the anode with a copper cathode and carboxylates linker dissolved in methanol is 

used as the solvent. For a certain period of time, a voltage of 12-19V and a current of 1.3 A is 

applied. The product precipitates, which is then filtered and dried.
42

  

Microwave Synthesis. Microwave method is used for synthesis of nanoporous inorganic 

material, which usually takes several days for hydrothermal crystallization. Microwave synthesis 

takes short crystallization time, produces narrow particle size distribution, and enables effective 

evaluation of process parameter and easy morphological control. MOF samples synthesized 

under microwave are purer in phase and have higher crystallinity.
43

 
44

 

High Throughput Synthesis. High throughput (HT) method involves four main steps: design of 

the experiment, synthesis, characterization and data evaluation which needs to be incorporated in 

a workflow to attain a maximum productivity and innovation. In short time, HT method produce 

incredible amount of data.
45
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1.10. Thesis Problem 

In spite of the many attractive features of MOFs such as their exceptionally high surface area, 

low density, and thermal stability which are relevant to hydrogen storage, their performance in 

hydrogen storage under desirable conditions remains modest as a result of their neutral surface 

which interacts weakly with hydrogen. For practical applications, post synthesis modification of 

MOFs by doping them with late transition metal NPs could lead to enhanced performance as a 

result of spillover or Kubas interactions. The work described in the following sections addresses 

the impact of Ni NPs doping of MIL-101 (Cr3F(H2O)2O[(O2C)-C6H4-(CO2)]3.nH2O where n is ~ 

25) on its performance in hydrogen storage.   
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Chapter 2 

 

 

 

 

Results and Discussion 

2.1. Synthetic Aspect of MIL-101 

Synthesis of MIL-101 

MIL-101 was synthesized using methods described by Férey and co-workers
4
 from 

hydrothermal reaction of terephthalic acid (166 mg, 1 mmol) with Cr(NO3)3.9H2O (400 mg, 1 

mmol), fluorohydric acid (0.2 mL, 5.0 M), and H2O (4.80 mL, 265 mmol).
4
 The resultant 

mixture was introduced in a hydrothermal vessel and heated for 8 hours at 220 C (equation 1). 

HF acts as mineralizing agent and increases the crystallinity of MIL-101.   

 

(1) 

A substantial amount of recrystallized terephthalic acid is usually present after cooling to room 

temperature. To get rid of most of the recrystallized terephthalic acid, the mixture is filtered 

through coarse glass fritt filter, the water and the MIL-101 powder passes through the filter while 

the free acid stays inside the glass filter. After that fine fritt filter is used to separate MIL-101 

powder from the suspension. A considerable amount of unreacted terephthalic acid exists both 

outside and within the pores of MIL-101. To eliminate the unreacted terephthalic acid the as-

synthesized MIL-101 are activated using ethanol. A solvothermal treatment using 60 mL ethanol 
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(95% ethanol with 5% water) and 300 mg of as-synthesized MIL-101 was performed by 

introduced this mixture in a hydrothermal bomb for 20 hours at 100 C. The resulting mixture is 

cooled and filtered through medium (M) fritt filter and washed with ethanol. Finally the solid is 

dried overnight at 150 C.   Based on elemental analysis this reaction produced crystallized green 

powder of chromium terephthalate: Cr3F(H2O)2O[(O2C)-C6H4-(CO2)]3.nH2O where n is ~ 25. 

 
2.2. Structural Aspect of MIL-101 

 

MIL-101 is a hybrid inorganic-organic solid which is constructed form organic moiety (1, 4-

benzene dicarboxylic acid; BDC) anion and a pseudo-octahedral or prismatic inorganic SBU 

which is the trimeric chromium cluster as illustrated in Figure 5.  

 

Figure 5. Structure of inorganic secondary unit (a), organic linker (b) and the resulting 

supertetrahedra (c). 

The inorganic SBU (Cr3(µ3O) trimers)  is formed by trivalent metal cations Cr
3+

 in an octahedral 

environment . The vertices of the pseudo-octahedral structure are occupied by the μ3-O atoms in 

the middle of the chromium trimers and four oxygen atoms derived from the carboxylate group 

of the terephthalate linkers. The empty coordination sphere around chromium is completed by a 

water molecule, a fluorine atom or a hydroxyl group.
46

 A microporous supertetrahedra (ST) is 

formed by the μ3-oxo bridged trimeric chromium (III) octahedral cluster cross linked by 
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terephthalate ligand. In the ST, the four vertices are occupied by Cr3(µ3-O) trimers, and the 

organic linkers are located at the six edges of the ST. The connection between the ST is 

established through vertices to produce a 3D network of corner sharing superterahedra. These 

links are analogous to the way tetrahedrons are joined in the tetrahedrally linked MTN zeolite 

topology, but with larger unit cells.
46

 

          

Figure 6. Structure of pentagonal window of size 12 Å (left) and hexagonal  window of size 14.5 

Å by 16 Å (right) present in MIL-101. 

The ST is microporous with ~ 8.6 Å free apertures for the windows.  MIL-101 has mesoporous 

cages, and microporous windows. There are two types of windows, one pentagonal and another 

hexagonal in shape (Figure 6). The very huge cell volume (~ 702,000 Ǻ
3)

 of MIL-101 results 

from two quasi- spherical cages (Figure 7). A smaller cage formed from 12 pentagonal 

faces/windows with free opening of ~12 Å and a larger cage formed by 12 pentagonal and 4 

hexagonal faces/windows with ~ 14.5 Å by 16 Å free apertures. The two mesoporous cages are 

in 2:1 ratio and delimited by 20 and 28 ST with internal free diameter 29 Ǻ and 34 Ǻ, 
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respectively. Thus they contribute to the huge BET surface area 4100 ± 200 m
2
/g and Langmuir 

surface 5900 ± 300 m
2
/g of MIL-101.

47
 
4
 

             

Figure 7. Structure of the cages. (Left) larger cage containing both pentagonal and hexagonal 

windows and (right) smaller cage containing only pentagonal windows.  

2.3. Characteristic Features of MIL-101 

MIL-101 has numerous extraordinary features such as mesoporous zeotype architecture 

with mesoporous cages and micro porous windows, high surface area, giant cell volume, and 

several unsaturated chromium sites. In MIL-101, the presence of unsaturated Cr (III) sites with 

electron rich functional group provides inherent chelating properties. Hence these aspects 

provide an effective way to selectively functionalize the unsaturated site in the MIL-101. 

Unsaturated Cr (III) sites,
30

  which are hard Lewis acids could be used for immobilization and 

encapsulation of metal components, organic molecules etc. The thermal stability of MIL-101 is 

also high. MIL-101 decomposes above 300 
°
C. These features make MIL-101 useful for 

adsorption/storage,
48

  catalysis,
49

 
50

 
51

 
52

 
53

 molecular recognition, novel co-ordination structure, 

gas separation,
54

 drug delivery, luminescence, magnetism, conductivity, etc. 
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2.4. Characterization of MIL-101 

2.4.1. X-Ray Diffraction (XRD) 

The X-ray diffraction patterns were obtained from X’Pert Philips Diffractometer, with CuKαR 

radiations. The XRD patterns for the experimental and theoretical MIL-101 are shown in Figure 

8. XRD pattern from Figure 8 shows that the synthesized MIL-101 is coherent with the 

calculated one, implying that the MIL-101 made is authentic. 
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In
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2
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Figure 8. Comparison of the XRD pattern for calculated and synthesized MIL-101. 

2.4.2. Nitrogen Adsorption Isotherm 

An adsorption isotherm is the equilibrium uptake of a sorbate (for example as moles of adsorbate 

per gram of sorbent) measured at a constant temperature as a function of the concentration of the 

sorbate. For an adsorption from the gas phase, the adsorption is therefore measured as a function 
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of pressure. There are two main ways to measure the amount of adsorption- gravimetric and 

volumetric. In gravimetric methods the uptake is measured as the increase in weight of a sample 

as the adsorbate pressure is varied. This requires great accuracy in weighing. In volumetric 

method the change in pressure upon dosing known amounts of gas into a volume containing the 

sample are measured and the uptake calculated at the resultant equilibrium pressure. The 

adsorption of many vapors is most reliably performed gravimetrically, where condensation away 

from the sample has a negligible effect on the measurements. For low temperature and low 

pressure studies, however the volumetric method is preferred, because the sample is in contact 

with the walls of the sample container, itself immersed in the cryogenic bath. Heat transfer from 

the sample is, therefore, faster in the volumetric apparatus, and thermal equilibrium reached 

more quickly.  

We have used the nitrogen adsorption branch from the N2 isotherm to determine the 

Langmuir and BET surface areas and to calculate pore size distribution from Non-Local Density 

Functional Theory (NLDFT). Nitrogen physisorption measurements were measured using 

Quantachrome AUTOSORB-1-C/TCD instrument. Samples (~40-80 mg) were activated by 

degassing at 150 °C/10 
-5 

torr for 12 hours. The nitrogen adsorption isotherm for MIL-101 is 

shown in Figure 9. 
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Figure 9. Nitrogen isotherm for MIL-101, filled (adsorption) and empty (desorption) symbol. 

2.4.3. Surface Area  

2.4.3.1. Langmuir Surface Area 

 

Langmuir equation (Equation 2) was used to determine the surface area of synthesized MIL-101.  

W/Wm = [C(P/Po)]/ 1+ C(P/Po )     (2) 

where W and Wm are the weight of adsorbate at some P/Po and the weight in a monolayer. C is 

the energy of adsorption constant. 

This equation could be written in a different form 

(P/Po)/W = 1/CWm + (P/Po)/Wm where the slope (1/Wm) is determined from the plot (P/Po)/W vs 

P/Po. 
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Figure 10. Langmuir surface area plot for  MIL-101. 

The Langmuir surface area calculated from nitrogen isotherm (Figure 10) for MIL-101 was 

found to be 4426 m
2
/g. 

 

2.4.3.2. The Brunauer-Emmett-Teller (BET)  

Another method to determine surface area is the BET method which is an improvement over 

Langmuir method. Multipoint BET method was used to determine the surface area of MIL-101 

using Equation 3: 

 1/ W((Po /P) -1)  =  1/WmC + (C-1)/WmC*(P/Po)           (3)  
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 Where W is the weight of gas adsorbed at relative pressure, P/Po, Wm is the weight of adsorbate 

constituting a monolayer of surface coverage. C is a BET constant related to energy of 

adsorption in the first adsorbed layer. From the BET equation above,  

 1/W((Po /P) -1)  Vs (P/Po) was plotted, using nitrogen as the adsorbate. The calculated BET 

surface area for MIL-101 (Figure 11) was 2804 m
2
/g. 
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Figure 11. BET surface area plot for  MIL-101. 

2.4.4. DFT Pore Size Distribution 

Density Functional Theory (DFT) was used to characterize the mesoporous nature of MIL-101. 

The quantachrome instrument operates on AS1WIN software. Hence the Quntachrome’s data 

reduction software has a library of DFT and GCMC methods. Depending on the pore width 

range, the best model is picked. For our study NLDFT- N2-silica adsorption branch kernel at 77 
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K based on cylindrical pore model was used.  Cumulative volume verses pore width was plotted 

to find the pore volume distribution in MIL-101. It was shown that MIL-101 possesses two 

different pores of 26 Å and 32 Å and equal pore volumes of 0.13 cc/Å/g as shown in Figure 12. 
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Figure 12.  DFT pore size distribution plot for MIL-101. 

2.4.5. Hydrogen Adsorption Isotherm. 

Hydrogen Adsorption Isotherm at low pressure and 77K 

We collected hydrogen adsorption isotherm on MIL-101 at 77 K and 0-1 bar using 

Quantachrome AUTOSORB-1-C/TCD instrument (Figure 13).  
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Figure 13. Hydrogen adsorption isotherm at 77 K and 1 bar in cc/g for MIL-101, filled 

(adsorption) and empty (desorption) symbol. 

MIL-101 exhibits Type I isotherm, which typically shows high uptake at low pressure and a 

sharply defined maximum level of uptake as the internal pores are filled. The maximum uptake 

can be converted to pore volume per unit mass by assuming a density for the adsorbed nitrogen 

equal to that of gaseous nitrogen (1.25 g/cm
3
) at that temperature. The first step corresponds to 

filling of micropores of the ST and the second step is due to the filling of the mesopores in MIL-

101. Multilayer uptake is possible in mesoporous materials. 
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2.5. Hydrogen Adsorption on MIL-101 

High hydrogen uptake of 6.1 wt% at 8 MPa and 77 K on MIL-101 has been reported by 

Férey. The hydrogen storage capacity in MIL-101 is 4.5 wt% at 40 bar.
55

 In another study, MIL-

101 has shown promising results of high hydrogen storage capacity of 3.75 wt% at 77 K and 2 

MPa, but at room temperature the hydrogen uptake is 0.45 wt% at 2 MPa. In MIL-101 after 

activation by thermal or chemical treatment or combination of both, the weakly bound water and 

solvent molecules are easily removed and unsaturated metal sites are formed, and these open 

metal sites act as Lewis acid sites to increase the interaction with hydrogen (guest molecules) 

through changing its electronic density distribution. Hydrogen molecules has small kinetic 

diameter (2.89 Å) and interact with only high potential surface of the microporous windows is 

where the hydrogen molecules get adsorbed.
5
 The location of hydrogen adsorped in MIL-101 

mainly in the microporous super tetrahedron (ST)
5
 formed from the trimers of chromium 

octahedron and benzene dicarboxylic acid (BDC) and probably at each corner near the trimers of 

chromium octahedron. The open metal (Cr) sites are not accounted because they are shielded by 

the leftover benzene dicarboxylic acid (BDC).
5
  At temperature above critical point i.e. 32.97 K 

and 12.9 bar, it is difficult to adsorb hydrogen anywhere else in a multi layer way other than 

these four sites. However, taking into consideration the weak interaction of hydrogen into the 

pores in MIL-101, to require high potential surface to enhance hydrogen adsorption, large 

cavities may not be needed and also hydrogen molecules will not occupy the whole pore volume. 

Thus, MIL-101 has high surface area but the hydrogen surface densities are low. The adsorption 

enthalpy for MIL-101 is 10 kJ/mol. This is still lower than 15.1 kJ/mol required by DOE for 

storing hydrogen at ambient temperature. Though hydrogen adsorption in MIL-101 is reversible, 

requirement of high pressure and low temperature are the only drawbacks. In this study we try to 
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overcome these limitations by doping MIL-101 with Ni NPs. Our objective is to enhance 

hydrogen uptake by improving the isosteric heat of adsorption.  

 

Table 2.1 Hydrogen uptake by MIL-101 at different temperature and pressure 

 

H2 Storage 

Capacity 

Temperature Pressure Reference 

3.75 wt% 77K 2 MPa 
4
 

0.45 wt% 298 K 2 MPa 
4
 

4.5 wt% 77 K 3 MPa 
4
 

6.1 wt% 77 K 6 MPa 
56

 

0.36 wt% 298 K  8.6 MPa 
56

 

1.91 wt% 77 K 1 atm 
36

 

 

Table 2.1 depicts hydrogen uptake by MIL-101 at different temperature and pressure range. At 

liquid nitrogen temperature and with increasing pressure of 0.101 MPa (1 atm), 2MPa, 3MPa, 

6MPa MIL-101 shows an increasing trend of hydrogen uptake of 1.91 wt%, 3.75 wt%, 4.5 wt%, 

6.1 wt% respectively. On the other hand, MIL-101 shows reverse trend at room temperature 298 

K as opposed to liquid nitrogen temperature. With increase in pressure 2 MPa, 8.6 MPa 

hydrogen uptakes are 0.45 wt% and 0.36 wt%, respectively at room temperature. 
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Chapter 3 
 

 

 

 

3.1. Doping Transition Metals in MOFs 

One of the potential methods to increase hydrogen uptake at ambient condition is to dope 

porous materials with transition metals. Nickel has been reported for its capacity to improve 

hydrogen storage in porous material. MOFs physisorb molecular hydrogen through weak van der 

Waals interactions with heat of enthalpy generally about 4-10 KJ/mol.  But low heats of 

adsorption lead to weak holding capacity of hydrogen to the surface under ambient conditions. 

Theoretical calculations show that 20-30 KJ/mol binding enthalpy would be needed for storing 

hydrogen at room temperature. One of the potential methods to increase hydrogen uptake at 

ambient condition is to dope porous material with transition metals as we have described earlier. 

It has been found that the heat of enthalpy could be increased as a result of Kubas interactions in 

which dihydrogen binds to coordination-active metal sites in η
2
-H2–M fashion. Due to the 

enhanced interaction of H2, the pressure and temperature storage conditions would be more 

economically favorable.
57

 

3.2. Doping MIL-101 with Nickel Nanoparticles 

We have used the incipient wetness impregnation method to dope MIL-101 with two 

different concentrations of Ni NPs in order to investigate the impact of metal loading on 

hydrogen uptake and porosity of MIL-101. Our research group recently found that metal doping 

of MIL-101 (Cu, Pd, Pd-Cu) leads to lower surface areas as a result of pore clogging and pore 
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volume reduction which lower N2 uptake.
51

 To minimize this factor, we decided to target Ni 

concentrations lower than 5 wt% and investigate their impact on hydrogen uptake at 77 K and 

298 K.  

3.2.1. Wetness Impregnation Method: 

In this doping method, the solid support (MIL-101 in our case) is wetted with a solution 

containing the metal precursor. The metal NPs precursor, typically a salt (metal nitrate, chloride) 

is dissolved in a minimum quantity of solvent to allow complete dissolution. The resulting 

solution is then added to the porous solid. The solvent is stirred overnight, and vacuum filtered 

the following day after metal reduction. The metal NPs formed during this method are found to 

be heterogeneously dispersed and exhibit different particle size depending on the metal type and 

loading, support, and reduction rate, among others. However the incipient wetness impregnation 

method often provides a broad NPs size distribution and is difficult to achieve a tuning of the 

particle size for particular applications. This is mainly due to the poor control over the growth of 

metal NPs. Nevertheless, this method remains widely employed in MOFs doping due to its 

simplicity and versatility. 

In our experiments, samples of MIL-101 were suspended in deionized water. Then 

appropriate amounts of nickel (II) nitrate hexahydrate Ni(NO3)2:6H2O were added to the 

suspension while stirring for 24 hours. The resulting suspensions were then treated drop-by-drop 

with freshly prepared sodium borohydride (0.2 M) until the color changed from dark green to 

grayish black (Ni (II) to Ni (0)).  The Ni@MIL-101 was then filtered through a medium fritt 

filter and washed with deionized water to remove unreacted nickel nitrate. 
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3.3. Characterization of Ni doped MIL-101 

3.3.1. X-Ray Diffraction (XRD) 

The PXRD patterns for the doped MIL-101 with 2 wt%, 5 wt% Ni and experimental undoped 

MIL-101 are shown in Figure 14. From the Figure it can be seen that MIL-101 material remains 

intact after doping and maintains its crystallinity. 
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s
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 Experimental MIL-101 (5 wt% Ni Doped)

 Experimental MIL-101

 Experimental MIL-101 (2 wt% Ni Doped)

2  

Figure 14. XRD pattern for as-synthesized MIL-101 and Ni-doped (2 wt% and 5 wt%) samples. 

3.3.2. Transmission Electron Microscopy (TEM) Images 

TEM was carried out using Joel JEM-1230 electron microscope operated at 120 kV equipped 

with Gatan Ultrascan 4000SP 4K X 4K CCD camera. Samples were prepared by suspending 

MIL-101 and its doped materials in ethanol. A drop of this suspension was coated on 300 mesh 

copper grid. The grid was air dried at room temperature. The TEM images of 2 wt% Ni doped 

mesoporous MIL-101 are shown in Figure 15. As shown in all of the images, small metal 
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particles are dispersed on the surface of MIL-101. It was estimated from the TEM images that 

the size of the Ni NPs are greater than 20 nm. Even though the images show that the Ni particles 

are on the surface, additional Ni NPs may also exist inside the MIL-101 cavities and their size 

should be smaller than the mesoporous cavity in MIL-101 which is about 3 nm. Therefore, it 

would be very difficult to determine the size of such NPs using low resolution TEM.   

 

Figure 15. TEM images of Ni@MIL-101 (2 wt%) revealing the deposition of the metal NPs on 

the surface. 

 



 36 

3.3.3. Inductively Coupled Plasma (ICP) 

Inductively coupled plasma was used to determine the actual metal concentration in MIL-101 

samples after filtration. Series of Ni standards (1, 2, 5, 10, 25, and 50 ppm) were prepared and 

made up to final volume of 50 ml with trace nitric acid 0.02 g of 2 wt% Ni doped MIL-101 and 5 

wt% Ni doped MIL-101 was dissolved in aqua regia and sonicated and made to a final volume of 

25 mililiters with trace nitric acid. The different concentrations of Ni were plotted against the 

intensity to make a calibration graph (Figure 16 and 17). Concentration of Ni in the MIL-101 

sample was determined by solving the straight line equation. The intensity “y” for doped MIL-

101 was plugged in the straight line equation and solved for “x” to get the concentration. The 

actual metal content for 2 wt% Ni doped MIL-101 was found to be 1.374 ± 0.0299 wt%. 

Similarly, the metal content for 5 wt% Ni doped MIL-101 was found to be 3.156 ± 0.0351. The 

lower metal contents are due to incomplete incorporation/reduction of Ni(II). 

 

Figure 16.  Calibration plot fom ICP experiment for 2 wt% Ni doped MIL-101  
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Figure 17. Calibration plot fom ICP experiment for 5 wt% Ni doped MIL-101  

3.3.4. Nitrogen Adsorption Isotherm 

Nitrogen adsorption was used to determine the Langmuir and BET surface areas and 

NLDFT pore size calculations. The nitrogen physisorption was measured using Quantachrome 

AUTOSORB-1-C/TCD instrument. Samples (40-80 mg) were loaded in quartz cell and activated 

at 150 ˚C/10
-5 

torr for 12 hours. The nitrogen adsorption isotherms for MIL-101 and Ni doped 

samples are given in Figure 18. 
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Figure 18. Nitrogen adsorption isotherms for undoped and doped MIL-101, filled (adsorption) 

and empty (desorption). 

3.3.5. Surface Area  

3.3.5.1. Langmuir Surface Area 

 

MOFs are of high surface areas and are among the best known materials for physisorption of 

molecular hydrogen. Therefore it was important for us to determine the impact Ni doping on the 

surface area of MIL-101. The Langmuir surface area calculated from nitrogen isotherm (Figure 

19) for 2 wt% Ni doped MIL-101 was found to be 2060 m
2
/g which was less than the surface 

area of the undoped MIL-101, suggesting that Ni NPs exist inside the pores and on the surface as 

well. The Ni NPs restrict the access of MIL-101 cavities and thereby reduce its surface area. 
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Figure 19. Langmuir surface area plot for 2 wt% Ni doped MIL-101. 

In a similar fashion, the Langmuir surface area for 5 wt% Ni doped MIL-101 was lower (2990 

m
2
/g) than that of the parent MIL-101 as in Figure 20. Again, this may suggest that Ni NPs are 

clogging the pores and preventing their accessibility by nitrogen.  
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Figure 20. Langmuir surface area plot for 5 wt% Ni doped MIL-101. 

3.3.5.2. The Brunauer-Emmett-Teller (BET) surface area 

Multipoint BET method was also used to find out the surface area of the Ni doped MIL-101.  

The BET surface area calculated from nitrogen isotherm (Figure 21) for 2 wt% Ni doped MIL-

101 found to be 1390 m
2
/g which was less than that of the undoped MIL-101 as expected for 

similar reasons mentioned above.  
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Figure 21. BET surface area plot for 2wt% Ni doped MIL-101 

The BET surface area calculated from nitrogen isotherm (Figure 22) for 5 wt% Ni doped MIL-

101 found to be 1980 m
2
/g which was less than that of the undoped MIL-101, however more 

than 2 wt% Ni doped MIL-101 suggesting that Ni nanoparticles are mostly on the surface and 

less inside the pore. 
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Figure 22. BET surface area plot for 5 wt% Ni doped MIL-101. 

3.3.6. DFT Pore Size Distribution 

The impact of metal inclusion inside the cavity of MIL-101 can easily be investigated using 

several methods which allow for pore size distribution calculation. Among these methods is 

NLDFT (Non Local Density Function Theory). After doping with 2 wt% Ni, pore volumes of 

MIL-101 cavities were decreased as seen in Figure 23. Noteworthy was that the volume of the 

larger pore (0.055 cc/Å/g) decreased more than that of the smaller pore (0.07 cc/Å/g) as seen in 

Figure 23. This can be explained as a result of more Ni NPs being accommodated in the larger 

cages. For the 5wt% doped MIL-101, the pore volume for larger pore and smaller pore were 0.07 

cc/Å/g and 0.10 cc/Å/g respectively, as shown in Figure 24.  This suggests that as the Ni 
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concentration was increased, the Ni NPs formed aggregates which may impact both surface area 

and pore volume.  
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Figure 23. DFT pore size distribution plot for 2 wt% Ni doped MIL-101. 
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Figure 24. DFT pore size distribution plot for 5 wt% Ni doped MIL-101. 

3.3.7. Hydrogen Uptake 

3.3.7.1. Hydrogen Uptake at 0-1 bar and 77 K. 

The experimental data for the hydrogen uptake by Ni doped MIL-101 and the parent material are 

presented in Figure 25 and Figure 26.  The data show that the hydrogen adsorption amounts for 5 

wt% Ni doped MIL-101 are higher than that of 2 wt% MIL-101 at 77 K and 1 bar shown in 

Figure 25. The wt% of hydrogen uptake for MIL-101 at 77 K and 1 bar is 1.3 wt%. This value is 

higher than the uptake by Ni-doped samples (5 wt% Ni doped MIL-101: 0.85 wt%; 2 wt% Ni 

doped MIL-101: 0.75 wt%) shown in Figure 26. It was surprising that the Ni doped MIL-101 

samples exhibit a lower hydrogen uptake than the parent material. One possible explanation 

would be the impact of doping on surface area or the formation of oxide layer on the surface of 
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the Ni NPs which could prevent their interaction with hydrogen. Both possibilities would have 

negative impact on hydrogen uptake.   
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Figure 25. Hydrogen adsorption isotherm at 77 K and 1 bar in cc/g for undoped and Ni doped 

MIL-101, filled (adsorption) and empty (desorption) symbol. 
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Figure 26. Hydrogen adsorption isotherm at 77 K and 1 bar in wt% for undoped and Ni doped 

MIL-101, filled (adsorption) and empty (desorption) symbol. 

3.3.7.2. Hydrogen Uptake at 0-1 bar and 298K 

To investigate the impact of Ni doping on hydrogen uptake at ambient conditions (1-0 bar, 298 

K) we have collected hydrogen uptake isotherms at room temperature. The rationale behind these 

experiments was to determine whether Ni-doped samples would outperform the parent material 

in the absence of cooling effects. In this study, MIL-101 shows 0.00085 wt% of hydrogen uptake 

at 298 K and 1 bar. In contrast, 5 wt% Ni doped MIL-101 and 2 wt% Ni doped MIL-101 stored 

0.00052 wt% and 0.00040 wt% of hydrogen, respectively shown in Figure 28.  Again, the 

hydrogen uptake was higher for undoped MIL-101 indicating that nickel NPs plays a negative 

role in hydrogen uptake.  
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Figure 27. Hydrogen adsorption isotherm at 298 K and 1 bar in cc/g for Ni doped MIL-101, filled 

(adsorption) and empty (desorption) symbol. 
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Figure 28. Hydrogen adsorption isotherm at 298 K and 1 bar for wt% for Ni doped MIL-101, 

filled (adsorption) and empty (desorption) symbol. 
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Conclusions 

 

 

 

 

From the results described in the previous section, we have found that nickel doping of MIL-101 

resulted in a significant reduction in surface area and lower hydrogen uptake despite of the low 

Ni NPs loading. All materials, MIL-101 and its Ni doped analogs have modest hydrogen uptake 

at low pressure and 77 to 298 K which remain far from DOE targets set for 2010 and 2015 (by 

2010, develop on-board hydrogen storage achieving 2 kWh/kg (6 wt%), 1.5 kWh/L and by 2015, 

3 kWh/kg (9 wt%), 2.7 kWh/L. Another possibility for the low hydrogen uptake might be the 

formations of NiO on the surface of Ni NPs. Metal oxide layers prevent hydrogen interaction 

with metal atoms on the surface, thus reducing spillover and Kubas interaction. We suggest that 

extra research is needed to investigate the chemical nature of Ni NPs using XPS. This objective 

is beyond the scope of our study.  
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