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Chronic infection with P. aeruginosa is expected in patients with cystic fibrosis 

(CF), but the ability to delay, prevent, or better manage infection with multiply-resistant 

P. aeruginosa (MRPA) can potentially increase quality of life and extend survival. The 

Texas Children’s Hospital CF Care Center has identified an endemic MRPA strain 

(dominant clone), and this study aimed to identify risk factors for acquisition of the clone 

as well as determine differences in patient outcome associated with subsequent infection 

with the clone.  

The study included 71 patients with CF with documented MRPA infection. 

Designation of patients as members of the dominant clone or a non-dominant clone group 

was based on molecular typing by rep-PCR of MRPA isolates from respiratory cultures. 



 

 

Patient data was collected from Port CF, the national patient registry of the CF 

Foundation. Patient demographic information and clinical parameters prior to MRPA 

infection were analyzed by logistic regression as potential risk factors. Differences in 

patient outcome including change in BMI, change in FEV1, and hospitalization rate were 

evaluated by MANOVA.  

Recent hospitalization (< 90 days) was a statistically significant (p = 0.035) risk 

factor for acquisition of the dominant clone. Patients hospitalized < 90 days prior to 

MRPA diagnosis were four times more likely to be infected with the dominant clone, and 

patients hospitalized 91-180 days prior were almost three times more likely. Increased 

hospitalization rates were seen in the dominant clone group both pre- (11 more days/year) 

and post-infection (14 more days/year) as compared to the non-dominant clone group. 

Patients infected with the endemic strain exhibited poorer outcomes in terms of 

nutritional status (3.73% decrease/year in BMI %ile) and lung function (3.7% 

decrease/year in FEV1 %ile). Significant overlap in hospitalization episodes of patients 

known to be infected with the dominant clone and patients subsequently infected with the 

dominant clone was observed.  

Recent hospitalization was a significant risk factor for infection with the dominant 

MRPA clone, and following infection, patients infected with the endemic strain exhibited 

declines in nutritional status and lung function and increased hospitalization rates. The 

results suggest potentially increased virulence and transmissibility of the endemic MRPA 

strain. 
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CHAPTER 1: INTRODUCTION 

 

 Multiply-resistant Pseudomonas aeruginosa (MRPA) is a common respiratory 

pathogen found in patients with cystic fibrosis (CF) (Patient Registry 2008 Annual 

Report, 2009). The bacteria routinely leads to chronic pulmonary infection, and the 

infections have proven difficult to treat due to the organism’s resistance to many of the 

commonly prescribed antibiotics (Falagas, Koletsi, & Bliziotis, 2006). The life 

expectancy for patients with CF has dramatically increased in the past 20 years, but 

persistent antibiotic-resistant infections continue to impact quality of life as well as 

survival. The Cystic Fibrosis Care Center at Texas Children’s Hospital (TCH) in 

Houston, Texas is a large CF Foundation-Accredited Care Center. However, while the 

national average of multiply-resistant Pseudomonas aeruginosa infection in patients with 

CF in 2006 was 16%, the average at the TCH CF Care Center was 30.1% (Patient 

Registry 2006 Annual Report, 2008). This trend towards higher MRPA infection rates at 

TCH remained present through the latest CF center-specific data for 2008 with a national 

MRPA average of 17.9% and an average of 28% at TCH (Patient Registry 2008 Annual 

Report, 2009). Prevention or delay of MRPA infections could significantly improve long-

term patient prognosis and prolong the projected lifespan of patients with CF. Infection 

with multiply-resistant P. aeruginosa, rather than a susceptible strain, has been associated 

with greater risk of death or lung transplantation, and infection with specific P. 
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aeruginosa epidemic strains has been implicated in increased patient morbidity (Al-Aloul 

et al., 2004; Edenborough et al., 2004; Lechtzin et al., 2006; Nixon et al., 2001; O'Carroll 

et al., 2004). Identification of risk factors for acquisition of a specific MRPA clone or 

information regarding projected outcomes for patients infected with a specific MRPA 

clone would be valuable tools for clinicians and infection control practitioners. 

 The Cystic Fibrosis Foundation Consensus Conference on Infection Control has 

provided specific infection control guidelines in the hopes of reducing the number of 

patients infected with MRPA in each of the CF clinics in the United States (Saiman & 

Siegel, 2003). Various scenarios including social contact during hospitalization and 

proper sterilization and decontamination during routine visits and procedures were 

addressed. These infection control procedures are meant to decrease the possibility of 

patient-to-patient transmission of MRPA and common source acquisition of MRPA. 

 Numerous investigators have employed strain typing technology to determine 

whether the Pseudomonas aeruginosa strains infecting patients with CF in one treatment 

center were genetically, or clonally, related (D. Armstrong et al., 2003; Jones et al., 2001; 

Nixon et al., 2001; Scott & Pitt, 2004). Molecular typing allows for the identification of 

different strains of a particular bacterial species. While all of the strains tested are the 

same species (ex., Pseudomonas aeruginosa), subtle differences in the bacterial genomes 

allow differentiation between strains that are unrelated and those that may have 

originated from a common source. Clonally related strains will create a cluster, a group of 

highly similar molecular fingerprinting patterns, when analyzed by molecular methods. 

Various molecular methods that employ the polymerase chain reaction (PCR) including 
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pulsed-field gel electrophoresis (PFGE), random amplification of polymorphic DNA 

(RAPD) PCR, repetitive element PCR (rep-PCR), as well as other technologies have been 

utilized for identification of related Pseudomonas aeruginosa strains. While some studies 

did not yield evidence of clustering of Pseudomonas aeruginosa strains in patients with 

CF (Agarwal, Kapil, Kabra, Das, & Dwivedi, 2005; da Silva Filho, Levi, Bento, 

Rodrigues, & da Silvo Ramos, 2001; Silbert, Barth, & Sader, 2001; Spencker et al., 2000; 

Tubbs et al., 2001), the majority of studies have discovered related strains of 

Pseudomonas aeruginosa in their CF patient population (Edenborough et al., 2004; 

Kersulyte, Struelens, Deplano, & Berg, 1995; O'Carroll et al., 2004; Scott & Pitt, 2004; 

Syrmis et al., 2004). Several studies employing molecular typing of Pseudomonas 

aeruginosa strains in their CF population not only found significant clustering but also 

suggested that patients infected with the epidemic strain were more adversely affected 

and required more treatment than patients infected with unique strains (Al-Aloul et al., 

2004; Edenborough et al., 2004; Nixon et al., 2001; O'Carroll et al., 2004).  

 Patients with CF infected with multiply-resistant Pseudomonas aeruginosa will 

likely suffer worse outcomes than those with susceptible Pseudomonas aeruginosa 

isolates. Patients infected with MRPA exhibit more rapid decline in routine pulmonary 

function tests such as FEV1, the forced expiratory volume in one second (Lambiase et al., 

2006). One study reported that patients with CF infected with MRPA were 14 times more 

likely to die or require a lung transplant than patients infected with Pseudomonas 

aeruginosa that was not multi-drug resistant (Lechtzin et al., 2006). 
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 Research has been conducted comparing CF patient outcomes with MRPA versus 

susceptible Pseudomonas aeruginosa and to determine relatedness of Pseudomonas 

aeruginosa strains in patients with CF. However, to date, no study has been performed 

that specifically analyzes CF patient-related variables and patient outcomes as they relate 

to the clustered MRPA strains. If significant relationships were found between CF 

patient-related variables and the acquisition of a specific MRPA strain, then preventative 

measures could possibly stop or suppress the transmission of MRPA. Moreover, if 

significant relationships were found between CF patient outcomes and a specific MRPA 

strain, then treatment plans could be tailored based on the prognosis for that specific 

MRPA strain.  

Purpose Statement 

 The purpose of this study is twofold: to determine if there is a relationship 

between CF patient-related variables and infection with a specific MRPA strain; and to 

determine if there is a relationship between infection with a specific MRPA strain and CF 

patient outcomes.  

Research Questions 

Is infection with the dominant MRPA clone related to patient-related variables prior to 

MRPA infection?  

Hypothesis: Certain CF patient-related variables are significantly related to infection with 

the dominant MRPA clone. The CF patient-related variables to be studied included the 

following: age at time of CF diagnosis, age at time of MRPA infection diagnosis, body 

mass index (BMI), forced expiratory volume in one second (FEV1), days from last 
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hospitalization to MRPA diagnosis, CFTR genotype, mother’s educational level, gender, 

days from last clinic visit to MRPA diagnosis, tobramycin use, and respiratory culture 

results. In addition to evaluating the entire group of patient-related variables, smaller 

groups of variables related to patient demographics and clinical parameters at the time of 

MRPA infection (including subsets related to chronology and disease state) were 

analyzed. 

Is CF patient outcome related to infection with the dominant MRPA clone? 

Hypothesis: Patient outcomes such as death, change in FEV1, change in BMI, and 

hospitalization rate are related to infection with the dominant MRPA clone. 

Significance of the Study 

 The morbidity associated with MRPA infections in patients with CF is well 

documented, but not all patients suffer the same decline in quality of life. While studies 

have shown significant differences in patient outcomes with MRPA strains versus 

antibiotic susceptible Pseudomonas aeruginosa isolates (Al-Aloul et al., 2004; Lambiase 

et al., 2006; Lechtzin et al., 2006; Nixon et al., 2001), no research has been performed to 

determine if there are significant differences in patient outcomes within the patient 

population infected with MRPA.  

 If a significant relationship was discovered between CF patient-related variables 

prior to MRPA infection and the subsequent MRPA strain, then clinicians may be able to 

develop strategies to prevent transmission and new infections. If prevention is not 

possible, then improved management or treatment plans may be implemented for patients 

identified at risk for MRPA infection. If no significant relationship was discovered 
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between CF patient-related variables and infection with a specific MRPA strain, then the 

study would suggest that monitoring these characteristics prior to MRPA infection is not 

necessary and that these characteristics should not be a focal point for infection control 

guidelines and practices. If a significant relationship was discovered between a specific 

MRPA strain and CF patient outcomes, then clinicians could tailor their treatment efforts 

based on disease severity associated with that particular MRPA strain. More aggressive 

and customized treatment or management plans could be implemented. If no significant 

relationship exists between the MRPA strain and CF patient outcomes, then the study 

would suggest that molecular typing data is not useful in prospective patient care. 

Delimitations 

The study included only pediatric patients with cystic fibrosis who were treated at 

the CF Care Center of Texas Children’s Hospital. Patients in the sample population 

included only those children who did not have a MRPA infection at the time of their first 

visit to the hospital.  

Assumptions 

The following assumptions were made while conducting this study: 

1) All patient-related variables and outcome data were correctly entered into Port 

CF (version 1), the electronic national repository for CF patient data. 

2) Measurement of patient data, such as lung function and weight, was accurate 

and precise. 

3) All MRPA infections were correctly diagnosed from respiratory cultures. 
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4) All rep-PCR molecular fingerprinting profiles were sufficient to discriminate 

between clonal groups. 

5) All MRPA isolates from patients with cystic fibrosis who are eligible for the 

study were sent to the Molecular Microbiology laboratory for DNA typing. 

Definition of Terms 

Multiply-resistant Pseudomonas aeruginosa (MRPA). A strain of Pseudomonas 

aeruginosa that is resistant to at least two different classes of commonly used antibiotics. 

The Cystic Fibrosis Foundation defines MRPA isolates as being resistant to all antibiotics 

in at least two of three of the following antibiotic groups: aminoglycosides, 

fluoroquinolones, and beta-lactams. 

Cluster or clonal group. A group of bacterial isolates that yield highly similar molecular 

fingerprinting patterns. By molecular typing, these isolates belong to one group that 

represents a single clone. The terms bacterial clone and strain will be used 

interchangeably in this study.  

Organization of the Study 

The study is presented in five chapters followed by a bibliography. Chapter Two 

provides a review of the literature concerning cystic fibrosis, MRPA infections, 

molecular typing techniques, and the clinical application of molecular typing. Chapter 

Three describes the ex post facto research design and methodology of the study including 

selection of the appropriate patient-related and patient outcome variables, details of the 

molecular techniques utilized, and explanation of statistical analyses. Chapter Four 

presents the results of the study. Chapter 5 concludes with a discussion of the data 
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including a summary of the work and recommendations regarding how the information 

could be used in future studies and current medical practice.
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CHAPTER 2: LITERATURE REVIEW 

 

 The following chapter will present the background necessary for a discussion of 

the application of molecular typing for multiply-resistant Pseudomonas aeruginosa in 

patients with cystic fibrosis. General information regarding the disease of cystic fibrosis 

such as underlying genetics, diagnostic testing, symptoms, and treatment strategies will 

be provided. Commonly used patient outcome predictors for cystic fibrosis will also be 

presented. Infection control as it relates to P. aeruginosa and cystic fibrosis will be 

discussed as well as utilization of molecular typing technologies for epidemiology studies 

in this special patient population. Finally, supporting information for the variables 

employed in this study will be presented including potential risk factors for acquisition of 

MRPA and patient outcome indicators.  

Cystic Fibrosis 

Cystic fibrosis (CF) is an autosomal recessive disease that affects 1 in 3,500 

children born in the United States (Patient Registry 2008 Annual Report, 2009). 

Approximately 30,000 people live with a diagnosis of cystic fibrosis in the United States, 

and while most patients are Caucasian, CF can affect individuals of all ethnicities. CF 

occurs at a rate of 1 in 9,500 Hispanics and less than 1 in 50,000 in native Africans and 

Asians. African Americans and Asian Americans have a higher incidence of 1 in 15,300 

and 1 in 32,100 respectively (National Institutes of Health, 1997). CF is an autosomal 
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recessive disease, and an individual must have two mutations of the CFTR gene (one on 

each copy of chromosome 7) in order to be clinically affected with cystic fibrosis; 

therefore, individuals identified as CF carriers are more common. Carrier rates for cystic 

fibrosis are 1 in 29 for the Ashkenazi Jewish and European Caucasian populations, 1 in 

46 for Hispanic Americans, 1 in 65 for African Americans, and 1 in 90 for Asian 

Americans (Grody et al., 2001). 

Dr. Dorothy Andersen first described CF as a separate disease in a case report in 

1938 (Andersen, 1958).  However, even as early as the Middle Ages, a childhood 

disorder characterized by salty sweat and early death was described (Rudolph & 

Rudolph, 2002). In 1953, physicians discovered that patients with cystic fibrosis 

produced sodium and chloride concentrations in sweat that were 2-4 times greater than 

values found in patients with a variety of other conditions (Di Sant'Agnese, Darling, 

Perera, & Shea, 1953). The high concentrations of sodium and chloride in the sweat of 

patients with CF was subsequently found to be due to poor reabsorption of sodium 

chloride in the sweat duct (Quinton, 1983). 

The cystic fibrosis transmembrane conductance regulator (CFTR) gene was first 

characterized in 1989. The CFTR gene is located on the long arm of chromosome 7 

(7q.31.2) and spans approximately 250,000 base pairs (Rommens et al., 1989). Defective 

CFTR alleles contain a variety of mutations (B. Kerem et al., 1989). DeltaF508, by far 

the most common mutation present in 70% of CF patients, was discovered during the 

initial sequencing of the gene (Riordan et al., 1989). The deltaF508 mutation is a three-
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nucleotide deletion in the tenth exon of the CFTR gene that causes the loss of a single 

phenylalanine residue within a protein of 1480 amino acids. 

Experiments correcting defective chloride transport led to the discovery that 

mutations in the CFTR gene were responsible for the phenotypic defect (Rich et al., 

1990). The CFTR gene undergoes transcription into mRNA and then translation into 

protein in the endoplasmic reticulum. The CFTR protein is then glycosylated in the Golgi 

apparatus and folded into the proper conformation that allows it to assume the 

appropriate place in the apical membranes of epithelial cells (Rudolph & Rudolph, 2002). 

The CFTR protein functions as a chloride channel, which is regulated by cyclic AMP, 

and the interaction of two CFTR nucleotide binding domains is crucial to the protein’s 

viability (Anderson et al., 1991). The CFTR protein not only conducts chloride, but it 

also regulates other chloride secretory pathways. The various mutations in the CFTR 

gene affect the protein’s function in different manners causing varied effects on the 

protein’s ability to both conduct and regulate conduction of chloride ions (Devidas & 

Guggino, 1997). For instance, the phenylalanine deletion at position F508 results in 

improper folding of the nucleotide binding domains of CFTR. The altered protein is 

retained within the endoplasmic reticulum and is targeted for degradation (Ko & 

Pedersen, 1997). However, research has shown that it is possible for a mutant protein to 

assume a functional conformation when conditions are altered appropriately in vitro (Qu, 

Strickland, & Thomas, 1997). 

As of October 2008, 1,604 mutations were implicated in cystic fibrosis, and the 

most common types of defects were missense (42%) and frameshift (16%) mutations 
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(www.genet.sickkids.on.ca/cftr/app). As mentioned previously, the single most common 

mutation found on 70% of CF chromosomes is deltaF508, and that mutation has a high 

degree of association with increased symptoms leading to greater disease severity 

(Riordan et al., 1989). Researchers have grouped the various mutations into classes that 

describe how the mutations affect the presence of the CFTR protein in the apical 

membranes of epithelial cells, and these classes (Table 1) are also generally associated 

with disease severity (Pilewski & Frizzell, 1999; Zielenski, 2000).  

Table 1.  

 

CFTR Mutation Classes and Their Effect on the CFTR Protein and Disease Severity 

 

Mutation class Effect on CFTR protein Disease phenotype 

Class I Defective protein synthesis due to 

translation failure 

Severe 

Class II Premature degradation of CFTR by 

proteases in the endoplasmic reticulum 

Severe 

Class III CFTR protein is nonfunctional Severe 

Class IV Normal amount of CFTR protein with 

residual function 

Mild pancreatic 

insufficiency 

Class V Reduced amount of functional CFTR 

present at the cell membrane 

Mild 

Class VI Functional but unstable version of CFTR Severe 

 

CFTR genotypes, which include two copies of a defective CFTR gene, can 

provide physicians with valuable information on expected disease severity such as 

exocrine pancreatic function (Kristidis et al., 1992). Genotype alone does not predict 

severity of pulmonary disease among patients with cystic fibrosis due to the variability 

within groups of patients with the same genotype (The Cystic Fibrosis Genotype-

Phenotype Consortium, 1993). However, it is still believed that heritability factors 
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beyond the CF genotype may play a significant role in pulmonary disease severity based 

on comparisons of sibling data (Vanscoy et al., 2007). 

Cystic fibrosis is generally characterized by copious mucus secretions present on 

mucosal surfaces, especially the gastrointestinal and respiratory tracts, leading to the 

classic CF phenotype of chronic obstructive lung disease, exocrine pancreatic 

insufficiency, and elevated sweat chloride concentrations (Zielenski, 2000). In addition, 

infertility is extremely common in patients with CF due to thick cervical mucus in 

women and congenital absence of the vas deferens leading to obstructive azoospermia in 

men (Jequier, Ansell, & Bullimore, 1985). In 10-20% of patients with CF, thickened 

intestinal mucus and pancreatic insufficiency can result in bowel obstruction at birth, 

termed meconium ileus. Distal intestinal obstruction syndrome occurs later in life for 20-

25% of patients with CF (Rudolph & Rudolph, 2002). Pulmonary disease is worsened by 

the bacterial colonization of the lungs. Inhaled bacteria are trapped and cleared more 

slowly due to the reduced water content in the mucociliary secretions (Davis, 2006). 

Additional complications for patients with cystic fibrosis include CF-related diabetes, 

bone disease, liver disease, and nasal polyps that often require surgery (Patient Registry 

2006 Annual Report, 2008). 

 Patients with cystic fibrosis have seen major improvements in life expectancy 

during the past 40 years. In 1962, a patient diagnosed with CF was only expected to live 

an average of 10 years (www.cff.org). In the most recent Patient Registry Annual Report, 

the Cystic Fibrosis Foundation stated that the median survival age for a patient with CF 

was 37.4 years of age in 2008 (Patient Registry 2008 Annual Report, 2009). Interestingly, 
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a study by Kulich in 2003 found that the greatest improvement in life expectancy was 

seen for patients between 2 and 15 years of age, and while both genders experienced 

extended life expectancies, female patients continued to have poorer survival rates than 

male patients in the category of 2 to 20 years of age (Kulich, Rosenfeld, Goss, & 

Wilmott, 2003). 

Diagnostic Testing for Cystic Fibrosis 

 In the United States, the median age of diagnosis for patients with cystic fibrosis 

is 5.3 months. Patients who have undergone newborn screening are diagnosed at a 

median age of 15 days, patients with meconium ileus are diagnosed at a median age of 6 

days, and patients with other symptoms are diagnosed at a median age of 14.5 months. 

Notably, patients diagnosed after the onset of symptoms as opposed to newborn 

screening results are at a greater than 2-fold risk of medical complications before 

diagnosis (Accurso, Sontag, & Wagener, 2005). 

 Newborn screening is generally performed by a biochemical test for 

immunoreactive trypsinogen in plasma collected at birth, and the initial screen is 

followed by repeat biochemical testing and CF mutation detection (Davidson, Wong, 

Kirby, & Applegarth, 1984). Localities in the United Kingdom have been performing 

newborn screening for CF since the mid-1980s, and Australia and France both have 

comprehensive national neonatal screening programs (Brice, Jarrett, & Mugford, 2007). 

The United States has recently mandated nation-wide newborn screening for CF, and in 

2010, all 50 states now offer newborn screening for cystic fibrosis (www.cff.org). 

Newborn screening enables much earlier diagnosis of cystic fibrosis when compared to 
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symptomatic presentation. This early diagnosis occurs approximately one year earlier in 

life and allows for earlier nutritional treatments leading to improved growth, improved 

cognitive development, and a reduction in the number of days hospitalized (Grosse et al., 

2004). 

 Beyond newborn screening, several other diagnostic approaches for cystic fibrosis 

include the sweat test, measuring nasal potential difference, and mutational studies of the 

CFTR gene. Various testing algorithms are based on initial clinical indications and 

require a combination of methods for the final diagnosis of cystic fibrosis (De Boeck et 

al., 2006). 

 The gold standard for the diagnosis of cystic fibrosis remains the sweat test. 

Sweating is induced by pilocarpine iontophoresis in which a colorless, odorless 

compound (pilocarpine) is placed on the skin, and a small electric current is applied. The 

sweat is collected onto preweighed gauze or filter paper that is then reweighed, and the 

chloride is eluted into an exact volume of deionized water (L. E. Gibson & Cooke, 1959). 

A volume of 50-100 µL of sweat is adequate for the sweat chloride concentration to be 

measured. Macroduct collection systems are also available and allow the sweat to be 

collected directly from the skin into a capillary tube, following the pilocarpine 

iontophoresis procedure (Hammond, Turcios, & Gibson, 1994). Sweat chloride 

concentrations less than 40 mmol/L essentially rule out CF, concentrations between 40-

60 mmol/L are considered borderline, and concentrations greater than 60 mmol/L are 

considered consistent with a diagnosis of CF (De Boeck et al., 2006). Prior research has 

found that 98% of patients with cystic fibrosis have sweat chloride concentrations greater 



16 

 

than 60 mmol/L (Koch & Hoiby, 2000). Another study found that 23% of patients with 

intermediate sweat chloride levels (30-60 mmol/L) contained known mutations in both 

CFTR alleles (Lebecque et al., 2002). 

 Another tool for the diagnosis of cystic fibrosis is measurement of nasal potential 

difference. The characteristically increased chloride secretion and elevated sodium 

reabsorption causes abnormal nasal potential differences across apical cell membranes in 

patients with cystic fibrosis, compared with healthy individuals and patients with a 

variety of other disorders (Knowles, Gatzy, & Boucher, 1981). Nasal potential difference 

is generally used as an additional method of confirmation when sweat tests and mutation 

studies are inconclusive. 

 Mutation studies for cystic fibrosis are important in the diagnosis of the disease, 

but genetic tests are also used for prenatal screening of either the parents or the fetus in 

utero. In 2001, a joint effort between the American College of Medical Genetics, the 

American College of Obstetricians and Gynecologists, and the National Institutes of 

Health produced recommendations for population-based cystic fibrosis carrier screening 

(Grody et al., 2001). The recommendations stated that testing should be offered to all 

non-Jewish Caucasians and Ashkenazi Jews as well as all other ethnic groups. The 

standard screening panel detailed in the document included 25 mutations, all with an 

allele frequency greater than 0.1% in the US population. In 2004, the recommended panel 

was revised slightly, removing two mutations (Watson et al., 2004). The first mutation 

removed, 1078delT, was found to be present in only 0.03% of the US population, and the 

second mutation removed, I148T, was determined incapable of causing classical CF as a 
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single defect. The updated recommendations also noted six additional mutations not 

listed in the panel that were found at an allele frequency of 0.1-0.17%, but additions to 

the revised 23 mutation panel for cystic fibrosis screening were not recommended. 

 Various molecular testing platforms for cystic fibrosis are available, and the vast 

majority of the assays employ multiplex PCR targeting of the CFTR gene. All assays 

target a minimum of 23 recommended mutations, but several panels include additional 

mutations to increase detection in ethnic groups other than Caucasians. Detection 

technologies include but are not limited to oligonucleotide ligation assays, line probe 

assays, liquid bead arrays, and microarrays (Johnson, Yoshitomi, & Richards, 2007; 

Krafft & Lichy, 2005). Additionally, laboratories offer complete sequencing of the CFTR 

gene and may detect up to 98% of mutations for all ethnic groups 

(www.genzymegenetics.com).  

Treatment of Cystic Fibrosis 

 The Cystic Fibrosis Foundation recommends that patients visit their physician at 

least four times per year in clinics specializing in treatment of CF patients. In addition, 

pulmonary function tests should be performed two times or more per year. At least one 

respiratory culture should be collected per year (although many clinics collect respiratory 

culture specimens at each visit), and creatinine levels, glucose levels (if older than 14 

years of age), and quantitative liver enzymes should be tested at least once per year 

(Patient Registry 2008 Annual Report, 2009). Research has shown that patients with 

cystic fibrosis attending dedicated CF centers had better clinical outcomes such as higher 

body mass index and better lung function than those receiving care at other types of 
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centers (Mahadeva et al., 1998). In caring for patients with CF, home-based medications 

account for the greatest proportion (47%) of the total cost of care (Baumann, Stocklossa, 

Greiner, von der Schulenburg, & von der Hardt, 2003). Healthcare costs rise with age, 

and chronic infection with Pseudomonas aeruginosa, which will be discussed in greater 

detail later, is associated with healthcare costs three times higher than that of uninfected 

patients with CF.  

 Malnutrition is common in patients with cystic fibrosis, primarily due to chronic 

pancreatic insufficiency (Bines, Truby, Armstrong, Phelan, & Grimwood, 2002). Nearly 

all patients with CF require pancreatic enzyme supplements with meals to prevent 

nutritional deficiencies (Koch & Hoiby, 2000). Supplementation of fat-soluble vitamins 

A, D, E, and K is also recommended due to fat malabsorption (Davis, 2006). Nutritional 

supplements such as additional vitamins, pancreatic enzymes, and calorie-dense dietary 

additions are crucial to the treatment of patients with CF due to the documented 

relationship between nutritional status and pulmonary function (Milla, 2007). 

 In 2008, 3.8% of patients with cystic fibrosis 6-12 years of age were on ibuprofen 

therapy (Patient Registry 2008 Annual Report, 2009). Konstan, et al., reported that 

children with mild lung disease treated with ibuprofen for an average of four years had a 

29% less decline in lung function than those not treated with ibuprofen (Konstan, 

Schluchter, Xue, & Davis, 2007). The addition of anti-inflammatory therapy to a 

thorough treatment program may decrease morbidity and improve quality of life for 

young patients with mild lung disease (Chmiel & Konstan, 2007). 
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 Respiratory therapy for patients with cystic fibrosis includes airway clearance 

techniques and aerosolized medication delivery. Most patients use a combination of 

airway clearance techniques including exercise, positive expiratory pressure, coughing, 

and active cycle breathing exercises among others. While there is acceptable adherence to 

airway clearance schedules by patients with CF, the most common reasons for non-

adherence were being too busy and too tired (White, Stiller, & Haensel, 2007). The 

cleaning of nebulizers and airway clearance devices is especially important and is 

generally performed by either boiling, soaking in bleach/rubbing alcohol/hydrogen 

peroxide, microwaving, or placing in the dishwasher (Reychler et al., 2005).  

 Hypertonic saline and Pulmozyme
®
 are important inhaled treatments for patients 

with cystic fibrosis. By restoring hydration to the airway epithelium, inhaled hypertonic 

saline allows increased airway clearance and improves lung function (Elkins et al., 2006). 

Pulmozyme
®
, or dornase alfa, is a recombinant human DNase that thins mucus by 

hydrolyzing the DNA released from neutrophils (Shak, Capon, Hellmiss, Marsters, & 

Baker, 1990). The aerosolized drug is used by 76.1% of patients with cystic fibrosis who 

are older than six years of age and have mild to severe lung disease (Patient Registry 

2008 Annual Report, 2009). Pulmozyme
®
 was the first drug developed specifically for 

cystic fibrosis, and its use is associated with a slower rate of decline in lung function 

(Konstan, 2008). 

 There are varying antibiotic treatment regimens including continuous treatment, 

on-demand treatment, and early aggressive treatment (Koch & Hoiby, 2000). Continuous 

treatment risks the development of antibiotic resistance, and on-demand treatment could 
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possibly lead to under treatment. Antibiotic treatment in cystic fibrosis is commonly 

directed specifically at infection with Pseudomonas aeruginosa. A multi-year study at a 

Danish CF center evaluated an early anti-Pseudomonas aeruginosa treatment regimen. 

Initial results showed that the treatment resulted in improved survival for their patients 

(Frederiksen, Lanng, Koch, & Hoiby, 1996). Continued evaluation of the treatment at 

their center found that those treated with high-dose colistin by inhalation and oral 

ciprofloxacin showed the best results in delayed onset or prevention of chronic P. 

aeruginosa infection (Frederiksen, Koch, & Hoiby, 1997). The treatment plan from the 

Danish study also resulted in the maintenance of increased pulmonary function after 

initiation of treatment. The groups credited cohort isolation based on P. aeruginosa 

infection status for reducing the number of patients chronically infected with P. 

aeruginosa (Frederiksen, Koch, & Hoiby, 1999). 

 The early and aggressive treatment protocol has been adopted and modified by 

many cystic fibrosis centers. For instance, one center describes an increasingly aggressive 

treatment protocol each time P. aeruginosa is isolated (Koch, 2002). The treatment plan 

begins with three weeks of inhaled colistin upon the first isolation of P. aeruginosa. A 

second positive P. aeruginosa culture justifies three more weeks of colistin with double 

the usual dose. Treatment for a third positive culture supports doubling the dosage of 

colistin for three months, and all treatment plans for repeated positive cultures also 

include oral ciprofloxacin therapy. 

 With acute P. aeruginosa infections, early antibiotic therapy can eliminate P. 

aeruginosa for a short period of time (approximately 18 months by one study) and thus 
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delay lung function decline (Taccetti, Campana, Festini, Mascherini, & Doring, 2005). In 

contrast, chronic infections with P. aeruginosa are difficult to eradicate (Doring et al., 

2000).    

 With continued advancements in antibiotics, azithromycin has become the drug of 

choice for treating P. aeruginosa in patients with cystic fibrosis. In 2008, a total of 65.6% 

of patients with cystic fibrosis who were older than six years of age, positive for P. 

aeruginosa infection, had moderate to severe lung disease, and weighed more than 55 

pounds were on azithromycin therapy (Patient Registry 2008 Annual Report, 2009). 

Initial trials with azithromycin found that treatment reduced the rate of decline in lung 

function, reduced the number of respiratory exacerbations, and improved nutritional 

status and quality of life (Wolter et al., 2002). In 2003, the Cystic Fibrosis Foundation 

recommended administration of azithromycin for patients with cystic fibrosis greater than 

six years of age and chronically infected with P. aeruginosa (Saiman et al., 2003). 

Interestingly, while azithromycin resulted in clinical improvement, a significant reduction 

in bacterial density was not observed; and this phenomenon suggests that the 

antimicrobial properties of azithromycin are the reason for the clinical response (Nguyen 

et al., 2007). More recent studies also suggest that while improvements in pulmonary 

function were seen in the first year of azithromycin treatment, pulmonary function 

declined with longer courses of therapy (Tramper-Stranders, Wolfs, Fleer, Kimpen, & 

van der Ent, 2007). 

 Inhaled forms of antibiotics have shown the most recent promise for the treatment 

of bacterial infections in patients with cystic fibrosis. Tobramycin solution for inhalation 
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(TOBI) was used by 67.4% of patients with cystic fibrosis in 2008 who were older than 

six years of age, positive for P. aeruginosa, and had moderate to severe lung disease 

(Patient Registry 2008 Annual Report, 2009). Although TOBI use is recommended for 

patients with cystic fibrosis, concerns persist regarding the emergence of resistant 

organisms with use of the drug (Hagerman, Knechtel, & Klepser, 2007). Cheer, et al. 

reported a decline in the susceptibility of P. aeruginosa infections treated with TOBI, but 

this reduced susceptibility did not cause adverse outcomes in the patients with CF (Cheer, 

Waugh, & Noble, 2003). The most recently approved inhaled antibiotic is aztreonam, 

which was FDA-approved in 2010. Aztreonam treatment has been combined with the 

new eFlow electronic nebulizer delivery system that is capable of providing 1 mL of the 

drug in two to three minutes (R. L. Gibson et al., 2006). This new treatment option 

provides concentrations of aztreonam in the sputum of patients with CF that exceed the 

concentrations necessary to inhibit bacterial growth of P. aeruginosa.  

 The selection of appropriate antibiotic treatment for patients with cystic fibrosis is 

based on susceptibility patterns of the bacterial organisms (Doring et al., 2000). Recently, 

concerns have surfaced that antibiotic combinations effective in vitro will not be as 

effective in the lungs of patients with CF, especially in the presence of biofilms (Hill et 

al., 2005). In addition, the selective stress of antibiotic treatment has been shown to 

increase the rate of organisms that are resistant to multiple antibiotics (Alonso, 

Campanario, & Martinez, 1999). The clinical significance of multiply-resistant P. 

aeruginosa and Burkholderia cepacia is well established, but the significance of other 

emerging multiply-resistant organisms such as methicillin-resistant Staphylococcus 
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aureus (MRSA) and Stenotrophomonas maltophilia is still unknown (Waters & Ratjen, 

2006). 

 Once all medication options have been exhausted and lung function reaches a 

critical level, lung transplants must be considered for patients with cystic fibrosis. In 

2008, a total of 157 patients with cystic fibrosis received lung transplants (Patient 

Registry 2008 Annual Report, 2009). Referral criteria for lung transplants in patients with 

cystic fibrosis includes severe decline in lung function, life-threatening pulmonary 

complications, and increasing antibiotic resistance of bacterial pathogens infecting the 

lungs (Yankaskas & Mallory, 1998). Infection with Burkholderia cenocepacia, pan-

resistant Burkholderia multivorans, or pan-resistant Burkholderia vietnamiensis is 

considered a contraindication to lung transplantation in patients with cystic fibrosis in the 

United States due to poor survival rates post-surgery for patients infected with the 

pathogen (Chaparro et al., 2001). However, pulmonary infection with multiply-resistant 

Pseudomonas aeruginosa is not a contraindication for lung transplants in these patients 

(Goldberg & Deykin, 2007).  

 Beyond the conventional treatment plans to alleviate symptoms and improve 

quality of life, a cure for cystic fibrosis remains elusive. As in many genetic diseases, 

gene therapy holds promise of providing a cure. Gene therapy targeted at cystic fibrosis 

began with the correction of CFTR-dependent chloride transport by the use of nonviral 

vectors in transgenic mice with cystic fibrosis (Hyde et al., 1993). Several routes of 

administration of gene therapy have been evaluated since the initial studies. One study 

utilized compacted DNA nanoparticles instilled into the nose. This approach to gene 
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therapy did seem to provide partial to complete chloride transport correction in 8 of the 

12 patients involved in the study (Konstan et al., 2004). Adeno-associated virus 

transmitted via nasal installation or bronchoscopy has also been explored for delivery of 

gene therapy; however, chloride transport correction was only observed in a few patients 

(Flotte, Schwiebert, Zeitlin, Carter, & Guggino, 2005). Human clinical trials have 

included recombinant adenovirus, recombinant adeno-associated virus, cationic 

liposomes, and condensed naked DNA. So far, human clinical trials have not revealed a 

single successful potential strategy for gene therapy in cystic fibrosis, but the possibility 

of using embryonic or adult stem cells is also being explored (Sueblinvong, Suratt, & 

Weiss, 2007). 

Predictors of Outcome in Cystic Fibrosis 

 Several parameters have been used to predict patient outcomes in cystic fibrosis. 

Interestingly, the presence of meconium ileus at birth was not found to be a significant 

predictor of survival (Munck et al., 2006). However, genotypic determinations at birth 

were found to be predictive of disease phenotype. The various mutation groups 

mentioned earlier have been associated with different disease severities. Studies have 

found significant differences in survival and median age of death between high-risk and 

low-risk CF genotype classes (McKone, Goss, & Aitken, 2006). Even within genotypes 

that include deltaF508, mortality rates and disease severity differ for patients that are 

homozygous and heterozygous for the mutation (Johansen, Nir, Hoiby, Koch, & 

Schwartz, 1991). 
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 Body-mass index (BMI) is a factor closely documented by physicians to monitor 

patients with cystic fibrosis. The standards set by the Cystic Fibrosis Foundation state 

that BMI is a percentile of weight and height compared to healthy children of the same 

age and gender (Patient Registry 2008 Annual Report, 2009). Because BMI conveys 

valuable information regarding nutritional status and overall patient health and prognosis, 

several studies have identified BMI as an important predictor of survival in patients with 

CF (Durie & Pencharz, 1992; Kraemer, Rudeberg, Hadorn, & Rossi, 1978). The CFF 

states that patients with CF should exhibit growth consistent with age-matched 

individuals who do not have the disease (Patient Registry 2008 Annual Report, 2009). 

 Another important measure in determining the health of a patient with cystic 

fibrosis is forced expiratory volume (FEV1). FEV1 is “the volume of air that can be 

forced out in one second after taking a deep breath” (Merriam-Webster's New World 

Medical Dictionary, 2003). FEV1 can be expressed as volume in liters or as a percent 

predicted based on healthy, non-smoking people of the same age and gender (Patient 

Registry 2008 Annual Report, 2009). FEV1 has also been deemed a significant predictor 

of survival, and one study reported that patients with a value less than 30% forced 

expiratory volume in one second had a 50% chance of dying within two years (Corey, 

Edwards, Levison, & Knowles, 1997; Kerem, Reisman, Corey, Canny, & Levison, 1992). 

 Pulmonary infection with bacterial pathogens is another significant factor in the 

health and survival of patients with cystic fibrosis. Variants of Staphylococcus aureus 

have been associated with more advanced lung disease (Besier et al., 2007). However, 

Pseudomonas aeruginosa is the most significant respiratory pathogen in patients with CF, 
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and infection with multiply-resistant P. aeruginosa is associated with a significant 

decrease in FEV1 (Lambiase et al., 2006). Relative to demographic information, a 

mother’s educational level has been identified as a potential risk factor for the acquisition 

of P. aeruginosa (Kosorok et al., 1998; Watts, Seshadri, Sullivan, & McColley, 2009). 

Interestingly, patients with a late diagnosis of cystic fibrosis (at 24 years of age or later) 

were less likely to be infected with P. aeruginosa than those diagnosed at an earlier age 

(before 15 years of age) (Rodman et al., 2005). Another study suggests that pulmonary 

infection with P. aeruginosa or Burkholderia cepacia may have a greater effect on 

survival than genotype (Courtney et al., 2007). When looking exclusively at P. 

aeruginosa, patients infected with a multiply-resistant strain rather than a susceptible 

strain were 14 times more likely to either die or need a lung transplant (Lechtzin et al., 

2006). 

Infection Control in Cystic Fibrosis 

A study in the cystic fibrosis centers of Germany found that physicians have 

differing opinions on the risk of bacterial acquisition, specifically P. aeruginosa, from the 

environment and suggested that strict precautions created a greater level of fear for the 

patient and their family (Steinkamp & Ullrich, 2003). Cystic fibrosis centers in the 

United States had a different view, and in 2003, the Cystic Fibrosis Foundation published 

a consensus statement regarding infection control in cystic fibrosis (Saiman & Siegel, 

2003). The document covered isolation procedures for patients with CF and also 

recommended the use of molecular typing for surveillance of transmission of infections. 

Consensus committee members made further recommendations in 2004 and noted the 
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importance of monitoring infection control practices as well as tracking details on new 

infections (Saiman & Siegel, 2004). The recommendations stated that patients with cystic 

fibrosis should be instructed on containment of secretions and should maintain a distance 

of at least three feet from other patients with CF regardless of respiratory infection status. 

Cystic fibrosis centers were also instructed to standardize protocols for the cleaning of 

equipment used in respiratory therapies and to educate patients and families on proper 

care and disinfection of home use equipment. A significant proportion of home 

nebulizers were contaminated with P. aeruginosa highlighting the importance of 

infection control practices (Rosenfeld, Joy, Nguyen, Krzewinski, & Burns, 2001). 

 Isolation of hospitalized patients with cystic fibrosis infected with P. aeruginosa 

is commonly accepted due to the many studies suggesting transmission between patients. 

One review of the literature, found that 31 of 39 studies showed evidence of patient-to-

patient spread of P. aeruginosa in patients with cystic fibrosis (Vonberg & Gastmeier, 

2005). Multiply-resistant strains of P. aeruginosa are assumed to be even more 

transmissible, so segregation is critical for those patients (Davies, McShane, Davies, & 

Bush, 2003). Multiple studies have suggested that molecular epidemiologic surveillance 

is needed to determine if improved infection control practices limit the spread of P. 

aeruginosa between patients with cystic fibrosis (D. Armstrong et al., 2003; O'Carroll et 

al., 2004; Pitt, 2002; Ramsey, 2002).  

Pseudomonas aeruginosa 

 Pseudomonas aeruginosa is a fastidious organism that prefers moist environments 

and surfaces. When placed on filter paper or freeze dried, P. aeruginosa has a survival 
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rate of 10-150 days. However when placed in water at 4-37°C, P. aeruginosa was found 

to survive for more than 300 days (Emmanouilidou-Arseni & Koumentakou, 1964). 

Because of this extended survival, P. aeruginosa is a significant factor in device-

associated nosocomial infections involving urinary catheters, central venous catheters, 

and ventilators (Pierce, 2005). It is believed that bacterial biofilms may coat these devices 

and account for persistent contamination.  

 Beyond cystic fibrosis, P. aeruginosa is an important pathogen in other disease 

states such as immunocompromised patients with cancer or HIV infection. P. aeruginosa 

is a primary consideration for patients with leukemia and in neutropenic patients (Funada 

& Matsuda, 1998). The frequency of P. aeruginosa infections in patients with solid 

tumors has decreased but has remained constant for patients with acute leukemia 

(Chatzinikolaou et al., 2000). In addition, hospitalized patients with HIV-1 infection are 

susceptible to community-acquired and nosocomial bacterial pneumonia commonly 

caused by P. aeruginosa (Afessa & Green, 2000). 

Pseudomonas aeruginosa in Cystic Fibrosis 

 The Cystic Fibrosis Foundation Patient Registry Report noted that 52.5% of 

patients with cystic fibrosis were infected with Pseudomonas aeruginosa in 2008 (Patient 

Registry 2008 Annual Report, 2009). Earlier studies hoped to discover risk factors for the 

acquisition of P. aeruginosa. The presence of meconium ileus at birth was once found to 

be a significant risk factor, but advances in infection control and surgical treatment have 

lessened this risk (E. Kerem et al., 1989). Clinic exposures and use of aerosol 

medications and treatments have also been proven to increase the risk of acquisition of P. 
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aeruginosa. Interestingly, the level of education of the patient’s mother was found to 

decrease the risk of acquiring P. aeruginosa presumably due to relative abilities to clean 

and handle respiratory therapy equipment (Kosorok et al., 1998). 

 Evidenced by whole genome analysis, P. aeruginosa genetically adapts to the 

airways of patients with cystic fibrosis. Genetic properties differed greatly between the P. 

aeruginosa strains that initiated the infection and the strains present late in P. aeruginosa 

infections of cystic fibrosis airways (Smith et al., 2006). P. aeruginosa present in acute or 

early infection stages have a non-mucoid appearance, are pan-sensitive to antibiotics, and 

are present at low densities (Rosenfeld, Ramsey, & Gibson, 2003). Several studies have 

shown that a window of opportunity may be present in which early intervention may 

allow eradication of P. aeruginosa from upper and lower airways (Treggiari, Rosenfeld, 

Retsch-Bogart, Gibson, & Ramsey, 2007). However, selective pressure has been shown 

to promote the transformation of non-mucoid strains into mucoid phenotypes resulting in 

chronic P. aeruginosa infections. 

 P. aeruginosa is observed as a biofilm in the sputum of patients with cystic 

fibrosis (P. K. Singh et al., 2000). In P. aeruginosa infections of the airways of patients 

with cystic fibrosis, the mucus is targeted rather than the epithelial cell surface 

compartment (Worlitzsch et al., 2002). The mucoid morphology associated with chronic 

infection is caused by the overproduction of extracellular polysaccharide alginate 

(Driscoll, Brody, & Kollef, 2007). Alginate production facilitates the establishment of 

microcolonies in biofilms, which protect pathogens from host defense mechanisms and 

antimicrobial agents (Koch, 2002). Mucus clearance is part of a healthy respiratory 
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system’s defense against infection, but patients with CF are unable to clear the thick 

mucus characteristic of their disease leading to chronic lung infections (Worlitzsch et al., 

2002). Chronic infection with P. aeruginosa leads to decline in pulmonary function and 

ultimately death in patients with cystic fibrosis (Lyczak, Cannon, & Pier, 2002). 

 The initial definition of chronic P. aeruginosa infection included the presence of 

this pathogen in the sputa of the patients for a period of six months (Hoiby, 1974). In 

2003, the Leeds criteria proposed revised definitions for the various stages of P. 

aeruginosa infection (Lee, Brownlee, Conway, Denton, & Littlewood, 2003). “Chronic 

infection” was defined as positive P. aeruginosa cultures during more than 50% of the 

months when samples were obtained. “Intermittent infection” was defined as a positive P. 

aeruginosa culture during 50% or less of the months when samples were obtained, and 

“free of infection” was defined as no growth of P. aeruginosa in the previous 12 months 

for patients with a prior history of Pseudomonas infection. More recent studies have 

upheld the Leeds criteria and the definitions of patterns of P. aeruginosa infection 

(Proesmans et al., 2006). 

 Clinical laboratories employ various techniques for the identification of P. 

aeruginosa in respiratory samples of patients with cystic fibrosis. Serological tests can 

detect specific antigens implicated in the diagnosis of chronic P. aeruginosa colonization, 

but the test has failed to detect early colonization in young patients (Tramper-Stranders et 

al., 2006). The identification method recommended by the Cystic Fibrosis Foundation 

utilizes culture paired with agar diffusion assays for susceptibility testing of P. 



31 

 

aeruginosa, but a recent study showed that only 52% of laboratories in the United States 

use this methodology (Zhou, Garber, Desai, & Saiman, 2006).  

In recent years, the identification of P. aeruginosa has been aided by new 

molecular assays. The discovery of a nucleotide sequence present in all isolates of the 

Liverpool epidemic strain led to a PCR assay capable of identifying that particular strain 

in colonies or directly from sputum (Parsons et al., 2002). Another laboratory developed 

an assay using temperature gradient gel electrophoresis paired with pyrosequencing to 

identify P. aeruginosa in respiratory samples of patients with cystic fibrosis (Kolak, 

Karpati, Monstein, & Jonasson, 2003). P. aeruginosa isolates as well as other atypical 

nonfermenting gram-negative bacilli in patients with cystic fibrosis are known to have 

atypical morphologies and metabolic properties, and these organisms often require 

further testing for confirmation (Ferroni et al., 2002). One laboratory designed a PCR 

assay to specifically identify difficult and non-typical P. aeruginosa in the sputa of 

patients with cystic fibrosis (Spilker, Coenye, Vandamme, & LiPuma, 2004). At Texas 

Children’s Hospital, a pyrosequencing assay was implemented to identify any organism 

that proved difficult to definitively speciate by conventional microbiological methods. 

Many of the organisms that were referred for this testing were found to be P. aeruginosa 

isolates from patients with cystic fibrosis that did not perform as expected by culture and 

both manual and automated biochemical testing methods (Luna et al., 2007).   

 Infection with P. aeruginosa has a profound effect on the lives of patients with 

cystic fibrosis. On the emotional front, recent colonization with P. aeruginosa has been 

associated with a lower quality of life (Goldbeck, Zerrer, & Schmitz, 2007). P. 
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aeruginosa infections are also major predictors of morbidity and mortality. The clinical 

outcomes of patients positive for P. aeruginosa respiratory infections are significantly 

poorer due to lower lung capacity (FEV1), lower weight percentiles, and higher rates of 

hospitalization. Most troublesome is the fact that the eight-year death risk is 2.6 times 

higher for patients with P. aeruginosa isolated from respiratory cultures than for those 

without P. aeruginosa in respiratory cultures (Emerson, Rosenfeld, McNamara, Ramsey, 

& Gibson, 2002). 

 The largest complication with P. aeruginosa is the emergence of multiply-

resistant strains, or strains that are resistant to multiple antibiotics. Various publications 

attempt to define multiply-resistant P. aeruginosa, but the most widely accepted 

definition is provided by the Cystic Fibrosis Foundation (CFF) and has been adopted by 

CF centers throughout the United States (Falagas et al., 2006). According to the CFF, a P. 

aeruginosa isolate must be resistant to all antibiotics in at least two of three groups 

(aminoglycosides, fluoroquinolones, and beta-lactams) to be considered multiply-

resistant. Studies have shown that treatment with certain antibiotics can affect the 

emergence of antibiotic resistant strains of P. aeruginosa. One study found that 

ceftazidime treatment yielded the lowest risk and imipenem yielded the highest risk of 

emergence of antibiotic-resistant P. aeruginosa (Carmeli, Troillet, Eliopoulos, & Samore, 

1999). Hypermutable strains also contribute to the development of antibiotic resistance, 

and one study suggested that early and aggressive antibiotic treatment combined with 

antioxidants could prevent mutation of the strains. The study claimed that strain typing by 

pulsed field gel electrophoresis confirmed this hypothesis by showing patients had the 
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same strain throughout the chronic lung infection phase (Ciofu, Riis, Pressler, Poulsen, & 

Hoiby, 2005).  

Molecular Typing Technology and Clinical Applications 

 While a variety of techniques for molecular typing exist, the goal of each 

methodology is to determine if isolates of a specific species are clonally related. A clonal 

relationship would suggest that they originated from the same bacterial cell and could 

indicate a lateral or point source of transmission. The discriminatory power of a 

technique describes the technique’s ability to differentiate unrelated isolates (A. Singh, 

Goering, Simjee, Foley, & Zervos, 2006). Based on a review of the literature, the most 

commonly employed techniques for molecular typing include restriction fragment length 

polymorphism (RFLP), ribotyping, random amplified polymorphic DNA (RAPD), 

pulsed-field gel electrophoresis (PFGE), arbitrarily-primed PCR (AP-PCR), and 

repetitive element PCR (rep-PCR).  

Various factors of each technique determined their acceptability for clinical use. 

Lack of reproducibility has hampered clinical application of AP-PCR and RAPD 

(Struelens, 1998; Wu & Della-Latta, 2002). RFLP was too labor intensive for daily 

clinical use, and ribotyping only provided moderate discriminatory power compared to 

the other techniques (Struelens, 1998). PFGE was considered the gold standard for many 

years, but there are several factors that make this technology less than ideal for the 

clinical laboratory. PFGE requires a two to four day turnaround time, is costly to 

perform, is labor-intensive, and requires specialized expensive equipment (Struelens, 

1998; Wu & Della-Latta, 2002). In contrast, the major complaint of rep-PCR was that the 
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technology lacked standardization (Wu & Della-Latta, 2002) while others suggested the 

improved reproducibility of the technology would lend itself to standardization as a 

library typing system (Struelens, 1998). The benefit is that rep-PCR is the most rapid of 

all the technologies currently available for molecular typing (Kang & Dunne, 2003). The 

issues with standardization would later be remedied by the introduction of the DiversiLab 

system (Healy et al., 2005). The DiversiLab system offered several improvements to the 

rep-PCR process including optimized PCR chemistry provided in a reagent kit format, 

microfluidics-based DNA amplicon detection, and internet-based computerized analysis 

and data storage.  

When reviewing studies in molecular typing, the definitions of clones and strains 

become important. Clones are defined as genetically related isolates that are 

indistinguishable or so similar to each other that they are presumed to descend from a 

common parent, and a strain is an isolate or group of isolates that can be distinguished 

from other isolates of the same genus and species (Tenover et al., 1995). 

Indistinguishable or closely related isolates should have no more than a two to three band 

difference (absence or presence of a band), isolates that are possibly related would have a 

four to six band difference, and those isolates that are clearly different, considered 

distinguishable, would have a seven or greater band difference (Tenover et al., 1995). 

 Pulsed-field gel electrophoresis is performed by digestion of chromosomal DNA 

with rare-cutting restriction enzymes and analysis of the resulting series of fragments by 

agarose gel electrophoresis (A. Singh et al., 2006). The “pulsed-field” is obtained by 

constantly changing the direction of the electrical field during electrophoresis. PFGE has 
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been used in clinical molecular typing studies in many institutions and has been 

instrumental in the discovery of outbreak situations. PFGE typing in a neonatal intensive 

care unit determined a clonal relationship between the strains of Serratia marcescens 

isolated from the patients and those found in the hand washing disinfectant used by the 

nursing staff (Villari, Crispino, Salvadori, & Scarcella, 2001). The outbreak was 

contained by isolating each of the patients infected with S. marcescens and by more 

diligent hand washing and glove use by the staff. PFGE was also shown to identify two 

endemic strains of methicillin-resistant Staphylococcus aureus (Petersdorf, Oberdorfer, & 

Wendt, 2006) and a cluster of Enterobacter cloacae associated with a high mortality rate 

(Kuboyama, de Oliveira, & Moretti-Branchini, 2003). In another example of molecular 

typing of antibiotic resistant organisms, PFGE identified a strain of vancomycin-resistant 

Enterococcus faecium that was present in 85% of the samples typed (Deplano et al., 

2007). The implementation of weekly surveillance cultures and the increased use of 

barrier precautions were effective in controlling the spread of the strain in the hematology 

unit of the hospital. 

 While PFGE has long been considered the gold standard for molecular typing, 

improvements in rep-PCR have made the technology more appealing to advanced 

laboratories. Repetitive element PCR capitalizes on the widespread distribution of 

repetitive DNA elements throughout the genomes of many microorganisms (Versalovic, 

Koeuth, & Lupski, 1991). By positioning amplification primers in these repetitive 

regions, amplified fragments of various lengths and quantities are produced leading to a 

unique molecular fingerprint for each strain of a particular species. Rep-PCR has been 
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significantly improved by the introduction of bioMerieux’s DiversiLab system. The 

complete DiversiLab system offers quality-controlled reagents in a kit format, 

microfluidics-based amplified fragment detection, and internet-based computer assisted 

analysis, reporting, and data storage (Healy et al., 2005). The level of discrimination and 

reproducibility of the technology paired with the electronic storage of data created an 

ideal environment for the archiving of rep-PCR data for comparative longitudinal and 

epidemiological studies.  

 Several studies have compared the discriminatory power of rep-PCR with other 

techniques for molecular typing. One study compared PFGE, rep-PCR, and AP-PCR for 

typing of Bartonella henselae and found that PFGE and rep-PCR had the highest 

discriminatory potential (Sander, Ruess, Bereswill, Schuppler, & Steinbrueckner, 1998). 

Another study compared rep-PCR and RFLP for the typing of Pseudomonas isolates from 

soil and concluded that rep-PCR performed just as well as RFLP (Cho & Tiedje, 2000). 

A comparison of rep-PCR, PFGE, and ribotyping in Clostridium difficile found a high 

correspondence between rep-PCR and PFGE results but lesser discrimination with the 

ribotyping results (Spigaglia & Mastrantonio, 2003). 

  Multiple investigators chose to perform a direct comparison between PFGE and 

rep-PCR. Candida albicans was a specific pathogen of interest, and rep-PCR was found 

to be comparable to PFGE (Chen, Lo, Lin, & Li, 2005). One study showed that the 

DiversiLab rep-PCR system was more rapid and conducive to ongoing epidemiologic 

studies in Candida species (Wise et al., 2007). The DiversiLab system was also evaluated 

for typing of Staphylococcus aureus strains, and the study found that rep-PCR provided 
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more consistent results as compared with PFGE and was also less labor intensive (Shutt, 

Pounder, Page, Schaecher, & Woods, 2005). Further studies confirmed the comparable 

discriminatory power and more rapid turnaround time of rep-PCR as compared to PFGE 

in reports of Listeria monocytogenes (Chou & Wang, 2006) and vancomycin-resistant 

Enterococcus (Pounder et al., 2005). 

 Rep-PCR is a proven technology for typing of various bacterial species. Published 

studies used rep-PCR to type Acinetobacter baumanii (Martin-Lozano et al., 2002) and 

Vibrio vulnificus (Chatzidaki-Livanis, Hubbard, Gordon, Harwood, & Wright, 2006) as 

well as several other bacteria isolated from the International Space Station (Castro, 

Thrasher, Healy, Ott, & Pierson, 2004). One study that separated Listeria monocytogenes 

isolates into four separate clusters suggested that molecular fingerprints be considered 

different if there was a discrepancy (presence or absence) of at least two bands (Jersek et 

al., 1999). A larger study that evaluated the relatedness of several organisms 

(Acinetobacter sp., Enterobacter sp., and coagulase-negative Staphylococcus) between an 

individual’s hands and the immediate environment stated specific criteria for the 

identification of clusters (Pancholi et al., 2005). Interestingly, greater than 25% of the 

bacterial isolates found on the hands and the immediate environment of a single 

household were found to be the same strain. Different isolates were defined as those with 

less than 95% similarity and a 2-3 band difference. Similar isolates were described as 

those with less than 97% similarity but only 1-2 bands difference; and indistinguishable 

isolates were defined as those with greater than 95% similarity and no band differences 

including intensities. Overall profile intensity differences were acceptable because that 
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indicated a universal change throughout the whole rep-PCR profile most likely due to 

efficiency of the PCR rather than actual differences between the bacterial isolates.  

 In addition to bacterial typing, rep-PCR has been recommended as an effective 

tool for the typing of fungi (Healy et al., 2004) and dermatophytes (Pounder et al., 2005). 

Most importantly, rep-PCR has been proven for use in infection control investigations. 

Rep-PCR of vancomycin-resistant Enterococcus was instrumental in the control of an 

outbreak in the neonatal intensive care unit (NICU) in one hospital (N. Singh, Leger, 

Campbell, Short, & Campos, 2005). In another institution, rep-PCR epidemiologically 

linked a NICU outbreak of methicillin-resistant Staphylococcus aureus to a health care 

worker afflicted with chronic otitis externa and nasal colonization with a specific MRSA 

clone (Bertin et al., 2006). 

 A recent study compared PFGE to rep-PCR for typing of P. aeruginosa, including 

several isolates from patients with CF (Doleans-Jordheim et al., 2009). Rep-PCR was 

found to be comparable to PFGE, and the grouping of isolates was consistent when 

adhering to a 95% similarity cut-off to define a clonal group. The CF isolates included 

isolates from three families, and all isolates within each family were found to be identical 

whereas the molecular profiles between families were found to be unique.  

Molecular Typing of Burkholderia cepacia in Cystic Fibrosis 

 Molecular typing of Burkholderia cepacia in patients with cystic fibrosis has been 

performed in several centers. An early study discovered epidemic strains in a Toronto CF 

center using RFLP and PFGE (Sun et al., 1995). RAPD analysis confirmed an epidemic 

strain among multiple patients with CF across the United Kingdom and eastern Canada 
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(Mahenthiralingam, Simpson, & Speert, 1997). Additional studies using RAPD and rep-

PCR found cross-infection of the B. cepacia complex across several European cystic 

fibrosis centers (Coenye, Spilker, Van Schoor, LiPuma, & Vandamme, 2004); 

(McDowell et al., 2004). Similarly, a combination of rep-PCR and PFGE was utilized to 

confirm clusters of B. cepacia complex in several CF centers in the United States 

(Biddick, Spilker, Martin, & LiPuma, 2003).   

Molecular Typing of Pseudomonas aeruginosa 

 One of the earliest methods used to type strains of Pseudomonas aeruginosa was 

pyocin typing. Pyocin is a bacteriocin, a toxin produced by bacteria that inhibits growth 

of similar or related species, produced by P. aeruginosa (Higerd, Baechler, & Berk, 

1967). Pyocin typing was based on the level of pyocin activity in the isolate and while it 

performed better than serotyping, it proved much less accurate than results obtained with 

primitive molecular methods (Fyfe, Harris, & Govan, 1984). By the mid-1990s, 

molecular typing relied largely on PFGE technology. Comparison studies specific to the 

typing of P. aeruginosa showed PFGE to have better discriminatory power than RFLP 

(Grundmann, Schneider, Hartung, Daschner, & Pitt, 1995) while a separate study 

confirmed that rep-PCR had a level of discrimination equal to PFGE in the typing of P. 

aeruginosa (Lau et al., 1995). Utilizing microfluidics chips in conjunction with rep-PCR 

was suggested as the most rapid and automated method for typing of P. aeruginosa 

(Jamasbi, Kennel, Waters, Foote, & Ramsey, 2004). 

 PFGE of P. aeruginosa uncovered eight cases of cross-colonization in an 

intensive care unit (Bergmans et al., 1998) as well as a clonal infection in a NICU linked 
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to artificial nail colonization of a health care worker (Foca et al., 2000). Across four 

French intensive care units, carriage of or infection with P. aeruginosa was determined to 

be a result of transmission between patients 50% of the time based on PFGE analysis 

(Bertrand et al., 2001). The same study documented that patients who were carriers, 

colonized, or infected with P. aeruginosa had a significantly longer median stay in the 

ICU, 26.3 days versus 7.4 days. P. aeruginosa was also identified in several water faucets 

in health care institutions. PFGE led to the discovery of a common clone in an ICU, and 

infection control measures, including the replacement of water faucets and reiteration of 

hand-hygiene recommendations, were found to decrease the colonization rate (Petignat et 

al., 2006). Similarly, a cluster of multiply-resistant P. aeruginosa detected by AFLP 

typing was eliminated only when water taps were pasteurized weekly and sterile water 

was employed for use with gastric tubes (Bukholm, Tannaes, Kjelsberg, & Smith-

Erichsen, 2002). The MRPA outbreak strain was also found to be significantly associated 

with patient mortality. A molecular typing project utilizing PFGE for the typing of 

MRPA found one genotype at four different hospitals in Rio de Janeiro (Pellegrino et al., 

2002). The researchers suspected that inadequate infection control practices were the 

culprit behind the spread but also suggested that certain MRPA clones may be more 

equipped to spread among susceptible hosts in a health care setting. These clones may 

exhibit prolonged survival in the outside environment and could further adapt to the 

geographic region or ethnicity of the host. 
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Molecular Typing of Pseudomonas aeruginosa in Cystic Fibrosis 

Attempts were made to type Pseudomonas aeruginosa in patients with cystic 

fibrosis as early as the late 1980s. Initial methods included early versions of molecular 

technology, pyocin typing, serotyping, and ribotyping. Many of those methods proved 

relatively unreliable in later years, so the results of the studies cannot be considered 

conclusive given the advances made in the past 20 years. As expected, even the early 

typing studies did see related strains present in siblings (Grothues, Koopmann, von der 

Hardt, & Tummler, 1988) or with patients attending the same summer camps (Wolz et 

al., 1989). An early comparison between pyocin typing and RFLP analysis did confirm 

cross-colonization by indicating that 43% of patients typed shared a common genotype, 

and the authors agreed that RFLP was a more reliable method than pyocin typing (Fegan, 

Francis, Hayward, & Fuerst, 1991). However, even as late as the mid-1990s, laboratories 

were still evaluating strains of P. aeruginosa based on phenotypic differences rather than 

strain typing (Mahenthiralingam, Campbell, Foster, Lam, & Speert, 1996).  

 Since genotyping quickly proved superior to phenotyping for detecting 

differences between bacterial strains, RAPD and PFGE analysis became the techniques of 

choice for typing Pseudomonas aeruginosa in patients with cystic fibrosis in the 1990s; 

but there was lingering concern about standardization of interpretation (Renders et al., 

1996). To address reproducibility of results, a study comparing RAPD typing to previous 

PFGE results found that the results for individual patients remained closely related but 

did display a shift over time (Kersulyte et al., 1995). The project also found related 

strains in patients that were visiting the same clinic during the same time period. As 
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indicated in earlier publications, PFGE identified a clone that was present in the tap 

water, sinks, wash basins, and creams of a CF ward only to discover that the predominant 

strain had spread into the adjacent non-CF control ward four years later (Bosshammer et 

al., 1995). In contrast, a Danish CF center utilizing PFGE documented that none of their 

patients were infected with strains of P. aeruginosa that were similar to the 

environmental isolates leading them to conclude that their contact isolation and other 

infection control precautions were effective in preventing environmental contamination 

with P. aeruginosa (Zembrzuska-Sadkowska, Sneum, Ojeniyi, Heiden, & Hoiby, 1995). 

When considering antibiotic resistance, a CF center in the United Kingdom found by 

PFGE that 85% of their patients infected with P. aeruginosa appeared to have the same 

beta-lactam antibiotic resistant strain (Cheng et al., 1996). 

 Social interaction both within and outside of healthcare institutions has been a 

documented cause of transmission of P. aeruginosa in patients with cystic fibrosis. PFGE 

detected that 12 of 40 patients who acquired P. aeruginosa during a period of four years 

contracted it from camps, clinics, or rehabilitation centers (Tummler et al., 1991). The 

introduction of new infection control practices led to the detection of only one case of 

transmission in the CF ward during a two year period, leading the researchers to conclude 

that nosocomial transmission significantly contributes to the prevalence of P. aeruginosa 

in cystic fibrosis. Camps specifically for patients with CF were later recognized as 

significant risk factors for the transmission of P. aeruginosa. While one study did 

document no related strains by RAPD analysis at a summer camp and only one case of 

acquisition (Hoogkamp-Korstanje, Meis, Kissing, van der Laag, & Melchers, 1995), a 
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more recent study found evidence by PFGE of significant transmission, 17 of 22 

campers, of a pan-susceptible strain of P. aeruginosa by PFGE once the patients returned 

from camp (Ojeniyi, Frederiksen, & Hoiby, 2000). Social interaction can occur even 

during inpatient stays as discovered in a study stating that four patients became 

superinfected with the same strain of P. aeruginosa after inpatient social contact 

(McCallum et al., 2001). This finding led the clinic to type each patient infected with P. 

aeruginosa and separate the inpatients colonized with the epidemic strain. Camps for 

patients with CF have been discontinued in the United States, but a study of camps in the 

Dead Sea region of southern Israel demonstrated that cross-infection among patients 

could be eliminated by meticulous separation of individuals (Greenberg et al., 2004). 

Social circumstances where separation is impossible such as family life also contributes 

to colonization. Cross-transmission of bacterial pathogens in siblings with cystic fibrosis 

is well documented (Speert et al., 2002), but a more interesting case described the chronic 

colonization of two previously healthy parents with the same P. aeruginosa strain as their 

daughter with CF (McCallum et al., 2002). 

 While a multitude of studies confirmed genetic relationships between strains of P. 

aeruginosa in patients with CF, it is appropriate to note that several studies have not 

yielded evidence of cross-transmission. A CF center in Leipzig stated cross-colonization 

was rare by PFGE (Spencker et al., 2000). Similarly, RAPD analysis suggested that 

cross-infection was uncommon in an outpatient clinic in Brazil, but the study only 

spanned six months (da Silva Filho et al., 2001). A separate study in Brazil came to the 

same conclusion when PFGE typing revealed 39 distinct fingerprint patterns from 41 
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patients (Silbert et al., 2001). The two remaining patients were siblings harboring the 

same strain of P. aeruginosa, and the authors also noted that mucoid and non-mucoid 

strains of P. aeruginosa from the same patient exhibited the same molecular profile in the 

majority of cases. A separate study also confirmed that mucoid and non-mucoid P. 

aeruginosa isolates from the same patient produced the same pattern (Campana et al., 

2004). Additionally, a CF clinic in North Staffordshire found no evidence of cross-

infection with the environment or between patients except in the case of siblings (Tubbs 

et al., 2001). Even one recent study in New Delhi, India that utilized a form of rep-PCR 

found 26 of 27 P. aeruginosa isolates to be unique (Agarwal et al., 2005). 

 Several studies have reported lack of evidence by molecular typing of 

transmission of P. aeruginosa between patients with CF, but the majority of recent 

studies have found evidence of cross-infection including several publications from the 

United Kingdom. Analysis of patients in the Manchester Adult CF unit by PFGE 

discovered that 14% of patients harbored the same strain, which happened to be solely 

composed of multiply-resistant P. aeruginosa isolates in either the mucoid or non-mucoid 

form (Jones et al., 2001). The clinic also typed P. aeruginosa isolates from non-cystic 

fibrosis patients, and those isolates were found to be unique strains. Further research into 

the patients infected with the epidemic strain revealed no common demographic factor 

but confirmed that 23 of the 24 patients with the epidemic strain had been inpatients at 

least once in the previous two years. A smaller study reviewed the history of six patients 

from a pediatric CF center in the United Kingdom. Four of the patients had overlapping 

hospital stays, and PFGE analysis produced identical genotypes for those four patients 
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and unique profiles for the other two patients (Denton et al., 2002). In addition, a large 

study of CF centers across England and Wales found evidence of cross-infection between 

and within centers (Scott & Pitt, 2004).  

 Several publications documenting evidence of cross-infection of P. aeruginosa 

have also originated from Australian cystic fibrosis clinics. An initial probing of patient 

samples by PFGE found that greater than one third of patients were infected with the 

same P. aeruginosa strain in an adult CF center (Anthony et al., 2002). A similar study 

focusing on a pediatric CF center showed that 55% of patients shared a genetically 

related strain (D. S. Armstrong et al., 2002). Interestingly, two environmental surveys 

performed four years apart failed to detect the clonal strain, and analysis of patient data 

determined that infection with the clonal strain was not associated with adverse clinical 

outcomes. The results of these studies led to molecular typing, by PFGE and RAPD, 

across five CF clinics in Australia. An identical clone, a mucoid multiply-resistant P. 

aeruginosa, was discovered in all five clinics and was found to be the dominant clone in 

three of the clinics (D. Armstrong et al., 2003). A more recent analysis of an adult and 

pediatric CF center by rep-PCR and PFGE confirmed a dominant clone infecting 38% of 

the patients with P. aeruginosa (Syrmis et al., 2004). This particular study also defined 

profiles with two or more band differences as unrelated.  

 A recent publication described the environmental pathogen risk in an Italian 

outpatient cystic fibrosis clinic (Festini et al., 2007). Pathogens found on environmental 

surfaces included Pseudomonas aeruginosa, Staphylococcus aureus, Achromobacter 

xylosoxidans, Stenotrophomonas maltophilia, and Burkholderia cepacia. P. aeruginosa 
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was found in 22.8% of environmental samples, and the estimated risk for a non-colonized 

patient coming in contact with P. aeruginosa from clinic surfaces was 5.4% for each 

visit. RAPD analysis confirmed the relationships between environmental and patient 

isolates, and the authors suggested complete disinfection of visiting room surfaces and 

availability of alcohol rubs to reduce the risk of transmission. 

 Newer studies have evaluated patient outcomes based on the specific clonal strain 

identified. Researchers in the United Kingdom developed an assay to specifically detect 

the Liverpool epidemic strain of P. aeruginosa, and analysis of patient data revealed 

patients with the epidemic strain had a greater loss of lung function and a deteriorating 

nutritional state as determined by FEV1 and BMI, respectively. These patients also 

demonstrated a greater need for admittance to the hospital and additional days of 

antibiotic treatment (Al-Aloul et al., 2004). Another study in an Australian pediatric 

clinic documented that 43% of patients with cystic fibrosis acquired P. aeruginosa before 

they reached seven years of age. The study also identified a strain of MRPA infecting 

seven children, four of whom died due to the increased morbidity associated with the 

strain (Nixon et al., 2001). Overall the study confirmed that patients with a history of 

Pseudomonas aeruginosa infection had lower average FEV1 values and spent more time 

in the hospital. Interestingly, the study also found no difference in patient outcomes for 

mucoid versus non-mucoid forms of P. aeruginosa. Analysis of a patient group in the 

United Kingdom by PFGE also identified two epidemic strains, the Liverpool and 

Sheffield strains, in patients that led to higher morbidity and more treatment as opposed 

to patients infected with unique strains (Edenborough et al., 2004). A large study across 
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several adult and pediatric CF centers in Australia revealed 59% of patients shared a 

common P. aeruginosa strain not found to be MRPA (O'Carroll et al., 2004). When 

compared to unique strains, those infected with the clonal strain were younger, exhibited 

poorer lung function by FEV1, and required more days in the hospital (26.5 days versus 

12 days). If patients were infected with an additional strain besides the clonal strain, the 

patient was still classified as having the clonal strain. In addition, the researchers stated 

that minor clonal strains that included two or more patients should still be deemed a 

cluster. 

 The review of the literature revealed that no study specifically focused on 

molecular typing of multiply-resistant P. aeruginosa in patients with cystic fibrosis. 

While some studies discovered a clonal strain that proved to be MRPA, their dataset also 

included patients infected with susceptible P. aeruginosa. In addition, few of the studies 

described multi-year molecular analyses or used rep-PCR as their molecular technique of 

choice. A comprehensive study that includes the most advanced molecular techniques, 

several years of data, and analysis of patient outcomes based on clonal group is needed. 

 A preliminary study identified a dominant MRPA clone present in patients with 

cystic fibrosis at Texas Children’s Hospital. The dominant clone included patients seen 

over the course of several years, and no clear pattern of association was evident between 

the patients. Ongoing molecular typing of MRPA isolates from patients with CF was 

requested by the CF Center and the Infection Control department of Texas Children’s 

Hospital, and additional analyses of patient-related variables as they relate to clonality 

were desired. 
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 The patient-related variables selected for inclusion in the study were based on 

multiple references highlighting the potential significance of each variable. While an 

ongoing large multi-center clinical trial aims to identify additional risk factors for 

acquisition of P. aeruginosa (Treggiari et al., 2009), two studies presented data 

supporting the inclusion of variables related to gender, CF genotype, culture results, lung 

function, and hospitalization rate (Levy et al., 2008; Maselli et al., 2003). Many early 

references noted gender, specifically females, as a risk factor for acquisition of P. 

aeruginosa (Demko, Byard, & Davis, 1995). Exposure to CF clinics, BMI percentile, and 

the mother’s educational level were also implicated as risk factors by separate studies 

(Farrell et al., 1997; Kosorok et al., 1998; McPhail, Acton, Fenchel, Amin, & Seid, 2008; 

Watts et al., 2009). In addition to hospitalization rate and clinic visits, another study 

documented the added risk of tobramycin use (Merlo et al., 2007). Initial infection with 

other pathogens, such as Staphylococcus aureus was shown to contribute to infection 

with P. aeruginosa (Lyczak, Cannon, & Pier, 2000). An early diagnosis of CF has been 

shown to affect the time of acquisition of P. aeruginosa (D'Alessandro, Renteria, 

Fernandez, Martinez, & Segal, 2009; Kappler, Feilcke, Schroter, Kraxner, & Griese, 

2009; Rodman et al., 2005), and the patient’s age at the time of infection has been found 

to potentially impact the clone acquired (van Mansfeld et al., 2009). A large study 

utilizing national data from the CF Foundation patient registry selected FEV1, BMI, and 

annual hospitalization rate as important indicators of a patient’s overall health status 

(Zemel, Jawad, FitzSimmons, & Stallings, 2000). In regards to patient outcomes, P. 

aeruginosa infection has consistently been shown to affect lung function (FEV1) and 
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BMI. Finally, several studies have presented data confirming that infection with a 

specific P. aeruginosa clone can negatively impact patient outcomes (Al-Aloul et al., 

2004; Bradbury, Champion, & Reid, 2008; Edenborough et al., 2004; Nixon et al., 2001; 

O'Carroll et al., 2004). 

 Patients with cystic fibrosis are expected to become chronically infected with P. 

aeruginosa at some point in their lives. However, adequate diagnosis, prevention, and 

treatment could contribute positively to both quality of life and longevity. By evaluating 

patient-related variables and patient outcomes as they relate to MRPA clones, additional 

information will be obtained that could be translated into new treatment and prevention 

guidelines. Identification of risk factors for acquisition of the dominant MRPA clone 

could contribute to future infection control strategies. Differences in patient outcome 

based on infection with the dominant MRPA clone could also tailor future clinical 

practice guidelines, such as treatment with more aggressive antimicrobials. 
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CHAPTER 3: METHODOLOGY 

 

This chapter will discuss the following topics related to the methodology of the 

study: research design, subjects, variables, human studies protocol, data collection, data 

analysis, validity, and limitations. The purpose of this study is to discover relationships 

between patient-related variables and infection with multiply-resistant Pseudomonas 

aeruginosa (MRPA) in cystic fibrosis. The specific research questions addressed by this 

study include:  

 Is infection with the dominant MRPA clone related to patient-related variables 

prior to MRPA infection?  

 Is patient outcome related to infection with the dominant MRPA clone? 

The following hypotheses are proposed by this study: 

HO1: Patient-related variables prior to MRPA infection are correlated to infection with 

the dominant MRPA clone. 

HO2: Infection with the dominant MRPA clone is correlated to patient outcome. 

Research Design 

A non-experimental ex post facto design was employed for this study. Polit and 

Beck (2004) describe this type of study as when “the researcher observes phenomena as 

they naturally occur without intervening.” The study was a comparison of patient-related 

variables between two groups of patients with cystic fibrosis (CF), those infected with the 
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dominant MRPA clone and those infected with a non-dominant MRPA clone. Due to the 

potential impact on patients, a true experimental study was not possible with this research 

topic. The ex post facto design is ideal for retrospective studies, and while it cannot 

establish causality, it can estimate how much of the variation in the dependent variable 

can be predicted from the variation of the independent variable (Polit & Beck, 2004). For 

the evaluation of possible risk factors for infection with the dominant MRPA clone, the 

independent variables are patient-related variables prior to infection with MRPA and the 

dependent variable is the MRPA clone (dominant or non-dominant). Conversely for the 

comparison of post-infection differences between the two clonal groups, the independent 

variable is the MRPA clone (dominant or non-dominant) and the dependent variables are 

patient outcomes following infection with MRPA. 

 Several assumptions were made in developing this study including that all patient-

related variables and patient outcome data were correctly entered into Port CF, the 

electronic national repository for CF patient data (FitzSimmons, 1993). It was also 

assumed that measurement of patient data, such as FEV1 and weight, was accurate and 

precise. In regards to the accuracy of laboratory data, it was assumed that no MRPA 

infections were missed by respiratory culture and that all rep-PCR molecular profiles 

were accurate. In addition, the study assumed that all MRPA isolates from patients with 

CF who were eligible for the study were submitted for molecular typing. 
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Design Quality 

Internal Validity 

The following specifically addresses threats to internal validity that might 

compromise the ability to infer that the dependent variables are related to the independent 

variables. The variables included in the research design were intended to account for any 

history that may affect the outcome. Variables were selected for this intent based on 

conclusions from a thorough literature review (Al-Aloul et al., 2004; Edenborough et al., 

2004; Emerson et al., 2002; Kosorok et al., 1998; Nixon et al., 2001). It is possible that 

additional variables exist that may contribute to the acquisition of MRPA, but the study 

was limited by the data fields collected and entered into Port CF. Additional factors not 

recorded in the patient registry that may be significant include social interaction both in 

and out of the hospital or clinic, specific hospital or clinic rooms utilized, and 

practitioners seen at each visit. The independent variables associated with the first 

research question document the important historical and demographic factors of the 

patient’s illness, and these factors were then tested against whether or not the patient has 

been infected with the dominant MRPA clone.  

Because the patients were not randomized into groups and instead were grouped 

by which MRPA clone infected them, no selection bias was present. The study was 

designed to identify variables that contributed to infection with one of the two clonal 

groups. The data spanned the course of a few years for some of the patients, so physical 

maturation or childhood development could be a concern. However, the changes in the 

patients that are not thought to be associated with infection by the dominant MRPA clone 
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should be random for patients in either group as these changes would be part of the 

natural disease progression, ex., steadily declining lung function that is characteristic of 

CF. In addition, quantitative patient outcome variables were normalized for the passage 

of time by calculating hospitalization rates per year and changes in BMI and FEV1 

percentiles per month or per year. 

 The results of the study cannot be affected by testing because all testing was 

performed as part of routine clinical care for patients with CF. Instrumentation threats 

were controlled by using clinically validated technologies and previously evaluated 

commercially available reagents and data analysis software (Healy et al., 2005). The 

utility of rep-PCR in differentiating strains of the same bacterial species is well 

documented in the literature with multiple comparisons to PFGE, the gold standard  

(Chou & Wang, 2006; Doleans-Jordheim et al., 2009; Jamasbi et al., 2004; Pounder et al., 

2005; Shutt et al., 2005). At the time of the proposal of this study, a thorough literature 

review showed that no published study specifically focusing on MRPA had utilized rep-

PCR. However, there have been studies that confirmed the performance of rep-PCR for 

P. aeruginosa in patients with CF (Agarwal et al., 2005; Doleans-Jordheim et al., 2009; 

Syrmis et al., 2004). In addition, rep-PCR technology continues to meet the College of 

American Pathologist’s guidelines for utility in a clinical setting, including quality 

assurance metrics and proficiency testing. 

 Patient mortality should not threaten the integrity of the study. While patients in 

the study succumbed to illness, data obtained before death was included in the analysis, 

and death was measured as a dependent variable for the second research question (which 
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asks if patient outcome is related to infection by the dominant MRPA clone). Death 

would not affect the other patient outcome variables because clinical data would have 

been collected at the next evaluation following MRPA infection, and hospitalization rate 

accounts for the number of days hospitalized per year (including fractions of a year). The 

only rare situations where patient mortality would affect the ability to collect patient data 

would be if a patient died less than one month after MRPA diagnosis (preventing the 

collection of the post-MRPA infection data). No patients in the study met this criterion. 

External Validity 

The study design also showed few weaknesses with respect to threats to external 

validity. Because there was no interaction with the patients beyond routine clinical care, 

no expectancy effects, novelty effects, experimenter effects, or measurement effects were 

identified with respect to testing. The most significant threat noted with external validity 

was the possibility of interaction of history and its effect on treatment due to 

undocumented contact between patients, such as social interactions. While social 

interactions during inpatient stays are carefully monitored and discouraged by hospital 

staff, contact outside of the hospital is certainly plausible. Contact of TCH patients with 

patients from other CF centers including the adult CF Clinic is also possible and would 

threaten external validity as well. It is possible that the results of this study could not be 

generalized to other CF centers and CF populations. The dominant MRPA clone could 

possibly be a geographical anomaly that is only present at TCH or could be related to a 

specific clinic or hospital process in this center. The CF Foundation has published 

numerous consensus statements regarding treatment of patients, and the foundation 
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inspects each accredited CF center (Saiman & Siegel, 2003, 2004; www.cff.org). 

However, it is still reasonable to note that subtle differences in practice could contribute 

to the proliferation of this MRPA clone in this specific population, which would be 

considered a threat to external validity due to the inability to apply the study results to 

other CF centers. 

Statistical Validity 

Missing data was a threat to statistical validity, but missing data points were 

randomly observed within this dataset. Patient data is required to be reported in Port CF 

for each hospital or clinic visit, so by only accepting patients who have consented to have 

their information documented in Port CF, the study controls for this factor as much as 

possible. Patients with missing data points were removed from the analyses involving the 

particular variable for which data was unavailable. 

Statistical power could not be calculated prior to analysis because effect size 

could not be estimated. Statistical power based on the sample size that was obtained and 

the resulting statistical output was calculated as a post hoc analysis using nQuery Advisor 

7.0 (Statistical Solutions, Saugus, MA). Each individual model tested by logistic 

regression was analyzed by nQuery using the resulting R
2
 value and an alpha level of 

0.05. 

Significant predictors (patient-related variables) of infection with the dominant or 

a non-dominant MRPA clone could ultimately be responsible for changes in patient 

outcome. The scope of this study, specifically the limited patient population, does not 

provide the ability to definitively determine whether the predictor variables or the 



56 

 

specific MRPA clone were ultimately more responsible for poor patient outcomes. By 

determining which of the factors are significant, larger studies exploring specific 

predictors of patient outcomes in multiple CF centers could be performed.  

Subjects 

The population of interest for this study was all patients of the CF Care Center at 

Texas Children’s Hospital from 2004 through early 2009. This study utilized a non-

probability convenience sample and was specifically intended for patients of the CF Care 

Center that were diagnosed with a MRPA infection during the course of the study (typing 

data obtained from October 2004 through January 2009). Inclusion criteria were that 

patients have documented MRPA infection and that data relevant to particular patient-

related variables are available through Port CF or through medical records at TCH. Port 

CF is the national patient registry established by the Cystic Fibrosis Foundation as a 

resource for physicians and researchers (FitzSimmons, 1993; Zemel et al., 2000). Patients 

were deemed eligible for the study if they satisfied the following requirements: patient 

background data was available through Port CF (handling of missing data points is 

addressed under statistical validity), patient information collected at a clinic or hospital 

visit just prior (no greater than 6 months) to infection with MRPA was available, patient 

information collected at a clinic or hospital visit following diagnosis of MRPA infection 

(at least one visit 1-6 months following infection) was available, and MRPA isolates were 

submitted to the Molecular Microbiology laboratory for DNA typing. 
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Variables 

Pediatric patients were routinely seen at the CF clinic at least four times per year. 

During a patient’s initial visits, patient data was captured in Port CF with their consent. 

The categorical variable responsible for creating the two groups analyzed in this study is 

whether or not the patient has been infected with the dominant MRPA clone. The clone 

designation was made based on results of DNA typing. In cases where a patient was 

infected with the dominant MRPA clone as well as another clone, patients were 

considered members of the dominant MRPA clone group. New MRPA isolates were 

added to the cumulative dendrogram produced during the course of the epidemiological 

study at the hospital. If a patient had a previous MRPA infection and thus a previously 

typed MRPA isolate, then the new MRPA isolate was checked against that patient’s older 

MRPA isolates to ensure the patient remained in the same clonal group (i.e., dominant 

MRPA clone or non-dominant MRPA clone). Some patients were initially infected with a 

unique MRPA clone (non-dominant clone group) but later became infected with the 

dominant MRPA clone. Once infection with the dominant MRPA clone was confirmed, 

the patient data was included in the dominant MRPA clone group only. 

The variables selected for the study were based on multiple references detailing 

clinical significance and are summarized in Figure 1. It has been noted that disease 

severity is highly impacted by CF genotype. In addition, gender is significant due to 

poorer survival rates in females. Several factors including age at the time of initial CF 

diagnosis, chronological age, hospitalization rate, and mother’s educational level are 

known contributors to infection with P. aeruginosa. Inhaled tobramycin use is also  
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Figure 1. Patient-related Variables and Patient Outcome Variables. 

 
Note: The patient-related variables and the patient outcome variables are collected in Port CF. The clone 

variable is obtained through molecular typing.  

 

suspected as a contributor to the emergence of MRPA. Infection with MRPA is 

associated with a higher risk of mortality, and FEV1 and BMI are widely accepted 

predictors of survival in patients with CF. 
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Patient-related Variables as Risk Factors for Clone Acquisition 

Patient-related variables recorded prior to MRPA infection were obtained from 

Port CF. Data for variables collected from the clinic visit just prior to MRPA infection 

were required for inclusion of that patient in the study. The visit just prior to MRPA 

infection is defined as a hospital or clinic visit just before (but within six months of) the 

visit during which MRPA was diagnosed. The independent variables for this research 

question include a variety of patient data such as demographic information and disease-

specific characteristics. The data was readily available for the majority of study patients 

as patients with CF are seen quarterly in addition to hospital or clinic visits due to illness. 

The dependent variable for this research question is the MRPA clone (dominant or non-

dominant). All variables included in the analysis of patient-related variables as risk 

factors of dominant MRPA clone acquisition are listed in Table 2. 

Differences in Patient Outcome Based on MRPA Clone 

All post-MRPA infection patient-related variables were obtained from Port CF. 

Data for short-term patient outcome variables collected from the visit after diagnosis with 

MRPA infection were required for inclusion of that patient in the study. The visit after 

diagnosis with MRPA infection is defined as a hospital or clinic visit after (no sooner 

than one month, but no later than six months) the visit during which MRPA was 

diagnosed. Data for long-term patient outcomes were collected from the last recorded 

clinic visit prior to December 2009, as approved by the IRB. The independent variable 

for this research question is the MRPA clone (dominant or non-dominant). The 

dependent variables are patient outcome data involving changes in FEV1 and BMI per 
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Table 2.  

 

Variables Analyzed in Determination of Potential Risk Factors of Dominant MRPA 

Clone Acquisition 

 

Variable Definition of variable 
Variable 

type 

Unit of measurement 

or coded categories 

Clone Clone identified by DNA 

typing 

Categorical 1 for dominant MRPA 

clone, 0 for non-

dominant MRPA 

clone 

Age Dx Patient age at time of CF 

diagnosis 

Quantitative 0 for < age 1, 1 for > 

age 1 

Age MRPA Patient age at time of MRPA 

infection diagnosis 

Quantitative Years 

BMI Body mass index percentile 

based on height and weight at 

visit just prior to MRPA 

infection 

Quantitative Percentile 

FEV1 Forced expiratory volume in 

one second, volume of air (in 

liters) which can be forcibly 

exhaled from the lungs in the 

one second, expressed as 

percentile predicted based on 

healthy, non-smoking people 

of the same gender and age, at 

visit just prior to MRPA 

infection 

Quantitative Percentile 

Days Hosp Total number of days 

hospitalized in the year prior to 

MRPA diagnosis 

Quantitative Days 

CFTR 

Genotype or 

Mutation 

Mutation combination 

responsible for CF identified in 

the patient  

Categorical 1 for 

delF508/delF508, 2 

for delF508/other, 3 

for other mutations 

Mother's Ed Mother's educational level Categorical 0 for less than high 

school (HS), 1 for HS 

diploma or equivalent, 

2 for some college, 3 

for college graduate, 4 

for unknown 

Gender Gender of the patient Categorical 0 for male, 1 for 

female 
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Table 2. Variables Analyzed in Determination of Potential Risk Factors of Dominant 

MRPA Clone Acquisition (continued) 

 

Variable Definition of variable 
Variable 

type 

Unit of measurement 

or coded categories 

Clin-MRPA Time between last CF clinic 

visit and MRPA diagnosis 

Categorical 1 for < 60 days, 2 for 

61-120 days, 3 for > 

120 days 

Tobramycin Tobramycin use at visit just 

prior to MRPA diagnosis 

Categorical 0 for no, 1 for yes 

Culture result Respiratory culture result at 

visit just prior to MRPA 

diagnosis 

Categorical 1 for negative culture, 

2 for non-MRPA P. 

aeruginosa, 3 for P. 

aeruginosa (PA) and 

MSSA, 4 for PA and 

MRSA, 5 for PA and 

another organism, 6 

for other organism(s) 

not PA 

Hosp-MRPA Time between most recent 

hospital admission and MRPA 

diagnosis 

Categorical 1 for <90 days, 2 for 

91-180 days, 3 for 

181-365 days, 4 for 

>365 days 

 

month (short-term outcomes), changes in FEV1 and BMI per year (long-term outcomes), 

annual hospitalization rate, and mortality. All variables included in the analysis of 

potential differences in patient outcome based on MRPA clone are listed in Table 3. 

Measurement Quality 

 All measurements were performed by clinically validated testing methodologies 

in compliance with hospital regulations pertaining to the Joint Commission on 

Accreditation of Healthcare Organizations (JCAHO) and laboratory regulations 

pertaining to the College of American Pathologists (CAP) and the Clinical and 

Laboratory Standards Institute (CLSI). All measured patient data such as age, weight and 

height (necessary for BMI calculation), and FEV1 were obtained by trained and 
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Table 3.  

Variables Evaluating Differences in Patient Outcome Between the Two Clonal Groups 

 

Variable Definition of variable 
Variable 

type 

Unit of measurement 

or coded categories 

Clone Clone identified by DNA 

typing 

Categorical 1 for dominant MRPA 

clone, 0 for non-

dominant MRPA 

clone 

ΔFEV1/Month Change in FEV1 percentile 

between visit just prior to 

MRPA diagnosis and visit 

after MRPA was diagnosed 

divided by the number of 

months between visits 

Quantitative Percentile 

ΔFEV1/Year Change in FEV1 percentile 

between visit just prior to 

MRPA diagnosis and the last 

recorded visit divided by the 

number of years between visits 

Quantitative Percentile 

ΔBMI/Month Change in BMI percentile 

between visit just prior to 

MRPA diagnosis and visit 

after MRPA was diagnosed 

divided by the number of 

months between visits 

Quantitative Percentile 

ΔBMI/Year Change in BMI percentile 

between visit just prior to 

MRPA diagnosis and the last 

recorded visit divided by the 

number of years between visits 

Quantitative Percentile 

Hosp year Number of days hospitalized 

per year after MRPA 

diagnosis, calculated as (# of 

days hospitalized) /(# of years 

data is available), ex. 35 days 

hospitalized in 18 months of 

follow-up data post MRPA 

infection would be 35/1.5 = 

23.3 

Quantitative Days per year 

Death Death of a patient during data 

collection period 

Categorical 0 for still living, 1 for 

death during data 

collection period 
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knowledgeable staff. All patients are routinely seen by either the CF Care Center staff in 

the hospital clinic or the inpatient hospital staff dedicated to Pulmonology at TCH. All 

lung function testing (FEV1) was performed by licensed respiratory therapists who 

routinely perform these tests on pediatric patients. Calculations for BMI and FEV1 were 

performed using pre-determined computer-aided formulas. In addition to the clinical data, 

demographic data such as age of the patient, clinic visit and hospitalization dates, CFTR 

genotype, mother’s educational level, gender, and tobramycin use were entered into Port 

CF by a single well-trained individual. 

Sensitivity and specificity for each of the laboratory assays were documented 

during the initial validation phase. Biochemical testing and DNA sequencing 

methodologies have been validated for abilities to generate meaningful bacterial species 

identification (including P. aeruginosa). Antimicrobial susceptibility testing methods 

have been validated with respect to classifying isolates as susceptible or resistant to each 

antibiotic tested (Clinical and Laboratory Standards Institute, 2005). DNA typing 

methodologies (DiversiLab) were validated in terms of abilities to distinguish different 

bacterial strains with accuracy, resolution, and reproducibility (Clinical and Laboratory 

Standards Institute, 2007). DNA typing of MRPA isolates in patients with CF was 

specifically evaluated for reproducibility, and it was found that MRPA isolates from the 

same patient with the same clone yielded reproducible DNA profiles by the following 

comparisons: repeat testing of the same MRPA DNA on multiple occasions, multiple 

MRPA DNA isolations from the same respiratory sample, and multiple MRPA DNA 

isolation from different respiratory samples (in many cases, reproducible profile data 
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span several years). The reproducibility of molecular typing of MRPA isolates is 

illustrated in Figure 2. 

 

Figure 2. Reproducibility of MRPA Molecular Typing Profiles.  

 
Note: The highly similar molecular profiles above show the same MRPA clone (strain) in (a) different 

specimens from one patient at one collection date, (b) different specimens from one patient on multiple 

collection dates, (c) a sibling pair, and (d) a mucoid and non-mucoid isolate from the same patient. 

 

 

a 

b 

c 

d 
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Human Studies Protocol 

This study was approved by the Institutional Review Boards (IRB) of both Baylor 

College of Medicine (protocol H-25980) and Virginia Commonwealth University 

(protocol HM 12652). No patient interaction was required for this study, and no patient 

consent was necessary. All patient information including laboratory results were obtained 

through the normal course of treatment for cystic fibrosis (Bush, Alton, Davies, 

Griesenbach, & Jaffe, 2006). No compensation to patients was offered. Inclusion and 

exclusion criteria were based on availability of data in Port CF.  

Patient data was collected from Port CF by the student researcher reviewing each 

individual patient record, and each patient was assigned a unique number that only the 

researcher could relate back to patient name or medical record number. All patient data 

was kept either on secure servers or in locked file cabinets in locked offices. Compliance 

to HIPAA standards was maintained at all times. No one besides the researcher, 

physicians, and CF Center personnel was allowed access to the patient data. The 

document linking patient information with the assigned study number was destroyed at 

the completion of the study. No patient identifiers will be reported in any published 

version of the study. The results of this study will only be reported as aggregate data. 

Data Collection 

Laboratory Data 

Isolation and Identification of P. aeruginosa  

Respiratory samples such as sputa, throat/nasal cultures, and bronchoalveolar 

lavages were collected from patients at each visit to the CF clinic and as part of inpatient 
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care as recommended by the CF Foundation (Patient Registry 2006 Annual Report, 2008; 

Saiman & Siegel, 2003). The samples were submitted to the Microbiology laboratory at 

Texas Children’s Hospital for respiratory culture, and routine culture methods were 

performed by certified medical technologists. Respiratory samples were cultured on 

multiple media (blood agar, chocolate agar, MacConkey agar, PC (Pseudomonas 

cepacia) agar, CNA agar (Columbia agar with colistin and nalidixic acid), and 

ChromeSA agar) and incubated at 35 C in a 5% CO2 incubator for 24-48 hours. If a blue-

green pigment was detected on the MacConkey or chocolate agar plates due to the 

presence of pyocyanin, then the isolate was reported as P. aeruginosa.  

If no pigment was detected, then the isolate was tested in the VITEK 2 instrument 

(bioMerieux, Durham, NC). A suspension of organisms (density equivalent to a 

McFarland No. 0.50 to 0.63) was prepared in a tube of sterile saline and loaded into the 

VITEK 2 instrument. The instrument then inoculated a series of pre-formulated wells in 

the VITEK 2 Gram-Negative identification card. This particular card contains 47 

biochemical tests based on established biochemical methods as well as carbon source 

utilization, enzymatic activities, and vibriostatic compound resistance. The VITEK 2 

provides an automated result, in terms of relative probability, based on unique organism-

specific biochemical profiles for the card loaded on the instrument.  The relative 

probability is a percentage based on a comparison of the observed reactions in the patient 

sample to the typical reactions of each organism intended to be identified by the card. If 

the isolate was identified with a relative probability of > 90% P. aeruginosa, then the 

isolate was reported as such based on validation of the VITEK 2 system and routine 
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culture methods in the Microbiology laboratory at Texas Children’s Hospital. If the 

relative probability was < 90%, then the isolate was forwarded to the medical 

technologists in the Molecular Microbiology laboratory at Texas Children’s Hospital for 

DNA pyrosequencing-based bacterial identification (Luna et al., 2007).  

For pyrosequencing-based bacterial identification, bacterial DNA was extracted 

using the Mo Bio UltraClean
TM

 Microbial DNA kit (Mo Bio Laboratories, Inc., Solana 

Beach, CA). Amplification using primers specific to the V1 and V6 regions of 16S rDNA 

was performed in a master mix reaction containing deoxynucleoside triphosphates, 

magnesium chloride, 10X PCR buffer, and Taq DNA polymerase. The amplified product 

was then subjected to pyrosequencing, and sequences of 30-40 bases were produced for 

each region, V1 and V6. Ribosomal RNA gene sequences were used to search against a 

publicly available database, the Ribosomal Database Project (Cole et al., 2005). A final 

identification was made by combining DNA sequence and biochemical data.  

Determination of Antimicrobial Resistance 

Antibiotic susceptibility testing for all P. aeruginosa isolates was performed by 

disk diffusion. P. aeruginosa isolates were cultured on Mueller Hinton plated medium, 

and antimicrobial-containing disks were placed on the surface of the medium. Antibiotics 

tested included tobramycin, gentamicin, amikacin, ciprofloxacin, ceftazidime, 

meropenem, piperacillin, ticarcillin/clavulanate, and aztreonam. Based on the zone of 

inhibition, the organism was reported as susceptible, indeterminate, or resistant for each 

antibiotic tested (Clinical and Laboratory Standards Institute, 2005). MRPA was defined 

as being resistant to all antibiotics in two or more of the following groups: 



68 

 

aminoglycosides (tobramycin, gentamicin, and amikacin), fluoroquinolones 

(ciprofloxacin), and beta-lactams (ceftazidime, meropenem, piperacillin, 

ticarcillin/clavulanate, and aztreonam) (Lang, Aaron, Ferris, Hebert, & MacDonald, 

2000).  

Determination of MRPA Clone (Dominant vs. Non-dominant)  

When a MRPA isolate was identified from a patient with CF, a glycerol stock was 

made and stored at -80°C by the Microbiology laboratory. Every three months, all of the 

accumulated MRPA samples were verified as MRPA isolates from patients with CF, 

cultured, and forwarded to the medical technologists in the Molecular Microbiology 

laboratory of Texas Children’s Hospital for DNA typing. 

 DNA typing to determine clonal groups present among the MRPA isolates from 

patients with CF was performed by rep-PCR (Versalovic et al., 1991). Rep-PCR is a 

highly reproducible technology that generates results comparable to PFGE. Studies 

involving Staphylococcus aureus (Shutt et al., 2005), Listeria monocytogenes (Chou & 

Wang, 2006), and vancomycin-resistant Enterococcus (Pounder et al., 2005) have shown 

that rep-PCR was faster and less expensive than PFGE, making the technology more 

conducive to the clinical laboratory environment. The DiversiLab system, which utilizes 

reagent kits for rep-PCR as well as proprietary software for interpretation, is suitable for 

epidemiological studies due to the standardized nature of the technology (Healy et al., 

2005; Wise et al., 2007). The DiversiLab system is used clinically by many molecular 

diagnostics laboratories and has been validated for use with multiple organisms including 

Pseudomonas aeruginosa. The DiversiLab molecular typing system has been in use 
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clinically as a fully validated testing strategy to determine the relative similarities of 

bacterial isolates (strains within a single species) at Texas Children’s Hospital since 

2003. In addition to validation studies performed at each individual laboratory, the 

technology is also subject to proficiency testing through the College of American 

Pathologists (CAP). Reproducibility studies were performed to assess the effectiveness of 

the typing strategy for P. aeruginosa in patients with CF prior to the initiation of this 

study. DNA replicates as well as organism replicates (same culture, separate extraction) 

yielded greater than 99% similarity. Cultures obtained from unique specimens from the 

same patient also exhibited greater than 99% similarity, and the time between collection 

of those specimens varied (from minutes to years). 

 Quality control of molecular typing reagents was performed at each quarterly run. 

Positive P. aeruginosa controls as well as previously tested MRPA DNA extracts were 

tested with each batch of samples and verified for adequate profile diversity and 

similarity to previous results. Every change in lot number for PCR reagents was verified 

for quality by this system, as well as external proficiency testing and technologist 

competency testing. Repeat cultures from previously tested patients were also confirmed 

regarding previous similarity grouping. 

 Bacterial DNA was extracted from bacterial colonies using the Mo Bio 

UltraClean
TM

 Microbial DNA kit (Mo Bio Laboratories, Inc., Solana Beach, CA). An 

inoculation loop (10 µL) of bacterial cells was scraped from a culture plate and 

suspended in the proprietary microbead solution. The suspension was processed through 

a series of washes and microcentrifuge spins as described in the procedure manual of the 
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extraction kit, and the bacterial DNA was eluted in a final volume of 35 µL. The eluted 

DNA was quantitated (ng/µL) and evaluated for purity based on absorbance 

spectrophotometry (A260/280 ratio) using the NanoDrop 1000 spectrophotometer 

(NanoDrop Products, Wilmington, DE). The NanoDrop 1000 was calibrated regularly 

using known concentrations of commercially obtained nucleic acid standards, and two µL 

of the eluted DNA was placed on the pedestal of the instrument for measurement.  

Rep-PCR was performed using the DiversiLab Pseudomonas fingerprinting kit 

(bioMerieux, Durham, NC). Rep-PCR oligonucleotide primers bind to conserved, 

interspersed repetitive sequences throughout the bacterial genome, and these primers 

direct amplification at multiple primer binding sites to produce multiple DNA fragments 

of various lengths, yielding strain-specific DNA profiles. The details of the 

oligonucleotides included in the commercial primer mix are proprietary information. The 

amplified products were loaded into the DNA LabChip, combined with a proprietary gel-

dye matrix, and size-fractionated by microfluidics and electrophoresis in the Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA). The Bioanalyzer uses a series of 

wells and microchannels to electrophoretically separate DNA fragments, and each 

fragment is detected by laser-induced fluorescence (excitation wavelength of 635 nm, 

emission wavelength of 685 nm) of a proprietary dye that intercalates into DNA. The 

various sizes and relative intensities of the amplified fragments yield clone- or strain-

specific chromosomal DNA profiles.  

Automated DNA fingerprinting results were then transferred to the DiversiLab 

3.1 software. The software uses the Pearson correlation coefficient and the Unweighted 
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Pair Group Method with Arithmetic mean (UPGMA) to compare the presence or absence 

of amplified fragments as well as the intensity of each fragment. This analysis leads to 

the generation of a dendrogram, similarity matrix, and scatterplot that conveys the 

relative similarities of isolates based on the DNA profiles generated by rep-PCR (Figure 

3). The dendrogram is a hierarchical tree representation that uses group averages to 

display relative similarities or clusters of the isolates. The similarity matrix builds upon 

the information provided in the dendrogram by providing a percent similarity for each 

node of the tree. The scatterplot is a non-hierarchical data display that uses a two-

dimensional spatial representation to display relative similarities of isolates by virtue of 

relative distances on a grid.  

Patient isolates were designated by the researcher as the dominant clone, a unique 

clone, or a smaller clone based on relative similarities provided by the similarity matrix. 

For the purpose of this study, the isolates were designated as either members of the 

dominant clone or a non-dominant clone. For isolates to be considered as members of a 

MRPA clone, a threshold of 95% or greater similarity (by the similarity matrix) was used 

for classification as members or non-members. A group of isolates considered to be 95% 

similar would indicate that all isolates are at least 95% similar to every other isolate in the 

group. The dominant clone was first identified by typing a group of 23 MRPA isolates in 

October 2004. The data showed that roughly 50% of the isolates belonged to a single 

clone (labeled the dominant clone) exhibiting a highly similar DNA profile. Thorough 

analysis of four years of MRPA typing data has revealed that isolates within the dominant 

clone group exhibit greater than 95% similarity, and a recent publication also confirmed  
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Figure 3. DiversiLab Report Components.  

 
Note: The DiversiLab system provides several visual data interpretations summarizing the DNA typing 

data including (a) a dendrogram (b) a scatterplot and (c) a similarity matrix. 

 

the use of the 95% similarity cut-off for rep-PCR analysis of P. aeruginosa (Doleans-

Jordheim et al., 2009). All other clones (referred to as non-dominant clones) are less than 

95% similar to the dominant clone group. 

 

Patient Data 

The laboratory data generated from patients included in this study spanned the 

period when the initial typing data was obtained in October 2004 through typing data 
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obtained in January 2009. Original data generation dates pertaining to patient-related 

variables, including clinical data, varied based on when the patients were diagnosed and 

when data was first entered into Port CF. Data for each variable was obtained from the 

patient’s Port CF record and recorded as text in a Microsoft Excel spreadsheet. 

Categorical variables were coded as described in the Variables section. Once all 

applicable data was collected for a patient from Port CF, the patient’s information was 

given an anonymous identifier for the remainder of the study, including all data analysis.  

Data Analysis 

 The data collected for this study was analyzed using SPSS Statistics 17.0 (SPSS 

Inc., Chicago, IL). All data, including patient-related variables from Port CF and clone 

designations generated by DNA typing, were transferred from a Microsoft Excel 

spreadsheet into SPSS by the primary researcher.  

 The first research question addressed whether a significant relationship existed 

between infection with the dominant MRPA clone and patient-related variables prior to 

MRPA infection. The research hypothesis was that certain characteristics of patients with 

CF predict whether or not they will be infected with the dominant MRPA clone. The 

independent variables were multiple patient-related variables including both categorical 

and quantitative variables. The categorical independent variables include the following: 

age at time of CF diagnosis (before or after age one), CF genotypes or mutations, 

mother’s education level, gender, days from clinic visit to MRPA infection diagnosis 

(categorized as < 60 days, 61-120 days, or > 120 days), tobramycin use, culture result, 

and days from hospitalization to MRPA infection diagnosis (categorized as < 90 days, 
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91-180 days, 181-365 days, or > 365 days). The quantitative independent variables 

included the following: age at time of MRPA infection diagnosis, body mass index 

(BMI), FEV1, and hospitalization length in the year prior to MRPA diagnosis. The 

categorical dependent variable was simply the clone infecting that patient, either the 

dominant MRPA clone or a non-dominant clone. Descriptive statistics were calculated 

for patients in each clonal group (dominant MRPA clone or non-dominant clone) and 

included means and medians of quantitative variables for each group as well as 

distributions for each categorical variable by group. Logistic regression was performed, 

and a p-value of 0.05 (95% confidence) was considered significant. The Hosmer and 

Lemeshow goodness-of-fit test was assessed to determine if the model adequately fit the 

data, resulting in a non-significant p-value (p > 0.05). The significance (p < 0.05) of the 

Omnibus test of model coefficients was evaluated to determine if there was overall model 

significance resulting in at least one significant predictor. Logistic regression provided 

information (odds ratios) on how much influence each of the predictors (categorical and 

quantitative independent variables) had on whether the patient became infected by the 

dominant MRPA clone or a non-dominant clone. The analysis also determined which of 

the predictors were statistically significant and not due to chance. 

The second research question addressed whether infection with the dominant 

MRPA clone was related to patient outcome. The research hypothesis was that infection 

with the dominant MRPA clone affects patient outcome. The independent variable was 

the clone infecting that patient, either the dominant MRPA clone or a non-dominant 

MRPA clone. The dependent variables for the first patient outcome analysis were 
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quantitative patient outcome data including change in FEV1 per month, change in body 

mass index per month, and hospitalization days per year. The second analysis evaluated 

long-term patient outcomes including change in FEV1 per year, change in body mass 

index per year, and hospitalization days per year. Descriptive statistics were calculated 

for patient outcomes in each clonal group (dominant MRPA clone or non-dominant 

clone) and included means and medians of quantitative variables for each group as well 

as distributions for each categorical variable by group. MANOVA was performed for 

both the short-term and long-term quantitative patient outcome variables, and a p-value 

of 0.05 (95% confidence) was considered significant. Several additional tests were run in 

parallel with the analysis including Box’s test, for which a non-significant result upholds 

the assumption of homoscedasticity of the data, Wilks’ lambda, which determines overall 

model significance (p < 0.05), and Levene’s test, for which non-significance confirms the 

assumption of equal group error variances. MANOVA evaluated whether a significant 

difference existed between the two clonal groups, the dominant clone and the non-

dominant clone. Finally, patient mortality was assessed by conducting a Kaplan-Meier 

Survival Analysis. 

Limitations 

 A major limiting factor of this study was the sample size. The study was limited 

first by the number of patients with cystic fibrosis treated by the CF Center, and secondly 

by the number of patients with CF that became infected with MRPA. Limiting the study 

to only one CF care center added the risk that the dominant clone may have been specific 

to this one center. The study was also limited by the performance of clinically validated 
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laboratory assays used to analyze patient samples, specifically due to the prolonged 

period of clinical evaluation and laboratory testing for this study. Other limitations 

included possible heterogeneity in terms of clinical evaluation by multiple health care 

providers (even though the study was based in one center). Individual patients may have 

been evaluated by different providers during the course of the study (e.g. different 

respiratory therapists for FEV1 measurements). 

In addition, P. aeruginosa isolates may not have been successfully cultured by the 

laboratory if specimen transport was delayed or compromised in some way. Possible 

MRPA isolates could have been missed in the clinical microbiology laboratory. MRPA 

strains may have also mutated or evolved during natural history of the pathogen resulting 

in altered chromosomal profiles. Finally, only a limited number of bacterial colonies were 

evaluated so it is possible that the presence of MRPA may have been missed due to 

colony sampling in the clinical microbiology laboratory.  

 Patient-related variables and patient outcomes were compared against clone 

designation to determine which variables exhibited significant relationships. By 

combining the vast amount of patient data available in Port CF with the molecular typing 

results, identification of potential risk factors for acquisition of the dominant MRPA 

clone and implications for patient outcomes once infection with the dominant clone has 

been confirmed were obtained. Based on potential significant relationships, future 

prevention and treatment strategies as well as larger studies could be devised.
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CHAPTER 4: RESULTS 

 

The study was intended to evaluate the utility of molecular typing in multiply-

resistant Pseudomonas aeruginosa (MRPA) infections in pediatric patients with cystic 

fibrosis (CF). The study was designed to retrospectively analyze the relationships 

between MRPA clone (dominant or non-dominant clone) and patient characteristics, 

including demographic information, clinical parameters, and patient outcome data in 

order to determine potential risk factors for acquisition of the dominant MRPA clone and 

subsequent differences in patient outcome between the two clonal groups. 

The following chapter will include a description of the data obtained through the 

course of the study. Details of the sample set and data preparation will be discussed. 

Statistical analyses, including logistic regression for potential risk factors related to 

infection with the dominant MRPA clone and MANOVA for differences between the two 

clonal groups, will be presented as well as findings related to patient mortality, 

hospitalization, and statistical power. 

Sample Set 

 Institutional Review Board (IRB) approval was obtained from Baylor College of 

Medicine (BCM) and Virginia Commonwealth University (VCU). Study participants 

were pediatric patients of the CF Care Center at Texas Children’s Hospital (TCH)/BCM 

between 2004 and 2009. All patients had a previously confirmed MRPA infection, and
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the MRPA isolates had been submitted for molecular typing by the Molecular 

Microbiology laboratory at TCH. In addition, all patients in the study sample had 

previously consented to inclusion of their data in the BCM module of the national patient 

registry maintained by the CF Foundation (Port CF). A total of 71 patients of the 82 

patients evaluated met the inclusion criteria for the study. 

 Eleven patients for which molecular typing data of MRPA infection was available 

were excluded from the study. These patients were seen at the TCH/BCM CF Care 

Center for transplant evaluation. All the excluded patients have a confirmed diagnosis of 

CF and MRPA infection, but as they are visiting patients, their records are maintained by 

their original CF Care Center. Because consent for this study was based on consent to the 

BCM module of Port CF, data for these individuals could not be obtained.  

Missing Data 

In the entire data set, only two individual data points were missing. Both data 

points involved FEV1 measurements for the same patient. The patient was too young (5 

years old at the time of MRPA infection) to perform accurate lung function testing, so no 

data was available for FEV1 measurements surrounding the time of MRPA infection. 

Because both data points involved a single patient, this patient was omitted from 

statistical analyses requiring data for FEV1, yielding a final sample size of 70 for analyses 

involving lung function.    
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Data Preparation 

Data Collection 

Molecular typing data was obtained from the Molecular Microbiology laboratory 

at TCH, and clone designation was performed as described in the following section. Data 

pertaining to patient-related variables and patient outcome variables were obtained 

through Port CF. Each patient record was reviewed in Port CF to obtain demographic 

information as well as specifics of the original diagnosis (such as age of diagnosis and CF 

genotype). In addition, the clinic and hospital visits surrounding diagnosis with MRPA 

were identified, and relevant data was extracted from the records of those visits. Figure 4 

displays the timeline for original collection of the data. All relevant patient data was 

recorded in a Microsoft Excel spreadsheet. Once all necessary data had been captured, 

each patient was assigned an anonymous identifier (numbered 1-71) and all patient 

identifiers were removed from the data sheet. 

Coding of Data 

Once the data set was anonymized, each categorical variable was coded and 

calculations for quantitative variables, such as changes in lung function or nutritional 

status and annual hospitalization rates, were performed as described previously. 

Clone Designation 

Patients were designated as members of the dominant clone or the non-dominant 

clone group based on previous MRPA molecular typing results generated by the 

Molecular Microbiology laboratory at Texas Children’s Hospital. A separate report was 

created depicting only the 71 patients included in the study and removing all patient  
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Figure 4. Timeline of Data Collection for Study Participants.  

 

identifiers. Based on the previously described 95% similarity cutoff for group 

determination, 32 patients (45%) were found to be members of the dominant clone group 

and the remaining 39 patients (55%) were deemed members of the non-dominant clone 

group. The molecular profiles and dendrogram are displayed in Figure 5, with the 

dominant clone group identified by the red box. Similarly, the dominant clone group is 

highlighted by a red circle in the scatterplot representation in Figure 6. In both graphical 

depictions of similarity, it is evident that patient 32 (report key number 35) is highly 

similar to the dominant clone group. However, this patient is below the 95% similarity 

cutoff as illustrated in the dendrogram, and therefore, was determined to be a member of 

the non-dominant clone group. 
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     Pt ID 
95% Similarity 

Dominant Clone 

Key 

Figure 5. Molecular Typing 

Report Dendrogram.  
 

Note: The similarity of each molecular 

profile is displayed in a tree-wise 

hierarchy. Each patient in the report 

data set is assigned a key number by the 

online report generator, and the “Pt ID” 

column represents the anonymous 

identifier assigned to each patient for 

the study. The blue line delineates the 

95% similarity cutoff, and the red box 

identifies the dominant clone group. 
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Figure 6. Molecular Typing Report Scatterplot.  

 
Note: The scatterplot representation depicts the relatedness of each molecular profile in the data set. The 

dominant clone is highlighted by the red circle in the center of the scatterplot grouping.  

 

Statistical Analysis 

Patient-related Variables as Risk Factors for Dominant Clone Acquisition 

The first question addressed by the study was whether a significant relationship 

existed between patient-related variables prior to infection and the subsequent clone the 

patient contracted. Categorical and quantitative variables, as described in Table 2, were 

selected for analysis. The proposed hypothesis is as follows: 

HO1: Patient-related variables prior to MRPA infection are correlated to infection with 

the dominant MRPA clone. 

Descriptive Statistics 

Categorical variables. The distribution of all categorical variables included in the 

analysis of patient-related variables as potential risk factors for dominant MRPA clone 

Dominant Clone 



83 

 

infection is displayed in Tables 4 and 5. Compared to the percentages noted in the overall 

sample population, there were no noticeable differences in either the dominant or non-

dominant clone group in regards to demographic-based variables (gender, age at CF 

diagnosis, CFTR genotype, and mother’s educational level). A similar pattern was seen in 

the categorical variables related to the time of MRPA infection diagnosis. A slight 

increase in the number of patients hospitalized less than 90 days prior to MRPA infection 

diagnosis was noted in the dominant clone group (43.75%) as compared to the non-

dominant clone group (25.64%).  

Table 4.  

Distribution of Demographic Categorical Variables 

Variable Category 
Total sample 

N = 71 

Dominant clone 

N = 32 

Non-dominant clone 

N = 39 

Gender    

 Male 

Female 

41 (57.75%) 

30 (42.25%) 

20 (62.50%) 

12 (37.50%) 

21 (53.85%) 

18 (46.15%) 

Age at CF diagnosis    

 < Age 1 

> Age 1 

54 (76.06%) 

17 (23.94%) 

24 (75.00%) 

8 (25.00%) 

30 (76.92%) 

9 (23.08%) 

CFTR genotype    

 delF508/delF508 

delF508/other 

Other 

42 (59.15%) 

19 (26.76%) 

10 (14.08%) 

18 (56.25%) 

9 (28.13%) 

5 (15.63%) 

24 (61.54%) 

10 (25.64%) 

5 (12.82%) 

Mother’s educational level    

 Less than HS 

High school/GED 

Some college 

College graduate 

Unknown 

10 (14.08%) 

28 (39.44%) 

10 (14.08%) 

14 (19.72%) 

9 (12.68%) 

4 (12.50%) 

14 (43.75%) 

6 (18.75%) 

4 (12.50%) 

4 (12.50%) 

6 (15.38%) 

14 (35.90%) 

4 (10.26%) 

10 (25.64%) 

5 (12.82%) 

 

Quantitative variables. The means and medians for each of the patient-related 

quantitative variables included in the analysis of risk factors for dominant MRPA clone 

acquisition are listed in Table 6. No noticeable difference was observed in age at the time  
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Table 5.  

 

Distribution of Categorical Variables Prior to MRPA Infection Diagnosis 

 

Variable Category 
Total sample 

N = 71 

Dominant 

clone 

N = 32 

Non-dominant 

clone 

N = 39 

Days from clinic visit to MRPA infection   

 < 60 days 

61-120 days 

> 120 days 

23 (32.39%) 

33 (46.48%) 

15 (21.13%) 

11 (34.38%) 

13 (40.63%) 

8 (25.00%) 

12 (30.77%) 

20 (51.28%) 

7 (17.95%) 

Days from hospitalization to MRPA infection   

 < 90 days 

91-180 days 

181-365 days 

> 365 days 

24 (33.80%) 

16 (22.54%) 

6 (8.45%) 

25 (35.21%) 

14 (43.75%) 

9 (28.13%) 

1 (3.13%) 

8 (25.00%) 

10 (25.64%) 

7 (17.95%) 

5 (12.82%) 

17 (43.59%) 

Tobramycin use    

 No 

Yes 

47 (66.20%) 

24 (33.80%) 

23 (71.88%) 

9 (28.13%) 

24 (61.54%) 

15 (38.46%) 

Culture result    

 No organisms 

P. aeruginosa (PA) 

PA + MSSA 

PA + MRSA 

PA + other 

Other organism(s) 

5 (7.04%) 

23 (32.39%) 

11 (15.49%) 

11 (15.49%) 

13 (18.31%) 

8 (11.27%) 

2 (6.25%) 

10 (31.25%) 

4 (12.50%) 

5 (15.63%) 

6 (18.75%) 

5 (15.63%) 

3 (7.69%) 

13 (33.33%) 

7 (17.95%) 

6 (15.38%) 

7 (17.95%) 

3 (7.69%) 

 

of MRPA infection diagnosis or in BMI or FEV1 just prior to MRPA infection diagnosis. 

A difference was realized in the number of days hospitalized in the year prior to MRPA 

infection diagnosis between patients in the dominant clone (mean = 26.53 days) and the 

non-dominant clone (mean = 15.21 days). 

Logistic Regression 

To determine if a significant relationship exists between clonal group (dominant 

or non-dominant) and several categorical and quantitative patient-related variables, 

logistic regression was employed using SPSS Statistics 17.0. Logistic regression is an  
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Table 6.  

Means and Medians of Quantitative Patient-related Variables 

Variable  
Total sample 

N = 71 

Dominant clone 

N = 32 

Non-dominant clone 

N = 39 

Age at MRPA infection diagnosis (in years) 

 Mean 

Median 

14.30 

15.00 

14.22 

15.00 

14.36 

15.00 

BMI prior to MRPA infection diagnosis (percentile)  

 Mean 

Median 

37.45 

25.39 

37.60 

19.53 

37.33 

30.83 

FEV1 prior to MRPA infection diagnosis (percentile)  

 Mean 

Median 

68.50 

79.54 

67.57 

67.99 

69.29 

73.71 

Days hospitalized in the year prior to MRPA infection diagnosis 

 Mean  

Median 

20.31 

15.00 

26.53 

19.50 

15.21 

4.00 

 

evaluation of the probability of group membership based on a set of predictor variables 

(Tabachnick & Fidell, 2001). All 12 patient-related variables were entered into the 

logistic regression model, and then subsets of the patient-related variables pertaining to 

patient demographics, data collected at the time of MRPA infection, variables related to 

the chronology of MRPA infection, and variables related to the disease state at the time 

of MRPA infection were also tested by logistic regression. 

The first model included all patient-related variables for the analysis of risk 

factors of infection with the dominant MRPA clone. The Omnibus tests of model 

coefficients did not indicate overall model significance (p = 0.720). The Hosmer and 

Lemeshow test did show that the model adequately fit the data (p = 0.367).  Significance 

and odds ratios for each predictor included in the model of all twelve patient-related 

variables are listed in Table 7.    
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Table 7.  

Logistic Regression Output for All Patient-related Variables 

Predictor 
 

p 
Odds 

ratio 
95% C.I. 

Gender  0.284 2.038 0.553-7.505 

Age at CF diagnosis 0.585 1.493 0.355-6.285 

CFTR genotype (delF508/delF508) 0.928   

 delF508/other 

Other 

0.744 

0.930 

0.706 

0.908 

0.088-5.686 

0.105-7.866 

Mother’s education level (less than high school) 0.473   

 High school/GED 

Some college 

College graduate 

Unknown 

0.765 

0.504 

0.344 

0.656 

0.671 

2.028 

3.895 

0.584 

0.049-9.166 

0.255-16.131 

0.233-65.223 

0.055-6.221 

Age at MRPA infection diagnosis 0.929 0.992 0.830-1.186 

Days from clinic visit to MRPA infection (< 60 days) 0.473   

 61-120 days 

>120 days 

0.779 

0.280 

0.751 

0.350 

0.102-5.556 

0.052-2.349 

Days from hospitalization to MRPA infection  

(>365 days) 

0.184   

 < 90 days 

91-180 days 

181-365 days 

0.364 

0.105 

0.343 

2.912 

4.798 

0.234 

0.290-29.277 

0.722-31.879 

0.012-4.720 

BMI prior to MRPA infection 0.909 1.002 0.976-1.028 

FEV1 prior to MRPA infection 0.967 1.001 0.968-1.035 

Tobramycin use 0.761 1.270 0.272-5.918 

Culture results prior to MRPA infection  

(no organisms) 

0.681   

 P. aeruginosa (PA) 

PA + MSSA 

PA + MRSA 

PA + Other organism 

Other organism(s) 

0.981 

0.628 

0.178 

0.525 

0.906 

1.043 

0.579 

0.192 

0.444 

1.165 

0.034-32.412 

0.064-5.258 

0.017-2.114 

0.036-5.446 

0.093-14.668 

Days hospitalized in the year prior to MRPA 

infection 

0.453 1.015 0.976-1.056 

  

The second model included only the patient-related variables considered 

demographic information, specifically age at time of CF diagnosis, CFTR genotype, 
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mother’s educational level, and gender. Again, the model was not found to be significant 

(p = 0.846), and odds ratios were all below 2.0. Results are listed in Table 8. 

Table 8.  

Logistic Regression Output for Demographic Variables 

Predictor  p Odds ratio 95% C.I. 

Gender  0.487 1.423 0.618-3.273 

Age at CF diagnosis 0.864 0.904 0.342-2.391 

CFTR genotype (delF508/delF508) 0.725   

 delF508/other 

Other 

0.433 

0.643 

0.540 

0.669 

0.148-1.966 

0.160-2.792 

Mother’s education level (less than high school) 0.543   

 High school/GED 

Some college 

College graduate 

Unknown 

0.717 

0.881 

0.503 

0.358 

0.701 

1.127 

1.884 

0.422 

0.140-3.522 

0.304-4.173 

0.398-8.924 

0.090-1.979 

 

The third model tested by logistic regression included all patient-related variables 

relevant to the time of MRPA infection (age at time of MRPA infection diagnosis, days 

from clinic visit to MRPA infection, days from hospitalization to MRPA infection, BMI 

prior to MRPA infection, FEV1 prior to MRPA infection, tobramycin use, culture results, 

and days hospitalized in the year prior to MRPA infection). The model was further 

divided into two subsets related to chronology of infection (age at time of MRPA 

infection diagnosis, days from clinic visit to MRPA infection, days from hospitalization 

to MRPA infection) and disease state (BMI prior to MRPA infection, FEV1 prior to 

MRPA infection, tobramycin use, culture results, and days hospitalized in the year prior 

to MRPA infection).  

The model including all patient-related variables at the time just prior to MRPA 

infection (results shown in Table 9) was non-significant (p = 0.626), but the odds ratio   



88 

 

Table 9.  

 

Logistic Regression Output for Variables Related to the Time Just Prior to MRPA 

Infection Diagnosis 

 

Predictor 
 

p 
Odds 

ratio 
95% C.I. 

Age at MRPA infection diagnosis 0.653 0.967 0.836-1.119 

Days from clinic visit to MRPA infection (< 60 days) 0.456   

 61-120 days 

>120 days 

0.965 

0.334 

1.041 

0.466 

0.175-6.204 

0.099-2.195 

Days from hospitalization to MRPA infection  

(>365 days) 

0.135   

 < 90 days 

91-180 days 

181-365 days 

0.128 

0.075 

0.437 

4.595 

4.880 

0.328 

0.644-32.769 

0.851-27.993 

0.020-5.456 

BMI prior to MRPA infection 0.987 1.000 0.976-1.025 

FEV1 prior to MRPA infection 0.912 1.002 0.972-1.033 

Tobramycin use 0.467 1.637 0.434-6.174 

Culture results prior to MRPA infection  

(no organisms) 

0.743   

 P. aeruginosa (PA) 

PA + MSSA 

PA + MRSA 

PA + Other organism 

Other organism(s) 

0.985 

0.434 

0.255 

0.409 

0.966 

1.028 

0.447 

0.281 

0.400 

1.051 

0.053-19.967 

0.060-3.360 

0.032-2.494 

0.045-3.529 

0.110-10.024 

Days hospitalized in the year prior to MRPA 

infection 

0.959 1.001 0.970-1.032 

 

values related to days from hospitalization to MRPA infection were note-worthy. With a 

reference category of no hospitalization in the year prior to MRPA infection diagnosis, 

patients who were hospitalized less than 90 days prior to MRPA infection diagnosis were 

4.595 times (p = 0.128) more likely to be infected with the dominant clone than a non-

dominant clone. Similarly, patients who were hospitalized 91-180 days prior to MRPA 

infection diagnosis were 4.88 times (p = 0.075) more likely to be infected with the 

dominant clone. 
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Looking more closely at those patient-related variables that were specific to 

chronology of the MRPA infection (Table 10), the model was non-significant at a p-value 

of 0.184 but confirmed the findings in relation to hospitalization prior to MRPA 

infection. The one significant predictor of infection with the dominant MRPA clone 

versus a non-dominant MRPA clone was hospitalization less than 90 days prior to MRPA 

infection diagnosis (p = 0.035), where infection with the dominant clone was 4.019 times 

more likely than infection with a non-dominant clone. Patients hospitalized 91-180 days 

prior to infection were 2.960 times more likely to belong to the dominant clone group (p 

= 0.113).  

Table 10.  

 

Logistic Regression Output for Variables Related to Chronology of MRPA Infection 

 

Predictor 
 

p 
Odds 

ratio 
95% C.I. 

Age at MRPA infection diagnosis 0.678 0.974 0.859-1.104 

Days from clinic visit to MRPA infection  

(< 60 days) 

0.329   

 61-120 days 

>120 days 

0.490 

0.149 

0.596 

0.361 

0.137-2.588 

0.091-1.439 

Days from hospitalization to MRPA infection  

(>365 days) 

0.076   

 < 90 days 

91-180 days 

181-365 days 

0.035 

0.113 

0.509 

4.019 

2.960 

0.453 

1.100-14.677 

0.775-11.314 

0.043-4.755 

 

Because of the significance of recent hospitalization, patients were then divided 

into two groups based on hospitalization < 180 days prior to MRPA infection diagnosis 

and > 180 days prior to MRPA infection diagnosis. A chi-square analysis to determine if 

the observed frequencies were significantly different than the expected frequencies was 
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performed based on clonal group. The results were statistically significant with a p-value 

of 0.017. 

The subset specific to disease state at the time of MRPA infection (Table 11) was 

non-significant (p = 0.731). The number of days hospitalized in the year prior to MRPA 

infection was the closest to significant (p = 0.074) and is most likely related to the 

significance of the proximity of hospitalization to MRPA infection with the dominant 

clone (as compared to no hospitalization in the year prior to infection). 

Table 11.  

 

Logistic Regression Output for Variables Related to Disease State Prior to MRPA 

Infection 

 

Predictor 
 

p 
Odds 

ratio 
95% C.I. 

BMI prior to MRPA infection 0.951 0.999 0.978-1.021 

FEV1 prior to MRPA infection 0.723 1.005 0.977-1.033 

Tobramycin use 0.473 1.501 0.494-4.561 

Culture results prior to MRPA infection  

(no organisms) 

0.890   

 P. aeruginosa (PA) 

PA + MSSA 

PA + MRSA 

PA + Other organism 

Other organism(s) 

0.769 

0.280 

0.295 

0.362 

0.527 

0.662 

0.364 

0.339 

0.397 

0.521 

0.042-10.360 

0.058-2.277 

0.045-2.564 

0.055-2.895 

0.069-3.933 

Days hospitalized in the year prior to MRPA 

infection 

0.074 1.024 0.998-1.052 

 

Differences in Patient Outcome Based on MRPA Clone 

The second question posed by the study was whether infection with the dominant 

clone affected patient outcome. The specific quantitative patient outcome variables 

enlisted for this analysis included short-term changes in BMI and FEV1, long-term 



91 

 

changes in BMI and FEV1, and days hospitalized per year. Patient mortality was also 

evaluated separately as an outcome. The proposed hypothesis was: 

HO2: Infection with the dominant MRPA clone is correlated to patient outcome. 

Descriptive Statistics 

The mean and median of each of the quantitative patient outcome variables are 

listed in Table 12. Only minimal differences were noted in changes per month of BMI 

and FEV1 percentile, but noticeable differences were seen in the extended time span 

employed to generate changes per year of BMI and FEV1 percentile. In addition, patients 

infected with the dominant MRPA clone (mean = 39.42 days, median = 29.59 days) spent 

almost 14 more days per year in the hospital than patients infected with a non-dominant 

clone (mean = 25.78 days, median = 14.81 days). With regard to extended outcomes, 

patients were followed for a mean of 3.07 years (range = 0.61-6.87 years), with slightly 

longer follow-up for the dominant clone group (mean = 3.58 years) versus the non-

dominant clone group (mean = 2.65 years). 

MANOVA 

Multivariate analysis of variance was performed to determine if a significant 

difference existed between the means of quantitative short-term and long-term patient 

outcomes for the dominant clone and the non-dominant clone. MANOVA tests whether 

the group mean differences between a set of quantitative dependent variables are likely to 

have occurred by chance (Tabachnick & Fidell, 2001). Box’s test of equality of 

covariance upheld the assumption of homoscedasticity (p = 0.096 for short-term and p = 

0 for long-term), and Levene’s test of equality of error variances confirmed the 
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Table 12.  

Means and Medians of Quantitative Patient Outcome Variables 

Variable  
Total sample 

N = 71 

Dominant clone 

N = 32 

Non-dominant clone 

N = 39 

Change in BMI per month following MRPA infection (percentile) 

 Mean 

Median 

-0.04 

-0.11 

-0.27 

0.11 

0.16 

-0.12 

Change in BMI per year following MRPA infection (percentile) 

 Mean 

Median 

-1.64 

-0.51 

-3.73 

-0.60 

0.12 

-0.38 

Change in FEV1 per month following MRPA infection (percentile) 

 Mean 

Median 

0.33 

0.13 

0.88 

0.72 

-0.12 

-0.10 

Change in FEV1 per year following MRPA infection (percentile) 

 Mean 

Median 

-2.10 

-1.92 

-3.70 

-2.50 

-0.75 

-0.73 

Days hospitalized per year following MRPA infection 

 Mean 

Median 

31.92 

22.85 

39.42 

29.59 

25.78 

14.81 

  

assumption of equal group error variances (p-values ranged from 0.307-0.537). Wilks’ 

Lambda did not determine that the overall model of differences between the two clonal 

groups was significant (p = 0.337 for short-term and p = 0.212 for long-term). Statistics 

for each individual variable are listed in Table 13. 

Table 13.  

MANOVA Results for Differences in Patient Outcome 

Outcome F p Partial eta squared Observed power 

Change in BMI/month 0.368 0.546 0.005 0.092 

Change in BMI/year 2.473 0.120 0.350 0.341 

Change in FEV1/month 1.404 0.240 0.020 0.215 

Change in FEV1/year 2.183 0.144 0.310 0.308 

Days hospitalized 2.073 0.155 0.030 0.295 
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Mortality 

In the complete data set of 71 patients, only 10 patients died during the course of 

the study. Patient outcome data was available for a variable length of time due to the 

design of the study (ranging from three months to six years). Four patients in the non-

dominant clone group (10.26%) and six patients in the dominant clone group (18.75%) 

died. The length of time between MRPA infection diagnosis and death for each patient is 

listed in Table 14. While the average time to death for the non-dominant clone group 

(mean = 451 days) was nearly half of that of the dominant clone group (mean = 1062 

days), the number of patients who died was too small to determine significance or 

perform any further analysis. 

Table 14.  

Patient Mortality by Clonal Group 

Clone Patient ID Time to death Average 

Non-dominant clone  

18 

28 

32 

49 

 

99 days 

456 days 

448 days 

800 days 

451 days 

Dominant clone  

14 

19 

23 

37 

50 

53 

 

380 days 

1909 days 

1457 days 

1540 days 

763 days 

321 days 

1062 days 

    

 Kaplan-Meier survival analysis was also performed using SPSS Statistics 17.0. 

The analysis compared the survival rates based on the number of days following MRPA 

infection diagnosis that follow-up information was available. The number of days varied 
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depending on when the patient was originally diagnosed with MRPA infection, how long 

the patient was treated at the specific CF Care center following diagnosis with MRPA, 

and when the patient died. Survival rates were compared between the dominant clone 

group and the non-dominant clone group, and the resulting graph is shown in Figure 7. 

Small vertical lines indicate the last date of follow-up for patients that were alive at the 

end of the study, and each step-down in the graph indicates a death in the clone group. 

Survival rates are based on the number of patients in that clone group that were still being 

monitored at that length of time. Survival was not found to be significant among groups 

with a p-value of 0.743. 

Chronological Analysis of Diagnosis and Hospitalization 

MRPA Infection Diagnosis Date 

The clustering of the diagnoses of MRPA infections in the sample set provided 

additional perspective. Figure 8 depicts the date of diagnosis of MRPA infection for 

every patient in the dataset, with the time from infection to death noted for the 10 patients 

in the sample set that died. Clusters of MRPA infection diagnosis are evident in early 

2004, mid-2005, and late 2006. Interestingly, 75% of new MRPA cases beyond mid-2007 

were in the non-dominant clone group. Infection with the dominant MRPA clone as 

opposed to a non-dominant MRPA clone declined through the timeframe of the study 

with an incidence of 56% from 2003-2004, 47% from 2005-2006, and 36% from 2007-

2008. This finding suggests that the mode of transmission may have been controlled or 

slowed in some way. However, an additional cluster of the dominant MRPA clone was 

present in late August 2008, with three patients diagnosed within 20 days of each other. 
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Figure 7. Kaplan-Meier Survival Analysis.  

 
Note: The graph displays the estimated survival rate (in number of days following MRPA infection) 

between the dominant MRPA clone group and the non-dominant MRPA clone group. 

 

Hospitalization Overlap 

The significance of recent hospitalization prior to MRPA infection in the 

dominant clone group led to a more detailed evaluation of inpatient episodes in the 

dominant clone group. Based on the hospitalization episode chart in Figure 9, the 

clustering of patients’ in-hospital encounters is evident. The green triangles represent the 

dominant MRPA clone, and the overlap in patients with that clone can been seen in late 

2003 and early to mid-2005. 
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Figure 8. Timeline of MRPA Infection.  

Note: MRPA Infection diagnosis dates are noted chronologically by clone, and the extended lines represent 

time to death for the 10 patients in the data set that died. The y-axis is the anonymized patient identifier, 

and the x-axis represents the date of MRPA infection diagnosis. Blue squares indicate patients in the non-

dominant MRPA clone group and green triangles represent patients in the dominant MRPA clone group.  
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Figure 9. Hospitalization in the Year Prior to MRPA Infection.  

 
Note: The graph displays dates of the hospitalization episode just prior to diagnosis with MRPA infection 

for each patient in the dominant and non-dominant clone group. The length of the hospital stay is also 

displayed. The y-axis is the anonymized patient identifier, and the x-axis represents the date of 

hospitalization just prior to MRPA infection diagnosis. Blue squares and green triangles denote the hospital 

stay just prior to MRPA infection diagnosis for patients in the non-dominant and dominant MRPA clonal 

groups respectively. 

 

 Taking the analysis one step further, the following figures display all 

hospitalization episodes, both pre and post-MRPA infection diagnosis, for patients in the 

dominant clone group. Significant overlap of confirmed dominant MRPA clone patients 

with pre-MRPA hospitalization episodes was observed. The graphs are divided into two-

year intervals to more easily depict the overlap with the pre-MRPA episodes. From 2003-

2004 (Figure 10), five patients with no confirmed diagnosis of MRPA were hospitalized  
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Figure 10. Hospitalization Overlap in the Dominant Clone 2003-2004.  

Note: Overlap of inpatient stays for patients in the dominant clone group is compared between the 

hospitalization episode just prior to MRPA infection (red circles) and all post-MRPA infection diagnosis 

hospitalization episodes (green triangles) from January 2003 through December 2004. The y-axis is the 

anonymized patient identifier, and the x-axis represents the date of hospitalization. 

 

simultaneously with patients infected with the dominant MRPA clone and later were 

diagnosed with the same dominant clone. A total of 21 of the 32 patients (65%) in the 

dominant MRPA clone had documented simultaneous inpatient hospital stays with 

previously infected dominant clone patients with ten patients in 2005-2006 (Figure 11)  
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Figure 11. Hospitalization Overlap in the Dominant Clone 2005-2006.  

Note: Overlap of inpatient stays for patients in the dominant clone group is compared between the 

hospitalization episode just prior to MRPA infection (red circles) and all post-MRPA infection diagnosis 

hospitalization episodes (green triangles) from January 2005 through December 2006. The y-axis is the 

anonymized patient identifier, and the x-axis represents the date of hospitalization. 

 

and six patients in 2007-2008 (Figure 12) experiencing the same situation. The increased 

hospitalization rate of patients in the dominant MRPA clone group actually increased the 

likelihood of exposure to the clone during inpatient episodes for patients with CF. 
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Figure 12. Hospitalization Overlap in the Dominant Clone 2007-2008.  

Note: Overlap of inpatient stays for patients in the dominant clone group is compared between the 

hospitalization episode just prior to MRPA infection (red circles) and all post-MRPA infection diagnosis 

hospitalization episodes (green triangles) from January 2007 through October 2008. The y-axis is the 

anonymized patient identifier, and the x-axis represents the date of hospitalization. 

 

  A final interesting situation regarding hospitalization is the amount of time from 

initial respiratory sample collection to culture result. Respiratory cultures are generally 

obtained upon admission, but it can be several days before final results, especially 

antibiotic susceptibilities, are available. For nine patients in the dominant MRPA clone 
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group, the diagnosis of MRPA was made during an inpatient encounter. This means that 

upon admission, the patient was classified as not having MRPA. However, upon 

admission, they were in fact infected with the dominant MRPA clone as evidenced but 

the culture results obtained days later. Prior to September 2005, these patients would not 

have been treated with additional precautions, such as isolation, because their records did 

not indicate infection with multiply-resistant P. aeruginosa. Therefore, the dominant 

clone could have been spread throughout the inpatient area even though all standard 

practices were followed. In September 2005, new infection control practices were 

adopted in the Pulmonology unit that required all patients be placed under contact 

isolation until final respiratory culture results confirmed the absence of infections 

requiring contact isolation. Figure 13 plots the inpatient episodes for the nine patients that 

were diagnosed with the dominant MRPA clone during hospitalization, six of which were 

prior to September 2005. Based on this plot, it is possible that as many as five uninfected 

patients, who later were diagnosed with the dominant clone, may have come into contact 

with a patient with an undiagnosed dominant MRPA clone infection. Figure 14 depicts 

the layout of the inpatient area assigned to care for patients with CF. The proximity of the 

patient rooms as well as central areas for treatment, pulmonary function testing, and 

patient transport further emphasizes the possibility of inpatient transmission of MRPA 

between patients with CF. 

For comparison, overlap of inpatient stays in the non-dominant clone group was 

also evaluated. Of the 39 patients infected by a non-dominant MRPA clone, only 14 

(36%) exhibited an overlap in hospitalization prior to MRPA infection diagnosis with a  
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Figure 13. Hospitalization Overlap with Undiagnosed Dominant MRPA Clone.  

 
Note: The overlap between pre-MRPA diagnosis hospital encounters and undiagnosed MRPA inpatient 

encounters (MRPA diagnosed from the respiratory culture obtained at time of hospital admission) is 

displayed for the entire study timeframe. The y-axis is the anonymized patient identifier, and the x-axis 

represents the date of hospitalization. The undiagnosed MRPA instances are marked by a purple diamond 

while the hospital visits just prior to MRPA infection diagnosis for patients in the dominant clone are 

shown by red circles. The implementation of contact isolation upon admission in September 2005 is noted 

by the vertical line. 

 

patient known to be infected with the dominant MRPA clone. This is in contrast to the 

65% of patients in the dominant MRPA clone group that had pre-MRPA infection 

hospitalization episodes coinciding with a confirmed dominant MRPA clone patient. 

Further analysis evaluated the undiagnosed MRPA during hospitalization factor in the 

non-dominant clone group. While a total of 10 patients in the non-dominant clone group 

were diagnosed with a MRPA infection based on their respiratory culture at time of 

hospital admission (thus not requiring infection control practices specific to MRPA 

during the first few days of the inpatient episode), no patients in the non-dominant clone  
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Figure 14. Inpatient Areas Assigned to Patients with CF.  

 
Note: The diagram highlights all patient care areas in pink and hospital staff and family areas in blue. 

Elevator bays are displayed by the standard “x” marking.  

 

group experienced a coinciding hospitalization prior to MRPA diagnosis before 

September 2005. This finding, displayed in Figure 15, further highlights the lack of 

simultaneous hospitalization in the non-dominant MRPA clone group as compared to the 

dominant MRPA clone group. Also noteworthy in Figure 15 are the coinciding hospital 

stays of Patients 61 (post-infection hospital stay of a known non-dominant MRPA 

patient) and 70 (a pre-MRPA hospital stay). The molecular profiles for these two non-

dominant MRPA clone patients were unique, with a similarity of only 69.8%. 

 

 

Patient Rooms (15) 

Patient Rooms (5) Patient Rooms (6) 

P
a
ti
e
n
t 

R
o
o
m

s
 (

5
) P

a
tie

n
t R

o
o
m

s
 (5

) 

Staff 
Lockers 

Hospital 
Staff 
Area 

Activity 
Area 

Pulmonary 
Function 

Lab 

Treatment 

Room 
Treatment 

Room 

Conference 
Rooms 
Offices 

Family 
Lounge 

Hospital 
Staff 
Area 

Activity 
Area 

Staff 
Lounge 



104 

 

 

Figure 15. Hospitalization Overlap with Undiagnosed Non-Dominant MRPA Clones.  

 
Note: Several instances of MRPA diagnosis from respiratory culture obtained upon hospital admission 

were present in the non-dominant clone group, represented by purple diamonds, but no overlap was seen 

with hospital visits just prior to MRPA diagnosis in the non-dominant clone group (red circles). The y-axis 

is the anonymized patient identifier, and the x-axis represents the date of hospitalization. The 

implementation of contact isolation upon admission in September 2005 is noted by the vertical line. 

 

Power Analysis 

 The most significant limiting factor of this study was the limited sample size. 

Because the study was restricted to one CF care center, only 71 patients were eligible for 

the study. The small sample set increases the risk of a Type II error, failing to find a 

significant relationship when one exists (Polit & Beck, 2004). Power was estimated using 

nQuery Advisor 7.0 (Statistical Solutions, Saugus, MA) for the identification of risk 

factors for dominant MRPA clone infection and SPSS Statistics 17.0 (SPSS Inc., 
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Chicago, IL) for the analysis of differences between the two clonal groups. Power 

projections from nQuery Advisor 7.0 assume a normal distribution of variables and were 

calculated using the resulting R
2
 from the logistic regression analysis with an alpha level 

of 0.05 and a total sample size of 71. Projected power for the overall model for 

determination of risk factors for infection with the dominant MRPA clone was calculated 

to be 96%. Further division of variables into demographics and clinical parameters at the 

time of MRPA infection exhibited an estimated power of 42% and 87% respectively. 

When analyzing the smaller subsets of variables, the subset related to chronology of 

MRPA infection (p = 0.184) was the most statistically relevant and had an estimated 

power of 85%. The subset specific to disease state prior to MRPA infection had an 

estimated power of 57%.  Power output from MANOVA analysis of differences in 

patient outcome in SPSS Statistics 17.0 is listed in Table 13. The quantitative patient 

outcome variables all had an estimated power below 35%. 

Summary 

 Seventy-one patients with CF infected with MRPA were included in the study. 

The first research question was designed to establish if a significant relationship existed 

between infection with the dominant MRPA clone and patient-related variables prior to 

MRPA infection. The second research question evaluated if infection with the dominant 

MRPA clone affected quantitative patient outcome variables. Descriptive statistics were 

calculated for all variables, logistic regression was performed for the patient-related 

variables, and MANOVA was performed for the patient outcome variables. A survival 

analysis was performed to evaluate the significance of patient mortality, and statistical 
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power for each analysis was estimated. Hospitalization prior to MRPA infection 

diagnosis was found to be a significant factor in subsequent infection with the dominant 

MRPA clone. Evidence of overlapping hospitalization episodes was present in a majority 

of patients in the dominant MRPA clone group. These findings suggest inpatient stays 

were a source of transmission of the endemic MRPA strain in this specific CF population.
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CHAPTER 5: DISCUSSION AND CONCLUSION 

 

 Multiply-resistant Pseudomonas aeruginosa is a critically important pathogen in 

patients with cystic fibrosis in regards to prognosis. The vast majority of patients with CF 

acquire P. aeruginosa at some point in their lives, but the antibiotic resistant strains prove 

the most difficult to manage and most detrimental to quality of life. The thick mucus 

build-up characteristic of patients with CF, due to a defective chloride transport channel, 

provides an ideal environment for the proliferation of respiratory pathogens such as P. 

aeruginosa. While many antibiotics have been selected to target the infection, P. 

aeruginosa eventually develops into a chronic infection due to the adaptation of the 

organism into a mucoid phenotype that is difficult if not impossible to eradicate in the 

lungs of patients with CF. Compounding the difficulty in treating patients with CF are the 

multiply-resistant Pseudomonas aeruginosa strains, organisms that are resistant to all 

antibiotics in two of three antibiotics classes (aminoglycosides, fluoroquinolones, and 

beta-lactams).  

 Multiple studies have been published highlighting the utility of molecular typing 

to determine relatedness of clones and common sources of transmission. In addition, 

many studies have focused on epidemiological surveillance of P. aeruginosa in patients 

with CF. Researchers in the United Kingdom and Australia have performed extensive 

studies across multiple CF clinics and hospitals and have documented shared P. 
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aeruginosa clones (D. Armstrong et al., 2003; Scott & Pitt, 2004). Several studies further 

evaluated patients with CF infected with an epidemic strain of P. aeruginosa, and the 

data showed that those infected with the clone of interest suffered worse clinical 

outcomes such as more rapidly declining lung function, poorer nutritional status, and 

increased need for hospitalization (Al-Aloul et al., 2004; Edenborough et al., 2004; Nixon 

et al., 2001; O'Carroll et al., 2004). However, few studies have focused solely on 

identifying risk factors and patient outcomes specifically in MRPA infections in patients 

with CF. The results of this study provide insight for the future prevention and treatment 

of highly antibiotic resistant P. aeruginosa infections in patients with CF. 

Summary of the Study 

 The CF Center at Texas Children’s Hospital has had a higher than average MRPA 

infection rate since the CF Foundation began listing MRPA as a separate pathogen. In 

2004, the MRPA infection rate was 25% at TCH and 16.9% nationally. The latest data 

available from 2008 shows the infection rate at TCH to be 28% and nationally to be 

17.9%. A pilot study was conducted in 2004 that evaluated the use of molecular typing 

for determination of relatedness in MRPA clones in patients with CF at TCH. At that 

time, a dominant MRPA clone was identified in the patient population. Since 2004, 

molecular typing of MRPA isolates has been performed quarterly, and additional patients 

have clustered with the dominant clone group. 

 Data from a total of 71 patients of the TCH CF Care Center were obtained 

through the BCM module of Port CF, the national data repository of the CF Foundation. 

Molecular typing reports regarding the MRPA isolates of all 71 patients were obtained 
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from the Molecular Microbiology laboratory at TCH. Patients were categorized as being 

infected with the dominant MRPA clone or with a non-dominant MRPA clone based on 

their molecular profiles. Figure 16 describes the workflow of the study including data 

collection, analysis, and interpretation.  

 

Figure 16. Workflow of Data Collection and Analysis.  

 
Note: Molecular typing of known MRPA isolates from patients with CF provided the necessary data for 

designation of clonal groups. Once retrospective patient data had been collected, statistical analyses such as 

logistic regression, MANOVA, and Kaplan-Meier Survival Analysis could be performed. The results then 

led to further analysis of hospitalization overlap. 
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Discussion of Findings 

Risk Factors for Infection with the Dominant MRPA Clone 

A review of descriptive statistics for the patient-related variables in Table 2 did 

not uncover noticeable differences in demographic factors. While previous studies 

suggested these variables may have an impact on acquisition of P. aeruginosa infections 

(Demko et al., 1995; Kosorok et al., 1998; McKone et al., 2006; Rodman et al., 2005), 

similar distributions were observed between the two groups for gender, age at CF 

diagnosis, CFTR genotype, and mother’s educational level. Most other categorical 

variables specific to the time just prior to MRPA infection also exhibited no difference in 

distribution, specifically days from clinic visit to MRPA, tobramycin use, and culture 

result. Days from last hospitalization to MRPA infection did show a noticeable difference 

between the two groups, and that finding will be discussed in the following section. 

The quantitative patient-related variables also displayed agreement between the 

dominant MRPA clone group and the non-dominant MRPA clone group. The mean age 

at time of MRPA infection was 14 years for both groups as well as a median of 15 years 

for both groups. BMI and FEV1 mean percentiles were within 1% and 2% respectively 

between the two groups. A difference was realized in days hospitalized in the year prior 

to MRPA infection diagnosis based on membership in the dominant or non-dominant 

MRPA clone group. 

Logistic regression was performed with five different groups of patient-related 

variables. While no overall model was found to be significant, this could be attributed to 

the limited sample size available to the study. The only difference between the two 
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groups of patients found to be significant was hospitalization less than 90 days prior to 

MRPA infection diagnosis (p = 0.035), and the odds ratios for patients hospitalized less 

than 90 days and 91-180 days prior to MRPA infection were noteworthy in several of the 

analyses. 

Hospitalization Prior to MRPA Infection Diagnosis 

Several different statistical analyses highlighted the differences in hospitalization 

prior to MRPA infection in the two groups. While 43.75% of the patients in the dominant 

clone group were hospitalized less than 90 days prior to MRPA infection diagnosis, only 

25.64% of patients in the non-dominant clone were hospitalized in that timeframe. 

Patients hospitalized within 180 days of MRPA infection diagnosis were more likely to 

be infected with the dominant clone than with a non-dominant clone (71.88% versus 

43.59%). The model which predicted that hospitalization less than 90 days prior to 

MRPA infection was a significant risk factor for acquisition of the dominant MRPA 

clone also estimated that patients hospitalized less than 90 days prior to MRPA infection 

were four times more likely to acquire the dominant clone rather than a non-dominant 

clone. Similarly, patients hospitalized 91-180 days prior to MRPA infection diagnosis 

were three times more likely to acquire the dominant MRPA clone. 

 Further supporting the evidence of hospitalization as a risk factor for acquiring the 

dominant MRPA clone was the data regarding hospitalization rate in the year prior to 

MRPA infection diagnosis. Patients in the dominant clone group spent an average of 11 

more days in the hospital in the year prior to MRPA infection diagnosis compared to 

patients in the non-dominant clone group. Figure 9 shows the hospitalization episode just 
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prior to MRPA infection diagnosis for each patient in each group. A total of 8 patients in 

the dominant clone group and 17 patients in the non-dominant clone group were not 

hospitalized in the year prior to MRPA infection and thus are not listed in this chart.  

Differences in Patient Outcome Based on MRPA Clone 

There was no statistically significant difference between the two clonal groups 

based on quantitative patient outcomes: change in BMI, change in FEV1, and annual 

hospitalization rate. The patients in the dominant clone group did spend more time in the 

hospital with an average of 39.42 days per year (median = 29.59 days) compared to an 

average of 25.78 days per year (median = 14.81 days) for the non-dominant clone group. 

Although the dominant clone group had a higher hospitalization rate prior to MRPA 

infection, they exhibited a post-infection increase in hospitalization rate that was 27% 

greater than the non-dominant clone group resulting in almost 14 more days per year in 

the hospital for those infected with the dominant MRPA clone. MANOVA found none of 

the quantitative patient outcome variables significant, but this analysis was highly 

impacted by a low statistical power, which increases the risk of a Type II error.  

Short-term differences in BMI and FEV1 were not evident between the two clonal 

groups. Overall, there was very little short-term change in BMI or FEV1 for any patients 

in the data set. Ninety-two percent of patients exhibited a less than 5% change in BMI 

percentile within six months of MRPA infection diagnosis. The case was similar for 

short-term FEV1 changes with 86% of patients in the dataset having a less than 5% 

change in FEV1 percentile within six months of MRPA infection diagnosis.  
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Extended outcomes began to show a separation between the two groups in terms 

of both nutritional status and lung function, with the dominant MRPA clone group 

exhibiting poorer outcomes in both areas. Data collected from the last recorded clinic 

visit, with a mean follow-up time of three years, showed a 4% decrease per year in both 

BMI and FEV1 for patients in the dominant clone group while patients in the non-

dominant clone group experienced a less than 1% change. BMI changes are difficult to 

interpret in this sample set due to the age range (mean age = 14 years), most patients are 

experiencing growth spurts so the rates of change in BMI percentile can vary greatly. 

However, the fact that both clonal groups had identical mean/median ages makes the 

finding of a greater rate of decline in the dominant MRPA clone group more noteworthy. 

The Cystic Fibrosis Foundation has also shown a positive association between BMI and 

FEV1 percentiles (Patient Registry 2008 Annual Report, 2009; Milla, 2007).  

A decrease in lung function of 1-2% per year is expected in patients with CF as 

they age, especially during adolescence when the frequency of lung infections increases 

(Patient Registry 2008 Annual Report, 2009). Recent studies have also suggested that this 

generation of patients with CF may have an even slower rate of decline in FEV1 (Que, 

Cullinan, & Geddes, 2006). The increased rate of decline in lung function for patients 

infected with the dominant MRPA clone translates into a shorter life expectancy 

(Schunemann, Dorn, Grant, Winkelstein, & Trevisan, 2000). The previous studies 

documenting decreased lung function in the Liverpool epidemic P. aeruginosa strain and 

the Australian epidemic P. aeruginosa strain as compared to non-epidemic strains found 

differences in FEV1 decline of -4.4% and -1.3%, respectively, comparable to the 
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difference of -2.95% documented in this study (Al-Aloul et al., 2004; O'Carroll et al., 

2004). The previous studies involved both antibiotic-resistant and susceptible strains of 

P. aeruginosa, and neither study reached statistical significance due to the small number 

of patients meeting their inclusion criteria, similar to the limitations of this study. 

With the current rate of decline, patients in the dominant clone would reach 

severe lung disease status (FEV1 < 40%) and qualify for lung transplantation (FEV1 < 

30%) in less than 10 years (Belkin et al., 2006). To contrast, the median FEV1 for a 30 

year old patient with CF is 60% (Patient Registry 2008 Annual Report, 2009), compared 

to the median FEV1 of 51% (mean = 59%) in our dominant clone population with an 

estimated age of 18 years (mean age at time of MRPA diagnosis = 14.22 years, mean 

length of follow-up = 3.58 years) at the conclusion of the study. Considering that the 

expected lifespan of a patient with CF was 37.4 years in 2008, it can easily be 

hypothesized that infection with the dominant MRPA clone will ultimately be associated 

with decreased life expectancy. Early studies of lung function concluded that patients 

with an FEV1 value < 30% had a 50% chance of dying within two years (Corey et al., 

1997; Kerem et al., 1992).  

From this data, it is reasonable to conclude that the dominant MRPA clone does 

contribute to increased patient morbidity in terms of lung function and nutritional status 

in the long-term (mean = 3.07 years post-MRPA infection diagnosis). The additional 

hospitalization time experienced by patients in the dominant clone is also clinically 

relevant. In the dominant clone group, 25 patients (78%) spent more than 10 days per 

year in the hospital post-MRPA infection compared with 22 patients (56%) in the non-



115 

 

dominant clone group. A much higher hospitalization rate was also observed in the 10 

patients who died (average of 94 days per year). 

Chronological Evaluation of MRPA Diagnosis and Hospitalization 

The clustering of diagnosis of MRPA infection in patients with CF was evident in 

Figure 8. Groups of patients with CF infected with the dominant MRPA clone were 

present from 2004-2006 with an additional cluster in mid-2008. Beyond 2007, the 

majority of new MRPA infections were members of the non-dominant clone group. 

While the rate of infection with the dominant clone appeared to be declining, the 

continued incidence of new cases is further proof that a common source or mode of 

transmission is present at the care center. 

 The chronological grouping recognized in MRPA infection diagnosis was further 

confirmed by the evaluation of recent hospitalization episodes prior to MRPA diagnosis 

in Figure 9. The clusters of dominant MRPA clone acquisition could be due to a shared 

encounter with a patient previously infected with the dominant clone. It is difficult to 

determine how the clone may be spread, but due to the significance of recent 

hospitalization and the noticeable difference in hospitalization rates prior to MRPA 

infection, nosocomial transmission of the dominant MRPA clone is suspected. When 

comparing overlap of hospitalization in the non-dominant MRPA clone group, far fewer 

patients had potential inpatient exposure to patients in the dominant MRPA clone group 

or patients with undiagnosed MRPA. 
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Significance of the Results 

 While no complete model comparing the dominant and non-dominant MRPA 

clonal groups proved statistically significant by logistic regression or MANOVA, the 

practical significance of the findings is useful and consistent with results of similar 

studies. The lack of significance of demographic characteristics (gender, age at time of 

CF diagnosis, and mother’s educational level) as risk factors for acquisition of a 

particular clone can help narrow the variables that should be monitored. CFTR genotype, 

and in turn phenotype, did not predict susceptibility to infection with the dominant 

MRPA clone. Likewise, the data suggests that the patient’s BMI, FEV1, tobramycin use, 

and culture results did not contribute to infection with the dominant clone. The most 

clinically significant finding is the clustering of hospitalization with patients infected 

with the dominant clone. With recent hospitalization as a statistically significant risk 

factor for acquisition of the dominant clone and increased hospitalization rates in the year 

prior to MRPA infection, the results do not rule out the possibility of a common source of 

infection within the hospital. Significant overlap in hospitalization episodes between 

patients infected with the dominant MRPA clone and patients who became infected with 

the same clone a short time later further supports this theory. 

 The Hopital Erasme CF clinic in Brussels, Belgium was implicated as a common 

source of P. aeruginosa infection in one study (Kersulyte et al., 1995), but inpatient 

hospital stays were also documented as a risk factor for infection with the epidemic P. 

aeruginosa clone. Inpatient encounters within two years of infection and overlapping 

hospital stays were implicated in two studies as the reason for emergence of a dominant 
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clone in patients with CF (Denton et al., 2002; Jones et al., 2001). Other studies went on 

to document the presence of epidemic strains in environmental samples collected in the 

clinic and hospital such as the water, sinks, creams, and counters (Bosshammer et al., 

1995; Festini et al., 2007). Further research into the Liverpool epidemic strain of P. 

aeruginosa identified no clear environmental source of infection and determined that 

airborne dissemination was the most likely culprit in patient-to-patient transmission 

(Panagea, Winstanley, Walshaw, Ledson, & Hart, 2005).   

 The results confirm prior findings of increased virulence of an epidemic strain as 

documented in the Liverpool, Sheffield, and Australian epidemic strains (Al-Aloul et al., 

2004; Edenborough et al., 2004; O'Carroll et al., 2004). Further investigation regarding 

hospitalization also suggests a difference may exist in terms of transmissibility. Patients 

infected with a non-dominant clone spent a substantial amount of time in the hospital 

post-MRPA infection diagnosis, but no extensive outbreaks of other clones have been 

discovered. The proliferation of the dominant clone during a period of several years 

speaks to the potential increased transmissibility of this epidemic strain in this particular 

patient care environment. Previous analysis of two epidemic P. aeruginosa strains in the 

Australian CF clinics also found increased transmissibility, and additional studies 

evaluating phenotypic characteristics have suggested that protease activity may play a 

role in the increased infectivity of the strains (Tingpej et al., 2007). Subsequently, a 

recent microarray analysis of the Australian Epidemic Strain-2 indicated that differential 

gene expression in P. aeruginosa may increase transmissibility (Manos et al., 2009).    
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Limitations 

 The largest limitation of the study is the sample size. This study was restricted to 

patients with CF at one CF Center, and inclusion criteria required a confirmed diagnosis 

of MRPA and prior consent to participate in the Port CF database. The small sample size 

resulted in potentially insufficient statistical power and increased risk of a Type II error. 

A significant relationship was realized between infection with the dominant clone and 

recent hospitalization, but it is plausible that additional risk factors could exist. Similarly, 

the low statistical power due to small sample size contributed to the inability of the study 

to identify statistically significant differences in patient outcome. While clinically 

significant differences were realized in terms of nutritional status and lung function, a 

much larger sample size was necessary to reach statistical significance. For instance, a 

published study regarding changes in lung function stated that for differences of 5% in 

FEV1 rate of change a sample size of  > 250 patients per group was necessary (Corey, 

2007). As proof of that concept, an extensive study, comparing lung function of patients 

with CF chronically infected with MRSA compared to those who are not, using data from 

the national patient registry found that a -0.62% difference in rate of decline of FEV1 was 

statistically significant (p < 0.001) (Dasenbrook, Merlo, Diener-West, Lechtzin, & Boyle, 

2008). For comparison to this current study of 71 patients, the MRSA study included over 

17,000 patients, of which 1732 patients were included in the MRSA infected group.  

 Further limiting the study was the inclusion of only one CF center. Because 

consent for Port CF was required for a patient’s inclusion in the study and consent was 

only obtained for this CF care center, it was not possible to obtain data from other 
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centers. Therefore, it remains feasible that this dominant clone could be a geographic 

anomaly specific to the TCH CF Care Center. Without molecular typing data from 

patients across the country and access to clinical data for those patients, it is impossible to 

determine whether the identification of this clone is a widespread problem or a single 

instance of an endemic strain in one institution. 

 Finally, the minimal amount of information regarding details of hospitalization 

episodes available in Port CF was a limitation to further analysis. Port CF simply 

documents the dates and length of each encounter along with routine clinical data such as 

lung function, nutritional status, medication regimen, and microbiology results along with 

demographic information. Specific data regarding inpatient episodes such as which 

practitioners were seen, timing and frequency of procedures performed, and even hospital 

room number were not available. By obtaining access to this type of detailed information, 

more specific studies could be designed to determine the potential sources of 

transmission.  

Implications for Clinical Practice 

 The significant relationship between recent hospitalization and acquisition of the 

dominant MRPA clone is relevant to clinical practice for patients with CF. While patients 

are expected to become chronically colonized with P. aeruginosa at some point during 

the course of the disease, delaying the infection as well as preventing the acquisition of 

multiply-resistant strains is of great importance to patient prognosis. The findings of this 

study point to inpatient stays as a potential source of transmission of the endemic strain, 

and a careful review of infection control processes is warranted. In addition, the results 
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highlight the potential for increased transmissibility of the dominant MRPA clone, which 

further reinforces the need for rigorous infection control standards. The CF Foundation 

has issued many recommendations regarding infection control practices specific to clinics 

and hospitals that care for patients with CF, but the extent to which those 

recommendations are adhered can vary between and within care centers (Saiman & 

Siegel, 2003). Following the confirmation of the existence of the dominant MRPA clone 

group in 2006, TCH has undergone multiple improvements to the infection control 

practices in the areas of the hospital that care for patients with CF. This appears to have 

led to a decrease in the incidence of patients becoming infected with the dominant MRPA 

clone as depicted in Figure 17. Discussion has also begun regarding implementation of 

contact precautions for all patients during inpatient episodes. 

Upon discovery of an endemic or epidemic strain within an institution, it would 

be recommended to review infection control practices in all areas potentially caring for 

patients with CF based on the results of this study. In addition, once the strain has been 

identified, patients should be monitored closely for new infections, possibly by more 

frequent respiratory cultures, following a recent hospitalization. Isolation precautions are 

currently recommended for patients with MRPA, but review of how those procedures are 

handled, in patients with CF at that particular institution, with hospital staff may be 

prudent each time a patient currently infected with MRPA is admitted for inpatient 

treatment. While TCH has staff dedicated to the CF Clinic and the Pulmonology floor, 

education of interim personnel, such as float staff and fellows, as well as ancillary staff, 

such as environmental or food service personnel, is vital. In addition, a methodical re- 
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Figure 17. Infection Control Process Improvements in the Care of Patients with CF at 

TCH.  

 
Note: Multiple process improvements including the implementation of contact isolation upon admission 

and renewed availability of proper equipment have coincided with a decrease in the number of MRPA 

patients infected with the dominant MRPA clone. 

 

education of each hospital section and specific personnel involved in the care of patients 

with CF may be an additional resource in the prevention of transmission of an endemic or 

epidemic strain of MRPA.   

 The results of this research further confirm the clinical utility of molecular typing 

as a tool for epidemiological surveillance in cystic fibrosis. By identifying an endemic or 

epidemic MRPA strain in the CF population, molecular typing enables care providers to 

investigate possible sources of transmission and evaluate transmissibility of the identified 

strain. In addition, the stratification of patients provided by molecular typing results 

allows for the determination of differences in patient morbidity associated with infection 
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with particular strains, which in turn provides information on potential virulence of the 

strain. 

Recommendations for Future Research 

 The most obvious recommendation for future studies is to expand the application 

of molecular typing beyond one CF center. Inclusion of multiple CF centers in various 

areas of the country would reveal if the dominant MRPA clone identified in this study is 

a geographic anomaly specific to the TCH CF Care Center. Evaluating the MRPA 

infection patterns at other institutions would determine if inpatient hospitalization plays a 

role in acquisition of MRPA globally. In addition, the larger sample size would increase 

the statistical power of the study. It is possible that factors that were not significant in this 

study could become significant in an analysis of a much larger sample set. 

 In terms of the CF Care Center at Texas Children’s Hospital, new MRPA 

infections should continue to be monitored by molecular typing to determine if the 

isolates are members of the dominant MRPA clone group. If consent can be obtained 

from the original CF care centers for the transplant consultation patients infected with 

MRPA, then those patients should be added to the dataset in the future. Molecular typing 

and comparison of clinical data for transplant patients will provide further information on 

acquisition of the dominant clone, as well as determine if the dominant MRPA clone was 

present in these patients prior to their first visit to Texas Children's Hospital. Inclusion of 

transplant patients would also enable the use of variables related to lung transplant 

evaluations and procedures as potential patient outcome parameters.   



123 

 

In addition, patient outcome data for patients infected with MRPA should be 

continually reviewed to track patient morbidity associated with infection with the 

dominant MRPA clone. Additional years of patient outcome data for the two clonal 

groups may yet produce statistically significant differences that were not evident in the 

span of time during which this study was conducted. It is also worth noting that if 

improved infection control processes continue to be effective in preventing the spread of 

the dominant MRPA clone, then as patients originally infected by the endemic strain 

either transfer to adult CF centers or die, the prevalence of MRPA infection in the TCH 

CF Care Center should decrease and approach the national average.   

An evaluation of the cost of molecular typing and the cost of treatment of patients 

infected with the dominant MRPA clone is another avenue to consider. While molecular 

typing costs are not charged to the individual patient, the cost to the hospital in terms of 

financial support of molecular epidemiological surveillance and increased treatment of 

the patients infected with the endemic MRPA strain would be useful information to both 

health care providers and administrators. 

 Future studies should also focus on the overlap of hospitalization between 

previously infected patients and new infections identified by molecular typing. While 

increasing all infection control processes to curtail further spread of the organism is ideal, 

determination of the original source of proliferation of the clone would provide valuable 

information to CF centers worldwide. Studies designed to collect highly specific 

information related to hospitalization episodes, such as each nurse, physician, or other 

care provider that enters the room, every procedure performed including time and 
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location, and even visitors to every patient, would enable centers to pinpoint the most 

likely sources of infection.  

  Adding to the more detailed study of inpatient hospitalization parameters would 

be an environmental sampling of the entire CF care center including the clinic and 

dedicated areas of the hospital. While patients are routinely cared for in areas designated 

for patients with CF, shared areas and equipment for physical therapy, patient transport, 

and even meal delivery could harbor the endemic strain. A thorough microbiological 

analysis of all sources of patient contact would be a difficult but medically valuable study 

to undertake. Molecular typing would enable researchers to determine if strains isolated 

from environmental samples were related to strains isolated from patients with CF. 

 Finally, it may prove beneficial to evaluate the degree of antibiotic resistance in 

an endemic/epidemic strain population. While classification of a strain as multiply-

resistant P. aeruginosa is based on resistance to all antibiotics in two of the three 

recognized classes, incomplete resistance in the third class or which of the two classes for 

which complete resistance was present could vary between clones as well as within 

clonal groups. More thorough analysis of the different resistance patterns and how or if 

they relate to molecular typing profiles may reveal additional data relevant to treatment 

plans. 

Summary and Conclusions 

 An endemic strain of multiply-resistant Pseudomonas aeruginosa was identified 

in the patients of the CF Care Center at Texas Children’s Hospital. Molecular typing of 

the patient isolates confirmed the presence of a dominant clone that persists in the 
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institution through the conclusion of this study. Data concerning patient-related variables 

prior to infection with MRPA, such as demographic information and factors related to the 

time of MRPA acquisition and disease state just prior to MRPA infection diagnosis, were 

compared between the dominant MRPA clone group and the non-dominant MRPA clone 

group. Recent hospitalization, within 180 days of MRPA infection diagnosis, was found 

to be a clinically and statistically significant factor in acquisition of the dominant MRPA 

clone. Hospitalization rate in the year prior to MRPA infection was also higher for the 

dominant clone group compared to the non-dominant clone group. The majority of 

patients in the dominant clone group experienced a pre-MRPA diagnosis inpatient 

episode concurrently with a patient previously diagnosed with the dominant MRPA 

clone, and this extent of hospitalization overlap was not observed in the non-dominant 

MRPA clone group. Patient outcome variables were compared between the two groups, 

and clinically significant differences were noted in regard to nutritional status, lung 

function, and hospitalization rate. The results suggest the potential for increased virulence 

and transmissibility of the endemic MRPA strain. 

 The CF Care Center at Texas Children’s Hospital has had a higher than average 

MRPA infection rate among patients for several years. The discovery of an endemic 

strain in the center has led to improved infection control practices concerning both clinic 

processes and inpatient protocols. A decrease in the number of patients infected with the 

endemic strain was realized at the end of the data collection period for this study. 

Continued monitoring by molecular typing will enable us to determine if this trend 

continues, and further diligence in infection control based on the data provided by this 
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study should allow for the elimination of common sources of multiply-resistant 

Pseudomonas aeruginosa infections in patients with cystic fibrosis. 
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