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Abstract

THE INNER POWER OF A GRAPH

By Neal Livesay, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Director: Richard H. Hammack, Associate Professor, Department of Mathematics and
Applied Mathematics.

We define a new graph operation called the inner power of a graph. The construction is

similar to the direct power of graphs, except that factors are intertwined in such a way that

certain structural properties of graphs are more clearly reflected in their inner powers. We

investigate various properties of inner powers, such as connectivity, bipartiteness, and their

interaction with the direct product. We explore possible connections between inner powers

and the problem of cancellation over the direct product of graphs.
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Preliminaries

In this thesis we construct and develop theory for a new graph operation which we will

call the inner power of a graph. The inner power is similar to the direct power, and results

concerning connectivity and bipartiteness of the two powers are in many ways comparable.

Moreover the inner power distributes over the direct product. This yields potential appli-

cations to the problem of direct product cancellation. We explore this connection. Before

proceeding, it is necessary to quickly review the relevant definitions and terminology.

1.1 Basic Definitions and Terminology

A graph is a pair G = (V,E) of sets such that V is nonempty and finite and the elements of

E are unordered pairs of the elements from V . If E = /0, then G is empty. The elements of

V are the vertices (a single element is a vertex) of G and the elements of E are the edges

of G. It is convenient to henceforth denote an edge e = (u,v) by uv (or vu). If e = uv is an

edge of a graph G, the vertices u and v are adjacent vertices, and e adjoins u and v. Vertices

that are not adjacent are nonadjacent. A vertex with no adjacent vertices is an isolated

vertex. A vertex v may be adjacent to itself, in which case the edge vv is a loop. For a given

vertex v in the vertex set of a graph G, the set of all vertices in G adjacent to v is called the

neighborhood of v, and is denoted N(v).

A graph G may be described by means of a diagram where points represent the vertices

and each edge e = uv is represented by a line segment or curve joining the two points

corresponding to vertices u and v.
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c
d

f

ea

b

Figure 1.1: A graph on V = {a,b,c,d,e, f} with edge set E = {ab,ad,bd,ce,ee}.

To specify the graph in consideration, it is conventional to denote the vertex set of a

graph G by V (G) and the edge set of G by E(G).

A graph G is isomorphic to a graph H if there exists a injective mapping ϕ , called an

isomorphism, from V (G) onto V (H) where uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). The

relation “is isomorphic to” is an equivalence relation on graphs and will be denoted “∼=”;

hence the statement “graph G is isomorphic to graph H” is equivalent to “G∼= H”. If G is

not isomorphic to H, then G is nonisomorphic to H, or, equivalently, G � H. A general

mapping ϕ from V (G) into V (H) for which uv ∈ E(G) implies ϕ(u)ϕ(v) ∈ E(H) is called

a homomorphism.

If G and H are graphs with V (G) ⊆ V (H) and E(G) ⊆ E(H), then we say G is a

subgraph of H or H contains G, and write G⊆ H or H ⊇ G. It follows that if G⊆ H and

G⊇ H, then G∼= H. Let U be a subset of V (G). For a given subset U of the vertex set of a

graph G, the subgraph induced by U in G is the graph on U with the edge set that consists

of all edges of G incident with two elements of U .
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1.2 Walks, Connectivity, and Some Graph Classes

Let u and v be vertices in a graph G. A u-v walk W of G is a finite sequence

W : u = x0,x1, ...,xk = v

of vertices in G where xixi+1 ∈ E(G) for all i ∈ {0, ...,k−1}. The number k (the number

of occurences of edges) is the length of W . If W has even (or odd) length, then W is even

(or odd). A trivial walk is a walk of length zero, and a nontrivial walk is a walk that is not

trivial.

A u-v walk is closed if u = v. A u-v path is a u-v walk of distinct vertices. A closed

walk v0v1...vn−1v0 where v0v1...vn−1 is a path is a cycle. An arbitrary path on n vertices is

denoted Pn, and a cycle on n vertices is denoted Cn.

A graph G is complete if every distinct pair of vertices in V (G) are adjacent. The

complete graph on n vertices is denoted Kn.

P3 =

a

b

c

a b

d

ceC5 =

b

aK2 =

Figure 1.2: The path on three vertices, the cycle on five vertices, and the complete graph on
two vertices are examples of some well-known classes of graphs.
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A vertex u is connected to a vertex v in a graph G if there exists a u-v path in G, or,

equivalently, if there exists a u-v walk in G. A graph is connected if every pair of its vertices

are connected. If a graph is not connected, then it is disconnected.

A graph G is bipartite if V (G) can be partitioned into two subsets V1 and V2, called

partite sets, such that every element of E(G) adjoins an element of V1 with an element of V2.

The following theorem is a useful equivalency for bipartite graphs.

THEOREM 1.1. A graph G is bipartite if and only if G does not contain an odd cycle.

The proof of this result can be found in most introductory texts on graph theory, such as

that by Chartrand [1].

1.3 The Direct Product

Operations defined on graphs are the primary focus of this thesis. In particular, we are

interested in the direct product, and a new construction called the inner power, which is

introduced in Chapter 2. The direct product of two graphs G and H, denoted G×H, is

defined on the Cartesian product of the vertex sets of the factors, V (G)×V (H). The edge

set, E(G×H), is the set of all pairs (a,b)(a′,b′) where aa′ ∈ E(G) and bb′ ∈ E(H). Figures

1.3 and 1.4 show some examples.

K2 =

a

b

(a,a) (b,a)

(a,b) (b,b)

K2×K2 =

Figure 1.3: The complete graph on 2 vertices, K2, and the direct product of K2 with itself.

We can also describe the direct product of k graphs for any arbitrary positive integer

k. Let G1,G2, ...,Gk be graphs. Then G1×G2× ...×Gk is defined on the vertex set
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P3×C5 =

P3

C5

Figure 1.4: The direct product of the path on three vertices and the cycle on five vertices is
shown above, with the factors on the left and bottom added for reference.

V (G1)×V (G2)× ...×V (Gk). The edge set is the set of all pairs (x1,x2, ...,xk)(x′1,x
′
2, ...,x

′
k)

where xix′i ∈ E(Gi) for each i ∈ {1, ...,k}. The nth direct power, denoted Gn, of a graph G is

the product of n copies of G.
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The Inner Power: Definition and Properties

We have now developed enough basics to begin our discussion of our new graph operation,

the inner power. We will first give a definition, then discuss some properties of the inner

power.

2.1 Definition

The nth inner power of a graph G, denoted G(n), is defined on the nth Cartesian product of

the vertex set of G. The edges are all pairs (x0, ...,xn−1)(x′0, ...,x
′
n−1) where xix′i−1 ∈ E(G)

and xix′i+1 ∈ E(G) for all i ∈ {0, ...,n− 1}, where arithmetic on the indices is performed

modulo n for the sake of readability. Hence x0x′n−1,xn−1x′0 ∈ E(G).

For example, the second inner power, denoted G(2), of a graph G is defined on

V (G)×V (G), and the edges are all pairs (a,b)(a′,b′) where ab′ ∈ E(G) and a′b ∈ E(G).

Please take a moment and refer to Figures 1.3 and 2.1 to compare the second inner power

with the second direct power. The third inner power, G(3), of a graph G is defined on

the vertex set V (G)×V (G)×V (G), and the edges are all pairs (a,b,c)(a′,b′,c′) where

ab′,ac′,ba′,bc′,ca′,cb′ ∈ E(G).

Figures 2.1 and 2.2 give some examples of inner powers.
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K2 =

a

b

(a,a) (b,a)

(a,b) (b,b)

K(2)
2 = K(3)

2 =

(a,a,a) (b,a,a)

(a,b,a) (b,b,a)

(a,a,b) (b,a,b)

(a,b,b) (b,b,b)

Figure 2.1: The complete graph on two vertices, K2, the second inner power, K(2)
2 , and the

third inner power, K(3)
2 .

caa

cbbbcc

baa

abb acc

aca

bcbcbc

aba

bab cac

aac

bbcccb

aab

bba cca

aa
a

ccc bbb
abc bca cab

acb bac cba

Figure 2.2: The third inner power, K(3)
3 , of K3. For convenience, the vertices are labeled

without parentheses or commas. Hence abb = (a,b,b).
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2.2 Isolated Vertices and Loops

Following are some various properties regarding inner powers. Isolated vertices and loops

are two immediately recognizable characteristics in a graph. The proofs of the theorems

regarding their existence shed light on the structure of the inner power of a graph. Addition-

ally, these two properties are helpful when considering connectivity and bipartiteness in the

following sections.

First we give two theorems regarding the existence of isolated points in a graph. The

conditions for the existence of isolated points in inner powers of k = 1 or 2 differs from

those in general higher powers. We consider those two cases separately.

THEOREM 2.1. Let G be a graph and suppose that either k = 1 or k = 2. Then G(k) has an

isolated vertex if and only if G has an isolated vertex.

Proof. The result follows trivially if k = 1, since G(1) = G. Assume k = 2. Further, suppose

that G(k) has an isolated vertex at some vertex (x1,x2) ∈ V (G(2)). Then (x1,x2)(y1,y2) /∈

E(G(k)) for any (y1,y2) ∈ V (G(k)). Then either x1 is isolated or x2 is isolated; otherwise,

G has edges x1y2 and x2y1 for some y1,y2 ∈ V (G), which would imply (x1,x2)(y1,y2) ∈

E(G(2)), a contradiction to our assumption. Hence G contains an isolated vertex.

Conversely, suppose instead that G has an isolated vertex at x1. Then (x1,x1) is an

isolated vertex in G(k). Therefore, G(k) has an isolated vertex if and only if G has an isolated

vertex.

THEOREM 2.2. Let G be a graph and k ≥ 3 be an integer. Then G(k) has an isolated vertex

if and only if N(c)∩N(d) = /0 for some c,d ∈V (G).

Proof. Suppose G(k) has an isolated vertex at (v1, ...,vk) ∈V (G(k)). Then

(v1, ...,vk)(u1, ...,uk) /∈ E(G(k))
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for any (u1, ...,uk) ∈V (G(k)). Suppose that N(c)∩N(d) 6= /0 for all c,d ∈V (G). Then for

each pair v(i−1),v(i+1) ∈V (G), there exists ai ∈V (G) with

ai ∈ N(v(i−1))∩N(v(i+1)).

But then (a1, ...,ak) ∈V (G(k)) with (v1, ...,vk)(a1, ...,ak) ∈ E(G(k)), a contradiction. Thus,

N(c)∩N(d) = /0 for some c,d ∈V (G).

Conversely, suppose that N(c)∩N(d) = /0 for some c,d ∈V (G). Consider (d,d, ...,c) ∈

V (G(k)). This vertex has no adjacencies. To prove this, suppose that it does. Then

(d,d, ...,c)(x1,x2, ...,xk) ∈ E(G(k)) for some (x1,x2, ...,xk) ∈ V (G(k)). Hence dx1,cx1 ∈

E(G). But then x1 ∈ N(c)∩N(d), a contradiction to the assumption that N(c)∩N(d) = /0.

Thus G contains an isolated vertex.

THEOREM 2.3. Let G be a graph and let k be a positive integer. Then G(k) has a loop on

vertex (x1, ...,xk) if and only if x1, ...,xk,x1 is a closed walk in G.

Proof. Let G be a graph. Then G(k) has a loop on vertex (x1, ...,xk) only if

x1x2,x2x3, ...,xkx1 ∈ E(G).

Hence x1, ...,xk,x1 is a closed walk in G. Conversely, suppose x1, ...,xk,x1 is a closed walk

in G. Then xixi+1 ∈ E(G) and xixi−1 ∈ E(G) for all i∈ {1, ...,n}, and thus G(k) has a loop on

vertex (x1, ...,xk). Therefore G(k) has a loop on vertex (x1, ...,xk) if and only if x1, ...,xk,x1

is a closed walk in G.
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2.3 Connectivity

The following theorems involving connectivity and the existence of paths in the inner

power of a graph provide insight into the structure of the inner power. We first investigate

connectivity in the second inner power of a graph. Connectivity in the second inner power

of graphs has a simple characterization that does not extend to higher powers. Before giving

this characterization, we first give two lemmas.

LEMMA 2.4. Let G be a connected graph containing at least one odd cycle. Then for any

u,v ∈V (G), there exists an odd u-v walk and an even u-v walk in G.

Proof. Let G be a connected graph containing an odd cycle, c0,c1, ...,c2k,c0. Let u,v∈V (G)

be arbitrary. Since G is connected, there exists a u-v path and a u-c0 path. Either the u-v

path is even or it is odd.

Suppose the u-v path is even. Then the walk obtained adjoining the u-c0 path, the cycle

c0,c1, ...,c2k,c0, the c0-u path, and the u-v path is odd. Suppose instead that the u-v path is

odd. Then the walk obtained by adjoining the u-c0 path, the cycle c0,c1, ...,c2k,c0, the c0-u

path, and the u-v path is even. This proves the desired result.

LEMMA 2.5. Let G be a graph and let a,b,c,d ∈V (G). Then an (a,b)-(c,d) walk exists in

G(2) if and only if one of the following is true:

1. there is an even a-c walk and an even b-d walk, or

2. there is an odd a-d walk and an odd b-c walk.

Proof. Let G be a graph and let a,b,c,d ∈ V (G). Suppose first that an (a,b)-(c,d) walk

exists in G(2). Suppose that Statement 2 is false. Then there can not exist an odd walk

(a,b),(x1,y1),(x2,y2), ...,(c,d); otherwise a,y1,x2, ...,d and b,x1,y2, ...,c would define odd

walks in G. Thus the walk (a,b),(x1,y1),(x2,y2), ...,(c,d) is even. Then a,y1,x2, ...,c and
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b,x1,y2, ...,d are even walks, and Statement 1 is true. Hence, either Statement 1 or Statement

2 are true.

To prove the converse, first suppose Statement 1 is true. Then there is an even walk,

a,a1,a2,a3, ...,c and an even walk b,b1,b2,b3, ...,d. From the adjacencies given in the

walk by sequential vertices, the walk (a,b), (b1,a1),(a2,b2),(b3,a3), ...,(c,d) is derived in

G(2). Suppose instead that Statement 2 is true. Then there is an odd walk, a,a1,a2,a3, ...,d

and an even walk b,b1,b2,b3, ...,c. This, again, gives the walk (a,b),(b1,a1),(a2,b2),

(b3,a3), ...,(c,d) in G(2). In either case, an (a,b)-(c,d) walk exists in G(2).

Before giving our characterization of graphs with connected 2nd inner powers, we give

two examples of graphs, P3 and a second graph (“P3 with a loop”), and their powers to

consider in Figures 2.3 and 2.4.

a

b

c

aa

ca

bb

cc

ac

ab

cb

ba

bc

P3 = P(2)
3 =

Figure 2.3: The path on three vertices, P3, has a disconnected inner power.

THEOREM 2.6. Let G be a graph. Then G(2) is connected if and only if G is connected and

G contains an odd cycle.

Proof. Let G be a graph. If |V (G)|= 1, then the result is trivial. Suppose |V (G)| > 1.

Now suppose G(2) is connected. To show G is connected, it is sufficient to show that

a u-v walk exists for any two arbitrary vertices u and v in G. So, let u and v be arbitrary

distinct (since an isolated vertex is itself a trivial walk) vertices in G.
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a

b

c

aa

ca bb

cc

ac

ab

cb

ba

bc

L = L(2) =

Figure 2.4: The graph, L, containing P3 and an odd cycle has a connected inner power.

There must exist an edge in G; otherwise G(2) is empty, contradicting the assumption

that G(2) is connected. Suppose there is an edge adjoining vertices a and b in G. Since

ab ∈ E(G), it follows that (a,b)(a,b) ∈ E(G(2)). Thus there is an odd cycle (specifically, a

loop) on vertex (a,b) in G(2).

By Lemma (2.4), there exists an even (u,v)-(v,u) walk in G(2). Lemma (2.5) then gives

a u-v walk in G. Hence G is connected.

To show that G contains an odd cycle, we will suppose that it does not and derive a

contradiction. Suppose G does not contain an odd cycle. Let u and v be adjacent vertices of

G. Since G contains no odd cycle, G is a bipartite graph. Adjancency implies u and v are

elements of distinct partite sets, whence there can not exist either an even u-v path nor an

odd u-u path. By Lemma (2.5), a (u,u)-(u,v) walk does not exist in G(2), contradicting the

assumption that G(2) is a connected graph. It must be the case that G does not contain an

odd cycle. Thus, G(2) is connected only if G is connected and G contains an odd cycle.

To prove the converse, suppose that G is connected and G contains an odd cycle. Let

(a,b),(c,d) ∈ G(2), where a,b,c,d ∈V (G). By Lemma (2.4), there exists an even a-c walk

and an even b-d walk. By Lemma (2.5), there exists an (a,b)-(c,d) walk. Therefore, G(2) is

connected if G is connected and G contains an odd cycle, concluding the proof.
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We now wish to investigate the connectivity of general inner powers of a graph. We

begin by looking at the conditions for the existence of paths in these inner powers.

THEOREM 2.7. Let G be a graph and let k and n be positive integers. Then there is a walk of

length n in G(k) with ends v1 = (v1
0,v

1
1, ...,v

1
k−1) and vn = (vn

0,v
n
1, ...,v

n
k−1) in V (G(k)) if and

only if there is a homomorphism ϕ : (Pn×Ck)−→ G with ϕ((i,1)) = v1
i and ϕ((i,n)) = vn

i

for all i ∈ {0,1, ...,k−1}.

Proof. Let G be a graph. We start by proving the converse. Suppose there is a homo-

morphism ϕ : Pn×Ck −→ G for some positive integers n and k where φ((i,1)) = v1
i and

φ((i,n)) = vn
i for all i ∈ {1, ...,n}. For each 1≤ i≤ k, let

vi = (ϕ((i,0)),ϕ((i,1)), ...,ϕ((i,k−1))) ∈V (G(k)),

where (i, j) refers to the vertex in the graph product Pn×Ck corresponding to the ith vertex in

Pn and the jth vertex in Ck. Consider some arbitrary i ∈ {1,2, ...,n}. Since ϕ : Pn×Ck −→G

is a homomorphism, ϕ((i, j))ϕ((i+1, j+1)) ∈ E(G) and ϕ((i, j))ϕ((i+1, j−1)) ∈ E(G)

for all j ∈ {0,1, ...,k−1}. Hence vivi+1 ∈ E(G(k)) for all i ∈ {1,2, ...,n}. Therefore, the

vertices {v1,v2, ...,vn} induce a walk, v1,v2, ...,vn, of length n in G(k).

Now suppose that there is a walk

v1 = (v1
0,v

1
1, ...,v

1
k−1),v2 = (v2

0,v
2
1, ...,v

2
k−1), ...,vn = (vn

0,v
n
1, ...,v

n
k−1)

of length n in G(k). Then

v j
i v j+1

i−1 ∈ E(G)

and

v j
i v j+1

i+1 ∈ E(G)



14

for all i ∈ {0, ...,k−1} and all j ∈ {1, ...,n}. Define φ : Pn×Ck −→ G where φ(i, j) = v j
i .

Then

(i, j)(i−1, j+1) ∈ E(Pn×Ck)

and

(i, j)(i+1, j+1) ∈ E(Pn×Ck)

for all i ∈ {0, ...,k−1} and all j ∈ {1, ...,n}. Since φ(i, j) = v j
i , the function φ is a natural

graph homomorphism that arises from the structure of the inner power.

Recall that a graph is connected if every pair of vertices are connected. The following

result falls as an immediate corollary of the previous theorem.

COROLLARY 2.8. Let G be a graph and let k > 2 be an integer. Then G(k) is connected if and

only for every pair of vertices (u1, ...,uk) and (v1, ...,vk) in V (G(k)) there exists a positive

integer n and a homomorphism ϕ : (Pn×Ck)−→ G with ϕ((i,1)) = ui and ϕ((i,n)) = vi

for all i ∈ {0,1, ...,k−1}.

Proof. Let G be a graph and let k > 2 be an integer. By definition, G(k) is connected

if and only if for every two vertices (u1, ...,uk) and (v1, ...,vk) in V (G(k)) there exists a

(u1, ...,uk)-(v1, ...,vk) path. Hence the result follows directly from Theorem (2.7).

2.4 Bipartiteness

We now discuss relationships between bipartiteness in a graph and the inner power.

THEOREM 2.9. Let G be a bipartite graph with |V (G)| ≥ 2. Then G(k) is disconnected for

all integers k ≥ 2.

Proof. Let G be a bipartite graph with partite sets V1 and V2. If either partite set is empty,

then G contains no edges and G(k) is certainly disconnected. Suppose V1 and V2 are nonempty
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and G contains at least one edge. Consider (v, ...,v) ∈V (G(k)) for some integer k ≥ 2 and

v ∈V1. Let W be a (v, ...,v)-(x1, ...,xk) walk in G(k). Either W is even or it is odd.

Suppose that W is even. Then there is an even v-xi walk in G for all i ∈ {1, ...,k}. Since

G is bipartite, xi ∈ V1 for all i ∈ {1, ...,k}. Hence there exists no even (v, ...,v)-(y1, ...,yk)

walk in G(k) where yi ∈V2 for some i ∈ {1, ...,k}.

Suppose instead that W is odd. Then there is an odd v-xi walk in G for all i ∈ {1, ...,k}.

Since G is bipartite, xi ∈V2 for all i∈{1, ...,k}. Hence there exists no odd (v, ...,v)-(y1, ...,yk)

walk in G(k) where yi ∈V1 for some i ∈ {1, ...,k}.

Thus, given a vertex (y1, ...,yk) in G(k) where yi ∈V1 and y j ∈V2 for some i, j ∈ {1, ...,k},

there does not exist an even (v, ...,v)-(y1, ...,yk) walk nor an odd (v, ...,v)-(y1, ...,yk) walk.

Since V1 and V2 are nonempty, such a vertex in G(k) is guaranteed to exist, and thus G(k) is

disconnected

THEOREM 2.10. Let G be a nonempty graph and k be a positive integer. Then G(k) is

bipartite if and only if G is bipartite and k is odd.

Proof. Let G be a nonempty graph and k be a positive integer. Furthermore, suppose G(k)

is bipartite. It remains to be shown that k must be odd and G is bipartite. In hopes of

a contradiction, suppose k is even. Since G is nonempty, there exists a,b ∈ V (G) with

ab ∈ E(G). Consider (v1,v2, ...,vk) ∈V (G(k)) where

vi =

 a if i is odd

b if i is even
.

Then vi−1vi,vivi+1 ∈ E(G) for all i ∈ {1,2, ...,k}, and hence (v1,v2, ...,vk) is self-adjacent,

inducing a loop. But then G(k) is not bipartite, a contradiction. Thus, k is odd.
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Again in hopes of a contradiction, suppose G is not bipartite. Then G contains an odd

cycle v0v1...v2nv0 where vi ∈V (G) for all i ∈ {0,1, ...,2n}. Consider

v0 = (v0, ...,v0)

v1 = (v1, ...,v1)

...

v2n = (v2n, ...,v2n).

These 2n+ 1 vertices induce an odd cycle, v0v1 ... v2nv0, in G(k). But then G(k) is not

bipartite, a contradiction. Thus, G is bipartite.

Conversely, suppose k is odd and G is bipartite. It remains to be shown that G(k) is

bipartite. Partition V (G) into partite sets V1 and V2. Partition V (G(k)) into the following

three subsets:

V(V1) = {(v1,v2, ...,vk) : vi ∈V1 for all i ∈ {1,2, ...,k}}

V(V2) = {(v1,v2, ...,vk) : vi ∈V2 for all i ∈ {1,2, ...,k}}

Velse =V (G(k))\ (V(V1)∪V(V2))

Suppose x = (x1,x2, ...,xk) and y = (y1,y2, ...,yk) are adjacent vertices in G(k). Since

x1 ∈ V (G) and since G is bipartite, either x1 ∈ V1 or x1 ∈ V2. Suppose x1 ∈ V1. By the

definition of the inner power,

x1,y2,x3,y4, ...,yk−1,xk,y1,x2, ...,yk−2,xk−1,yk
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is a path. In general, xi and x j are ends of a path of even length for all i, j ∈ {1, ...,k}, and xi

and y j are ends of a path of odd length for all i, j ∈ {1, ...,k}. Hence x ∈V(V1) and y ∈V(V2).

If instead x1 ∈ V2, then it may similarly be shown that x ∈ V(V2) and y ∈ V(V1). Thus two

vertices in G(k) are adjacent if and only if one vertex is in V(V1) and one vertex is in V(V2).

Then V(V1) and V(V2) induce a bipartite subgraph of G(k), and Velse is a set of isolated vertices

in G(k). Union the vertices of Velse with either V(V1) or V(V2) in an arbitrary fashion. Since no

two vertices within any one of the resulting sets are adjacent, then G(k) is bipartite.

Therefore, G(k) is bipartite if and only if G is bipartite and k is odd.

2.5 Inner Powers over Direct Products

We will now show that inner powers have distributive properties over the direct product.

This fact will be important in the next chapter.

THEOREM 2.11. Let G and H be graphs, and let k be a positive integer. Then (G×H)(k) ∼=

G(k)×H(k).

Proof. Let G and H be graphs, and k be a positive integer. Define ϕ : V ((G×H)(k))→

V (G(k)×H(k)) by

ϕ(((x1,y1),(x2,y2), ...,(xk,yk))) = ((x1,x2, ...,xk),(y1,y2, ...,yk)).

To show ϕ is an isomorphism, it remains to show that ϕ is injective, surjective, and

preserves adjacencies and nonadjacencies. To show ϕ preserves adjacencies and nonadja-

cencies, suppose

((x1,y1), ...,(xk,yk))((u1,v1), ...,(uk,vk)) ∈ E((G×H)(k)).
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Then (xi,yi)(ui+1,vi+1),(xi,yi)(ui−1,vi−1) ∈ E(G×H) for all i ∈ {1,2, ...,k}, hence

xiui+1,xiui−1 ∈ E(G) and yivi+1,yivi−1 ∈ E(H). Then

(x1,x2, ...,xk)(u1,u2, ...,uk) ∈ E(G(k))

and

(y1,y2, ...,yk)(v1,v2, ...,vk) ∈ E(H(k)),

and thus

((x1,x2, ...,xk),(y1,y2, ...,yk))((u1,u2, ...,uk),(v1,v2, ...,vk)) ∈ E(G(k)×H(k)).

Since the above implications can be reversed, ϕ preserves both adjacencies and nonadjacen-

cies.

To show ϕ is injective, suppose that

ϕ(((x1,y1), ...,(xk,yk))) = ϕ(((u1,v1), ...,(uk,vk))).

Then ((x1, ...,xk),(y1, ...,yk)) = ((u1, ...,uk),(v1, ...,vk)), hence (x1, ...,xk) = (u1, ...,uk) and

(y1, ...,yk) = (v1, ...,vk), whence xi = ui and yi = vi for all i ∈ {1, ...,k}. Then (xi,yi) =

(ui,vi) for all i ∈ {1, ...,k}, and thus ((x1,y1), ...,(xk,yk)) = ((u1,v1), ...,(uk,vk)). As hoped,

ϕ is injective.

To show ϕ is surjective, let ((x1, ...,xk),(y1, ...,yk))∈V (G(k)×H(k)). Then (x1, ...,xk)∈

G(k) and (y1, ...,yk) ∈ H(k), hence xi ∈ V (G) and yi ∈ V (H) for all i ∈ {1, ...,k}, whence

(xi,yi) ∈V (G×H), and thus ((x1,y1), ...,(xk,yk)) ∈V ((G×H)(k)) with

ϕ(((x1,y1), ...,(xk,yk))) = ((x1,y1), ...,(xk,yk)).
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Then ϕ is surjective.

Therefore ϕ is an isomorphism, and (G×H)(k) ∼= G(k)×H(k).

The property (G×H)(k) ∼= G(k)×H(k) suggests that the inner power may have appli-

cations to questions inolving the direct product. In the next chapter we explore possible

connections to the problem of direct product cancellation.
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Applications to Cancellation in the Direct Product

A primary motivation in our investigation of the inner power has been to provide some

insight into the direct product of graphs. In particular, we hope that the inner power can

be used to derive an intuitive proof for the following theorem. The current proof is due to

Lovász [5] and is quite lengthy and complex.

THEOREM 3.1. If G, H, and K are graphs and K contains an odd cycle, then G×K ∼= H×K

if and only if G∼= H.

We elaborate on this idea in the following sections.

3.1 More Preliminaries

In this section, we derive a theorem that will be instrumental to the alternate proof of

Theorem 3.1. The following definitions, theorems, and proofs are either motivated by or

paraphrased from a text by Hell and Nešetřil [4].

Recall that a homomorphism of G to H is a mapping ϕ from V (G) into V (H) such that

if uv ∈ E(G), then ϕ(u)ϕ(v) ∈ E(H). The set of all homomorphisms from G into H is

denoted Hom(G,H), and the number of homorphisms from G into H is denoted hom(G,H).

The number of injective homomorphisms from G into H is denoted inj(G,H).

Suppose θ = {S1,S2, ...,Sn} is a partition of V (G). The quotient, G/θ , of G by θ is

a graph on the vertex set V (G/θ) = {1,2, ...,n}. The edge set is the set of all pairs (i, j)

where uv ∈V (G) for some u ∈ Si and v ∈ S j.

The following is a useful identity involving the number of homomorphisms.
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LEMMA 3.2. For any graphs G and H, it follows that

hom(G,H) = ∑
θ∈P

inj(G/θ ,H),

where P is the set of all partitions of V (G).

Proof. Given a homomorphism f : G−→ H, we may associate with it a partition

θ = { f−1(h) : h ∈V (H)}

of V (G). Group together all homomorphisms f with the same partition θ . This collection

corresponds to the set of all injective homomorphisms from G/θ to H. Hence the total

number of homorphisms is equal to the sum of all injective homomorphisms from G/θ to H

over every possible partition θ of V (G). In other words, hom(G,H) = ∑
θ∈P

inj(G/θ ,H).

We also find that the number of homomorphisms into a product of graphs can be related

to the number of homomorphisms into the factors. Before proving this result, we give a

useful definition. Given a direct product G1×G2× ...×Gn of n graphs, the projection

πGi : V (G1×G2× ...×Gn)−→V (Gi)

of G1×G2× ...×Gn into Gi, for i ∈ {1, ...,n}, is a mapping where πGi((g1,g2, ...,gn)) = gi.

We observe that projections are homomorphisms since, for each i ∈ {1, ...,n}, if

(x1, ...,xn)(x′1, ...,x
′
n) ∈ E(G1× ...×Gn),

then

πGi((x1, ...,xn)(x′1, ...,x
′
n)) = xix′i ∈ E(Gi).
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Now we are ready for the theorem (first proved by Lovász in [5]).

LEMMA 3.3. For any graphs X , G, and H, we have

hom(X ,G×H) = hom(X ,G) ·hom(X ,H).

Proof. Consider the sets Hom(X ,G×H) and Hom(X ,G)×Hom(X ,H). These sets have

cardinalities hom(X ,G×H) and hom(X ,G) ·hom(X ,H) respectively. If we show that there

exists a bijection between these sets, then the equality in the claim must hold.

Define β : Hom(X ,G×H)−→Hom(X ,G)×Hom(X ,H) so that β ( f ) = (πG◦ f ,πH ◦ f )

for all f ∈ Hom(X ,G×H). This function is well-defined since πG ◦ f is a homomorphism

from a graph into G and πH ◦ f is a homomorphism from a graph into H. It remains to show

that β is a bijection.

To show that β is surjective, suppose (µ,λ ) ∈ Hom(X ,G)×Hom(X ,H). Define

Φ : X −→ G×H so that Φ(v) = (µ(v),λ (v)) for all v ∈ X . To show that Φ is a member of

the domain of β , we must verify that Φ is indeed a homomorphism. Suppose that uv∈ E(X).

Then µ(u)µ(v) ∈ E(G) and λ (u)λ (v) ∈ E(H), since µ ∈ Hom(X ,G) and λ ∈ Hom(X ,H).

Then (µ(u),λ (u))(µ(u),λ (v)) ∈ E(G×H) and thus Φ(u)Φ(v) ∈ E(G×H). In other

words, Φ ∈ Hom(X ,G×H). Since

β (Φ) = (πG ◦Φ ,πH ◦Φ) = (µ,λ ),

we conclude that β is indeed surjective.

To show that β is injective, suppose that β (Φ) = β (Ψ) for some

Φ ,Ψ ∈ Hom(X ,G×H). Since Φ ,Ψ ∈ Hom(X ,G×H), we can express them componen-

twise, so Φ(x) = (ΦG(x),ΦH(x)) and Ψ(x) = (ΨG(x),ΨH(x)). To show that Φ = Ψ , it

suffices to show that Φ(x) = Ψ(x) for all vertices x ∈ V (X). With this in mind we let
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x ∈V (X) be arbitrary. Then

Φ(x) = (ΦG(x),ΦH(x))

= (πG ◦Φ(x),πH ◦Φ(x))

= β (Φ)(x)

= β (Ψ)(x)

= (πG ◦Ψ(x),πH ◦Ψ(x))

= (ΨG(x),ΨH(x))

= Ψ(x).

Then β is a bijection, and therefore hom(X ,G×H) = hom(X ,G) ·hom(X ,H).

It is possible to find an enumeration, X1,X2, ... of all nonisomorphic graphs. The Lovász

vector of a graph G is the sequence {ni} where ni = hom(Xi,G). Interestingly, not only can

the existence of a graph be determined given the Lovász vector, but a graph can be uniquely

constructed given the Lovász vector. This follows from the next theorem (proved in [5]).

THEOREM 3.4. Given graphs G and H, then G∼= H if and only if hom(X ,G) = hom(X ,H)

for every graph X .

Proof. Let G and H be graphs. If G ∼= H, then surely hom(X ,G) = hom(X ,H) for every

graph X . Suppose conversely that hom(X ,G) = hom(X ,H) for every graph X . To show

G∼= H, it will suffice to show that inj(X ,G) = inj(X ,H) for all graphs X . This would imply

that inj(G,H) = inj(G,G) 6= 0 and inj(H,G) = inj(H,H) 6= 0, hence implying that there

exist injective homomorphisms from G into H and from H into G, and thus that G∼= H.
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We proceed by induction on the number of vertices in X . Suppose X has exactly one

vertex. Then any homomorphism of X is injective, and thus inj(X ,G) = hom(X ,G) =

hom(X ,H) = inj(X ,H). Hence we have established a basis for induction.

Now suppose that inj(X ,G) = inj(X ,H) for all graphs X with fewer than n vertices. We

assumed that hom(X ,G) = hom(X ,H). By Lemma 3.2, we thus have

∑
θ∈P

inj(X/θ ,G) = ∑
θ∈P

inj(X/θ ,H),

where P is the set of all partitions of V (G). Let t be the trivial partition of V (X) into

singletons. Then G/t ∼= G, so

inj(X ,G)+ ∑
θ∈P−t

inj(X/θ ,G) = inj(X ,H)+ ∑
θ∈P−t

inj(X/θ ,H). (3.1)

If θ is not the partition of V (X) into singletons, then X/θ is a graph with fewer than n

vertices. Hence, by the inductive hypothesis,

∑
θ∈P−t

inj(X/θ ,G) = ∑
θ∈P−t

inj(X/θ ,H). (3.2)

Thus by Equations 3.1 and 3.2, inj(X ,G) = inj(X ,H). By the reasoning given above, we

have G∼= H, and therefore, by induction, the claim is shown to be true.

The previous results in this section were given so that we could derive the next theorem,

which will be useful in our proof of Theorem 3.1. Notice that this theorem is a weaker result

than Theorem 3.1.
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THEOREM 3.5. Let G, H, and K be graphs where K contains a loop. Then G×K ∼= H×K

if and only if G∼= H.

Proof. If G ∼= H, then certainly G×K ∼= H ×K. Suppose that G×K ∼= H ×K. Then

for an arbitrary graphs X , hom(X ,G×K) = hom(X ,H ×K). By Lemma 3.3, we have

hom(X ,G) ·hom(X ,K) = hom(X ,H) ·hom(X ,K). Since K contains a loop, it follows that

hom(X ,K) 6= 0, since the mapping of all the vertices of X into the vertex of K with a loop is

a homomorphism. Thus hom(X ,G) = hom(X ,H). Since X was an arbitrary graph, Theorem

3.4 gives us G∼= H.

Homomorphisms can also be used to prove the following result involving direct powers,

which will be mentioned in the next section.

THEOREM 3.6. Let G and H be graphs and let k be a positive integer. Then Gk ∼= Hk if and

only if G∼= H.

Proof. Let G and H be graphs and let k be a positive integer. Certainly if G ∼= H, then

Gk ∼= Hk. Suppose that Gk ∼= Hk. By Theorem 3.4, hom(X ,Gk) = hom(X ,Hk) for all graphs

X . By Lemma 3.3, hom(X ,G)k = hom(X ,H)k for all graphs X . Since hom is defined over

the nonnegative integers, hom(X ,G) = hom(X ,H) for all graphs X , and therefore G∼= H,

completing the proof.

3.2 Cancellation of Inner Powers

As shown in Theorem 3.6, it is true that for any positive integer k, Gk∼=Hk if and only G∼=H.

This result regarding direct powers naturally leads to an analagous question regarding inner

powers. Suppose that G(k) ∼= H(k) for some positive integer k. Is it necessarily true that

G∼= H?
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K2 =G =

Figure 3.1: Nonisomorphic graphs G and K2.

G(2) = K(2)
2 =

Figure 3.2: The second inner powers, G(2) and K(2)
2 .

In Figures 3.1 and 3.2, G and K2 are examples of nonisomorphic graphs with isomorphic

inner powers, thus proving that the answer to the question above is “no.” In fact, the graphs

G and K2 are counterexamples for any even positive integer k.

THEOREM 3.7. Let G be the graph with exactly two vertices and two loops. Then G(k) ∼=

K(k)
2 for all positive even integers k.

Proof. Let G be the graph with two distinct vertices a and b and two loops aa and bb. Let

K2 be the complete graph on two vertices c and d with edge cd. Let k be an even integer.

Define ϕ : V (G)k −→V (K2)
k by ϕ((x1,x2, ...,xk)) = (ϕ1(x1),ϕ2(x2), ...,ϕk(xk)) where

ϕi(xi) =

 c if either xi = a and i is odd or xi = b and i is even

d if either xi = b and i is odd or xi = a and i is even
.

It is quickly evident that ϕ is a bijection. To show that ϕ is an isomorphism, it remains

to show that ϕ preserves both adjacencies and nonadjacencies.
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There are exactly two loops, on vertices (a,a, ...,a,a) and (b,b, ...,b,b), in G, since

the only closed walks of length k in G are a,a, ...,a,a and b,b, ...,b,b. Analagously, there

are exactly two loops, on vertices (c,d, ...,c,d) and (d,c, ...,d,c), in K2, since the only

closed walks of length k in K2 are c,d, ...,c,d and d,c, ...,d,c. Since ϕ((a,a, ...,a,a)) =

(c,d, ...,c,d) and ϕ((b,b, ...,b,b)) = (d,c, ...,d,c), it follows that ϕ preserves these adja-

cencies.

There is an edge, (a,b, ...,a,b)(b,a, ...,b,a), that is not a loop in G(k). There is also

an edge, (c,c, ...,c,c)(d,d, ...,d,d), that is not a loop in K(k)
2 . Since ϕ((a,b, ...,a,b)) =

(c,c, ...,c,c) and ϕ((b,a, ..,b,a)) = (d,d, ...,d,d), it follows that ϕ preserves this adjacency.

All vertices in G(k) other than (a,a, ...,a,a), (b,b, ...,b,b), (a,b, ...,a,b), and (b,a, ...,b,a)

are isolated. More precisely, any vertex that is not isolated is of the form (x1,x2, ...,xk) where

x1 = x3 = ...= xk−1 and x2 = x4 = ...= xk, since an adjacency with a vertex (y1,y2, ...,yk)

relies on the existence of an even path xi,yi+1, ...,y j−1,xi for all i and j even and for all i and

j odd. Similarly, all vertices in K(k)
2 other than (c,c, ...,c,c), (d,d, ...,d,d), (c,d, ...,c,d),

and (d,c, ...,d,c) are isolated. Hence, since ϕ preserves adjacencies and nonadjacencies, it

is an isomorphism.

These particular nonisomorphic graphs are not unique counterexamples, as shown in

Figures 3.3 and 3.4.

H = K3 =

Figure 3.3: Nonisomorphic graphs H and K3.
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H(2) = K(2)
3 =

Figure 3.4: The second inner powers of H and K3 are isomorphic (notice that these graphs
are each vertical reflections of the other).

We can show that Theorem 3.7 does not extend to all integral powers k. Suppose k is

odd. Since G contains a loop, G(k) contains a loop. However, by Theorem 2.10, K(k)
2 is

bipartite. Thus G(k) and K(k)
2 are not isomorphic. This gives evidence that G(k) ∼= H(k) might

imply G∼= H when k is odd. We have not been able to prove this conjecture. However, we

provide what may be a partial proof.

Our argument relies on two theorems due to Lovász [5]. Proofs of the these two theorems

will not be given, but we will remark that the proof to the first theorem is hard, and that the

second theorem follows from the first.

THEOREM 3.8. If A×C∼= B×C, then there is an isomorphism Φ : V (A×C)−→V (B×C)

where Φ(a,c) = (Φ(a,c),c).

THEOREM 3.9. If C contains an odd cycle, then A×C ∼= B×C if and only if A∼= B.

From these two theorems, we argue the following. Our theorem would follow as a

corollary.

CONJECTURE 3.10. For graphs G and H, G×Ck
∼= H×Ck if and only if G(k) ∼= H(k).

Our argument goes as follows. Suppose G×Ck
∼= H×Ck. By Theorem 3.8, we can

choose some isomorphism Φ : V (G×Ck) −→ V (H ×Ck) where Φ((g, i)) = (ϕ(g, i), i).
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Define Ψ : V (G(k))−→V (H(k)) where

Ψ((x0,x1, ...,xk−1)) = (ϕ(g,0),ϕ(g,1), ...,ϕ(g,k−1)).

To show that Ψ is an isomorphism, we first show that Ψ is injective.

To show that Ψ is injective, notice that

Ψ((x0, ...,xk−1)) =Ψ((y0, ...,yk−1))

⇒ (ϕ(x0,0),ϕ(x1,1), ...,ϕ(xk−1,k−1)) = (ϕ(y0,0),ϕ(y1,1), ...,ϕ(yk−1,k−1))

⇒ ϕ(xi, i) = ϕ(yi, i) for all i ∈ {0, ...,k−1}

⇒ (ϕ(xi, i), i) = (ϕ(yi, i), i) for all i ∈ {0, ...,k−1}

⇒ Φ(xi, i) = Φ(xi, i) for all i ∈ {0, ...,k−1}

⇒ xi = yi for all i ∈ {0, ...,k−1}.

Now we show that Ψ preserves both adjacencies and nonadjacencies. Notice that

(x0, ...,xk−1)(y0, ...,yk−1) ∈ E(G(k))

⇔ xiyi±1 ∈ E(G) for all i ∈ {0, ..,k−1}

⇔ (xi, i)(yi±1, i±1) ∈ E(G×Ck) for all i ∈ {0, ..,k−1}

⇔ Ψ(xi, i)Ψ(yi±1, i±1) ∈ E(H×Ck) for all i ∈ {0, ..,k−1}

⇔ (ϕ(xi, i), i)(ϕ(yi±1, i±1), i±1) ∈ E(H×Ck) for all i ∈ {0, ..,k−1}

⇔ ϕ(xi, i)ϕ(yi±1, i±1) ∈ E(H) for all i ∈ {0, ..,k−1}

⇔ (ϕ(x0,0),ϕ(x1,1), ...,ϕ(xk−1,k−1))(ϕ(y0,0),ϕ(y1,1), ...,ϕ(yk−1,k−1)) ∈ E(H(k))

⇔ Ψ(x0,x1, ...,xk−1)Ψ(y0,y1, ...,yk−1) ∈ E(H(k)).
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Since Ψ is an isomorphism preserving adjacencies and nonadjacencies, Ψ is an isomorphism,

and thus G(k) ∼= H(k).

Conversely, suppose G(k) ∼= H(k). Choose some isomorphism Φ : V (G(k))−→V (H(k))

where Φ((x0,x1, ...,xk)) = (φ0(x0, ...,xk−1),φ1(x0, ...,xk−1), ...,φk−1(x0, ...,xk−1)). Define a

map Ψ : V (G×Ck)−→V (H×Ck) where Ψ(x, i) = (φi(x,x, ...,x), i). We want to show that

Ψ is an isomorphism.

We show that Ψ preserves both adjacencies and nonadjacencies. Notice that

(x, i)(y, i±1) ∈ E(G×Ck)

⇔ x,y ∈ E(G)

⇔ (x,x, ...,x)(y,y, ...,y) ∈ E(G(k))

⇔ Φ(x,x, ...,x)Φ(y,y, ...,y) ∈ E(H(k))

⇔ (ϕ0(x,x, ...,x), ...,ϕk−1(x,x, ...,x))(ϕ0(y,y, ...,y), ...,ϕk−1(y,y, ...,y)) ∈ E(H(k))

⇔ ϕi(x,x, ...,x)ϕi±1(y,y, ...,y) ∈ E(H) for all i ∈ {0, ...,k−1}

⇔ (ϕi(x,x, ...,x), i)(ϕi±1(y,y, ...,y), i±1) ∈ E(H×Ck) for all i ∈ {0, ...,k−1}

⇔ Ψ(x, i)Ψ(y, i±1) ∈ E(H×Ck)

If we could show that Ψ is injective, we would have a proof of Conjecture 3.10. The next

result is necessary for our proof of Theorem 3.1, but since it relies on Conjecture 3.10, we

list it as a conjecture.

CONJECTURE 3.11. Let G and H be graphs, and let k be a positive odd integer. Then

G(k) ∼= H(k) if and only if G∼= H.

Our argument goes as follows. If Conjecture 3.10 is true, then G(k) ∼= H(k) if and

only if G×Ck
∼= H×Ck. Since Ck contains an odd cycle, we have by Theorem 3.9 that

G×Ck
∼= H×Ck if and only if G∼= H. By transitivity, then G(k) ∼= H(k) if and only if G∼= H.
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3.3 Inner Powers and Direct Product Cancellation

We now provide our argument for Theorem 3.1, reiterated below:

THEOREM 3.12. If K contains an odd cycle, then G×K ∼= H×K if and only if G∼= H.

Certainly if G ∼= H then G×K ∼= H ×K. Suppose conversely that G×K ∼= H ×K

and that K is nonbipartite. Then K has a cycle of odd length k. Raising each side of the

isomorphism to the kth inner power, we find that

(G×K)(k) ∼= G(k)×H(k).

By Theorem 2.11,

G(k)×K(k) ∼= H(k)×K(k).

Since k is the length of a closed walk in K, then, by Theorem 2.3, K(k) contains a loop.

Hence, by Theorem 3.5, it follows that G(k) ∼= H(k). Finally, since k is odd, we would have,

if Conjecture 3.11 is true, that G∼= H.

As mentioned, the original motivation of the inner power was to provide a proof of this

theorem. We would like to be able to provide a proof that does not rely on Theorem 3.8,

due to the length and complexity of its proof. It is the opinion of the author that a proof of

Theorem 3.1 involving inner powers, and that is not lengthy and complicated, exists, and we

invite the reader to join us in searching.
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