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The birth of complexity research derives from the logical progression of advancement in 

the scientific field afforded by reductionist theory.  We present in silico models of two 

complex physiological processes, wound healing and coagulation/fibrinolysis based on 

two common tools in the study of complex physiology: ordinary differential equations 

(ODE) and Agent Based Modeling (ABM).  The strengths of these two approaches are 

well-suited in the analysis of clinical paradigms such as wound healing and coagulation.  

 

The complex interactions that characterize acute wound healing have stymied the 

development of effective therapeutic modalities. The use of computational models holds 

the promise to improve our basic approach to understanding the process.  We have 

modified an existing ordinary differential equation model by 1) evolving from a systemic 

model to a local model, 2) the incorporation of fibroblast activity, and3) including  the 

effects of tissue oxygenation. Possible therapeutic targets, such as fibroblast death rate 

and rate of fibroblast recruitment have been identified by computational analysis. This 

model is a step toward constructing an integrative systems biology model of human 

wound healing. 

 

The coagulation and fibrinolytic systems are complex, inter-connected biological systems 

with major physiological roles. We present an Agent Based Modeling and Simulation 

(ABMS) approach to these complex interactions. This ABMS method successfully 

reproduces the initiation, propagation, and termination of blood clot formation and its 

lysis in vitro due to the activation of either the intrinsic or extrinsic pathways. 

Furthermore, the ABMS was able to simulate the pharmacological effects of two 
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clinically used anticoagulants, warfarin and heparin, as well as the physiological effects 

of enzyme deficiency/dysfunction, i.e., hemophilia and antithrombin III-heparin binding 

impairment, on the coagulation system.  The results of the model compare favorably with 

in vitro experimental data under both physiologic and pathophysiologic conditions. 

 

Our computational systems biology approach integrates reductionist experimental data 

into a cohesive model that allows rapid evaluation of the effects of multiple variables.  

Our ODE and AMBS models offer the ability to generate non-linear responses based on 

known relationships among variables and in silico modeling of mechanistic biological 

rules on computer software, respectively.  Simulations of normal and disease states as 

well as effects of therapeutic intervention demonstrate the potential uses of computer 

simulation.  Specifically, models may be applied to hypothesis generation and biological 

advances, discovery of new diagnostic and therapeutic options, platforms to test novel 

therapies, and opportunities to predict adverse events during drug development.  The 

ultimate aim of such models is creation of bedside simulators that allow personalized, 

individual medicine; however, a myriad of opportunities for scientific advancement are 

opened through in silico experimentation. 

 



Introduction 

Complexity Theory 

Classic scientific approach suggests that the universe may be understood through the study of its 

individual components, i.e. reductionism[1,2].  Through deconstruction of complex problems 

into their integral parts, the reductionist approach successfully predicts those outcomes perfectly 

explained through simple mechanistic behaviors.  This approach predefines the system as one 

composed of simple relationships between individual components, unaffected by the properties 

of the system itself; single causes result in single effects with small perturbations of the system 

as a whole. Particle physics and molecular biology are examples of fields that have made 

enormous gains through reductionist analysis.  In contrast, complex systems resist 

characterization in this manner.  

 

A system is a delineated part of the universe which is distinguished from the rest by a real or 

imagined boundary.  Systems may be characterized as open/closed and simple/complex.  Closed 

systems are maintained by internal forces and are not influenced by external forces.  Open 

systems, which are commonly found in biology, are in permanent interaction with their 

environment.  Therefore, in order to understand an open system you must describe the system, its 

environment, and the interactions between them.  Simple systems have single cause and effect, 

small change in cause results in small change in effect, thereby predictable.  Complex systems 

have circular causality, feedback loops, logical paradoxes and/or strange loops; small changes in 

cause have the potential to cause large effects, thereby displaying emergence phenomena and 

making them unpredictable[3].  In order to account for these multifactorial characteristics, the 

system approach attempts to combine both the reductionist and holistic approaches.  Complex 

1



systems analysis endeavors to explain how simple entities without any central controller and 

limited communication can combine to form complicated and sophisticated systems.  By 

definition, complex systems exhibit emergent and self-organized behavior.  Adaptive, non-linear 

behavior may arise from seemingly small changes in initial conditions.  Unlike systems defined 

by linear relationships, initial conditions cannot predict the magnitude or direction of the 

outcome.  Thus, newer methods such as chaos theory, evolutional economics and network theory 

have evolved to explain complex systems such as weather/climate, societal behavior, and disease 

states of living organisms[4]. 

 

Analysis of complex systems requires an all-inclusive approach that acknowledges its 

heterogeneous components and processes.  Temporal and spatial variability are integrated as 

multiple cause/effect mechanisms may occur simultaneously.  The following critical properties 

are addressed first and foremost: 1) self-organization, i.e. no overriding controller, 2) non-linear 

relationships, and 3) emergence.  This analysis is further complicated by potential emergence of 

component parts.  A complex system may, in and of itself, be formed from a series of complex 

systems.  For example, individual organs (heart, brain, liver, etc…) are complex systems that 

contribute to the behavior of the organism as a whole.  In fact, each individual cell is also a 

complex system. 

 

The collective action of a complex system integrates the internal and external environment in a 

unique manner delineated through the properties within the system.  Interactions such as 

feedback loops, feedforward loops, circular causality, and self-organization result in emergence, 

whereby simple components produce complex behavior[5].  Through circular causality, the 

2



sequence of cause and effects lead back to the initiating event in a manner that confirms or 

changes the initial circumstance (AB CA).  Feedback implies a loop whereby the product 

returns and affects the input.  Negative feedback reduces the deviation from a goal state 

(stabilization effects).  Positive feedback increases the deviation from an initial state 

(destabilizing).  Prediction of this behavior does not follow from the reductionist model of 

characterization of the individual components.  Dissection of these systems into its components 

mislays the complex behavior under investigation.   As a result, reductionist theory is unable to 

predict the behaviors of a system with emergent properties.  A hurricane results from a series of 

conditions involving pressure, condensation, and temperature gradients.  A living organism 

produces complex physiology/behavior from the local actions of cells. 

 

Unique properties emerge as a result of heterogeneous components interacting in a non-linear 

manner.  Nonlinear systems may show sensitivity to initial conditions where a small change in a 

variable may cause a large effect in the outcome of the system.  Conversely, vastly different 

initial conditions may generate non-unique solutions.  The systems show both time and state 

dependence in that they depend on not only the current state of the system, but also historical 

events.  The most important property of such systems is that they display emergent behaviors 

that cannot be predicted from analysis of the individual components.  In biological systems, 

emergent behaviors often result in highly ordered and stable systems.  Complexity science 

suggests that life is in accordance with the laws of physics, but physics first principles alone 

cannot predict life[6].  A more complete understanding of a system requires holism.  The holistic 

approach focuses on organizational principles where the emergent properties of a system arise 

from the interactions of its parts.   

3



 

In short, a complex nonlinear system may be viewed as a system consisting of an extremely large 

and variable number of components. These components are capable of displaying significant 

temporal and spatial variability but, at the same time, can retain a high degree of interdependence 

between each other.  What we learn from this is that topology and dynamics interact to produce 

system behaviors.  Thus, it is the combination of the dynamics of the various components 

themselves and the relationship or connections (nature and degree) between the components, 

which emerge as being of utmost importance.  A complex system renders distinction between 

cause and effect relatively meaningless as the dynamic relationship among components results in 

effects modifying causes to create new, independent outcomes.   

 

By definition, a complex system is one that satisfies certain critical properties. First, it is 

composed of many parts that are coupled in a nonlinear fashion with no overlying controller that 

determines the behavior of the system (the system must be self-organizing).  Second, the system 

must show emergence. That is, the whole system must contain properties that are unpredictable 

from the parts/component pieces of the network or system. Typically, in such systems, as the 

number of components and their relationships increase, the complexity also increases.  As a 

result of the spatio-temporal relationships of the system, the system may exhibit a variety of 

dynamical behaviors from stable flows to seemingly random oscillations.  Complex systems may 

demonstrate many other dynamical behaviors. Possible behaviors include sensitivity to initial 

conditions where a small change in a variable may oftentimes cause a large effect in the 

dynamical outcome of the system (butterfly effect)[7].  Other properties include hysteresis, a 

property in which model parameter sets may generate non-unique solutions with the same initial 

4



parameter conditions, and bifurcation dynamics where radically different behaviors such as 

going from stable to unstable or stable to oscillatory may occur over very small parametric 

ranges[8,9].  Spatial and temporal patterns can exhibit properties of self-similarity (fractality) in 

which changes in scale visualization of the pattern show no alteration in the basic structure of the 

pattern itself[10,11].  Systems can exhibit self-organization and coalescence, evolution and 

adaptation[12].
 
 Finally, system dynamics may contain n historical component in which the 

temporal dynamics of the system, at a particular time point, is partially or fully dependent upon 

the prior history (dynamical behaviors) of the system or its components.  

 

Reductionist approaches dissect systems in order to better understand its' nature.  However, one 

of the fundamental properties of synergistic complex systems is that subfractionation can and 

does cause a loss of information (structural, relational, temporal and hierarchical).  Subsequently, 

destruction of emergent properties that are not contained within the subfraction pieces occurs. 

Despite the fact that upper level hierarchical structures may contain a super emergent dynamics 

set, sub-levels may contain their own emergent dynamics that are not necessarily seen until the 

sub-level is separated from the whole system.  One must be clear that sublevel emergence is 

potentially artifactual due to the breaking of links to the whole system. These emergent 

properties are always present in the whole system but are invisible and cannot be appreciated 

from a reductionist approach.  Thus, we cannot dissect a complex system in the parts, study them 

and expect to fully understand the system.  Dissection of the overall system destroys the 

important ingredient of semantics-syntax, context dependence, and self-reference; properties that 

are vital in the production of emergent behaviors.  To summarize, complex systems are 

composed of  many components connected in a non-linear manner, must be self organizing, no 
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overlying controller, must show emergence, and contains properties that are unpredictable from 

the individual components of the system.  As a result of these properties, a complex system 

cannot be dissected and studied as individual components. 

 

Examples of complex systems are found throughout the natural world[13].  As described above, 

climate, human behavior, and disease processes all exhibit complex function[14,15].   These 

examples may be further subdivided or expanded into additional complex systems.  Climates are 

complex systems that affect the emergent behavior of ecosystems.  Within ecosystems, complex 

behavior is exerted through herd mentality, the eruption of a volcano, the gathering patterns of 

ants and bees[16].   

 

Humans behave in a complex manner, from flight patterns to societal organization of economies 

and politics to the functioning of the internet[17,18,19].  The integration of numerous individual 

and societal relationships in the United States results in the election of a president[3].  

Combinations of supply and demand produce economic outcomes that differ from predicted 

linear relationships. 

 

Medical and biological processes are a field of acute interest for complex systems analysis[20].  

Individual organs and their inherent functions produce complex behavior, as does their 

interaction as a whole.  Heart rate variability, immune system response, and phenotypic variation 

result from disparate inputs[21,22].  In this manner, biologic complexity defies reductionist 

patterns of recognition[23].  As most disease states result from dysfunction of complex systems, 

newer methods of analysis offer an innovated, personalized approach currently lacking in the 
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biomedical sciences.  Herein, emergent properties of pathophysiological states of wound healing 

and coagulation/fibrinolysis are characterized.  A series of in silico experiments using ordinary 

differential equations (ODEs) and agent based modeling (ABM) demonstrates the potential 

application of a systems biology approach in these disease states. 

 

Biologic Complexity 

Wound Healing - The normal response to tissue injury is a timely and orderly reparative process 

that results in sustained restoration of anatomic and functional integrity[24].  In contrast, in 

chronic dermal ulcers the healing process is prolonged, incomplete, and proceeds in an 

uncoordinated manner resulting in poor anatomical and functional outcome. On the opposite end 

of the spectrum are the numerous clinical problems associated with excessive healing and 

fibrosis. Clinically, wounds can be categorized as acute or chronic based on the timeliness of 

healing[25].  

 

Wound repair is a complex process involving a highly regulated cascade of events requiring 

interactions among many cell types, soluble factors, and matrix components[26]. There are four 

distinct phases of acute wound healing consisting of hemostasis, inflammation, proliferation, and 

remodeling.  Following injury, exposure of platelets to the extracellular matrix (ECM) induces 

them to adhere and aggregate, thus, releasing the contents of their secretory granules. This 

hemostasis response occurs immediately following tissue disruption and is needed to control 

bleeding and seal the site of injury. The wide variety of platelet factors liberated by 

degranulation include those which facilitate hemostasis and also act as chemoattractants [platelet 
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derived growth factor (PDGF) and transforming growth factor beta (TGF-B)] for cells involved 

in the next stage of repair, the inflammatory phase. 

 

The process of hemostasis begins immediately upon injury. The immediate goal is to stabilize 

the wound and thereby prevent exsanguination. Exposed blood vessels vasoconstrict and 

platelets that are exposed to collagen are activated and begin the process of aggregation at the 

wound site. These activated platelets release growth factors, cyclic adenosine monophosphate 

(cAMP), and adhesive glycoproteins, which in turn activate receptors that cause platelets to 

become sticky and aggregate. The glycoproteins released from activated platelet alpha granules, 

include fibrinogen, fibronectin, thrombospondin, and von Willebrand factor. The next step in 

hemostasis involves the coagulation cascade as coagulation factors from the blood combine with 

coagulation factors released by platelets. The result is a fibrin clot that not only prevents further 

blood loss, but also serves as a provisional wound healing matrix[27]. Platelets become 

entrapped in the fibrin clot providing further bulk as well as a membrane on which inactive 

clotting enzymes are bound and activated further promoting the clotting cascade. 

 

Growth factors released by the platelet alpha granules provide the impetus for the next stage in 

wound healing.  Neutrophils and monocytes are recruited and activated by PDGF and TGF-B. 

Endothelial cells are activated by vascular endothelial growth factor (VEGF), transforming 

growth factor alpha (TGF-a), and basic fibroblast growth factor (bFGF).  Fibroblasts are 

activated by PDGF to begin migration to the wound site and produce collagen and 

glycosaminoglycans, which facilitates cellular migration and interactions with the cell matrix-

supporting framework. In addition to factors released from platelets, breakdown fragments from 
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complement, such as C5a and f-Met-Leu-Phe, a bacterial waste product, also signal and recruit 

neutrophils to the wound site. In sum, hemostasis initiates the wound healing response through  

platelet activation at the site of the injury, and the interactions of soluble mediators and growth 

factors with the ECM to provide the provisional wound healing matrix that sets the stage for 

subsequent events. 

 

The inflammatory phase begins as early as 2 h after injury.  Activated neutrophils leave the 

circulation to begin the debridement of devitalized tissue and phagocytosis of any infectious 

agents or foreign bodies.  Neutrophils also secrete cytokines and other specific chemical 

„„signals‟‟ needed to attract specialized cells that are important in repairing the injured 

tissue. In addition, neutrophils release a battery of proteolytic enzymes, such as elastase and 

matrix metalloproteinase-8 (MMP-8), to assist in their movement through the tissue and remove  

damaged ECM[28,29,30].  Mast cell granules are filled with enzymes, such as chymase and 

tryptase, histamine, and other active amines; when released these enzymes cause the classic signs 

of inflammation: rubor (redness), calor (heat), tumor (swelling), and dolor (pain). The crucial 

inflammatory cells during the inflammatory phase are neutrophils and activated monocytes 

(macrophages). Neutrophils and macrophages are responsible for bound wound bed preparation 

and the initial milieu of the healing wound. In order to expedite healing, cellular debris and 

bacteria are cleared. The inflammatory cells also release cytokines [including interleukins 1 (IL-

1), IL-6, IL-8, and tumor necrosis factor alpha (TNF-a)] and growth factors [PDGF, TGF-B, 

TGF-a, insulin-like growth factor-1(IGF-1), and FGF] that not only serve to continue the 

inflammatory phase but also initiate the proliferative phase by recruiting fibroblasts and 

epithelial cells. 
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In the first 24 h, neutrophils are the predominant inflammatory cell type.  The neutrophils are 

recruited and activated by the soluble mediators released by platelets and the coagulation cascade 

during the hemostatic phase. The initial goal of the neutrophils is to prepare the wound bed by 

killing bacteria and removing devitalized tissue. Not only does this begin the process of 

wound healing but also helps fight infection. Neutrophils are chemoattracted to the wound site 

by the initial inflammatory cytokines released at the time of injury and subsequent hemostasis 

process. Normally, the weak adherence of leukocytes results  in a rolling type motion along the 

surface of the endothelial cells. The slower velocity allows more time for binding between the 

adhesion molecules [selectins, cell adhesion molecules (CAMs), and cadherins] and receptors 

(integrins) of circulating leukocytes and vascular endothelial cells. Once activated, leukocytes 

firmly adhere to epithelial cells as a result of the binding between integrin receptors and ligands, 

such as vascular CAM (VCAM) and intercellular adhesion molecule (ICAM), which are 

expressed on activated endothelial cells. The activated leukocytes are induced to migrate 

between the endothelial cells and move into the injured tissue using their integrin receptors to 

bind to ECM components. At that point, inflammatory cells secrete elastase and collagenase in 

order to migrate through the basement membrane of the endothelial cell and into the ECM. Once 

the neutrophils have entered the wound, they begin to phagocytose bacteria and subsequently 

produce oxygen free radical to kill the entrapped bacteria. In addition, they degrade damaged 

components of the ECM by releasing large amounts of proteases (neutrophil elastase and 

neutrophil collagenase). Neutrophils also produce and release inflammatory mediators, such as 

TNF-a and IL-1, which further recruit and activate more neutrophils as well as fibroblasts and 
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epithelial cells. After 2–3 days, neutrophils are no longer the dominant cell type as they are 

depleted by apoptosis allowing tissue monocytes to predominate.   

 

After the first 24 h, activated monocytes (macrophages) are the most numerous inflammatory 

cell types present in the wound bed.  Macrophages are not only active in healing the wound but 

also in the regulation and progression of the healing process. Macrophages are mandatory 

components of the normal healing process[31]. Circulating monocytes are attracted to the wound 

site and extravasate in the same manner as described for neutrophils.  Once the monocyte has 

entered the wound site, they are activated into tissue macrophages by chemokines, cytokines, 

growth factors, and soluble fragments of ECM components produced by proteolytic degradation 

of collagen and fibronectin. Macrophages play a similar role as neutrophils in the healing 

process. They are responsible for killing bacteria and wound debridement through the actions of 

secreted MMPs and elastase. In addition to the functions shared with neutrophils, the 

macrophages also play a crucial role in modulating the inflammatory response by regulating the 

proteolytic destruction of wound tissue and initiating the transition from the inflammatory phase 

to the proliferative phase.  Macrophages downregulate tissue destruction by secretion of 

inhibitors of the proteases. They also release a wide variety of growth factors and cytokines 

including PDGF, TGF-B, TGF-a, FGF, IGF-1, TNF-a, IL-1, and IL-6 that serve to recruit and 

activate fibroblasts and promote angiogenesis. The addition of fibroblasts that synthesize, 

deposit, and organize the provisional ECM, combined with the ability to decrease proteolytic 

destruction leads to the initiation of the proliferative phase. As the number of macrophages 

decrease and the number of fibroblasts increase the wound begins to enter the proliferative phase 

and exit the inflammatory phase. 
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During the „„proliferation‟‟ phase, keratinocytes proliferate, migrate, and differentiate, thus, 

restoring surface integrity. Endothelial cells from damaged blood vessels begin to send out new 

capillary buds, while fibroblasts from nearby connective tissue enter the wound site and deposit 

ECM[32].  In the normal dermis, fibroblasts are quiescent and have a low concentration, but in 

granulation tissue and the provisional matrix of the wound they are active and exist in high 

concentrations.  Fibroblasts are recruited to the wound site by the soluble products of activated 

platelets and macrophages.  The migration of fibroblasts is far more complicated than that of 

neutrophils and macrophages as they have to change their morphology and clear a path for their 

movement from the ECM to the wound site.  

 

Fibroblasts begin their migration by first binding to matrix components (fibronectin, vitronectin, 

and fibrin) via their integrin receptors. The receptors bind to specific amino acid sequences (R-

G-D or arginine–glycine–aspartic acid) or binding sites on the matrix components. The 

fibroblasts move in a step-wise pattern by extending a cytoplasmic projection from the unbound 

side of its membrane to find the next binding site. Once a new site is successfully bound, the 

original site is then released (by local protease activity), and the cell pulls itself forward using its 

cytoskeleton network of actin fibers.   

 

The concentration gradient provided by chemotactic growth factors, cytokines, and chemokines 

in conjunction with the alignment of the fibrils in the ECM and provisional matrix determine the 

direction of fibroblast migration.  The fibroblast moves along the fibrils as opposed to across 

them. The proteolytic enzymes used to facilitate their forward motion include collagenase 
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(MMP-1), gelatinases (MMP-2 and MMP-9) that degrade gelatin substrates, and stromelysin 

(MMP-3) that has multiple protein substrates in the ECM.   

 

Collagen is the major ECM component providing strength, integrity, and structure to normal 

tissues. It is also required to repair defects created by injuries, thereby restoring tissue structure 

and function[32,33].  During repair, collagen is initially laid down in irregular bundles 

possessing modest mechanical strength, but as the wound matures, the collagen is cross-linked 

and then the scar undergoes remodeling indicating the „„maturation‟‟ phase of healing. The 

collagen is then organized into a dense structure with increasing tensile strength as the matrix 

begins the process of contraction.  However, the regained tensile strength will never reach 

normal; the maximum a wound can ever achieve is approximately 80% of normal tensile 

strength[32,33]. Other components of the ECM that exhibit significant structural and functional 

roles include fibronectin, laminin, proteoglycans, and glycosaminoglycans[34]. Fibronectin and 

laminin contain important binding sites for cells, collagen, as well as glycosaminoglycans[35].   

 

Wounds with significant tissue loss heal by the mechanism of contraction, a process whereby the 

edges of a wound are drawn toward the center, due to forces generated within the wound. 

Contraction facilitates spontaneous wound closure by reducing the volume required to be filled 

by granulation tissue as well as the area required to be re-epithelized[33,36].   

 

In order to protect the underlying wound it is necessary to create an epithelial barrier. 

Epithelization is a complex process that involves epithelial cell detachment phenotypic 

alterations, migration, proliferation, and then differentiation[37].  An undamaged mature 
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epidermis consists of five layers of differentiated epithelial cells ranging from the cuboidal basal 

keratinocytes nearest to the dermis up to the flattened, hexagonal, and tough keratinocytes in the 

uppermost layer. Only one layer is capable of replication (the basal epithelial cells). These basal 

cells are normally attached to their neighboring cells by intercellular connectors called 

desmosomes and to the basement membrane by hemidesmosomes. In order to begin replicating 

basal cells must become activated by growth factors such as EGF, keratinocyte growth factor 

(KGF), and TGF-a. The growth factors bind to receptors on the epithelial cells and stimulate 

migration and proliferation. In addition to the activation of  basal cells, growth factors trigger the 

desmosomes and hemidesmosomes to dissolve.  Subsequently, cells may detach in preparation 

for migration. Integrin receptors are then expressed and the normally cuboidal basal epithelial 

cells flatten in shape and begin to migrate as a monolayer over the newly deposited granulation 

tissue, following along collagen fibers.  The monolayer is provided with new cells from the 

proliferating basal cells near the wound margin (cells that are actively migrating are incapable of 

proliferation). In order for the epithelial cells to penetrate the newly formed scab, necrotic tissue, 

or escar, the leading edge of the monolayer produces and secretes proteolytic enzymes (MMPs). 

The migration ceases after the epithelial cells contact each other.  Once this contact has been 

made, the entire epithelial monolayer forms a confluent sheet and enters a proliferative mode and 

the stratified layers of the epidermis are reestablished and begin to mature to restore barrier 

function. The intercellular desmosomes and the hemidesmosome attachments to the newly 

formed basement membrane are also reestablished. TGF-B is one growth factor that can speed 

up the maturation (differentiation and keratinization) of the epidermal layers. Clinically, 

epithelialization is the hallmark of healing, but it is not the final event, as the granulation tissue 

must be remodeled to form the permanent scar. 
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During late phases of wound healing, scar remodeling involves a variety of matrix degrading 

enzymes including MMPs, serine proteinases, cathepsins, and glycosidases[36,38]. The goal of 

the remodeling phase is the conversion of the preliminary wound matrix to the production of a 

final scar that maximizes wound tensile strength.  Fibroblasts are the cells responsible for 

remodeling.  An equilibrium between collagen formation and degradation results in a constant 

amount of collagen. There are several different classes of proteolytic enzymes in the wound bed 

that are responsible for the degradation of collagen: MMPs, serine proteinases, cathepsins, and 

glycosidases[36,38]. Specific MMP proteases required for remodeling include collagenases 

(which degrade intact fibrillar collagen molecules), the gelatinases (which degrade damaged 

fibrillar collagen molecules), and the stromelysins (which very effectively degrade 

proteoglycans). The most important serine protease is neutrophil elastase, which can degrade 

almost all types of protein molecules. In order to balance the destructive capabilities of the 

matrix degrading enzymes, inhibitors are also needed. The specific inhibitors of the MMPs are 

the tissue inhibitors of metalloproteinases (TIMPs) and specific inhibitors of serine protease are 

a1-protease inhibitor (a1-PI) and a2-macroglobulin. The process of remodeling is dependent on 

the relative activities of the proteases and their inhibitors.  

 

Tightly controlled regulatory systems maintain a delicate balance between these complex 

synthetic and degradative processes; normal tissue repair ultimately results from a fine-tuning of 

this equilibrium. There is now a growing recognition that abnormal wound healing often results 

from a disruption of degradative/synthesis equilibrium[29,30,39,40,41]. When the balance tips in 
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favor of matrix degradation, the end result may be a chronic ulcer, where as reduced degradation 

and/or increased matrix synthesis results in fibrosis.  

 

Research scientists and clinicians have focused historically on the effects of cytokines and 

growth factors on individual cells in vitro, out of context of both the injury and the organism[42].  

The relationships among the various cell types and the dynamics of the wound healing process 

has remained uncharacterized.  As a result, therapies to improve wound healing have either failed 

or shown minimal improvements in outcomes.  One possible reason for such failures is that the 

complex, multi-scale, multi-temporal, hierarchical nature of wounds has thus far been 

underappreciated.  In order to account for these relationships, an overarching systems biological 

approach would allow one to draw upon the nuanced methodologies of complexity 

theory[43,44].  Fueled by the ongoing identification of numerous inflammatory and immune 

mediators produced in the normal response to acute soft tissue injury, ample evidence of this 

oversimplification can be found in the failure of single mediator-targeted therapies.  Many 

features of the wound healing process are consistent with complexity theory: 1) Multiple cell 

types  interact using paracrine and autocrine signaling (signals may be amplified/dampened 

based on the state and history of the individual cell in a non-linear manner) 2) There is no 

overlying control mechanism 3) The process of wound healing progresses through hemostasis, 

inflammation, proliferation and remodeling 4) A mature scar is produced that restores anatomical 

and function to the wound.  

 

These concepts apply to the problem of understanding and modeling the dynamics of a healing 

wound detailed below. The wound healing system is composed of multiple levels of 
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organizational scale including: multiple cell types (fibroblasts, neutrophils, macrophages, etc…), 

intercellular messengers (cytokines, chemokines, hormones, growth factors, etc…), synthetic 

products (collagen, proteoglycans, etc…), and enzymes (MMPs and TIMPs).  The different cell 

types produce and respond to the same cytokines in an autocrine and paracrine manner (multiple 

pathways of interaction).  As a result, a signal may be quickly amplified in the system or 

dampened.  The feedback loops that control the release and effects of the cell signals produce 

nonlinear behavior.  The behavior of the cells is determined not only by the current state of the 

wound, but also the individual receptors that have been activated at earlier time points (state-

dependent and history-dependant behaviors).  The normal process of wound healing contains 

many separate but interacting events and host responses including microcirculatory oxygen 

transport, immune and inflammatory responses, metabolic changes, and the neuroendocrine 

system modulation.  An unknown degree of these and secondary responses will occur due to 

complex changes in genome expression.  Instead of viewing each of these responses as separate 

and independent mechanisms involved in the development of a healed wound it must be argued 

that events leading to healing should be viewed through the complexity theoretic lens and that 

wound healing is most effectively studied as a complex nonlinear system.  Additionally, the 

intracellular signaling pathways also consist of a complex system in itself (sub-system 

hierarchies).  Within each cell, there are multiple pathways that when activated by a receptor, 

amplify a signal.  Many times there are pathways that directly oppose each other that lead to 

measured responses (multi-scale interaction).  Cross talk and divergent pathways lead to many 

complex relationships among the various signaling pathways.  Therefore, a wound must be 

considered a complex system composed of components that are themselves complex systems 

(modular hierarchies of complex systems). 
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 Based on the previous discussion, it is clear that the study of the dynamics of wound healing 

cannot be approached solely through traditional reductionist methodologies.  We have 

established that the experimental understanding currently demonstrates that wound healing is a 

highly complex process that involves multiple cell types all of which are interacting in a 

nonlinear fashion.  These interactions take place over different time scales, across different 

organismal hierarchies, and generate relationships through which unpredictable emergent 

properties can occur[45,46].  For example, there are many feedback loops and redundancies in 

the wound healing network (Figure 1) that make wound healing difficult to study.  Feedback 

loops give rise to the potential for oscillatory behavior, chaotic dynamics, and other nonlinear 

phenomena. Topological structure of the network can give rise to unpredicted properties that are 

defined, not by dynamical relations, but rather by spatio-structural ones[47,48].  Thus, it is not 

sufficient to understand healing dynamics in terms of classical chemical reaction mechanisms; 

rather, we must examine the integration of topological (spatio-structural and hierarchical) and 

temporal (multi-scale) perspectives in order to truly understand the underlying mechanisms of 

wound healing. 

 

The previous description of complex nonlinear systems, as applied to wound healing, is highly 

attractive in attempting to explain our failure in creating successful mono-target therapies.  New 

understandings tell us that the cells involved in wound healing and the cytokines and growth 

factors used to transmit signals could be better categorized as highly complex, layered, modular 

networks with stochastic dynamics at risk for dysfunction. The extent to which acute and chronic 

soft tissue wounds can be modeled in terms of complex nonlinear systems, based on the 
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Figure 1: Wound Healing Schema.  The schema demonstrates the multiple feedback loops and 

interactions among the components of the wound healing process. 

 

preceding discussions and assumptions, is not at all clear.  Examining the wound healing process 

as a complex system may allow for discovery and for analysis of possible important emergent 

properties of the system.  These emergent properties, which again, can only be appreciated from 

the whole of the interactions within the system, are what hold the potential promise of 

breakthroughs in treatments and diagnostics.         

 

Understanding that wound healing is most realistically represented through complexity theoretic 

viewpoints now allows the traditional reductionist philosophy to be potentially complemented by 
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the increasingly powerful new concepts of complexity theory.  Effective studies of complex 

systems must be made by analysis of the parts followed by a sophisticated reconstitution or 

synthesis in order to model as much of the system as is known at the given time.  The resulting 

model must allow for almost an infinite number of input variables and provide a means to 

interact with it.  In essence, the resulting model is itself desired to exhibit its own emergent 

properties allowing science to catch the necessary glimpses that provide for the creation of new 

hypotheses.  Manipulation of such a model will provide direction as to the subsequent approach 

needed to take the next generation of steps in discovery.  

 

An important concept while discussing normal wound healing is the concept of feedback and 

feedforward loops. In order for wound healing to progress in a coordinated manner, each stage in 

the healing process must not only self-perpetuate but also initiate the next stage. Furthermore, 

each progressive stage must have the ability to turn off the previous stage once it has reached the 

critical point at which it is no longer dependant on the previous stage for positive feedback to 

continue. The interlocking feedback/feedforward loops allow for an orderly progression of 

wound healing and prevents any one stage from inhibiting and/or preventing progress into the 

next stage. The mechanism by which the different phases inhibit and promote each other is 

through the expression of soluble mediators such as growth factors and cytokines. Each cell type 

involved is capable of responding to and releasing a multitude of factors that allows the 

formation of feedback/forward loops to control cell concentrations as well as activity.  

 

In chronic wounds, failure of the normal wound healing process prevents normal wound closure. 

There are multiple etiologies for the formation of chronic wounds that include diabetic ulcers, 
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venous stasis ulcers, and pressure ulcers.  Although ischemia is an underlying cause, each of 

these wounds results from different pathological mechanisms; however all non-healing wounds 

have remarkably similar wound healing trajectories as well as similar inflammatory profiles. In 

the chronic wound, neutrophils are the predominant cell type with large amounts of proteases 

and inflammatory cytokines. Because of the excessive amount of inflammation, it is likely that 

these wounds have failed to progress from the predominantly inflammatory phase to a 

predominantly proliferative phase. The wound is not able to mature, and the disorganized ECM 

degrades liberating breakdown products, thus, causing further inflammation. As a result, the 

chronic pressure ulcer becomes enmeshed in an inflammatory phase that self-perpetuates without 

providing enough forward momentum to propel the process to the next stage of wound healing. 

The effect of chronic inflammation is further tissue destruction and worsening of the chronic 

wound thereby causing more inflammation and preventing any progress towards a healed wound.  

 

Coagulation & Fibrinolysis- The coagulation and fibrinolytic (CF) systems comprise a series of 

zymogen to enzyme conversions which ultimately terminate in the active proteolytic enzymes 

thrombin and plasmin, respectively[49].  These enzymes catalyze the deposition and removal of 

fibrin. When the system is functioning properly, blood is maintained in a fluid state yet rapidly 

clots to seal endothelial injuries.  A proper balance between the activities of the two cascades is 

required both to protect the organism from excessive blood loss upon injury and to maintain 

blood fluidity within the vascular system. Imbalance of the two cascades range from the full 

spectrum of bleeding disorders (e.g. hemophilias) to thrombotic events (e.g. heart attacks and  

strokes). 
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In the event of injury to the endothelium, the CF system balances the need for localized clot 

formation against the need to prevent system wide activation[50].  This finely tuned system is 

composed of an assortment of molecular and cellular “agents” (e.g. substrates, enzymes, 

cofactors, inhibitors, platelets, white blood cells and endothelial cells) which interact to generate 

a stable clot in order to rapidly obtain hemostasis.  The new cellular model of hemostasis 

proposes that the classical pathways of coagulation, i.e., the intrinsic and extrinsic pathways, 

mediate on specific cell surfaces in a tightly regulated manner. In this model, activation of factor 

VII (extrinsic, Figure 2) and factor XII (intrinsic, Figure 2) result in the formation of multi-

molecular complexes, the tenase and prothrombinase complexes, which eventually generate 

thrombin. Thrombin then cleaves fibrinogen to form fibrin monomers, which polymerize to form 

a three-dimensional clot[51].   

 

Clot formation is regulated in vivo primarily through the antithrombin III-heparin (AT-H), 

activated protein C (aPC), and tissue factor pathway  inhibitor (TFPI) pathways (Figure 

2)[52,53,54].  These regulating systems limit the excessive formation of cross-linked fibrin under 

hemostatic conditions thereby preventing thrombotic diseases. 

 

The blood coagulation system is always active and primed for explosive generation of thrombin.   

The positive feedback of the coagulation cascade in association with the negative feedback loops 

of the three inhibitory systems (AT-H, aPC, and TFPI) imparts threshold properties to the 

coagulation pathways[55,56,57].  As a result, there is a non-linear response to stimuli.  

Furthermore, the presence of multiple coagulation inhibitors that act at different locations in the 

cascade leads to a synergistic inhibition of explosive thrombin generation.  Thus, there must be a 
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Figure 2: Coagulation Cascade and Inhibitors- Inhibitors denoted by circles.  The intrinsic 

pathway is initiated by Prekallikrein or XII.  The extrinsic pathway is initiated by TF.  The 

intrinsic and extrinsic pathway joins at the common pathway that begins after Factor X 

activation.  AT, TFPI, and aPC are the three inhibitory pathways.   

 

significant pro-coagulant stimulus to overcome the inhibitory systems of coagulation.  The 

threshold effect and non-linear response of the coagulation system prevents activation when it is 

not needed and localizes the response when it is needed.      

 

The specificity of interactions, both molecular and cellular, involved in these complex processes 

implies that systemic effects displayed by the CF system occurs through emergence of localized 

events.  The CF system may be viewed as a multi-component molecular machine,
 
in which 
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individual components are linked through multiple feedback and feedforward loops.  This 

introduces non-linear relationships among the components. A static diagram such as the 

classically portrayed coagulation pathway (Figure 2) cannot adequately describe this dynamic 

evolutionary network. Not surprisingly, the effects of several disease states on the imbalances in 

the CF system are difficult to characterize utilizing the classic coagulation pathway.  For 

example, the influence of diseases that favor coagulation (e.g. coronary artery disease (CAD), 

disseminated intravascular coagulation (DIC), cerebrovascular accidents (CVA), and deep 

venous thrombosis (DVT)), or those that impair coagulation (e.g. hemophilias, 

thrombocytopenias, and von Willebrand disease) remain poorly characterized in terms of the 

interactions of all components in the system over time. 

 

Coagulation is the first step in the repair of the damaged vessel[58].  Primary hemostasis is 

defined by the formation of the hemostatic plug composed of platelets at the site of injury.  

Secondary hemostasis is defined as the formation of fibrin strands by proteins in the blood 

plasma, called coagulation factors that respond in a complex cascade which strengthen the 

platelet plug.  Secondary hemostasis occurs simultaneously with primary hemostasis.  The 

coagulation cascade is a network of biochemical pathways that perform the critical function of 

preventing blood loss and repairing damage to the vasculature.  The overall network is divided 

into two major pathways: the intrinsic system and the extrinsic system. The intrinsic and 

extrinsic systems converge to form a final common pathway .  The common pathway leads to the 

formation of α-thrombin.  Thrombin serves to cleave fibrinogen to fibrin monomers.  The fibrin 

monomers then spontaneously polymerize to form a three-dimensional polymer = clot.   
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The coagulation cascade is tightly regulated to limit the excessive formation of cross-linked 

fibrin under hemostatic conditions and prevent spontaneous clot formation.  The three systems 

are the AT–heparin pathway, the tissue factor pathway inhibitor pathway , and the activated 

protein C pathway (aPC).   

 

Once the endothelial damage is repaired, the clot must be dissolved to allow wound healing to 

progress normally.  The fibrinolytic system operates to dissolve the pre-formed clot once the 

underlying damage has been repaired (Figure 3)[59,60].  Fibrinolysis is achieved primarily 

through the proteolytic action of plasmin on the fibrin polymers that reinforce and maintain the 

integrity of a thrombus.  Plasmin hydrolyzes the fibrin mesh at various places thereby making it 

soluble.  The dissolution of the fibrin clot produces circulating fragments that are cleared by 

other proteases or by the kidney and liver.  Similar to coagulation, the fibrinolytic system is 

composed of interlocking positive and negative feedback loops.  

 

Clot lysis is regulated in vivo primarily through the anti-plasmin (AP), plasminogen activation 

inhibitor (PAI), and thrombin activatible fibrinolysis inhibitor (TAFI) pathways (Figure 

3)[59,61,62,63,64,65,66].  Under normal conditions, these regulating systems delay the onset of 

clot fibrinolysis until coagulation is complete.  

 

The CF system has characteristics that make it difficult to study. The system is either at rest or 

activated, i.e. nonstationarity.  The system is not a homogenous chemical system (spatial 

heterogeneity) in that clotting is localized at the site of endothelial injury.  Lastly, the effects of 

blood flow lead to continuous changes in coagulation factor concentrations and mechanical 
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stresses on the clot.  The complexity of the coagulation system has lead to difficulty in creating 

therapeutic modalities.  New pharmaceutical agents that modulate hemostasis have been 

introduced into clinical practice such as recombinant factor VIIa and activated protein C.  The 

utility of these agents has been limited by the lack of measurement tools to characterize 

coagulopathy .  There is limited ability to determine: 1) indications 2) timing 3) dose of 

administration.  This has led to large scale, expensive but ultimately equivocal clinical trials. 

 

In addition to the inherent characteristics of the CF systems that make it difficult to study, the 

fact that the CF system is a complex system adds further difficulties.  The CF system is 

composed of a heterogenous collection of components including zymogens, enzymes, co-factors, 

inhibitors, membrane surfaces and multiple cell types (endothelial cells, platelets, and white 

blood cells).  The CF system has no overlying controller and is composed of a series of local 

Figure 3: Fibrinolytic Cascade and Inhibitors-  Inhibitors are denoted by circles.  The 

fibrinolytic pathway is initiated by tPA activation of Plasminogen.  Plasmin hydrolyzes fibrin.  

Plasmin and fibrin catalyze the conversion of Plasminogen to Plasmin 
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biochemical reaction.  The biochemical reactions that govern the system by their very nature are 

non-linear.  Lastly, threshold effects, localized clot formation, and time delayed fibrinolysis 

emerge from the simple reactions of the heterogenous components. 

 

One approach to approaching the study of the CF system is to integrate computational models 

with the experimental data.  The ideal computational model would allow the study of complex 

diseases that involve coagulation such as DIC, trauma induced coagulopathy (TIC), cardiac 

arrest, sepsis, DVT, MI, arterial thrombosis, genetic coagulopathy (hemophilia A/B, von 

Willibrands disease, AT deficiency, factor V leiden, etc...), acquired coagulopathy (thrombotic 

thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), idiopathic 

thrombocytopenic purpura (ITP), thrombocytopenia, etc...).  The model would find novel 

mediators effecting coagulation, discover new therapeutic targets and treatment strategies.  

Utilizing such as model would allow for testing over millions of iterations using the in silico 

model.  The outcomes associated with the model would include creation of bedside tools for real-

time outcome determinations and dosing adjustments, enhance the probability for success once 

the therapy is translated into the clinical setting, discover  new mediators effecting coagulation 

and interactions between systems including their proximal and distal effects, discover  new 

diagnostic and therapeutic targets that modulate the coagulation cascade to enhance outcomes, 

create predictive tools for real-time outcome determinations of a patient‟s clinical state, create 

real-time bedside tools to perform on-the-fly dosing adjustments for patients with simple or 

complex coagulopathies or thrombotic disorders, and develop new software and algorithms for 

simulation. 
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Computational Biology 

Due to the complex nature of biological systems, attempts to model them have concentrated on 

simple, idealized versions.  More recently, the traditional division of science into theory and 

experiment has been complemented by computer simulation.  A model is defined as a simplified 

representation of a real system.  Models are designed to: 1) describe phenomenon in such a 

manner as to be comprehensible 2) make predictions.  Models are used to explore general 

mechanisms underlying complicated phenomena through: 1) examining (im)plausibility of a 

proposed mechanism, 2) examining the effects of variations on simple models, and 3) acting as 

virtual experiments to gain intuitive understanding of complex phenomena[3,67]. 

 

Fields such as mechanical engineering have successfully used computer models in the design of 

tangible products such as automobiles and airplanes.  When using computers to model complex 

systems, they are used to model ideas.  Simulations may be the only means available for 

exploring complex systems when experiments are not feasible or they may be used to reduce the 

time and cost performing “real” experiments.  Such synthetic frameworks allow investigation of 

systemic behaviors in biologic systems that are difficult if not impossible to study in vivo. 

 

The idea that “All models are wrong, but some are useful" is critical for understanding the role of 

computer simulations in the examination of complex systems.  Models may lack universal 

application, yet may still lead to new insights, new ways of examining phenomena, improved 

models, and tools to build better models.  A crucial component in the utilization of models is 

understanding the limitation of the model, so that false conclusions are not derived from any 

28



results.  The art of model building is the exclusion of irrelevant parts of the problem and correct 

interpretation of the results.   

 

Model building of complex systems poses unique challenges.  As discussed earlier, a system is 

defined as a collection of interacting elements that together produce, by virtue of their 

interactions, some system wide behavior.  In complex systems, the loss of emergent properties 

that define the system prohibits an understanding of the system by studying the individual parts.  

It is analogous to understanding the operation and construction of the space shuttle by reading its 

parts inventory.  Therefore, the system must be studied in a dynamic manner over time and 

characterizing not just the components but also their relationships.  For example, studying the 

characteristics of isolated structures of a cell in isolation inadequately characterize the behavior 

of the cell as a whole.  Models based on computational systems biology attempt to integrate 

experimental and computational research[68,69,70,71].  Ideally, computational systems biology 

will provide tools to bridge the gap between traditional reductionist experiments, 

genomics/proteomic data, and clinical care (translational medicine).   

 

In this manner, technological and theoretical advances in computer science and mathematics 

have offered new options to complement experimental study design.  As opposed to in vivo 

studies that are performed in living organisms and in vitro studies that are undertaken using cell 

cultures, in silico studies utilize computational techniques[72,73,74].  The patterns discovered by 

such techniques and the synthesis of experimental data and theoretical concepts allow creation of 

models to explain complex phenomena.  Effective studies of complex systems must be made by 

analysis of the parts (the “omic” tree) followed by a non-linear recombination to model as much 
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of the system as is known at the time[75,76].  In essence, the resulting model must exhibit its 

own emergent properties, allowing science to catch necessary glimpses that provide for the 

creation of new hypotheses. Manipulation of the model will then provide direction to the 

subsequent methodologies necessary to take the next steps in discovery. The computational 

challenge is creating models that contain sufficient elements and power to successfully predict 

how the process will respond to interventions.  To develop useful integrative systems biology 

approaches, complexity theory and its computational tools must be utilized. This complexity 

approach is consistent with the overall NIH Roadmap initiative and specifically with the 

computational biology approach discussed in the initiative 

(http://nihroadmap.nih.gov/bioinformatics).  

 

Ideally, a well-constructed computational model will offer a virtual laboratory to test biological 

hypotheses and therapeutic options prior to testing these theories in vitro or in vivo[77].  The 

ability of any model, from cell cultures to in vivo animal models to mathematical models, to 

make accurate predictions is dependent on the accuracy of the relation between the model and 

the real-world process that is being modeled[78].  This is especially true of mathematical models 

as all the observations are done in silico.  Therefore, such a model will require extensive 

validation in order to prove it is an accurate reflection of the biological process being modeled.   

 

Validation of a mathematical model is focused at two points: the underlying assumptions and the 

behavior of the model.  The validation of the assumptions of the model can be addressed through 

comparing the architecture and rules of the model with what is known about the components of 

the modeled system.  The difficulty lies in verifying the assumptions in the context of the in 
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silico model as all models represent some degree of abstraction.  Validation of the behavior of 

the model consists of comparing the behavior of the model with some real-world data set of 

expected behavior.  When the behavior of the model matches the real-world process, then the 

model is deemed valid for that particular test.   I.E. the plausible validity of the model is based on 

similarity to real world findings.  Conversely, if the model behavior does not match, then the 

model is invalid and must be reevaluated.  Once the model is altered, the model must undergo 

the validation process anew (Figure 4). One problem involves determining the next step when a 

model behavior does not reflect real world behavior.  The lack of fit may be due to calibration or 

to an error in the basic structure of the model; this validation will require extensive literature 

searches to obtain additional mechanistic insight as well as trial and error attempts at 

reconstruction.  

 

The advantages of developing a successful mathematical/computational model cannot be 

overstated.  Scientist will be able to test hypothesis nearly instantaneously.  A successful model 

will target  promising novel therapeutic approaches, thereby improving the success rates of 

clinical studies.  It will also promote the discovery of new therapeutic approaches that come 

directly out of the modeling process.  The time from bench to bedside will be decreased as 

millions of experiments may be run on a model in a very short period of time allowing the 

investigator to choose the best possible intervention strategy prior to any clinical trial[79].  

Intervention strategies may be streamlined and personalized prior to clinical application. 

 

Ordinary differential equations-  ODEs provide a valuable tool for analysis and prediction of 

biological systems over time.  The ODE paradigm is based on a series of equations that describe 
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Figure 4: Computational Modeling Flow Diagram.  The flow diagram demonstrates the 

iterative process required for creation of a high performance, validated model. 

 

the change in the states of the variables of the system over time[80].  The differential equations 

are derived from a combination of known and hypothesized kinetics of the components of the 

biologic system[81,82].  In general, the equation variables represent average concentrations of 

the various components.  Furthermore, parameters are embedded in the equations that represent 

the state of the system being modeled.  If they are not too complex, a system of ODEs can be 

solved analytically.  Otherwise, they can be solved computationally and analyzed using methods 

from nonlinear analysis to explore the properties of the system.  Because these equations are 

based on biologic interactions, ODE can predict outcomes beyond the range of available data.  

The most valuable aspect of an ODE is the ability to manipulate the variables allowing the 

manipulation of a biologic mechanism and providing an outcome that may be analyzed; thereby, 

allowing in silico experiments and subsequent in vivo experimental validation. 
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Such a dynamic systems can used to capture the gross behavior of the system.  The advantages of 

using ODE include: 1) the ability to explore properties of the system using non-linear analysis 

techniques 2) prediction of outcomes beyond the range of available data, and 3) manipulation of 

variables to determine the effects on the system.  Unfortunately, there are also disadvantages of 

ODE including: 1) multiple feedback loops lead to equations that are difficult to solve, 2) a 

priori necessity of a complete description of the system, and 3) spatial dynamics are difficult to 

simulate.  

 

Agent Based Modeling - In order to address the shortcomings associated with ODE models, we 

present the application of a computational systems biology approach using agent based modeling 

and simulation (ABMS)[83,84].  ABMS provides a powerful alternative to differential equations.  

ABMS is a relatively new modeling paradigm derived from cellular automata (CA).  CA was 

originally developed by Stanislaw Ulam and John von Neumann and more recently popularized 

by Stephan Wolfram[85,86,87]. CA is an abstract mathematical representation of a machine, 

which can be made to operate on a set of rules.  A CA is a 2-D grid consisting of spaces called 

“cells”.  Each cell is allowed to assume a finite number of states, each of which is determined by 

a pre-defined set of update rules.  A CA update rule is defined as the rule that every CA follows 

that determines its state at the next time step as a function of its current state and the state of its 

neighbors.  Thus, CA are complex systems in that you have large numbers of components with 

no central controller and only local communication.  Such CA may exhibit emergent behaviors 

that cannot be predicted from the CA rule.  ABMS is an extension of CA in that it has mobile 

components that can move through the grid.  

33



 

ABMs analyze biological systems based on the interactions among its components.  ABMs are 

dynamic systems that are discretized: time, space, and internal state[3,88,89,90].  ABM behavior 

is defined by rules that are a function of their local environment and their state.  ABM models 

are built on a grid of usually square spaces that are capable of entering a finite number of states.  

Each agent is assigned a state with a discrete probability of interacting with agents around it.  

Every agent has the same set of rules for updating its internal state.  Based on the values of its 

neighboring agents and its current state.  At each time step, the rules are applied to the whole 

grid and a new generation of agents is created  

 

ABMs are based on creating rules and defining mechanisms of behavior for the individual 

components of system.  The components of a system are classified into types of agents by virtue 

of shared behavior.  The behavior mechanisms are expressed as a series of conditional rules that 

allow easy conversion into computer programs.  Again the rules are created based on known and 

hypothesized mechanisms.  A simple example would be the creation of an agent that represents 

fibroblasts that when exposed to TGF-B synthesizes collagen.  The model defines a world based 

on defined characteristics and generates populations of the various types of agents.  The agents 

are able to interact based on programmed behaviors that are defined by their rule systems 

initiated by inputs from their environment.  For example, fibroblasts would respond to growth 

factors and cytokines that are secreted by other fibroblasts that they encounter in their immediate 

neighborhood.  In order to mimic real systems, the agents run in a parallel.  The resulting 

dynamics of the system then emerge from the multiple interactions between the agents over time 

rather than dictated by an overlying controller.  This type of modeling is “bottom up,” as all 
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measured output parameters and the resultant outcomes from the model are generated by the 

actions of the individual agents.  One of the advantages of ABM is the intuitive rule based 

definitions that are easily understood by non-mathematicians.  Furthermore the mechanistic rule 

based nature of ABMs allows the simulation of any intervention that deals with a defined 

mechanism. 

 

Agent based modeling is an approach to simulating the behavior of a complex system in which 

agents interact with each other and with their environment through simple local rules.  Again the 

rules will be derived from experimental data as well as literature-mining.  The advantage of such 

a technique include: 1) non linear relationships are easily modeled 2) the model is intuitive and 

does not require higher level mathematics for use and understanding, and 3) flexibility.  The 

disadvantages of agent based modeling include: 1) difficulty with validation 2) large amounts of 

computational power needed for large simulations.   

 

ABMS provide significant advantages over other modeling paradigms when modeling biologic 

systems[79,83,84].  The models are flexible in that changes in agent behavior may be done 

without having to reprogram the whole model.  This flexibility allows a wide range of behaviors 

to be captured.  The coding of such models may be mechanistic based.  Every aspect of how 

agents behave and interact must be explicitly coded.  Additionally, the variables that determine 

the agents‟ behavior must also be defined.  This behavior is usually coded at mechanistic levels 

allowing hypothesis to be easily tested.  The agents are able to adapt and change their behavior 

based on their environment.  As all biological processes are inherently dynamic, the ability of 

such agents to capture the dynamic behavior of systems is critical.  The models are easily 
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scalable.  Once the behavior of a given agent is defined, inhabiting a system with multiple 

instances is easy.  Therefore, examining the behavior of a system of arbitrary size is more a 

function of computational speed and systems resources rather than ability to generate larger 

models.  One of the greatest strengths of such models is to create virtual experiments.  The 

experiments can be repeated an arbitrary number of times and the data can be analyzed using 

traditional statistics.  This allows direct comparisons between the in silico models and in 

vivo/vitro experimental data.  ABMS allow constructive proofs of systems.  I.E. you create a 

model that generates a behavior. Regardless of in vitro/vivo observation of this behavior, the in 

silico model results imply that there is at least one set of conditions that may create such 

behaviors.  This allows us to grow generative models that capture systems as they are expanded.   

Another important aspect of such models is their ability to run many experiments at a very low 

cost.  Once the model is created, the cost of running such models is usually minimal. 
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Abstract 

 

The complex interactions that characterize acute wound healing have stymied the development 

of effective therapeutic modalities.  The use of computational models holds the promise to 

improve our basic approach to understanding the process.  By modifying an existing ordinary 

differential equation model of systemic inflammation to simulate local wound healing, we expect 

to improve the understanding of the underlying complexities of wound healing and thus allow for 

the development of novel, targeted therapeutic strategies. The modifications in this local acute 

wound healing model include: evolution from a systemic model to a local model, the 

incorporation of fibroblast activity, and the effects of tissue oxygenation.  Using these 

modifications we are able to simulate impaired wound healing in hypoxic wounds with varying 

levels of contamination.  Possible therapeutic targets, such as fibroblast death rate and rate of 

fibroblast recruitment, have been identified by computational analysis.  This model is a step 

towards constructing an integrative systems biology model of human wound healing.  
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Introduction 

A soft tissue injury elicits a well-prescribed wound healing response
1, 2

.  The process of wound 

healing is designed to restore anatomic and functional characteristics of the tissue; however, little 

progress has been made in improving the wound healing response time or in preventing 

complications such as fibrosis, infections, and formation of non-healing wounds
3
.  In this paper, 

we describe a computational model of acute wound healing designed to allow a system-level 

analysis of the wound healing response using ordinary differential equations (ODEs).  As a first 

step to a more comprehensive model, we have explored the combined effects of bacterial 

infections, inflammation, and tissue hypoxia on the rate and success of wound healing since 

these processes are well-known as affecters of healing.  As this model matures, it will provide 

the opportunity to test new mechanisms and novel therapeutic of wound healing strategies in 

silico. 

 

Despite burgeoning interest in the field of computational biology, work of limited scope has been 

published on modeling the acute wound.  Most of these studies demonstrate the difficulties of 

adequately accounting for the myriad of potential interactions
9
.  For example, in their respective 

works on epidermal wound healing, Stekel et al.
10

, Walker et al.
11

 and Morel et al.
12

 do not 

attempt to simulate healing by fibroblasts and do not implement inflammatory changes in their 

models.  Dallon et al.
13

 constructed an ODE model of collagen deposition focusing on the 

fibroblasts and their relationship to the underlying extracellular matrix, but do not account for 

inflammation or repair of underlying tissue damage.  Schugart et al.
14

 recently published a model 

of wound angiogenesis as a function of tissue oxygen tension but the model does not specifically 

address the wound healing process. 
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Reynolds et al.
15-16

 created an ODE model designed to simulate inflammation and repair on a 

systemic level in the setting of a systemic insult such as sepsis.  We have modified and extended 

their work to apply it to a local wound.  ODEs provide a valuable tool for analysis and prediction 

of biological systems over time
17

.  ODEs model the changes in important physiological variables 

over time. The equations are derived from a combination of known and hypothesized kinetics of 

the components of the biological system.  In our model, the state variables represent average 

concentrations of the various dynamic components.  Furthermore, parameters are used in the 

equations to account for static components of the system being modeled.  The system is solved 

numerically and the properties of the system can be explored mathematically.  Because these 

equations are based on biological interactions, ODEs can predict outcomes beyond the range of 

available data.  The most valuable aspect of a mathematical model is the ability to manipulate the 

variables and parameters, perform experiments in silico, and examine their results.  The 

biological mechanisms of a wide range of potential situations may then be analyzed together 

with their outcomes.  In vivo validation would then follow from in silico experimentation. 

 

Materials and Methods 

As a first attempt to capture the dynamics of local wound healing over time, a four-variable 

system of ordinary differential equations was developed. The variables in this model represent 

total local tissue (D)amage, (P)athogen level, overall i(N)flammation, and the concentration of 

(F)ibroblasts.  For each of these variables we used known biological interactions to develop a 

differential equation that describes the rate of change for the variable. The interactions included 

in this model are depicted in the model schematic, Figure 1.  
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Figure 1: Model schema that illustrates the interactions between the four variables.  Arrows indicate positive 

feedback and bars indicate negative feedback. 

 

The fundamentals of the model are based on the observations that tissue damage is increased by 

inflammation and hypoxia, while wounds are repaired by fibroblasts
18-21

.  Interpreting the 

interactions in Figure 1, we developed the four variable model, given below in Equations (1)-(4). 

This model was adapted from the four variable model created by Reynolds et al., which is 

included in Appendix A.  
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The difficulties in modeling complex physiologic processes are defining the system variables and 

representing their interactions mathematically.  To address this, we have combined related cell 

types and signaling process together.  As a result, it is not possible to have units on many of the 

biological quantities. Specifically, because tissue damage is complex and involves many 

biological markers, it is a difficult quantity to measure. Thus in this model D has no units.  

Instead, we track the relative changes over time and evaluate healing based on percentage change 

of damage (D), with a return to under 10% damage considered healed.  

 

Pathogen Equation 

In developing Equation (1), the pathogen equation, we made similar assumptions to those used to 

develop the pathogen equation in Reynolds et al.  We assumed that the pathogen population has 
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a growth rate of pgrowth and a carrying capacity of P∞  giving rise to the first term of Equation. 

Unlike the Reynolds et al. model we take into account that the pathogen population is increased 

in low oxygen environments
19

. Therefore, pgrowth is a function of the oxygen level in the local 

environment and determined by the function: 

  

This relationship between tissue oxygenation levels and bacterial growth is illustrated in Figure 

2a. with Ocrit set to 5, which is equivalent to a transcutaneous oxygen level of 30mm Hg
22, 23

. If 

the tissue oxygen level is above the critical value, pgrowth is fixed at 0.3, since the effects of 

hyperbaric oxygen on wound healing are not included in this model.  However, this function 

does capture the increase in anaerobic pathogen reproduction that occurs in hypoxic 

environments. The second term in Equation (1) is directly from the Reynolds et al. model and 

accounts for local immune mediators that immediately interact with the pathogen, such as 

defensins and non-specific antibodies.  

 

Inflammation recruited to the wound is generally thought to assist in the destruction of pathogens 

and thereby is assumed to decrease pathogen levels, while causing some degree of tissue 

damage
2, 4, 24-26

.  The effect of this process on pathogen level is modeled with the third term of 

Equation (1). We model the depletion of pathogen from an encounter with an inflammatory cell 

with a term of the form 
 
k

pn
N P . However, since fibroblasts modulate the inflammatory 

response by initiating wound repair, N in this term is replaced with   f (N;F) .   
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Figure 2: (a) Dependence of the pathogen growth rate on tissue oxygenation.  Anaerobic pathogen growth rate 

increases at lower oxygen levels. (b) Graph of the function g(O2), illustrating the impact of tissue oxygenation on 

rate of damage increase.  Oxygen levels below the critical level Ocrit promote additional damage, whereas higher 

oxygen levels decrease the rate of damage.  

 

The function   f (N;F)  represents the inhibition of inflammatory cells by fibroblasts.  We use the 

same definition of the function  f (N;F)  as in Reynolds et al., since we are modeling the down-

regulation of the same cell population. Including this inhibition produces the third term of 

Equation (1): -kpnf(N; F)P. 

 

Inflammation Equation 

Inflammatory cells are recruited by pathogens, damaged tissue, and other inflammatory cells and 

mediators
21, 25

.  Incorporating this activation of the inflammatory cells into the model we get the 

first term of inflammation equation, Equation (2). First we assume that inflammatory cell 

activation is triggered by the three variables N, D, and P giving a rate of activation of

  
R  k

np
P  k

nn
N  k

nd
D.  As in the pathogen equation, Equation (1), we account for the inhibition 

of inflammation due to the presences of fibroblasts and we replace the basic activation rate with 

one that includes inhibition 
  
R(P, N , D;F)  f (k

np
P k

nn
N  k

nd
D;F) . The process of activation 

occurs on a faster time scale than the other interactions included in this model, this allows us to 

44



not explicitly track the resting population of inflammatory cells, and to model activation with the 

sigmoid function 

  

s
nr

R(P, N , D; F )


nr
 R(P, N , D; F )

. Further details on the derivation of this term are in 

Reynolds et al.  

 

Fibroblasts are recruited to the wound by tissue damage and inflammation and are able to repair 

tissue damage and modulate the inflammatory response 
2, 4, 27-29

.  This modulation of the 

inflammatory response is represented with the term 
 


fn
FN in Equation (2). The inflammation 

population will decrease at greater rate when fibroblasts are at a higher level.  

The majority of cell types, such as inflammatory cells and fibroblasts, are not immortal; their 

half-life determines the duration of their efficacy
30, 31

.  Therefore, as traditionally found in most 

ODE models, the half-lives of inflammatory cells and fibroblasts were used to represent the 

average decay rate of a cell
17

.  Incorporating the intrinsic decay of the inflammatory cells we get 

the final term of Equation (2),  
 


n
N . 

 

Damage Equation 

Tissue is damaged not only by the initial wound, but also by the influx of inflammatory cells to 

the wound site during the inflammatory stage of wound healing. To model this dependence of the 

damage level on the inflammation we use ( )dn sk f N . The function fs is a nonlinear function of N, 

because low levels of inflammation are not as effective at inducing tissue damage.  We also 

include inhibition of inflammatory cells in this term. Therefore, in Equation (3), we have the 

term ( ( ; ))dn sk f f N F .  
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The amount of damage that is repaired is proportional to both the current amount of damage and 

the amount of fibroblasts present.  This leads to the term 
df DF in the damage equation, 

Equation (3).  Damage is decreased at a faster rate when fibroblast levels are higher. Also we 

include the term d D  in Equation (3) to model intrinsic tissue repair.  

 

The final term in Equation (3) models the impact of tissue oxygenation O2 level on the rate of 

change of damage.  This impact is described by the function g(O2) (Figure 2b), which is designed 

to capture the increase in damage in hypoxic environments and to represent a small healing 

effect if O2 is larger than the critical value, Ocrit
22. 23

.   

 

 

Fibroblast Equation 

The final equation, Equation (4), models the fibroblast population. We assume in normal skin 

there is a background source of fibroblasts, sf. This gives rise to a baseline level of circulating 

fibroblasts, which exist in both pre-wounded tissue and healed tissue.   

In response to tissue damage and inflammation, the fibroblast population will increase. The 

second term in Equation (4) models this growth when inflammation and/or damage are nonzero. 

The term has the form 
( )

1 ( )

fn fnd

fnd

k N k D

N k D



 
because we assume the dependence of the fibroblast 

population on levels of damage and inflammation is nonlinear. That is, at low levels of 

inflammation and damage the recruitment of fibroblast is slow, while at high levels the process 
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of fibroblast recruitment saturates. As with other terms involving inflammation the process is 

inhibited using the same function, f, so the final form of the term is 
( ; )

1 ( ; )

fn fnd

fnd

k f N k D F

f N k D F



 
. 

As described above, fibroblast have an intrinsic death rate f, and this is modeled by the final 

term of Equation (4),  
f F . 

 

Simulations 

Our model equations were solved numerically using both the software package XPPAUT
32

 

(XPPAUT is a freely available software package for solving differential equations available for 

download at http://www.math.pitt.edu/~bard/xpp/xpp.html) and several of our own 

independently developed C++ computer programs.  A list of baseline parameters is included in 

Table 1 for reference.  The parameters were derived from experimental values found in the 

literature or estimated such that the system behaved in a biologically appropriate manner
15, 22, 23

.  

We performed several in silico experiments to investigate the effects of (i) varying the amount of 

initial damage, D(0), and the initial pathogen levels, P(0), and (ii) varying certain parameters 

such as the tissue oxygenation level O2 and the rate of fibroblast recruitment sf.   

 

In each experiment, we simulated two weeks of the wound healing process (336 hours) after the 

initial wound insult in order to observe more of the transient effects en route to steady state
33

.  

Two weeks provides an adequate amount of time for normal wounds to heal.  The resulting end 

state of the wound was categorized as one of three types:  

 Healed if the damage is decreased by 90% within 2 weeks (i.e. for D(0)=10, damage is 

less than 1 after 2 weeks); 
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 Non-healing wound if damage remains higher than 10% of initial damage and pathogen 

levels decrease to zero (i.e. for D(0)=10, P(0)>0, damage is greater than 1 but pathogens 

are nonexistent after 2 weeks); and 

 Chronic infection if both damage and pathogen levels remain at above 10% of their initial 

levels after 2 weeks (i.e. for D(0) =10, P(0) = 1, damage is greater than 1 and pathogen is 

greater than 0.1 after 2 weeks). 

The non-healing wounds as defined above correlate clinically to wounds in which there is 

impaired wound healing, but are not infected
2-4, 24, 34, 35

.  Chronic infections as defined above 

correlate clinically to wounds that are infected and are thereby unable to heal normally
2-4, 34, 35

. 

 

Results 

All simulations started immediately after the wound formation.  In the model, this translated to 

no initial inflammation (N(0)=0) and to the initial level of fibroblasts at a normal background 

level (F(0)=0.1).  Initial damage and initial pathogen levels were set to represent different injury 

scenarios.  Unless otherwise specified, all parameter values were set to their baseline values 

(Table 1). 

 

Figure 3 is the baseline simulation and shows normal healing behavior in a small, 

uncontaminated wound with normal perfusion (D(0) =0.2 and P(0) = 0).  As expected, this type 

of wound elicits a brief period of a slightly elevated inflammatory response and an increase in 

fibroblast level.  This scenario results in normal healing of the wound, which is represented by 

the damage variable decreases to zero within two weeks.     
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Figure 3:  Healing behavior of a small, “clean” wound (D(0) = 0.2, N(0) = 0, F(0) = 0.1, and P(0) = 0).  (b) 

Inflammation peaks within two days after initial insult, and decays to 0 within two weeks.  (c) Damage steadily 

decreases, and after two days the amount of wound damage is approximately half its initial amount.  (d) Fibroblasts 

peak three to four days after initial insult, and then return to their baseline value within two weeks. 

 

The first experiment focused on increasing the initial wound size (D(0) = 2; 10-fold increase 

from Figure 3) while leaving pathogen levels at zero (P(0) = 0).  Figure 4 illustrates the effect of 

this change on the behavior of the wound.   The significantly increased initial wound size, leads 

to a non-healed wound at two weeks where damage, fibroblasts, and inflammation all plateau at 

an elevated level.  This correlates clinically to large acute wounds that require prolonged healing 

times and are at increased risk for developing infections
4, 36

.   
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Figure 4:  Non-healing wound of large initial size and no initial pathogens (D(0) = 2, N(0) = 0, F(0) = 0.1, and P(0) 

= 0).  (a) The pathogen level remains at 0 for the duration of the simulation.  (b-d) Inflammation, damage, and 

fibroblast levels plateau at elevated levels, and the wound persists even after two weeks.  

 

 

Figure 5 shows the impact of tissue oxygenation levels on wound healing behavior by plotting 

the pathogen and damage levels for three different levels of O2. For each level of oxygenation 

the wound has a moderate initial size and pathogen level (D(0) = 0.5 and P(0) = 0.3).  All 

parameters except O2 were held at their baseline values.  If the tissue oxygenation is at the 

borderline level (O2 = O2crit=5.0; equivalent to a transcutaneous oxygen level of 30mm Hg
22, 23

), 

the wound begins to heal after a two-day transient period during which the amount of tissue 

damage increases in size as a result of the inflammatory response (Figure 5 a,b).  
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Figure 5:  Transients for pathogen and damage with various O2 values. For all three O2 values the initial conditions 

used were D(0) = 0.5, N(0) = 0, F(0) = 0.1, and P(0) = 0.3. (a) and (b): are the pathogen and damage transients, 

respectively, for a O2 value of 5, which is the value of O2crit. (c) and (d): the pathogen and damage transients, 

respectively, for a O2 value of 4.0, which results in a non-healing wound.  (e) and (f) : the pathogen and damage 

transients, respectively, for a O2 value of 2.5, which results in a chronic infection.   

 

Both the damage and inflammation return to zero and the fibroblasts are decreasing toward their 

background level by the end of two weeks. We also simulated the same wound in a reduced 

oxygen environment, where O2 is below the critical level (O2 = 4.0), which leads to significant 

impairment in wound healing (Figure 5 c,d).  The pathogens are successfully removed, but 

damage persists beyond two weeks.  Finally, if the tissue oxygenation is further lowered (O2 = 

2.5), both pathogens and damage plateau at an elevated level, corresponding to chronic infection 

(Figure 5 e,f).  These represent the types of non-healing wounds, both infected and non-infected, 

seen in patients with vascular insufficiency
2, 37

. 
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In a third experiment, we investigated the combined effect of tissue oxygenation (O2) and 

f ) on the wound healing behavior, leaving all other parameters at their 

baseline values.  By increasing the fibroblast mortality rate, we simulated the premature 

senescence of fibroblasts observed in older patients and diseases such as diabetes mellitus
4, 36, 38

.  

Figure 6 illustrates the wound healing behavior for different choices of initial conditions.  In 

Figure 6a, the initial damage and pathogen levels are low (D(0) = 0.2 and P(0) = 0.2), and the 

wound always heals within two weeks if O2 > Ocrit f = 

0.01).  If the f > 0.14), the high mortality of 

fibroblasts invariably results in a non-healing wound.  In hypoxic environments, we observe non-

healing wounds even when fibroblast mortality is low as a direct result from tissue necrosis.  

Figure 6b shows the impact of doubling the initial pathogen level (P(0) =0.4).  In this case, both 

the regions of non-healing wound and chronic infection become substantially larger. 

 

 

 

 

 

Figure 6:  Long-term wound behavior for various choices of tissue oxygenation O2 and fibroblast mortality (μf) ( 

N(0) = 0 and F(0) = 0.1).  (a) A wound with initial damage D(0) = 0.2 and pathogen level P(0) = 0.2.  Large 

fibroblast mortality always leads to non-healing wound.  If the fibroblast mortality is lower, then we observe chronic 

infection in hypoxic environments and healing if tissue oxygenation is appropriately large.  (b) If the initial pathogen 

level is doubled to P(0) = 0.4, the regions of chronic infection and non-healing wound are substantially larger, and 

the wound is unable to heal within 2 weeks time. Simulations were not run for fibroblast half-life values less than 12 

hours (marked by the dashed lines in each plot), since values below this level are typically unseen.  

 

To understand if an advanced therapy might impact wound outcome, we designed an in silico 

experiment to investigate the possible impact by varying the rate of fibroblast recruitment (sf), 

and analyzed the long-term healing behavior.  We simulated the first two weeks after initial 
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insult for a wound with baseline initial conditions D(0) = 0.5, N(0) = 0, F(0) = 0.1, and P(0) = 0, 

for all parameters except fibroblast recruitment (sf).  For larger recruitment rates (sf > 0.012), the 

wound heals within two weeks, whereas a non-healing wound results if recruitment is impaired 

(sf < 0.011).  Increasing sf, i.e. recruiting more fibroblasts, has a strong impact on the overall 

healing time.  For example, if sf = 0.001, the wound requires 158.2 hours to shrink to 10% of its 

original size, as compared to 139.0 hours if sf is doubled to 0.002 (Figure 7).  

 

 

 

 

 

 

 

 

 

Figure 7:  Comparison of damage vs. time for different fibroblast recruitment rates (D(0) = 0.5, N(0) = 0, F(0) = 

0.1, and P(0) = 0). The dashed curve is damage transient for the baseline fibroblast recruitment rate, sf = 0.001. The 

solid curve is the damage transient with the same initial conditions and a fibroblast recruitment rate twice baseline, sf 

= 0.002.  

 

By doubling sf, the healing time decreases by about 12%.  The maximum amount of damage, 

which accumulated as the wound healed, decreased by 11%. Furthermore, when sf=0.002 the 

influx of inflammation to the wound site did not elicit more damage than the initial level of 

D=0.5. These experiments correlate to the use of agents such as recombinant PDGF
39

 and basic 

fibroblast growth factor, bFGF
40

. The Akita et al.
40

 study reported a 20% decrease in healing 
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time with the use of bFGF, which is on the same order of magnitude as the decrease seen our 

model experiment. 

 

Discussion: 

Mathematical models offer a non-invasive intermediary step between animal models and human 

subject studies that allows hypotheses and therapies to be tested prior to clinical studies.  An in 

silico model would potentially increase the success rate of clinical trials or aid in designing more 

appropriate animal studies.  These animal or clinical studies would then in turn, validate the 

model.   

 

As an initial step to creating such a model, we have modified an ODE model of the acute wound 

healing response to a soft tissue injury.  The model includes factors such as bacterial 

contamination and wound oxygenation. Assuming normal conditions, our model predicts the 

typical progression of healing behavior for a wound.  The ODE model was also able to 

successfully simulate the impairment in wound healing found in a hypoxic wound environment 

and a contaminated wound.  With extremely low levels of oxygen, our model predicts a chronic 

infection where the wound does not heal and pathogens persist in the wound.  Both of these 

states are well documented clinically
35, 38

. 

 

We also examined the situation of elevated and depressed fibroblasts mortality rates.  Clinically, 

instances of elevated fibroblast mortality are seen in diabetic and elderly patients.  Here we saw 

that with high rates of fibroblast mortality the wound cannot heal.  Additionally, a scenario of 

moderately low fibroblast mortality and high initial pathogen levels predicts the state of chronic 
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infection.  Finally, we examined the case where fibroblast production is either impaired or 

enhanced.  Impaired fibroblast production results in a non-healing state, but under conditions 

where the production is increased we have wounds that heal at notably faster rates.  This 

provides a framework from which to test a new hypothesis in a living model. 

 

The present study represents only a first step toward developing a detailed mathematical model 

of acute wound healing.  Consequently, there are many opportunities for improving upon our 

existing model; these include, 

 With the exception of time t, all quantities are measured in arbitrary units.  By expanding 

the model to include variables that represent specific cell types and mediators one may 

estimate parameter values and assign physiologically meaningful units.  

 In its present form, our model does not incorporate time delays.  This prevents the 

simulation of the time lags inherent in signaling pathways as well as in fibroblast 

recruitment after the onset of inflammation. 

 We did not attempt an exhaustive study of the impact of individual parameters on long-

term healing behavior.  Although we chose to focus on parameters such as the production 

and death rates of fibroblasts, it is likely that other parameters have a profound impact on 

healing. 

 We focused on strongly interlinked local factors (inflammation, fibroblast function and 

recruitment, bacterial contamination, and tissue oxygenation) with resultant dynamic 

non-linear behaviors.  Factors such as depth and shape of the wound, wound contraction, 

epithelization, and angiogenesis have not been addressed. 
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 We have not included systemic effects on wound healing, e.g., nutritional status, age, sex, 

and underlying comorbidities. 

 

Despite the limitations inherent in our model, it does demonstrate the to use a systems biology 

approach to human wound healing.   Mathematical models show great potential as a platform for 

hypothesis generation and experimentation prior to further refinement in vitro and in vivo.  A 

refined method of computational analysis would decrease overall cost, time, and need for 

invasive testing.  In the future, we hope to further elucidate the process of inflammation, 

epithelization, contraction, angiogenesis, and systemic effects, in order to create a model that 

more closely corresponds to the actual wound environment.  Because our simplified model 

produces qualitatively reasonable results, we are optimistic that including systemic effects will 

enhance our understanding of the acute wound-healing process, ultimately leading to improved 

clinical therapies. 
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Table 1.  Baseline parameter values.  * denotes estimated parameter 

Parameter Value Comments 

kpm 0.6 Rate at which inflammatory cells kill pathogen 

nonspecifically
*
.
 
 

kpn 0.6 Rate at which inflammatory cells kill pathogen by 

phagocytosis
15

. 

µn 0.05 Half-life of activated inflammatory cells
15

. 

F∞
 

0.30 Maximum fibroblast density
*
. 

kmp 0.01 Rate at which non-specific inflammatory response is 

exhausted by pathogens
*
. 

knp 0.1 Rate of activation of inflammatory cells by pathogens
*
. 

knd 0.015 Rate of activation of inflammatory cells by damaged tissue
*
. 

sf
 0.001 Rate of fibroblast recruitment

*
. 

sm
 

0.005 Rate of inflammatory cell recruitment
*
. 

knn 0.01 Rate of activation of inflammatory cells by activated 

inflammatory cells
*
. 

kdn 0.35 Maximum rate of damage by activated inflammatory cells
*
. 

kfn 0.004 Rate of fibroblast recruitment by inflammatory cells
*
. 

kpg 0.55 Rate of pathogen growth
15

. 

snr 0.08 Rate of inflammatory cell recruitment
*
. 

xdn
 

0.1 Level of inflammatory cells needed to bring damage to half 

its maximum
*
. 

kfnd
 

48 Effectiveness of tissue damage and inflammatory cells to 
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recruit fibroblasts
15

. 

P∞
 

20 Maximum pathogen density
15

. 

µnr
 

0.12 Half-life of inactivated inflammatory cells
15

. 

µd
 

0.02 Baseline damage repair rate
15

. 

µf
 

0.01 Half-life of the fibroblasts
*
. 

µm 0.002 Half-life of non specific inflammation
15

. 

µdf 0.002 Determines the amount of damage healed per unit damage 

per fibroblast
*
. 

µfn 0.002 Determines that anti-inflammatory effects of fibroblasts
*
. 

α 0.1 Along with µd, determines the amount of damage inflicted 

by hypoxia
*
. 

xd
 

2 Along with βd determines the rate of tissue damage caused 

by hypoxia*. 

βp 0.3 Along with O2/ Ocrit ratio, determines the increase in 

anaerobic reproduction rate induced by hypoxic conditions
*
. 

βd 0.3 Determines the rate of tissue damage caused by hypoxia*. 

Ocrit 5 Critical oxygen level below which wound healing is 

impaired.  Equivalent to a transcutaneous oxygen level of 

30mm Hg
22, 23

. 

O2 User 

Defined 

Level of tissue oxygenation. 

*Estimated parameter 
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Appendix A 

 

The original equations from Reynolds et al.
15

 are:
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CA represents the amount of system anti-inflammatory mediator. The parameters sc, kcn and kcnd 

correspond to Sf, Kfn, and Kfnd, respectively. N
*
 represents inflammation and all other variables 

and parameters are represented by the same notation as used in our model.   
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Abstract: 

The coagulation and fibrinolytic systems are complex, inter-connected biological 

systems with major physiological roles. The complex, nonlinear multi-point relationships 

between the molecular and cellular constituents of two systems render a 

comprehensive and simultaneous study of the system at the microscopic and 

macroscopic level  a significant challenge.   We present an Agent Based Modeling and 

Simulation (ABMS) approach for simulating these complex interactions. Our ABMS 

approach utilizes a set of 106 rules to define the interactions among the 59 enzymes 

and factors of the coagulation/fibrinolysis (CF) system interacting with each other in a 

dynamic manner.  These rules simulate the interaction of each “agent”, such as 

substrates, enzymes, and cofactors, on a two-dimensional grid.  This ABMS method 

successfully reproduces the initiation, propagation, and termination of blood clot 

formation and its lysis in vitro due to the activation of either the intrinsic or extrinsic 

pathways. Furthermore, the ABMS was able to simulate the pharmacological effects of 

two clinically used anticoagulants, warfarin and heparin, as well as the physiological 

effect of an enzyme deficiency/dysfunction, i.e., hemophilia and antithrombin III-heparin 

binding impairment, on the coagulation system.  The results of the model compare 

favorably with in vitro experimental data under both physiologic and pathophysiologic 

conditions which assist in substantiating the model.   

 

Introduction: 
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The coagulation and fibrinolytic systems maintain a constant, delicate balance between 

thrombotic response to acute blood loss versus the requirement of the vascular system 

to allow constant blood flow.  Zymogen to enzyme conversions throughout these two 

cascades generates the proteolytic enzymes, thrombin and fibrin, that catalyzes the 

deposition and removal of fibrin respectively. Disruption of this equilibrium results in 

thrombotic events (e.g. pulmonary embolus) versus hemorrhagic events stemming from 

underlying coagulopathies (e.g. vonWillebrand's disease)1  

 

 In the event of an injury to the endothelium, the coagulation system balances the need 

for localized clot formation against the need to prevent system wide activation.  This 

finely tuned system is composed of an assortment of molecular and cellular “agents” 

(e.g. substrates, enzymes, cofactors, inhibitors, platelets, and endothelial cells which 

interact to generate a stable clot in order to rapidly obtain hemostasis.  The new cellular 

model of hemostasis proposes that the classical pathways of coagulation, i.e., the 

intrinsic and extrinsic pathways, mediate on specific cell surfaces in a tightly regulated 

manner. In this model, activation of factor VII (extrinsic, Fig. 1) and factor XII (intrinsic, 

Fig. 1) result in the formation of multi-molecular complexes, the tenase and 

prothrombinase complexes, which eventually generate thrombin. Thrombin then cleaves 

fibrinogen to form fibrin monomers, which polymerize to form a three-dimensional clot.  

Following repair of the underlying damage to the endothelium, the fibrinolytic system 

acts to dissolve the pre-formed clot.  Fibrinolysis is achieved primarily through the 

proteolytic action of plasmin on fibrin polymers that reinforce and maintain the integrity 

of a thrombus (Fig 2). 
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Clot formation is regulated in vivo primarily through the antithrombin III-heparin (AT-H), 

activated protein C (aPC), and tissue factor inhibitor (TFPI) pathways (Fig. 1)2. These 

regulating systems limit the excessive formation of cross-linked fibrin under hemostatic 

conditions.  Similarly, anti-plasmin (AP), plasminogen activation inhibitor (PAI), and 

thrombin activatable fibrinolysis inhibition pathways prevent clot lysis until coagulation is 

complete (Fig 2).  

The specificity of interactions, both molecular and cellular, involved in these complex 

processes supports the concept that the CF system displays global effects through 

emergence of localized events.  The CF system may be viewed as a multi-component 

molecular machine6, in which individual components are linked through multiple 

feedback and feedforward loops.  This introduces non-linear relationships among the 

components. A static diagram such as the classically portrayed coagulation pathway 

Figure 1: Coagulation Cascade and Inhibitors- Inhibitors denoted by circles.  The intrinsic pathway is initiated by 

Prekallikrein or XII.  The extrinsic pathway is initiated by TF.  The intrinsic and extrinsic pathways join at the 

common pathway that begins after Factor X activation.  AT, TFPI, and aPC are the three inhibitory pathways.   
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(Figure 1) cannot adequately describe this dynamic evolutionary network. Moreover, the 

effects of several disease states on the imbalances in the CF system are difficult to 

understand.  For example, the influence of diseases that favor coagulation (e.g. 

coronary artery disease, disseminated intravascular coagulation, cerebrovascular 

accidents, and venous thrombosis), or those that impair coagulation (e.g. hemophilias, 

thrombocytopenias, and von Willebrand disease) remain poorly characterized in terms 

of the interactions of all components in the system over time. 

 

 

 

 

 

 

 

 

To date, most computational models of the coagulation system have focused on using 

ordinary or partial differential equations (ODEs and PDEs) 15-18.  The differential 

equations describe the change in the states of the variables of the system over time and 

are derived from known or hypothesized kinetics.  ODE models can readily simulate 

coagulation in vitro as it is a relatively homogenous system3-5;  however, such models 

face significant limitations when modeling in vivo hemostasis because of complicating 

factors such as non-stationarity, spatial heterogeneity and the effects of blood flow6. 

Therefore, derivation of differential equations suitable for in vivo modeling becomes 

Figure 2: Fibrinolytic Cascade and Inhibitors-  Inhibitors are denoted by circles.  The fibrinolytic pathway is 

initiated by tPA activation of Plasminogen.  Plasmin hydrolyzes fibrin.  Plasmin and fibrin catalyze the conversion 

of Plasminogen to Plasmin. 
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problematic.  Additionally, these models are incapable of demonstrating the 

randomness and variability within the system as it normally operates. 

  

In order to address the shortcomings associated with ODE models, we present the 

application of a computational systems biology approach using agent-based modeling 

and simulation (ABMS) to understand the CF system and predict selected outcomes.  

ABMS provides a powerful alternative to differential equations7-9.  ABMS is a relatively 

new modeling paradigm derived from cellular automata (CA)10, 11.  ABMS has mobile 

autonomous entities (agents) that can move through a 2-D grid.  Each agent is allowed 

to assume a finite number of states, determined by a pre-defined set of rules. Every 

agent is individually updated at the end of each operating period according to the pre-

set rules. The rules are a function of the current state of the agent and the state of its 

neighbors.     

 

As a first step, we created a model designed to simulate the in vitro environment.  The 

goal of the model is to simulate common lab tests performed on patients. 

Materials and Methods: 

In this in vitro model all substrates, reactions, and products from the intrinsic, extrinsic, 

common, fibrinolytic, AT-H, TFPI, PC, AP, PAI, and TAFI pathways have been included.  

In order to create realistic simulations, physiologic concentrations of factors were used 

in the in silico experiments.  The rates associated with the reactions were taken from 

the literature and were assumed to be performed in saturating phospholipid and calcium 

conditions.  The simulations were designed to test experimental conditions that create 
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interesting thrombin profiles or to demonstrate perturbations associated with pathology 

or pharmaceutical agents associated with the system.  

The ABMS approach utilized in this paper uses a two dimensional particle system.  The 

particle model is one in which particles or ‟agents‟ are able to move about and interact 

on a discrete spatial grid.  In this case, the agents of the system are the reactants, 

enzymes, and products, as defined in the entity table (Appendix 1).  Each agent‟s 

location on the spatial grid is defined in a two dimensional grid where the agent‟s 

location is determined by its x and y coordinates.  Each coordinate pair (x, y) is defined 

as a unique grid location.  Multiple agents may occupy a grid location.  A total of 6,241 

grid locations (Figure 3) were used in the coagulation simulations and 321 for the 

fibrinolytic simulations.  A unit time step of the simulation represents 0.01 seconds.   

 

 

 

 

 

 

 

 

 

 

Each grid location of the ABMS can be empty or can be occupied by one or more 

agents .  The neighborhood of each agent was defined as all agents located in the 

Figure 3: Spatial Grid - The spatial grid is three dimensional in that multiple agents are able to inhabit the same 

location. 
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same grid location.  After each time step, an agent was afforded complete freedom to 

move in a random manner to one of the adjacent cells.  The movement of each agent, 

its joining, association, and dissociation with its neighbors are governed by probability 

rules.  The movement parameter determines the extent of movement (0 implies every 

cell is stationary).  The joining-association parameter determines the extent of a given 

agent interacting with an adjoining agent.   The breaking parameter determines the 

extent of disruption of con-joined agents . The joining- breaking interactions were 

defined by the kinetics of the chemical equations that define the agents‟ behavior 

(Appendix 2).   

 

ABMS of Coagulation – To simulate the coagulation phenomenon in vitro  the 

probability of each  interaction event has to be assigned based on biochemical 

properties.  Each coagulation event is an enzymatic reaction with typical affinities in the 

nanomolar to sub-nanomolar range. These high affinities imply that the probability of 

conversion is directly correlated to the kinetics of the reactions. The movement 

parameter is set at one for every agent in the simulations which means they are free to 

diffuse across the grid.  The initial configuration of ABMS contained a pre-defined 

number of agents for the initial reactants , which is proportional to the known 

concentration of agent under normal physiologic conditions. For example, 340,000 

antithrombin agents were utilized corresponding to its 3.4 M concentration in normal 

plasma. Likewise, 30 agents of VIII were present at initial conditions corresponding to its 

physiologic concentration of 0.3 nM. These agents were randomly distributed on the 2-D 

grid at time t=0.  
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Both the prothrombinase and tenase complexes are formed through a combination of 

three factors in vivo. For example, prothrombinase complex is formed by a 

combination of prothrombin, factor Xa and factor Va, while the intrinsic tenase complex 

is formed when factors VIIIa and IXa combine with factor X. These three body 

complexes are not directly simulated in ABMS, as in vivo, these complexes must arise 

through sequential combination of two molecules and thus, we utilized a sequential two-

body collision approach to generate each complex.  

 

 

 

 

 

 

 

 

 

 

 

The spatial grid is in the shape of a square  allowing the agents to interact and bounce 

off the edge of the grid. The system was acellular with complete absence of platelets, 

RBC, or WBC representing plasma that is used in coagulation/fibrinolysis assays.  The 

reactions and rate constants represented by the rule table are representative of 

Figure 4: Computational Algorithm- The simple computational algorithm that controls the flow of the simulations. 
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experimentally observed rates under saturating phospholipid and calcium 

concentrations.  Figure 4 illustrates the algorithm used for running the simulations. 

 

Computational Hardware and Software – A software package designed to run ABMS 

was utilized to design and perform the simulations (Netlogov4.0412).  The user 

determines the subset of, reactions, reactants and coagulation factors, the probabilities 

of reactions, initial agent concentrations, and termination conditions for each simulation.  

The concentration of every coagulation factor was stored every 100 time steps (1 virtual 

second). All simulations were carried out on an Intel based desktop personal computer 

running Microsoft Windows XP.  Because of the nature of the software and the large 

number of interactions, each simulation took between 1-72 hours depending on the 

initial and stop conditions.   

 

Coagulation Simulations – Unless otherwise stated, modeling of the system was 

performed under conditions that simulated the mean physiologic concentrations of each 

soluble factor involved in the cascade, which were derived from literature reports 

(Appendix 3).  The model was designed to simulate volumes of 2mL using 6241 grid 

locations.  The model was tested under 1) conditions in which the type of agents was 

limited to a small subset of the coagulation factors or 2) conditions in which all the 

coagulation factors were represented.  The simulations were designed to test 

experimental conditions that demonstrate pathology associated with the system.  Each 

simulation was run ten times.  Comparisons between the ABMS output and 

experimental data were used to determine the validity of the system.   
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Both PT and aPTT experiments were terminated when 99% of the initial fibrinogen was 

converted to fibrin monomers.  When running PT experiments, an additional end 

condition of 135 seconds was defined.  This time equates to an INR > 10 which is a 

commonly reported value in clinical laboratories.  Similarly, an end condition of 150 

seconds was defined for aPTT experiments. 

 

Fibrinolysis Simulations – Unless otherwise stated, modeling of the system was 

performed under conditions that simulated the mean physiologic concentrations of each 

soluble factor involved in fibrinolysis, which were derived from literature reports in 

human blood under normal physiological conditions (Appendix 3).  Fibrinolysis 

experiments are typically done on volumes of 100µL which corresponds to 321 grid 

locations.  The model was tested under conditions in which the type of agents was 

limited to a small subset of the CF factors.  Given the time scale of hours rather than 

minutes, each simulation was run five times.  Comparisons between the ABMS output 

and experimental data were used to determine the validity of the system.   

 

Simulations - Simulating the CF system is challenging because not all interactions have 

been fully defined. Further, whether ABMS technology can reliably predict the functional 

behavior of the CF system has not been established. Thus, to establish that validity of 

ABMS in understanding the CF system, three sets of simulations were performed. The 

first set of experiments tested the applicability of the CF model. The second set of 

experiments attempted to simulate perturbations of these pathways so as to mimic 
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clinical disease states by measuring prothrombin time (PT) and activated partial 

thromboplastin time (aPTT). Finally, the third set of experiments measured the effects of 

pharmaceutical agents upon these CF pathways 

 

Statistical Analysis –The statistical package R v2.7.0 was used for all statistical 

calculations.  All confidence intervals in the paper are at the 95% level. 

 

Results: 

Three sets of simulations were performed to: 1) Validate the model using previously 

published data and known in vivo and in vitro conditions associated with the intrinsic, 

extrinsic, common pathway, and fibrinolysis; 2) Simulate perturbations of pathways 

mimicking clinical disease states by measuring prothrombin time (PT) and activated 

partial thromboplastin time (aPTT) as well as; 3) Measure the effects of pharmaceutical 

agents upon these pathways. 

 

Model Validation Simulations - Model validation was performed through the first set of 

simulations.  Through successful reproductions of the in vitro experiments performed by 

van‟t Veer et al.13, 14, Wang et al.15, Christensen et al.16, Masson et al.17, Bajzar et al.1  

and in silico experiments performed by Hockin et al.18 as described below, the behavior 

of the ABMS was validated.   

 

Simulation of the Extrinsic Pathway Without Regulation - The intrinsic and extrinsic 

pathways can function independently of each other to generate a clot. In vivo, the most 
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important pathway for the initiation of clot formation is the extrinsic pathway (abnormally 

low levels of PK, HMWK, or XII have no effects on bleeding times); therefore the initial 

simulations are focused on validating the behavior of the extrinsic pathway.  To validate 

the use of ABMS in predicting the functional property of the extrinsic pathway, only 

seven agents were introduced on the rectangular grid including TF-VIIa, V, VIII, IX, X, 

TFPI, AT, and PC.  TF-VIIa complex initiates coagulation resulting in the formation of 

factor IIa, the level of which is proportional to the level of clot formation under normal 

conditions.  TFPI, AT, and PC were used to assess the ability of ABMS to reflect system 

regulation. 

 

The first simulation was performed in the context of the procoagulants (TF-VIIa, II, V, 

VIII, IX, and X).  Formation of thrombin was initiated by TF-VIIa at various 

concentrations (5pM, 30pM, and 130pM).  At each concentration of TF-VIIa, the most 

notable characteristic of the procoagulant simulation (Figure 5a) is its biphasic behavior 

composed of an initiation phase followed by a propagation phase.  This sigmoidal 

growth profile is characteristic of multi-step reactions. The increasing concentrations of 

TF-VIIa resulted in shortening initiation times, arbitrarily defined as the time needed to 

form 20 nM of IIa (Table 1).  Additionally, an increased maximum rate of IIa formation 

during the propagation phase was observed as a function of concentration (Table 2).  

The sigmoidal factor IIa growth profile coupled with a dependence on initiator 

concentration suggest that ABMS may be expected to simulate the coagulation 

cascade*. 

*Elimination of rules 33 or 27, which relate to the generation of thrombin from Xa and generation of Xa from TF-VIIa, 

respectively, suppressed all thrombin formation under all conditions (data not shown). 
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Table 1: Initiation phase length (s).  Initiation time is defined as the time it takes to form 20nM of IIa.  The 

initiation time is a function of the TF-VIIa initiating concentration.  The combinations of TFPI and AT have the 

largest effect on the initiation times. 

 5pM 30pM 130pM 

NI 38.7+/-7.06 20.7+/-2.31 11.8+/-1.57 

TFPI 74.5+/-21.04 39.1+/-10.38 16.2+/-4.11 

AT 59.7+/-10.75 27.9+/-4.44 14.6+/-3.20 

TFPI + AT N/A 50.8+/-13.83 34.2+/-13.04 

 

 

 

Table 2: Maximum thrombin generation rate (nM IIa /s).  The maximal rate is a function of the TF-VIIa 

initiating concentration.  The combinations of TFPI and AT have the largest effect on thrombin generation rates. 

 5pM 30pM 130pM 

NI 43.8+/-6.22 82.7+/-3.50 110.3+/-6.54 

TFPI 30.2+/-5.46 41.0+/-5.24 68.5+/-9.16 

AT 19.1+/-5.80 47.0+/-6.03 85.9+/-5.92 

TFPI + AT 0.7+/-1.48 13.4+/-3.53 37.4+/-7.55 
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Simulation of the Extrinsic Pathway With Regulation- To assess whether ABMS 

simulates the regulatory aspects of coagulation, we examined the behavior of the 

system in the presence of TFPI, AT, and PC.  When TFPI at 2.5 nM (TFPI‟s normal 

plasma concentration) is added to the titrations observed in Figure 5a, a significant 

extension of the initiation phase is observed with only small effect on the maximal rate 

of propagation.  As seen experimentally, adding TFPI to samples with TF-VIIa below 

100pM leads to a doubling of the initiation time (Figure 5b, Tables 1&2).  It is important 

to note that addition of TFPI as the only regulator of the extrinsic pathway does not alter 

the final level of factor IIa, and hence the clot, formed in the process.   

Figure 5: Total thrombin generation with and without inhibitors.  A-C: The initiating concentrations of TF-

VIIa illustrated: circle = 130 pM, triangle =  30 pM, and square = 5 pM.  A) No inhibitors present B) 2.5nM TFPI 

present C) AT 3.4µM present D) The initiating concentration of TF-VIIa is 5pM in the presence of 65nM PC.  TM 

concentration: circle = 0 pm, triangle = 0.1pm and square = 10pm.  N=10. 
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To assess the effect of adding an irreversible coagulation inhibitor, AT was introduced  

at a concentration of 3.4 M (AT‟s normal plasma concentration) to the titrations 

observed in Figure 5a.  The addition of AT leads to formation of characteristic bell 

shaped curves for the formation of IIa at all concentrations (Figure 5c).  These profiles 

are similar to those found in studies of coagulation in plasma.  The AT has little effect on 

either the initiation time rate or the maximal rate of thrombin generation during the 

propagation phase at 130pM concentrations of TF-VIIa (Tables 1&2) suggesting that AT 

alone is an effective regulator of coagulation primarily at low levels of TF-VIIa.  This is in 

line with experiments in plasma, which show that AT is not effective in rapidly reducing 

a bolus of factor IIa stemming from its slow kinetics.   

 

The last important inhibitor for the coagulation system is PC.  Figure 5d demonstrates 

the effects of 65 nm PC and TM on the thrombin generated by the extrinsic system.  

Starting with an initial concentration of 5pM TF-VIIa, thrombin is plotted against time as 

TM concentration is varied (0, 0.1, and 10 nm).  PC in the absence of TM and at low TM 

concentration has minimal effects.  At high concentrations of TM, the rate of thrombin 

generation during the propagation phase is decreased.  Furthermore, a significant 

interruption of the propagation phase occurs leading to a biphasic propagation phase; 

thus, activation following thrombin generation illustrates the dynamic feedback 

characteristic of the PC pathway.   
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Simulation of Hyper Anticoagulation - To assess whether a pro-thrombotic state can be 

reliably controlled by either of the two natural regulators, the concentrations of AT and 

TFPI were increased to levels dramatically higher than normal at a fixed TF-VIIa 

concentration (130pM).  Figure 6a demonstrates the effects of increased concentrations 

of TFPI on IIa formation from 1.25 nM (½ baseline) up to 25 nM (20x baseline).  There 

is a progressive elongation of the initiation times with only minimal decrease in reaction 

rates.  The maximal levels of IIa reached for all concentrations of TFPI is the same 

suggesting that even a 20-fold increase in TFPI is not able to shut down the pro-

coagulant signal. On the contrary, increasing AT concentrations from 1.7 M (½ 

baseline) up to 20.4 M (6x baseline) does not alter the initiation time dramatically (Fig. 

6b), but essentially shuts off the pro-coagulant signal. As AT concentrations increase, 

the total amount of IIa generated decreases.  Initiation times and maximal IIa rate are 

decreased as well.  At AT levels >7x baseline, IIa formation is totally inhibited (data not 

shown).  These results support the concept that the AT regulatory system is expected to 

play a major role in anticoagulation therapy.  

 

Fibrinolytic Simulations -The fibrinolytic  simulations were limited to the following agents: 

Pg, mPG, P, tPA, fibrin, PAI, AP, TAFI, II, and TM.  Plasminogen activation by tPA is 

stimulated by fibrin and augmented by plasmin catalyzed feedback modification of fibrin.  

A modified version of plasminogen designed to simulate the Glu1 and Lys78
 form of 

plasminogen (mPG) was utilized.  mPG does not generate plasmin thereby attenuating 

the self-activating positive feedback associated with plasmin.  In order to investigate the 

rate of plasminogen activation, the concentration of the mPG is plotted against time 
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under various conditions (Fig 7).  The control group has neither aTAFI nor PG.  

Therefore, the rate of mPG activation is solely related to tPA concentration.  The group  

associated with P.  At early time points, mPG consumption is equivalent among all the 

groups.  Later on, when native P is present, the rate of mPG consumption is 

 

 

 

 

 

 

 

 

 

 

 

 

with PG and no ATAFI evaluate the positive feedback associated with P.  The ATAFI 

groups investigate the effects of ATAFI on the suppression of the positive feedback is  

accelerated.  This effect is attenuated by aTAFI and is eliminated at aTAFI 

concentrations of 5nM resulting in a curve virtually indistinguishable from the control. 

 

Antiplasmin inhibits fibrinolysis by rapidly forming a reversible bond with plasmin.  In 

order to investigate the kinetics associated with AP, the unbound P concentration was 
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Figure 6: Figure 4:  Total thrombin generation profile with 130pM TF-VIIa with AT & TFPI.  A) thrombin 

generation profile with 130pM TF-VIIa at various levels of TFPI.  Circle = ½ baseline concentration, + = baseline, 

large plus = 2x baseline, X = 4x baseline, x = 6x baseline, square = 10x baseline, and x = 20x baseline B) thrombin 

generation profile with 130pM TF-VIIa at various levels of AT.  circle = ½ baseline concentration, triangle = baseline, 

plus = 2x baseline, X = 3x baseline Insert: thrombin generation profile with 130pM TF-VIIa at 4x AT (circle) and 6x AT 

(squares).  N=10. 
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plotted against time with AP and P present in equimolar concentrations.  Figure 8 shows 

the majority of P is bound within 5 seconds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Effect of aTAFI on the activation of plasminogen.  The concentration of uncleaved modified 

plasminogen is plotted against time.  Fibrinogen was present in 3µM and 200nM modified plasminogen. The 

reactions were initiated by 5nM tPA.  Controls (circle) lacked P and aTAFI.  P 5nM and aTAFI (square = 0nM, 

triangle = 1nM and plus = 5nM) were present in the experimental groups.     The control and 5nM aTAFI groups 

overlap and cannot be distinguished.  N=5. 
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PAI inhibits tPA by reversibly binding tPA.  The rate of PG activation by tPA was used to 

determine the effectiveness of PAI.  Following two minutes of equilibration of various 

tPA concentrations +/- PAI with fibrin, PG was added (Figure 9).  The rate of initial PG 

activation was plotted vs. time.  The presence of a constant amount of PAI induces the 

formation of tPA-PAI complexes and a concomitant decrease in the amount of tPA that 

can bind to fibrin.  As a result of this relative decrease in tPA concentration, the rate of 

plasminogen activation is decreased. 

 

Figure 10 demonstrates the kinetics of TAFI activation by IIa-TM.  TM concentration 

was varied over different concentrations of TAFI in the presence of IIa (1nm) .  The 

initial rate of TAFI activation was plotted vs. time.  The rate of TAFI activation is 

significantly increased in the presence of TM. 

 

Figure 8: Plasmin-Antiplasmin binding kinetics.  Equimolar concentrations (1000nM) of Plasmin and 

Antiplasmin were combined.  Unbound Plasmin concentration is plotted over time.  N=5. 

81



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Effect of PAI on the rate of plasminogen activation by tPA.  The rate of activation of plasminogen 

was plotted vs. tPA concentration.  Various concentrations of tPA (5, 10, 15, 20, 25, 38, 50, 100,  and 150 IU/mL) 

were combined with 200nM plasminogen and 3µM fibrin in the absence (open circles) and presence of 20 IU/mL 

PAI (closed circles).   In the presence of PAI, the velocity curve is shifted to the right indicating delayed 

plasminogen activation.  N=5. 

 

Figure 10: Thrombomodulin concentration dependence of initial rates of TAFI activation.  The thrombin 

concentration is 1 nM.  The TM concentration was varied from 1nM, 6 nM to 50nM.  The TAFI concentration was 

varied from 0.26 (circles), 0.52 (square), 1 (triangle), to 2 (plus) µM (from bottom to top).  TM increases the 

catalytic efficiency of TAFI activation by IIa.  N=5. 

 

82



 

 

To determine the effects of aTAFI on tPA mediated fibrinolysis, lysis assays were 

performed on a system of purified fibrinolytic components in the presence and absence 

of 63 nM aTAFI.  The system was composed of: fibrinogen (3 uM), tPA, (5nM) and  

plasminogen (5nM).  Lysis times were defined as the time required to lyse half of the 

fibrin.  The lysis times were 33m +/- in the absence of aTAFI and 70m +/-  in the 

presence of aTAFI.  

 

Simulation of Common Coagulation Tests- The results described above of ABMS in 

simulating the extrinsic pathway indicated that it might be possible to reliably simulate 

the entire clotting cascade. Two in vitro tests, the prothrombin time (PT) and the 

activated partial thromboplastin time (aPTT), are commonly utilized in assessing the 

coagulation status of patients. Depending on the initiator, either TF (PT) or kaolin 

(aPTT), the test probes the fidelity of the extrinsic or the intrinsic pathway as a part of 

the whole cascade.  As these test are performed on human plasma , except for the 

bolus of the initiator, all factors of the clotting cascade are typically present at their 

normal plasma levels (Appendix 3). In order to simulate plasma, the full CF system 

(utilizing all 106 rules and 57 agent types) was included in the simulations using the 

normal mean concentration for the factors.  In order to initiate coagulation in the PT 

assay, excess TF (100,000 agents) was introduced.  This TF concentration is 100x that 

of VII; therefore the initial reaction is driven by VII concentrations.  Figure 11 shows the 

formation of clot in the PT assay. In a manner similar to plasma PT, the ABMS displays 

initiation, propagation and termination of the coagulation signal.  A median clotting time 
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of 13.7s +/- 1.2 (normal in vitro PT is between 12-15s).  These results suggest that the 

clinically utilized PT assay can be readily simulated using ABMS.   

 

Similarly, the fidelity of the intrinsic pathway was tested by performing aPTT 

simulations.  In order to initiate coagulation, the intrinsic pathway is activated by using 

excess kaolin (100,000 agents) to activate factor XII.  The results were found to be 

similar to the PT assay with the exception of a longer initiation phase (Fig 11); the final 

clot level and the rate of clot formation were identical to the simulated PT assay.   A 

median clotting time of 29.7s +/- 2.0 s was calculated for the simulated aPTT test, which 

compares favorably with the normal in vitro aPTT of 24-40s.  Thus, all the parameters 

characteristic of both the PT and aPTT assays, including the clot time, rate and level of 

clot formation, support the conclusion that ABMS can reliably model the entire blood 

coagulation cascade. 

 

Simulation of Clinical Pathologies - The next step in analyzing the behavior of the ABMS 

is simulating clinical pathologies.  In the first scenario, we simulated hemophilia B 

(Christmas disease).  Hemophilia B is a disease in which patients have an increase in 

their aPTT times, spontaneous hemorrhages, and difficulty clotting after minor injuries 

due to abnormal levels of Factor IX.  In order to simulate Hemophilia B, the system was 

perturbed by examining the effects of decreased concentration of Factor IX on the aPTT  
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assay described in the previous section.  In this case, the full CF system was included 

in the simulations using the normal mean concentration for the factors with the 

exception of Factor IX.  The clinical assay used to monitor Hemophilia B is the aPTT.  

The aPTT times of Hemophilia B patients was simulated by decreasing the initial Factor 

IX concentrations otherwise using the full system as described above (Figure 12a).  Mild 

hemophilia is defined as Factor IX activity 10-40% of normal with resultant aPTT times 

that are normal or only slightly increased.  Figure 12a demonstrates the range of aPTT 

to be between 30-40 s.  Moderate hemophilia is defined as factor IX activity between 1 

and 10%.  Using 2% of normal Factor IX levels gives aPTT times equal to 101.9s +/- 

23.88.  Severe hemophilia is defined as Factor IX levels < 1%.  At this Factor IX 

concentration, clot formation was totally inhibited and the aPTT times were greater than 

Figure 11: Figure 9: Clot as a function of time when measuring the PT (circles) and aPTT (plus) of normal 

plasma.  The initiation, propagation and termination of clot formation are demonstrated. aPTT times are ~2x 

longer than PT times due to longer initiation phase.  N=10. 
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160s as the simulations were terminated.  These aPTT times are an accurate reflection 

of  those seen clinically in Hemophilia B patients. 

 

Another interesting clinical condition is one in which AT binding to heparin is impaired.  

Despite normal plasma AT levels, impaired AT-H binding is associated with a 

hypercoagable state characterized by an increased risk of thromboembolic disease as 

well as intrauterine fetal demise (IUFD)19-23.  This condition was simulated by changing 

the joining parameter that determined whether AT and H react when they collide 

(increasing it to 10x baseline to decreasing it to 1/1000 baseline).  A concentration of 

heparin (H8000) that leads to impaired clotting was used to demonstrate the effect of 

the change in AT-H binding.  The clinical test used to measure the effects of heparin is 

the aPTT.  Figure 12b demonstrates the effects of changing the AT-H binding 

probability from 10x baseline to 1/1000 baseline.  The aPTT time decreased from > 

160s, in the case of 10x baseline, to clotting times that are the equivalent of blood with 

no heparin, in the cases of 1/100 baseline and 1/1000 baseline binding probability.  The 

results demonstrate that decreasing the AT-H binding probabilities leads to a 

hypercoagulable state. 
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Pharmacologic Simulations - Pharmaceutical agents, e.g., heparin and warfarin, are 

routinely used to modulate the coagulation state of patients. To test whether the effect 

of these agents can be incorporated in the coagulation model, simulations were 

performed in the presence of heparin and warfarin.  These results show that drugs such 

as heparin, warfarin, activated protein C, etc… can easily be simulated using the model.  

Figure 13a demonstrates the effects of therapeutic and supra-therapeutic heparin on 

the aPTT times.  Heparin is a commonly used inpatient drug given via IV for anti-

coagulating patients for DVT, PE, and MI.  Heparin serves to activate AT thereby 

increasing the reaction rate a thousand-fold.  As heparin concentration increases from 

3000 Units to 11,000 Units so do the aPTT times from ~30s to the maximum of 160s in 

a non-linear manner.  As is well known to clinicians, the simulations demonstrate that 

the change in concentration from therapeutic levels (8000U) to super-anticoagulated 

levels (11,000 Units) is very small, and can make heparin titrations problematic. 
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Figure 12: aPTT times under pathophysiologic conditions.  A) Hemophilia B-  As factor IX concentration 

decreases aPTT times increase until clotting is totally inhibited in severe hemophilia (<1% baseline IX 

concentrations)  B) AT-H binding deficiency-  Impaired binding of heparin to AT returns aPTT times to baseline.  

Increasing binding probabilities lead to total inhibition of clotting.  N=10. 
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Similarly, Figure 13b demonstrates the effects of therapeutic and supra-therapeutic 

levels of the medication warfarin.  Warfarin is a common medication used in the 

outpatient setting, given by mouth, to patients that require long term anti-coagulation.  .  

Warfarin inhibits the vitamin K-dependent formation of fully functional coagulation 

factors.  The clinical test used to monitor the effects of warfarin is the PT time.  The 

consequences of warfarin administration were simulated by decreasing concentrations 

of vitamin K dependant factors (II, VII, IX, and X) from 90% baseline levels to 1% 

baseline levels.  As expected, decreasing levels of the coagulation factors led to 

increasing PT times in a non-linear manner until the maximum of 150s is reached. 

 

Discussion: 
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Figure 13: Effects of pharmacologic agents on coagulation assays. A) Heparin – As heparin 

concentrations increase, so do aPTT times.   B) Coumadin – As Vitamin K dependant factors decrease, 

PT times increase.  N=10. 
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The initial results of this paper indicate that the in vitro CF system can be readily 

simulated using ABMS.  The model used in this paper successfully simulated aPTT and 

PT times at normal physiologic conditions, abnormal physiologic conditions (hemophilia 

B and AT-H binding defect), and after pharmaceutical interventions (warfarin and 

heparin).  Furthermore, the emergence of a threshold for the generation of thrombin 

was conclusively demonstrated.  The non-linearities of the CF system were captured 

using this ABMS.  The ability of ABMS to simulate results that are found in clinical 

studies was demonstrated.  The ability to predict clinical trials would be an invaluable 

tool for clinical research.  The ability to vary initial concentrations of CF factors that 

mimics what would be seen in a normal population combined with the error bars 

associated with the data are unique to ABMS and provide the ability to simulate in vitro 

experiments and clinical trials. 

 

The CF systems interact strongly at the molecular and cellular level; they thereby 

operating as a coherently linked system, to generate several pathological and 

physiological responses. The highly complex CF system presents a challenging 

problem of identifying the root cause of many known coagulation defects. To date the 

contribution of each system as a part of the network has not been attempted. We have 

developed an ABMS of the CF cascade that allows systematic evaluation of each of its 

components – individually and as a complex entity.  The model allows a comprehensive 

analysis of the CF cascade that provides insight into understanding and predicting the 

pathophysiologic responses arising from variations in molecular and cellular 

components. 
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Computational systems biology is a rapidly growing field that provides tools to analyze 

and understand dynamic evolutionary networks such as the one presented by CF9-11. A 

major advantage of this approach is its rapid, real time analysis of multiple biological 

systems, each of which can be a highly coordinated independent network interacting 

with other networks in the group at one or more branch points. These independent 

networks can be thought of as small molecular machines, which work co-operatively to 

form a large, multi-component molecular machine producing one or more physiological 

responses. Understanding the mechanism and co-operativity of these networks as well 

as predicting the physiological response to appropriate pharmaceutical agents is an 

extremely difficult and intricate task. Advanced systems biology techniques, e.g., 

computational technology, hold major promise in achieving this goal and consequently 

may be extremely useful in understanding patho-physiological conditions and their 

treatment.   

 

ABMS allows a real time analysis of the coagulation system that is difficult if not 

impossible to obtain through in vivo experiments.  Additionally, ABMS provides an 

opportunity to understand the complex interplay among the various subsystems at any 

point in time.  Reductionist in vitro experimental techniques have allowed a detailed 

understanding of the individual chemical reactions involved in the process of 

coagulation.  ABMS represents a non-reductionist approach of studying the biologic 

process as a whole, while retaining the information at an individual level.  The 

information obtained by studying the individual reactions is used as the basis for the 
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rules governing the updating of the ABMS. The advantages of ABMS include the ability 

to simulate the non-linear aspects of the coagulation system.  As the agents are able to 

change state based on their environment, the model adapts and accounts for changes 

such as dearth/excess of coagulation inhibitors, absence of factors, or therapeutic 

interventions.  The time required to update the model is one disadvantage of ABMS as it 

is computationally expensive for large systems with many elements; however a specific 

advantage of this model is its ability to allow for the addition of newly discovered 

mediators, which can impact upon both coagulation and inflammation. More importantly, 

the model has a high probability of exhibiting emergence in which its outputs produce 

unanticipated results, which can then be biologically confirmed. Such properties are 

particularly useful in the discovery of diagnostic and therapeutic interventions. 

Comprehensive modeling of the traditional coagulation cascade allows virtual 

experimentation of the effects of local and systemic injury on coagulation.  

 

Only by creating models, which account for these seemingly diverse but clearly 

connected processes can one hope to improve our overall understanding of the 

coagulation process and to create more powerful diagnostic and therapeutic options.  

We have employed an ABMS in our current approach due to the potential ability to 

quantitatively analyze individual components of each system at every point of 

simulation.  ABMS is a dynamic modeling and simulation tool that allows the study of 

dynamic non-linear networked systems.  ABMS represents a non-reductionist approach 

of studying the biologic process as a whole, while retaining the information at an 

individual level.  The complexity of the system has stymied experimental efforts to gain 
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a system level understanding of the coagulation cascade and its subnetwork 

components.  ABMS may readily provide elucidation of the pathophysiology of diseases 

related to the coagulation system.  The model may also provide insight into individual 

disease processes such as genetic and acquired disorders of coagulation.   

 

A major advantage with ABMS is the ability to monitor each coagulation factor as 

„clotting‟ proceeds.  This implies that the effect of a large number of factors that 

influence coagulation (e.g. natural and pharmaceutical anticoagulants, natural and 

pharmaceutical fibrinolytic agents, and intrinsic and external inflammation mediators) 

can be simulated readily.  These ABMS are expected to provide information on the 

overall progress of clotting as well as on individual coagulation factor as a function of 

time. Thus, ABMS of the coagulation cascade affords the ability to simulate the effect of 

heparins / low molecular weight heparins, coumadins, and factor Xa / thrombin inhibitors 

at a systemic level for the first time. 

 

Computational modeling allows the creation of rapid and inexpensive virtual laboratories 

to generate and test hypotheses13, 14.  More importantly, simulations provide clinical 

tools to design and test novel therapeutic strategies, while affording opportunities to 

predict adverse events during drug development.  Additionally, bedside simulations will 

allow personalized medicine in that replacement factor concentrations can be calculated 

for individual hemophiliac patients, heparin doses can be titrated, etc…  Additional 

applications of the model include discovery of new mediators, understanding of proximal 
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and distal effects of interactions between systems, discovery of new diagnostic and 

therapeutic options, and development of new software and algorithms for simulation.    
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Appendix 1: 

 
Entity Description 
XI Factor XI Activates XII and IX 

XIa Activated factor XI 

XII Factor XII (Hagemon factor).  Activates XI. 

XIIa Activated factor XII 

XIII Factor XIII.  Crosslinks fibrin polymers to form mature clot. 

XIIIa Activated factor XIII 

IX Factor IX (Christmas factor) Activates X.  Forms tenase complex  

Ixa Activated factor IX 

VIII Factor VIII.  Co-factor of IX – Forms tenase complex  

VIIIa Activated factor VIII 

VIIIa1 Factor VIIIa spontaneously dissociates into inactive VIIIa1 + VIIIa2 

VIIIa2 Factor VIIIa spontaneously dissociates into inactive VIIIa1 + VIIIa2 

IXa-VIIIa tenase complex - activates X 

IXa-VIIIa-X IXa-VIIIa-X complex 

VII Factor VII.  Activates IX and X. 

VIIa Activated factor VII 

II Factor II (prothrombin).  Activates F, V, VII, XIII 

Iia Activated factor II 

X Factor X.  Activates II.  Co-factor of V – forms prothrombinase complex 

Xa Activated factor X 

V Factor V.  Co-factor of X – forms prothrombinase complex  

Va Activated V 

Va-Xa prothrombinase complex – activates II 

TF Tissue Factor.  Activates X in combination with VIIa 

TF-VIIa TF-VIIa complex 

F Fibrinogen – (Factor I) forms clot after conversion to fibrin and polymerization 

Fm Fibrin monomer – forms clot after spontaneous polymerization  

HMWK high molecular weight kininogen – co-factor for activation of XI, XII, and PK 

XI Factor XI 

XIa Activated Factor XI 

XII Factor XII 

XIIa Activated Factor XII 

PK Prekallikrein 

K Kallikrein 

AT Antithrombin III – inhibits TF-VIIa, IIa, IXa, XIa, XIIa and Xa 

AT-Xa AT-Xa complex 

AT-IXa AT-IXa complex 

AT-IIa AT-IIa complex 

AT-TF-VIIa AT-TF-VIIa complex 

AT-XIa AT-XIa complex 

AT-XIIa AT-XIIa complex 

AT-K AT-K complex 

H Heparin - co-factor of AT  

AT-H Antithrombin III - Heparin Complex 

PC Protein C 

aPC Activated PC.  Inhibits VIIa 

Ka Kaolin - activates the contact portion of the intrinsic system 

TFPI Tissue Factor Pathway Inhibitor  - inhibits VIIa-TF, Xa 

TFPI-Xa TFPI-Xa complex 
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TF-VIIa-Xa-TFPI TF-VIIa-Xa-TFPI complex 

PG Plasminogen 

tPA Tissue Plasminogen Activator. Converts PG to P. 

PAI Plasminogen Activator Inhibitor.  Inhibits tPA. 

tPA-PAI tPA-PAI complex 

P Plasmin.  Degrades fibrin. 

AP Anti-Plasmin.  Inhibits P. 

P-AP Plasmin - Anti-Plasmin complex 

TAFI Thrombin Activatable Fibrinolysis Inhibitor- Prevents the P mediated increased rate of 
PG activation. 

aTAFI Activated TAFI 
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Appendix 2: 

 

# Reaction Pathway 

1 VII + TF  VII-TF4, 24, 25 Extrinsic 

2 VII + TF  VII-TF4, 24, 25 Extrinsic 

3 VIIa + TF  VIIa-TF4, 24, 26 Extrinsic 

4 VIIa + TF VIIa-TF4, 24, 26 Extrinsic 

5 VIIa-TF + VII  VIIa-TF + VIIa3, 4, 27 Extrinsic 

6 Xa + VII  Xa + VIIa3, 4, 27 Extrinsic 

7 IIa + VII  IIa + VIIa3, 4, 27 Extrinsic 

8 VIIa-TF + X  VIIa-TF-X4, 26, 28 Extrinsic 

9 VIIa-TF + X  VIIa-TF-X4, 26, 28 Extrinsic 

10 VIIa-TF-X  VIIa-TF + Xa4, 29, 30 Extrinsic 

11 VIIa-TF + Xa  VIIa-TF-Xa4, 30, 31 Extrinsic 

12 VIIa-TF + Xa  VIIa-TF-Xa4 Extrinsic 

13 VIIa-TF + IX  VIIa-TF-IX4, 32, 33 Extrinsic 

14 VIIa-TF + IX  VIIa-TF-IX4, 32, 33 Extrinsic 

15 VIIa-TF-IX  VIIa-TF + IXa4, 32, 33 Extrinsic 

16 XII + Surface + HMWK  XIIa + Surface + HMWK Intrinsic 

17 XII +  XIIa   XIIa  + XIIa3, 34 Intrinsic 

18 PK+ XIIa + HMWK  K +  XIIa + HMWK3, 34 Intrinsic 

19 XII + K + HMWK  XIIa + K+ HMWK3, 34 Intrinsic 

20 XI + XIIa + HMWK XIa + XIIa +HMWK3, 35 Intrinsic 

21 XII +  XIa   XIIa  + XIa3 Intrinsic 

22 IX + XIa  IXa + XIa3 Intrinsic 

23 X + IXa  Xa + IXa3 Intrinsic 

24 XI + IIa  XIa + IIa3 Intrinsic 

25 VIIIa + IXa   VIIIa-IXa4, 32 Intrinsic 

26 VIIIa + IXa   VIIIa-IXa4, 32 Intrinsic 

27 VIIIa-IXa + X   VIIIa-IXa-X4, 32, 36 Intrinsic 

28 VIIIa-IXa + X   VIIIa-IXa-X4, 32, 36 Intrinsic 

29 VIIIa-IXa-X   VIIIa-IXa-Xa4, 32, 36 Intrinsic 

30 VIIIa  VIIIa1 +  VIIIa24, 37 Intrinsic 

31 VIIIa  VIIIa1 +  VIIIa24, 37, 38 Intrinsic 

32 VIIIa-IXa   VIIIa1 +  VIIIa2 + IXa4, 39 Intrinsic 

33 Xa + II  Xa + IIa3, 4, 40, 41 Common 

34 IIa + VIII  IIa + VIIIa3, 4, 28 Common 

35 F + IIa  Fm + IIa3, 42 Common 

36 IIa + V  IIa + Va3, 4, 32, 43, 44 Common 

37 Xa + Va  Xa-Va4, 32 Common 

38 Xa + Va  Xa-Va4, 32 Common 

39 Xa-Va + II   Xa-Va-II4, 32 Common 

40 Xa-Va + II   Xa-Va-II4, 32 Common 
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41 Xa-Va-II   Xa-Va + IIa4, 32 Common 

42 XIII + IIa  XIIIa + IIa3 Common 

43 Xa + TFPI  Xa-TFPI4, 28, 45 TFPI 

44 Xa + TFPI Xa-TFPI4, 28, 45 TFPI 

45 TF-VIIa-Xa + TFPI   TF-VIIa-Xa-TFPI4, 28 TFPI 

46 TF-VIIa-Xa + TFPI   TF-VIIa-Xa-TFPI4, 28 TFPI 

47 TF-VIIa + Xa-TFPI   TF-VIIa-Xa-TFPI4, 28 TFPI 

48 AT + Xa  AT-Xa3, 4, 46 AT-H 

49 AT +  TF-VIIa   AT-TF-VIIa 3, 4, 40  AT-H 

50 AT + IXa  AT-IXa 3, 4, 46, 47 AT-H 

51 AT + IIa  AT-IIa 3, 4, 48 AT-H 

52 AT +  XIa   AT-XIa3   AT-H 

53 AT +  XIIa   AT-XIIa3, 49   AT-H 

54 AT +  K   AT-K3, 50   AT-H 

55 AT + H  AT-H51 AT-H 

56 AT + H  AT-H51 AT-H 

57 AT-H + Xa  AT-Xa + H46 AT-H 

58 AT-H +  TF-VIIa   AT-TF-VIIa + H40 AT-H 

59 AT-H + IXa  AT-IXa + H46, 47   AT-H 

60 AT-H + IIa  AT-IIa + H48   AT-H 

61 AT-H  +  XI   AT-XI + H   AT-H 

62 AT-H  +  XII   AT-XII + H49   AT-H 

63 AT-H  +  K   AT-K + H50  AT-H 

64 PC + IIa  aPC + IIa14 APC 

65 IIa + TM  IIa-TM14 APC 

66 IIa + TM IIa-TM APC 

67 PC + IIa-TM  aPC + IIa-TM14 APC 

68 aPC +Va  aPC + Vi
14 APC 

69 PG + tPA  P +  tPA1, 17, 52, 53 Fibrinolysis 

70 mPG + tPA  tPA1, 17, 52, 53 Fibrinolysis 

71 tPA + Fm  tPA-Fm
1, 17, 52, 53  Fibrinolysis 

72 tPA + Fm  tPA-Fm
1, 17, 52, 53 Fibrinolysis 

73 tPA-Fm + PG   tPA-Fm-PG1, 17, 52, 53 Fibrinolysis 

74 tPA-Fm + PG   tPA-Fm-PG1, 17, 52, 53 Fibrinolysis 

75 tPA-Fm-PG   tPA-Fm + P1, 17, 52, 53 Fibrinolysis 

76 P + Fm  P1, 17, 52, 53 Fibrinolysis 

77 tPA + PAI  tPA-PAI17 PAI 

78 tPA + PAI  tPA-PAI17 PAI 

79 P + AP  AP-P‟16 AP 

80 P + AP  AP-P‟16 AP 

81 AP-P‟  AP-P16 AP 

82 AP-P‟  AP-P16 AP 

83 aTAFI  + Fm  aTAFI-Fm
1, 15, 54-56 TAFI 

84 aTAFI  TAFIi
1, 15, 54-56 TAFI 

100



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85 IIa+ TAFI  IIa-TAFI1, 15, 54-56 TAFI 

86 IIa+ TAFI IIa-TAFI1, 15, 54-56 TAFI 

87 IIa-TM + TAFI  IIa-TM-TAFI1, 15, 54-56 TAFI 

88 Ia-TM + TAFI  IIa-TM-TAFI1, 15, 54-56 TAFI 

89 IIa-TM-TAFI   II-TM + aTAFI1, 15, 54-56 TAFI 

90 IIa-TAFI  IIa + aTAFI1, 15, 54-56 TAFI 

91 IIa-TAFI + TM  IIa-TAFI-TM1, 15, 54-56 TAFI 

92 IIa-TAFI-TM  IIa-TM + TAFI1, 15, 54-56 TAFI 

93 IIa-TAFI-TM  IIa-TAFI + TM1, 15, 54-56 TAFI 

94 aTAFI  + Fm  aTAFI-Fm
1, 15, 54-56 TAFI 

95 aTAFI-Fm  aTAFI-Fm + Lysine1, 15, 54-56 TAFI 

96 aTAFI  TAFIi
1, 15, 54-56 TAFI 

97 IIa+ TAFI  IIa-TAFI1, 15, 54-56 TAFI 

98 IIa+ TAFI IIa-TAFI1, 15, 54-56 TAFI 

99 IIa-TM + TAFI  IIa-TM-TAFI1, 15, 54-56 TAFI 

100 Ia-TM + TAFI  IIa-TM-TAFI1, 15, 54-56 TAFI 

101 IIa-TM-TAFI   II-TM + aTAFI1, 15, 54-56 TAFI 

102 IIa-TAFI  IIa + aTAFI1, 15, 54-56 TAFI 

103 IIa-TAFI + TM  IIa-TAFI-TM1, 15, 54-56 TAFI 

104 IIa-TAFI-TM  IIa-TM + TAFI1, 15, 54-56 TAFI 

105 IIa-TAFI-TM  IIa-TAFI + TM1, 15, 54-56 TAFI 

106 IIa-TAFI-TM  IIa-TM + aTAFI1, 15, 54-56 TAFI 

101



 

 

Appendix 3: 

 

Agent 

Initial  

Concentration 

(microM) 

# of 

Agents 

I 8.83 883,000 

II 1.4 140,000 

V 0.02 2,000 

VII 0.01 1,000 

VIIa 0.0001 10 

VIII 0.0003 30 

IX 0.09 9,000 

X 0.17 17,000 

XI 0.025 2,500 

XII 0.3 30,000 

HMWK 0.9 90,000 

PK 0.58 58,000 

AT 3.4 340,000 

TFPI 0.0025 250 

Protein C 0.065 6,500 
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Abstract 

The coagulation system (CS) is a complex, inter-connected biological system with major physiological 

and pathological roles. The CS may be viewed as a complex adaptive system,
 
in which individual 

components are linked through multiple feedback and feedforward loops.  The non-linear relationships 

between the numerous coagulation factors and the interplay among the elements of the CS render the 

study of this biology at a molecular and cellular level nearly impossible.  We present an Agent Based 

Modeling and Simulation (ABMS) approach for simulating these complex interactions. Our ABMS 

approach utilizes a subset of 52 rules to define the interactions among 33 enzymes and factors of the CS.  

These rules simulate the interaction of each “agent”, such as substrates, enzymes, and cofactors, on a 

two-dimensional grid of ~12,000 cells and ~300,000 agents.  Our ABMS method successfully 

reproduces the initiation, propagation, and termination of thrombin formation due to the activation of the 

extrinsic pathway.  Furthermore, the ABMS is able to demonstrate the emergence of a threshold effect 

for thrombin generation as a result of the synergistic effect of combining anticoagulant systems.   
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Introduction 

 
 
 
 
 
 
 
Coagulation System In the event of an injury to the endothelium, the coagulation system balances the 

need for localized clot formation against prevention of systemic activation.  This finely tuned system is 

composed of an assortment of molecular and cellular “agents” (e.g. substrates, enzymes, cofactors, 

inhibitors, platelets, and endothelial cells) all interacting to generate a stable clot in order to rapidly 

obtain hemostasis
1
.  The new cellular model of hemostasis proposes that the classical pathways of 

coagulation, i.e., the intrinsic and extrinsic pathways, mediate on specific cell surfaces in a tightly 

regulated manner
2-4

. In this model, activation of factor VII (extrinsic, Fig. 1) and factor XII (intrinsic, 

Fig. 1) results in the formation of the multi-molecular tenase and prothrombinase complexes, which 

eventually generate thrombin. Thrombin then cleaves fibrinogen to form fibrin monomers, which 

polymerize to form a three-dimensional clot.   

Figure 1: Coagulation Cascade 
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Clot formation is regulated in vivo through the antithrombin III-heparin complex (AT-H), activated 

protein C (aPC), and tissue factor pathway inhibitor (TFPI) (Fig. 1). These regulating systems limit 

excessive formation of cross-linked fibrin under hemostatic conditions.  The anticoagulation systems are 

regulated independently, but combine to synergistically control thrombin generation. 

 

The CS may be viewed as a complex adaptive system,
 
in which individual components are linked 

through multiple feedback and feedforward loops.  These loops introduce non-linear relationships 

among the components. A static diagram such as the classically portrayed coagulation pathway (Figure 

1) cannot adequately describe this dynamic evolutionary network. More importantly, the effects of 

several disease states on the imbalances in the CS are difficult to understand.  Thus, the influence of 

diseases that favor coagulation (e.g. myocardial infarction, disseminated intravascular coagulation, 

cerebrovascular accidents, and venous thrombosis), or those that impair coagulation (e.g. hemophilias, 

thrombocytopenias, and von Willebrand disease) remain poorly characterized. 

 

Computational Modeling 

Computational systems biology is an emerging field that provides tools to analyze and understand 

complex adaptive systems such as the CS
5,6

. A major advantage of this approach is its rapid, real time 

analysis of multiple biological systems; each may function as a highly coordinated independent network 

interacting with other networks in the group at one or more branch points. These independent networks 

can be thought of as small molecular machines, which work co-operatively to form a large, multi-

component molecular machine producing one or more physiological responses. Understanding the 

mechanism and co-operativity of these networks as well as predicting the physiological response to 
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appropriate pharmaceutical agents is an extremely difficult and intricate task. Yet, advanced systems 

biology techniques, e.g., computational technology, may achieve this goal with consequent major 

applications in understanding patho-physiological conditions and their treatment.   

Table I: Entity Table 

Entity Description 

IX Factor IX (Christmas factor) 

Activates X.  Forms tenase 

complex  

VIII Factor VIII.  Co-factor of IX – 

Forms tenase complex  

VIIIa Activated factor VIII 

VIIIa1 Factor VIIIa spontaneously 

dissociates into inactive VIIIa1 + 

VIIIa2 

VIIIa2 Factor VIIIa spontaneously 

dissociates into inactive VIIIa1 + 

VIIIa2 

IXa-VIIIa tenase complex - activates X 

IXa-VIIIa-X IXa-VIIIa-X complex 

VII Factor VII.  Activates IX and X. 

VIIa Activated factor VII 

II Factor II (prothrombin).  

Activates F, V, VII, XIII 

IIa Activated factor II (thrombin) 

X Factor X.  Activates II.  Co-

factor of V – forms 

prothrombinase complex 

V Factor V.  Co-factor of X – 

forms prothrombinase complex  

Vi Inactivated V 

Va-Xa Prothrombinase complex – 

activates II 

TF Tissue Factor.  Activates X in 

combination with VIIa 

TF-VIIa TF-VIIa complex 

AT Antithrombin III – inhibits TF-

VIIa, IIa, IXa, XIa, XIIa and Xa 

AT-Xa AT-Xa complex 

AT-IXa AT-IXa complex 

AT-IIa AT-IIa complex 

AT-TF-VIIa AT-TF-VIIa complex 
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TFPI Tissue Factor Pathway Inhibitor  

- inhibits VIIa-TF, Xa 

TFPI-Xa TFPI-Xa complex 

TF-VIIa-Xa-

TFPI 

TF-VIIa-Xa-TFPI complex 

PC Protein C – inactivates Va 

aPC Activated Protein C – activated 

Protein C 

aPC-Va aPC-Va complex 

TM Thrombomodulin – In 

combination with IIa, activates 

PC 

IIa-TM IIa-TM complex 
 
 
To date, most computational models of the coagulation system have focused on using ordinary or partial 

differential equations (ODEs and PDEs)
7-9

.  Differential equations describe the change in the states of 

the variables of the system over time and are derived from known or hypothesized kinetics.  ODE 

models can readily simulate coagulation in vitro as it is a relatively homogenous system
10

; however, 

such models face significant limitations when modeling in vivo hemostasis due to complicating factors 

such as non-stationarity, spatial heterogeneity and the effects of blood flow.
 
Therefore, derivation of 

differential equations suitable for in vivo modeling becomes problematic. 

  

In order to address the shortcomings associated with ODE models, we present the application of a 

computational systems biology approach using agent-based modeling and simulation (ABMS) to 

understand the CS and determine the role of coagulation inhibitors in preventing complete activation of 

thrombin.  ABMS provides a powerful alternative to differential equations
11-13

.  ABMS is a relatively 

new modeling paradigm derived from cellular automata (CA)
14,15

.  ABMS has mobile autonomous 

entities (agents) that can move through space.  Each agent is allowed to assume a finite number of states, 

determined by a pre-defined set of rules. Every agent is individually updated at the end of each operating 
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period according to the pre-set rules. The rules are a function of the current state of the agent and the 

state of its neighbors.   

 

Coagulation Model 

Table II: Rule Table 

# Reaction Pathway 

1 VII + TF  VII-TF
7,19-21

 Extrinsic 

2 VII + TF  VII-TF
7,19-21

 Extrinsic 

3 VIIa + TF  VIIa-TF
7,19-21

 Extrinsic 

4 VIIa + TF VIIa-TF
7,19-21

 Extrinsic 

5 VIIa-TF + VII  VIIa-TF + VIIa
7,8,22

 Extrinsic 

6 Xa + VII  Xa + VIIa
7,8,22

 Extrinsic 

7 IIa + VII  IIa + VIIa
7,8,22

 Extrinsic 

8 VIIa-TF + X  VIIa-TF-X
7,21,23

 Extrinsic 

9 VIIa-TF + X  VIIa-TF-X
7,21,23

 Extrinsic 

10 VIIa-TF-X  VIIa-TF + Xa
7,24,25

 Extrinsic 

11 VIIa-TF + Xa  VIIa-TF-Xa
7,25,26

 Extrinsic 

12 VIIa-TF + Xa  VIIa-TF-Xa
7
 Extrinsic 

13 VIIa-TF + IX  VIIa-TF-IX
7,27,28

 Extrinsic 

14 VIIa-TF + IX  VIIa-TF-IX
7,27,28

 Extrinsic 

15 VIIa-TF-IX  VIIa-TF + IXa
7,27,28

 Extrinsic 

23 VIIIa + IXa   VIIIa-IXa
7,28

 Intrinsic 

25 VIIIa + IXa   VIIIa-IXa
7,28

 Intrinsic 

26 VIIIa-IXa + X   VIIIa-IXa-X
7,28,29

 Intrinsic 

27 VIIIa-IXa + X   VIIIa-IXa-X
7,28,29

 Intrinsic 

28 VIIIa-IXa-X   VIIIa-IXa-Xa
7,28,29

 Intrinsic 

29 VIIIa  VIIIa1 +  VIIIa2
7,30

 Intrinsic 

30 VIIIa  VIIIa1 +  VIIIa2
7,30,31

 Intrinsic 

31 VIIIa-IXa   VIIIa1 +  VIIIa2 + IXa
7,32

 Intrinsic 

32 Xa + II  Xa + IIa
7,8,33,34

 Common 

33 IIa + VIII  IIa + VIIIa
7,8,23

 Common 

34 IIa + V  IIa + Va
7,8,28,35,36

 Common 

35 Xa + Va  Xa-Va
7,28

 Common 

36 Xa + Va  Xa-Va
7,28

 Common 

37 Xa-Va + II   Xa-Va-II
7,28

 Common 

38 Xa-Va + II   Xa-Va-II
7,28

 Common 

39 Xa-Va-II   Xa-Va + IIa
7,28

 Common 

40 Xa + TFPI  Xa-TFPI
7,23,28

 TFPI 

41 Xa + TFPI Xa-TFPI
7,23,28

 TFPI 

42 TF-VIIa-Xa + TFPI   TF-VIIa-Xa-TFPI
7,23,37

 TFPI 
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The model described in this paper is designed to simulate thrombin formation in the in vitro 

environment.  Therefore, a limited subset of substrates, reactions, and products from the intrinsic, 

extrinsic, common, AT-H, TFPI, and aPC pathways have been included (Table I & II).  In order to 

create realistic simulations, physiologic concentrations of factors were used in the in silico experiments 

(Table III).  The rates associated with the reactions were taken from the literature and were assumed to 

be performed in saturating phospholipid and calcium conditions.  The simulations were designed to test 

experimental conditions that create thrombin profiles reflective of the threshold phenomena associated 

with physiologic concentrations of coagulation inhibitors.  

 

 

Table III: Baseline plasma concentration of coagulation factors. 

Agent Initial  

Concentration 

(µM) 

# of 

Agents 

TF-VIIa Varies Varies 

II 1.4 280,000 

V 0.02 4,000 

VII 0.01 2,000 

VIIa 0.0001 20 

VIII 0.0003 60 

IX 0.09 18,000 

X 0.17 34,000 

AT 3.4 68,000 

TFPI 0.0025 500 

43 TF-VIIa-Xa + TFPI   TF-VIIa-Xa-TFPI
7,23,37

 TFPI 

44 TF-VIIa + Xa-TFPI   TF-VIIa-Xa-TFPI
7,23,37

 TFPI 

45 AT + Xa  AT-Xa
7,8,38

 AT 

46 AT +  TF-VIIa   AT-TF-VIIa
7,8,33

 AT 

47 AT + IXa  AT-IXa
7,8,38,39

 AT 

48 AT + IIa  AT-IIa
7,8,40

 AT 

49 PC + IIa  aPC + IIa
17

 aPC 

50 IIa + TM  IIa-TM
17

 aPC 

51 PC + IIa-TM  aPC + IIa-TM
17

 aPC 

52 aPC +Va  aPC + Vi 
17

 aPC 
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PC 0.065 13,000 

TM Varies Varies 
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Materials and Methods 

 

Coagulation Model  

The ABMS in this paper uses a two dimensional particle system whereby particles move freely and 

interact on a discrete spatial grid.  In this specific model, we define the particles of the system as the 

reactants, enzymes, and products in the entity table (Table I).  The spatial grid is set as a two 

dimensional grid where the agent‟s location is identified by its x and y coordinates.  Each coordinate 

pair (x, y) delineates a unique location.  The number of grid locations used in these simulations is 

12,321.  The number of agents in the simulations is on the order of 300,000. Each time step of the 

simulation represents 0.01 seconds.   

 

Grid locations in this model are designated as either empty or occupied by one or more substrates, 

enzymes, or reaction products.  The agents are allowed to move freely about the grid.  The movement, 

joining, and breaking are governed by probability rules.  The movement parameter determines the extent 

of each agent‟s motion (0 implies every cell is stationary).  The joining parameter determines the extent 

of interaction between adjacent agents.  The breaking parameter defines the extent of disruption of 

agents that have joined.  This model sets the probability of joining and breaking based on experimentally 

determined kinetic constants.  The movement parameter is set at 1.  The agents are allowed to interact 

with all their neighbors, but meaningful interactions are limited to those in the rule table (Table II).  The 

neighborhood of each agent in this model is defined as all agents located in the same grid location.  

After each time step, the agents move in a random manner to an adjacent grid location.   

 

ABMS modeling requires the assignment of the probability of conversion associated with each chemical 

reaction as defined in the rule table (Table II).  Reductionist in vitro experimental techniques have 
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allowed a detailed understanding of the individual chemical reactions involved in the process of 

coagulation.  The information obtained by studying the individual reactions is used as the basis for the 

rules governing the updating of the ABMS at each time step.  We assigned a probability of conversion 

value related to the kinetics of the reactions.  The initial configuration is random; each substrate and 

enzyme is assigned a predefined number of agents based on their desired initial concentration (Table 

III). 

 

In vivo, prothrombinase and tenase complexes are formed through a combination of three factors. The 

prothrombinase complex is formed by a combination of prothrombin, factor Xa and factor Va; the 

intrinsic tenase complex is formed when factors VIIIa and IXa combine with factor X. These three-body 

complexes are not directly simulated in ABMS, as in vivo, they must arise through sequential 

combination of two molecules. Thus, we utilized a sequential two-body collision approach to generate 

each complex.  

 

The ABMS is designed to represent the in vitro environment.  In this case, the spatial grid is in the shape 

of a rectangle allowing the particles to interact and bounce off the edge of the grid.  There are no 

platelets, RBC, or WBC in the system as in vitro coagulation tests are run on acellular plasma.   

 

Computation  

Netlogo v4.04, a software package designed to run ABMS, was utilized to perform the simulations
16

.  

The user determines the subset of reactants, the subset of reactions, the subset of coagulation factors, 

rate constants, initial factor concentrations, and termination conditions for each simulation.  The 

concentration of every coagulation factor was output every 100 time steps (1 virtual second).  The 
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output of each simulation was stored in a comma separated file.  All simulations were carried out on an 

Intel based desktop personal computer running Microsoft Windows XP.  Up to six simulations were run 

in parallel.  Each simulation ran up to 72 hours depending on the initial and stop conditions.  

Simulations were terminated after 90,000 iterations if the terminating conditions were not met. 

 

Simulations 

Unless otherwise stated, modeling of the system was performed under conditions that simulated 

literature derived mean physiologic concentrations of each soluble factor in normal humans (Table 3).  

The simulations were designed to determine the effects of coagulation inhibitors on thrombin (IIa) 

generation profiles.  Comparisons between the ABMS output and experimental data determined the 

validity of the system.   

 

Results 
   
The threshold dependent formation of IIa in the presence of inhibitors such as AT, PC, and TFPI is an 

important feature of the coagulation system. Figure 2, demonstrates this characteristic profile that results 

as a function of the combination of AT and TFPI.  At low concentrations of TF-VIIa (5pM), the 

threshold value required for production of IIa is not reached; whereas both 30pM and 130pM 

concentration were able to generate a short burst of thrombin.  These results demonstrate the synergistic 

effect of inhibitors (AT and TFPI) on the extrinsic system.  The combination of AT and TFPI results in 

the creation of a threshold concentration of TF-VIIa (between 5pM and 30pM). Below this threshold 

value significant amounts of thrombin are not generated.  
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The combination of PC and TFPI results in the threshold demonstrated in Figure 3.  The experiments 

were initiated by TF-VIIa at 5pM.  With no TM, all of the prothrombin (II)  is converted to thrombin; 

whereas at concentrations of 0.1nM TM  and 10nM TM, generation of thrombin is quenched.  In this  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case, the threshold is a function of TM concentration.  Thus, a bifurcation point exists between 0nM and 

0.1nM of TM whereby PC in combination with TFPI prevents the burst of thrombin generation. 

 

Figure 4 demonstrates the effects of combining AT and PC.  At concentrations of 5pM of TF-VIIa no 

thrombin was generated (data not shown).  At initial concentrations of 30pM TF-VIIa, the characteristic 

bell shaped curve is observed with no TM and 0.1nM TM.  At 10nM concentrations of TM, the burst of 

thrombin is suppressed. 

 

In figure 5, all three inhibitors are utilized.  No thrombin is generated when initialized with 5pM or  

30pM of TF-VIIa (data not shown).  At 130pM of TF-VIIa, a burst of  thrombin is observed with low  

Figure 2: Thrombin generation as a function of TF-VIIa concentration in the presence of TFPI and AT.  The 

experiments were conducted with 2.5 nM TFPI and 3.4uM AT.  The initiating concentrations of TF-VIIa are 130pm 

(circles), 30pM (triangles), and 5pM (squares).  N=5. 
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TM concentrations (no TM and 0.1nM TM), but is suppressed at 10nM TM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Thrombin generation as a function of TM concentration in the presence of AT and Protein C.  The 

experiments were conducted with 3.4 µM AT and 65 nM Protein C.  The initiating concentration of TF-VIIa is 30nM.  The 

TM concentrations  are 0 (circles),  0.1nM (triangles), and 10nM (squares).  N=5. 
 

 

 

Figure 3: Thrombin generation as a function of TM concentration in the presence of TFPI and Protein C.  

The experiments were conducted with 2.5 nM TFPI and 65 nM Protein C.  The initiating concentration of TF-VIIa is 

5nM.  The TM concentrations  0 (circles), 0.1 nM (triangles), and 10nM (squares).  N=5. 
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Figure 5: Thrombin generation as a function of TM concentration in the presence of TFPI, AT, and Protein C.  The 

experiments were conducted with 2.5 nM TFPI , 3.4 µM AT, and 65 nM Protein C.  The initiating concentration of TF-VIIa 

is 130nM.  The TM are  0 (circles), 0.1 nM (triangles), and 10nM (squares).  N=5. 
 

 

Discussion 

The components of the CS interact strongly at the molecular and cellular level; they thereby operate as a 

coherently linked system that generates both pathological and physiological responses. The highly 

complex CS presents a challenging problem of identifying the root cause of many known coagulation 

defects. To date the contribution of each system as a part of the network has not been attempted. We 

have developed an ABMS of the CS cascade that allows systematic evaluation of each of its components 

– individually and as a complex entity.  The model allows a comprehensive analysis of the CS cascade 

that provides insight into understanding and predicting the pathophysiologic responses arising from 

variations in its molecular and cellular components. 

 

Only by creating models, which account for these seemingly diverse but clearly connected processes can 

one hope to improve our overall understanding of the coagulation process and to create more powerful 

diagnostic and therapeutic options.  We have employed an ABMS in our current approach due to the 

potential ability to quantitatively analyze individual components of each system at every point of 
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simulation.  ABMS is a dynamic modeling and simulation tool that allows the study of dynamic non-

linear networked systems.  ABMS represents a non-reductionist approach of studying the biologic 

process as a whole, while retaining the information at an individual level.  The complexity of the system 

has stymied experimental efforts to gain a system level understanding of the coagulation cascade and its 

subnetwork components.  ABMS may readily provide elucidation of the pathophysiology of diseases 

related to the coagulation system.  The model may prove informative regarding individual disease 

processes such as genetic and acquired disorders of coagulation.   

 

The initial results of this paper indicate that the in vitro coagulation system can be readily simulated 

using ABMS.  Our ABMS approach successfully reproduces the initiation, propagation, and termination 

of thrombin formation in vitro. Furthermore, the ABMS was able to simulate the threshold effect of 

thrombin formation resultant from the synergistic relationship between physiologic concentrations of 

coagulation inhibitors.    This suppression of thrombin is the likely mechanism behind localization of the 

hemostasis response.  The mechanism demonstrated herein provides the rationale for localized 

formation of a blood clot at the site of endothelial injury as opposed to a systemic vascular thrombotic 

response.  Presumably, the thrombin concentrations upstream and downstream of the endothelial injury 

fail to reach self sustaining levels due to the synergistic effects of AT, TFPI, and aPC.  A possible 

therapeutic strategy of manipulating coagulation inhibitors for the treatment of diseases involving the 

systemic activation of the CS, such as trauma induced coagulopathy (TIC), disseminated intravascular 

coagulopathy (DIC), coagulopathy associated with cardiac arrest, etc…, is suggested by the findings in 

this paper. 

 

The next step in the progression of our coagulation model is to simulate the in vivo environment.   
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Expansion of the model will require the addition of blood flow, endothelial cells, white blood cells, 

platelets, and the full complement of coagulation proteins.  Such a model will provide insight into 

complex disease processes that are impossible to obtain using laboratory techniques.  Computational 

systems biology allows the design and implementation of experiments that would be unethical and 

dangerous in the clinical setting; instead, creation of previously unavailable diagnostic and therapeutic 

strategies becomes possible.   

 

ABMS allows a real time analysis of the coagulation system that cannot be obtained through in vivo 

experiments.  Additionally, ABMS provides an opportunity to understand the complex interplay among 

the various subsystems.  The advantages of ABMS include the ability to simulate the non-linear aspects 

of the coagulation system.  Moreover, the model is flexible and able to account for changes such as lack 

of inhibitors, absence of factors, or therapeutic interventions associated with disease processes.  As new 

mediators are discovered they are easily added to the model. 

 

Another major advantage of ABMS is the ability to monitor each coagulation factor as „clotting‟ 

proceeds.  This implies that the effect of a large number of factors that influence coagulation (e.g. 

natural and pharmaceutical anticoagulants, natural and pharmaceutical fibrinolytic agents, and intrinsic 

and external inflammation mediators) can be simulated readily.  These ABMS are expected to provide 

information regarding the overall progress of clotting as well as individual coagulation factors as a 

function of time. Thus, ABMS of the coagulation cascade affords the ability to simulate the effect of 

heparins / low molecular weight heparins, coumadins, and factor Xa / thrombin inhibitors at a systemic 

level for the first time. 
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The last and most important advantage of the model is it is capable of exhibiting emergent behaviors in 

which its outputs produce unanticipated results, which can then be biologically confirmed. Such 

properties are particularly useful in the discovery of diagnostic and therapeutic interventions. 

Comprehensive modeling of the traditional coagulation cascade allows unlimited virtual 

experimentation on the effects of local and systemic injury on coagulation.  

 

The time required to update the model is one disadvantage of ABMS as it is computationally expensive 

for large systems with many elements.  Conversion of the model into other platforms may provide 

significantly decrease the time required to run simulations.   For example, the model can be moved to an 

alternate ABMS platform (I.E. Repast) with an expected halving of the execution time.  Ultimately, 

conversion of the model into a format that can be run on graphical processing units (GPU) may allow 

significant decreases in execution time (on the order of 100x) that could allow simulations to be run at a 

patient‟s bedside in real-time. 

 

Computational modeling allows the creation of rapid and inexpensive virtual laboratories to generate 

and test hypotheses.  More importantly, simulations provide clinical tools to design and test novel 

therapeutic strategies, while affording opportunities to predict adverse events during drug development.  

Additionally, bedside simulations will allow personalized medicine to calculate replacement factor 

concentrations for individual hemophiliac patients, heparin doses can be titrated, etc…  Future 

applications of the model include discovery of new mediators, understanding of proximal and distal 

effects of interactions between systems, discovery of new diagnostic and therapeutic options, and 

development of new software and algorithms for simulation.    
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Future Directions 

The next step in the progression of our coagulation model is to simulate the in vivo environment.  

Expansion of the model will require the addition of blood flow, endothelial cells, white blood 

cells, platelets, and the full complement of coagulation proteins.  Such a model will provide 

insight into complex disease processes that are impossible to obtain using laboratory techniques.  

Computational systems biology allows the design and implementation of experiments that would 

be unethical and dangerous in the clinical setting; instead, creation of previously unavailable 

diagnostic and therapeutic strategies becomes possible.   

 

The time required to update the model is one disadvantage of ABMS as it is computationally 

expensive for large systems with many elements.  Not only does this necessitate long 

development times, but limits the use of the model to offline situations.  Conversion of the model 

into other platforms may provide significantly decrease the time required to run simulations and 

increase its utility as a clinical tool.   For example, the model can be moved to an alternate 

ABMS platform (I.E. Repast) with an expected halving of the execution time.  Ultimately, 

conversion of the model into a format that can be run on graphical processing units (GPU) may 

allow significant decreases in execution time (on the order of 100x) that could allow simulations 

to be run at a patient’s bedside in real-time. 

 

TIC: A Computational Model of In Vivo Trauma Induced Coagulopathy* 

Objective: The PULSE initiative identified prevention of diffuse coagulopathies to be a priority 

in resuscitation science. Trauma Induced Coagulation (TIC) is a significant complication of 

* Presented at the 2008 American Heart Association Annual Meeting, and was awarded the 

young investigator award. 
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trauma involving the complex nonlinear interplay of the coagulation and inflammation system 

(CIS). Its complexity poses significant challenges for systematic clinical study.  Modeling via 

computational approaches may prove to be a valuable adjunct. We developed a model of TIC 

using a 2-D Agent Based Model (ABM).  

 

Methods: A 2-D particle system was developed in which particles move and interact on a 

discrete spatial grid composed of ‘cells’. The particles of the system are cells (endothelial, WBC, 

platelets), reactants, enzymes, and reaction products. The number of ‘cells’ used in the 

simulations is 1,000,000 with a coagulation factor density of 16%. The particles’ actions are 

determined by a set of rules derived from coagulation kinetics and cell behaviors. The system is 

designed to model a blood vessel in vivo including blood flow. The model is perturbed by 

alterations in systemic variables (temperature, pH, coagulation factor concentration, 

oxygenation).  

 

Results: The effects of temperature, pH, and coagulation factor dilution were synergistic on the 

model resulting in increased INR values ranging from 1.5 to 7.76. A state of anti-coagulation and 

hyperfibrinolysis existed independent of temperature and pH. Endothelial cell activation from 

hypovolemia resulted in the increased expression of TM, TFPI, and tPA with a concomitant 

decrease in PAI. This resulted in a state of anticoagulation from the diversion of thrombin to the 

activation of PC (by binding to thrombin) combined with increased TFPI. Increased levels of 

tPA combined with decreases in PAI result in a state of hyperfibrinolysis that dissolves any clot 

formed in the anti-coagulation environment.  
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Conclusion: The simulation indicates that the effects of trauma on the CIS can be readily 

simulated.  The ABM successfully modeled TIC seen in vivo due to endothelial cell activation 

from hypoperfusion as supported by the literature. The ABM will be used to target mediator 

levels for clinical verification as well as to develop preclinical and clinical testing of therapies 

that may modulate the CIS to enhance outcomes. 

 

DIC: A Computational Analysis of the Coagulopathy Associated with Disseminated 

Intravascular Coagulopathy* 

 

Objective: The PULSE initiative identified prevention of diffuse coagulopathies to be a priority 

in resuscitation science. Disseminated Intravascular Coagulopathy (DIC) is a significant 

complication of diseases such as sepsis and cancer.  DIC involves the complex nonlinear 

interplay of the coagulation, fibrinolytic, and inflammatory systems (CIF). Its complexity poses a 

significant challenge for systematic clinical study; thus, modeling via computational approaches 

may prove to be a valuable adjunct. We developed a model of DIC using a 2-D Agent Based 

Model (ABM) implemented in the Netlogo modeling platform.  

 

Methods: A 2-D particle system was developed in which particles move and interact on a 

discrete spatial grid composed of ‘cells’. The particles of the system are cells (endothelial, WBC, 

platelets), cytokines, reactants, enzymes, and reaction products. The number of ‘cells’ used in the 

simulations is 5041 with approximately 500,000 agents. The agents’ actions are determined by a 

set of rules derived from coagulation kinetics and cell behaviors. The system is designed to 

model a blood vessel in vivo including blood flow.  The grid is in the shape of a rectangle.  The 

* Presented at the 2009 Annual SwarmFest. 
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sides of the rectangle represent endothelial cells and allow agents to interact with the endothelial 

cells or bounce off the walls.  The ends are empty and allow the loss and introduction of agents.  

Blood flow is simulated by pulsatile movement of the particles through the system.  The model is 

perturbed by the introduction of elevated levels of TNF-α in order to simulate the systemic 

inflammatory response from an insult such as sepsis.  

 

Results: The simulation represents the formation of DIC due to elevated levels of TNF-α and 

subsequent activation of the inflammatory system.  The activation of the coagulation system 

leads to the formation of microvasculature clot formation and a consumptive coagulopathy that 

results in the impairment of hemostasis.  Table 1 demonstrates the alteration in the plasma levels 

of Antithrombin III (AT), Fibrinogen (F), platelet (plt), and Fibrin Split Products (FSP).  As can 

be expected, the levels of AT, F and plts decrease as they are consumed by the systemic 

activation of the coagulation system, and the levels of FSP continue to increase as the clot is 

continually dissolved by the fibrinolytic system.   

 

Conclusion: The simulation indicates that the effects of systemic inflammation on the CIF can 

be readily simulated using ABM.  The ABM effectively modeled DIC as the end product of 

elevated cytokine levels as may be seen in sepsis.  The demonstrated parameters and resultant 

coagulopathy are consistent with clinical DIC found in the literature. The goal in creating an 

ABM of DIC is to develop preclinical and clinical testing of therapies that may modulate the CIF 

to enhance patient outcomes. 

 

Time (h) AT (µM) Fibrinogen (µM)  Platelet (x 10
9
) FSP(µg/mL) 
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0 4.50 88.20 300 0.0 

1 4.37 83.74 291 0.3 

4 3.65 74.91 271 2.7 

8 2.74 64.29 227 6.0 

12 1.80 29.63 39 33.5 

16 1.07 22.06 11 37.5 

Table 1: Plasma levels of AT, F, Plt, and FSP in DIC 

 

Cardiac Arrest: A Computational Model of the Effect of Cardiac Arrest on the 

Coagulation System* 

 

Objective: The PULSE initiative identified prevention of diffuse coagulopathies to be a priority 

in resuscitation science. Coagulopathy is a potential significant complication of cardiac arrest 

that involves the complex nonlinear interplay of the coagulation and inflammation system (CIS). 

This complexity has made it difficult to study it in an integrative fashion at the microvessel level 

in cardiac arrest. We developed a 2-D Agent Based Model (ABM) to begin to better understand 

the CIS in cardiac arrest. 

 

Methods: The ABM utilizes a 2-D particle system. Particles move and interact on a discrete 

spatial grid. The particles of the system are the cells, reactants, enzymes, and reaction products. 

The system is designed to model a blood vessel in vivo. The grid is in the shape of a rectangle. 

The sides of the rectangle represent endothelial cells; particles are capable of interacting with the 

endothelial cells. In a steady state, blood flow was suddenly discontinued for 20 minutes 

followed by return of spontaneous circulation (ROSC) for another 20 minutes. The levels of 

circulating coagulation factors and their products and function were continually monitored.  

* Presented at the 2008 American Heart Association Annual Meeting. 
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Results: After 20 minutes of no flow, we observed a state of hypercoagulability, impaired 

fibrinolysis, and systemic microthrombi formation consistent with post-arrest clinical studies in 

the literature. Endothelial cell response to hypoxia results in elevated levels of TAT and fibrin 

monomers consistent with activation of the coagulation system. Concomitant lack of D-dimer 

and FSPs demonstrated the decreased expression of TM, TFPI, and tPA. Following ROSC, the 

activation of the anticoagulation system and pro-inflammatory mediators resulted in a disruption 

of the equilibrium between the coagulation, anti-coagulation, fibrinolytic and inflammatory 

systems consistent with a clinical state of low grade DIC.  This was also consistent with the 

literature.  

 

Conclusions: The ABM model simulates the effects of cardiac arrest on the CIS and may be 

useful for studying arrest induced CIS changes as well as what affects various interventions such 

as hypothermia may have.  Data obtained will be used to target mediator levels for verification as 

well as to design studies that may modulate the CIS to improve outcomes.  

 

GPU based: Utilizing GPU Computing to Analyze Complex Biological Systems* 

The coagulation system (CS) is a complex, inter-connected biological system with major 

physiological and pathological roles. The CS may be viewed as a complex adaptive system,
 

through which multiple feedback and feed-forward loops link its individual components.  Non-

linear relationships between the numerous coagulation factors render the study of this biology at 

a molecular and cellular level nearly impossible.  We have employed an Agent Based Modeling 

Simulation (ABMS) in our current approach to the analysis of the CS. One of the most 

* Submitted to the 2010 ACM International Conference on Bioinformatics and Computational 

Biology 
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significant drawbacks to using ABMS is the computational expense associated with large 

systems. 

 

To date, our efforts to successfully model the CS have been stymied by the time required to run 

simulations.  The large number of elements (on the order of 10
6
) requires days to weeks to run 

basic simulations.  We hypothesized that conversion of the model into other platforms may 

significantly decrease this time. We present a comparison of the run-times of 4 ABMS models: 1 

& 2) common platforms Netlogo and Repast; 3)  C program designed to run on a single 

processor and 4) C program designed to utilize the parallel architecture of the Graphics 

Processing Unit (GPU).  As expected, it is observed that GPU-based execution affords 

significant improvement (on the order 10
3
) over the conventional ABMS platforms on the 

runtimes of our complex CS model.   

 

GPU computing provides the opportunity to obtain near supercomputer performance on a 

desktop computer. The use of this virtual supercomputer can fuel complex systems analysis 

without the need for costly high performance computing resources.  Our results indicate that 

complex models of the human CS can be implemented using GPU based computing with 

significant gains in performance.  The use of such models will allow the creation of rapid and 

inexpensive virtual laboratories that can be used to generate and test hypotheses and provide 

clinical tools to design and test novel therapeutic strategies.   
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Summary 

By definition, a complex system exhibits emergent and self organized behaviors. They  typically 

involve many heterogeneous components that interact in a nonlinear manner usually involving 

feedforward and feedback loops which are used to amplify or dampen signals.  Complex systems 

are bound by their components.  Through production and utilization of information from their 

internal and external environments, these components collectively give rise to complex, 

changing patterns and behaviors.  As a result, unique properties emerge.  These properties lead to 

a common definition of complex systems:  a large number of simple components with simple 

behavior that gives rise to complex collective behavior despite the lack of an overlying controller 

and sophisticated information processing and adaptation.   

 

The complex behavior that arises from such systems is called emergent behaviors.  If the 

organized behavior occurs despite the lack of a controller, the system is labeled “self-organizing” 

Complex systems are ubiquitous through the natural world.  Analysis of complex systems 

requires interdisciplinary measures to describe these sophisticated systems.  Computational 

modeling offers an attractive in silico approach to such analysis. 

 

Computational systems biology is a rapidly growing field that provides tools to analyze and 

understand dynamic evolutionary networks.  A major advantage of this approach is its rapid, real 

time analysis of overlapping biological systems, each of which can be a highly coordinated 

independent network interacting with other networks in the group at one or more branch points. 

These independent networks can be thought of as small molecular machines, which work co-

operatively to form a large, multi-component molecular machine producing one or more 
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physiological responses. Understanding the mechanism and co-operativity of these networks as 

well as predicting the physiological response to appropriate pharmaceutical agents is an 

extremely difficult and intricate task. Advanced systems biology techniques, e.g. computational 

technology, hold major promise in achieving this goal and consequently may be extremely useful 

in understanding patho-physiological conditions and their treatment.   

 

In order to develop useful integrative systems biology approaches, computational tools integrate 

complexity theory to predict responses of relevant processes to interventions.  Mathematical 

models represent one such method. The failure of animal models to accurately predict the 

usefulness of therapies and the difficulty of enrolling large numbers of human subjects in studies 

has been a major roadblock in the study of complex diseases. Mathematical models offer a non-

invasive intermediary step that allows hypothesis and therapies to be tested prior to clinical 

studies. Thus, an in silico model would potentially increase the success rate of clinical trials or 

aid in designing more appropriate animal studies. Manipulation of the model would then provide 

direction to the subsequent methodologies necessary to take the next steps in discovery. These 

animal or clinical studies would then in turn, validate the model. 

 

Ideally, a well-constructed computational model will offer a rapid and inexpensive virtual 

laboratory to simulate the effects of biological hypotheses prior to testing these theories in vitro 

or in vivo[77]o.  Accurate predictions by any model, from cell cultures to in vivo animal models 

to mathematical models, are dependent on the accuracy of the relation between the model and the 

corresponding real-world process. They are highly dependent on certain data imputations that are 

derived from animal data, clinical results, or assumptions based on observations or general 
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agreements within the community studying the disease.  Such models require extensive 

validation; however, it will eventually provide insight into processes that are initially difficult to 

observe in an intact system. Thus, a successful computational model will not only fill the gaps in 

our knowledge, it will also identify previously unrecognized gaps as well. 

 

In addition to the benefits associated with theoretical advances, simulations provide clinical tools 

to design and test novel therapeutic strategies, while affording opportunities to predict adverse 

events during drug development.  Bedside simulations will allow personalized medicine in that 

replacement factor concentrations can be calculated for individual hemophiliac patients, heparin 

doses can be titrated, etc…  Other applications of the model include discovery of new mediators, 

understanding of proximal and distal effects of interactions between systems, discovery of new 

diagnostic and therapeutic options, and development of new software and algorithms for 

simulation.    

 

Normal wound healing is a carefully choreographed process that results in a mature scar, which 

restores the anatomic and functional integrity of the dermis[25]. The process is divided into an 

orderly progression of individual phases. The hemostatic phase is controlled by platelets, which 

ensure wound stabilization and recruits inflammatory cells into the wounded tissue. The 

inflammatory phase, which is initially dominated by neutrophils and subsequently by 

macrophages, prepares the wound bed by killing bacteria and removing devitalized tissue as well 

as recruiting fibroblasts. The proliferative phase is characterized by fibroblasts laying down a 

provisional ECM matrix. The remodeling phase is a balance of collagen synthesis and 

degradation that results in a mature scar that maximizes wound tensile strength.  The complexity 
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of acute wounds have stymied clinical investigators.  Computational biology shows promise in 

providing an alternative avenue of study for wound healing. 

 

We have modified an ODE model of the acute systemic response to inflammation a soft tissue 

injury.  Our model includes factors such as bacterial contamination and wound oxygenation.  

Assuming normal conditions, our model predicts the typical progression of healing behavior for 

a wound.  The ODE model was also able to successfully simulate the impairment in wound 

healing found in a hypoxic wound environment and a contaminated wound. For example, under 

hypoxic conditions, we observe a non-healing wound where the damage persists despite the 

absence of pathogens. With extremely low levels of oxygen our model predicts a chronic 

infection where the wound does not heal and pathogens persist in the wound.  Both of these 

states are well documented clinically. 

 

We also examined the situation of elevated and depressed fibroblasts mortality rates. Clinically, 

instances of elevated fibroblast mortality are seen in diabetic and elderly patients. We observed 

non-healing wounds in the context of high rates of fibroblast mortality. Additionally, a scenario 

of moderately low fibroblast mortality and high initial pathogen levels predicts the state of 

chronic infection. Finally, we examined the case where fibroblast production is either impaired 

or enhanced. Impaired fibroblast production results in a non-healing state; however with an 

increase in production, wounds heal at notably faster rates.  This provides a framework from 

which to test a new hypothesis in a living model, i.e. improve fibroblast production in an effort to 

increase wound healing rates. 
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Our model successfully simulated results typical of hypoxic wound environments with 

significant bacterial contamination. Though most of our results are not overly surprising, we are 

satisfied and encouraged that our model is qualitatively accurate in its predictions of real 

systems.  This provides some level of model calibration. Translation of our model to the level of 

clinical relevance will require an enormous number of important variables both at the local and 

systemic levels. We are now in the process of examining systemic mediators and their effects on 

healing at the local environment. This includes hormonal differences thus taking into account 

gender differences and the effects of systemic inflammation.   

 

Another difficult clinical problem is that of diseases associated with coagulation and fibrinolysis.  

Coagulation is a complex process by which blood forms solid clots.  It is an important part of 

hemostasis defined as the cessation of blood loss from a damaged vessel.  A damaged blood 

vessel wall is covered by a platelet- and fibrin-containing clot to stop bleeding.  Coagulation is 

initiated almost instantly after an injury to the blood vessel damages the endothelium (lining of 

the vessel).  Fibrinolysis is a complex process by which pre-formed clot is proteolitically 

degraded once the underlying endothelial injury has been repaired.  The CF systems interact 

strongly at the molecular and cellular level; they thereby operating as a coherently linked system, 

to generate several pathological and physiological responses. The highly complex CF system 

presents a challenging problem of identifying the root cause of many known coagulation defects. 

To date the contribution of each system as a part of the network has not been attempted.  

Furthermore, the difficulties in studying a system that has the following properties: 

nonstationarity, spatial heterogeneity, and blood flow.  The CF system also can be defined as a 

complex system: 1) large number of heterogenous components (zymogens, enzymes, cofactors, 
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inhibitors, membranes, and cells), 2) no overlying controller (the CF reactions are all local and 

based on molecular interactions), 3) non-linear (the biochemical reactions among the 

components are all non-linear), and 4) emergence (threshold effects for thrombin generation, 

localized clot formation, and delayed clot lysis).  Given the difficulties associated with the study 

of the CF system, the study of such a complex system may benefit from computational analysis.   

 

We have developed an ABMS of the CF cascade that allows systematic evaluation of each of its 

components – individually and as a complex entity.  The model allows a comprehensive analysis 

of the CF cascade that provides insight into understanding and predicting the pathophysiologic 

responses arising from variations in molecular and cellular components.  ABMS allows a real 

time analysis of the CF systems that is difficult if not impossible to obtain through in vivo 

experiments.  Additionally, ABMS provides an opportunity to understand the complex interplay 

among the various subsystems at any point in time.  Reductionist in vitro experimental 

techniques have allowed a detailed understanding of the individual chemical reactions involved 

in the process of coagulation.  ABMS represents a non-reductionist approach of studying the 

biologic process as a whole, while retaining the information at an individual level.  The 

information obtained by studying the individual reactions is used as the basis for the rules 

governing the updating of the ABMS. The advantages of ABMS include the ability to simulate 

the non-linear aspects of the coagulation system.  As the agents are able to change state based on 

their environment, the model adapts and accounts for changes such as dearth/excess of 

coagulation inhibitors, absence of factors, or therapeutic interventions.  The time required to 

update the model is one disadvantage of ABMS as it is computationally expensive for large 

systems with many elements; however a specific advantage of this model is its ability to allow 
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for the addition of newly discovered mediators, which can impact upon both coagulation and 

inflammation. More importantly, the model has a high probability of exhibiting emergence in 

which its outputs produce unanticipated results, which can then be biologically confirmed. Such 

properties are particularly useful in the discovery of diagnostic and therapeutic interventions. 

Comprehensive modeling of the traditional coagulation cascade allows virtual experimentation 

of the effects of local and systemic injury on coagulation.  

 

The in vitro CF system can be readily simulated using ABMS.  Our ABMS approach 

successfully reproduces the initiation, propagation, and termination of thrombin formation in 

vitro. Furthermore, the ABMS was able to simulate the threshold effect of thrombin formation 

resultant from the synergistic relationship between physiologic concentrations of coagulation 

inhibitors.    This suppression of thrombin is the likely mechanism behind localization of the 

hemostasis response.  The mechanism demonstrated herein provides the rationale for localized 

formation of a blood clot at the site of endothelial injury as opposed to a systemic vascular 

thrombotic response.  Presumably, the thrombin concentrations upstream and downstream of the 

endothelial injury fail to reach self sustaining levels due to the synergistic effects of AT, TFPI, 

and aPC.  A possible therapeutic strategy of manipulating coagulation inhibitors for the treatment 

of diseases involving the systemic activation of the CS, such as TIC, DIC, coagulopathy 

associated with cardiac arrest, etc…, is suggested by the findings in this paper.  The model also 

successfully simulated aPTT and PT times at normal physiologic conditions, abnormal 

physiologic conditions (hemophilia B and AT-H binding defect), and after pharmaceutical 

interventions (warfarin and heparin).  The non-linearities of the CF system were captured using 

this ABMS.  The ability to generate results similar to those obtained experimentally has been 
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demonstrated.  The error bars associated with the data are unique to ABMS and provide the 

ability to simulate experiments and clinical trials. 

 

The next step in the progression of our coagulation model is to simulate the in vivo environment.  

Expansion of the model will require the addition of blood flow, endothelial cells, white blood 

cells, platelets, and the full complement of coagulation proteins.  Such a model will provide 

insight into complex disease processes that are impossible to obtain using laboratory techniques.  

Computational systems biology allows the design and implementation of experiments that would 

be unethical and dangerous in the clinical setting; instead, creation of previously unavailable 

diagnostic and therapeutic strategies becomes possible.   

 

The time required to update the model is one disadvantage of ABMS as it is computationally 

expensive for large systems with many elements.  Conversion of the model into other platforms 

may provide significantly decrease the time required to run simulations.   For example, the 

model can be moved to an alternate ABMS platform (i.e. Repast) with an expected halving of the 

execution time.  Ultimately, conversion of the model into a format that can be run on graphical 

processing units (GPU) may allow significant decreases in execution time (on the order of 100x) 

that could allow simulations to be run at a patient’s bedside in real-time. 
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