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Abstract 

 

In embedded systems, modeling the performance of the candidate processor architectures 

is very important to enable the designer to estimate the capability of each architecture 

against the target application. Considering the large number of available embedded 

processors, the need has increased for building an infrastructure by which it is possible to 

estimate the performance of a given application on a given processor with a minimum of 

time and resources. This dissertation presents a framework that employs the softcore 

MicroBlaze processor as a reference architecture where FPGA-based profiling is 

implemented to extract the functional statistics that characterize the target application. 

Linear regression analysis is implemented for mapping the functional statistics of the 

target application to the performance of the candidate processor architecture. Hence, this 

approach does not require running the target application on each candidate processor; 

instead, it is run only on the reference processor which allows testing many processor 

architectures in very short time.  
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Chapter 1 Introduction 
 

An embedded system is a special purpose computer working within a device to 

control/manage its functionality. For example, processors found in cell phones, digital 

cameras, medical equipments, cars and modern airplanes are all considered embedded 

systems. Because of the dramatic grown in embedded system applications, embedded 

processors have formed the largest class of computers. Figure 1.1 shows the market 

volume of the embedded processors compared to the other types of processors [1]. While 

they cover a wide range of applications, ranging from very simple applications such as 

monitoring the temperature for an air condition to very complex applications such as 

flight control systems, embedded processors vary in their characteristics, from 8-bit 

simple-pipeline architectures to 64-bit super-pipeline architectures. Consequently, and 

because of the very special functionalities embedded systems concerned with, it is very 

hard, or even impossible, to find an embedded processor that can be considered as the 

absolute best choice for all embedded applications. Hence, a careful trade-off should be 

considered when selecting an embedded processor. 
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Figure 1.1. The number of embedded processors sold between 1998 and 2002 compared 
to desktop and server processors [1] 

 

1.1. Overview 

 

In embedded systems, selection of an appropriate processor to execute a given 

application is considered as a crucial decision. The processor must have enough 

processing power to meet the time constraints for executing the algorithms necessary to 

operate and control the system. However, the characteristics of the selected processor 

should not be significantly more powerful than required as this increases its cost, power 

consumption, heat production and other physical characteristics that must be kept to a 

minimum in most embedded systems [2]. Furthermore, adopting the most efficient and 
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effective algorithm for a given system and application is also at high level of importance. 

The algorithm should achieve the desired functionality, meeting the time and accuracy 

constraints of the embedded application, with a minimum of hardware resources. 

Accordingly, matching several algorithms demands with different processor architectures 

for modeling the performance of pairs of algorithms/processors is considered as very 

challenging task [3]. This is especially true at early stages of the design process where: 

“there's no magic box into which you place the system requirements that spits out 

which processor to use” S. Rosenthal [4]. 

 

1.2. Motivation 

 

Embedded applications involve computations that are subject to real-time physical 

constraints. The response of an embedded system is determined by its reaction to the 

physical environment, specified by deadlines, throughputs …etc, and the execution on the 

physical platform, specified by processor speed, power …etc [5-6]. While the 

application’s algorithm governs the reaction constraints of the system, it is the designer’s 

responsibility to select the execution platform to achieve highest degrees of performance 

and efficiency. Hence, a key to embedded systems design is the ability to accurately 

predict the system’s execution time for a given algorithm and set of inputs.  

 

Selecting an appropriate processor for implementing the target algorithm should be 

compatible not only with the other hardware components such as sensors and actuators, 
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but also with the algorithm functional behavior and timing constraints. Degradation in 

any of these parts affects the performance of the whole system and may lead to undesired 

performance characteristics [7-8]. So, it is very important to build an infrastructure 

by which it is possible to extract the dominant operations and required resources 

that characterize the system behavior. 

 

1.3. Challenges 

 

Although embedded processors are generally considered less complex than desktop 

processors, most modern embedded processors implement common principles in 

computer architecture in order to gain the highest possible performance. Thus, most 

embedded processors include one or more of the following features: pipelining, branch 

prediction, cache …etc. These advanced architectural features introduce difficulties in 

evaluating the performance of not only desktop processors but also embedded processors. 

Moreover, factors like time-to-market, and the critical timing and functionality of 

embedded applications make evaluation of embedded processors more challenging.  

 

Ideally, the time needed by a CPU to execute a program is given by the following 

equation: 

 ( )  cycleclock   x    timeCPU
1
∑

=

×=
n

i
ii CCPI  (1.1)
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Where:    

CPIi = cycles per instruction-typei 

Ci = count of instructions of typei executed 

n = number of instructions in the corresponding ISA 

clock cycle = 1/(CPU clock rate) 

 

However, this equation does not account for the clock cycle overhead coming from other 

aspects in the design, since it assumes that no pipeline stalls occur (no structural, data, or 

control hazards), and all instructions are available in the cache or first-level memory (all 

hits) [1].  

 

Nowadays, most processor architectures adopt pipelining to enhance processor 

performance which in turn allows multiple instructions to run concurrently in the 

processor, one instruction per stage/functional unit. A simple pipeline is divided into 

three stages: instruction fetch, instruction decode, and instruction execution. This 

technique has been evolved continuously to achieve better performance. For example, the 

execution stage can be divided further into execution, memory access, and write back. 

Increasing the number of stages does not actually decrease the execution time for 

instructions; instead, it increases the number of overlapped instructions which in turn 

increases the processor throughput. However, increasing number of pipeline stages, or 

implementing parallel functional units that can work simultaneously in the same stage, 

means increasing the architecture complexity for handling the control between 
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stages/units. Theoretically, after filling the pipeline stages, the processor is supposed to 

finish one instruction every execution cycle.  However, in practice, the implementation of 

the pipeline results in some constraints that limit achieving the maximum desired 

performance. Such constraints are called pipeline hazards where the flow of the 

instructions is halted for one or more execution cycles. 

 

Pipeline hazards are divided into three types: structural hazards, data hazards, and control 

hazards. In structural hazards, instructions that are overlapping in different pipeline 

stages try to access the same architecture resource. For example, in a single memory 

processor architecture, both instructions and data are stored in the same memory. Thus, 

fetching an instruction and accessing the memory for loading or storing data cannot occur 

at the same time, which means that one instruction should wait until the other finishes 

accessing the corresponding stage. Data hazards occur when an instruction cannot be 

executed as scheduled because there is missing (dependent) data that is a result from a 

previous instruction. For example, if a load instruction is followed by an another 

instruction in which one of the source operands is the destination operand of the load 

instruction, then the following instruction should wait until the load instruction finishes 

loading the required data from the memory. In control hazards, the  instruction that has 

just been fetched is not the one that needs to be executed due to some change in the 

instruction flow such as a branch misprediction.  
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Different software techniques (static: at compile time) and hardware techniques 

(dynamic: at run time) have been developed to reduce or eliminate pipeline hazards. For 

example, splitting the memory architecture into an instruction memory and a data 

memory solves the corresponding structural hazard. Forwarding results before finishing 

an instruction’s execution helps to reduce the impact of data dependencies. Also, 

reordering the instructions at compile time can minimize data dependencies and reduce 

the penalty of branch mispredictions. Another technique to assist making correct branch 

decisions is to implement branch perdition units at hardware level, e.g. the simplest 

version is to assume branches always taken. 

 

Implementing a cache as a first-level of the memory hierarchy includes many challenges 

regarding decisions such as cache size, block size, and level of the associativity. For 

example, increasing the cache size decreases the miss rate but may tend to increase the 

access time, i.e., increasing the block size decreases the miss rate (due to spatial locality1) 

but the miss rate tends to go up as the block size becomes too large relative to the cache 

size (this also tends to increase miss penalty). Also, increasing the level of cache 

associativity decreases the miss rate, however, the larger cache size, the less relative 

reduction on the miss rate (this also may tend to increase the access time).  

 

 

                                                             
1 Spatial locality: the locality principle stating that “if a data location is referenced, data location with 
nearby address will tend to be referenced soon”, while, temporal locality states that “if a data location is 
referenced then it tend to be referenced again soon” D. Patterson [1]. 
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All of the mentioned techniques, whether used to enhance the performance or to reduce 

the trade-offs in performance impacts, hold a lot of challenges when considering the 

performance evaluation of an architecture for several algorithms. For example, increasing 

the depth of the pipeline generally tends to achieve better performance, however, if the 

running algorithm behaves in such a way to produce large numbers of branch 

mispredictions, then, the penalty of the branch mispredictions on performance may 

dominate the performance of the system. On the cache side, different algorithms have 

different functional behaviors (instruction/data flow) that vary in the level of spatial and 

temporal locality, hence, the benefits of a given cache implementation are algorithm-

dependent (as in pipeline architecture). In fact, other microarchitectural details (such as 

number of internal registers, etc) tend to have different performance impacts with 

different functional behaviors. 

 

While the above discussion points to the difficulty of performance evaluation at the 

instruction-level, estimating the performance at source code-level (e.g., the C-level) holds 

more challenges. For example, the impacts of other tools involved in the system 

development (such as compilers) are hard to predict in the absence of the assembly code. 

In addition to the role of compilation in rearranging the code to eliminate data and control 

hazards, other issues such as predicting the final version of the code produced from 

different levels of optimization is hard to predict. Moreover, the hidden functional 

behavior of the library functions, which are sometimes only provided as binary files, also 

make detailed performance analysis a very challenging task [9]. Furthermore, some 
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operations at source code-level can be implemented using different functionalities. For 

example, multiplying or dividing an integer by a number to the power of two (2n) is 

normally handled by shifting that number n-digits to the left or right, respectively.  

 

Considering the obstacles in evaluating the performance of a single architecture for a 

wide spectrum of algorithms, things become more challenging when evaluating multiple 

different processor architectures with different instruction set architectures (ISAs), or 

even the same ISA with different microarchitectural details. Amdahl's law states that 

“the performance enhancement possible with a given improvement is limited by the 

amount that the improved feature is used” [1]. This factor points to the difficulty in 

evaluating different processor architectures as each architecture tends to react differently 

to algorithm’s demands, based on its ISA, available resources and processor organization. 

For example, if processor A includes a built-in floating point functional unit while 

processor B implements floating point operations using library functions (not supported 

by its ISA), it will not be a straightforward conclusion that processor A will be faster than 

processor B to execute a certain application, even if that application includes floating 

point computations in its code. This is because other factors such as memory architecture 

and the real time functional behavior of the target algorithm may dominate the 

performance. For example, the cache architecture of the processor B may, significantly, 

perform better behavior to exploit the spatial/temporal locality characteristics of the 

target algorithm, on the other hand, the algorithm run-time functional behavior may 
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access the portions of the code that include floating point operation infrequently (non-

intensively).  

 

1.4. Problem Statement 

 

At the early design stages of an embedded system, exploring the performance 

characteristics of the target application by executing it on different hardware platforms is 

considered a very costly approach in terms of time and money. Such an approach requires 

acquiring the software development tools for each processor and the corresponding skills 

to use them, integrating the processor with other system components such as 

sensors/actuators and analog/digital convertors (or modeling their equivalent behavior), 

and possibly testing the system in the field or on a hardware in a loop simulation 

environment. Hence, a main concern for embedded system designers is to reduce the 

set of algorithm/processor candidates by eliminating unacceptable alternatives, or 

better yet, to have a systematic approach by which they are able to perform a fair 

performance comparison based on the main parameters and characteristics of the 

given application and the candidate processor’s architectures. Furthermore, this 

comparison needs to be done efficiently, with minimum of resources: time, tools and 

cost, especially since often the software development tools and microarchitectural 

specifications of the candidate architectures are not readily available to the 

designer. In this research, the efforts are constrained to model the performance of 

single-threaded algorithms which would constitute the main loop of the target 
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application. At this point, the effects of multiple threads and interrupts on the 

performance of the main loop algorithm are not considered. Furthermore, the 

performance metric considered is limited to the execution time of the algorithm on the 

target processor – expressed as either processor clock cycles or actual processor 

execution time. 

 

1.5. Contribution 

 

A key question is whether, in order to make a correct design decision, the designer needs 

performance estimation with absolute accuracy2, or a relative accuracy3 amongst design 

alternatives. At the early stages of the design process, factors like the estimation speed, 

which can influence how many alternatives can be considered in the design process, are 

also very important. Hence, a tradeoff to minimize such important factors with an 

acceptable decrease in the level of accuracy is considered to be very helpful, as long as it 

is possible to accurately classify the relative performance of the candidate architectures. 

Later in the design process modeling at a more detailed level of abstraction can be done 

on a minimized list of processors to gain better accuracy in performance estimation. 

                                                             
2 In this dissertation, the term absolute accuracy (or absolute performance estimation) is used to describe 
the performance of an application on certain processor architecture in terms of number of cycles (or units 
of time), regardless the performance of other processor architecture.  

3 In this dissertation, the term relative accuracy (or relative performance estimation) is used to describe 
the performance of an application on certain processor architectures in terms of better-worse 
(slower/faster) where the estimated time is used only for comparison purposes rather than an absolute 
estimation. 
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This research describes a method for analyzing the performance of a given application on 

different architectures based on running/profiling the application on a reference model 

(processor). Hence, the performance statistics resulted from this analysis can be used to 

assist in determining the functional behavior of the target application. This approach is 

unique in that there have been no efforts, tools or frameworks, up to this point in time, 

that use a reference processor in a similar way to predict the performance of other 

(foreign) architectures. The observed statistics produced by the reference model can be 

used to determine the application’s dominant operations (such as integers, floating point, 

etc), which in turn allows exploring the hardware resources needed to be embodied in the 

system platform. Using analytical modeling techniques such as regression analysis, these 

statistics can be used (bound), along with a set of reference performance measurements of 

a domain of algorithms on the candidate architectures, for estimating the performance of 

these architectures against new algorithms/applications. 

 

This research also introduces a novel FPGA-based instruction profiling technique. While 

FPGA-based profiling is a relatively new technique in the field and has been adopted 

recently in certain FPGA and software/hardware codesign approaches [10-14], the 

technique described herein relies on tracing the unique instruction flow of the functions-

of-interest (considered as a function’s footprint) rather than tracing the program counter 

(PC) value. This is a very important distinction which allows framework developed for 
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this dissertation to be applied against new algorithms with minimal efforts, and without 

the need for time-consuming reconfiguration of the FPGA. 

 

A basic assumption in this research is that the reference performance measurements for a 

domain of algorithms on the candidate architectures have been previously extracted and 

published by the processor’s vendor/manufacturer, so customers (embedded system 

designers) can access both the performance records, and the source code of these 

algorithms. For the purpose of producing results to evaluate the framework, these 

reference performance measurements were obtained by the author by running benchmark 

programs on the example processors that were evaluated. However, in the future, it is 

proposed that vendors/manufactures will extract and publish these results for the 

benchmark programs for use by designers in evaluating the processor for their specific 

application. Moreover, performance measurements reported by other users (on candidate 

processor architectures) for specific programs/benchmarks can be used for training 

purposes as long as the embedded system designer has an access to these 

programs/benchmarks so they can be run and profiled on the reference model. 

 

It should be pointed out that the method described herein does not produce a 100% cycle-

accurate estimation; however, this approach provides the embedded system designer with 

a high-level, very fast, performance modeling technique that can be used for initial 

processor selection and that requires minimal resources/knowledge of the application 

functional behavior and processor architecture.  
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1.6. Dissertation Organization 

 

This dissertation is organized as follows: Chapter 2 discusses/surveys the performance 

modeling techniques in the areas of processor design, selection and embedded systems. 

Chapter 3 shows a problem analysis and discusses the theoretical background of the 

proposed framework. Then, reference model specifications and FPGA-based profiling are 

discussed in Chapter number 4. Chapter 5 illustrates experiments and results. Chapter 6 

concludes, and Chapter 7 describes future work. 
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Chapter 2 Performance Modeling 
 

Whether targeting desktop processors or embedded processors, performance modeling 

faces a set of common challenges (tradeoffs) and trends. Figure 2.1 summarizes the 

tradeoffs in the field of performance modeling. In general, as the level of the abstraction 

increases, more details are omitted/or more assumptions are made, hence, the accuracy of 

the model decreases. However, the lower the level of details employed to build a 

performance model, the more accuracy achieved, but, with a significant decrease in the 

estimation speed. This is true whether considering simulation-based modeling or 

analytical-based modeling.  

 

 

Figure 2.1. Performance Modeling Tradeoffs 

 

Considering that, generally, each level of abstraction cannot achieve better accuracy than 

its adjacent lower level of abstraction, or faster estimation speed than its adjacent higher 

level of abstraction, efforts in performance modeling have concentrated on minimizing 
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the tradeoffs by either 1) modifying higher level of abstraction techniques to employ 

more details to achieve more accuracy than what they traditionally achieve to be as close 

as possible to the accuracy of the adjacent lower level of abstraction, (e.g. time 

annotation), or 2) simplifying the lower level of abstraction techniques to achieve faster 

estimation than what they traditionally achieve, to be as close as possible to the speed of 

the adjacent higher level of abstraction, (e.g. parallelism in cycle accurate simulation).   

 

In addition to the accuracy and speed factors, it is desirable for performance modeling 

techniques to posses features such as structural simplicity, user friendliness, lower 

development cost, lower setup time, and flexibility to target new systems and 

applications. Such factors add still more tradeoffs in performance modeling techniques.   

 

The first section in this chapter presents an overview of performance evaluation 

techniques used in processor design. The following section discusses general hardware 

and software performance evaluation techniques used in embedded system design. The 

third section discusses existing performance modeling techniques developed to assist in 

the processor selection decisions at early stages of an embedded system design – similar 

to the framework developed for this research. The final section presents a summary.   
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2.1. Performance Evaluation for Processor Design 

 

In the development of new microprocessors, it is very important to validate the 

functionality and the performance of processors-under-development before proceeding in 

the design process or releasing the products into the market. Hence, performance 

evaluation is involved in several stages of the design, where going backward in the 

design process is very costly. A major challenge in processor performance evaluation is 

that “one second of program execution on these processors involves several billion 

instructions and analyzing one second of execution may involve dealing with tens of 

billions pieces of information” L. John [15].  

 

Based on the classification shown in [15], performance evaluation can be classified into 

two main categories: performance measurements, and performance modeling. 

Performance measurement aims to emulate/verify the architectural functional and timing 

behaviors under a set of benchmark programs that characterize the target application 

domains at run-time. This technique is only possible if either actual system or its 

prototype, where the RTL design of the architecture-under-development is ported into 

FPGAs [14, 16], are available. By stressing the architecture with intensive workloads, 

different events/signals can be monitored to explore the bottlenecks in the design. In case 

of running workloads on a prototype, tools like Xilinx-ChipScope [17] can  be used to 

trace the status of the processor [16], or alternately, the signals-of-interest can be routed 

externally for monitoring [14]. In case of using an actual architecture, performance 
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measurements can be implemented either at the hardware-level by accessing the on-chip 

counters (if equipped/available) or using logic analyzer to trace the machine status at the 

events-of-interest, captured via interrupts, or at the software-level using code 

instrumentation or software drivers. While using on-chip performance counters is 

considered very fast, it is limited to certain events that are actually accessible by such 

counters. Interrupts and code instrumentation can be implemented to measure a number 

of different events but they add a significant performance overhead – as they interfere 

intensively with program execution [11, 13, 15]. 

 

The second class of performance evaluation, that of performance modeling, is concerned 

with evaluating the performance of architectures-under-development. Performance 

modeling can be employed at the early stages of the design process where the actual 

architecture is not available and it is expensive to prototype all possible design choices, 

or if the signals-of-interest are hard measure on the actual hardware. Performance 

modeling can be further classified into analytical-based and simulation-based. Analytical 

modeling [18-19] has rarely been used due to the accuracy requirements and the level of 

implementation details needed for it to be employed [15, 20]. However, at the earliest 

stages of development, analytical modeling can be used as a decision support technique 

[20].  

 

A framework dubbed the Processor Evaluation Cube (PEC) which helps in classification 

and comparison of a range of processor evaluation techniques is proposed in [21]. The 
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three axes of the PEC are: analysis, architecture and abstraction where each axis consists 

of two distinct points (see Figure 2.2). The analysis axis distinguishes methods 

employing static analysis or simulation; the architecture axis distinguishes methods 

evaluating single processor or multiprocessor target architectures; the abstraction axis 

distinguishes methods employing cycle-true evaluation or higher level execution time 

estimation techniques. The authors observed that in most cases modeling the 

performance of single processors falls in the performance evaluation context and in 

few cases the selection is mentioned as an explicit goal of the performance 

estimation techniques - in contrast with multiprocessor performance modeling which 

focuses in the selection process considering the performance of each single core has been 

implicitly modeled. In the research efforts surveyed in [21], it is shown that most (about 

two thirds) of the efforts targeting single processor performance estimation fall in the 

non-cycle-true static analysis category while, on the other hand, around half of the 

surveyed efforts targeting the performance estimation of multiprocessor architectures fall 

in the non-cycle true static analysis category. The remainder of the efforts fall on the (non 

or) cycle-true simulation categories. The survey argues that many different evaluation 

techniques may fall in the same category in PEC classification, though significant 

differences in performance analysis can be found to distinguish between them. The study 

also remarks that some techniques may fall in more than one category because they 

actually include the two options in an axis, nevertheless; based on the interpretation of 

these techniques, these could be classified into a single category. Finally, the authors 

point to the ability of adding more points to the existing axes (or adding more axes) for 
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tightening category boundaries, or expanding the classification paradigm to include new 

criteria. 

 

 

Figure 2.2. Processor Evaluation Cube [21] 

 

In the area of simulation-based performance modeling of processors, cycle accurate 

simulation is considered the dominant technique used for hardware design space 

exploration [15, 20, 22-23]. Unlike functional simulators which are used to simulate only 

the functional behavior of an application on a certain processor, cycle accurate simulators 

[24] are concerned with handling both functional and timing behaviors of the target 

architecture, which in turn requires representing the impact of the micro-architectural 

details into the simulator structure, adding more complexity and slowing the simulation 

speed. Methodologies and techniques for cycle accurate simulation have been surveyed in 

[22].  The study argues that simulation speed and the level of accuracy are the most 
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important factors in the development of cycle accurate simulators where the more 

architectural details represented in the model and the larger benchmark set used for 

validation, the more accurate the results achieved. However the greater the level of detail, 

the slower simulation speed. Hence, such tradeoffs limit the efforts for developing cycle 

accurate simulators [15, 20, 22-23]. Techniques such as reducing the input set and using 

the sampling approach have been adopted to reduce the simulation workload [25-26], 

thus increasing the simulation speed, however, such techniques have direct impacts on 

the simulation accuracy. Recently, there have been interests in employing different 

parallelism (and partitioning) techniques for cycle accurate simulators to enhance the 

simulation speed by using multicore processors [27-31], or by using FPGAs to accelerate 

the time intensive portions of the cycle-accurate simulation [32-34]. However, such 

techniques face difficulties such as: 1) how to partition the jobs for maximum parallelism, 

2) how to minimize the communications overhead, and 3) how to avoid deadlocks among 

shared resources [35-36].  

 

The objective of the modeling techniques described above is to model/measure the 

performance of architectures-under-development at several stages of the 

development process for use by the processor developers themselves. On the other 

hand, this research aims to model the performance of an existing architecture that is 

already built, for the end user running an actual application. Hence, no direct 

comparison can be made between the framework developed in this research and the 

previously discussed modeling techniques. However, determining an application’s 
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dominant operations using the techniques used this framework could be very 

valuable in determining the processing bottlenecks for the development of an 

application-specific instruction-set processor (ASIP). 

 

2.2. Performance Evaluation for Embedded Systems Design 

 

While desktop processors are generally very complex and hence need complex 

performance modeling techniques, factors like time-to-market, time critical/complex 

functionalities, and heterogeneous application domains have made estimating the 

execution time of software applications on embedded systems a crucial issue. To 

overcome the issues regarding traditional cycle accurate modeling techniques such as 

speed and complexity, new software performance analysis have been developed 

embedded systems design. Some of these methods are described in the following 

sections. 

 

2.2.1. Open-Source Cycle Accurate Simulation for Embedded Processors 

 

SimpleScalar [24] is an open source cycle accurate simulator which is widely used in 

academia. While it supports Alpha, PowerPC, and ARM instruction set architectures, it 

assumes a fixed pipeline structure and timing delays. Since it is implemented using very 

low level C-code with many macros, an extensive validation is needed whenever it is 



  23 

 

modified with different parameters [37], which in turn makes it hard to retarget to a new 

processor architecture.  

 

2.2.2. Time Annotation Techniques 

 

In [38], timing delays for instructions are annotated from low level models (cycle-level 

models) back to the application source code. Hence, the original application can be 

simulated without the underlying architecture details with orders of magnitude faster run 

times and good level of accuracy. Another timing annotation technique called 

compilation-based simulation is shown in [39], where the assembler code is annotated 

with the timing delay (execution cost) of instructions that can be obtained from the 

datasheet or benchmarking. This allows obtaining timing information by running the 

application code on the host machine and simply adding up the number of cycles for each 

instruction instead of using cycle accurate simulation. Of course both of these techniques 

have reduced accuracy because the effects such as the interaction between instructions 

due to micro-architecture details are not accounted for. 

 

2.2.3. Statistical Analysis Techniques 

 

In [40], a non-linear Lazy statistical method is employed to predict the performance of 

embedded software running on the SPARC architecture. The performance model is 

defined as a set of functional models mapped into a set of possible architectures with 
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different memory latency and CPU speed parameters. A program’s main parameters are 

extracted using an instruction-level profiler (SPARC-IPROF), and then a cycle-accurate 

simulator (TSS, built in C) is used to obtain the performance of each 

application/architecture pair. The model is then able to estimate the performance of an 

application on a certain trained processor configuration. Another statistical approach is 

shown in [41] where the source code is translated into simplified virtual instruction set, 

allowing program parameters can be extracted by running the application on a virtual 

instruction set simulator while performance estimates can be obtained using cycle 

accurate simulation. Linear regression is then used for building the prediction model.  

 

Modeling the performance of an application on a specific processor whose cycle accurate 

and functional simulators have been tested using a set of benchmark programs is 

proposed in [42]. In this technique, linear regression is used to model the impacts of the 

application’s parameters on the system performance. A total of 183 benchmark 

applications, most of them are DSP applications, have been used to train the model. The 

functional simulator has been enhanced to allow counting various events (e.g. counting 

different types of instructions and possibly also cache and memory accesses). The study 

shows a number of experiments on each one of which new parameters have been used to 

study how accurate the model is when employing such parameters. For different 

parameters sets, mean absolute errors ranging from 5.44% to 38.8%, (std. deviation = 

7.12 to 57.7), with a maximum errors ranging from 26.31% to 518%, have been reported 

when testing DSP applications on ARM v5 implementation. This work shows that 



  25 

 

increasing the number of parameters does not always lead to an increase in the 

performance modeling accuracy, hence, the efficiency of the selected parameters for 

modeling an application has to be considered for more accurate results and a more 

efficient regression model. Moreover, programs that had small size reported larger errors 

because their behavior can be far away from the general observed statistics that govern 

the performance prediction model. 

 

2.2.4. Static Analysis of Embedded Software 

 

In some real-time embedded systems applications, static timing analysis is mainly used to 

explore the worst case execution time (WCET) by detecting all possible scenarios for a 

program execution which in turn allows predicting the time cost for the worst case flow 

of the target program (or tasks). This is important for schedulability analysis, and to 

check the safety of the system to be certain that some circumstances cannot cause a 

system timing failure. Typically, WCET depends on analyzing the disassembled binary 

executable code to determine the structure of the program and to determine how each 

basic block of the program interacts with the hardware resources [8, 43-46]. A major 

issue in WCET analysis is that loops and conditional statements must be pre-determined, 

i.e. any dependency of the program’s execution on real-time inputs/conditions should be 

pre-solved [8, 46]. Furthermore, as the design architecture and constraints become more 

complex, the number of the states increases quickly which in turn makes the analysis 

more difficult and time consuming.  
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Processor selection is not a goal of the performance modeling techniques discussed 

up to this point, instead, these techniques aim to replace the traditional cycle 

accurate simulation techniques used in the hardware design space exploration with 

new high-level, faster modeling approaches. However, techniques mentioned in [40-

42] are among the techniques which have inspired this research’s efforts.  

 

2.3. Embedded Processor Selection based on Performance Estimation 

 

A processor’s performance, typically, can be characterized by a set of features like: clock 

rate, built-in functionalities (supported assembly instructions), level of pipelining, cache 

architecture, etc. Maximizing such features is considered to be one of the options to 

obtain more performance. However, unlike a desktop processor where “faster is better”, 

in embedded systems, the design philosophy states that “fast enough is good enough” T. 

Conte [2], where, factors like cost, size, power consumption, heat production, limited 

memory resources and other physical characteristics constrain the designer’s processor 

choices. In addition, in selecting a processor for a certain application, the non-functional 

requirements of the processor such as the portability and the user’s familiarity with its 

development tools may dominate the processor selection decision [47-49]. An example of 

non-functional requirements affecting the processor selection decision can be found in 

[50].  
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2.3.1. Traditional Techniques 

 

A study of the methods and guidelines for embedded processor selection is shown in 

[47]. The study found that the largest factor influencing an off-the-shelf processor 

selection decision is the performance, followed by other factors such as cost, and product 

time-to-market. The consideration of these factors, as the study shows, are typically 

based on a set of criteria such as benchmarking results, system requirements and 

resources, and the designer’s familiarity with the development tools. In [2, 4, 47, 51], a 

set of tips based on the authors’ experiences in embedded systems design are listed. 

These tips concentrate on key features of processor architectures that have a direct impact 

on the performance of the systems, such as the processor word size and the memory 

architecture. Such tips are very helpful when the embedded system designer has a deep 

knowledge of the application functional behavior/demands and processor architecture.  

 

In [49, 52], a database of microprocessors is created to help in selecting an appropriate 

processor based on general specifications such as clock rate, memory resources, power 

consumption and price. Using this database, the designer can trade between the different 

features and narrow down the search space for the desired architecture. 

 

While execution time cannot be indicated using only the clock rate of the system, it is 

important to know how many operations the CPU is capable of accomplishing per unit of 

time (or how many cycles each instruction needs to execute), measurements like MIPS 
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(millions of instructions per second) and MFLOPS (millions of floating point operations 

per second) have been introduced to help in evaluating the performance of processors. 

Such criteria indicate a processor’s general performance. However, for different types of 

processors and different types of applications, MIPS/FLOPS may mislead the 

performance evaluation due to the different amount of work accomplished by different 

instruction set architectures (ISAs) for applications with characteristics [15, 53]. 

 

Reviewing the recorded performance measurements of different benchmark programs 

published by a processor’s manufacturer can indicate the performance of the candidate 

processor in the same domain of applications. The accuracy of the performance 

estimation depends on the level of the representation (i.e. instruction distribution, 

branchs, cache behavior …etc) of the target application in the benchmark suite. However, 

designing a benchmark suite for embedded applications, is itself a very challenging task 

because benchmark programs should be non-redundant and comprehensive while at the 

same time, covering a wide domain of embedded applications which are very diverse [15, 

20, 22-23, 54]. Currently, few benchmark programs are available for targeting embedded 

systems. The most popular embedded benchmark suites are the free open source 

MiBench [54], and the EDN Embedded Microprocessor Benchmark Consortium 

(EEMBC) [55].  

 

Using Rate Monotonic Analysis (RMA) to evaluate processors for use in real-time 

embedded applications is shown in [48]. This technique depends on high-level analysis of 
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the target architecture and the pseudo code of the target algorithm. Hence, a background 

in how compilers generate code is necessary to obtain a better evaluation.  In this 

approach, the target algorithm is assumed to be divided into a set of tasks, where each 

task is assigned a run time value (duration) and frequency value (period). Based on 

analyzing the total utilization of the processor for all tasks, a decision can be made to 

accept or reject the candidate architecture. The pessimistic maximum allowed load is 

suggested to be 70% of the total processor load; however, to account for forgotten tasks 

and ones that are added at design time based on new requirements, the author suggests 

that a load of as low as 35% can be considered a fairly reasonable initial value.  This 

technique needs the designer to have deep knowledge in both the functional behavior and 

time constraints of the target application and the microarchitectural details of the 

execution platform, which, at the early stages of the design process are hard to extract 

without having the software development tools of the candidate architectures (compilers, 

simulators, etc.). 

 

2.3.2. Analytical Techniques 

 

Techniques for performance estimation by evaluating the degree of matching between 

algorithm requirements and the processor architecture resources, is shown in [3, 56-57]. 

For example, in [3], a requirements matching technique was shown predicting the most 

suitable architectures, in terms of general performance (goodness), for three out of four 

MiBench algorithms. In this technique, a set of correlation functions are applied to the 
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algorithm/processor requirements/characteristics to estimate the utilization of the 

architecture resources, where, typical algorithm properties are extracted using platform-

independent intermediate representation (SUIF), and the corresponding architecture is 

characterized using features such as the instruction set, pipelining, branch support, etc, 

where, due to the complexity, the cache factor is ignored.  

 

In [58], the objective is to select the best architecture among a set of possible candidate 

processors (microcontrollers, DSPs and RISC microprocessors). The target application is 

modeled in an object oriented environment, where intermediate descriptions of the code 

are generated for three virtual machine types; microcontrollers, DSPs and RISC 

microprocessors.  Next, by analyzing the application’s characteristics such as the number 

of jumps, arithmetic and memory access operations, etc., the application behavior is 

classified into one of the following domains: 1- control intensive: many control 

instructions like a finite state machine (FSM), 2- data intensive: computations 

accomplished on internal registers like digital filters, or 3- memory intensive: such as list 

processing. Depending on this classification, a microcontroller, a DSP or a RISC 

architecture is selected for the implementation. The study does not show an estimation of 

the execution time but gives relative match of an application among a set of architectures.  

 

In [9, 59], a performance analysis technique using an intermediate representation called 

Low Level Virtual Machine (LLVM) is proposed where the performance is indicated as 

an estimation to the number of executed instructions. In this technique, each LLVM 
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intermediate instruction and library function is correlated to the number of executed 

instructions on the target architecture that can be obtained by running executable code on 

an instruction set simulator for the target architecture. A mathematical model to estimate 

the performance of standard library functions is proposed by relating the number of the 

executed instructions for each library function to the size/number of parameters passed. 

By analyzing the functional behavior of the library functions, the study classifies them 

into two groups, input independent, where the performance is the same regardless to the 

input value, and input dependent, where the performance changes, linearly or non-

linearly, based on the input nature. The proposed mathematical model has been verified 

by running the library functions a large number of times on a functional simulator and 

plotting the number of the executed instructions for each function against the input 

argument size/numbers. Although this approach is not shown to give very accurate 

results, it allows analyzing the performance of new applications at high-level without 

compilation and simulation tools.  

 

In [60], a technique for embedded system performance estimation to assist in selecting a 

suitable processor for a given application is proposed based on application/processor 

architecture analysis. The evaluation is accomplished through two steps: 1- eliminating 

the unsuitable processors among a large set of processor candidates based on the 

application’s and the processor’s key features, 2- estimating the number of cycles needed 

to implement the target application on the rest of processor candidates. In this technique, 

the application (written in C) is profiled to determine the number of iterations for each 
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block of the source code. Then, the target application is translated into an intermediate 

format using SUIF (Stanford University Intermediate Format) to extract the main 

parameters characterizing the application (e.g. number of concurrent load/store 

operations). Using simple processor description format, each processor architecture is 

characterized through a set of specifications such as type/number of functional units and 

number of registers. Finally, analytically, the application code size and execution time are 

estimated based on the extracted profiling results, application parameters, and hardware 

characteristics. The authors reported estimates within 30% of the results obtained from 

lower level tools. 

 

A neural network-based performance estimation technique is proposed in [61-63], similar 

to the concept in [42]. Figure 2.3 is a general outline of this approach, which eliminates 

the need to execute a specific target application on a cycle-accurate model of the 

processor in order to generate a performance estimate. However, a cycle-accurate model 

of the processor is still needed to determine the performance estimate for the set of 

benchmark applications used to train the regression model or the neural network. Because 

of the non-linear impacts of the hardware architectural details (such as pipeline, cache, 

and branch prediction units) on the system performance, the authors have proposed 

estimating such relationships using a neural network. The neural network is trained using 

the results of running a set of programs on a cycle accurate simulator (measuring the 

time) and a functional simulator with profiling capability (measuring the number of 

load/store, branch, integer and floating point operations). To estimate the performance of 
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a new application, the application needs to be run only on the functional simulator. Then, 

the extracted dynamic numbers of instructions for the target application are fed into the 

trained neural network for performance estimation. An application domain classification 

technique, by which applications are classified as control-flow or data-flow applications, 

has been used to enhance the estimation accuracy. Using 41 benchmark programs, this 

approach shows some level of estimation speed-up (resulting from the need to only 

execute the target application on the faster, functional processor model), with a moderate 

accuracy level [61]. For example, a speed-up up to 190 times in comparison with cycle 

accurate simulator has been achieved for the superscalar PowerPC-750 architecture 

where the estimation mean error was 6.41% with a maximum error ranges from -32.41% 

to 25.87% for the data flow domain (std. deviation = 9.54), and a mean error of 7.62 with 

a maximum error ranges from -49.37% to 24.96% for the control flow domain (std. 

deviation = 12.46). A higher level of accuracy has been achieved when testing the ADSP 

218x processor, where for generic domain the results were 2.42% (avg), 4.89 (std. dev.), -

18.1 to 18.88 (max error). The accuracy of the estimation results depends not only on the 

strength of the neural network structure but also on the size of the data set used to train 

the neural network and the selection of the parameters that govern the system and the 

processor architecture complexity. Moreover, the need for a cycle accurate simulator (and 

the software development tool for each platform) to train the neural network is 

considered a main obstacle of using this technique for algorithm/processor selection 

purposes.  
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Figure 2.3 Statistical Analysis Techniques (neural network [61] or linear regression [42]) 

 

2.4. Summary 

 

While the traditional techniques described in Section 2.3.1 above are generally simple, 

they do not give any statistical information that explains quantitatively how the presence 

or absence of certain features in the processor or requirements in the application affect 

the performance of the system. This lack of information, in turn, makes evaluating system 

alternatives a very hard task. On other words, such techniques can be used for decision 

support but cannot be used for detailed performance estimation purposes.   
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On the other hand, the analytical techniques described in Section 2.3.2 require running 

the target algorithms in a simulation environment, which inherently requires using the 

compilation tool of each candidate architecture. Furthermore, problems like integrating 

the simulation tool with other system components constraint such techniques to off-line 

analysis. It is clear that the neural network technique has been able to predict the 

performance of the target architecture with an acceptable level of accuracy using the 

functional parameters of the target algorithms. However, the need for the software 

development tools (compiler, functional simulator) for each target architecture 

significantly increases the cost and the setup time.  

 

The approach developed in this research is similar to the neural network approach, 

however, linear regression for building the prediction model is used here in lieu of neural 

networks. However, the most important distinction is that in the technique developed in 

this research, no software development tools for target architectures are needed. Instead, 

the MicroBlaze platform is used as a reference processor, through which it is possible to 

predict the performance of foreign architectures. The use of the MicroBlaze as a 

reference processor also allows evaluating the performance of the application at the 

source code level with only the MicroBlaze software development tools being required.  
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Chapter 3 Problem Analysis 
 

This chapter is organized as follows; section 3.1 provides a general background on the 

problem, section 3.2 discusses the theoretical analysis of the framework developed in this 

research, section 3.3 compares the developed framework directly to the most closely 

related existing methods, and section 3.4 gives a summery. 

 

3.1. Background 

 

In embedded systems, software has become a dominant design factor. As a result, 

modeling the performance of running software is one of the main design challenges, 

especially at a high-level of abstraction [64].  Moreover, considering the enormous 

number of ISAs and microarchitectures available for embedded systems makes this 

modeling a very challenging task. In [65-69], system-level design tools are provided 

which support a number of ISAs and microarchitectures. However, such tools are hard to 

extend or retarget [38]. Simulation tools such as [24] offer cycle accurate measurements, 

but they target specific ISAs and require avery low level hardware details, hence, they are 

hard to modify, even for the same ISA. Augmenting ISSs with timing information [38-

39] requires compiling the target algorithm with the corresponding architecture’s 

compiler, and analyzing the binary code and the hardware architecture, which in turn, 

requires disassembling the executable code and validating the ISS against cycle accurate 

models. Modeling new (or existing) ISAs or microarchitectures using architecture 
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description languages (ADLs) such as [70-74] is not within the scope of this research. 

Although such languages allow automatic generation of software development tools, such 

techniques are very time consuming since they require a complete specification of the 

target architecture. 

 

As mentioned in Chapter 1, the fundamental question is whether absolute accuracy or 

relative accuracy is needed? While absolute accuracy has been always the ultimate goal 

for performance modeling, factors like time, cost, complexity, and the limited resources 

at the early stages of an embedded system design lead to the conclusion that an analytical 

framework that is able to achieve a relative accuracy to be a very useful resource. A 

challenging problem is how to collect quantitative statistics for the target algorithm to 

determine the dominant operations and the demanded resources that can assist in 

evaluating the performance characteristics of the system. The framework developed for 

this work and described herein, works at high-level of abstraction (C-level) where no ISA 

or microarchitectural details are required to model the performance of the candidate 

architectures, i.e., an algorithm written in C can run on a reference model, and 

quantitative statistics regarding system functional behavior can be collected using the 

developed profiling technique to assist in evaluating the performance of the target 

algorithm/architecture. 
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Implementing different ISAs and/or different microarchitectures in order to attempt to 

exploit their advantages for a certain class of applications has led to the development of 

an enormous number of embedded processors. Despite of their differences, however, 

similar design concepts can be found in most processor’s implementations due to key 

design principles that considered as a rule of thumb in processor architectures. A survey 

of embedded RISC processors [75], which considered a subset of five types of 

processors, has shown that in most cases 1) the instruction size can is either 16 or 32 bits, 

2) the address space is 32 bits, 3) the integer registers are 32 bits, 4) the I/Os are memory 

mapped, and 5) integer instruction sets are very similar. Moreover, when analyzing the 

operation of embedded applications, it can be stated that a small portion of code 

consumes a large portion of the execution time which is compatible with the Pareto 

principle. By their nature, embedded applications tend to spend 90% of the execution 

time in 10% of the code, dubbed “90-10 rule” [76-77]. While different 

ISAs/microarchitectures produce different performance characteristics, similar hardware 

design principles tend to have analogous impacts on performance.  

 

Regardless the processor’s ISA and microarchitectural details, when running software, 

processors tend to implement the same functionality, with different timing behaviors (and 

perhaps different precision). Considering the performance represented by the number of 

consumed units of time to execute a certain program, it is difficult, or even impossible, to 

map processor performance to another processor performance that has different ISA 

or/and different microarchitecture, based only on the performance measurements (as a 
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single number). For example, assume that processor A consumes yA1 units of time to 

execute program 1, and processor B consumes yB1 units of time to execute the same 

program, then, it is possible to find another program (or a sequence of instructions) that 

consumes yA2 where yA2 = yA1, while it is not mandatory that the new program will 

consume yB1 where yB2 = yB1. Hence, the relationship between yA1 and yB1 that holds for 

the first program does not hold for the second program. However, if we analyze the 

logical execution of the running program at high-level (source code), both processors 

tend to follow the same logical execution flow to implement the same functionality for a 

given algorithm.  

 

Since the performance of running software is a reflection of its functional behavior on a 

certain architecture, then, it is possible to evaluate the performance of an application by 

analyzing its functional behavior. The problem here is that although programs may 

follow the same functional behavior at a high-level, the real execution of programs is at a 

low-level in which  different ISAs/microarchitectures have different specifications that 

lead to different execution paths, instruction flows, and timing constraints. The following 

section discusses the approach developed in this research to handle this issue. 
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3.2. Theoretical Analysis 

 

The performance of an application on a certain processor is a result of the timing 

constraints of the algorithm’s execution on the processor’s microarchitecture, i.e., the 

timing behavior is characterized by the instruction flow through the hardware resources, 

which is subject to both logical and physical constraints. Hence: 

 

 Performance = f (Functional Behavior, Microarchitecture) (3.1) 

 

where performance is represented by a single number that represents a timing 

measurement (number of cycles or units of time), the functional behavior is the 

instruction flow of the target algorithm (at assembly-level), and the microarchitecture is 

the hardware (physical) implementation such as pipeline architecture, memory elements 

(including registers, cache and memory), system clock, …etc.   

 

At the assembly level, a single program, before execution can be thought of as a set of N 

instructions, where the ordering between instructions represents the logical structure of 

the program. If the instruction Ii is the i-th instruction in the program structure, 

considering the address of instructions as a part of the instruction signature, then, for k ≠ 

j, Ik = Ij is not a valid expression, although they may have the same instruction type and 

the same operands, the address cannot be identical.  On the other hand, a single program 

running on a processor can be thought of as an ordered trace of M instructions, where the 
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ordering between instructions represents their logical execution order (M could be less 

than, equal to, or greater than N). If the instruction Ii is the i-th instruction in the trace, 

considering the address of instructions as a part of the instruction signature, then, for k ≠ 

j, Ik = Ij is a possible option, i.e., an instruction can be called more than one time in the 

same program. However, for different ISAs, the quantities N, M, the type of instructions, 

and instruction flow are different since they are ISA-dependent.  

 

The functional behavior (as expressed in 3.1) of executing an algorithm on an ISA can be 

represented by the following expression: 

 

 Functional Behavior = f (Algorithm Assembly Code, Inputs) (3.2)

 

 

 

The algorithm assembly code is the translated version of the source code based on the 

target ISA, which is platform-dependent, where the source code is the program written at 

high-level language (such as C) that decides the logical execution of the program 

(platform-independent). The inputs are the incoming data in through input ports. Inputs 

and Algorithm Source Code are bolded in the above expression because they can be 

considered common factors in our analysis.  

 

Algorithm Source 
Code 

ISA 
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At the level of source code, a single program before execution can be thought of as a set 

of N statements, where the ordering between statements represents the logical structure of 

the program. If statement Si is the i-th statement in the trace, considering the logical order 

of the C statements, then, for k ≠ j, Sk = Sj is not valid for any j-k. On the other hand, a 

single program running on a processor can be thought of as an ordered trace of M 

statements, where the ordering between statements represents their logical execution 

order. If statement Si is the i-th statement in the trace, considering the logical order of the 

C (i.e., the source code) statements, then, for k ≠ j, Sk=Sj is a possible option. Unlike 

assembly-level analysis, at the C-level, the quantites N, M, the statements, and the 

possible paths of program execution tend to be identical regardless the ISA of the target 

platform (ISA/platform-independent). 

 

Although the real execution of a programs is at assembly level (binary executable code), 

analyzing a program at high level (or using an intermediate representation) to determine 

the logical functional behavior can assist in evaluating its performance [3, 9, 41, 56-57, 

59-60]. As mentioned previously, in this research, the goal is not to build a cycle accurate 

model, since this requires, at least, having the target algorithm compiled into the target 

ISA, disassembling the binary code, and building a detailed microarchitecture model, 

instead, rather, analytical modeling is used to discover the relationship between the 

application’s functional behavior and the processor’s performance in executing it.  
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Figure 3.1 shows a general layout of analytical-based performance modeling. A 

performance relation can be defined as:  

 

 X x PM  y (3.3)

 

where X represents a set of input statistics (x1 … xn), PM is the performance model, y is 

a single number that represents the estimated performance (number of cycles or units of 

time). As can be seen, inputs to a performance model can be functional statistics that 

characterize the behavior of an algorithm at assembly level, high level, or using an 

intermediate format representation. Such statistics can be obtained by profiling the target 

algorithm and, typically, report the frequency of events that have impacts on 

performance, such as number of times each instruction has been called, cache misses/hits 

…etc. On the other hand, the performance model represents a set of mathematical 

relationships the correlate X to y. 

 

 

Figure 3.1. A Layout for Analytical Performance Modeling  
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Recalling expressions (3.1) and (3.2), an application performance on a certain 

architecture can be expressed by: 

 

 Performance = f (Algorithm Source Code, ISA, Inputs, Microarchitecture) (3.4)

 

 

In the performance model layout shown in Figure 3.1, certain details that have impacts on 

performance are hidden. For example, considering the functional statistics that are 

available at assembly-level of the target architecture’s ISA, the hidden information is 

related to the microarchitectural details (the fourth argument in expression 3.4). On the 

other hand, considering the functional statistics are gathered at a high-level or using an 

intermediate representation, more information is hidden in the model regarding the target 

ISA specifications. Consequently, the more details are hidden; either the more 

assumptions are made, hence less accuracy is achieved, or/and the more complex the 

model is. 

 

Based on the above discussion, the following relations can describe the performance of a 

certain program-x (Px) written in the C language on two different architectures, 

architecture1 that implements ISA1, and architecture2 that implements ISA2, where IRx is 

an intermediate representation for the program, and Ax_ISA(i) is the assembly-level of the 

Px using ISAi: 

 

Functional Behavior 
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For architecture1: 

 

1- At the assembly-level: 

 

Px  Ax_ISA(1) 

Ax_ISA(1)  Functional Behavior1.0 

Functional Behavior1.0  y1.0 

 

2- Using an intermediate representation 

 

Px  IRx 

IRx  Functional Behavior1.1 

Functional Behavior1.1  y1.1 

 

3- At the high-level: 

 

Px  Functional Behavior1.2 

Functional Behavior1.2  y1.2 

For architecture2: 

 

1- At the assembly -level: 

 

Px  Ax_ISA(2) 

Ax_ISA(2)  Functional Behavior2.0 

Functional Behavior2.0  y2.0 

 

2- Using an intermediate representation: 

 

Px  IRx 

IRx  Functional Behavior2.1 

Functional Behavior2.1  y2.1 

 

3- At the high-level: 

 

Px  Functional Behavior2.2 

Functional Behavior2.2  y2.2
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Remarks: 

 

 While y represents a single number, this number cannot be used to map the 

performance of an architecture to other architectures, i.e. for different programs 

y1.i/y2.i is not a constant. 

 

 y is a dependent (single) variable, and X is a set of independent variables that 

characterize the Functional Behaviorj.i which can be extracted by running/profiling Px, 

IRx, or Ax_ISA(i).  

 

 X  y is a unidirectional relationship, i.e., X cannot be extracted from y. 

 

Assumptions: 

 

 While Px and IRx  can be considered platform–independent, and Ax_ISA(i) is platform-

dependent, then: 

 

Functional Behavior1.0 ≠ Functional Behavior2.0 

Functional Behavior1.1 = Functional Behavior2.1 

Functional Behavior1.2 = Functional Behavior2.2 

 

 Considering Px  IRx and Px  Ax_ISA(i) as bidirectional relationships, so that: 
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 IRx  Px and Ax_ISA(i)  Px are valid relationships, then: 

 

Ax_ISA(1)  Px’ , and Ax_ISA(1)  IRx’ 

Px’  Functional Behavior2.2’ , and IRx’  Functional Behavior2.1’ 

Functional Behavior2.2’  y2.2’ , and Functional Behavior2.1’  y2.1’ 

 

As a result, 

Ax_ISA(1)  y2.2’’, and/or Ax_ISA(1)  y2.1’’ 

or Ax_ISA(1)  y2.3 

 

In general, 

Ax_ISA(1)  yi.2’’, and Ax_ISA(1)  yi.1’’ 

Or Ax_ISA(1)  yi.3 

 

where i denotes to architecturei. The use of (‘) is to indicate the abstract in 

information/details resulted from the made assumptions, where yi.1’’ or yi.3 represents the 

performance estimation of correlating the assembly-level functional statistics of an 

architecture to the performance of other architectures.  

 

The above discussion leads to the consideration that functional statistics of a certain 

architecture to be thought of (with respect to other architectures) as 1) semi-high-level 

statistics, 2) semi-intermediate representation statistics or simply, 3) a reference format 
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that can be employed to estimate the performance of other archirectures. In other words, 

the functionality of a certain ISA can be mapped to other ISAs’ functionalities which in 

turn can be used in the performance analysis of those other ISAs/microarchitectures.  

 

3.3. Application Functional Statistics 

 

In this research, functional statistics are those statistics that indicate the functional 

behavior of the running program which depends on the logical instruction flow rather 

than processor microarchitecture. Hence, statistics related to CPU core architecture (e.g. 

pipeline stalls), cache/memory architecture (eg. number of misses/hits) should not be 

among the functional statistics. This is important to eliminate the special impacts of the 

reference model on the performance model.  

 

The functional statistics adopted in this research basically represent number of operations 

such as load/store, unconditional branch, conditional branch, return, simple ALU (eg. 

add, and), integer multiply, integer divide, and single/double-precision floating point 

operations (classified based on the cost of each operation). Such classification of 

operations eases the role of the regression modeling for handling the different time costs 

for each group of instructions. For example, in general, integer divide instructions cost 

more than integer add instructions, floating point operations cost more than integer 

operations, especially when there is no hardware support for floating point operations.  
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In addition to a possible deference in cost, the importance of classifying branch 

instructions into unconditional, conditional and return is that an unconditional branch 

(and return) are normally used to jump to (from) routine functions which can indicate 

jumping to a far distance. On other hand, conditional branches are used in the conditional 

statements (such as if, for loop, …etc) which normally indicate code execution close to 

the address of the branch instruction. Hence, such classification assists in accounting for 

the general behavior of cache/memory architectures which affect the performance 

significantly.  

 

3.4. Linear Regression 

 

In this research, xi,1…xi,n are collected functional statistics from the reference model 

(MicroBlaze) for a program i, while yi represents the real performance measurement on 

the actual target hardware/model (see Figure 3.2). It should be noted that the proposed 

framework does not consider xi,1…xi,n to be identical with the functional statistics of the 

target architecture, however, it is assumed that such statistics can be correlated to each 

other. 

 

For m number of observations (programs) and n number of features (parameters):  

 

(y1,x1,1,…, x1,n) … (ym,xm,1, …, xm,n) 
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a linear regression model can be represented by:  

 

 y = XC + ε (3.5)

 

where y is a vector of m dependent response variables (scalars), X is m-by-n matrix that 

consists of m number of rows in which each row has n number of independent prediction 

variables (features), C is a vector of n coefficients that govern the relation between y and 

X, and ε is a vector of m random errors that model the uncontrolled features or 

experimental errors.  

 

Figure 3.2. Framework Outline 
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Different methods can be used for fitting the model. For example, the least squares 

method works by minimizing the sum of the squares of the difference between the 

estimated and the actual values (errors or e), i.e.,  
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(3.6)

Linear regression using robust fit is less susceptible to outliers than normal least squares 

[78]. Robust fit implements a method called iteratively reweighted least squares where at 

the first iteration, each point is assigned equal weight and model coefficients are 

estimated using ordinary least squares. At subsequent iterations, weights are recalculated 

(using weighted least squares) so that lower weights are given to the points farther from 

model predictions in the previous iteration, i.e., 
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(3.7)

 

Where w is the weight function. The process continues until the values of the coefficient 

estimates converge within a specified tolerance.  
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In this research, robust fit is implemented using the weight function logistic in which4:  

 

 w = tanh(r) ./ r (3.8) 

  

the value r in the weight functions is: 

 

 
r �  

�

t s ��1� h�
 

 

(3.9) 

 

where e is the vector of errors from the prior iteration, t is a tuning parameter with a 

default value 1.205, s is an estimate of the standard deviation of the error term, and h is 

the vector of leverage values from a least-squares fit.   

 

3.5. Prediction Models, Related Work 

 

In [61-63], functional statistics regarding number of  load/store, integer, floating point, 

and branch operations are collected using the ISS of the target architecture. The 

microarchitectural details of the target architecture are not modeled directly in this 

approach, instead, the performance model preserve the impacts of the microarchitectural 

details by training the model with a set of pairs of functional statistics and performance 

                                                             
4 './ ' is array right division operation, i.e., A./B is the matrix with elements A(i,j)/B(i,j). A and B must have 
the same size, unless one of them is a scalar. 
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measurements for a domain of algorithms using neural network. A similar approach is 

shown by [42, 79] where more functional statistics regarding number of times each 

instruction has been executed and cache events are obtained using the ISS of the target 

architecture to build the performance model using linear regression. In [40],  non-linear 

Lazy method is used to build a performance model where instruction-level statistics and 

different memory latency and CPU speed parameters form the input statistics for the 

model. In [41], the target algorithm is translated into virtual instruction set which consist 

of simplified RISC operations. Linear regression is used to model the performance based 

on the obtained virtual instruction statistics by running the algorithm on the virtual 

instruction set simulator. Other analytical methods using intermediate format 

representation for performance analysis are proposed in [3, 9, 56-58, 60].  

 

The most related to the framework proposed in this research are [42, 61], see Figure 2.2 

and Figure 3.2. However, unlike these approaches, different set of parameters are used 

here to ensure a better representation of the instruction set of the target architecture where 

instructions are classified based on the execution time rather than detailed (or general) 

instruction functionalities. Also, the proposed framework uses a real architecture to 

obtain the (real time) functional statistics to be employed, in opposite [42, 61], to model 

the performance of foreign ISAs and architectures. While it is hard to model a complete 

system by integrating an ISS with the other components of the system, integrating a real 

architecture that is capable of collecting real time statistics can handle this issue, although 

the functional statistics are not identical. 
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In [80-83], evaluating the performance of different hardware configurations is proposed 

where the inputs of predictive model are the architectural parameters. Neural networks 

technique is used in [80] while linear regression is the technique used in [81-82]. In [83], 

estimating the performance different versions of an ISA that consist of the same set of 

instructions a common (base) ISA has in addition to new set of customized instructions is 

proposed by running the target algorithm only on a cycle accurate simulator of the base 

architecture then analyzing the functional behaviors of the proposed ISA versus the base 

ISA functional behavior. However, it is not the scope of these techniques evaluating the 

performance of different algorithms/programs. 

 

3.6. Summary 

 

Unlike simulation-based performance analysis, “analytic models can help to 

understand a system in ways that simulation does not” K. Skadron [20]. While 

simulators tend to model the performance cycle-by-cycle or instruction-by-instruction, 

and require implementing a low-level hardware details; statistical analysis methods, on 

the other hand, handle such problem from a quantitative perspective through a set of 

functional/performance statistics which in turn abstract the level of details implemented 

in building the performance model.  
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Chapter 4 Reference Model and FPGA-based 
Profiling 

 

This chapter is organized as follows; section 4.1 discusses the specifications of the 

reference model, section 4.2 shows the main profiling techniques, section 4.3 discusses 

our FPGA-based profiling methodology, and section 4.4 summarizes. 

 

4.1. Reference Model Specifications 

 

Using an ISS as a reference model suffers from a major problem that it is hard to model a 

complete system by integrating an ISS with the other components of the system. On the 

other hand, using a real architecture as a reference model faces the problem of the limited 

signals/events that can be monitored at real time. Fortunately, many soft-core processors 

have been released in this decade which are implemented using reconfigurable logic in an 

FPGA [84-86]. Most of these processors are not open-source, so a user cannot modify 

their implementation. However, the ability to read some of the internal signals has made 

the mission of extracting functional statistics from a real architecture much easier. 

Modifying or updating the state of the processor is not required in the framework, 

collecting functional statistics by tracing the instruction execution flow requires only 

reading processor’s state rather than modifying it.  
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In this work, the softcore Xilinix-MicroBlaze [84] has been adopted as a reference 

architecture. In the MicroBlaze, the user has access to the system instruction/data busses, 

which in turn allows building an FPGA–based instruction-level profiler that can work in 

real-time without interfering with execution of the running program (see Figure 4.1). This 

is very useful for profiling embedded applications in the field, where the profiled 

statistics can be stored in a log file, and analyzed later on to determine the algorithm 

behavior (based on the functional statistics) over a range of the system states, which, in 

turn allows observing the dominant operations and demanded resources that characterize 

the system behavior. Moreover, the MicroBlaze has a flexible ISA consisting of the basic 

load, store, branch, arithmetic and logical operations with the ability of including shift, 

multiplication, division and floating point operations if the corresponding functional units 

are incorporated into the implementation. Hence, MicroBlaze can be configured to be as 

close as possible to the candidate ISA allowing a C-level command to be profiled by 

detecting its corresponding assembly instruction or library function. Double-precision 

floating point operations are not supported by MicroBlaze ISA, i.e., such operations are 

implemented using library functions. Hence, a function-level profiling mechanism had to 

be developed for detecting such operations (more details in section 4.3).  
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Figure 4.1. MicroBlaze/FPGA Reference-Model/Profiler Outline 

 

4.2. Profiling 

 

Profiling is a technique for exploring the time/computation-intensive portions in an 

application. It is widely used in hardware/software co-design and analytical modeling as 

a basic source for performance statistics, based on which designers make important 

decisions for partitioning the design implementation into hardware or software to achieve 

the desired performance and workload balance. Profiling techniques can be classified into 

three main categories [10-11]: software-based, hardware-based, and FPGA-based.  

 

Software-based profiling: This technique can be implemented using a simulation 

environment or using the actual hardware. In the former type, an application can run 

without any modification on a simulation tool which can be programmed to record 

certain events-of-interest without interfering with the execution of the code, avoiding 
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adding performance/accuracy overhead. However, the overall performance/accuracy of 

this technique is constrained with the speed/accuracy of the simulation tool. Setting up 

the simulation to handle the system environment (input/output devices such as 

sensors/actuators) needs considerable efforts and becomes more challenging when the 

target application is a real-time application. On the other hand, adding instrumentation 

code to the target application, either at source code level or at the binary (executable) 

level enables profiling the application while it is running on the actual hardware. In this 

technique, the instrumentation code interrupts the program at certain events, functions or 

at a regular frequency and increments the associated counters to measure the consumed 

time and number of calls for events or functions-of-interest, e.g., gprof [87]. In addition 

to the accuracy and performance overhead of the inserted instrumentation code, such 

technique works at the function/block-level and it is generally not suitable for instruction-

level profiling. 

 

Hardware-based profiling: This technique relies on on-chip performance counters that 

are already built into some processors [88-89]. Hardware counters can be set to monitor 

certain internal events such as pipeline stalls and memory behaviors (e.g., cache 

misses/hits). Sampling the counters occurs periodically or on the events that increment 

them. However, this technique is constrained by the limited number of counters equipped 

with the processor, and with the type of events that are accessible by the counters [11]. 

Hence, this technique is generally impractical for instruction-level profiling.  
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FPGA-based profiling: Recently, there have been some efforts to exploit the ability of 

accessing the system buses of the soft-core processors for developing profiling tools to 

monitor programs running on these processors [10-14].  These techniques have been 

proposed in the context of hardware/software co-design and have achieved significantly 

faster and more accurate profiling results than the software-based profilers. In general, 

such techniques need no (or very limited) instrumentation code which in turn eliminates 

the performance overhead. For example, SnoopP [12], AddressTracer [13] and Airwolf 

[11] concentrate on function-level profiling by accessing the address bus (or program 

counter) to determine the time/computation-intensive portions of the application, so the 

user can determine the obstacles in his code and possibly move these portions into 

hardware to achieve better performance. The main difference between these techniques is 

the mechanism for setting the profiling counters/comparators. For example, SnoopP and 

AddressTracer obtain the addresses of the code segments-of-interest from the assembled 

source code (or the symbol table) and assign them to profiling comparators, while in the 

Airwolf, software drivers are inserted at the beginning and the end of each segment-of-

interest in the source code to enable and disable the profiling counters, which in turn, 

minimally affects the profiling speed and accuracy. Statistics Module [14] is another 

FPGA-based profiling technique developed to monitor the cache and memory 

behaviors/events (such as cache misses/hits, memory read/write) for a specified code 

segment running on the FPGA implementation of the SPARC-V8 processor. The start 

and end addresses of the segment-of-interest are set via a software interface.  
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Unlike [10-14] which offered a very fast and accurate profiling technique for 

hardware/software co-design and system debugging, in this research, the proposed 

framework requires not only block-level functional statistics, but also instruction-level 

statistics. The following section explains the structure of the FPGA-based profiler 

developed in this research.  

 

4.3. FPGA-based instruction-level profiling 

 

In the MicroBlaze, Trace_Instruction is one of the trace signals grouped in the 

TRACE bus provided as an IP core by Xilinx. Trace_Instruction is a 32-bit output 

port which holds the binary code of the instruction being executed. A 1-bit signal called 

Trace_Valid_Instr is used to indicate whether this code is valid or not. Based on 

the instruction description in the MicroBlaze Processor Reference Guide [90], it is 

possible to use FPGA logic to decode the Trace_Instruction value in order to 

know more details about each instruction in the execution flow, such as instruction type, 

operands, etc. The address of each instruction can be determined by monitoring the 32-bit 

Trace_PC signal.  

 

In this research, the MicroBlaze instruction set has been classified based on the 

functionality. This allows a profiling counter to be set to monitor the frequency of each 

instruction. However, for double-precision floating point operations which are not 

supported by the MicroBlaze ISA, a function-level profiling technique has been 



  61 

 

developed. It is very important that this function-level profiler is able to work as an 

application-independent profiler, so each time the algorithm code is modified or a new 

algorithm is targeted, it is not mandatory to reconstruct/configure the profiler to handle 

such operations. For example, techniques mentioned in [10-14] are all application-

dependent, i.e., all of them need either 1) setting the profiling comparators with new 

values (lower and upper bound addresses) for targeting the same functions with different 

applications (or whenever the application code is updated) where, in such cases, the 

location (address) of the targeted function in the application code changes, or 2) editing 

the software code to activate/deactivate the profiling counters for targeting new functions, 

adding performance overhead and more complexity. While the proposed framework aims 

to reduce the time factor in the estimation process, it is desirable  to build a profiler that is 

able to work at the instruction-level and the function-level without the need for going 

through the FPGA design cycle each time the application is modified or changed. Unlike 

[10-14] which depend on accessing the address bus to achieve segment-level profiling for 

the same architecture, the proposed framework is able to detect functions based on 

monitoring the instruction trace for the target functions. 

 

In this research, the implementation (assembly) code of different library functions on the 

MicroBlaze platform have been studied by disassembling the .elf (executable) files for 

several applications. It has been noticed that each of these functions has a sequence of 

instructions (first block) that can be considered as a unique trace (footprint) that 

differentiates these functions from each other. Also, it has been noticed that these 
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functions consist essentially of the same sequence of instructions when compiled/linked 

with different applications with very few differences. Those differences are related to 

some of the instructions that use intermediate values as absolute addresses. However, 

most of the instructions that use this type of addressing have the same relative offset 

values because they point to locations that have constant distances from the calling 

points. Hence, profiling a certain library function can be done by detecting its footprint 

(which is application-independent) rather than tracing its address (which is application-

dependent), see Figure 4.2. 

 

 

Figure 4.2. Application-Independent Profiling 

 

For example, the first block of the double-precision floating point functions add, sub, 

mul, and div have 18, 18, 23, and 19 instructions, respectively. Table 4.1 shows the 

disassembled code of the double-precision floating point div function in one of the 

studied applications. Comparing this segment of code to different function 

implementations in different applications, the only difference is the first column of the 

table that contains the addresses of the instructions while the second and third columns 
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that contain the machine code and its equivalent assembly instruction, respectively, 

remain unchanged. In addition to that, comparing the machine code of this segment of 

code with the complete code of different applications, no match with the same sequence 

(except for the same function) has been detected. Therefore, this block of code can be 

considered a unique footprint for the double-precision floating point div function. 

  

Table 4.1. Double-precision floating point div function -first 18 instructions 

Ins Address Ins Code Instruction 
8700204C 3021FF98 addik r1, r1, -104 

87002050 FA610054 swi r19, r1, 84 

87002054 3261002C addik r19, r1, 44 

87002058 11470000 addk r10, r7, r0 

8700205C 11680000 addk r11, r8, r0 

87002060 FAC10058 swi r22, r1, 88 

87002064 FAE1005C swi r23, r1, 92 

87002068 12C50000 addk r22, r5, r0 

8700206C 12E60000 addk r23, r6, r0 

87002070 10D30000 addk r6, r19, r0 

87002074 FB010060 swi r24, r1, 96 

87002078 30A1001C addik r5, r1, 28 

8700207C F9E10000 swi r15, r1, 0 

87002080 F9410024 swi r10, r1, 36 

87002084 F9610028 swi r11, r1, 40 

87002088 FB210064 swi r25, r1, 100 

8700208C FAC1001C swi r22, r1, 28 

87002090 FAE10020 swi r23, r1, 32 

87002094 B9F40694 brlid r15, 1684 
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For simplicity and to avoid any unexpected change due to different intermediate values 

for absolute addressing, only the first three digits (bolded hex) of each machine code 

instruction, which contains the op-code and portions of first operands, has been 

considered as a representation for the instructions. Thus, by monitoring the MicroBlaze 

instruction bus, a double-precision floating point div operation can be detected by a 

sequence of first three digits of the machine code in the running application appearing as: 

 

“302,FA6,326,114,116,FAC,FAE,12C,12E,10D,FB0,30A,F9E,F94,F96,FB2,FAC,FAE,B9F” 

 

Based on the above results, modifying the application code or targeting the same function 

in a different application will have very small chance to produce the same sequence of 

code. It should be noticed here, that double-precision floating point add and sub functions 

share the same sequence of instructions for the first block, this should not be considered 

as an obstacle because both of these operations can be classified in the same category 

even though they can be distinguished from each other with more analysis.   

 

While profiling a library function, other profiling counters should stop counting untill the 

function exits. The end of a library function can be detected by tracing its return 

operation. This can be implemented by registering the PC value once the corresponding 

library function is called, hence the returning address is the registered PC value plus 4. 

When detecting a beginning of a library function, the Trace_PC signal is registered 
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and all other profiling counters are turned off. Once the Trace_PC signal holds the 

registered Trace_PC plus 4 all counters turned on.    

 

To evaluate the accuracy of this application-independent profiling mechanism, ten 

numerical algorithms [91] have been tested (see Table 4.2). Because the only way to 

validate the accuracy of this technique (in profiling double-precession floating point 

operations) is by comparing the profiling results with the manual analysis of the code, 

this technique was used to profile the single-precision floating point multiplication 

operation when it is implemented as a library function (the floating point functional unit 

is turned off) and validating the results with the number of floating point multiplication 

instructions that can be profiled when the floating point functional unit is turned on. This 

experiment has shown 100% accuracy for the ten targeted algorithms. 

 

Table 4.2. Numerical C programs [91] used to test the application-independent FPGA-
based profiling mechanism 

Program Name Description 
bisection.c Bisection method 
rec_bisection.c Recursive version of bisection method 
newton.c Sample Newton method 
secant.c Secant method 
sums.c Upper/lower sums experiment for an integral 
trapezoid.c Trapezoid rule experiment for an integral 
rec_simpson.c Adaptive scheme for Simpson's rule 
euler.c Euler's method for solving an ODE 
taylor.c Taylor series method (order 4) for solving an ODE 
rk4.c Runge-Kutta method (order 4) for solving an IVP 
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4.4. Summary 

 

This chapter illustrated the features that make the MicroBlaze/FPGA platform the core of 

proposed performance modeling infrastructure where the MicroBlaze soft-core processor 

works as a reference functional model which is accessible via TRACE signals. The 

FPGA-based profiling mechanism developed in this research works as application-

independent which in turn is very easy to retarget. This profiling technique can be added 

to the efforts of FPGA-based profiling for hardware/software codesign to build automatic 

function-level profiling using function’s trace signature rather than address. 
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Chapter 5 Experiments and Results  
 

In this chapter, experimental validation for the proposed framework is shown through 

targeting five different processor architectures and thirty three programs. Section 5.1 

describes the experiment setup. Section 5.2 presents the results, and Section 5.3 

summarizes. 

5.1. Experiment Setup 

 

5.1.1. Target Platforms 

 

Including the Microblaze reference model, five different architectures (with different 

ISAs) have been used as target architectures for the proposed framework. The following 

sections describe the main characteristics of each architecture.   

 

5.1.1.1. AVR32 Microcontroller 

 

The AVR32 microcontroller [92] is a 32-bit load/store RISC architecture, with fifteen 

general-purpose 32-bit registers and Harvard memory architecture, with no cache 

implementation. The AVR’s ISA consists of variable length instructions of 16 or 32 bits. 

The AVR32 core is a pipelined processor with three pipeline stages: fetch, decode and 

execution. All instructions are issued and completed in order.  The pre-fetch unit 
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comprises the fetch pipe-stage, and is responsible for feeding instructions to the decode 

unit. The pre-fetch unit fetches 32 bits at a time from the instruction memory interface 

and places them in a FIFO pre-fetch buffer. At the same time, one instruction, either 

RISC extended or compact, is fed to the decode stage.  The decode stage accepts one 

instruction each clock cycle from the pre-fetch unit. This instruction is then decoded, and 

control signals and register file addresses are generated. The execute pipeline stage 

performs register file reads, operations on registers and memory, and register file writes.  

It contains an ALU section, multiply section, and load-store section.  The multiply 

section implements a 32 by 32 multiplier array, and 16x16, 32x16 and 32x32 

multiplications and multiply-accumulates.  For this experiment, the processor was 

clocked at 64.512 MHz, therefore incurring a 1 wait state penalty when accessing 

instructions or data from the flash memory non-sequentially. 

 

5.1.1.2. PowerPC405 Microprocessor 

 

The PowerPC405 (PPC405) used in this research is an embedded PPC405F6 processor 

core used in a Xilinx Virtex-4 FX12 FPGA [93].  The PPC405 is a reduced instruction set 

computer (RISC) with thirty-two 32-bit general purpose registers and Harvard memory 

architecture. The PPC405 has a five stage single issue execution pipeline, including fetch, 

decode, execute, write-back, and load write-back stages.  Most instructions execute in a 

single cycle, including loads and stores assuming no-wait-state memory accesses.  

Multiply instructions take between 1 and 4 cycles, for 32-bit and 64-bit results 
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respectively, and divide instructions typically take 35 cycles. For this experiment, the 

Virtex-4 FX12 FPGA with the PPC405 core was contained on a Xilinx® Virtex®-4 

FX12 Mini-Module. Separate data and instruction caches, each 16KB with 32-bytes per 

cache line were used in this system. Cache lines were connected to a memory controller 

which connected to a 100 MHz, 16-bit data bus SDRAM.  The processor was configured 

to run at 300MHz and did not include a hardware floating point unit.  

 

5.1.1.3. Gumstix Intel XScale® PXA255 

 

The Gumstix Verdex XL6P [94] utilizes an Intel PXA270 microprocessor.  This 

processor supports Intel Wireless MMX integer instructions, four 64-Kbyte memory 

banks, and an integrated LCD panel controller.  It is also designed to be highly backward 

compatible with the PXA25x series.  The particular version of the PXA270 used by the 

Gumstix utilizes a 600MHz clock frequency.  This processor is an Intel XScale 

microarchitecture fully compatible with ARM architecture V5TE.  The architecture 

contains write, fill, pend, and branch-target buffers.  As well, it contains a multiply-

accumulate coprocessor, 32-bit coprocessor interface, and core memory bus.  The 

architecture is RISC with a seven to eight stage superpipeline.  The MAC is capable of 

performing two simultaneous 16-bit SIMD multiplies. There is also a 128-entry branch 

target buffer to keep the pipeline filled with statistically correct options.  A 2-Kbyte mini-

data cache prevents thrashing of the 32-Kbyte cache.  An eight entry write buffer means 

the core can execute while data is being written to memory.   
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5.1.1.4. PIC32 microcontroller 

 

The PIC32 processor [95] implements the MIPS ISA which runs at runs at 80 MHz on a 

RISC architecture and has a Harvard memory architecture. It contains two different 

pipelines.  The CPU core consists of five pipeline stages: fetch, execution, memory fetch, 

memory align, and memory writeback.  Assuming there are no stalls in the pipeline, most 

instructions will be executed on every clock cycle.  Once a multiply/divide instruction is 

issued, the CPU may either fetch the next instruction (while the multiply/divide pipline is 

still calculating a result) or stall waiting for the result from the pipeline.  Stalling occurs if 

the CPU attempts to retrieve the result before the pipeline is finished.  A dedicated 

hardware is used for the multiply and divide instructions For multiplications, 1 clock 

cycle can perform 16x16 or 32x16 operations and requires 2 clock cycles otherwise.  

Division requires between 11 to 32 clock cycles depending on the parameters used. This 

pipeline is iterative and multi-stage.  The PIC32 also employs a 128-bit Flash memory 

designed to increase throughput.  This module, combined with the 128-bit prefetch cache 

means that the CPU can prefetch that many bits of the next instructions and store them in 

the cache. 

 

5.1.1.5. MicroBlaze Soft-Core Processor 

 

As a target architecture, MicroBlaze been configured to consist of five pipeline stages 

(single-issue) running at 50MHz with a cache implementation of separate data and 
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instruction caches, each is 8KB. MicroBlaze [84] is a RISC architecture with thirty-two 

32-bit general purpose registers and Harvard memory architecture.   

 

5.1.2. Algorithms and Benchmarks 

 

A total of thirty three programs/benchmarks from different application domains (data 

structure, control, FFT, sorting, and numerical algorithms) have been used in this 

research. Table 5.1 shows the type of each program, whether it includes floating point 

operations, and the source of programs. Around half of these programs include floating 

point operations in addition to other library function calls. Some modifications have been 

made on some of these programs such as changing C++ statements into C, and 

commenting the printf commands. 

 

As in [42, 61], the leave-one-out cross validation technique has been used to generate the 

result data. In this method, each program is used once as a target application while all of 

the other programs are used as the training set for the linear regression method. For 

example, the data for application 1 is gathered by using applications 2 through 33 as the 

training set for the linear regression. The developed model is then used to predict the run 

time (number of cycles) for application 1 based on the profile of operations for that 

application. A similar procedure is then performed for each of the other applications. 
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Table 5.1. Programs and Benchmarks used for Experimental Validation 

No. Program Name Brief Description FP Ref. 
1 test_math Small Math Benchmark Yes [96] 
2 basicmath Automotive/Industrial Control Benchmark Yes [54] 
3 pbmsrch_small Pratt-Boyer-Moore String Search (small) No [54] 
4 pbmsrch_large Pratt-Boyer-Moore String Search (large) No [54] 
5 hanoi Recursive Hanoi  No [97] 
6 bitcount Automotive/Industrial Control Benchmark No [54] 
7 dhrystone Integer Benchmark Yes [98] 
8 fft_test FFT Application Yes [99] 
9 sort_bubble5 Sorting Algorithm No [100] 
10 sort_combo Sorting Algorithm No [100] 
11 sort_heap Sorting Algorithm No [100] 
12 sort_insert Sorting Algorithm No [100] 
13 sort_merge Sorting Algorithm No [100] 
14 sort_quick Sorting Algorithm No [100] 
15 sort_selection Sorting Algorithm No [100] 
16 sort_shell Sorting Algorithm No [100] 
17 test_tree2 Tree Algorithm No [101] 
18 tree_traversal Binary Tree Algorithm No [102] 
19 short_path Dijkstra's Algorithm No [103] 
20 mst Minimum Spanning Tree No [102] 
21 bisection Locating Roots of Equations (bisection) Yes [91] 
22 euler Euler's Method for Solving an ODE Yes [91] 
23 fuzzy Fuzzy Controller Yes [104] 
24 newton Locating Roots of Equations (newton) Yes [91] 
25 rec_simpson Adaptive Scheme for Simpson's Rule Yes [91] 
26 rk4 Runge-Kutta method for solving an IVP Yes [91] 
27 rk4sys Runge-Kutta method for systems of ODEs Yes [91] 
28 rk45 Runge-Kutta-Fehlberg for solving an IVP Yes [91] 
29 secant Locating Roots of Equations (secant) Yes [91] 
30 Sums Upper/Lower Sums Experiment (Integral) Yes [91] 
31 Taylor Taylor series method for solving an ODE Yes [91] 
32 Taylorsys Taylor series method for systems of ODEs Yes [91] 
33 Trapezoid Trapezoid Rule for Numerical Integration Yes [91] 

                                                             
5 bubble_sort and test_tree performance measurements are not available for the PIC controller. 
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5.1.3. Floating-Point Implementation 

 

Two main experiments have been implemented. In the first one, the set of programs have 

been run on the MicroBlaze platform without configuring the hardware floating point 

functional unit, i.e., all floating point operations have been implemented through library 

functions, and in the second one, the floating point functional unit has been enabled 

which is dedicated to implement single-precision floating point operations. The FPGA-

based profiler has been set to collect the functional statistics at instruction-level where 

instructions that have the same cost have been grouped in the same category, for example 

arithmetic add/sub and logical and/or operations have the same functional category. In 

the second experiment, since double-precision floating point operations are implemented 

using library functions, the application-independent profiling mechanism developed in 

this research has been used to count these operations independently at function-level 

(single-precision floating point operations are profiled at the instruction-level).  

 

5.2. Results 

 

5.2.1. Ordinary Least Squares vs.  Robust Fit 

 

In this subsection, linear regression analysis using ordinary least squares method is 

compared with linear regression using robust fit method. Table 5.2 shows the results of 

modeling the performance with a software implementation of floating point operations 
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and Table 5.3 shows the results using a hardware implementation of floating point 

operations (double-precision floating point operations still implemented through library 

functions, however, they are profiled at the function-level).  

 

In the error analysis, the relative error for an observation is the estimated value minus the 

observed (true) value all divided by observed value. In these tables the minimum (Min), 

median (Med), maximum (Max), mean absolute (MA), and standard deviation (Std) of 

the relative errors are reported for each architecture. In both experiments, linear 

regression using robust fit has shown better accuracy levels for all architectures. Since the 

robust fit method has shown a higher level of accuracy for all architectures (including the 

PPC), a detailed error analysis using robust fit method is used to generate the results in 

the following subsections for all programs and architectures.  

 

Table 5.2. Error analysis summary using software implementation of floating point 
operations (SW FP) 

 Error AVR PPC GS PIC MB 

le
as

t s
qu

ar
es

 Min -173.82% -44.47% -138.24% -1833.34% -1401.61% 
Med 31.52% 6.68% 49.31% -22.44% -14.52% 
Max 5034.65% 59.86% 766.82% 883.02% 362.33% 
MA 393.89% 15.94% 133.19% 235.49% 159.68% 
Std 11.2585 0.1954 1.8653 4.9612 3.1081 

ro
bu

st
 fi

t  

Min -126.82% -43.57% -65.08% -100.36% -153.14% 
Med -3.98% 1.05% 0.97% -1.60% 0.25% 
Max 222.21% 29.94% 61.37% 1022.16% 83.36% 
MA 42.55% 10.97% 18.37% 110.04% 20.66% 
Std 0.6222 0.1524 0.2658 2.4331 0.3605 
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Table 5.3. Error analysis summary using hardware implementation of floating point 
operations (HW FP) 

 Error AVR PPC GS PIC MB 
le

as
t s

qu
ar

es
 Min -793.00% -144.46% -1346.67% -214.28% -306.79% 

Med -1.78% 8.03% 0.51% -19.43% 10.44% 
Max 204.80% 404.71% 587.12% 184.77% 1453.81% 
MA 78.65% 51.19% 167.33% 66.68% 173.80% 
Std 1.9082 0.9083 3.2399 0.8475 3.6806 

ro
bu

st
 fi

t  

Min -146.57% -88.60% -59.30% -76.53% -191.75% 
Med 0.23% -0.19% 0.81% -0.07% 8.71% 
Max 120.77% 28.74% 183.29% 206.24% 139.44% 
MA 29.46% 12.65% 26.02% 44.39% 38.49% 
Std 0.4795 0.2106 0.4623 0.6974 0.5647 

 

5.2.2. Absolute Performance Estimation 

 

To generate the data in Tables 5.4, 5.5, and 5.6, the reference model (MicroBlaze) has 

been configured without a hardware unit to support to the floating point operations, 

hence, the floating point operations in the target programs have been run through library 

functions and all applications were then profiled as integer programs. Table 5.4 shows the 

performance modeling results of the MicroBlaze as a target architecture – that is, the 

MicroBlaze reference model was used to predict the performance of the Microblaze itself 

on each of the individual applications (using leave-one-out validation). A total of 26 

programs (out of 33) have been modeled with an absolute error of less than 30%. The 

overall mean absolute error was 20.66% (see Table 5.2). 
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Table 5.5 shows the performance estimations extracted from the PPC and GS 

performance models where a total of 31 programs (out of 33) and 26 (out of 33) have 

been modeled with an absolute error less than 30%, respectively, with an overall mean 

absolute error 10.97% and 18.37%, respectively (see Table 5.2). It is clear that the PPC 

model has achieved an accuracy level that is better than the reference architecture’s 

performance model itself. This can indicate that PPC has a more structured internal 

architecture organization (CPU core, memory architecture, etc) than MicroBlaze, so it is 

precisely handled by linear regression. On the other hand, the GS model shows 

performance estimations that are close to the MicroBlaze model with smaller mean 

absolute error.   

 

The AVR and PIC microcontrollers performance estimations are shown in Table 5.6. The 

AVR performance model has reported a total of 17 programs (out of 33) with an absolute 

error less than 30%, while for the PIC, a total of 14 programs (out of 31) have been 

modeled with an absolute error less than 30%. The overall mean absolute error for these 

architectures was 42.55% and 110.04%, respectively (see Table 5.2). It can be noticed 

that these models have achieved less accuracy levels than the performance models of the 

targeted microprocessors (PPC, GS, and MicroBlaze). Most of the large errors fall in the 

floating point programs rather than integer programs, which leads one to believe that 

mapping the functional behavior of the floating point library functions on MicroBlaze to 

their performance on these architectures (AVR and PIC) has major impacts on the 

accuracy of the performance models.  
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Table 5.4. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the MicroBlsze Architecture (SW FP) 

Test Program True Estimated Error 
test_math 464,133 470,883.64 1.45% 

basicmath j,522,597,219 2,552,488,554.20 1.18% 

pbmsrch_small 524,681 598,233.48 14.02% 

pbmsrch_large 11,891,537 9,086,534.15 -23.59% 

hanoi 1,476,415,213 2,097,718,686.27 42.08% 
bitcount 196,215,015 359,784,307.75 83.36% 

dhrystone 50,559,615 63,848,686.99 26.28% 

fft_test 4,125,776 3,655,644.20 -11.39% 

sort_bubble 525,117,153 437,869,137.68 -16.61% 

sort_combo 28,888,433 28,961,735.55 0.25% 

sort_heap 35,306,101 47,295,117.62 33.96% 

sort_insert 193,066,897 176,662,006.39 -8.50% 
sort_merge 29,974,820 28,573,968.28 -4.67% 

sort_quick 28,805,880 28,791,720.93 -0.05% 

sort_selection 327,732,463 371,861,313.15 13.46% 

sort_shell 38,343,582 42,793,604.34 11.61% 

testtree 167,314,216 92,195,007.44 -44.90% 
TreeTraversal 23,162,571 20,523,635.93 -11.39% 

shortp 458,720 -243,766.97 -153.14% 

MST 1,757,049 1,132,322.66 -35.56% 

m_bisection 24,227,231 21,902,476.76 -9.60% 

euler 2,549,097 2,289,789.06 -10.17% 

fc_fuzzy 201,024 264,150.08 31.40% 

run_newton 4,039,881 4,197,555.28 3.90% 
rec_simpson 11,760,609 11,766,566.05 0.05% 

rk4 1,565,932 1,673,947.19 6.90% 

m_rk4sys 4,467,044 4,645,155.82 3.99% 

m_rk45 2,392,586 2,209,983.63 -7.63% 

m_secant 1,328,581 1,336,735.26 0.61% 
m_sums 34,096,294 24,229,306.81 -28.94% 

m_taylor 1,796,796 1,890,990.14 5.24% 

m_taylorsys 3,984,357 4,648,694.65 16.67% 

m_trapezoid 2,050,244 1,655,411.91 -19.26% 

Total No. of Absolutes Errors < 30% 26/33 
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Table 5.5. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the PPC and GS Architectures (SW FP) 

 True Estimated Error 
Test Program PPC GS PPC GS PPC GS 
test_math 219,244 79,860 184,347.56 61,291.80 -15.92% -23.25% 

basicmath 1,084,554,413 303,945,960 1,000,373,653.60 247,361,591.40 -7.76% -18.62% 

pbmsrch_small 320,594 315,900 323,761.27 231,283.80 0.99% -26.79% 

pbmsrch_large 10,553,679 7,144,620 6,166,667.91 3,781,689.60 -41.57% -47.07% 

hanoi 713,032,712 759,520,860 813,642,564.67 816,175,280.40 14.11% 7.46% 

bitcount 123,068,146 128,166,660 138,992,144.80 111,700,026.00 12.94% -12.85% 

dhrystone 25,469,159 52,219,080 26,669,867.20 36,768,393.00 4.71% -29.59% 

fft_test 1,790,136 469,920 1,513,845.68 484,287.60 -15.43% 3.06% 

sort_bubble 299,556,791 333,290,340 290,081,929.74 354,574,664.40 -3.16% 6.39% 

sort_combo 18,019,577 21,027,000 18,275,491.85 20,860,513.80 1.42% -0.79% 

sort_heap 28,543,733 32,237,580 29,791,562.84 27,457,248.00 4.37% -14.83% 

sort_insert 119,801,539 142,036,080 112,464,376.21 131,127,838.20 -6.12% -7.68% 

sort_merge 21,823,751 24,226,620 20,421,056.88 26,411,697.60 -6.43% 9.02% 

sort_quick 17,866,030 20,891,220 18,139,537.15 20,742,791.40 1.53% -0.71% 

sort_selection 225,379,510 247,117,140 238,056,617.17 267,826,087.20 5.62% 8.38% 

sort_shell 23,906,588 27,179,040 26,130,808.46 28,022,577.60 9.30% 3.10% 

testtree 65,063,518 65,517,240 58,584,116.90 80,768,655.00 -9.96% 23.28% 

TreeTraversal 14,384,887 29,490,600 10,465,648.78 10,298,769.60 -27.25% -65.08% 

shortp 332,779 924,240 187,787.91 987,904.80 -43.57% 6.89% 

MST 1,534,768 1,433,220 1,994,277.93 1,476,058.20 29.94% 2.99% 

m_bisection 9,219,514 2,387,760 10,452,478.32 3,063,649.80 13.37% 28.31% 

euler 1,553,806 407,700 1,570,160.41 657,907.20 1.05% 61.37% 

fc_fuzzy 113,344 51,180 98,466.32 48,141.60 -13.13% -5.94% 

run_newton 2,540,266 703,080 2,255,936.12 271,764.00 -11.19% -61.35% 

rec_simpson 4,761,100 1,216,440 4,431,935.19 1,708,447.20 -6.91% 40.45% 

rk4 891,223 214,320 954,856.01 201,850.20 7.14% -5.82% 

m_rk4sys 2,515,969 683,280 2,696,658.57 689,881.20 7.18% 0.97% 

m_rk45 1,461,238 391,380 1,455,343.70 366,046.20 -0.40% -6.47% 

m_secant 590,605 149,760 554,452.56 154,360.20 -6.12% 3.07% 

m_sums 10,391,569 3,132,420 11,323,997.58 4,270,004.40 8.97% 36.32% 

m_taylor 1,012,423 235,500 1,081,746.67 246,615.00 6.85% 4.72% 

m_taylorsys 2,138,506 503,580 2,471,179.42 494,688.00 15.56% -1.77% 

m_trapezoid 648,607 194,640 661,009.72 256,712.40 1.91% 31.89% 

Total No. of Absolutes Errors < 30% 31/33 26/33
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Table 5.6. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the AVR and PIC Architectures (SW FP) 

 True Estimated Error 
Test Program AVR PIC AVR PIC AVR PIC 
test_math 16,380 47,474 52,778.70 189,854.15 222.21% 299.91% 

basicmath 245,384,463 363,203,164 272,557,752.29 862,521,340.55 11.07% 137.48% 

pbmsrch_small 495,430 1,049,464 350,806.08 656,532.28 -29.19% -37.44% 

pbmsrch_large 11,407,955 24,119,692 6,153,603.83 13,068,657.07 -46.06% -45.82% 

hanoi 977,267,544 2,365,573,644 454,866,735.39 1,474,411,961.26 -53.46% -37.67% 

bitcount 126,556,933 331,459,756 103,658,513.09 281,266,938.32 -18.09% -15.14% 

dhrystone 28,640,011 71,046,664 25,583,102.89 79,787,241.18 -10.67% 12.30% 

fft_test 382,344 1,006,025 603,660.21 1,996,724.59 57.88% 98.48% 

sort_bubble 315,061,856 * 343,351,642.81 * 8.98% * 

sort_combo 20,390,971 48,907,067 20,403,815.57 46,963,103.72 0.06% -3.97% 

sort_heap 30,209,333 48,771,974 24,612,609.02 67,259,805.06 -18.53% 37.91% 

sort_insert 130,798,035 324,462,844 123,769,134.10 377,720,302.29 -5.37% 16.41% 

sort_merge 21,429,322 56,012,230 26,355,642.56 54,171,824.25 22.99% -3.29% 

sort_quick 20,311,153 48,812,765 20,283,752.84 46,809,099.42 -0.13% -4.10% 

sort_selection 270,863,523 635,888,854 241,229,550.65 520,476,723.80 -10.94% -18.15% 

sort_shell 25,731,503 65,401,496 27,360,415.86 70,418,051.04 6.33% 7.67% 

testtree 63,191,338 * 80,574,727.41 * 27.51% * 

TreeTraversal 11,894,146 10,322,272 7,725,222.10 29,896,431.01 -35.05% 189.63% 

shortp 255,275 562,831 509,446.52 320,694.37 99.57% -43.02% 

MST 1,424,579 4,212,812 -382,080.65 1,357,401.70 -126.82% -67.78% 

m_bisection 2,056,700 921,344 3,400,991.17 10,338,956.21 65.36% 1022.16% 

euler 503,206 1,867,011 334,941.75 1,923,898.66 -33.44% 3.05% 

fc_fuzzy 19,652 59,714 42,361.79 111,925.11 115.56% 87.44% 

run_newton 731,497 2,752,529 1,434,990.15 601,955.55 96.17% -78.13% 

rec_simpson 941,432 1,090,673 903,952.61 2,229,477.60 -3.98% 104.41% 

rk4 255,955 826,618 396,939.57 813,387.54 55.08% -1.60% 

m_rk4sys 769,278 2,839,195 575,603.41 2,494,666.00 -25.18% -12.13% 

m_rk45 440,258 1,501,858 604,306.02 1,354,346.72 37.26% -9.82% 

m_secant 123,223 56,228 187,827.27 523,946.96 52.43% 831.83% 

m_sums 2,466,152 3,723,755 1,581,318.40 -13,244.64 -35.88% -100.36% 

m_taylor 288,541 1,068,907 175,312.23 1,110,062.53 -39.24% 3.85% 

m_taylorsys 618,626 2,237,903 450,601.64 2,278,483.99 -27.16% 1.81% 

m_trapezoid 148,426 225,361 138,694.68 48,611.13 -6.56% -78.43% 

Total No. of Absolutes Errors < 30% 17/33 14/31
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The data in Tables 5.7, 5.8 and 5.9, was produced by configuring the reference model 

(MicroBlaze) with a hardware unit to support to the floating point operations; hence, the 

single-precision floating point operations in the target programs have been implemented 

directly by the MicroBlaze ISA on hardware and profiled at instruction-level, while 

double-precision floating point operations have been profiled at function-level. Table 5.7 

shows the performance modeling results of the MicroBlaze as a target architecture. A 

total of 19 programs (out of 33) have been modeled with an absolute error less than 30%. 

The overall mean absolute error was 38.49% (see Table 5.3). This degradation in the 

accuracy level is caused by the fact that that the MicroBlaze configuration with hardware 

floating point support as a target architecture is different than the MicroBlaze 

configuration as a reference model without hardware floating point support, where in the 

former experiment, both configuration were the same (no hardware floating point 

support).  

 

Table 5.8 shows the performance estimations extracted from the PPC and GS 

performance models where a total of 30 programs and 24 (out of 33) have been modeled 

with an absolute error less than 30%, respectively, with an overall mean absolute error 

12.65% and 26.02%, respectively (see Table 5.3). This shows a slightly decreasing in 

accuracy than previous experiment (see Table 5.5). However, it is still clear that both the 

PPC and the GS models have accuracy levels better than the MicroBlaze performance 

model itself, which can be attributed to the internal organization of these architectures.   
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The AVR and PIC microcontroller performance estimations are shown in Table 5.9. The 

AVR performance model has reported a total of 22 programs (out of 33) with an absolute 

error less than 30%, while for the PIC, a total of 18 programs (out of 31) have been 

modeled with an absolute error less than 30%. The overall mean absolute error for these 

architectures was 29.46% and 44.39%, respectively (Table 5.3) which in turn shows a 

significant enhancement in the accuracy level over the previous experiment (Table 5.6), 

although still less than PPC, and GS microprocessor models. This shows that increasing 

the level of abstraction of floating point operations has enhanced the AVR and PIC 

models by hiding the detailed software implementation of these operations which in turn 

achieved a better correlation between the functional behavior on the MicroBlaze and the 

performance on AVR and PIC. In fact, considering only the integer programs (around 

half of the training set), the mean absolute error for AVR is 9.90% and for PIC is 

22.27%. 

 

As the differences among the target ISAs explains a the different accuracy levels 

achieved by each model, the different internal architecture of microcontrollers (AVR and 

PIC) from the other processor architectures (especially memory architecture) shows a 

significant impacts on the performance estimation results. Such models can be further 

improved by enlarging the set of training programs which in turn can be able to stress 

such model intensively [42].  
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Table 5.7. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the MicroBlaze Architecture (HW FP) 

Test Program True Estimated Error 
test_math 464,133 485,928.74 4.70% 

basicmath 2,522,597,219 3,319,900,549.05 31.61% 

pbmsrch_small 524,681 597,745.52 13.93% 

pbmsrch_large 11,891,537 16,495,432.28 38.72% 

hanoi 1,476,415,213 2,232,638,016.64 51.22% 
bitcount 196,215,015 8,165,840.21 -95.84% 

dhrystone 50,559,615 73,389,089.40 45.15% 

fft_test 4,125,776 2,981,875.74 -27.73% 

sort_bubble 525,117,153 483,325,351.21 -7.96% 

sort_combo 28,888,433 27,599,829.54 -4.46% 

sort_heap 35,306,101 22,230,511.02 -37.03% 

sort_insert 193,066,897 209,887,329.60 8.71% 
sort_merge 29,974,820 32,094,397.03 7.07% 

sort_quick 28,805,880 27,486,837.61 -4.58% 

sort_selection 327,732,463 448,413,503.13 36.82% 

sort_shell 38,343,582 47,297,278.71 23.35% 

testtree 167,314,216 121,374,192.37 -27.46% 
TreeTraversal 23,162,571 26,902,480.28 16.15% 

shortp 458,720 920,952.41 100.77% 

MST 1,757,049 -1,612,131.77 -191.75% 

m_bisection 24,227,231 18,485,981.91 -23.70% 

euler 2,549,097 3,402,861.48 33.49% 

fc_fuzzy 201,024 481,327.00 139.44% 

run_newton 4,039,881 7,481,176.37 85.18% 
rec_simpson 11,760,609 7,239,907.74 -38.44% 

rk4 1,565,932 1,312,926.29 -16.16% 

m_rk4sys 4,467,044 3,725,536.43 -16.60% 

m_rk45 2,392,586 3,089,381.35 29.12% 

m_secant 1,328,581 1,555,957.20 17.11% 
m_sums 34,096,294 22,762,709.41 -33.24% 

m_taylor 1,796,796 2,021,707.96 12.52% 

m_taylorsys 3,984,357 4,825,190.92 21.10% 

m_trapezoid 2,050,244 1,455,221.24 -29.02% 

Total No. of Absolutes Errors < 30% 19/33 
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Table 5.8. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the PPC and GS Architectures (HW FP) 

 True Estimated Error 
Test Program PPC GS PPC GS PPC GS 
test_math 219,244 79,860 242,879.01 66,183.60 10.78% -17.13% 

basicmath 1,084,554,413 303,945,960 1,085,855,714.33 306,511,992.60 0.12% 0.84% 

pbmsrch_small 320,594 315,900 298,279.90 249,297.00 -6.96% -21.08% 

pbmsrch_large 10,553,679 7,144,620 6,042,293.56 4,056,127.20 -42.75% -43.23% 
Hanoi 713,032,712 759,520,860 917,988,396.15 1,022,147,844.60 28.74% 34.58% 

bitcount 123,068,146 128,166,660 122,141,026.46 286,545,038.40 -0.75% 123.57% 

dhrystone 25,469,159 52,219,080 25,602,635.90 38,689,438.80 0.52% -25.91% 

fft_test 1,790,136 469,920 1,627,144.13 452,868.60 -9.10% -3.63% 

sort_bubble 299,556,791 333,290,340 317,907,078.62 326,038,733.40 6.13% -2.18% 

sort_combo 18,019,577 21,027,000 18,019,716.85 21,024,967.80 0.00% -0.01% 

sort_heap 28,543,733 32,237,580 29,511,610.51 29,307,313.80 3.39% -9.09% 
sort_insert 119,801,539 142,036,080 109,997,079.29 143,193,020.40 -8.18% 0.81% 

sort_merge 21,823,751 24,226,620 20,643,273.20 24,653,478.60 -5.41% 1.76% 

sort_quick 17,866,030 20,891,220 17,870,961.05 20,884,214.40 0.03% -0.03% 

sort_selection 225,379,510 247,117,140 259,702,804.46 276,841,786.20 15.23% 12.03% 

sort_shell 23,906,588 27,179,040 25,645,438.87 28,410,225.00 7.27% 4.53% 
Testtree 65,063,518 65,517,240 55,152,408.73 72,177,763.80 -15.23% 10.17% 

TreeTraversal 14,384,887 29,490,600 9,032,744.44 12,001,549.80 -37.21% -59.30% 

Shortp 332,779 924,240 321,601.87 937,919.40 -3.36% 1.48% 

MST 1,534,768 1,433,220 1,511,024.39 4,060,152.00 -1.55% 183.29% 

m_bisection 9,219,514 2,387,760 7,039,421.07 1,327,096.20 -23.65% -44.42% 

Euler 1,553,806 407,700 1,626,229.99 460,797.60 4.66% 13.02% 

fc_fuzzy 113,344 51,180 92,050.25 52,630.20 -18.79% 2.83% 
run_newton 2,540,266 703,080 289,536.02 290,289.60 -88.60% -58.71% 

rec_simpson 4,761,100 1,216,440 4,747,007.52 1,191,232.80 -0.30% -2.07% 

rk4 891,223 214,320 1,018,776.97 344,653.20 14.31% 60.81% 

m_rk4sys 2,515,969 683,280 2,157,194.24 521,401.20 -14.26% -23.69% 

m_rk45 1,461,238 391,380 1,396,286.01 347,796.00 -4.44% -11.14% 
m_secant 590,605 149,760 676,945.31 191,766.60 14.62% 28.05% 

m_sums 10,391,569 3,132,420 10,371,461.15 3,095,692.80 -0.19% -1.17% 

m_taylor 1,012,423 235,500 1,118,598.95 264,724.20 10.49% 12.41% 

m_taylorsys 2,138,506 503,580 2,517,965.08 702,514.80 17.74% 39.50% 

m_trapezoid 648,607 194,640 665,853.46 206,386.80 2.66% 6.04% 

Total No. of Absolutes Errors < 30% 30/33 24/33
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Table 5.9. Performance Measurements/Estimations (in cycles) of the Target Programs on 
the AVR and PIC Architectures (HW FP) 

 True Estimated Error 
Test Program AVR PIC AVR PIC AVR PIC 
test_math 16,380 47,474 -7,628.71 95,855.15 -146.57% 101.91% 

basicmath 245,384,463 363,203,164 188,611,775.91 327,889,557.37 -23.14% -9.72% 

pbmsrch_small 495,430 1,049,464 455,590.46 1,057,277.16 -8.04% 0.74% 

pbmsrch_large 11,407,955 24,119,692 12,154,006.82 24,081,119.59 6.54% -0.16% 
Hanoi 977,267,544 2,365,573,644 894,002,561.71 2,202,465,424.49 -8.52% -6.90% 

Bitcount 126,556,933 331,459,756 117,438,227.33 331,635,237.53 -7.21% 0.05% 

dhrystone 28,640,011 71,046,664 30,230,882.74 77,510,381.34 5.55% 9.10% 

fft_test 382,344 1,006,025 607,447.52 1,508,579.40 58.87% 49.95% 

sort_bubble 315,061,856 * 309,115,131.30 * -1.89% * 

sort_combo 20,390,971 48,907,067 20,436,992.36 49,123,013.85 0.23% 0.44% 

sort_heap 30,209,333 48,771,974 31,655,964.57 76,187,072.94 4.79% 56.21% 
sort_insert 130,798,035 324,462,844 132,127,949.11 352,938,883.96 1.02% 8.78% 

sort_merge 21,429,322 56,012,230 22,742,926.72 55,931,166.45 6.13% -0.14% 

sort_quick 20,311,153 48,812,765 20,249,577.30 48,559,999.67 -0.30% -0.52% 

sort_selection 270,863,523 635,888,854 266,549,984.35 465,920,205.47 -1.59% -26.73% 

sort_shell 25,731,503 65,401,496 24,787,390.82 65,357,640.13 -3.67% -0.07% 
Testtree 63,191,338 * 65,934,767.25 * 4.34% * 

TreeTraversal 11,894,146 10,322,272 12,752,761.44 31,610,813.54 7.22% 206.24% 

Shortp 255,275 562,831 38,353.34 547,170.87 -84.98% -2.78% 

MST 1,424,579 4,212,812 1,594,812.23 3,568,174.69 11.95% -15.30% 

m_bisection 2,056,700 921,344 4,067,035.26 2,624,656.70 97.75% 184.87% 

Euler 503,206 1,867,011 345,429.84 459,293.40 -31.35% -75.40% 

fc_fuzzy 19,652 59,714 43,386.40 103,598.86 120.77% 73.49% 
run_newton 731,497 2,752,529 193,161.56 645,982.79 -73.59% -76.53% 

rec_simpson 941,432 1,090,673 1,272,627.68 2,434,473.43 35.18% 123.21% 

rk4 255,955 826,618 361,915.90 645,295.37 41.40% -21.94% 

m_rk4sys 769,278 2,839,195 845,020.32 1,958,265.00 9.85% -31.03% 

m_rk45 440,258 1,501,858 308,672.47 395,908.88 -29.89% -73.64% 
m_secant 123,223 56,228 43,605.76 142,766.50 -64.61% 153.91% 

m_sums 2,466,152 3,723,755 3,316,060.18 4,124,231.76 34.46% 10.75% 

m_taylor 288,541 1,068,907 246,627.57 739,461.33 -14.53% -30.82% 

m_taylorsys 618,626 2,237,903 533,215.08 2,036,852.76 -13.81% -8.98% 

m_trapezoid 148,426 225,361 166,913.66 260,886.62 12.46% 15.76% 

Total No. of Absolutes Errors < 30% 22/33 18/31
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5.2.3. Relative Performance Estimation 

 

In previous subsection the errors have been analyzed in terms of absolute performance 

estimation, i.e., the exact number of processor cycles needed for program execution. In 

this subsection, a relative performance analysis is shown, i.e., the modeling technique is 

used to compare processor architectures with each other in terms of which achieves better 

or worse performance for each application. Table 5.10 lists the observed (true) time (in 

μs) for each tested program for all architectures and compare these measurements with 

the best performance estimations shown in the previous subsection (MicroBlaze SW FP 

implementation to model PPC and GS and MicroBlaze; and MicroBlaze HW FP 

implementation to model AVR and PIC), where the true (and estimated) time in μs is 

obtained by multiplying the number of true (and estimated) cycles by the clock rate for 

each architecture. Each processor of the candidate architectures is compared individually 

with the rest of candidate processors. The last major column in the table shows whether 

the estimated relative performance of each pair of architectures matches their actual 

relative performance or not. A letter ‘y’ is used to indicate that “yes, the relative 

performance of this processor was classified correctly” and the shaded cells are used to 

indicate a wrong relative performance classification. In each row, each wrong 

classification case has unique number that associates it with the pair of measurements 

(subscripted by the same number) from which the relative performance is extracted.  For 

example, in the first row (for program number 1), the actual performance measurements 

show that AVR consumes more time than GS (2541>1331, or GS better than AVR), and 
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PPC consumes more time than PIC (7312>5932, or PIC better than PPC). However, the 

estimated performance wrongly indicates that AVR consumes less time than GS (AVR 

better than GS), and PPC consumes less time than PIC (PPC better than PIC). The rest of 

the relative performance estimations in this row are correct (y), i.e. the relative 

performance estimations matches the relative performance measurements. The AVR vs. 

GS case is numbered by ‘1’ and the PPC vs. PIC case is numbered by ‘2’. The associated 

performance measurements with these cases are subscripted by the same numbers so 

easily can be referred to for more analysis. In case of a performance measurement 

involved in more than one wrong case, this measurement is subscripted by the numbers 

of the wrong cases separated by a comma ‘,’. For example, in row number 25, the AVR 

performance measurement is involved in two wrong relative performance estimations (1: 

AVR vs. PPC, 2: AVR vs. PIC) so this measurement appears as “14,5931,2”. 

 

The table shows that the proposed performance modeling framework has been able to 

classify the performance of the candidate processors correctly for a major portion of the 

tested programs. There are a total of 322 relative performance comparisons and out of 

those, a total of 293 cases were predicted correctly. For example, the total correct 

estimations for comparing AVR vs. PIC is 26 out of 33, and for comparing PIC vs. MB  

is 25 out of 31. All other relative performance evaluations include only three or less 

misclassifications.  Moreover, analyzing the misclassified cases, it easily can be noticed 

that the performance measurements in most of these cases are close to each other for each 

pair of measurements. For example, in rows number six and seven, the two incorrect 
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cases are for comparing PIC vs. MB (4,143,2471 vs. 3,924,3001) and PPC vs. GS 

(84,8971 vs. 87,0321). In the first case, the actual performance difference is only 5.3% 

and in the second case it is only 2.5%. 

 

Table 5.11 is built based on the assumption that all of the target architectures run at the 

same cock rate, so the relative performance can be obtained directly by comparing the 

performance measurements (estimations) in number of cycles instead of converting them 

into units of time (μs). While this is not a realistic assumption even if the system clocks 

in these architectures are set (or configured) to run at the same clock rate, i.e., still the 

overall performance is subject to be governed by the other microarchitectural details such 

as memory speed; this theoretical assumption is introduced to see how accurate the 

framework is in case of targeting different architecture that run at the same clock rate. In 

this table, a total of 276 cases were predicted correctly out of 322 relative performance 

comparisons where for the most of the misclassified cases, it easily can be noticed that 

the performance measurements are close to each other for each pair of measurements. For 

example, in the worst case estimations when comparing AVR vs. GS (a total of 11 

misclassifications) and comparing PPC vs. PIC (a total of 8 misclassifications), only three 

cases out of these misclassifications (for each pair) are for a difference of larger than 20% 

in their performance (rows no. 11, 18, 22 for AVR vs. GS, and rows no. 18, 22, 23 for 

PPC vs. PIC).  
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Table 5.10. Relative Performance Analysis based on Time Comparison 
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1 2541 7312 1331 5932 9,283 -118 614 102 1,198 9,418 y 1 y y y 2 y y y y 
2 3,803,7031 3,615,1811 506,577 4,540,040 50,451,944 2,923,670 3,334,579 412,269 4,098,619 51,049,771 1 y y y y y y y y y 
3 7,680 1,069 527 13,118 10,494 7,062 1,079 385 13,216 11,965 y y y y y y y y y y 
4 176,8351 35,179 11,908 301,496 237,8311 188,399 20,556 6,303 301,014 181,731 y y y 1 y y y y y y 
5 15,148,616 2,376,776 1,265,868 29,569,6711 29,528,3041 13,857,927 2,712,142 1,360,292 27,530,818 41,954,374 y y y y y y y y y 1 
6 1,961,758 410,227 213,611 4,143,2471 3,924,3001 1,820,409 463,307 186,167 4,145,440 7,195,686 y y y y y y y y y 1 
7 443,949 84,8971 87,0321 888,083 1,011,192 468,609 88,900 61,281 968,880 1,276,974 y y y y 1 y y y y y 
8 5,9271 5,9671 783 12,575 82,516 9,416 5,046 807 18,857 73,113 1 y y y y y y y y y 
9 4,883,771 998,523 555,4841 * 10,502,3431 4,791,591 966,940 590,958 * 8,757,383 y y * y y * y * 1 * 

10 316,080 60,065 35,045 611,338 577,769 316,794 60,918 34,768 614,038 579,235 y y y y y y y y y y 
11 468,275 95,146 53,729 609,6501 706,1221 490,699 99,305 45,762 952,338 945,902 y y y y y y y y y 1 
12 2,027,499 399,338 236,727 4,055,786 3,861,338 2,048,114 374,881 218,546 4,411,736 3,533,240 y y y y y y y y y y 
13 332,176 72,746 40,378 700,153 599,496 352,538 68,070 44,019 699,140 571,479 y y y y y y y y y y 
14 314,843 59,553 34,819 610,160 576,118 313,889 60,465 34,571 607,000 575,834 y y y y y y y y y y 
15 4,198,653 751,265 411,862 7,948,6111 6,554,6491 4,131,789 793,522 446,377 5,824,003 7,437,226 y y y y y y y y y 1 
16 398,864 79,689 45,298 817,5191 766,8721 384,229 87,103 46,704 816,971 855,872 y y y y y y y y y 1 
17 979,528 216,878 109,1951 * 3,346,2841 1,022,054 195,280 134,614 * 1,843,900 y y * y y * y * 1 * 
18 184,3711 47,9502 49,1512 129,0281 463,251 197,680 34,885 17,165 395,135 410,473 y y 1 y 2 y y y y y 
19 3,9571,2,3 1,1091,4 1,5402,5 7,0356 9,1743,4,5,6 595 626 1,647 6,840 -4,875 1 2 y 3 y y 4 y 5 6 
20 22,0821 5,116 2,389 52,660 35,1411 24,721 6,648 2,460 44,602 22,646 y y y 1 y y y y y y 
21 31,881 30,732 3,980 11,517 484,545 63,043 34,842 5,106 32,808 438,050 y y y y y y y y y y 
22 7,800 5,179 680 23,338 50,982 5,355 5,234 1,097 5,741 45,796 y y y y y y y y y y 
23 3051 3781 85 746 4,020 673 328 80 1,295 5,283 1 y y y y y y y y y 
24 11,3391 8,4681 1,172 34,407 80,798 2,994 7,520 453 8,075 83,951 1 y y y y y y y y y 
25 14,5931,2 15,8701,3 2,027 13,6332,3 235,212 19,727 14,773 2,847 30,431 235,331 1 y 2 y y 3 y y y y 
26 3,968 2,971 357 10,333 31,319 5,610 3,183 336 8,066 33,479 y y y y y y y y y y 
27 11,925 8,387 1,139 35,490 89,341 13,099 8,989 1,150 24,478 92,903 y y y y y y y y y y 
28 6,8241 4,8711 652 18,773 47,852 4,785 4,851 610 4,949 44,200 1 y y y y y y y y y 
29 1,9101 1,969 250 7031 26,572 676 1,848 257 1,785 26,735 y y 1 y y y y y y y 
30 38,228 34,639 5,221 46,547 681,926 51,402 37,747 7,117 51,553 484,586 y y y y y y y y y y 
31 4,473 3,375 393 13,361 35,936 3,823 3,606 411 9,243 37,820 y y y y y y y y y y 
32 9,589 7,128 839 27,974 79,687 8,265 8,237 824 25,461 92,974 y y y y y y y y y y 
33 2,301 2,162 324 2,817 41,005 2,587 2,203 428 3,261 33,108 y y y y Y y y y y y 

Total Correct: 

26 
31 
28 
30 
31 
29 
32 
31 
30 
25 

Total Comparisons: 

33 
33 
31 
33 
33 
31 
33 
31 
33 
31 
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Table 5.11. Relative Performance Analysis based on Number of Cycles Comparison 

P
rogram
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True No. of Cycles (K Cycles) Estimated No. of Cycles (K Cycles) Correct Comparison 
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1 16 219 801 471 464 -8 184 61 96 471 y y y y y y y 1 y y
2 245,384 1,084,554 303,946 363,203 2,522,597 188,612 1,000,374 247,362 327,890 2,552,489 y y y y y y y y y y
3 495 321 316 1,049 525 456 324 231 1,057 598 y y y y y y y y y y
4 11,4081 10,554 7,145 24,120 11,8921 12,154 6,167 3,782 24,081 9,087 y y y 1 y y y y y y
5 977,268 713,033 759,521 2,365,574 1,476,415 894,003 813,643 816,175 2,202,465 2,097,719 y y y y y y y y y y
6 126,5571,2 123,0681,3 128,1672,3 331,4604 196,2154 117,438 138,992 111,700 331,635 359,784 1 2 y y 3 y y y y 4
7 28,640 25,469 52,2191 71,047 50,5601 30,231 26,670 36,768 77,510 63,849 y y y y y y y y 1 y
8 3821 1,790 4701 1,006 4,126 607 1,514 484 1,509 3,656 y 1 y y y y y y y y
9 315,062 299,557 333,2901 * 525,1171 309,115 290,082 354,575 * 437,869 y y * y y * y * 1 *

10 20,391 18,020 21,027 48,907 28,888 20,437 18,275 20,861 49,123 28,962 y y y y y y y y y y
11 30,2091 28,5442 32,2381,2 48,772 35,306 31,656 29,792 27,457 76,187 47,295 y 1 y y 2 y y y y y
12 130,7981 119,802 142,0361 324,463 193,067 132,128 112,464 131,128 352,939 176,662 y 1 y y y y y y y y
13 21,4291 21,8241 24,227 56,012 29,975 22,743 20,421 26,412 55,931 28,574 1 y y y y y y y y y
14 20,311 17,866 20,891 48,813 28,806 20,250 18,140 20,743 48,560 28,792 y y y y y y y y y y
15 270,8641 225,380 247,1171 635,889 327,732 266,550 238,057 267,826 465,920 371,861 y 1 y y y y y y y y
16 25,7321 23,9071 27,179 65,401 38,344 24,787 26,131 28,023 65,358 42,794 1 y y y y y y y y y
17 63,1911 65,0641 65,5172 * 167,3142 65,935 58,584 80,769 * 92,195 1 y * y y * y * 2 *
18 11,8941,2,3 14,3851,4,5 29,4912,4,6,7 10,3223,5,6,8 23,1637,8 12,753 10,466 10,299 31,611 20,524 1 2 3 y 4 5 y 6 7 8
19 2551 3332 924 563 4591,2 38 188 988 547 -244 y y y 1 y y 2 y y y
20 1,4251,2 1,5353 1,4331,4 4,213 1,7572,3,4 1,595 1,994 1,476 3,568 1,132 y 1 y 2 y y 3 y 4 y
21 2,0571 9,220 2,3881 921 24,227 4,067 10,452 3,064 2,625 21,902 y 1 y y y y y y y y
22 5031 1,5542 4081,3 1,8672,3 2,549 345 1,570 658 459 2,290 y 1 y y y 2 y 3 y y
23 20 1131 51 601 201 43 98 48 104 264 y y y y y 1 y y y y
24 7311 2,5402 7031 2,7532 4,040 193 2,256 272 646 4,198 y 1 y y y 2 y y y y
25 941 4,761 1,2161 1,0911 11,761 1,273 4,432 1,708 2,434 11,767 y y y y y y y 1 y y
26 256 891 214 827 1,566 362 955 202 645 1,674 y y y y y y y y y y
27 769 2,5161 683 2,8391 4,467 845 2,697 690 1,958 4,645 y y y y y 1 y y y y
28 4401 1,4612 3911 1,5022 2,393 309 1,455 366 396 2,210 y 1 y y y 2 y y y y
29 1231 591 150 561 1,329 44 554 154 143 1,337 y y 1 y y y y y y y
30 2,466 10,392 3,1321 3,7241 34,096 3,316 11,324 4,270 4,124 24,229 y y y y y y y 1 y y
31 289 1,0121 236 1,0691 1,797 247 1,082 247 739 1,891 y y y y y 1 y y y y
32 619 2,1391 504 2,2381 3,984 533 2,471 495 2,037 4,649 y y y y y 1 y y y y
33 148 649 195 225 2,050 167 661 257 261 1,655 y y y y y y y y y y

Total Correct: 

28 
22 
29 
30 
30 
23 
31 
26 
28 
29 

Total Comparisons: 

33 
33 
31 
33 
33 
31 
33 
31 
33 
31 
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5.2.4. Discussion 

 
The related research work presented in [42, 61] targets different processor architectures 

and different application domains. Hence, it is hard to have a direct comparison between 

such frameworks and the framework presented in this dissertation, especially in terms of 

the accuracy levels achieved by each framework. Moreover, in this research the 

functional statistics used to model the candidate processor architectures are obtained from 

a foreign architecture (the reference model) and a diverse set of application domains, 

while in those other research efforts, such statistics are obtained from native models (ISSs 

of the target architectures) for a consistent set domain of applications which in turn 

(native models and same applications domain) tend to have a better correlation between 

the functional statistics and the performance measurements, which produces inherently 

better accuracy. However, the proposed framework herein is considered to be 

significantly more practical than those frameworks for meeting the objective of this 

research considering the limited resources at early stages of design process and the need 

for a fast, flexible (easy to retarget), and high level performance modeling analysis 

technique. That is, the method used in this dissertation can be used to predict the 

performance of an application on any processor for which the appropriate benchmark 

data has been obtained using the reference model (Microblaze) without requiring this new 

application to be actually compiled and executed on the target processor. 
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5.3. Summary 

 

Different processor architectures tend to have different timing behaviors. Considering a 

certain architecture as a reference model, it is possible to extract relationships to correlate 

the functional statistics of the reference architecture to the performance of the target 

architectures. While each architecture can have its own relationship with the reference 

model, it is expected that different program parameters and regression methods are 

needed to model such relationships. In this chapter, it has been shown that different 

processor architectures with different ISAs have been able to be modeled using a 

reference architecture with reasonable and useful accuracy levels. 
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Chapter 6 Conclusions 
 

In this dissertation, the MicroBlaze/FPGA platform has been introduced as a reference 

model/real-time profiler to produce quantitative statistics for a given application. While it 

can be used to determine the dominant operations/functions that govern the target 

application, the proposed framework along with reference performance statistics on the 

target architectures have been used for mapping the performance of the reference model 

(MicroBlaze) to the candidate architectures. Developing the FPGA-based profiler to 

provide application-independent functional profiling was a major contribution to this 

framework in terms of it being retargetable to different processors and applications. 

 

Three of the five targeted architectures have reported mean absolutes errors ranging from 

around 10% to 20% on a set of thirty three programs. Even with the lower level of 

accuracy reported by the other architectures, the proposed framework has been able to 

predict the performance of these architectures relative to the others correctly for a major 

portion of the training set. While it is not a cycle accurate modeling technique, such an 

approach is considered very useful at the early design stages of embedded systems to 

assist in the selection of an appropriate algorithm/processor with a minimal knowledge of 

the application structure and processor architecture. 
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Chapter 7 Future Work 
 

In this dissertation, a new and novel performance modeling technique has been proposed. 

This framework can be subject to more efforts to explore its capabilities/limitations. 

Following are a set of points which can be considered for more research efforts: 

 

7.1. Different Statistical Analysis Approaches 

 

It would be quite interesting to implement different statistical analysis techniques (e.g. 

nonlinear regression, neural networks, etc) to explore how these modeling techniques 

perform for different architecture models. As of now, two linear regression methods have 

been used to validate the theoretical concept of the proposed framework on five different 

architectures. While different architectures have different relationships with the reference 

model, it is expected that different analytical models would give variant accuracy levels 

for each architecture. Moreover, more/different application parameters/events can be 

monitored to test their effectiveness on different performance models. Domain 

classification and automatic feature selection are among of the techniques that can be 

augmented with the framework proposed in this dissertation. In addition, the more 

programs/benchmarks used, the more better the validation is. 
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7.2. Multi-Core Processors 

 

Techniques for single processor evaluation can be tailored for the evaluation of 

multiprocessor architectures. While most of the work done to model the performance of 

single processors is considered in the context of performance evaluation rather than the 

processor selection (as an explicit goal), most multiprocessor evaluation proposals are 

focusing, in contrast, on the selection process as it is assumed that the performance of 

each single core has been already modeled. Hence, it would be worthy to use the 

framework developed in this research for decision support at a high-level of abstraction 

for multi-core processors. 

 

7.3. Power Estimation 

 

While power factor is a major concern in the design of embedded systems, a useful 

addition would be to extend the proposed framework to model the power consumption of 

different processor architectures. While this is quite a challenging task, it would be 

worthy to have a single framework to handle both performance and power modeling at 

with a minimum of resources. 
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7.4. Hardware/Software Codesign 

 

While the scope of this dissertation is to construct a framework to assist in selecting an 

appropriate processor for a certain application, the FPGA-based profiling technique 

developed for this purpose provides a new, flexible application profiling approach in 

which modifying the application code needs no (or minimal) changes to the FPGA 

configuration. That is, the technique developed herein that traces the function’s footprint 

is more flexible than previous techniques of tracing the function’s address. This new  

profiling mechanism can be used in hardware/software codesign to explore the 

computational intensive portions of the code and their impact on the execution time of the 

overall application. However, more analysis is needed to measure the FPGA limitations 

regarding the number functions/events that can be targeted in a single configuration. 
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