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Isogenic, or inbred, mouse strains are currently the experimental subjects of choice in 

laboratory studies focused on genetics, pharmacology, and psychological issues.  

Understanding phenotypic differences in isogenic strains is important in order to interpret 

experimental results obtained from inbred mouse strains.  Four commonly used inbred 

strains, C57BL/6NHsd (C57), DBA/2NHsd (DBA), 129S2/SvHsd (129), and Balb/cAnHsd 

(Balb/c), are investigated in this study using four different behavioral tasks that measure  



locomotor activity and cognitive behavior (Morris Water Maze (MWM), T-maze, and  

operant autoshaping procedures).  In the locomotor activity task 129 mice showed 

significantly less horizontal ambulation than any other strain, while differences in rearing 

was seen between all strains, with C57 mice producing the most, and 129 showing the least 

rearing.  Thigmotaxia was seen the most in the 129 strain, less so with the Balb/c and DBA 

strains, and the least in the C57 mice.  In the MWM learning across strains was noted but 

there was no difference between the strains.  In the T-maze the Balb/c strain showed the 

shortest latency to enter an arm, while the 129 strain showed the longest.  As expected they 

also showed the lowest accuracy and the highest percent time-outs compared to all the other 

strains.  In the autoshaping procedure little difference between the strains was observed.  

Balb/c mice trended graphically towards higher rates however there was no difference with 

regard to number of contingent responses or number per strain to reach a criterion of 10 or 

more contingent reinforcers.  Finally, locomotor activity was measured again at the end of 

the study.  The activity results were still similar, although the C57 strain showed a decrease 

in horizontal ambulation as compared to DBA and Balb/c strains; however, the 129 strain 

still showed the least activity.  These results indicate that there are significant differences in 

locomotor behavior and cognitive processes in these strains that should be considered when 

interpreting results from studies using these inbred mouse strains. 
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Behavioral Comparison of Four Inbred Strains of Mice 

 

Overview 

Now more than ever the scientific community is looking to the field of genetics to 

inform our inquiries into the human condition.  Predisposition to, treatment of, as well as 

ultimately the prevention of a variety of human disorders is being investigated through a 

genetic lens.  Cancers, mental disorders, autoimmune diseases, the obesity epidemic and its 

relatives, diabetes and heart disease, high cholesterol, high blood pressure, and geriatric 

issues such as Alzheimer‟s and osteoporosis, are merely a few issues currently considered to 

have some genetic basis (http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gnd).  Even a 

variety of non-disease conditions are being investigated genetically, such as personality 

(Benjamin, Ebstein & Belmaker, 2002), taste preference (Bachmanov et al, 2009), and 

sensory acuity (Vloeberghs et al, 2008).  Hence furthering the field from every possible angle 

is important. 

Behavioral studies can offer great information to the field of genetics.  Behavioral 

psychologists, pharmacologists, and geneticists are utilizing isogenic, or inbred, mouse 

strains to inform transitions between behavior and practical implications of diseases and 

disorders in humans.  Behavioral tasks such as the locomotor activity chamber and the 

Morris Water Maze (MWM) are standard in such research (Holmes et al, 2002; Crawley et 

al, 1997).  Tasks such as the T-maze and operant models have not been as commonly utilized 

with genetic objectives, though they also can and do provide valuable information about 

variations in mice strain behaviors.  Researchers in behavioral psychology/neuroscience have 

long depended upon these tasks and agree that they are useful tools due to their long-standing 

validity and reliability (Crawley et al, 1997). 
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Mice in particular are the species of choice for genetic research particularly due to 

their relatively fast procreation cycles, and they are able to be genetically manipulated in 

ways that far surpass other commonly utilized laboratory species (Bucan & Abel, 2002; 

Paigen & Eppig, 2000).  Quieting the “extra „noise‟” injected via genetic background 

variability allows researchers to focus on their true research inquiries without being 

concerned that genetic variance is obscuring results and therefore conclusions. 

The comprehensive objective for this project is to add resources to the ever-growing 

database concerning inbred mouse strain differences via behavioral phenotyping.  

Contributing to community knowledge in a way that strengthens the foundation for future 

research is of the utmost importance and is a primary goal of this research.   

Why the mouse? 

Mice have become the medium of choice for biomedical research for a variety of 

reasons (Knight & Abbott, 2002).  They are small, easy to handle, require few resources to 

house and feed, and their small size requires less drug as compared to species of more 

substantial size.  Mice procreate quickly and are able to be genetically manipulated in ways 

that far surpass other commonly utilized laboratory species (Bucan & Abel, 2002; Paigen & 

Eppig, 2000). The ability to create new and differing variations in the mouse is a powerful 

tool upon which researchers now greatly rely.  Isogenic, transgenic, knock-ins, knockouts, 

knock-ons, or –offs, are only a few of the current buzz words describing how scientists are 

manipulating the mouse genome in order to provide specific canvases that more accurately 

represent a disease or treatment model, and sometimes facets of both.  
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Why inbred strains of mice? 

Inbred, or isogenic, organisms are those that have essentially identical genetic 

compositions.  This characteristic is one that is applicable to monozygotic twins in a variety 

of species, even humans.  In species that procreate quickly breeders will often inbreed 

siblings, or in rodent nomenclature, littermates, continuously for a minimum of 20 

generations.  At this point approximately 98% of the genome between offspring is identical.  

Each successive generation that is bred becomes only more genetically alike (Festing & 

Altman, 2002). 

The availability of inbred species for research has major benefits.  Festing (2002) has 

dedicated a large part of his professional life to considering the various ways appropriate 

research preparation supports valid and responsible science.  He remarks that with regard to 

the “three R‟s” (Russell & Burch, 1959), using inbred subjects allows for the reduction in the 

number of subjects necessary (Festing & Altman, 2002).  This is due to the fact that a large 

amount of statistical variance in organism-based research is derived from lack of uniformity 

among phenotypes, as compared to isogenic samples.  Of course, Festing also takes into 

account that not all experimental “noise” results from individual genetic differences, and so 

appropriate, step-wise experimental design must play the primary role in reducing all types of 

variance.  Certainly issues such as environmental effects (e.g. shipping stress, interspecies 

aggression, lab, and tester conditions) are also noteworthy and should be equally prioritized 

in terms of minimizing variability.  The most direct way of controlling for genetic variability 

though, is to build mutations upon inbred genetic backgrounds (Crawley et al, 1997). 

Over time, as strain breeding has continued and genetic mapping has become 

commonplace, the identification of specific genes and alleles has grown into publicly 
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available libraries of data (Festing & Altman, 2002; Paigen & Eppig, 2000).  In fact, 

scientists can access and add onto these databases, while building research designs based on 

this information.  For example, a research group may decide to utilize a particular model with 

a particular strain of mouse because they know the strain has an excessive amount of a 

certain receptor that they are interested in studying.  Moreover, Waterson et al. (2002) note 

that having the entire mouse genome in hand will facilitate the genetic manipulation of mice 

strains by minimizing “unfortunate choices”.  Paigen and Eppig (2000) suggest that due to 

the lack of potentially protective herterozygosity isogenic mice are prone to extreme 

phenotypic variation, which is also of particular interest to some researchers.   

Blake et al. (2001) present the Mouse Genome Database (MGD), though it has 

actually been publically available since 1994.  They describe it as “a community database 

resource for the laboratory mouse… (providing) standard nomenclature and consensus map 

position for mouse genes and genetic markers...”  Paigen and Eppig summarize the growth of 

another useful database concerned with the mice strains: “The Mouse Phenome Project” in 

which one can find physiological, anatomical, and metabolic characterizations, susceptibility 

to various diseases, behavioral traits, and gene arrays (2000).  Originating in 1999, like the 

MGD, this project is housed at Jackson Laboratory and is connected to the MGD to ease 

accessibility.  Also known as the Mouse Phenome Database (MPD), the website started in 

2001 and with contributions from over 200 researchers and data being pulled from public 

sources for 36 priority strains, data from February 2009 states the site experiences over 

58,000 hits per month (MPD, http://www.jax.org/phenome).  Crawley et al. (1997) were 

already indicating the need for this in a review article wherein they describe strain 

differences across a variety of behavioral tasks and drug-induced behaviors.  “A 

http://www.jax.org/phenome
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comprehensive database on behavioral phenotypes of inbred strains of mice would provide 

the information needed by molecular geneticists to make the optimal choice of parental 

strains and breeding strategies for the expected phenotype of each targeted mutation, and to 

interpret the results appropriately.” 

Rats are known to make higher frequency vocal calls under the influence of 

rewarding stimuli (drugs of abuse and electrical brain stimulation), and lower frequency calls 

during aversive stimuli (lithium chloride and footshock; Burgdorf et al, 2007). In this case 

the higher frequency calls are associated with “positive activation” (Knutson et al, 2002) or a 

more “positive emotional state” (Burgdorf et al., 2007).  In a study undertaken by Burgdorf et 

al. (2009) rats were bred to selectively exhibit either high or low rates of this particularly 

high frequency call.  These authors note that measure is considered related to the “social-

emotionality” of the animals‟ states.  Animals that expressed more of the higher frequency 

calls also showed greater center zone activity in an open-field test, lower social aggression, 

and greater preference for a sucrose solution than those subjects that had a lower expression 

of these high frequency calls.  Interestingly, fecal boli count was higher in low frequency call 

emitters in several tasks than it was in the higher frequency call emitters.  These authors 

consider this measure to be associated with a higher anxiety-like state, or some refer to this 

as an “emotional” state, as is similar to the interpretation by authors of many other studies 

(Bindra & Thompson, 1952; Borelli et al, 2004; Crawley et al, 1997; Fulk et al, 2004; Hall, 

1934, 1936; Walsh & Cummins, 1976; Whimbey & Denenberg, 1967).  Whimbey and 

Denenberg (1967) found defecation to be a valid measure of subject emotionality via factor 

analysis, or “emotional reactivity” as is the phrase used by Denenberg in a 1969 article.  

Finally, speaking to predictive validity, Borelli et al. (2004) noted a reduction in the rate of 
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defecation in rats treated with chronic fluoxetine, a serotonin-reuptake inhibitor class of 

antidepressant, and diazepam, a benzodiazepine derivative that acts to increase GABA 

activity, as compared to saline-treated subjects.  These two compounds are known to 

successfully treat symptoms in human subjects related to depression, obsessive-compulsive 

disorder, anxiety-related states, among others 

(http://www.nlm.nih.gov/medlineplus/druginformation.html). 

While the following study was published after the MGD but before the MPD, it 

shows clearly what strides can be made when genetic quantitative trait analyses and 

behavioral tests are combined.  Flint et al. (1995) investigated three behavioral tests (open 

field locomotion including a fecal boli measure, elevated plus maze, and y-maze) that have 

often been used as preclinical assays in mice to assess changes in emotionality-like behaviors 

and reactivity in novel environments and they also conducted a number of genetic tests to 

locate quantitative trait loci (QTL).  They found that the open field activity was heavily 

influenced by a three loci in the mouse genome, and that these loci also were very active in 

defecation as well as y-maze activity.  Two of these loci were also correlated with entry into 

the open arms of the elevated plus maze, which is used an indicator of heightened 

emotionality-like behavior.  The authors concluded, “The nature of these genes is unknown, 

but the discovery of QTLs determining emotionality in the mouse provides the first step 

toward their molecular characterization and may lead to the identification of genes 

responsible for human susceptibility to anxiety.” This hopeful statement clearly indicates that 

even fifteen years ago researchers understood that it would take a combination of both 

genomic interest and behavioral research (in addition to many other fields) in order for 

scientists to realize the “macro-power” of current technologies. 
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How are inbred strains most often used? 

 Most often inbred mouse strains are used as a background genetic foundation for 

various types of genomic mutations, such as transgenics (those strains in which genes are 

added) or knockouts (those strains that have particular genes or groups of genes inhibited; 

their activity diminished or stopped completely). Therefore, the behavior observed in the 

resultant strains is not only from the mutation, but also it is some product of the background 

inbred genetics with the mutant genomic characteristics (Gerlai, 1996).  These strains, inbred 

and beyond, are often utilized to investigate physical and psychiatric disorders in humans, 

such as addiction (Jackson et al, 2009).  By isolating genes that increase (up-regulate), 

decrease (down-regulate), or nullify (knock-out) certain receptors or receptor groups in either 

the CNS and/or PNS, researchers have been able to create very specialized mouse strains that 

emulate diseases or symptomologies.  Not only is the treatment of the resultant phenotype of 

interest, but it is also intriguing to see how the initial manipulations actually produce the 

changes in the strains.  Clues to how humans develop disorders are discovered this way. 

 Studying the genetic contributions to nicotine addiction, Jackson et al. (2009) focused 

on C57BL/6 and DBA/2 mouse strains when investigating the effects of acute and chronic 

nicotine.  They found that C57BL/6 mice tend to be more sensitive to the acute 

administration of nicotine, while DBA/2 mice are more sensitive to the blockade of nicotinic 

effects in pain-related models.  Dobelis et al. (2002) note that variation in the neuronal α4-

nicotinic receptor subunit cannot merely be the result of normal receptor expression 

variation, but rather that an amino-acid related polymorphism of the subunit is more likely 

responsible.  In the Jackson et al. (2009) study they found greater reward induced via 

nicotine administration in C57BL/6 but not DBA/2 mice.  They attribute the differences 
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between these two strains genetically, finding the CHRNA 4 locus modulating the 

differential sensitivities to nicotine administration seen between C57BL/6 and DBA/2 strain 

on behavioral assays.  

 Historically the C57BL/6 inbred strain, specifically the substrain maintained at the 

Jackson Laboratory since 1948, C57BL/6J, have been shown to have a high alcohol 

preference (Rodgers & McClearn, 1962) and consume the greatest amounts of alcohol 

compared to other inbred strains (Belknap et al, 1993b).  [This substrain also consumes the 

most morphine compared to fourteen other strains (Belknap et al, 1993a).] Due to the slight 

(1-2%) genetic variation between the two substrains, Mulligan et al. (2008) compared the 

Jackson Laboratory substrain to a comparable substrain, C57BL/6C maintained by Charles 

River Laboratory.  These two substrains show variable phenotypic characteristics, and in this 

study genetic expression from different parts of the brain were analyzed in alcohol naïve 

mice.  C57BL/6C male and female mice showed lower ethanol consumption as well as 

preference than C57BL/6J mice, though no difference in sensitivity to alcohol, or taste 

acuity, was observed.  These researchers identified 29 differentially expressed genes 

associated with increased preference for alcohol and consumption, and 22 of these were 

associated with enhanced expression in the C57BL/6J substrain as compared to the 

C57BL/6C substrain.  The authors conclude with cautionary advice to those who would use 

either of these two substrains in future studies not only ethanol-related, but those that may 

have anything to do with the methods they used herein.  If one were not to know the 

difference in the phenotypic tendencies of these substrains perhaps they may mistakenly 

assume similar behavior profiles, and genetic expression.  Indeed this study illustrates why 
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and how identifying baseline difference in inbred mouse strains and substrains is of the 

utmost importance. 

In mice the serotonin transporter (SERT) can be nullified via mutation producing 

anxiety-like behaviors that researchers link to stress-related psychiatric disorders in humans 

(Holmes et al, 2003b).  In a follow-up study it was found that by backcrossing the SERT 

mutant mice with two different inbred strains there was a large influence of the isogenic 

strain‟s genetic background on the exploratory and anxiety-like behavior exhibited on the 

original mutant strain.   The authors concluded that it is important for researchers to choose 

the appropriate background strain, and that behavioral phenotyping mutant mice on various 

genetic backgrounds is a strong tool for this type of investigation (Holmes et al., 2003a).  

Another example is if the final results of a cognitive procedure indicate that a transgenic 

mouse has learning deficits then it is necessary that the background inbred strain be known to 

have no such deficit.  The opposite is also true: if the mutation seems to increase cognition 

then it is imperative to know that the original isogenic strain has either moderate or poor 

learning (Owen et al, 1997). 

Not all studies show such impressive differences between conditions, though.  For 

instance, Paylor et al. (1998) attempted to show that because the α7 nicotinic acetylcholine 

receptor (nAChR) is so heavily expressed in the part of the brain that seems to have much 

influence on learning and memory, a significant deficiency at these receptors would 

negatively affect the processes of learning and memory.  Interestingly, these mutant mice 

performed the same as their wild-type littermates when tested for learning on a conditioned 

fear test, as well as when tested for spatial learning in a water maze.  There was conflicting 

evidence of decreased anxiety in the literature, but overall this is an example of how there 
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should no expectation that manipulation of genetics will overtly and clearly influence 

behavior.   

Why is it important to note baseline strain differences? 

 A combination of approaches is necessary to fully describe and therefore 

appropriately comprehend the impact of the genomic make-up of an organism (Bucan & 

Abel, 2002).  The present work is focused on one such approach, the behavioral 

consequences of genetic background.  Anatomical, molecular, cellular, physiological, and 

electrophysiological tests are all methods in conjunction with behavior that are necessary to 

provide the most comprehensive perspective to researchers. 

When specialized isogenic strains are utilized in behavioral research it is imperative 

that there exist a reliable understanding of differences, and just as importantly similarities, in 

behavioral phenotypes.  Interpretation of study results is complicated in its simplest form, 

and this only grows in complexity when individual differences are exponentially enlarged by 

genetic strain differences.   False-positives and false-negatives could easily be conclusions if 

there is a lack of understanding about the impact of genetic background phenotypes (Holmes 

et al, 2002).  Another example is that it is now known that the best background strain choice 

if there is a predicted decrease in activity (or increased reactivity) from a mutation is a highly 

active background strain (Crawley et al., 1997).  The opposite is also true: a low-level 

locomotor background strain is the best decision when an increase in activity (or decrease in 

anxiety) is expected from a mutation. 

Gerlai (1996) investigated a novel procedure using the T-maze designed to minimize 

various weaknesses with the traditional procedures.  In it he compared tested CD1 strain 

derived transgenic substrains, S100β-5 (5 copies of the transgene) and S100β-8 (70 copies of 
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the transgene), against their littermate controls.  These substrains overexpress a Ca2+-

binding protein, show hippocampal impairment, and reduced long term potentiation (LTP) 

which is considered to play a role in relational learning (Gerlai et al., 1995).  Results showed 

the CD1 controls spontaneously alternate significantly more than either of the transgenic 

strains, and the S100β-5 mice did so significantly more than the S100β-8 mice.  It is 

quantitatively clear that the hippocampal dysfunction resulting from Ca2+-binding protein 

overexpression reduces performance in this task.  Next C57BL/6, 129/Sv, and DBA/2 inbred 

strains were compared to a wild type strain, CD1.  While the CD1 and C57BL/6 strains 

performed comparably, they did so significantly better than the 129/Sv and DAB/2 strains.  

The author specifically noted that the 129 substrain “showed accelerated hypoactivity which 

manifested as a quick decline of activity in the open field and T-maze.”  Due to the fact that a 

large number of null mutants are derived from 129 strain embryonic stem cell chimeras 

crossed with a C57BL/6 or CD1 strain these particular phenotypes can create serious 

situations regarding experimental result interpretation where hippocampal function is being 

investigated. 

Fowler et al. (2001) studied the differences in three strains of mice in part to “begin to 

lay the foundation for laboratory studies on the genetic influences on vulnerability to drug 

motor side effects.” They measured disk-pressing in the outbred CD-1 and inbred Balb/c and 

C57BL/6 strains, as well as duration in the reward hopper as a measure of microcatelepsy, 

which is considered a measure of extrapyramidal side effects (EPS) or the Parkinsonian 

liability of certain antipsychotic drugs (APDs). First, at baseline disk-pressing rate was 

lowest in the C57BL/6 mice as compared to both other strains, and the outbred CD-1 strain 

had the shortest hopper duration.  Next, they conducted a dose curve of 0.08 mg/kg – 1.28 
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mg/kg haloperidol, which is a typical, first generation APD.  The drug treatment significantly 

affected both dependent measures.  Disk-press rate was dose-dependently reduced and 

hopper duration increased with dose in all strains.  C57BL/6 mice showed the greatest 

sensitization to haloperidol‟s cataleptic effects.  The researchers were able to partially 

antagonize haloperidol‟s effects by administering the muscarinic anticholinergic 

trihexiphenidyl.  Here they found an increase in disk-pressing rates as compared to 

haloperidol alone, and CD-1 mice were particularly affected.  For all three strains there was a 

decrease in hopper duration.  A final conclusion was that C57BL/6 mice exhibit a decreased 

operant rate that is “a genuine, genetically based behavioral trait,” but that when the measure 

was of a grosser movement, such as the hopper duration, these mice performed similarly to 

the Balb/c strain.  The authors note that as compared to previous sensitivity studies with 

haloperidol in Sprague-Dawley rats (Fowler & Liou, 1998), the three strains of mice used 

here were relatively resistant to the drug‟s effects.  This particular study illustrates how 

important it is to identify baseline behavioral differences in isogenic strains of mice.  Had the 

authors not initially identified the pre-drug differential behaviors in the two dependent 

measures, they could have incorrectly interpreted the data.  With that information, they were 

able to produce a more thorough explanation of the overall study results.  Without research 

on baseline behavioral differences scientists cannot know if the performances they are 

observing are results of a) the actual conditions they are imposing (e.g. drug treatment, 

genetic influence, procedural differences), b) genetic background variance, or c) any 

combination of other uncontrolled experimental variabilities (e.g. observer/handler 

interference, inaccurate reporting, automated dysfunction).   
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Currently few if any scientists believe that a trait as complex and specific as behavior 

will be explained completely through the identification of regulatory genes (Bucan & Abel, 

2002).  While many continue to address the phenotypic variations across genetic mutants 

(Morice et al., 2004), possessing a (more) complete map of behavioral differences in the wild 

type strains is also of value. 

What research has been done on baseline behavioral differences in inbred strains of 

mice? 

Many research groups have already begun to address behavioral differences between 

these mice with inbred genotypes.  For instance Holmes et al. (2002) compared three species, 

C57BL/6J, 129S6, and DBA/2J across a variety of behavioral tasks, including light/dark 

exploration, elevated plus maze, social transmission of food preference task, trace fear 

conditioning, open-field activity, Morris water maze, and Barnes maze.   In the open-field 

activity chamber they found that C57s were more horizontally active than DBAs, which were 

more active than 129s.  While C57s and DBAs produced the same levels of rearing, the 129s 

were less active than both.  Finally, C57s spent much more time in the center of the chamber 

than did either other strain, which did not differ from one another.  In the Morris water maze 

they discovered that for six dependent measures there were very few strain differences.  The 

only exceptions were slight fluctuations between strains across days in the measures of 

thigmotaxia and latency to find the platform. 

In another study, Wright et al. (2008) examined differences in performance in the 

Morris water maze by four strains of mice: two transgenic, one inbred, and one outbred 

(wild-type) strain.  One of the transgenic strains was the p75 knockout mice which has a 

disturbed nerve growth factor (NGF)-binding region. Because p75 neurotropin receptors 
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cause neuronal death, diminished activity of this receptor could potentially protect against 

cell death, resulting in improved cognitive processing.  The other transgenic strain was the 

New Zealand Black (NZB) mouse, which has been used as a model of developmental 

learning disability, compared to developmental dyslexia (Sherman et al, 1985) and dementia 

in humans (Spencer et al, 1986).  This is thought to be due to 40-60% of the animals 

presenting with neocortical ectopias (Boehm et al, 1996).  Various studies have reported 

differential conclusions concerning any effect on performance in a variety of behavioral tasks 

(Balogh et al, 2000; Hyde et al, 2000; Wright et al, 2004).  The inbred strain used was the 

C57BL/6 mouse, and the outbred strain was the Swiss Webster mouse.  During the 

acquisition phase, mean latency to find the platform when it was hidden showed that over the 

course of six days the NZB and C57 strains were the quickest and did not differ from one 

another.  The Swiss Webster strain showed decreased latency over days; however they were 

slower than the other strains.  Interestingly the p75 mice never learned the task; thus, they 

showed no decrease in latency to platform throughout the task‟s six days.  For distance swam 

to the platform, again NZB and C57 mice had the shortest distances, and across days these 

distances decreased slightly.  The Swiss Webster mice swam longer distances than the first 

two strains, with very little decrease in length over time.  The p75 transgenic strain swam the 

longest distance and showed no decrease across acquisition days.  It is interesting to note that 

swim speed for each strain remained constant; there was no effect of trial day on this 

measure.  Also, C57 mice swam significantly slower on each day than all other strains.  

Wright et al. (2004) determined that these data for the NZB strain were not outside 

expectations; however, the p75 data were surprising given the original hypothesis.  
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Apparently the NGF disturbance created some interference with performance on this spatial 

memory task.  

What do behavioral tasks tell us? 

Locomotor Activity Chamber  

 The locomotor activity chamber, sometimes referred to as open-field, exploratory, 

spontaneous locomotion, etc., is one of the oldest behavioral task, the most commonly used, 

and  has been the simplest way to measure changes in emotional-like behavior in rodents 

(Crawley et al., 1997).  A square field, historically it was open to an observer, but today it is 

automated and utilizes photocell or infrared beams to create a grid on the floor.  Breaks in the 

beams constitute movement which is generally categorized as either horizontal ambulation or 

vertical rearing.  Occasionally a researcher is interested in stereotyped behavior, which is a 

repetitive set of movements often seen with the administration of certain types of 

compounds.  The area is often broken into different zones to discern whether a subject spends 

more time in a certain area than others.  The most commonly noted example of this is 

thigmotaxia, where a subject spends the majority of the trial time nearer to the walls of the 

chamber versus the center zone.  This is thought to express heightened anxiety or emotional 

reactivity.  

Another useful dependent measure is fecal boli, or rate of defecation.  In 1934, Calvin 

S. Hall wrote “Emotional Behavior in the Rat” in which he discussed various arguments 

supporting the use of defecation and urination as reliable measures of emotionality in rats.  

Increases in thigmotaxia, decreases in both vertical and horizontal movements, and increases 

in defecation and urination are signs of heightened anxiety-like in an open-field situation.  A 

decrease in elimination over time is referred to as “emotional elimination” by Hall, as noted 
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by Bindra & Thompson (1952), and this phenomenon is differentiated from the random, 

normal processes of defecation and urination in rodents.  In fact low activity and high 

defecation are genetically correlated, and this cannot be linked via physiological tract.  While 

defecation is an autonomic process, activity is modulated via the somatic (voluntary) nervous 

system (Flint et al, 1995).  Increasing light concentration in this task is another mechanism 

for increasing stress (Holmes et al, 2002). 

Locomotor activity chamber tasks are often used in studies measuring anxiety-like 

behaviors.  These constructs may map onto human predisposition for anxiety or neuroses 

(Flint et al, 1995).  This task also has the power to provide information about the actual 

physical capacity of an organism, such as mobility, olfactory and visual acuity.  These data 

can support disproving false-negatives and false-positives where an underlying locomotive 

issue is interfering with other tasks (Holmes et al, 1997). 

To efficiently investigate strain comparisons across various dependent measures the 

MPD allows specific study data to be downloaded in various formats.  Golani et al. (2003) 

compared eight strains of mice on 33 different measures from a 30-minute open field 

locomotor activity test.  C57 mice had the highest activity rate, 129s and DBAs were lower 

but similar to one another, and Balb/c‟s had the lowest activity rate.  When quantifying the 

proportion of time “spent away from the wall,” again C57s spent the most time away from 

the wall, then 129s and DBAs spent less time away but were similar to one another, and then 

Balb/c‟s spent the most time near the wall.  This data is in agreement with a review by 

Crawley et al. (1997) where they note that generally C57s exhibit low levels of anxiety-

related measures in conjunction with high ambulation as compared to other strains.  DBAs 

tend to perform moderately, and Balb/c‟s tend to perform poorly, indicating high levels of 
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reactivity.  Please see Table 1 for a summary of the literature concerning strain differences in 

performance on this task. 

Morris Water Maze (Spatial Learning: Non-Food Motivated) 

The Morris water maze (Morris, 1981) is a measure of spatial learning and memory.  

Because rodents do not care for swimming, this task has the benefit of being a non-food 

motivated task, which allows the subjects to remain on free feeding as opposed to being kept 

at a certain percentage of their free feeding body weight. Generally the apparatus used in this 

model is a large circular tub filled partly with water.  The water is often kept a little colder 

than room temperature in an effort to increase motivation to escape the water.  The mice can 

do this by locating an “invisible” platform that is approximately 1 cm below the water.  

Current systems often employ video imaging connected to an automated computer system 

that tracks the subjects‟ swim paths, latencies to platform, swim speeds, and thigmotaxia.  

Visual cues are placed around the tub to facilitate spatial recognition and learning.  Often at 

the end of this task a cued trial will be instituted where the platform will be visually 

identifiable by some sort of marker or flag.  This tests the subjects‟ visual acuity to determine 

whether acquisition performance was hindered by poor eyesight.  This particular task is 

particularly useful when addressing abnormalities in hippocampal or cortical functioning, as 

performance in this assay is disrupted. 

Upchurch and Wehner (1988) were particularly interested in the poor eyesight 

commonly found in albino species and strains.  Therefore they used the Morris water maze 

task to compare two albino strains, Balb/c and C3H/2, to test optical capabilities.  They also 

tested C57BL/6I and DBA strains which are not known to have visual deficits.  Trials with a 

visual cue as well as trials with a hidden platform were conducted in a between subjects 
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Table 1. 

Locomotor Activity Literature Review Table. 

 

1
Baron and Meltzer, 2002; 

2
Gerlai, 1998; 

3
Holmes et al., 2002; 

4
Isles et al., 2004; 

5
Johnson, Pesak, 

and Newland, 2009; 
6
McKerchar et al., 2005 (actometer); 

7
Nikulina, Skrinskaya & Popova, 1991; 

8
Voikar et al., 2001  

 

 



 

 19 

 design.  For the cued procedure, neither of the albino strains was able to acquire the task, 

while both the C57BL/6 and DBA mice showed decreases in latency to find the platform 

over trials.  As expected, the more difficult hidden platform task proved to also be only 

acquirable by the latter two strains, though the DBA strain did more poorly than they did for 

they did visible platform task.  To further investigate the genetic predisposition to ocular 

deficits, the authors tested the acquisition of the visible platform task in littermate albino and 

pigmented mice from segregating generations.  Though there was no difference in 

performance between the groups during the first six trials, the pigmented group did perform 

better on the last twelve trials than the albino mice.  These data support the authors‟ 

conclusion that indeed the poor eyesight most likely contributed to the albino groups‟ poor 

performance in the task.  Also, they found that over the course of all the trials with the 

invisible platform C57BL/6 mice did better than the DBA strain, but only in the last two 

blocks of six trials. 

In an effort to compare multiple inbred strains to determine suitability for transgenic 

background strain breeding, Brooks et al. (2005) investigated various behavioral tasks, 

including the Morris water maze.  They implemented a shortened version of the task in which 

7-paired trials were run in a single day.  They found low to moderate performance in 129, 

C57 and DBA strains on the latency to platform measure, and interestingly saw a 

significantly longer latency for the Balb/c‟s on the last two pairs of trials.  With regard to 

distance traveled, all four strains exhibited decreased path length over the course of the day, 

though to a lesser degree for the DBAs.  For the visible platform task the C57 strain had a 

much shorter mean time to platform than all other strains.  The authors noted that during this 

last task the Balb/c‟s had significantly slower swim speeds than the DBAs. 
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 In a study comparing many strains, but particularly C57BL/6J, DBA/2J, 129/SvJ, and 

Balb/cByJ (the main noted behavioral difference between this strain and the Balb/c used in 

the proposed research is “better reproductive performance and less aggression” in the 

Balb/cByJ; Jackson Laboratories, 2009), Owen et al. (1997) address differential performance 

in the Morris water maze.  The procedure lasted for three days, and each subject experienced 

four blocks of three trials per day.  All strains showed significant decreases in latency to 

escape over the course of the 36 trials, and the Balb/cByJ strain was one of two albino strains 

(out of six total albino strains) that actually showed significantly decreased latency.  All 

strains also showed significant decreases in latency to platform when a visual cue was placed 

on it.  This cued trial lasted for two days, where each day had twelve trials per day.   

 Please see Table 2 for a review of the literature from this task. 

T-Maze (Spatial Learning: Food Motivated) 

The T-maze is a very simple maze that has three arms and resembles a “T” shape.  One of the 

arms, possibly longer than the other two but not always, is the „entry‟ arm and is the starting 

point for the subject.  The other two arms are the „choice‟ arms and one is always baited with 

some palatable food reward, eg. sucrose or grain pellet, or fruit look cereal piece.  Generally 

there is at least one gate at the starting point that is opened when the timing begins.  There 

may also be gates on the choice arms to retain the subject once it has chosen an arm to enter.  

This model may be automated or be manipulated by an observer.  There are many options 

with regard to procedure.  One example is match-to-sample where the first trial has one 

choice arm baited and the subject must return to that specific arm to achieve subsequent food 

rewards.  Another procedural example is a switch paradigm, or non-match-to-sample (or 

position).  Here, after the first trial where a single arm is baited, the subject must choose the  
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Table 2. 

Morris Water Maze Literature Review Table. 

 

1
Holmes et al., 2002; 

2
Nguyen et al., 2000; 

3
Owen et al., 1997; 

4
Schimanski & Nguyen, 

2004; 
5
Voikar et al., 2001; 

6
Upchurch & Wehner, 1988 

  

All studies noted latency reduction to the hidden platform location in all strains.  All studies 

showed all tested strains acquired the location of the visible platform.  Holmes et al. (2002) 

and Owen et al. (1997) observed that all strains showed reduced latency to the visible 

platform over trials. Holmes et al. (2002) noted no differences in swim speed, latency to 

hidden or latency to visible platforms between the strains tested (C57, DBA/2, and 129S).  

Nguyen et al. (2000) found no difference between strains (C57, DBA/2, and 129S) in latency 

to visible platform. 
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other arm in order to get the reinforcer.  Every time the subject gets the reward the next trial 

has the opposite arm baited.  If the subject fails to choose the correct arm the reinforcer  

remains in the originally baited arm until it either chooses correctly or fails the trial.  At times 

a researcher will institute a reversal task where the subject must respond to the reward being 

in the arm opposite to what it had been trained to up to that point.  Delays may also be put in 

place between the initial „forced‟ trial and the subsequent „retention‟ trials to study working 

memory (Baddeley & Hitch, 1974). 

This task is generally considered a spatial learning and memory test, however it is 

used for other constructs.  Some scientists utilize the T-maze to deduce tendencies toward 

routine rigidity or away from flexibility to change, which may inform inquires related to 

autism and related disorders, or to detect for learning deficiencies which may speak to mental 

retardation (Crawley, 2007).  Common dependent measures are latency to choose an arm, 

latency to eat the reinforcer, accuracy of arm choice, time to re-learn a reversal task, and 

latency to acquire procedure. 

In this lab the T-maze has been used with a delayed alternation procedure by Pehrson 

for his dissertation research (2007).  He was investigated the effects of early post-natal PCP 

administration and time delays (3-100 seconds) on reference memory in both male and 

female C57BL/6 mice.  No differences in acquisition between PCP-treated and –untreated 

mice, regardless of sex were observed.  Once the delay response curve was conducted a 

discrepancy became apparent between drug and saline groups.  Male PCP-treated subjects 

had lower accuracy scores as compared to saline-treated males.  Also, there was a 

significantly lower accuracy at a 100-second delay as compared to the 3-second delay.  There 

was no change in choice latency across treatment groups; however, there were reductions in 
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choice latency at the 30- and 100-second delay points.  There was no effect of PCP treatment 

or delay on latency to eat the reinforcer.   

In the female mice there was no effect of PCP treatment on accuracy throughout the 

delay response curve.  Like the males, though, there was a significant decrease in accuracy 

from the 3-second delay to the 100-second delay.  There was no effect of PCP or saline 

treatment on the females with regard to choice latencies; however again, as in the males, 

there was a significant decrease in latency to arm choice at 30- and 100-second delays.  

Finally, there was no effect of delay or treatment condition on latency to eat the reward.   

Pehrson also administered a PCP challenge where subjects that met criteria during 

acquisition and delay portions of the task were administered 1.0, 3.0, or 10.0 mg/kg PCP 

fifteen minutes before being tested in the T-maze.  In the males there was an effect of 

treatment group on accuracy in which the saline group performed better than the PCP group.  

The highest dose of PCP also reduced accuracy, increased arm choice latency, and latency to 

eat regardless of treatment group.  In the female mice both PCP- and saline-treated groups 

had reduced accuracy at the 10.0 mg/kg PCP challenge dose.  There was no effect on arm 

choice latency in the female mice regardless of PCP dose.  Regardless of treatment group, 

latency to eat in the females at the 10.0 mg/kg PCP dose was increased, though. 

Pehrson concluded that the only unexpected difference seen in these results was the 

sex discrepancy where the accuracy of female mice was not significantly negatively affected 

by the early postnatal PCP-administration, as it was in the male PCP-treated mice.  Pehrson 

posited this was potentially a result in decreases in processes related to task performance, 

such as attention. 
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In a study comparing OF-1Swiss outbred female mice, Guaryerbas et al. (2002) 

examined the relationship between the experience of emotional stress and 

immunosenescence, the aging of the immune system.  First the mice were run through a T-

maze for fifteen days and then divided into two groups.  Those that ran the maze quickly 

(less than 20 seconds) were referred to as “fast mice,” while those that ran it slowly (greater 

than 20 seconds) were referred to as “slow mice.” These two groups were tested on a simple 

tightrope task to measure neuromuscular coordination and vigor.  Fast mice performed better 

on the tightrope task than the slow mice, and they maintained better coordination throughout 

their lives than the slow mice.  Survival analyses showed that fast mice lived significantly 

longer than slow mice, and the slow mice had less healthy immune systems than the fast 

mice.  Finally, fast mice were significantly heavier than slow mice throughout their lives.  

The authors suggest that the connection between performance in the T-maze and the 

immunosenescence is a degradation of neurotransmission processes.  What is of particular 

interest in this study is that the T-maze procedure was utilized as a mechanism for 

categorizing the subjects before the main dependent measures were recorded.  Thus, this 

assay can serve a variety of purposes, not merely to measure spatial learning and memory, 

and cognition.  Please see Table 3 for a review of the literature for this task. 

Patil et al. (2009) note than a combination of mazes for research into spatial and non-

spatial constructs is particularly important when using the MWM.  The stress induced in this 

task due to the adverse affects of swimming in mice is such that it could interfere with the 

exact cognitive properties being targeted for experimentation.  Adding in the T-maze allows 

for another angle, not only in reduction of physical stress, but also a different motivation  
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Table 3. 

T- Maze Literature Review Table. 

 

1
Gerlai, 1998 

 

Gerlai (1998) used a different procedure using the T-maze structure, referred to as T-Cat.  

This modification allows for minimal subject handling by manipulating movement with the 

doors versus manual handling.  It is said to measure “curiosity.” There was no difference 

between the three strains in the time to reach 5 trials (locomotion).  
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(food-motivated versus non-food-motivated task) and different cues (internal, directional 

cues versus distal visual cues). 

Autoshaping Operant Procedure 

 In behavioral research the interest in the autoshaping component of operant 

conditioning is most commonly thought to have started with B. F. Skinner and his colleagues 

during the middle of the 20
th

 century.  As operant conditioning became a foundation of 

behavioralism‟s interests, along with it came inquiries related to other conditioning 

arrangements, such as superstitious conditioning (Brown & Jenkins, 1968; Skinner, 1948).  

Autoshaping is a term used to describe the manner in which a research subject acquires an 

operant task, or the emergence of said behavior.  The origin of autoshaping behavior research 

began primarily with pigeons (Brown & Jenkins, 1968), and there have also been studies 

using monkeys (Gamzu & Schwam, 1974; Sidman & Fletcher, 1968), rats (Atnip, 1977; 

Bankart et al., 1974; Boakes, Halliday, & Poli, 1975; Coveney & Sparber, 1981; Kearns & 

Weiss, 2007; Mundy & Iwamoto, 1986; Rodriguez et al, 2007), fish (Cole & Adamo, 2005), 

and mice (Baron & Meltzer, 2001; Goodrick, 1967; McKerchar et al., 2005a; O‟Connell, 

1980; Vanover & Barrett, 1998).  Other studies have focused on the effects of lesions and 

various compounds on various species‟ autoshaping behavior (Mitchell, 1983; Oscos, 

Martinez, & McGaugh, 1988; Reilly, 1988; Steckler, Andrews, Marten, & Turner, 1993). 

 As noted above the term „autoshaping‟ could apply in many experimental situations.  

Here the apparatus is a standard, two lever operant chamber and the size is appropriate to 

either rats or mice (or pigeons if that species is being used).  Control of the procedure and 

data collection is completely automated, so this automatization minimizes intrusion by the 

researcher which makes this a more controlled research environment.  Another strength to the 
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“instrumentation measure(s) relatively discrete behavior in a wholly objective and 

quantitative manner” (McKerchar et al., 2005).   

 Brown and Jenkins (1968) categorized various operant tasks by the type of procedure 

used: 

In the usual arrangement for discriminative operant conditioning, reinforcement is 

conditional on a stimulus and on a response.  Food may be delivered to a hungry pigeon only 

when it pecks a key and only when the key is lighted.  By relaxing, in different ways, the 

conditionality in the rule for delivering food, three other condition arrangements of interest 

can be generated.  The delivery of food may be entirely unconditional, i.e., without regard to 

the stimulus that is present or to behavior; the delivery of food may be conditional on 

behavior (e.g. the pigeon must peck a key) but unconditional with respect to stimuli; or the 

delivery of food may be conditional on the stimulus (e.g., food is delivered only when the 

key is lighted) but unconditional with respect to responses. (p. 1) 

Their particular study found that the “forward pairing” condition, the one focused on both 

stimulus- and response-reinforcer dependency, and the “fixed duration” [or fixed interval 

(FI)], focused explicitly on a stimulus-reinforcer dependency [and perhaps implicitly (see 

Atnip, 1977)], both produced key pecking in the pigeons and were not different in the 

number of trials to first responses. 

 Using this paradigm, Atnip (1977) compared five different procedures on how they 

influenced acquisition of lever pressing in rats.  All conditions had a variable interval (VI) of 

40 seconds (”) for ten days with 50 trials per day.  In the autoshaping condition (stimulus- 

and response-reinforcer contingencies) if there was no lever press in 10” then a reinforcer 

was delivered, and if there was a lever press a reinforcer was delivered.  In the operant 
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condition (response-reinforcer) the parameters were the same as above, however if there was 

no lever press no reinforcer was presented.  In the classical conditioning component (explicit 

stimulus-reinforcer contingency), lever pressing produced no consequence; a reinforcer was 

delivered every 10” following the extension of the lever.  The omission condition was the 

same as the classical; however, a lever press resulted in lever withdrawal and no reinforcer 

for that trial.  Finally a random control group experienced the “probability of food delivery 

was equal in the presence or absence of the lever.” Lever retraction occurred when the lever 

was pressed as an additional control.  During a second phase of the study the first three 

conditions were replaced with the omission condition, while the last two remained the same.  

This occurred for ten days, 50 trials/day, with a VI 40”.  Atnip (1977) found that 

autoshaping, operant and classical conditioning procedures resulted in the highest levels of 

acquisition in Phase 1.   Observing individual variability, Atnip noted that autoshaping was 

the most consistent, and that operant and classical conditioning procedures were less 

consistent but similar to one another.  The omission group had more variability and lower 

mean acquisition than the first four conditions, and the control group did the worst, 

producing little responding across the study.  Once moved to omission training the 

autoshaping, operant and classical conditions all had similar drastic reductions in responding.  

As expected, there was no change in the final two groups, omission and control.  The results 

in the first phase indicated to Atnip that the combination of both response- and stimulus-

reinforcer contingencies most greatly supported acquisition of lever pressing as compared to 

either one alone.  Phase 2 results indicated that there was also a particular sensitivity to the 

response- and reinforcer-contingencies as all the first three groups experienced major 
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declines in responding, however none dropped to control levels.  They all dropped to no less 

than the omission group level. 

 Within autoshaping it is also interesting to consider species-specific effects.  This is 

the concept that the specific physiology and anatomy of a certain organism can predispose it 

to certain types of physical movements.  In this case the movement would be the operant 

behavior, like pecking a key by pigeons or lever pressing or nose poking by rodents.  This is 

why operant behavior is studied in such vastly different environments depending on the 

subjects‟ species.  The topography of a pigeon‟s consummatory response to a reinforcer 

influences the way in which it will respond to a key press (e.g. either as though pecking grain 

or drinking water) regardless of type of deprivation imposed (Jenkins & Moore, 1973).  

Gamzu & Schwam (1974) became interested in the transition across species of simple 

operant behavior when major topographical changes were required, for instance instead of 

key pecking by a pigeon, how would a squirrel monkey fare? Their conclusion was that due 

to topographical dissimilarity, key pressing in monkeys is not nearly as salient an association 

as it is for a pigeon.  The stimulus-reinforcer contingency could be much more easily 

disrupted by variable conditions (omission) than it could in pigeons.  This concept was 

refuted by Atnip (1974) when he found that after changing to an omission condition rats 

show no relationship between lever contact and actual lever pressing. 

 The majority of studies investigating autoshaping or operant behavior in mice use the 

nose poke as the dependent measure (Baron & Meltzer, 2001; Johnson et al., 2009; Vanover 

& Barrett, 1998), whereas most studies that use rats use the lever press (Atnip, 1977; Bankart 

et al., 1974; Coveney & Sparber, 1981; Kearns & Weiss, 2007; Mundy & Iwamoto, 1986; 

Rodriguez et al, 2007).  One study focused on the impact of previous behavioral history on 
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subsequent conditioning procedures was conducted with mice and lever pressing.  They 

found that the serotonin 1B knockout mouse acquired the autoshaping paradigm faster than a 

wild type strain; however there was no difference in the acquisition of a differential-

reinforcement-of-low-rate model (Pattij et al., 2004).  Another study by McKerchar et al. 

(2005a) focused on the correlation between locomotor activity and lever-pressing in a one- 

and two-lever paradigm.  A positive correlation was found between activity and either lever-

pressing model in the inbred strains, C57BL/6, DBA/2, 129X1/SvJ, and BALB/c.  An 

interesting study was conducted by Goodrick (1967) in which three inbred strains of mice 

were trained to bar-press only under a light contingency with no reward.  C57BL/6 female 

mice responded with the highest rates.  Continuing to combine mice with a lever press 

autoshaping procedure allows for the extension and replication of these previous studies, as 

well as broadens the generality of specifically the autoshaping task to a different operant 

response. 

 Please see Table 4 for a review of the literature regarding this task. 

Current Research Overview 

 Taken as a whole, the current body of literature using such tasks indicates that indeed 

there exist significant behavioral differences between inbred strains of mice.  Variability in 

gross behavior, physical capabilities, as well as cognitive processes such as learning and 

memory, greatly affect the results of such research.  More importantly, ignorance as to the 

baseline differences in isogenic mice can at the least muddy interpretations of such results.  

With the exponential advancement of technologies and scientific capabilities there are ever-

increasingly intricate and complex experiments taking place the world over.  Before they can 

be properly understood and used to inform inquiries into improving human health outcomes,  
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Table 4. 

Autoshaping Literature Review Table. 

 

1
Baron & Meltzer, 2002; 

2
Brennan 2004; 

3
Ingram 1982; 

4
Johnson, Pesek, & Newland, 2009; 

5
McKerchar et al., 2005; 

6
Waddell et al., 2004 

 

the research community must first expose the impact of baseline differences caused via 

genetic manipulation. 

Task Summary 

 Models such as those discussed highlight important behavioral phenotypes that will 

allow for further elucidation of the genetic basis of behavior.  Physical capabilities or deficits 

therein, are investigated, such as mobility in the locomotor activity chamber and the Morris 

water maze.  Visual acuity is addressed in the Morris water maze and with the signal light 

portion of the autoshaping procedure.  Spatial learning and memory are measured in the 
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Morris water maze and the T-maze.  Motivation from several arenas (e.g. food-based versus 

non-food based) is addressed with the T-maze, the autoshaping task, and the Morris water 

maze, respectively.  Cognitive processes are studied in the T-maze and autoshaping assays.  

Clearly the various types of data gathered throughout this study will greatly contribute to the 

overall body of knowledge about baseline behavioral strain differences in inbred mouse 

strains. 

What is unique about these four specific mouse strains?  

C57BL/6 

The C57BL/6 strain was developed in 1921 (Harlan, 2010).  It is most commonly 

used for breeding transgenic and knockout mice, and as the background strain for 

spontaneous mutations (Crawley et al., 1997; Harlan, 2010).  The C57BL/6 strain is an 

“alcohol-preferring” strain, as it readily consumes 10% ethanol solutions (Phillips & Crabbe, 

1991).  As expected this strain has been used in alcohol preference research, as well as 

maternal alcohol abuse and other alcohol related diseases studies.  Many drugs of abuse (i.e. 

methamphetamine, LSD, cocaine) and controlled substances (i.e. nicotine, morphine) have 

been tested in these mice (Harlan, 2010).  It is particularly of interest that for the genome of 

the C57BL/6 strain, the human genome has 99% homologues (Waterson et al., 2002).  This is 

a principle reason why it has been one of the most commonly used strains in translational 

research. 

In open-field locomotor activity and elevated plus maze tests C57BL/6 mice tend to 

be more active than the 129S2/Sv, DBA/2, and Balb/c strains (Brown et al., 2004a; Golani et 

al., 2003; Richfield et al., 2003; Wahlston & Crabbe, 2003).  Of the four strains, this one has 

the least fecal boli count (Brown et al., 2003) and it has the lowest thigmotaxia (Wahlston & 
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Crabbe, 2003) in locomotor activity task.  The C57BL/6 shows moderate acquisition and 

reversal training in Morris water maze, which is better than the 129S2/Sv strain (Brown et 

al., 2003) 

129S2/Sv 

The 129S2/Sv strain was developed at Columbia University in 1928.  While there are 

a variety of substrains of the 129, this particular one is derived from a congenic strain made 

by outcrossing the steel mutation (Harlan, 2010).  This strain provides embryonic stem cells 

for creating knockout mice (Crawley et al., 1997).  The most common research application 

outside of transgenesis, is testicular teratomas. 

129S2/Sv mice show impairment on many standard behavioral learning tasks, 

including being categorized as “poor learners” in the Morris water maze (Crawley et al., 

1997).  Brown et al. (2003b) report this strain as having the slowest acquisition of the Morris 

water maze task, as well as the poorest reversal training performance (Brown et al., 2003b).  

These mice are the least active in the open field locomotor activity task (Brown et al., 2004a; 

Richfield et al., 2003; Wahlston & Crabbe, 2003), and show a moderate fecal boli count as 

compared to the other three strains (Brown et al., 2003).  Finally, 129S2/Sv mice demonstrate 

moderate thigmotaxia, less than the Balb/c strain (Wahlston & Crabbe, 2003).  

DBA/2 

In 1909 the parent strain of the DBA/2 was developed, and between 1929 and 1930 

crosses of the sublines produced the DBA/1 and DBA/2 strains.  Common research 

applications are coat color, behavior, audiogenic seizures, epilepsy, calcification, 

metabolism, foetal absorption, immunology and infectious diseases.  This strain expresses 
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low ethanol preference (Harlan, 2010).  These mice are also less sensitive to the disruptive 

effects on operant behavior of cocaine than C57BL/6J and Balb/cByJ (Heyser et al., 1997).   

DBA/2 mice performed moderately on the open field locomotor activity task; they 

were not as active as the C57BL/6 strain, but were more active than either the 129S2/Sv or 

Balb/c strains (Brown et al., 2003a).  They had the highest thigmotaxia of all four strains 

(Wahlston & Crabbe, 2003), but moderate fecal boli count for the locomotor activity task 

(Brown et al., 2003).  The DBA/2 strain acquired the Morris water maze faster than 

C57BL/6, 129S2/Sv, and Balb/c strains, as well as showing the best performance during the 

reversal procedure (Brown et al., 2004b). 

Balb/c 

 The term “BALB” is derived from “Bagg albino.”  H. Bagg had the albino stock from 

whence this strain was developed in 1913.  This particular strain was inbred in 1923.  While 

this strain shows low open field activity, they show high levels of spontaneous locomotor 

activity. High defecation and low alcohol preference are also characteristics of the Balb/c 

strain (Harlan, 2010).  They tend to be more anxious (“spontaneously elevated anxiety”) than 

several other inbred strains (Belzung & Griebel, 2001).   

 In the locomotor activity chamber they generally have the highest fecal boli count of 

all four strains (Brown et al., 2003a).   Golani et al. (2003) found the Balb/c strain to be the 

least active in the locomotor activity task, while Brown et al. (2004) found the 129S2/Sv 

strain to be the least active in this assay, with the Balb/c being the next least active.  

Interestingly, Wahlston & Crabbe (2003) found the Balb/c strain to be nearly as active as the 

C57BL/6 strain in a five minute locomotor activity trial.  Moderate thigmotaxia, second only 

to DBA strain, was expressed by Balb/c mice (Wahlston & Crabbe, 2003).  Finally, they 



 

 35 

showed the fastest acquisition of and reversal training in the Morris water maze (Brown et 

al., 2003b). 

Rationale 

 The focus of the present study is to compile a useful selection of tasks the behavioral 

community can use to inform certain transitions from behavior to practical implications of 

disease and disorder in humans.  The locomotor activity chamber and Morris water maze are 

standard tasks in behavioral research.  The first offers a great deal of basic motility 

information, while also providing descriptions of baseline emotional reactivity within and 

across strains.  The second also speaks to physical capabilities, but more so to spatial 

learning and memory.  The T-maze and the autoshaping task have not been used often in 

mouse strain comparison studies, therefore data drawn from them will be particularly 

interesting as it is compared with what has been learned in other laboratories. The T-maze is 

another spatial learning task, however memory performance may also be considered.  

Finally, the autoshaping procedure can speak to the speed and agility of cognitive processes 

in these four strains.  Researchers in behavioral psychology/neuroscience have long 

depended on these tasks and agree that they are useful tools due to their long-standing 

validity and reliability. 

 The choice of these four particular isogenic strains of mice is a practical one.  These 

strains are currently some of the most commonly used in behavioral, physiological, and 

molecular studies.  These strains have been maintained in several laboratories for around one 

hundred years now, thus their genomes are particularly well mapped.  Additionally many 

studies have been conducted using them with a resultant large quantity of data which 

describes particular characteristics.    
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 Overall the greatest impetus for the design of this study is an effort to add resources 

to the ever-growing database concerning inbred mouse strain differences via behavioral 

phenotyping.  Contributing to community knowledge in a way that strengthens the 

foundation for future research is of the utmost importance.  Perhaps in the future, a reliable, 

reasonably complete mass of resources on variations in strain behavior will be available for a 

variety of research inquiries.  In that time a scientist will be able to access the data he or she 

needs in order to properly organize their own study.  Because the scientist will not have to 

worry about these broader and potentially very damaging influences of such ignorance on 

their results, the scientist will be capable of answering the inevitable advanced yet minute 

questions that are just now growing into fruition. 

 As stated in Holmes et al. (2002), “To facilitate the use of novel behavioral paradigms 

to phenotype transgenic and gene knockout mice, it is important that performance of inbred 

strains in these tests is carefully characterized”.  In particular such a resource will provide 

invaluable advice used to guide decisions about which genetic backgrounds will be most 

appropriate for studying various knockout and transgenic mutants (Crawley et al., 1997). 

In the present work common behavioral assays (i.e. locomotor activity, Morris Water 

Maze, and t-maze) are combined with operant models (i.e. autoshaping of level-pressing for 

food reward) to provide a more comprehensive characterization of the potential differences 

and/or similarities between these species‟ behavioral phenotypes.  

Hypotheses 

 For the first and final task, the Locomotor Activity assay, based on a broad literature 

review (see Table 1; Baron and Meltzer, 2002; Gerlai, 1998; Holmes et al., 2002; Isles et al., 

2004; Johnson, Pesak, and Newland, 2009; McKerchar et al., 2005; Nikulina, Skrinskaya & 
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Popova, 1991; Voikar et al., 2001), it is expected that the Balb/C and C57 mouse strains will 

exhibit the highest levels of locomotive activity, with the DBA mice showing slightly less 

activity and the 129S strain exhibiting the lease activity. 

 The second task is the Morris Water Maze, which also had a high number of previous 

studies to review (see Table 2; Holmes et al., 2002; Nguyen et al., 2000; Owen et al., 1997; 

Schimanski & Nguyen, 2004; Voikar et al., 2001; Upchurch & Wehner, 1988).  Here it is 

hypothesized that the C57, DBA, and 129S mouse strains will find the location of the hidden 

platform and the visible platform faster than the Balb/C strain.  This is thought to be due to 

the decreased visual acuity noted in some albino rodent species (Heiduschka & 

Schraermeyer, 2008; Upchurch & Wehner, 1988). 

 In the T-maze, the third task in this study, we expect that the C57 mice will exhibit 

faster acquisition of the serial reversal procedure than both the DBA and 129S mice, which 

are not expected to perform significantly differently from one another (see Table 3; Gerlai, 

1998).  There are no previous data for this procedure with the Balb/C strain so no hypothesis 

about their performance is being stated. 

 Finally, the last task will be the Autoshaping and Extinction operant procedure. The 

umbrella hypothesis is based on a variety of operant procedures (see Table 4; Baron & 

Meltzer, 2002; Brennan 2004; Ingram 1982; Johnson, Pesek, & Newland, 2009; McKerchar 

et al., 2005; Waddell et al., 2004) which can be considered to be related to components of 

this particular assay.  It is important to remember though that none of these studies are exact 

replicates of this study‟s methodology.  Though the data are largely variable across these 

tasks it is expected that 129S mice will perform the most poorly in leverpress acquisition 
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behavior and rate of extinction of the behavior as they have typically performed more poorly 

in a variety of operant tasks as compared to other mouse strains.  

Method 

Animals 

Four strains of mice obtained from Harlan Laboratories, Inc., North America, were 

used, including C57BL/6NHsd (C57), DBA/2NHsd (DBA), 129S2/SvHsd (129), and 

Balb/cAnHsd (Balb/c).  Thirteen mice of each strain were obtained at the age range of five to 

six weeks old, totaling fifty-two mice.  Weights, as expected, varied with strain, with the C57 

and the 129 subjects being the heavier strains, the DBA and the Balb/c strains being lighter.  

Each subject was individually housed in a temperature and humidity-controlled vivarium on 

a 12 hr light/dark (0600/1800) cycle.  Water was available ad libitum in the home cage and 

free feeding was allowed for the locomotor activity and the Morris water maze tasks.  The 

last two tasks required food restriction due to the food motivation required by these 

protocols.  For the T-maze body weights were maintained at 85% ± 1gram of free-feeding 

weight.  The autoshaping task also incorporated food restriction; however, this was managed 

by providing a certain weight of daily food (2.5g) as per the literature (Barrett & Vanover, 

2003; Vanover & Barrett, 1998) unless weights fell below 85% of free feeding weight, at 

which point more food was provided.  All research and procedures were in accordance with 

the standards set by the National Institutes of Health‟s Guide for the Care and Use of 

Laboratory Animals (National Research Council, 2003), and were approved by the 

Institutional Care and Use Committee of Virginia Commonwealth University. 
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General Methods 

 After the mice were delivered, they were handled and weighed daily for five days in 

the vivarium to habituate them to laboratory handlers.  They were kept entirely in the 

vivarium at this time due to the first task (locomotor activity) being housed within the 

vivarium itself.  Because of the large number of subjects, the time required to test the mice 

was quite lengthy and would extend beyond the available time in a single day.  Therefore, 

each subject was randomly assigned to one of two „cohorts,‟ to be referred henceforth as 

“Cohort 1” and “Cohort 2,” with an equal number of mice from each strain in each cohort. 

Task 1: Initial Locomotor Activity 

Apparatus.  The apparatus used in the initial locomotor activity assay was four 

standard open-field rodent locomotor activity chambers (ENV-515, Med Associates, Inc, St. 

Albans, VT).  The activity chambers are made of four clear walls 30.5 cm in height, with a 

solid white floor, measuring 43.2 X 43.2 cm.  While there is no ceiling to the chamber, it is 

housed inside a larger solid white sound-attenuating chamber (ENV-017M, Med Associates, 

Inc) which utilizes a noise-masking fan.  This apparatus and its software (Activity Monitor 

5.0, Med Associates, Inc) monitors locomotion by Infrared (IR) beam breaks.  Three arrays 

of 16 IR beams track horizontal and vertical movements of each mouse, and are placed 2.5 

and 5 cm above the floor.   

The Med-Associates software allows a real-time onscreen tracking of the subject 

moving by showing a moving dot and the remaining trail.  Screenshots of activity during test 

sessions were obtained to visually display any strain differences.  The software has an option 

to divide the test chamber into two preset zones.  The zones that were used in the present task 
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were: a center zone measuring 132.25 square inches and the outer zone which measures the 

remaining 123.75 square inches.   

Dependent Measures.  The measurements for this task were chosen based off of an 

extensive literature review for this task (Crawley et al, 1997; Denenberg, 1969; Hall, 1934, 

1936; Holmes et al, 2002; Walsh & Cummins, 1976; among others)  Those recorded were 

horizontal ambulation, vertical movements (rearing), thigmotaxia (the tendency of a subject 

to move more in the outer zone than the open center zone, expressed as a ratio of beam 

breaks in the outer zone divided by total beam breaks counted,) and fecal boli count, as well 

as daily horizontal beam breaks “binned” into six 10-minute blocks.   

 Procedure.  Each subject was in the activity chamber for 60-minute sessions each 

day for three consecutive days.  Thus, Cohort 1 ran on days 1-3, and Cohort 2 ran on days 4-

6.  Each „group,‟ or the four subjects to be running during the same session, consisted of one 

mouse from each strain, and their particular test chamber was the same for all three days.  

Test chambers were randomly assigned across strains.  After each test session fecal boli were 

counted and the inside of the chamber, including the floor and walls, was wiped down with 

paper towels and a weak alcohol solution.  The chamber was allowed to dry thoroughly 

before the next group session was started.   

Task 2: Spatial Learning – Morris Water Maze  

 Apparatus.  The Morris water maze was housed in a separate room with a white 

curtain separating the pool from the monitoring computer and observer.  The pool is a large, 

circular, galvanized steel tank, measuring 180 cm diameter and 50 cm in height.  It was filled 

to approximately half full with water kept 20-22 degrees centigrade by a large aquarium tank 

water heater when necessary.  The water was colored with white tempera paint to make it 
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completely opaque.  A small circular platform measuring 11cm in diameter and colored 

white was placed in the water in varying positions in the pool.  It was located approximately 

a centimeter below the top of the water so that it could not be seen by the subjects as they 

swam.  Inside the pool, on the wall above the water line there were placed four distal visual 

cues: white, laminated papers with unique black and white geometric shapes (e.g. peace 

sign).  A video camera was placed in the ceiling directly over the pool, and its images were 

recorded by tracking system hardware and software (0121-002M and 0120-252M 

respectively, Videomex-One, Columbus Instruments, Columbus, OH).  This software divides 

the pool into four quadrants (North, South, East, West,) and each visual cue was placed in the 

center of each quadrant‟s wall area.  There were also large black and white geometric shapes 

on the walls of the room above the top of the pool (ex. stripes).  These designs are meant to 

act as spatial cues for the subjects.  At the end of each day of running a small amount of 

bleach was stirred into the water to retain cleanliness.  The pool was drained, scrubbed and 

fresh water and paint added every seven days. 

 Dependent Measures.  The measures recorded were trial endpoint: whether the 

subject located the platform (hidden or visible) or timed out.  This allowed for assessment of 

learning over time by counting the number of trials per strain per day to reach the platform.  

Latency to the platform in seconds and total path length measured in centimeters were 

recorded and also were used in order to calculate swim speed.  

 Procedure.  The subjects remained in their respective cohorts for testing in the water 

maze.  As in the previous task the cohorts were tested consecutively.  In the first cohort a 

total randomization was attempted and the subjects ran in groups of four, one subject per 

species per group.  Originally it was noted that while the sensitivity of the image can be 
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manipulated manually, historically there have been issues with the back-masking option that 

causes too much interference for the program to work accurately.  It was anticipated that we 

would have mark the upper back of the neck and back of the Balb/c‟s (which are white) with 

a dark grease pencil so that they will show up in the image and be able to be tracked.  Indeed 

this was required.  All of the other strains should have had sufficient contrast for the system 

to track them, though different swimming geometry (more or less of the back above the 

water) caused issues in tracking as well.  These sorts of equipment failure caused a change of 

protocol for the second cohort wherein the groups were made entirely of a single species.  

This was implemented due to issues with back-masking and pixilation of the video camera 

and software.  The variation in size and color of the mouse strains required hand adjustment 

of the hardware between strains, as well as often between subjects.   

Due to fatigue and body temperature issues, after each trial each subject was hand 

dried with a paper towel and returned to their homecage which was warmed with a heat 

lamp.  At the time each subject‟s turn to swim arrived again, they were warm, rested and dry.  

Each subject experienced eight total swim days, seven of which were actual trials.  The first 

day was a habituation to the pool, where each mouse had a free swim trial for up to two 

minutes – less if they appeared to be experiencing fatigue.  There was no platform in the pool 

on this day.  In order to keep close watch an observer hid behind the curtain with only their 

face showing.  All other swim trials began with the mouse being released into the pool and 

the observer completely closing the curtain to avoid distraction.    

On days two through seven, each subject had four trials per day, each lasting up to 

two minutes.  The trial ended either at that time or before if the subject founds the platform 

and climbed onto it.  The platform was located in a static, randomly chosen location 
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everyday per cohort – that is all mice in Cohort 1 experienced the platform in one single 

location throughout their swims, while Cohort 2 experienced it in another location.  While 

the platform location remained the same for each mouse, the starting location for each trial 

varied randomly between the other three quadrants from the one the platform is in.  Each 

subject was placed in the water facing the wall of the tank.  If the mouse found the platform it 

was allowed to sit there for 20 seconds, but if it failed to find the platform it was removed 

from the water by the observer and placed on the platform where it sat for 20 seconds. 

On the eighth and final day a visual cue session was run.  The platform was moved to 

a new, random location and a black film canister was placed on the platform to act as the 

visual cue of the platform‟s location.  This provided information on any strain differences 

with regard to visual acuity.  The assumption being if the subject can see the location of the 

platform as indicated by the cue then it will immediately go to the platform, therefore having 

a shorter path length and latency to platform.  Instead of four total trials, only three trials 

were conducted. 

Task 3: Spatial Learning – T-maze 

 Apparatus.  The T-maze apparatus used for this task is constructed of acrylic painted 

black.  Each arm of the „T‟ is 35.6 cm in length and 7.6 cm wide.  The walls are 15.2 cm tall, 

and each arm has a gate in it that is manipulated by the observer.  The entry arm gate sits 

10.2 cm from the bottom of the „T‟ and the gates that close off the other two arms sit 29.2 cm 

from the end of each arm, leaving a 7 cm
2
 choice point.  At the end of each of the arms there 

is a small trough into which the sucrose pellet (45mg pellets, BioServ) reward is placed.  

After each subject was tested the interior of the maze was cleaned with a weak ethanol 

solution.  It was dried before the next subject was placed in it. 
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 Dependent Measures.  For this task measures were recorded by the observer.  

Percentage accuracy for the entire session (correct arm choices divided by total trials where a 

correct choice could be made), and percent time-out endpoint (number of trials ending in 

time out divided by total trials where a time out could occur) were calculated. 

 Procedure.  After body weights were stabilized at 85% of free feeding weight, 

subjects began with two days of habituation to the pellets by having approximately 20 

sucrose pellets placed into their homecages.  Next, a five day habituation to the maze began.  

Here each subject was allowed to freely roam the maze for a period of five minutes per day.  

Food pellets were placed in the feeding troughs of each arm to encourage exploration. 

 Training then ensued.  For fifteen days subjects had eight congruent trials in the maze 

per day.  Each trial began with the mouse being placed into the entry arm with the gate 

closed.  The randomly chosen destination arm (left or right) was baited with a single pellet 

and the other arm was blocked by a gate.  The observer started the stopwatch and 

simultaneously lifted the gate.  The subject exited the start box and proceded to the open 

destination arm, hence reference to this first trial as the “forced trial.”  Upon entry into the 

arm (defined as the rear legs crossing the arm threshold,) the observer noted the arm-entry 

time and slid the destination arm gate closed, keeping the subject from leaving the arm.  In 

this task the first trial is „forced‟, that is an arm is randomly chosen to be baited.  In all 

subsequent trials for that session (trials two through eight) only the arm opposite to the arm 

baited in the forced trial was baited.  The intertrial interval (ITI) was approximately five 

seconds, the amount of time it took to remove the subject, place the entry arm gate back in 

place, remove the destination arm gate, and record dependent measures.   
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If a subject failed to enter an arm in 60 seconds the trial timed out.  Also, if the mouse 

entered the arm and failed to eat the pellet within 60 seconds the trial time out.  If either of 

these situations occurred during the first trial, the subject was returned to its cage until the 

other mice in its strain have been tested, and then the first trial was attempted once more.  If 

the mouse again failed to enter an arm or eat the pellet it failed that day‟s entire session.  

Likewise, if a subject failed three other trials consecutively, no more trials were conducted 

and it failed the session.   

Task 4: Autoshaping 

 Apparatus.  Five standard, mouse-sized two-lever operant test chambers (ENV-

307A, Med Associates, Inc) were be used for this portion of the study.  Two retractable 

levers are 8 cm apart on the front wall of the chamber and a signal light is above each of the 

levers.  The levers extended 0.8 cm into the chamber and are positioned 2.5 cm above a grid 

floor constructed of parallel stainless steel rods. Centered between them is a recessed food 

trough into which a liquid dipper delivers 0.02 ml of sweetened-milk (by volume: 150 ml 

powdered milk, 150 ml sugar, and 500 ml water).  The inner test chamber consists of a 15 cm 

L X 11.5 cm D X 17.5 cm H area surrounded by an aluminum framed box with a single 

Plexiglas door.  On the rear wall of the chamber near the ceiling is the house light.  An audio 

stimulus device (ENV-323HAM, Sonalert Module, Med Associates, Inc) is installed in the 

box, and provided a 70 db tone.  Test chambers are housed in sound attenuating chambers 

equipped with ventilation fans. Med-PC software (Version 1.17, Med Associates, Inc) was 

used to control the operant sessions and record data.   
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 Dependent Measures.  Measures that were recorded included total lever presses, as 

well as contingent responses (those responses correctly made during the presentation of the 

paired cues: the auditory cue and the signal light over the available lever).   

 Procedure.  The cohort breakdown remained in effect for this task.  The subjects‟ 

food was removed 24 hours before they were scheduled to be tested.  The test session was 

two hours and testing lasted seven days.  Upon completion of each test session, when another 

session was scheduled for the following day, each subject received a 2.5 gram pellet of food, 

unless their weight had fallen below their 85% of free feeding weight, then it was increased 

appropriately.  When subjects completed the autoshaping task they were returned to free-

feeding status. 

 Specific methodology for this task closely followed that of Vanover & Barrett (1998), 

Barrett & Vanover (2003), and a study done by Walker & Foley (2010).  On day one the 

session consisted of acquisition of the task, where they experienced a Pavlovian/Instrumental 

condition.  After the subject was placed in the box, (subjects were in the same operant 

chamber for all test sessions,) the program started with the houselight and the sound-

attenuating fan being turned on.  A variable interval (VI) schedule of 45 seconds began with 

a range of 4-132 seconds.  A „trial‟ was defined as the time between the beginning of a time 

interval and the beginning of the subsequent time interval.  A pairing of the tone and the 

signal lights above a single lever that had been extended into the box occurred.  At this time 

either the mouse pressed the lever or six seconds passed, either of which produced 

presentation of the dipper with the reward, as well as a cessation of the signal light and tone.  

The dipper remained up for four seconds, and then lowered.  At this point the next trial 

began. 
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 After the acquisition session the following four days consisted of „retention‟ sessions 

that included only the Instrumental contingency.  During these four sessions reinforcer 

delivery was dependent solely on lever pressing that occurred under the 6-second contingent 

cued presentation (i.e. an instrumental contingency).  The final component was an 

„extinction‟ procedure that was identical to the Instrumental sessions except no responses 

were reinforced – i.e. no rewards were presented regardless of lever pressing behavior.  The 

VI 45” schedule remained in effect for the presentations/cessations of the tone-signal light 

pairing. 

Task 5: Final Locomotor Activity  

 Procedure.  In an effort to identify changes in baseline locomotor activity that may 

be related to the other behavioral tasks, and/or the potential impact of aging, locomotor 

activity was also recorded at the conclusion of the study.  Subjects were returned to free 

feeding until their weights stabilized, which took approximately three days.  Identical to the 

initial testing of locomotor activity, the subjects were tested in the activity chamber for 60-

minute sessions each day for three consecutive days.  Each „group‟ or the four subjects to be 

running during the same session, consisted of one subject per strain, and their particular test 

chamber was the same one all three days.  Assignment to activity chamber was again 

randomized across strains. 

The measurements recorded were the same as before: horizontal ambulation, rearing, 

thigmotaxia, and fecal boli count.  Data were also still collected in 10-minute bins. 

Data Analysis 

 As is noted in the figures, the sample sizes for each of the strains dropped from the 

start of this study to its conclusion.  This attrition was due primarily to a variety of unknown 
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illnesses in the animal colony during the course of the study.  There were other cases of data 

lost due to equipment failure, as is discussed in the results section of the MWM.  Finally, 

some of the data not included for analysis was due to unusable data when the mice failed to 

learn the task; hence the uselessness of data that was dependent on such learning.    

Two-factor, split plot [one between subjects factor (strain) and one within subjects 

factor (trials or days, as appropriate)] analyses of variance (ANOVA) were used to analyze 

dependent measures from all the locomotor activity, MWM, T-maze, and autoshaping tasks.  

The only exception was for the visible trials in the MWM and the Pavlovian/Instrumental 

component (Day 1) of the autoshaping task.  Here a one-way repeated measures ANOVA 

was used to compare strains.  Neuman-Keuls post hoc tests were used where appropriate to 

analyze significant main or interaction effects on these dependent measures.  This particular 

post-hoc test was chosen due to the moderate level of conservativeness (Bruning & Kintz, 

1987).  The level of significance was set at p = 0.05 for all analyses.  

It should be noted that not all of the interaction effects found in all the locomotor 

activity data were followed with post-hoc Newman-Keuls tests.  After statistical consultation 

(Robert J. Hamm, personal communication, April 2010) the decision was reached to not 

explore the interactions between strain and days that were orthogonal with post-hoc tests. 

Thus, only the non-orthogonal interactions between strain and days were explored with 

Newman-Keuls post-hoc tests. 

Power analyses were not conducted for the sample sizes in the present study.  While 

literature review-based hypotheses were considered regarding expectations, this is primarily 

an exploratory set of studies.  Hence sample sizes chosen herein were based on an overview 

of similar studies found in the MPD (See Tables 1-4; MPD, http://www.jax.org/phenome).  

http://www.jax.org/phenome
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The sample sizes used in these four tasks could however be used to calculate non-exploratory 

sample sizes in future studies. 

Results 

All statistical results, including presence of main and interaction effects, type of 

analyses and post hoc tests conducted, observed F-values, degrees of freedom, p-values, 

effect sizes (Cohen‟s d), and strain n‟s, are shown in Table 5 and Table 6.  

Locomotor Activity 

 During the first locomotor activity assessment a significant strain difference was seen 

across the three days where the 129S (1147.00 ±802.37) mice produced significantly fewer 

beam breaks than all other strains (DBA=3390.03 ±1425.42, Balb/C=3796.72 ±1429.58, 

C57=4423.58 ±1435.98), who did not differ from one another, see Figure 1, graph A.  In the 

final locomotor activity, Figure 1, Graph B, the same trend is shown, where 129S mice 

(1828.39 ±585.49) showed significantly less horizontal ambulation than the three other 

strains (DBA=4019.14 ±1344.32, Balb/C=4674.92 ±1751.20, C57=6036.48 ±1911.36), who 

did not differ from one another.  In the initial task there was also a day effect where more 

beam breaks were observed on Day 1 (3539.80 ±1876.19) as compared to Days 2 (3067.10 

±1752.74) and 3 (2961.10 ±1743.10), but Days 2 and 3 did not differ from one another, while 

in the final task here was also a day effect where Day 1 (4688.29 ±2250.28) had significantly 

greater beam breaks than both Day 2 (3994.79 ±1950.36) and Day 3 (3824.33 ±2225.91), but 

there was no significant difference between Day 2 and Day 3.  No interaction between strain 

and day was observed in either the first or last activity tasks.   

Rearing data in the initial activity task revealed significant differences between all 

groups where C57 mice (2255.22 ±378.96) reared more than Balb/c mice (1127.14 ±455.24), 
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who reared more than DBA mice (829.14 ±328.26), while the 129S strain (191.92 ±245.30)  

produced the least rearing behavior; refer to Figure 1, graph C.  Graph D shows that in the 

final data slight changes were seen where again, the 129S (515.78 ±353.69) strain showed 

significantly less rearing than the other strains (DBA=1184.17 ±153.68, Balb/C=1538.57 

±234.61, C57=1607.57 ±543.51), but the other strains failed to differ from one another.  In 

neither task was there an effect of day or an interaction between the strain and day.   

Figure 2, graphs A and B, show thigmotaxia data (percent horizontal beam breaks in 

the outer zone near the walls of the chamber) divided by total horizontal beam breaks.  C57 

mice (initial: 0.54 ±0.11, final: 0.53 ±0.06) spent significantly less time near the wall then did 

any other strain in both the first (129S=0.85 ±0.15; DBA=0.73 ±0.11; Balb/C=0.71 ±0.13) 

and last task (129S=0.77 ±0.18; DBA=0.64 ±0.06; Balb/C=0.74 ±0.16), however in the 

initial activity task the 129S strain showed the greatest thigmotaxia while DBA and Balb/c 

strains were not significantly different from one another.  In the final activity task however, 

the DBA strain failed to show significant differences from any other strain.  Initially 

thigmotaxia significantly increased every day, with Day 3 (0.74 ±0.16) showing the most, 

then Day 2 (0.71 ±0.18), and finally Day 1 (0.67 ±0.17) with the least thigmotaxia.  In the 

final task Day 1 (0.62 ±0.17) showed significantly less thigmotaxia across strains than Day 3 

(0.70 ± 0.14), but was not different from Day 2 (0.65 ±0.15), which also showed significantly 

less thigmotaxia than Day 3.  In neither task was an interaction between strain and day 

observed.   
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Table 5.    

Statistics Table. 

Task Measure Factor F-value Df P-

value 

Effect 

Size 

Inbred Mouse Strain 

129/Sv      DBA/2        Balb/c      C57BL/6 

Activity Initial Ambulation Day 6.86 2,88 .002 .135 12 12 12 12 

  Strain 19.11 3,44 .000 .566 12 12 12 12 

  Interaction 1.46 6,88 .202 *** 12 12 12 12 

 Final Ambulation Day 7.32 2,40 .002 .258 6 7 4 7 

  Strain 10.58 3,20 .000 .613 6 7 4 7 

  Interaction 0.65 6,40 .689 *** 6 7 4 7 

 Initial Rearing Day 1.93 2,88 .152 *** 12 12 12 12 

  Strain 111.13 3,44 .000 .883 12 12 12 12 

  Interaction 3.07 6,88 .009 .173 12 12 12 12 

 Final Rearing Day 2.38 2,40 .105 *** 6 7 4 7 

  Strain 12.96 3,20 .000 .660 6 7 4 7 

  Interaction 1.54 6,40 .192 *** 6 7 4 7 

 Initial Thigmotaxia Day 7.02 2,88 .001 .138 12 12 12 12 

  Strain 18.65 3,44 .000 .560 12 12 12 12 

  Interaction 1.57 6,88 .166 *** 12 12 12 12 

 Final Thigmotaxia Day 7.25 2,40 .002 .266 6 7 4 7 

  Strain 6.85 3,20 .002 .507 6 7 4 7 

  Interaction 1.29 6,40 .283 *** 6 7 4 7 

 Initial Fecal Boli Day 2.64 2,88 .077 *** 12 12 12 12 

  Strain 18.36 3,44 .000 .556 12 12 12 12 

  Interaction 3.82 6,88 .002 .207 12 12 12 12 

 Final Fecal Boli Day 0.74 2,48 .485 *** 6 8 6 8 

  Strain 3.43 3,44 .033 .300 6 8 6 8 

  Interaction 0.69 6,48 .662 *** 6 8 6 8 

 Initial Binned Day 1 Bin 34.19 5,220 .000 .437 12 12 12 12 

  Strain 22.00 3,44 .000 .600 12 12 12 12 

  Interaction 3.87 15,220 .000 .209 12 12 12 12 
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Task Measure Factor F-value Df P-

value 

Effect 

Size 

Inbred Mouse Strain 

129/Sv      DBA/2        Balb/c      C57BL/6 

Activity Final Binned Day 1 Bin 6.38 5,120 .000 .210 6 8 6 8 

  Strain 8.71 3,24 .000 .521 6 8 6 8 

  Interaction 1.48 15,120 .124 *** 6 8 6 8 

 Initial Binned Day 2 Bin 51.69 5,240 .000 .519 13 13 13 13 

  Strain 15.64 3,48 .000 .494 13 13 13 13 

  Interaction 2.74 15,240 .001 .146 13 13 13 13 

 Final Binned Day 2 Bin 11.64 5,120 .000 .327 6 8 6 8 

  Strain 8.17 3,24 .001 .505 6 8 6 8 

  Interaction 2.67 15,120 .002 .250 6 8 6 8 

 Initial Binned Day 3 Bin 80.36 5,240 .000 .626 13 13 13 13 

  Strain 11.38 3,48 .000 .416 13 13 13 13 

  Interaction 2.13 15,240 .001 .117 13 13 13 13 

 Final Binned Day 3 Bin 2.81 5,120 .020 .105 6 8 6 8 

  Strain 4.14 3,24 .017 .341 6 8 6 8 

  Interaction 2.52 15,120 .003 .239 6 8 6 8 

MWM Endpoint Day 5.02 5,235 .000 .097 13 13 13 12 

  Strain 1.66 3,47 .189 *** 13 13 13 12 

  Interaction 2.41 15,235 .003 .133 13 13 13 12 

 Latency Day 1.61 5,235 .159 *** 13 13 13 12 

  Strain 2.15 3,47 .107 *** 13 13 13 12 

  Interaction 1.09 15,235 .367 *** 13 13 13 12 

 Swim speed Day 2.11 5,235 .065 *** 13 13 13 12 

  Strain 3.72 3,47 .018 .49* 13 13 13 12 

  Interaction 0.81 15,235 .670 *** 13 13 13 12 

 Visible Endpoint* Strain  1.09 3,47 .363 *** 13 13 13 12 

 Visible Latency* Strain 1.02 3,47 .393 *** 13 13 13 12 

 Visible Swim 

Speed* 

Strain 1.43 3,47 .246 *** 13 13 13 12 

T-maze Accuracy Day 1.35 14,56 .208 *** 13 13 11 12 

  Strain 2.47 3,4 .201 *** 13 13 11 12 

  Interaction 1.18 42,56 .278 *** 13 13 11 12 

 Time-Outs Day 2.17 14,56 .021 2.82* 13 13 11 12 

  Strain 6.25 3,4 .054 *** 13 13 11 12 
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Task Measure Factor F-value Df P-

value 

Effect 

Size 

Inbred Mouse Strain 

129/Sv      DBA/2        Balb/c      C57BL/6 

T-maze Time-Outs Interaction 1.09 42,56 .373 *** 13 13 11 12 

Autoshaping P/I Lever Press* Strain 2.63 3,25 .072 *** 6 8 8 6 

 P/I Contingent 

Responses* 

Strain 0.97 3,25 .423 *** 6 8 8 6 

 I Lever Press Day 2-

5 

Day 7.31 3,72 .000 1.20* 6 8 8 6 

  Strain 0.31 3,24 .821 *** 6 8 8 6 

  Interaction 0.96 9,72 .460 *** 6 8 8 6 

 I Contingent 

Responses Day 2-5 

Day 17.57 3,72 .000 1.81* 6 8 8 6 

  Strain 2.73 3,24 .066 *** 6 8 8 6 

  Interaction 1.17 9,72 .328 *** 6 8 8 6 

 Ext Lever Press Day 

1-2 

Day 5.89 1,24 .023 .56* 6 8 8 6 

  Strain 0.33 3,24 .801 *** 6 8 8 6 

  Interaction 0.49 3,24 .696 *** 6 8 8 6 

 Ext Contingent 

Responses Day 1-2 

Day 15.94 1,24 .001 .65* 6 8 8 6 

  Strain 0.98 3,24 .417 *** 6 8 8 6 

  Interaction 1.00 3,24 .411 *** 6 8 8 6 

This table includes all statistics for all analyses conducted.  Unless noted, all analyses were two-way mixed factor ANOVA, with 

one between subjects factor (strain) and one repeated measures factor (day or bin).  *Indicates ES calculated by hand with Cohen‟s 

d, due to low n. (Thalheimer & Cook, 2002) **Indicates a one-way between subjects ANOVA was calculated.   ***ES not 

calculated for non-significant ANOVAs.  ***Indicates the ANOVA was not significant therefore ES values were not calculated. 
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Table 6.    

Summary Effects Table.  

Task Measure Main Effect: 

Time 

Main Effect: 

Strain 

Interaction 

Effect 

Activity Initial Ambulation Y Y (N-K) N 

 Final Ambulation Y Y (N-K) N 

 Initial Rearing N Y (N-K) Y 

 Final Rearing N Y (N-K) N 

 Initial Thigmotaxia Y Y (N-K) N 

 Final Thigmotaxia Y Y (N-K) N 

 Initial Fecal Boli N Y (N-K) Y 

 Final Fecal Boli N Y (N-K) N 

 Initial Binned Day 1 Y Y (N-K) Y 

 Final Binned Day 1 Y Y (N-K) N 

 Initial Binned Day 2 Y Y (N-K) Y 

 Final Binned Day 2 Y Y (N-K) Y 

 Initial Binned Day 3 Y Y (N-K) Y 

 Final Binned Day 3 Y Y (N-K) Y 

MWM Endpoint Y N Y (N-K) 

 Latency
#
 N N N 

 Swim speed
#
 N Y (N-K) N 

 Visible Endpoint* n/a N n/a 

 Visible Latency* n/a N n/a 

 Visible Swim Speed* n/a N n/a 

T-maze Accuracy
#
 N N N 

 Time-Outs
#
 Y N N 

Autoshaping P/I Lever Press* n/a N n/a 

 P/I Contingent 

Responses* 

n/a N n/a 

 I Lever Press Day 2-5 Y N N 

 I Contingent Responses 

Day 2-5 

Y N N 

 Ext Lever Press Day 1-

2 

Y N N 

 Ext Contingent 

Responses Day 1-2 

Y N N 

This is a summary table of main or interaction effects found via statistical analyses, as well as 

any post hoc tests calculated, for the measures taken throughout this study.  Unless otherwise 

noted all analyses are Two Factor Mixed Design with one factor repeated measures design. 

*Indicates a One-way Between Subjects ANOVA was conducted. 
#
Indicates mean daily data per 

strain was utilized. (N-K) Indicates a Newman-Kuels post hoc test was calculated.  
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Figure 1 
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Figure 1.  Initial and Final Activity Data.  Graphs A and B show horizontal ambulation as 

measured by beam breaks for both the initial and the final locomotor activity tasks.  Graphs C 

and D show rearing behavior as measured by beam breaks.  Strain symbols are defined in the 

legends, as are any significant difference between strains.  Sample size for initial task data is 

noted under the graph titles, while final task sample sizes are noted in the legend.  *Indicates the 

strain was significantly different than all other strains.  Effect of day is noted in the results text, 

as are any interactions between day and strain. Data presented as mean ± SEM. 
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Fecal boli data are shown in Figure 2, graphs C and D.  Balb/c mice (initial: 20.94 ±4.20, final: 

15.89 ±4.60)produced significantly more fecal boli than all other strains in both initial 

(129S=11.72 ±4.07; DBA=13.83 ±3.23; C57=10.72 ±5.95) and final (129S=8.06 ±2.80; 

DBA=12.00 ±4.22; C57=10.54 ±6.59) activity tasks, however in the first task the other strains 

did not differ from one another, while in the final task the 129S mice had significantly fewer boli 

as compared to the other three strains, but the DBA and C57 strains were not significantly 

different from each other.  There was no effect of day; however an interaction effect was noted 

(see Data Analysis explanation, page 46). 

 Figure 3 graphs show binned horizontal beam breaks for the initial and final locomotor 

activity tasks.  In the initial task, during all three days the 129 strain produced the least 

ambulation of all four strains, and there were no other significant differences with the single 

exception of Day 1 where C57 mice showed significantly higher beam breaks than all other 

strains.  In the final task however, during Day 1 129S mice showed significantly less horizontal 

ambulation than the three other strains, C57 mice ambulated on an intermediate level, and DBA 

mice showed the highest level of ambulation.  Balb/c showed significantly greater ambulation 

than 129S mice, but were not different from either of the DBA or C57 strains.   

With regard to effect of bin, for the initial activity task all 3 days showed a significant 

effect of day where all strains showed a reduction in beam breaks from the initial bin to the final 

bin.  Each day also produced an interaction between day and strain.  The final activity task 

showed a significant effect of bin where all bins were significantly different from one another, 

except that Bin 2 was not significantly different from Bin 3, which was not significantly different 

from Bin 4 or Bin 6, which was not significantly different from Bin 5.  There was no interaction  
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Figure 2 
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Figure2.  Initial and Final Thigmotaxia and Fecal Boli Data.  Graphs A and B show thigmotaxia 

as measured by horizontal beam breaks in the outer ring of the chamber divided by total 

horizontal beam breaks, for both the initial and the final locomotor activity tasks.  Graphs C and 

D show fecal boli counts.  Strain symbols are defined in the legends, as are any significant 

difference between strains.  Sample size for initial task data is noted under the graph titles, while 

final task sample sizes are noted in the legend.  *Indicates the strain was significantly different 

than all other strains, except when a 
#
 is noted.  This indicates the strain was not different from 

the * strain(s) and not different from any other 
# 

-marked strain(s). 
 
Effect of day is noted in the 

results text, as are any interactions between day and strain.  Mean (SEM) is included in all 

graphs. 
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between strain and bin.  For Day 2, 129S mice ambulated significantly less than all other strains.  

Bins 2 and 3 were not significantly different from one another, nor were Bins 2 and 6, Bins 3 

from Bins 2-6, and Bins 4 from Bins 3-6.  All other combinations were significantly different 

from one another during Day 2.  There was an interaction between bin and day.  Finally, for Day 

3 binned horizontal ambulation data, the 129S showed significantly less ambulation than DBA, 

but not C57 or Balb/c mice.  The C57 and Balb/c strains also were not significantly less than the 

DBA strain.  An effect of bin was seen where all bins were not significantly different except Bin 

1 was greater than Bins 2-5, but Bin 1 was not significantly different than Bin 6.  Like Day 2 

there was an interaction between bin and strain in Day 3 data. 

 Figure 4 shows representative examples of the activity tracings of horizontal ambulation 

for each of the four strains. These tracings demonstrate the decreased activity of the 129 mice 

and show how they tended to remain in the chamber corners for long periods of time.    

Morris Water Maze 

 Figure 5 (panels A, B, and C) shows the data from the MWM, the second task in 

this study.  While there were no significant differences in the average number of trials to locate 

the hidden platform per strain, there was a significant effect of day where the average number of 

trials increased as days passed.  There was also a significant interaction effect and post-hoc tests 

revealed that on Day 1 the DBA mice reached the platform significantly less than all other 

strains, but on Day 2 there were no significant strain differences.  On Day 3 the DBA strain 

reached the platform significantly less than both Balb/c and 129 strains, but not less than C57 

mice.  On Day 4 the 129 mice found the hidden platform significantly more often than C57 and 

DBA strains, but not more than Balb/c mice.  Finally, on Days 5 and 6 the Balb/c strain located 

the platform significantly more often than all other strains.  On the final day when the platform
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Figure 3 
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Figure 3. Initial and Final Binned Activity Data.  Graphs A, B, and C show the data from the initial locomotor activity task.  

Graphs D, E, and F show the data from the final locomotor activity task.  Strain symbols are defined in the legends, as are any 

significant difference between strains.  Sample size for initial task data is noted under the graph titles, while final task sample sizes 

are noted in the legend.  *Indicates the strain was significantly different than all other strains, except when a 
#
 is noted.  This 

indicates the strain was not different from the * strain(s) and not different from any other 
# 

-marked strain(s). 
 
Effect of day is noted 

in the results text, as are any interactions between day and strain.  Mean (SEM) is included in all graphs. 
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was visible there was no significant difference between strains with regard to number of trials 

to locate the platform. 

Panel B in Figure 5 shows the average latency to the platform by strain per day.  

There was no significant difference between strains, nor was there an effect of day, and also 

there was no interaction between the two factors.  During the cued trial there was no 

significant difference between strains.  

 

Graph C in Figure 5 shows the average swim speed per strain per day.  Balb/c mice 

(12.32 ±9.22) swam significantly slower than all other strains (129S=15.76 ±3.45; 

DBA=17.04 ±5.85; C57=17.17 ±8.59).  There was no day effect, nor was there an 

interaction.  During the cued trial there were no significant differences in swim speed.  

T-maze 

 Figure 6 shows the T-maze data.  In graph A the percent correct arm choices are 

shown.  There were no significant differences in strain performance or across days and the 

interaction also was not significant. 

 Graph B, Figure 6, shows the percent trials that ended in a time out.  Again, there was 

no significant difference between strains; however, there was a trend for the 129S strain to 

have increased numbers of time out trials as compared to the other three strains (p=.054).  

There was a significant effect of day in that the percent of timed out trials was significantly 

reduced across days (Table 5).  There was no interaction between strain and day. 

Autoshaping 

In Figure 7, graph A the data for total lever presses are presented.  No significant difference 

between strains was noted during Day 1 (the Pavlovian/Instrumental component).  During the 

Instrumental component (days 2-5) there was no effect of strain or an interaction 
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Figure 4 

DBA/2 Mice  

BALB/c    

 

C57BL/6   

129/S2    

 

Figure 4. Locomotor Activity Maps. These figures show individual subject paths that 

represent the overall behavior of the strain.  Each mouse strain is noted to the left of the 

activity maps.
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Figure 5 
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Figure 5. Morris Water Maze Data.   Graph A shows the average number of trials per strain per day to reach the hidden platform.  

Graph B shows the average latency per strain in seconds to reach the hidden platform.  Graph C shows the average swim speed per 

strain per day.  In all three graphs the final day is separated as this is the visually cued trial.  A separate analysis was done on the 

visible platform data.  Sample size per strain is noted in the legend.  *Indicates the strain was significantly different than all other 

strains, except when a 
#
 or 

%
 is noted.  A 

#
 indicates the strain reached the platform significantly less than both Balb/c and 129 

strains, but not less than C57 mice.  A 
% 

indicates the strain found the hidden platform significantly more often than C57 and DBA 

strains, but not more than Balb/c mice. 
 
Effect of day is noted in the results text.  Mean (SEM) is included in graphs. 
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between strain and day; however, there was a significant main effect of day.  There were 

significant increases in the number of lever presses on Days 3-5 (428.68 ±567.37, 535.14 

±636.13, and 399.46 ±465.70, respectively) as compared to Day 2 (64.96 120.41) and on 

Days 4-5 as compared to Day 3.  During the Extinction component (Days 6 and 7) there was 

no effect of strain or an interaction between strain and day; however, there was a significant  

effect of day.  Lever pressing on Day 7 (160.75 ±205.79) was significantly less than on Day 

6 (314.46 ±335.63). 

In graph B, Figure 7, the number of contingent responses (those made during the 

presentation of the paired cues; the tone and signal light above the lever) are shown by strain 

and day.  Similar to the results for the total lever pressing data, there was no differential 

performance in any component dependent on strain.  Additionally there was no interaction 

between strain and day.   

Finally, there was no effect of strain during the first component on Day 1, however 

there was an effect of day during Days 2-5 (3.57 ±5.87, 25.07 ±32.54, 40.36 ±41.29, 50.39 

±52.81, respectively).  Here significantly different total contingent responses were seen 

between all days except for Day 4 and Day 5.  Also, Day 6 (32.32 ±31.35) showed 

significantly more contingent responses than Day 7 (15.36 ±20.77). 

Discussion 

Overview 

 The overall purpose of the present study was to investigate potential baseline 

phenotypic differences in four isogenic mouse strains.  The general motivation for the 

choices of these tasks and strains is primarily exploratory (T-maze and autoshaping), though 

portions of the study have literature on which to grow hypotheses (locomotor activity and  
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Figure 6 
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Figure 6.  T-maze Data.  Graph A shows the percent correct arm choices made per day per 

strain by day.  This is the total number of correct choices possible per daily session divided 

by the total number of trials where a correct choice was possible.  Graph B shows the percent 

of trials ending in a time out (120 seconds) per strain by day.  This is calculated by dividing 

the number of trials timed out per daily session by the total number of trials where a time out 

was possible.  Sample size per strain is noted in the legend.  No significance is noted in these 

graphs, though effect of day is noted in the results text.  No Mean (SEM) data is included in 

either graph due to observer-based recording of behavior. 

 

MWM).   Some results corroborated previous research, while other data was novel and 

therefore can be used in future hypotheses.  Other task results produced data that could not be 

used for these particular purposes though may be useful in other research.   

Locomotor Activity  

Based on previous studies (see Table 3; Gerlai, 1998) it was expected that the 129S strain 

would exhibit the least amount of horizontal activity in the locomotor activity task as 

compared to the other three strains, (C57, DBA, and Balb/c mice).  By the time the final 

locomotor activity task was undertaken all the strains displayed increases in horizontal 

activity with the DBA mice displaying the highest level of horizontal ambulation. Nikulina, 

Skrinskaya and Popova (1991) reported that DBA mice displayed significantly greater 
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Figure 7 

 

Lever Press

0

200

400

600

800

1000

D
ay

 1
 - 

IP

A.

129S (n=6)

DBA (n=8)

BALBc (n=6)

C57 (n=8)

D
ay

 2
 - 

I

D
ay

 3
 - 

I

D
ay

 4
 - 

I

D
ay

 5
 - 

I

D
ay

 6
 - 

Ext

D
ay

 7
 - 

Ext

* % *

Day

L
e
v

e
r 

P
re

s
s
 C

o
u

n
t

Contingent Responses

0

25

50

75

100

D
ay

 1
 - 

IP

B.

129S (n=6)

DBA (n=8)

BALBc (n=6)

C57 (n=8)

D
ay

 2
 - 

I

D
ay

 3
 - 

I

D
ay

 4
 - 

I

D
ay

 5
 - 

I

D
ay

 6
 - 

Ext

D
ay

 7
 - 

Ext

* * *

Day

R
e
s
p

o
n

s
e
 C

o
u

n
t

D
u

ri
n

g
 C

o
n

ti
n

g
e
n

c
y

 

Figure 7. Autoshaping Data. Graph A shows the average number of lever presses per strain 

by day.  Graph B shows the average number of correct responses, or those made during the 

presentation of the tone-signal light paired, per strain by day.  Both graphs are separated into 

three components: Day 1 is the Pavlovian/Instrumental procedure, Days 2-5 are only the 

Instrumental condition, and Days 6 and 7 are the Extinction portion.  Separate analyses were 

conducted on each portion.  Day 1 data were analyzed with a one-way repeated measures 

ANOVA.  Sample size per strain is noted in the legend.  An * in a box at the top of the graph 

represents that day is significantly different than all other days in its component.  A % at the 

top of a graph indicates Day 3 was less than 4 but not 5.  Both graphs include Mean (SEM) 

data. 

 

ambulation than C57 mice, similar to what was observed in the current study during the 

second, final locomotor activity task.  Also, O‟Connell (1980) reported that over the course 

of a 3-day activity task the Balb/c strain maintained a high activity level, the C57 strain 

moderate, and the DBA mice increased in activity in the last two days compared to the first 

day.  Overall the Balb/c strain exhibited a relatively moderate activity level in both the initial 

and final activity tasks as compared to the other three strains of mice.  Habituation to the 

experimental environment seemed to occur in alls strains as activity decreased in both the 

initial and final tasks as the days proceeded, which is unlike the C57, DBA, and Balb/c strain 

data that were reported in O‟Connell (1980) where the DBA and Balb/c strains did not show 



 

66 

decreases in activity over days, but the C67 mice did habituate.  Of note is that all of their 

study‟s cross-breeding offspring, or hybrids, also showed habituation.   

129S mice not only displayed the least horizontal activity of the four strains used in 

the present study but also showed the least rearing behavior, as well.  This significantly 

decreased activity in the 129S strain was present at the beginning of this study when the mice 

were approximately 2-3 months old, and again at the completion of the study when they were 

13 months old.  The strength of this phenotypic difference in locomotor activity also 

perseverated through the potential impact of the various behavioral tasks that were conducted 

between the initial and final locomotor activity tasks.  It is interesting to note that the two 

main activity measures, horizontal ambulation and rearing, were highest in the C57 strain at 

the start of this study, which replicates previous results (Thompson, 1953).  In contrast to 

horizontal ambulation, no habituation in rearing behavior was observed, 

The 129S mice displayed the highest levels of thigmotaxia in both the initial and final 

(only on day 1) assessments of locomotor activity.  From a qualitative perspective it was 

observed that this particular strain, while producing very low levels of horizontal activity, 

tended to remain close to the walls throughout the 1-hour sessions and sat still in the chamber 

corners for extended periods of time (see Figure 4).  The C57 mice showed the least 

thigmotaxia during both the initial and final activity tasks; however, this difference was 

significant only during the initial assessment of locomotor activity as the other three strains 

showed a decrease in absolute levels of thigmotaxic behavior during the second assessment. 

These differences in horizontal activity and thigmotaxia between the C57 and 129S strains 

confirm previous findings (see Holmes et al., 2002; Voikar et al. 2001). The reduced 

horizontal activity of the 129C mice suggests that this strain would not be a good choice in 
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memory tasks (like the Barnes maze and 8-arm radial maze) that require a lot of locomotor 

activity; whereas, the C57 mice should do much better. The increased thigmotaxia seen in the 

129S mice supports previous findings that this strain displays increased anxiety-like 

behaviors (see Voikar et al. 2001) and therefore might be useful in pharmacological studies 

attempting to identify drugs with anti-anxiety properties. 

Balb/c mice had a significantly higher fecal boli count than all other strains in the 

initial assessment of locomotor activity; however, during the second assessment their fecal 

boli count had decreased to the point that they were not significantly different from the DBA 

and C57 strains.  Boli count across strains was greater on Day 2 than Day 1 of the initial task, 

but no differences were seen in boli count across days during the final task.  Thompson 

(1953) also found Balb/c mice defecate significantly more than other inbred strains.  

Increases in thigmotaxia and fecal boli count have been associated with increased 

“emotionality” (anxiety-like behaviors) in rodents (Hall, 1934). Based on the present 

findings, both the Balb/c and 129S mouse strains appear to be appropriate choices for studies 

interested in measuring anxiety-like behaviors. 

Future Directions: Locomotor Activity 

A literature review of previous studies (see Table 1) failed to show a differential 

effect of senescence on locomotor effects in these particular strains, therefore an increase or 

decrease in activity levels was not expected from the initial to the final assessment of 

locomotor activity.  Even though the rank order of activity changed for the C57, Balb/c and 

DBA/2 strains, what remained steady was that the 129S strain consistently displayed the least 

activity.  This decreased activity was observed in the other two activity-based tasks, the 

MWM (floating in the water, often would not even climb onto the platform upon locating it) 
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and the T-maze (sat still against the walls or in corners regardless of level of food deprivation 

in place).  In a review of inbred behavioral phenotypes, associated assay procedures, and 

their dependent measures Crawley et al. (1997) notes  that generally rodent subjects‟ activity 

(horizontal and rearing) levels decrease, fecal boli count increases, and thigmotaxia increases 

in anxiogenic environments, say when loud noises or bright lights are present.  With this in 

mind it would then be possible to conclude merely based on activity levels, that compared to 

the other three strains in this study 129S mice are less sensitive to stressful stimuli.  It is 

important to clarify that with regard to relatively low levels of horizontal activity and rearing 

behavior the 129S behavior may not be so simply explained.  While this study‟s activity data 

concur with data from studies that have found a positive correlation between horizontal and 

rearing locomotion (De Fries et al., 1978; Henderson, 1967; Van Abeelen, 1977), it does not 

agree with the other side of these results, which indicate such increases are negatively 

correlated with defecation.  That is, if lower levels of gross movement indicate increased 

reactivity to aversive stimuli, then so should these same subjects produce lower fecal boli.  

Another difference between our results and those noted in the above mentioned studies is that 

here the 129S had high levels of thigmotaxia which has been considered to indicate 

heightened stress in aversive environments (Crawley et al., 1997).  We did not find these 

trends with the 129S strain in this study, and via observation the best explanation may be that 

the generalized, widespread inactivity of these mice affected many if not all of the dependent 

measures recorded for them.   

This strain‟s decreased levels of activity would undermine its usefulness as a strain in 

experiments investigating decreases in locomotion due to some applied condition.  It may, 

however, indicate a greater usefulness when considering a potential increase in activity, such 
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as environmental manipulation or pharmaceutical administration (e.g. a stimulant effect of a 

drug on activity might be easier to detect in 129S mice).  In fact, in Giros et al., (1996) it was 

hypothesized that a homozygote dopamine transporter knockout mouse strain would exhibit 

increased activity from normal wild type mice, as well as heterozygote mice. Indeed 

researchers not only found increased baseline horizontal activity in the homozygote strain, 

but they also noted decreased sensitivity to administration of both cocaine and amphetamine, 

which are known to increase locomotion in normal subjects within a certain range of 

concentrations.  Here baseline hyperlocomotion provided a backdrop from which to identify 

a notable lack of change in behavior.  Likewise, strains that produce high levels of activity 

may be more appropriate for studies investigating an expected decrease in activity (Crawley 

et al., 1997) because they might provide a heightened activity backdrop through which to 

identify potential decreases in behavior. 

 DeFries et al., (1978) used an F3 cross between C57 and Balb/c, which they chose 

due to high and low activity in the locomotor activity task (though the present study didn‟t 

find the Balb/c strain to be less active), and found that the same genes are responsible for 

both activity and defecation.  These genetic influences were further studied by Trullus and 

Skolnick (1993) when they used 16 isogenic strains of mice.  They discovered that 75% of 

the variation in the task under bright illumination is due to genetic factors, but only 44% 

variation is genetically based when the task is under low illumination.  Wehner, Radcliffe 

and Bowers (2001) describe this result as “a unique set of genes regulate variability in 

specific measures of anxiety,” referring to the open field locomotor activity task.  Further 

research by Flint et al. (1995) using a variety of behavioral tasks, including Locomotor 

Activity, Elevated Plus Maze (EPM), and the Y-maze, and many inbred mouse strains has 
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produced strong evidence that a QTLs on chromosomes 1, 12, and 15 are responsible for the 

majority of the variance in behavior in the dependent measures taken from these tasks, such 

as general activity, fecal boli count, Y-maze exploration, and light vs. dark arm entry in the 

EPM.  The authors conclude that these genomic locations “are, at least in part, the genetic 

basis of emotionality” (for review see Wehner, Radcliffe & Bowers, 2001).  There are hopes 

that these types of interactions between behavioral paradigms and genetic analyses will aid in 

the realization of the potentially differential impact of environment vs. genetic background 

on behavior.  At that point perhaps a more informed a discussion as to how behavior (inter-) 

relates to psychiatric disorders in humans can be had, and indeed already is. 

Morris Water Maze 

Figure 5 shows graphs for the MWM data. Although there was an interaction between 

day and strain, there were no significant differences between strains on accuracy or across 

days.  While the DBA mice performed significantly worse on Day 1, there was no difference 

between strains on Day 2, and both 129S and Balb/c strains showed higher accuracy than the 

DBA mice on Day 3.  On Days 5 and 6 the Balb/c mice showed the highest accuracy as 

compared to the other three strains.  This is in direct contrast with the results of Upchurch 

and Wehner (1988) who found that Balb/c mice could not acquire the position of either 

visible or hidden platforms.  They describe this poor performance as a result of poor 

eyesight, or inability to see the cued platform location or the distal visual cues around the 

MWM.  However, in the present study there were no strain differences for the visible, cued 

platform day, which replicates findings reported by Owen et al. (1997).  Thus, there do not 

appear to be deficits in visual capabilities between any of these four strains as measured by 

the visible platform task in the MWM. Owen et al. (1997) also found that C57 and DBA, but 
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not 129S and Balb/c strains, showed decreases in latency to reach a hidden platform over 

trials, however all strains swam significantly more in the trained platform quadrant versus the 

other quadrants, so all mouse strains displayed some learning. 

There were no significant differences between strains or across days with regard to 

latency to reach the hidden platform. There were no differences for swim speed across days, 

but the Balb/c mice did display significantly slower swim speeds as compared to the other 

three strains (although the absolute differences were not that great).  Swim speed can be 

affected by a variety of non-cognitive causes, such as variation in animal size or shape and 

motivation.  Anecdotally, it was noted that the 129S mice tended to spend more time floating 

than the other three strains, and that a large amount of their backs were above the waterline, 

while other strains, such as the Balb/C and DBA mice, swam with the majority of their 

bodies underneath the waterline.  The lack of significant decreases in both latency and path 

length demonstrated that all four strains displayed minimal learning in the MWM task, or at 

least what learning occurred initially was not maintained. The failure of learning across 

strains was not anticipated as other studies have shown that these strains are capable of 

learning across days at some level (see Table 4).  It is interesting that on the last two days of 

the hidden platform the Balb/c strain began to show greater accuracy than the other three 

strains while other studies have reported poorer performance in the MWM task for Balb/c 

mice (Holmes et al., 2002; Upchurch & Wehner, 1988); however, one difference in the 

present study was the relatively poor performance of the other three strains.  Holmes et al. 

(2002) also observed no differences in swim speed, while the present study found that Balb/c 

mice tended to swim slower than the other three strains.  Owen et al. (1997) noted that the 

poor performance in the MWM and other tasks by 129S mice suggests that they would be a 
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poor choice of background strain for subjects in learning and memory tasks.  This issue has 

been addressed by creating F
1
 hybrids that perform better in such tasks.  Wehner, Radcliffe 

and Bowers (2001) note that QTL analyses have failed to show significant results concerning 

behavior and performance in the MWM.  

T-maze 

The T-maze task also failed to reveal any significant differences between strains. It is 

clear from the graphs (Figure 6) that the 129S strain produced the fewest correct arm choices, 

as well as the highest number of timed out trials.  To qualify this statement it should be noted 

that similar to the locomotor activity tasks, this strain often displayed less horizontal activity 

as compared to the three other strains.  The high number of timed out sessions was due to the 

subjects remaining in a single spot in the maze for the entire trial.  In a study by Gerlai 

(1998) that used a different version of the T-maze C57 mice (as compared to 129S and DBA 

mice) displayed better learning of the task (Balb/c mice were not tested).  In another study 

investigating potential differential spatial and non-spatial learning between C57 and DBA 

mice in three different radial arm mazes, the C57 strain was again found to be superior 

(Ammassari-Tuele et al., 1993).  Obviously, with the lack of learning in the present study the 

current T-maze data cannot be compared with that in the literature. 

Autoshaping 

Though there were no differences between them, all four strains of mice displayed 

significant increases in both total lever presses and contingent responses during the 

Instrumental portion of the autoshaping operant task (Figure 7) which shows that they all 

learned the lever press response during the autoshaping task.  During the Instrumental portion 

of the task (days 2-5), contingent responses (lever-pressing during the contingency) as well 
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as the previously mentioned lever pressing, increased across days.  Towards the end of this 

period however, the total number of lever presses decreased while at the same time that the 

contingent responses increased.  This also supports the conclusion that all four strains were 

learning; that is, non-contingent lever presses were minimized while the number of 

reinforced (contingent) responses were simultaneously increasing.   In another autoshaping 

procedure, though this one used nose-poke as the sought operant behavior, O‟Connell (1980) 

reported that during a baseline condition focused on food consumption there were 

quantitative differences between DBA, Balb/c and C57 strains, where DBA mice produced 

the greatest number of responses, then Balb/c, and finally C57 mice produced the least 

responses in the task.  Interestingly, the authors found that this variation was not due 

significantly to genetic influence, and thus was a product of environmental influence.   Likely 

the most influential environmental stimulus responsible for the variation is the change in 

contingency schedules from baseline responding to responses during the contingency.  In 

fact, upon the switch from baseline food consumption to the autoshaping procedure a five-

fold increase was seen in nose-poke responding across all strains.  In the present study we 

investigated three different contingencies and also noted significant increases in responding 

as the animals from the Pavlovian/Instrumental condition to the Instrumental condition and 

then a decrease in responding during the Extinction condition.  If the isogenic strains used in 

the present study represent specific and unique genetic backgrounds, which we believe they 

do, then the results of the present study agree with those of O‟Connell et al. (1980) in that 

there were no significant differences between the four strains we used in acquiring the 

operant tasks, and the conditions therein.  Thus, in these cases there seems to be little if any 
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effect of the genome on learning an association between an operant behavior (either nose-

poke or lever press) and a food reward. 

During the Extinction condition both total lever pressing and contingent responses 

decreased significantly from Day 6 to Day 7, again indicating that the mice were responding 

appropriately to the change in the reinforcement schedule. The significant decline in 

responses during the Extinction portion of this task also demonstrates that all four strains of 

mice were learning the operant behavior, which was expected based on the reinforcement 

contingency. One important distinction in the present study as compared to previous 

autoshaping studies with mice (Baron & Meltzer, 2002;
 
Johnson, Pesek, & Newland, 2009; 

Papachristos & Gallistel, 2006) is that previous studies have primarily utilized a nose poke 

response as the desired operant, instead of lever pressing. While no studies have directly 

examined the differences between the nose poke response and the lever press response, it 

seems reasonable to assume that the nose poke response requires less physical effort by the 

mice. It would be interesting to directly compare the rate of learning in different strains of 

mice with the nose poke response versus the lever press response. 

McKerchar et al. (2005a) noted a strong positive correlation between locomotor 

activity level and rate of lever-pressing in all strains.   The present study was not designed to 

compare locomotor activity data to the lever pressing rate data, as only the autoshaping task 

was used to look at initial acquisition of the lever press response.  McKerchar et al. (2005a) 

used an intermittent reinforcement schedule to obtain stable (and higher) response rates that 

could be correlated with activity data.   

Thompson (1954) and Crawley et al. (1997) have noted that performance variability 

within strains should be expected as these types of behaviors (activity, cognitive processes, 
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etc.) are complex and thus influenced by multiple genetic factors.  Interestingly, for the data 

from the locomotor activity and autoshaping tasks in this study it is quite the opposite.  These 

data had small variability within strain.  For example, during the initial locomotor activity 

task, the SEM for the horizontal ambulation for each of the strains, as a percent of the overall 

average beam breaks throughout the entire 3-day session was: 129S= 5.30%, DBA = 3.25%, 

Balb/c = 2.89%, and C57 = 2.53%.  For the Autoshaping procedure, the SEM for the 

contingent responses dependent measure, as a percent of the overall average contingent 

responses throughout days 2-7 was: 129S = 20.81%, DBA = 12.73%, Balb/c = 13.06% and 

C57 = 16.96%.  This may very well likely be an artifact of automated systems versus 

observer-based data collection.  As Thompson (1954) states, behavior is in itself a complex 

field thus minimizing variability will be a constant effort, and the major manipulators of 

behavior are genetics, environment, and interactions between the two.  In fact the author even 

goes so far as to say that the within strain variability observed in his studies must be due to 

environmental discrepancies that occurred before the mice arrived at his location.  This 

particular subject is one that has been a topic of interest in recent years as significant 

variations in inbred strains of rats and mice have been seen between strains maintained at 

different laboratories.  Wahlston et al. (2003) investigated the “gene-environment 

interaction” by acquiring eight different isogenic groups of mice (including each of the 

strains used in the present study) which were then tested in a variety of behavioral assays 

including: locomotor activity in a small box, the elevated plus maze, accelerating rotarod, 

visible platform water escape, cocaine activation of locomotor activity, and ethanol 

preference.  Their general findings indicated that there was little to any effect of whether the 

mice were bred in-house or received by the laboratory via shipment. They also found that sex 
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differences were negligible, but that the effect of genetics was nearly always large.  There 

was a strong interaction between genes and lab for locomotor activity, cocaine activation, 

and EPM, but for ethanol preference and the water escape task the results were similar across 

labs, indicating a large impact of type of task, as well.  The authors concluded that while it 

will never be a perfectly standardized scientific pursuit, even within an individual laboratory 

environment, large effects [genetic, environmental (task, lab, etc.), or an interaction between 

the two] are likely to be elucidated, while more moderate ones (as could be expected) will be 

more difficult to uncover across labs.  The present study encountered these same issues.  The 

findings from the locomotor activity task clearly replicated previous findings in the literature, 

while learning and/or performance in the MWM and T-maze did not.  Fortunately the 

Autoshaping task was able to produce useful data, and further investigation of the influences 

of genotype vs. phenotype on behavior in this task should yield interesting findings. 

 Future Directions: Autoshaping 

In the tasks where data were useable, that is the locomotor activity and operant 

autoshaping/extinction tasks, we were able to present a comparative and a novel data set.  In 

the activity tasks we presented findings that are comparable to the literature, and the within-

subjects design allowed for a new perspective on impact of age and experimental conditions 

on activity, and components within that broad dependent measure (rearing, thigmotaxia, and 

binning the data within sessions).  These two datasets (initial and final) can be used in future 

studies as comparators when aging and potential impact of various experimental procedures 

and environments are being investigated. 

As for autoshaping and extinction of an operant behavior, the present study used a 

relatively novel operant, the lever press, which allows these data to be of particular interest in 
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the field of behavioral genetics.  Perhaps due to the relative ease in training complex operant 

tasks in rats vs. mice, most operant studies have been conducted with rats.  That so, 

demonstrating that four of the most commonly utilized isogenic strains of mice can learn and 

perform this task (using the lever press response) is important because it demonstrates that 

behavioral tasks that have primarily been restricted to rats can be used in mice, thus 

increasing the ability to study the role of genetic factors.  Conditions (e.g., brain lesions, 

pharmacological administration) that have historically been investigated primarily in rats and 

other non-human populations can now be researched while more easily examining the effects 

of genetic manipulation.  Also, the vast majority of mouse operant studies have used the 

nose-poke response which has a vastly different topography than the lever press response 

required in the present study.  It has been hypothesized (Gamzu & Schwam, 1974; Hearst & 

Jenkins, 1974; Jenkins & Moore, 1973) that the nose poke is more closely aligned with the 

foraging/sniffing behavior that has evolved in mice and other rodents.  Therefore the use of 

the lever press in this task may require the subject to deviate more from their natural behavior 

topography, indicating this task may be more difficult for mice to perform.  The results of the 

present study demonstrated that lever pressing is not too difficult an operant for mice, even in 

a complicated, multi-procedure task.  Hence, this opens the door for future behavioral 

researchers who are interested in the various cognitive processes and their related dependent 

measures to use these and perhaps other inbred mouse strains.  Many more such strains 

should be tested in similar assays to continue to build the comparative data, but 

pharmacological impact, as well as lesion and trauma studies, can all be used in disease 

models.   
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Limitations 

 

 This study had some limitations that future studies could eliminate with task 

adjustment.  Primarily in the second and third tasks, the Morris Water Maze and T-maze 

respectively, learning was not observed in these subjects to the extent to which we could 

utilize the data to accurately assess the dependent measures to compare strains.  Thus, one of 

the main intentions of this study, to identify behavioral differences between strains, could not 

be investigated with these tasks.  Attempts to eliminate this particular issue (sufficient levels 

of learning/performance) can be addressed by more closely aligning procedural methodology 

with experiments that have been successfully conducted in the past.  Additionally, various 

dependent measures should be investigated in order to elucidate other potential areas of 

learning that could be used to compare strain performance. 

 Another concern in this study, particularly in the Morris Water Maze, was the use of 

both observer and automatically based dependent measures.  The dependent measures used in 

the final analysis of this task were the computer-recorded latency to locate the platform and 

swim speed, along with the observer-recorded total number of trials to find the platform.   

Widespread equipment failure undermined our original intent to provide the first two 

measures (along with path length) with assurance of accuracy.  The extractable data were 

used; however, it became apparent that another measure to identify spatial learning and 

memory was necessary to more completely describe performance in these strains.  Evidence 

suggests that in this particular model, with these types of equipment set-ups, much difficulty 

is encountered with accurately recording dependent measures across research teams 

(http://www.mailtalk.ac.uk/cgi-bin/webadmin?A0=WATERMAZE; J. Wiebelhaus, personal 

communication, May, 2009; R. Hamm, personal communication, April, 2009).  This seems 

http://www.mailtalk.ac.uk/cgi-bin/webadmin?A0=WATERMAZE
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to be due primarily to problems of pixilation, interference, and back-masking, which are 

issues inherent in any video process whereby the movement of an object (or subject) is 

recorded while a software system “reads” the change of individual pixels from either a light 

to a dark state, or vice versa.  Back-masking is either an automated or manual effort to 

minimize the light-based “noise” which the software reads as interference.  Any one of these 

problems, but more likely some combination of them, can result in data that are not useable.  

Future studies using this model should take special precautions to utilize well-tested 

equipment in viable experimental environments to ensure the utility of any data gathered.  

Also, when testing strains that have variable coat colors, a between subjects design is 

advisable as a white water color is necessary when testing mice with dark coat colors, and 

conversely a dark water color is necessary when testing lighter/albino mice. 

 A final concern in the present study was the attrition of animals during the study.  

There were variable reasons for this; however the primary explanation is that this study 

spanned 13 months.  The average lifetime for C57 male mice is 27.2 months, and for DBA 

male mice it is 23.0 months 

(http://research.jax.org/faculty/harrison/ger1vi_LifeStudy1.html).  Balb/C male mice lifespan 

median is 9.9-21.6 months 

(http://www.harlan.com/research_models_and_services/research_models_by_product_type/i

nbred_mice/balbc.hl).  The 129S strain is known in our lab to live approximately the same 

length of time as the C57 strain.  Over the course of this study the n per strain reduced from 

13 to 6-8.  Some of the animal attrition was due to natural death, although abnormal health 

issues (undiagnosed illness in the animal colony) began to be observed around study month 

9, or when the subjects were all approximately 10.5 months old.  We are not aware of any 

http://research.jax.org/faculty/harrison/ger1vi_LifeStudy1.html
http://www.harlan.com/research_models_and_services/research_models_by_product_type/inbred_mice/balbc.hl
http://www.harlan.com/research_models_and_services/research_models_by_product_type/inbred_mice/balbc.hl
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unusual health concerns specific to these particular isogenic strains.  Of course a between 

subjects design could ameliorate the natural attrition due to death or age-related disease, 

however our intention with these tasks was to attempt maximum experimental control during 

every task so a within subjects design was more appropriate for our purposes.   

Conclusions 

 The present study found that for four commonly used inbred strains of mice (C57, 

129, DBA, and Balb/c) certain behavioral tasks show similar (autoshaping, MWM, T-maze) 

and dissimilar (locomotor activity) performance.   The constructs addressed include 

locomotor activity, spatial and non-spatial learning and memory, as well as the acquisition, 

retention and extinction of an operant autoshaping procedure using a lever-press response 

instead of a nose-poke response that has been used in most previous studies.  Support has 

been made for the utilization of behavioral genetics as an important tool to elucidate 

knowledge about human disorders, diseases, as well as non-disease-related points of interest.   

Information about phenotypic differences provides important information about baseline 

behavioral differences that can and do affect experimental interpretation in studies using 

various inbred and outbred mouse strains.  Tasks that address wild-type, inbred, hybrid, and 

mutant strain (Bucan & Abel, 2002) variation in response to different drugs, in tasks such as 

such as drug discrimination and spatial and non-spatial learning (mazes), are being 

undertaken in numerous labs.  Examples include clozapine drug discrimination in both C57 

and DBA strains (Porter et al., 2008), ethanol discrimination in C57 and DBA strains 

(Shelton & Grant, 2002), differential effects of clozapine and haloperidol on lever-pressing in 

C57, Balb/c and LP strains (McKerchar & Fowler, (2005), haloperidol catalepsy in CD-1, 

C57, and Balb/c mice (Fowler, Zarcone & Vorontsova, (2001), and  haloperidol and 
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clozapine‟s effects on tongue dynamics (Wang & Fowler, 1999).  Other measures that can 

and are being actively investigated by researchers working on identifying and categorizing 

phenotypes in genetically manipulated mouse strains are blood disorders, hypertension, 

cancer, and sensory function deficits.  The “genotype-phenotype association (which allows 

for) predictions and facilitates efforts to identify and determine the function of genes 

participating in normal and disease pathways” 

(http://research.jax.org/faculty/molly_bogue.html) is also a useful resource in health and 

biomedical research, The addition of behavioral phenotyping data from tasks such as the ones 

used in the present study help provide information that can be used in future studies to better 

understand the underlying genetic influences on behavior. 

 

http://research.jax.org/faculty/molly_bogue.html
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