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Abstract

DOMINATION IN BENZENOIDS

By Nisreen A. Bukhary, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Director: Craig Eric Larson, Assistant Professor, Department of Mathematics and Applied
Mathematics.

A benzenoid is a molecule that can be represented as a graph. This graph is a fragment

of the hexagon lattice. A dominating set D in a graph G is a set of vertices such that each

vertex of the graph is either in D or adjacent to a vertex in D. The domination number

γ = γ(G) of a graph G is the size of a minimum dominating set. We will find formulas and

bounds for the domination number of various special benzenoids, namely, linear chains L(h),

triangulenes Tk, and parallelogram benzenoids Bp,q. The domination ratio of a graph G is
γ(G)
n(G) , where n(G) is the number of vertices of G. We will use the preceding results to prove

that the domination ratio is no more than 1
3 for the considered benzenoids. We conjecture

that is true for all benzenoids.

Keywords: benzenoid, domination number, packing number, linear chain, triangulene,

benzenoid parallelgoram, domination ratio.
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Benzenoids, Domination, and Introduction

1.1 Introduction

1.1.1 Key Definitions

A graph G = (V,E) consists of a set of vertices V = V (G) and a set of edges E = E(G)

together with an incidence relation which associates each edge in E to two distinct vertices

in V . A graph can be thought of as “dots and lines”. In the graph G in Fig. 1.1, V (G) =

{v1,v2,v3,v4,v5,v6,v7} and E(G)= {v1v2,v1v3,v3v4,v4v5,v5v2,v3v6,v1v6,v4v6,v1v7,v2v7,v5v7}.

Our graphs are simple: they do not have loops or more than one edge between any pair of

vertices.

v3

v1

v2

v4 v5

v6 v7

Figure 1.1: A graph G with 7 vertices, packing number ρ(G) = 1, and domination number
γ(G) = 2. The set P = {v1} is a maximum packing set, and the set D = {v2,v3} is a
minimum dominating set.

What follows are, in alphabetical order, definitions of some of the key concepts occurring

in this thesis. Other concepts are defined as they appear in the thesis.
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DEFINITION 1.1. Let C be a cycle on the hexagonal lattice. A benzenoid or benzenoid

graph is formed by the vertices in edges lying on C and in the interior of C [7]. Benzene

(see Fig. 1.2) is the simplest example. Benzenoid graphs are also called benzenoid systems,

hexagonal systems and hexagonal animals.

Figure 1.2: The graph of benzene, C6.

DEFINITION 1.2. A set D in a graph G is a dominating set if each vertex is either in D or

adjacent to a vertex in D. The domination number γ = γ(G) is the cardinality of a minimum

dominating set. Furthermore, D is an efficient dominating set if |N[v]∩D| = 1 for every

vertex v ∈ D. Not every graph has an efficient dominating set. The graph G is efficient if

and only if has an efficient dominating set [8].

If D is a dominating set, D is said to dominate itself as well as its neighbors. For instance,

for the graph in Fig. 1.1, the set D = {v2,v3} is a minimum dominating set and γ(D) = 2.

Note that D is not an efficient dominating set; so this graph is not efficient. Furthermore, for

the complete graph Kn, any vertex dominates itself and the remaining vertices, so γ(Kn) = 1.

For any cycle Cn, the reader may check, γ(Cn) =
⌈n

3

⌉
.

DEFINITION 1.3. The domination ratio is the ratio of the domination number γ(G) to the

number of vertices n(G), such that γ(G)
n(G) .

In Fig. 1.1, the domination ratio is γ(G)
n(G) =

2
7 . Also, for example for the cycle C4, the

domination ratio is 2
4 . C4 is an example of a graph whose domination ratio is greater than 1

3 .
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For the graphs considered in this thesis we conjecture that the domination ratio is no more

than 1
3 , and we prove this in special cases.

DEFINITION 1.4. An independent set is a set of vertices S in a graph G which no two

vertices in S are adjacent. Furthermore, the independence number α = α(G) is the size of

largest set of vertices such that no two are adjacent.

For the graph G in Fig. 1.1, the set S = {v6,v7} is an maximum independent set and

α(G) = 2. For the complete bipartite graph Kn,n, for example, the independence number is

α(Kn,n) = n, and for the complete graph Kn the independence number is α(Kn) = 1.

DEFINITION 1.5. In a graph G, the degree of a vertex v of a graph G is the number of edges

incident to the vertex. The degree of a vertex v is denoted deg(v). The maximum degree

of a graph G, denoted by ∆ = ∆(G), and the minimum degree of a graph G, denoted by

δ = δ (G), are the maximum and minimum degree of its vertices.

In the graph G in Fig. 1.1, the maximum degree is ∆(G) = 4 and the minimum degree is

δ (G) = 3. For the complete graph Kn, for example, the maximum degree and the minimum

degree are equal; ∆(Kn) = δ (Kn) = n−1.

DEFINITION 1.6. For every vertex v, the open neighborhood of v is N(v) = {w∈V (G)|wv∈

E(G)}. The closed neighborhood N[v] for any vertex v ∈V (G) is the open neighborhood of

v together with the vertex v itself. So N[v] = {v}∪N(v).

For example, in Fig. 1.1, the open neighborhood for v1 is N(v1) = {v2,v7,v6,v3}, and

the closed neighborhood is N[v1] = {v1,v2,v7,v6,v3}.

DEFINITION 1.7. A set P is a packing set or packing if for any two vertices u,v ∈ P,

N[v]∩N[u] = φ . The packing number ρ = ρ(G) is the cardinality of maximum packing set.

In Fig. 1.1, P = {v1} is a maximum packing set and ρ(G) = 1. For the complete graph

Kn, for example, any vertex dominates itself and the remaining vertices, it will be also a

packing set; so ρ(Kn) = 1.
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H
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H

Figure 1.3: A structural diagram of a benzenoid hydrocarbon.The carbon atoms with free
electrons on the outer edge of the benzenoid are bonded with hydrogen atoms. For the
present purposes, we consider the graph on the right formed by removing these hydrogens.
The resulting graph is the “carbon framework” of the benzenoid.

1.1.2 Chemistry

The chemical properties of benzenoids are of great and practical interest. The investigation

of the mathematical properties of benzenoids may lead to insights regarding their chemical

properties. This has occurred with related investigations.

Benzenoid hydrocarbons are condensed polycyclic unsaturated fully conjugated hydro-

carbons consisting of benzene rings C6 (see Fig. 1.3) according to the definition of the

International Union of Pure and Applied Chemistry IUPAC. The German chemist Kekule

discovered the structure for benzene in the 19th century. It is not known how many of these

compounds exist in nature, but it is probably in the thousands. It is not easy to answer

this question and determine the number of benzenoid hydrocarbons because of separation,

isolation, purification, and identification of any benzenoid hydrocarbons [7].
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Benzenoids are commonly found in the environment. Tons are produced in car exhausts

[5]. In 1933, scientists reported a benzo[a]pyrenemany as a carcinogenic costituent of coal.

After that they discovered that other benzenoid hydrocarbons are carcinogenic. Many of

the smaller benzenoids have now been classified as either carcinogenic or non-carcinogenic.

Some work has been done on a general theory of which benzenoids are carcinogenic [1].

More work remains to be done.

The thrust of this thesis is a mathematical investigation of the domination number and

domination number of the graphs of these chemical molecules. Similar investigations have

led to chemical insights. It is our hope that this investigation will lead to chemical insights.

Following an investigation of the Graffiti conjecture-making program, Fajtlowicz and Lar-

son showed that minimization of the independence number of a fullerene graph is a very

good predictor of the stability of fullerene molecules [6]. Relatedly Pepper pointed out

that minimization of the independence number of a benzenoid is a predictor of benzenoid

stability [9][10]. Furthermore, Pepper found an upper bound for the independence ratio

of a benzenoid. He found that, for every benzenoid G, α(G)≤ 11n(G)−2
20 , so that the inde-

pendence ratio is never more than 11
20 [10]. We expect that the following investigation of

the domination number and domination ratio will lead to similar correlation with chemical

properties.



6

Results on Domination

2.0.3 The history of the domination number.

In 1862, the problem of determining the domination numbers of graphs first occurs in the

paper of de Jaenisch. He wanted to find the minimal number of queens on a chessboard,

such that every square is either occupied by a queen or can be reached by a queen with a

single move [4]. Domination as a theoretical area in graph theory was formalized by Berge

in 1958 and by Ore in 1962 [8]. One early result that we will use (Theorem 2.4) is due to

Ore [2].

Furthermore, the theory of packing sets and the packing number is closely related to

the theory of dominating sets and the domination number. In particular, it is proved in

Theorem 2.2 that, for any graph which has a packing that dominates all vertices in the

graph, the packing number ρ(G) is equal to the domination number γ(G). So we have that

ρ(G) = γ(G). Furthermore, for any graph ρ(G)≤ γ(G). So in investigating the domination

number of a graph it is a useful tool to construct packings. This is used in several of the

following proofs.

2.0.4 Some useful results.

LEMMA 2.1. (Rubalcaba, Schneider and Slater [11]). For any graph G, ρ(G)≤ γ(G).

Proof. Let P be a maximum packing set, and D is a minimum dominating set. Each vertex

v ∈ P is either in D or can be associated to a unique vertex v′ in D\P. Note that vertices
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v,w ∈ P can not both be adjacent to the same vertex in D since, for every v,w ∈ P, we have

N[v]∩N[w] = φ . So |P| ≤ |D|; thus, ρ(G)≤ γ(G).

Earlier, we defined efficient dominating sets. These sets can be thought of as dominating

sets where each vertex in the graph is dominated by exactly one vertex in the set. Recall that

ρ(G) is the packing number of G and that γ(G) is the domination number of G.

THEOREM 2.2. (Rubalcaba, Schneider and Slater [11]). If a graph G has an efficient

dominating set, then ρ(G) = γ(G).

Proof. Let G be a graph, and let S be an efficient dominating set of G. So γ(G) ≤ |S|. It

also follows from the definition that S is a packing. Thus, |S| ≤ ρ(G). So, γ(G)≤ ρ(G). By

Lemma 2.1, ρ(G)≤ γ(G). Thus ρ(G) = γ(G).

However, later it will be useful to prove bounds on the domination number in terms of

the numbers of vertices n, and the maximum degree ∆(G). Recall that the upper bound

and the lower bound on the domination number is restricted by the number of vertices in

the graph. So we will prove two theorems for upper and lower bounds on the domination

number.

THEOREM 2.3. (Walikar, Acharya, Sampathkumar [8], See p.50). For any graph G,⌈
n

1+∆(G)

⌉
≤ γ(G).

Proof. Let D be a minimum dominating set of G. Each vertex v ∈ D dominates at most

∆(D) other vertices. That is |N(D)| ≤ |D| ·∆(G). Since D is a dominating set, we have

D∪N(D) = V (G). Hence, |V | ≤ |D|+ |N(D)|, which implies n ≤ |D| ·∆(G)+ |D|. So

n≤ γ(∆(G)+1). Thus,
⌈

n
1+∆(G)

⌉
≤ γ(G).

THEOREM 2.4. (Ore, [8], See p.41). If G is a graph of order n without isolated vertices,

then γ(G)≤ n
2 .
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Proof. Let S be a minimum dominating set of a graph G with no isolated vertices. We will

show that V (G)−S is also a dominating set. Let v ∈ S. So it must be shown that there is

a vertex w ∈V (G)−S, such that w is adjacent to v. Note that v is adjacent to some vertex

in G since G has no isolated vertices. If v is only adjacent to vertices in S, then S−{v} is

dominating set, which contradicts of the minimality of S. So v is adjacent to some vertex

w ∈V (G)−S, and V (G)−S is a dominating set. Thus, γ(G)≤min {|S|, |V (G)−S|}. Since

|S|+ |V (G)−S|= n, it follows that, γ(G)≤ n
2 .
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Benzenoid Domination Main Results

3.1 Linear Benzenoid Chains.

A linear benzenoid chain is a collection of hexagons arranged on a horizontal line where

each pair of adjecent hexagons share a vertical edge. Let L(h) be the linear benzenoid chain

with h hexagons. Benzene, represented by an isolated hexagon, is L(1). See Fig. 3.1 for

L(5).

Figure 3.1: The linear benzenoid chain L(5).

In order to represent the vertices of L(h) by coordinates we can view the linear chain as

being situated on two horizontal lines. See Fig. 3.2.

· · ·

(0,0)

(0,1)

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(3,1)

(4,0)

(4,1)

(2h−2,0)

(2h−2,1)

(2h−1,0)

(2h−1,1)

(2h,0)

(2h,1)

Figure 3.2: Coordinate system for the linear chain.
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In the following two results, we will calculate the number of vertices n(L(h)) and the

domination number γ(L(h)) of the linear benznoid chain with h hexagons.

PROPOSITION 3.1. If L(h) is a linear benzenoid chain with h hexagons, then n(L(h)) =

4h+2.

Proof. First, we note by inspection that the lemma is true for a linear benzenoid chain L(h)

with h = 1. Now, assume the lemma is true for a linear benzenoid chain L(h−1) with h−1

hexagons. So assume the number of vertices is n(L(h−1)) = 4(h−1)+2 = 4h−2. We

will now show that the lemma follows for a linear benzenoid chain with h hexagons. See

Fig. 3.3. Note that by removing the vertices (2h−2,1),(2h,1),(2h−1,0),(2h,0) we are

left with a linear benzenoid chain with h−1 hexagons. Thus, n(L(h)) = n(L(h−1))+4.

So by the inductive assumption, the number of vertices for n(L(h)) = (4h−2)+4 = 4h+2,

proving the corollary.

x

y

z

w

Figure 3.3: The shaded vertices are a minimum dominating set for the linear benzenoid
chain L(5). The shaded vertices are also a maximum packing.

THEOREM 3.2. If L(h) is a linear benzenoid chain with h hexagons, then γ(L(h)) = h+1.

Proof. Let L(h) be a linear chain with h hexagons. We represent the vertices of L(h) by the

coordinate system described above. Let Sh = {(2x, 1+(−1)x+1

2 )|x = 0,1, ...,h}. The vertices
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in this set correspond to the shaded vertices in Fig. 3.3. It is easy to check that S1 is an

efficient dominating set for L(1). Assume Sh−1 is an efficient dominating set for L(h−1).

We will now show that Sh is an efficient dominating set for L(h). Note that Sh = Sh−1∪

{(2h, 1+(−1)h+1

2 )}. We will show that each vertex in (2h−2,1),(2h,1),(2h−1,0),(2h,0)

is dominated by exactly one vertex in Sh. We know (2h− 2,0) is in Sh and (2h− 2,0)

dominates (2h− 1,0). We also know (2h,1) is in Sh and it dominates itself as well as

(2h−1,1) and (2h,0). So each vertex in L(h) is dominated exactly once. Thus, by Theorem

2.2, Sh is a miniumum dominating set and γ(L) = |Sh|= h+1.

Figure 3.4: The first three triangulenes; T1,T2, and T3.

3.2 Triangulenes

Let us now represent another simple class of benzenoid graphs, (see Fig. 3.4), group of

benzenoid triangulenes. The triangulene Tk, with k ≥ 1 levels of hexagons, is arranged in

the form of an equilateral triangle, which have the same number of hexagons in each side.

These triangulene consists of k rows, and k hexagons on the last bottom row, and the k rows
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are placed in a grid of horizontal lines, and these lines are noted by 1,2,3, · · · ,2k or 2k+1.

Furthemore, depending on the number of rows, we can divide the class of triangulenes

in to even triangulenes with 2k levels, or odd triangulenes with 2k+1 levels. Moreover,

this class of benzenoids is not new, where it was noted by Clar [3]. The different classes

of the triangulenes were used to show that the independence number can be arbitrarily

larger than the matching number, α(G)− µ(G) [7]. Actually, because of the difference

between triangulenes with even and odd number of rows following Pepper in [10], we will

consider these cases seperately. For even triangulenes, we will find an exact forrmula for the

domination number; for the odd triangulenes, we will find an upper bound.

↓

↓

↓

↓

↓

↓

↓

Figure 3.5: The bottom row of the triangulene Tk contains 2k+3 vertices. The 2(3)+3 = 9
shaded vertices are the bottom row of T3.

LEMMA 3.3. For every triangulene Tk with k ≥ 2, there are 2k+3 vertices belonging to the

bottom row of hexagons, which do not belong to any other row of hexagons.

Proof. Let Tk be a triangulene with k levels, k ≥ 2. So there is a bottom row of hexagons

with one or more rows above this row. Also note that, for a triangulene with k levels, there
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are k hexagons on the bottom row. Each of these hexagons has a negatively sloping bottom

edge adjacent to two vertices, totaling 2k vertices. Moreover, the left-most hexagon on the

bottom row also contains one other vertex not belonging to this set, or to any of the hexagons

in the rows above, and the right-most hexagon contains two vertices not belonging to this set

or to any of the hexagons in the rows above. Thus, together these are totally 2k+3 vertices

(see Fig. 3.5).

PROPOSITION 3.4. For any triangulene Tk with k levels, k≥ 2, there are n(Tk) = k2+4k+1

vertices.

Proof. Clearly, n(T1) = (1)2+4(1)+1 = 6 since T1 is benzene, the six-cycle. Now, assume

the result of the lemma is true for Tl where l ≥ 2. Let Tl+1 be a triangulene with l +1 levels.

The vertices in Tl+1 consist of the vertices in the first l levels together with the vertices on the

bottom (l+1)th row, which do not belong to any previous level. By the inductive assumption,

the first l levels of Tl+1 have n(Tl) = l2 +4l +1 vertices. Furthermore, by Lemma 3.3 there

are 2(l +1)+3 vertices on the last row, which do not belong to any previous row. Thus,

n(Tl+1) = (l2 +4l +1)+ [2(l +1)+3] = l2 +6l +6 = (l +1)2 +4(l +1)+1, which was

to be shown.

3.2.1 Even Triangulenes

An even triangulene is a benzenoid with an even number of levels; denoted by T2k for an

integer k ≥ 1. See Fig. 3.7 for an example of an even triangulene with 6 levels, such that

T2k = T2(3) where k is the number of even rows.

LEMMA 3.5. For every triangulene with an even number of levels, denoted by T2k for an

integer k, and k ≥ 1, there is a packing which dominates all the vertices of T2k.
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Figure 3.6: The shaded vertices are a packing of T2, which dominates all the vertices of T2;
so ρ(T2) = γ(T2) = 4.

Proof. The lemma can be verified for T2 = T2k, which is k = 1. By inspection: the shaded

set in Fig. 3.6 is a packing which dominates all the vertices in T2. For an even triangule T2n

consider the set P2n described as follows; note that each even row consists of consecutive

pairs of hexagons (since there are an even number of hexagons). Let P2n consist of the apex

(the vertex at the very top) together with the lower left vertex of the left hexagon and the

lower right vertex of the right hexagon of each of these packing og hexagons, plus the vertex

of the two shared vertices of theis pair. Assume P2n is a packing for T2n. We will show that

P2(n+1) is a packing set for T2(n+1) = T2n+2. By the construction, P2(n+1) is a packing of the

last bottom row (which is an even row). It remains to show that every vertex in the second

row from the bottom is dominated, but every vertex in this row belongs to either the row

above it or below it except the upper left vertex of the left-most hexagon and the upper right

vertex of the right-most hexagon. By the construction, P2(n+1) contains the lower left vertex

of the left-most hexagon of the third row from the bottom and the lower right vertex of the

right-most hexagon of this row. It can be checked that these dominate the remaining two

vertices from the second row from the bottom.

.
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THEOREM 3.6. For every even triangulene T2k with k ≥ 1, the domination number of T2k is

γ(T2k) = (k+1)2.

Figure 3.7: The shaded vertices are a dominating set for the even triangulene T6. This set is
also a packing. Here γ(T6) = γ(T2(3)) = (3+1)2 = 16.

Proof. It can be seen from Fig. 3.6 for T2k with k = 1, that γ(T2) = (1+ 1)2 = 4. Now,

assume that γ(T2k) = (k+ 1)2 is true. Note that γ(T2(k+1)) = (T2k+2) = ((k+ 1)+ 1)2 =

(k+2)2. Let S be a packing of T2k+2 guaranteed by the Lemma 3.5. Furthermore, by the

construction of this packing, S consists of a packing of T2k together with 2k+ 3 vertices
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from the “bottom row” namely the (2k+2)nd row of hexagons. However, since the packing

set S is a dominating set, then Theorem 2.2 guarantees that ρ(T2k) = γ(T2k). By assumption

γ(T2k) = (k+ 1)2; hence, ρ(T2k+2) = ρ(T2k)+ (2k+ 3) = (k+ 1)2 +(2k+ 3) = (k+ 2)2.

Thus, by the construction, this packing is a dominating set, and γ(T2k+2) = ρ(T2k+2) =

(k+1)2, proving the theorem.

3.2.2 Odd Triangulenes

An odd triangulene is a benzenoid with an odd number of levels; denoted by T2k+1 with

k ≥ 1. In Fig.3.8 is an example of an odd triangulene with 5 levels. There is some difficulty

to get an exact formula for the domination number. We are not able to use the same packing

we used for the even triangulenes T2k to define the dominating set for T2k+1, but we will

conjecture a close bound.

THEOREM 3.7. For any odd triangulene T2k+1, γ(T2k+1)≤ (k+1)2 + k.

Proof. As what was proved above, we already know that a triangulene with even levels,

T2k, has a minimum dominating set which is a maximum packing set with (k+1)2 vertices,

and γ(T2k) = (k+1)2. Now, we will use this fact to form an upper bound for a triangulene

with 2k+ 1 levels. One, not necessarily minimum, dominating set of T2k+1 consists of

dominating set of T2k together with sufficiently many vertices to dominate the “bottom row”

of T2k+1. It is clear that γ(T2k) ≤ γ(T2k+1) since T2k+1consists of T2k plus an additional

vertices. Let S be the packing of T2k guaranteed by Lemma 3.5. Then it can be easily

checked that S together with the bottom vertex of each hexagon in the bottom row is a

dominating set of T2k+1. So γ(T2k+1) ≤ γ(T2k) + one vertex from each hexagon on the

bottom row, which equals to γ(T2k)+ k. Therefore, by Theorem 3.6, γ(T2k) = (k+1)2, and

we have γ(T2k+1) ≤ (k+ 1)2 + k = k2 + 4k+ 2, which we need to show as approximate

bound for the odd triangulene.
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Figure 3.8: The shaded vertices are a dominating set for T5; which is an example of T2k+1
with k = 2, corresponding to the construction in the proof of Theorem 3.8. This dominating
set has 14 vertices.

3.3 Parallelogram Benzenoids

In Fig. 3.9, we see a new type of benzenoid called a parallelogram benzenoid. Let p≥ 1 and

q≥ 1 be an integers. The parallelogram Bp,q is a benzenoid that consists of p ·q hexagons:

these regular hexagons are arranged in shape of p rows, and each row has q benzene rings,

which are shifted by half benzene ring to the right from the row immediately below (see Fig.

3.9). We will find a formula for the domination number of these parallelogram benzenoids.

However, the parallelogram benzenoid Bp,q can have either even or odd number of rows.

For the difference even and odd rows in Bp,q, we will note that is difficult to deduce a
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formula for the domination number for Bp,q with even p or q, but we can find an exact

formula for the domination number for Bp,q with odd p and q. Hence, we will consider

cases, depending on whether p and q are odd or even, and we will define an upper bound for

these cases where we do not have an exact formula.

Figure 3.9: Benzenoid parallelogram Bp,q where in this figure the number of rows are p = 3,
and the number of hexagons in each row is q = 4.

PROPOSITION 3.8. For any benezenoid parallelogram, Bp,q, the number of vertices of Bp,q

is n(Bp,q) = 2pq+2p+2q.

Proof. A linear chain is a special parallelogram benzenoid, where p = 1. So we know by

Proposition 3.1, that n(B1,q) = 2(1)q+ 2(1)+ 2q = 4q+ 2. Now, assume that n(Bp,q) =

2pq+ 2p+ 2q. We must show that n(Bp+1,q) = 2(p+ 1)q+ 2(p+ 1)+ 2q = 2pq+ 4q+

2p+2. The number of vertices of Bp+1,q is n(Bp+1,q) = n(Bp,q)+ the vertices on the bottom

row. The negatively sloped edge of each hexagon in the bottom row contains two vertices for

a total of 2q vertices. Furthermore, the left-most and the right-most hexagon each contain

one vertex not belonging to Bp,q or a negatively sloped edge. So the total vertices on the
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bottom row is 2q+2. Thus, n(Bp+1,q) = n(Bp,q)+(2q+2) = (2pq+2p+2q)+(2q+2) =

2pq+4q+2p+2, which was to be shown.

Recall, the domination number of a linear benzenoid chain is γ(L(h)) = h+1, where h

is the number of hexagons. Since each row Pi, of the chemical structure in Bp,q is a linear

chain, then for each row γ(Pi) ≤ h+ 1 = q+ 1, where h=q. Now, we will consider the

following six cases, and find an approximate upper bound for each case:

1. p = 2 and q≥ 4.

2. p is even and q≥ 4.

3. p = 3 and q is even.

4. p and q are both odd.

5. p and q are both even.

6. The remaining special cases: B2,2, B4,4, and B4,6.

Case 1. p = 2 and q≥ 4.

THEOREM 3.9. For any benzenoid parallelogram Bp,q, with p = 2 and q≥ 4, then γ(B2,q)≤

2q.

Proof. In this case, we have a benzenoid parallelogram Bp,q with p = 2 rows and q≥ 4 of

columns. First, B2,q can be divided into two disjoint copies of T2 (call them Tp1 and Tp2) with

remaining vertices (see Fig. 3.10). Now, the two triangulenes Tp1 and Tp2 have dominating

sets that are packings. Note, using the construction of the dominating set for T2k from

Theorem 3.6, the union of these sets dominates B2,4. Now, let D be the dominating set which

includes these dominating sets for Tp1 and Tp2 , and the “valleys” vertices from the top row

and the “peaks” from the bottom row (see the example on the right in Fig. 3.10.) Let Dq be
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the described set corresponding to B2,q. Clearly, D4 dominates B2,4. Assume Dn dominates

B2,n for n ≥ 4. Furthermore, B2,n+1 consists of B2,n together with one more one more

column, and Dn+1 consists of Dn together with the upper and lower right vertices of B2,n+1.

By assumption Dn dominates B2,n. It can easily be checked that the other two vertices in

Dn+1 dominate the 6 vertices added in creating B2,n+1 from B2,n. So Dn+1 dominates B2,n+1.

This proves that Dq dominates B2,q for q ≥ 4. By construction, |Dq| = 8+2(q−4) = 2q.

So, γ(B2,q)≤ 2q.

Furthermore, this idea of B2,q when p = 2 and q≥ 4, can be extended to the case where

p even. We follow the same procedure of Theorem 3.9 in the Case 1.

Case 2. p is even and q≥ 4.

THEOREM 3.10. For any benzenoid parallelogram Bp,q, with p even and q ≥ 4, then

γ(Bp,q)≤ pq
2 + p

2 +q−1

Proof. As what proved in previous case, we already know that a parallelogram benzenoid

B2,q with p = 2 and q≥ 4, has upper bound γ(B2,q)≤ 2q. Now, we will use this upper bound

for the B2,q with q≥ 4, to form an upper bound for Bp,q with p even and q≥ 4 (See Fig. 3.10).

Note that, we will extend the construction of the dominating set for B2,q from Theorem 3.9.

Let D2 be the constructed set. Now, let Dp be the dominating set with even p constructed in

Theorem 3.9. The pth row, which can be viewed as a linear chain. Let D be the union of

these sets. By construction D dominates every vertex in the first and second rows and every

vertex in the every even row. It remains to show that D dominates every vertex in the third

rows. Note that there are only two vertices in each odd row which does not belong to the

previous of following even rows. These two vertices are the upper left-most vertex of this

odd row and the lower right-most vertex of this row. The upper left-most vertex of this odd

row is dominated by the lower left-most vertex of the row above (which belongs to D by our

construction). The lower right-most vertex of the odd row is dominated by the upper right-
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most vertex of the even row below it (which belongs to D by our construction). Note there are

p
2 even rows, and p

2−1 even rows other than the second row. See the left example in Fig.3.10.

Thus, by construction, |D| = |D2|+( p
2 −1) · |Dp| = 2q+( p

2 −1)(q+1) = pq
2 + p

2 +q−1.

So, γ(Bp,q)≤ pq
2 + p

2 +q−1, which proves the result.

Figure 3.10: On the right, the construction in the proof of Theorem 3.9, for B2,q with p = 2
and q≥ 4. In the left, the construction in the proof of Theorem 3.10, for B4,q with p = 4 and
q≥ 7. Furthermore, the shaded vertices are a dominating set for B2,q and B4,q, respectively.

Case 3.p = 3 and q is even.

THEOREM 3.11. For any benzenoid parallelogram Bp,q with p = 3 and q even, then

γ(B3,q)≤ 2q+3.

Proof. In this case, we have a benzenoid parallelogram Bp,q with p = 3 rows and q even.

Since we have two odd rows in B3,q corresponding to a linear chain, then each row has

a dominating set with (q+ 1) vertices. Let Di be the dominating set of the ith odd row

constructed in Theorem 3.2 for the linear chains.

For the even row of B3,q, the vertices of this row belong to either to first odd row below

and second odd row above this even row except two vertices. The first vertex is the upper

left-most vertex of the left hexagon in the even row, which is dominated by the lower

right-most vertex of this row above it (which belongs to D by our construction). For the
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second vertex is the lower right vertex of the right-most hexagon of the even row, but it is not

dominated by any other vertices in D1 or D3. Let D be the set consisting of the union of D1,

D3 and this vertex. We have argued that D is a dominating set for B3,q (see our construction

in Fig.3.11).

So, γ(B3,q)≤ |D|= 2(q+1)+1 = 2q+3, which proves our result.

Figure 3.11: The shaded vertices are a dominating set for B3,4; which an example of B3,q
with p = 3 and q even, corresponding to the construction in the proof of Theorem 3.11. This
dominating set has γ(B3,4) = 2(4)+3 = 11.

Case 4. p and q are both odd.

THEOREM 3.12. For any benzenoid parallelogram Bp,q with p and q both odd, then

γ(Bp,q) =
1
2(p+1)(q+1).

Proof. In this case, let O represent the odd rows (counting rows from the bottom proceeding

up for Bp,q). Note that each row in O corrseponds to a linear chain. So each odd row has a

dominating set with (q+1) vertices. We will use these dominating sets from the odd rows

to construct a dominating set D for Bp,q which is a packing. For each odd row there are odd
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q hexagons, and each odd row has a maximum packing set which is a dominating set with

q+1 vertices (see Fig. 3.12). D will be the union of the dominating sets for the odd rows.

For each odd row Oi, let Di be the dominating set constructed in Theorem 3.2. Let D be the

union of these Di’s. The set Di has been shown to be a dominating set and a packing in the

proof of Theorem 3.2. Hence, γ(B1,q) =
1
2(1+1)(q+1) = q+1. Consider any of the even

rows of Bp,q. All but two of the vertices of this row belong either to odd rows above and

below this row.

The remaining vertices are the upper left-most vertex of this row and the lower right-most

vertex of this row (see the right example in Fig. 3.12). The upper left-most vertex of this row

is dominated by the lower right-most vertex of the row above it (which belongs to D by our

construction). The lower right-most vertex of this row is dominated by the upper right-most

vertex of the row below it (which belongs to D by our construction). All the other vertices

in this even row belong to odd rows above and below it and are hence dominated by D.

Now, we will show D is a packing of Bp,q. Consider any odd row of Bp,q. Let Di be the

constructed dominating set for this row. By the construction of Di, Di does not contain any

of the “peaks” of the vertices along the top of this row. Hence, Di does not dominate any

vertex in the odd rows above it. Also, Di does not contain any of the “valleys” of the vertices

along the bottom of this row. Hence, Di does not dominate any vertex in the odd rows below

this row. Thus, no vertex is dominated by two different vertices. So D is a packing. Since D

is a dominating set and a packing, Theorem 2.2 implies that γ(Bp,q) = |D|. Since there are

p+1
2 odd rows, then |D|= ( p+1

2 )(q+1) = 1
2(p+1)(q+1), which proves the result.

Case 5. p and q are both even.

THEOREM 3.13. For any benzenoid parallelogram Bp,q, with p and q both even, and p,q≥ 4,

then γ(Bp,q)≤ p
2 (q+1)+ p

2 +q.
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Figure 3.12: The shaded vertices are a dominating set for B3,5 or B5,3; which is an example
of Bp,q with odd p and q, corresponding to the construction in the proof of Theorem 3.12.
This dominating set has γ(B3,5) =

1
2(3+1)(5+1) = 24

2 = 12 vertices.

Proof. As previous case, we count the odd rows (from the bottom to the top for Bp,q). Since

each odd row corresponds to a linear chain, then each row has a dominating set with (q+1)

vertices. Let Di be the dominating set of the ith odd row constructed in Theorem 3.2 for

the linear chains. Let D be the union of the dominating sets for the Di’s. By this theorem,

|Di|= 1
2(1+1)(q+1) = q+1. Since p is even, there are p

2 odd rows. So, ∑ |Di|= p
2 (q+1)

for the odd rows.

For the even rows of Bp,q, the vertices of this row belong either to odd rows above and below

this row except for two vertices. These two remaining vertices are the upper left-most vertex

of this row and the lower right-most vertex of this row (see example in Fig. 3.13). The

upper left-most vertex of this row is dominated by the lower right-most vertex of the row

above it (which belongs to D by our construction), but the lower vertex of the right-most

hexagon of this row is not dominated by any other vertices in D. For that, we will dominate

these vertices by p
2 vertices. These vertices are the lower right vertex from the right-most

hexagon from each even row. Since there are p
2 of these, then |Dq|= p

2 (see our construction

in Fig. 3.13). The other vertices in the even row belong to odd rows above and below it
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and are dominated by D. Note that, in the last top even row of hexagons can be dominated

by the “peaks” of this row. Let S be the set of these row peaks for this row in D (see our

construction in Fig. 3.13).

So, |D| ≤ |D| = |Di|+ |Dq|+ |S|+. Thus, γ(Bp,q) ≤ p
2 (q+ 1)+ p

2 + q, which proves the

result.

Figure 3.13: The shaded vertices are a dominating set for B6,6; which is an example of Bp,q
for even p and q both even with p,q≥ 4, corresponding to the construction in the proof of
Theorem 3.13. This is dominating set 6

2(6+1)+ 6
2 +6 = 30 vertices. So, γ(B6,6)≤ 30.

Case 6. Remaining special cases.
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The cases that were not considered by the previous theorems are B2,2, B4,4 and B4,6. In

each case, a packing ρ which is a dominating set can be constructed. Then Theorem 2.2

guarantees the domination number is the cardinality of this set.

1. For B2,2, see Fig.3.14. The constructed packing has 5 vertices. So γ(B2,2) = 5.

2. For B4,4, see Fig.3.15. The constructed packing has 13 vertices. So γ(B2,2) = 13.

3. For B4,6, see Fig.3.16. The constructed packing has 18 vertices. So γ(B4,6) = 18.

Figure 3.14: The shaded vertices are a dominating set for B2,2; this dominating set is a
packing and has 5 vertices. So, γ(B2,2) = 5.
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Figure 3.15: The shaded vertices are a dominating set for B4,4; this dominating set is a
packing and has 13 vertices. So, γ(B4,4) = 13.

Figure 3.16: The shaded vertices are a dominating set for B4,6; this dominating set is a
packing and has 18 vertices. So, γ(B4,6) = 18.



28

Domination Ratio

The domination ratio of a graph G is γ(G)
n(G) , the ratio of the domination number of G to the

number of vertices of G. As mentioned above, the domination ratio of a benzenoid may

correspond to chemical properties of the benzenoid.

Furthermore, for any benzenoid B the domination number is bounded such that 1 ≤

γ(B)≤ n. Each benzenoid type has outer vertices and inner vertices. For the outer vertices,

the minimum degree is two, and the maximum degree is three, and the maximum and

minimum degree for the inner vertices is always three, (see Fig. 4.1).

By Theorem 2.3 and Theorem 2.4, we know that 1
4 ≤

γ(B)
n(B) ≤

1
2 . The lower bound is given

as a function of the maximum degree ∆ . We conjecture that due to the regular structure of

the benzenoid that the upper bound can be given as a function of the maximum degree. We

will propose an upper bound for γ(B) in terms of the number of vertices n and the mazimum

degree ∆(B) = 3.

4.1 The upper bound for the linear benzenoid chains, triangulenes, and parallelogram

benzenoids.

THEOREM 4.1. For any linear benzenoid chain L(h), γ(L(h))
n(L(h)) ≤

1
3 .

Proof. We already have proved that the linear benzenoid chain L(h) with h≥ 1, has dom-

ination number γ(L(h)) = h+ 1. By Proposition 3.1, we proved n(L(h)) = 4h+ 2. So
γ(L(h))
n(L(h)) =

h+1
4h+2 . The reader can check that h≥ 1 implies h+1

4h+2 ≤
1
3 , proving the claim.
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a

b

c

d

e

f

g

Figure 4.1: An example for the outer vertices and inner vertices in the benzenoid with three
hexagons; for example, the vertices {a,b,g,e} are outer vertices with δ = 2, and the vertices
{c,g} are outer vertices with ∆ = 3. The vertex d is an inner vertex with ∆ = 3.

THEOREM 4.2. For even triangulene T2k with k ≥ 1, γ(T2k)
n(T2k)

≤ 1
3 .

Proof. Let T2k be any even triangulene, with k ≥ 1. We proved from in Theorem 3.6 that

γ(T2k) = (k+1)2. Also, from Proposition 3.4, we have n(Tk) = k2 +4k+1, which follows

n(T2k) = (2k)2+4(2k)+1 = 4k2+8k+1. Hence, γ(T2k)
n(T2k)

= (k+1)2

4k2+8k+1 . Note that for k≥ 1, it

is true that 2≤ k2 +2k. Then it follows that 3k2 +6k+3≤ 4k2 +8k+1. This implies that

3(k+1)2 ≤ 4k2 +8k+1, and (k+1)2

(2k)2+4(2k)+1 ≤
1
3 , proving the claim.

In this paper, we proved an approximate bound for the domination nmber of an odd

triangulene since it was difficult to deduce an exact formula for γ(T2k+1). Similarly, we

do not have an exact formula for the domination ratio for these graphs, but we do have an

approximate bound.

THEOREM 4.3. For any odd triangulene T2k+1, γ(T2k+1)
n(T2k+1)

≤ 1
3 .

Proof. From Theorem 3.7, we have shown that γ(T2k+1)≤ (k+1)2 + k. Moreover, Propo-

sition 3.4 implies that n(T2k+1) = (2k+1)2 +4(2k+1)+1 = 4k2 +12k+6. So γ(T2k+1)
n(T2k+1)

≤
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(k+1)2+k
4k2+12k+6 . For k≥ 0, the inequality 0≤ k2 +5k+3 is true. Then it follows that 3[(k+1)2+

k]≤ 4k2 +12k+6, and (k+1)2+k
4k2+12k+6 ≤

1
3 . proving the claim.

For the parallelogram benzeoid Bp,q we covered six cases which in every case, we had
γ(Bp,q)
n(Bp,q)

≤ 1
3 .

Case 1. p = 2 and q≥ 4.

THEOREM 4.4. For any parallelogram benzenoids B2,q with q≥ 4 and p = 2, γ(B2,q)
n(B2,q)

≤ 1
3 .

Proof. From Theorem 3.9, we have shown the bound for B2,q with p = 2 and q ≥ 4,

is γ(B2,q) ≤ 2q. Also, we have known n(Bp,q) = 2pq+ 2p+ 2q for any p and q from

Proposition 3.8. So we will verify that the domination number for γ(B2,q) divide by the

number of vertices no more than 1
3 . Thus, we have γ(B2,q)

n(B2,q)
≤ 2q

2(2)q+2(2)+2q . Since q ≥ 4

and p = 2, it follows that 3(2q) ≤ 2pq+ 2p+ 2q. Thus, 2q
2pq+2p+2q ≤

1
3 , so proving the

claim.

Case 2. p is even and q≥ 4.

THEOREM 4.5. For any parallelogram benzenoids Bp,q with p even and q≥ 4, γ(Bp,q)
n(Bp,q)

≤ 1
3 .

Proof. As what we did in Theorem 4.4, we will show the upper bound for Bp,q with p

even and q ≥ 4. From Theorem 3.10, and from Proposition 3.8, we know that γ(Bp,q) ≤
pq
2 + p

2 + q− 1 and n(Bp,q) = 2(4)q+ 2(4)+ 2q. So, γ(Bp,q)
n(Bp,q)

=
pq
2 + p

2+q−1
2pq+2p+2q . It remains to

show that
pq
2 + p

2+q−1
2pq+2p+2q ≤

1
3 . For p even, it follows that 0≤ (p−2)q+ p+6, and that implies

3pq+3p+6q−6≤ 4pq+4p+4q. Hence,
pq
2 + p

2+p−1
2pq+2p+2q ≤

1
3 , proving for claim.

Case 3. p = 3 and q is even.

THEOREM 4.6. For any parallelogram benzenoids B3,q with q even, γ(B3,q)
n(B3,q)

≤ 1
3 .

Proof. From Theorem 3.11, we have shown the bound for B3,q with p = 3 and q is even, is

γ(B3,q)≤ 2q+3. Also, we know n(Bp,q) = 2pq+2p+2q for any p and q from Proposition
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3.8. So we have γ(B3,q)
n(B3,q)

≤ 2q+3
2(3)q+2(3)+2q . It remains to show that 2q+3

2(3)q+2(3)+2q ≤
1
3 . That is,

2q+3
8q+6 ≤

1
3 . This inequality is equivalent to 6q+9≤ 8q+6, which is true for q≥ 1, proving

the claim.

Case 4. p and q are both odd.

THEOREM 4.7. For any parallelogram benzenoids Bp,q with odd p and q, γ(Bp,q)
n(Bp,q)

≤ 1
3 .

Proof. From Theroem 3.12 we note that the domination number for parallelogram benzenoid

is γ(Bp,q) =
1
2(p+1)(q+1) p and q both odd. since the domination number for Bp,q is an

integers. From Proposition 3.8, we have n(Bp,q) = 2pq+2p+2q. So, γ(Bp,q)
n(Bp,q)

=
( 1

2 (p+1)(q+1)
2pq+2p+2q .

It remains to show that ( 1
2 (p+1)(q+1)
2pq+2p+2q ≤

1
3 . For p≥ 1 and q≥ 1, it follows that 3≤ pq+ p+q.

It then follows that 3(p+1)(q+1) ≤ 2(2pq+2p+2q) and, from this, we conclude that
1
2 (p+1)(q+1)
2pq+2p+2q ≤

1
3 , proving the claim.

Case 5. p and q are both even.

THEOREM 4.8. For any parallelogram benzenoids Bp,q with p and q both even and p,q≥ 6,
γ(Bp,q)
n(Bp,q)

≤ 1
3 .

Proof. We have proved in Theorem 3.13, that Bp,q with even p and q and both of them

p,q ≥ 6, has γ(Bp,q) =
p
2 (q+ 1) + ( p

2 + p
2 ). We also know, from Proposition 3.8, that

n(Bp,q)= 2pq+2p+2q. So, γ(Bp,q)
n(Bp,q

≤ 3(pq+p)+3p+6q
4pq+4p+4q . It remains to show that

p
2 (q+1)+ p

2+q
2pq+2p+2q ≤

1
3 . For p and q both even and p,q ≥ 6, it follows that 3 ≤ pq−2p−2q, and that implies

3(pq+ p)+3p−3+6q≤ 4pq+4p+4q. Hence,
p
2 (q+1)+ p−1

2 +q
2pq+2p+2q ≤ 1

3 , proving the claim.

Case 6. The remaining special cases: B2,2, B4,4, and B4,6.

The cases that were not considered by the previous theorems are B2,2, B4,4 and B4,6.

We found that γ(B2,2) = 5. Since n(B2,2) = 16, it follows that γ(B2,2)
n(B2,2)

= 5
16 ≤

1
3 . We also

found that γ(B4,4)) = 13. Since n(B4,4) = 32, it follows that γ(B4,4)
n(B4,4)

= 13
32 ≤

1
3 . Finally, we

found that γ(B4,6) = 18. Since n(B4,6) = 68, it follows that γ(B4,6
n(B4,6)

= 18
68 ≤

1
3 . In each case,
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a packing ρ which is a dominating set can be constructed. Then Theorem 2.2 guarantees

the domination number is the cardinality of this set. (see Fig.3.14, Fig. 3.15, and Fig. 3.16,

γ(B2,2) = 5, γ(B4,4) = 13 and for γ(B4,6) = 18).

Thus we have show that the domination ratio for any linear chain L(h), ant triangulene

Tk, and any parallelogram benzenoid Bp,q is no more than 1
3 .
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Open Problems

We show that for any even triangulene T2k the domination number is γ(T2k) = (k+ 1)2.

For odd triangulenes, it was difficult to define an exact formula. It is hard to use the same

packing that we used for the even triangulenes since we had a problem dominating the

vertices in the last row for each odd triangulene.

Also, it was difficult to determine a formula for parallelogram benzenoids Bp,q with even

rows since we cannot find a packing set that dominates all the vertices in Bp,q.

We have shown that for every class of benzenoid that we have considered that the

domination ratio never exceeds 1
3 .

CONJECTURE 5.1. For any benzenoid B, γ(B)
n(B) ≤

1
3 .

It is not true that for any graph G, γ(G)
n(G) ≤

1
3 . In our approach, the upper bound of

the domination number γ(B) for the benzenoid is basically based from Theorem 2.3 and

Theroem 2.4, that 1
4 ≤

γ(B)
n(B) ≤

1
2 for any benzenoid B. Moreover, our results of this new

relationships inequality provides an important new feature for the benzenoid domination

number, which becomes possible to determain a close bound for the benzenoid domination

number. So we will leave for the interested reader to check and find the exact formula for

the domination number γ for the odd triangulenes and parallelogram benzenoids, and to

prove the inequality for benzenoid B.
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