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The effect of sulfur covalent bonding on the electronic shells
of silver clusters

Anthony F. Pedicini, Arthur C. Reber, and Shiv N. Khannaa)

Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA

(Received 25 August 2013; accepted 13 October 2013; published online 30 October 2013)

The nature of the bonding in AgnSm
0/− clusters, n = 1–7; m = 1–4, has been analyzed to understand

its effect on the electronic shell structure of silver clusters. First-principle investigations reveal that
the sulfur atoms prefer 2 or 3-coordinate sites around a silver core, and that the addition of sulfur
makes the planar structures compact. Molecular orbital analysis finds that the 3p orbitals of sulfur
form a bonding orbital and two weakly bonding lone pairs with silver. We examine the electronic
shell structures of Ag6Sm, which are two electrons deficient of a spherical closed electronic shell
prior to the addition of sulfur, and Ag7Sm

− clusters that contain closed electronic shells prior to
the addition of sulfur. The Ag6S4 cluster has a distorted octahedral silver core and an open shell
with a multiplicity of 3, while the Ag7Sn

− clusters have compact geometries with enhanced stabil-
ity, confirming that the clusters maintain their electronic shell structure after bonding with sulfur.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827091]

I. INTRODUCTION

Noble metal particles have always attracted attention,
largely due to their optical properties and it was almost 150
years ago that Faraday synthesized and demonstrated the col-
ors of colloidal gold.1 The properties of this new state of mat-
ter have been found to be very different from the bulk and
the synthesis of materials using selected clusters as the build-
ing blocks is a promising strategy for the design of new ma-
terials with desired characteristics.2 Metallic clusters, how-
ever, generally coalesce when assembled as bare entities and
one needs ways to protect the individual clusters. One of the
successful approaches to stabilize the new materials is to at-
tach ligands that can prevent fusion of clusters as they are
assembled.3–8 This approach has been particularly successful
for noble metal clusters, and numerous atom-precise clusters
based ligated gold and silver particle assemblies have been
synthesized.9–20 Many of the ligands of choice use the sulfur
containing thiol group and the passivation and stabilization
of bare metallic clusters through the addition of thiols during
synthesis also allows for the tuning of optical, physical, and
electronic properties.21–37 In addition to pure species, as we
showed in a recent work, the ligation allows stabilization of
cluster based material containing even a bimetallic core. The
new material consisted of Ag4Ni2 clusters ligated with DMSA
where the silver and the nickel atoms are linked by S atoms.38

The conceptual framework over which the cluster’s sta-
bility may be understood is the superatom model which finds
that clusters with a zero effective valence may be found
when the number of itinerant valence electrons in the metal-
lic core corresponds to an electronic shell closing.39 This
model has been quite successful in rationalizing the stabil-
ity of bare and ligand protected clusters.8, 25, 39 The silver (or

a)Author to whom correspondence should be addressed. Electronic mail:
snkhanna@vcu.edu

gold) atoms provide one delocalized valence electron as the
atomic configuration 4d10 5s1 (5d10 6s1) where the d elec-
trons are filled and the 5s are delocalized as a diffuse
electron gas. The confined nearly free electron gas results in
electronic states that are grouped into shells with effective
quantum numbers in a spherical cluster of 1S2, 1P6, 1D10, 2S2

with corresponding magic numbers of 2, 8, 18, and 20.40, 41

These closed electronic shell structures have large HOMO-
LUMO gaps, reduced reactivity with molecular oxygen, and
enhanced stability.42, 43 For nonspherical metallic clusters, the
electron gas undergoes a crystal field like splitting,43–46 for
example, Ag6 has six valence electrons and a planar structure,
so the 1P6 orbitals are split into two low lying 1Px and 1Py

orbitals, and an unoccupied 1Pz orbital resulting in a large
HOMO-LUMO gap. The addition of sulfur ligands reduces
the effective valence electron count by moving a delocalized
electron into a localized bonding orbital. To understand the
fundamental principles underlying this model, we seek to un-
derstand the bonding between sulfur and noble metals and the
effect of the bonding on the electronic shell structure of the
noble metal cluster. To do this, we investigate the stability
and reactivity of AgnSm clusters as the simplest model sys-
tem which may help develop such a base of knowledge.

The purpose of this paper is to present first principles
theoretical studies on the atomic structure, electronic struc-
ture, and reactivity of neutral and anionic AgnSm

0/− clusters,
n = 1–7; m = 1–4. In addition to the silver cluster based ma-
terials, our work is motivated by recent studies on the effect of
sulfur on the stability of Ag nanoislands.47 The studies indi-
cate that the presence of sulfur enhances the coarsening of Ag
nanoislands on Ag(100). An analysis of the experimental data
suggests that AgS2 cluster might be active for such a coars-
ening. Our studies on the stability of the cluster towards the
removal of a Ag or S atom may be useful to develop a physical
picture. We would like to add that the atomic and electronic
structure of neutral and charged silver clusters Agn, Agn

−,

0021-9606/2013/139(16)/164317/8/$30.00 © 2013 AIP Publishing LLC139, 164317-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.172.48.59 On: Mon, 12 Oct 2015 17:44:46

http://dx.doi.org/10.1063/1.4827091
http://dx.doi.org/10.1063/1.4827091
http://dx.doi.org/10.1063/1.4827091
mailto: snkhanna@vcu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4827091&domain=pdf&date_stamp=2013-10-30


164317-2 Pedicini, Reber, and Khanna J. Chem. Phys. 139, 164317 (2013)

and Agn
+ have attracted attention in several studies.43, 48–52 A

recent study has also focused on the structure of AgnS4
−

(n = 1–7) clusters that have been generated by the elec-
trospray ionization of Ag7(DMSA)4

−, offering a mechanism
for the production of AgnSn

− clusters.51, 53 There are sev-
eral other studies on small AgSm,54 Ag2nSn,55 and AunS+

clusters.56 However, a comprehensive investigation of the na-
ture of the electronic structure modification of silver clusters
through the addition of sulfur has yet to be explored. The
present work is designed to fill this gap as it focuses on the
electronic stability and properties of small silver–sulfur clus-
ters through the sequential increases of Ag and incremental
addition of S within AgnSm and AgnSm

−. In particular, we
examine the electronic shell structures of Ag6Sm, which are
two electrons deficient of a spherical closed electronic shell
prior to the addition of sulfur, and the Ag7Sm

− clusters that
also contain closed electronic shells prior to addition of sul-
fur. This comparison reveals that the electronic shell structure
of the silver clusters is still apparent after the addition of sul-
fur, and highlights the effect of bonding at the silver–sulfur
interface.

II. THEORETICAL METHODS

First-principles electronic structure calculations on the
neutral and anionic AgnSm clusters were carried out within
a gradient-corrected density-functional approach.57 The elec-
tronic orbitals are represented by a linear combination of
atomic orbitals that are formed, in turn, through a linear
combination Slater-type orbitals (STO) located at the atomic
sites. Actual calculations were completed using the Amster-
dam Density Functional (ADF) set of codes.58 To determine
the ground state many initial geometries and spin multiplici-
ties were sampled. All structures were fully optimized with-
out constraint or symmetry to allow for full variational free-
dom. The clusters’ molecular orbitals were assigned subshell
distinctions through inspection of their nodes in the calcu-
lated wave function. The exchange and correlation effects
were approximated using the gradient corrected functional
proposed by Perdew, Burke, and Ernzerhof (PBE).57 Rela-
tivistic effects were included using the Zeroth Order Regular
Approximation56 while employing a TZ2P basis and Large
frozen electron core for both silver and sulfur atoms.

A fragmentation analysis as implemented within ADF
was performed to get a deeper insight into the nature of the
bonding.58–60 In this analysis the system in question is consid-
ered as a sum of “fragments,” each fragment yielding a basis
set. The fragments are then combined to calculate the elec-
tronic structure of the full system. Here, we chose the silver
cluster and the sulfur atoms themselves to serve as fragments.
This procedure allows for both the analysis of the change in
charge density within the cluster using the charge density of
its composite fragments and also yields the requisite infor-
mation needed in determining which orbitals are involved in
bonding. Our calculated bond lengths for Ag–Ag, Ag–S, and
S–S bonds are 2.60, 3.40, and 1.92 Å compared to the exper-
imental values of 2.53 Å for the Silver dimer61 and 1.89 Å
for the Sulfur dimer, and no experimental result is available
for AgS. The calculated bond strengths of 1.68 eV,62 2.40 eV,

FIG. 1. Ground state geometries of neutral AgnSm clusters, with n = 1–7
and m = 0–4.

and 5.23 eV are also comparable to experimental values of
1.66 eV for Ag–Ag, and 4.40 eV for S–S bonds.

III. RESULTS AND DISCUSSION

The ground state geometries of the neutral AgnSm clus-
ters are shown in Figure 1, and the anionic structures are
shown in Figure 2. In all of the clusters with more than 3 silver
atoms, the ground state structure is found to have a metallic
center with all of the Ag atoms coordinated to one another,
with sulfur binding at the periphery of the silver core. We are
first interested in two features of the clusters: (1) how does
the addition of sulfur affect the geometry of the silver core
and (2) which sites of the silver cluster do the sulfur atoms
prefer to bond? The Agn clusters are planar for n ≤ 6 atoms
as is expected based on the electron count. For neutral AgnSm

clusters, the addition of sulfur leads to non-planar structure
at smaller numbers of silver atoms than the Agn clusters. For
example, the metallic cores in Ag4S, Ag5S, and Ag6S are all
nonplanar, with the sulfur displacing one silver atom from a

FIG. 2. Ground state geometries of AgnSm
− clusters, with n = 1–7 and

m = 0–4.
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planar geometry. The addition of successive sulfur eventually
produces a compact metal core as seen in Ag4S3, Ag5S4, and
Ag6S3. The Ag7 cluster is essentially in a compact geome-
try for the pure cluster, so the addition of sulfur does not
significantly compact the metallic core. The binding site of
the sulfur for clusters with one or two silver atoms results in
ring structures and sulfur-sulfur bonding; however, for clus-
ters with more than three silver atoms, the predominant bind-
ing sites are the ones in which the sulfur atom binds to a 3-
coordinated site with three silver atoms forming a distorted
tetrahedron. There are a few cases of the sulfur forming a
disulfide bond, in which adjacent sulfurs bind together, as
seen in Ag5S2, Ag5S4, and Ag6S3. Of particular interest is the
Ag6S4 cluster which has a structure in which the silver core
forms a distorted octahedron, and the four sulfur atoms bind
to 3-coordinated sites. The ground state structure of Ag6S4 is
found to have a multiplicity of 3 corresponding to spin mag-
netic moment of 2 μb.

Figure 2 shows the ground state atomic structures of
the anionic AgnSm

− clusters. The progression from planar
to nonplanar silver core occurs with more sulfur atoms than
the neutral clusters, however, the transition still occurs in all
cases. The smallest non-planar clusters for n = 4, 5, and
6 are Ag4S3

−, Ag5S2
−, and Ag6S−. The metallic cores be-

come compact with the additional sulfur, as seen in Ag4S4
−,

Ag5S4
−, Ag6S3

−, and Ag7S3
−. There are several cases of the

sulfur binding to the 2-coordinated sites on the edge of the
metallic core; however, the most common binding site for the
sulfur is the 3-coordinated site on top of three silver atoms. A
disulfide bond is seen in Ag4S4

− and Ag5S4
−. Of particular

interest is the Ag7S4
− cluster, as Ag7

− has a closed electronic
shell prior to the addition of sulfur, so the effect of the bond-
ing of sulfur to a closed-shell cluster is especially intriguing.

To analyze the relative stability of the clusters, we next
consider the removal energies (RE), the energy required to
remove a single Ag or S atom from the cluster. These are cal-
culated using the equation

RE = E(A) + E(Ax−1By) − E(AxBy). (1)

Here, E(A), E(Ax − 1By), and E(AxBy) are the total energies of
the A atom, Ax − 1By cluster, and AxBy cluster, respectively.
Figures 3(a) and 3(b) show the removal energy trends of Ag
and S from the AgnSm clusters. The silver removal energies of
Figure 3(a) demonstrate an even-odd pattern for the Agn clus-
ters, with Ag6 showing the largest removal energy. The Ag6Sm

clusters exhibit enhanced Ag removal energies from m = 0–3
with the AgnS4 series having its largest peak at Ag5S4. Note
that Ag6S4 has a triplet ground state that probably causes this
break in the trend. At smaller sizes, no clear trend emerges
after the addition of two or more sulfur atoms. Figure 3(b)
plots the S removal energy of the neutral clusters, which are
consistently much larger than the silver removal energies due
to the strong covalent bond between sulfur and silver. The
binding of the sulfur atoms is seen to increase with additional
silver atoms, with As7S having the largest S removal energy
and with AgS having the smallest. The binding of the second
sulfur atom is generally larger than for the first sulfur atom
except for Ag2 and Ag4, with the largest sulfur removal en-
ergy being at m = 2 for the AgSm and Ag7Sm clusters, 3 for

FIG. 3. Calculated removal energy plots for Ag (a) and S (b) in AgnSm.

Ag4Sm and Ag6Sm, and 4 for Ag2Sm and Ag5Sm. The clusters
of Ag6Sm, which we have marked for particular interest shows
that the S removal energy initially increases with the addi-
tion of S, and the S removal energy drops to its initial value
with the addition of the fourth sulfur atom. This implies that
the Ag6Sm cluster series is becoming increasingly more sta-
ble through sulfur addition. As mentioned above, it has been
suggested that a AgS2 complex might be playing a role in the
coarsening of Agn islands. The present study shows that this
cluster has a low binding energy to remove a Ag atom while
having a high energy to remove a S atom. The weak bond-
ing of Ag seems consistent with the ability of S2 to transport
Ag atoms. However, further work, and inclusion of kinetics,
is needed to examine this island formation.

We next analyze the removal energies for the anionic
clusters AgnSm

− in Figures 4(a) and 4(b). An even-odd al-
ternation in Ag removal energy for the Agn

− and AgnS− se-
ries is seen in Figure 4(a), however for clusters with 2–4 sul-
fur atoms, the even-odd pattern is no longer apparent. This
suggests that the bonding energy of the sulfur atom becomes
more important to the stability of the cluster than the stabi-
lization afforded by the shell closing of the metal cluster. The
maximum silver removal energy for m = 2, 3, and 4 are found
at n = 7, 6, and 5 respectively. The sulfur removal energies
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FIG. 4. Calculated removal energy plots for Ag (a) and S (b) in AgnSm
−.

are shown in Figure 4(b), and it is seen that the addition of the
second and third sulfur generally binds more strongly than the
first sulfur, with the largest sulfur removal energy being
m = 2 for the Ag2Sm

−, Ag4Sm
−, Ag6Sm

−, and Ag7Sm
− clus-

ters, 3 for Ag3Sm
−, and 4 for AgSm

− and Ag5Sm
−. The largest

sulfur binding energies are seen for Ag7S2
− which is partic-

ularly surprising since Ag7
− has a closed electronic shell, so

one would expect it to bind sulfur most weakly. The electron
affinities of the clusters are plotted in Figure 5, and show that
these clusters are all quite stable as anions. The electron affin-
ity increases with the addition of sulfur as the m = 4 AgnSm

clusters all have the highest electron affinity for a given num-
ber of sulfur atoms, and the m = 0 clusters all have the lowest
electron affinity, except for Ag3

−.
The HOMO-LUMO gaps of the neutral and anionic

AgnSm
0/− clusters are plotted in Figures 6(a) and 6(b) to ex-

amine the effect of the sulfur on the electronic shell struc-
ture. Figure 6(a) shows that the largest HOMO-LUMO gaps
for the Agn clusters are Ag2 and Ag6, as predicted by the
nearly free electron model. The addition of sulfur decreases
the HOMO-LUMO gap of nearly all of clusters, most notably
in the Ag6Sm clusters with the Ag6 clusters having the largest
gap and Ag6S4 having the smallest. We note that the Ag6 clus-
ter is expected to have a large gap with a planar structure,

FIG. 5. Electron affinity (EA) of the AgnSm clusters.

while both the Ag6 cluster in an octahedral geometry and the
Ag6S4 cluster which has a compact distorted octahedral struc-
ture have ground states with two unpaired electrons. If the sul-
fur was reducing the effective valence electron count of the
cluster, the Ag6S4 would have an effective valence electron
count of 2, which would result in a closed electronic shell. The

FIG. 6. Plot of the HOMO–LUMO gap energies of (a) netural AgnSm and
(b) anions.
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FIG. 7. One electron energy level schematic of the bonding between the Ag2
and S atom form the Ag2S cluster.

fact that the octahedral Ag6S4 cluster is maintaining the same
spin multiplicity as the Ag6 octahedral core suggests that the
sulfur bonding is not disrupting the electronic shell structure
of the Ag6 core, although further analysis of the electronic
structure is needed.

Figure 6(b) shows the HOMO-LUMO gaps of the
AgnSm

− anions. Note that the unusually large gap of Ag−

distorts the scale as compared to Figure 6(a). An even odd
oscillation is seen with the Ag5S4

− having an especially large
HOMO-LUMO gap, and the Ag7Sm

− series being of partic-
ular interest. Ag7

− is interesting because its HOMO-LUMO
gap is 1.47 eV, which is expected based on it having a closed
electronic shell in the spherical jellium model with 8 va-
lence electrons. The bonding with sulfur results in the Ag7S−,
Ag7S2

−, and Ag7S3
− all having the same or larger HOMO-

LUMO gaps than Ag7
−. Ag7S4

− has a smaller gap than Ag7
−,

but it is still a respectable 1.32 eV. If the bonding with sulfur
was reducing the effective valence electron count, then the
HOMO-LUMO gap would decrease with the addition of sul-
fur. The HOMO-LUMO gaps indicate that the effect of sulfur
bonding causes the HOMO-LUMO gap of the Ag6Sm clus-
ters to decrease while producing a compact metal core, while
in the case of Ag7Sm

−, the HOMO-LUMO gap is maintained.
Before we proceed further, let us examine the nature of

bonding between Ag and S in detail by considering the elec-
tronic structure of the Ag2S cluster, the simplest silver-sulfur
cluster. Figure 7 shows the molecular orbital picture of Ag2

and S combining to form Ag2S. The Ag2 has two valence elec-
trons, and has a HOMO-LUMO gap of 2.10 eV. The addition
of a single sulfur results in a structure in which the S binds in a
2-coordinated site to both silver atoms, also seen in Fig. 7. The
Ag–Ag bond length expands from 2.60 Å in Ag2 to 3.16 Å,
and the HOMO-LUMO gap decreases to still a relatively large
value of 1.50 eV. The sulfur 3p orbitals introduce three new
orbitals, the lowest energy of which is a bonding orbital per-
pendicular to the surface of the cluster. The next lowest or-
bital is a more weakly bonding orbital where the 3p orbital
of sulfur is parallel with the silver dimer, and the HOMO is
a nonbonding orbital in which the 3p orbital of sulfur is per-
pendicular to the silver dimer. The LUMO is an antibonding
orbital where the 3p orbital of sulfur is of opposite phase as
the lowest energy valence orbital. The sulfur provides four va-
lence electrons, and the Ag2 provides two valence electrons.
The overall shell structure of Ag2 is still intact within Ag2S,
and the two orbitals of weakly bonded or lone pair primarily
located on the sulfur are filled, becoming the frontier orbitals.

To understand the effect of sulfur on the electronic struc-
ture of Ag6Sm and Ag7Sm

−, their density of states along with
their projected density of states is displayed in Figure 8. We
also employ the tool of Overlap Population Density of States
(OPDOS) in which a positive OPDOS points to constructive

FIG. 8. Density of States, Projected Density of States, and OPDOS plots for Ag6Sm (a) and Ag7Sm
− (b), m = 0–4.
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interference between the Ag and S orbitals indicating covalent
bonding, and a negative OPDOS points to destructive interfer-
ence between the Ag and S orbitals indicating an antibonding
orbital.58, 63 In our plots the black OPDOS is for the spin up
channel, and the red in for the spin down, and the sign of the
OPDOS has been inverted. In all plots, the 4d silver bands are
prominent from −4.5 to −2.0 eV, while the green Ag 5s pro-
jected DOS indicate the delocalized orbitals are found mostly
in the range of −2 to 0 eV. The sulfur states are most dense
in this range as well, near the HOMO level, with some aris-
ing below the 4d band. Using the OPDOS plots we can verify
that the sulfur density present below the 4d bands is bonding
in nature, while the negative OPDOS of the LUMOs in all
cases shows that they are antibonding. This is consistent with
the molecular orbital plot from Figure 7, with one set of deep
bonding orbitals appearing with a number of weakly bond-
ing and nonbonding orbitals appearing at or near the HOMO.
The presence of large density of 5s orbitals states also indi-
cates that the delocalized orbitals of the metallic cluster are
still occupied and are near the frontier orbitals. Another simi-
larity between these densities of states and the simple picture
in Ag2S is that the LUMO of these clusters, except for Ag6S4,
are all antibonding Ag-S orbitals. The density of states reveals
two energy regions that are predominantly due to S, one deep
in the energy spectrum, and a second near the HOMO, and
that the LUMO of most of the AgnSm clusters are antibond-
ing orbitals between the silver and sulfur.

We next examine the molecular orbital diagrams of
Ag6S to examine the electronic structure. The top panel of
Figure 9 shows the planar structure of Ag6 and its large
HOMO-LUMO gap of 2.27 eV. This gap size is explained by
the structure of the cluster itself, which contains an electronic
structure of delocalized Ag 5s states |1S2|1P4‖1P2|, where
capital letters represent the jellium-like delocalized orbital.
This delocalized orbital representation also describes Ag6S,
where adding S to form Ag6S result in two 1P orbitals, shown
in green in Fig. 9, are still occupied. The sulfur provides one
deep bonding orbital, and two lone-pair orbitals, but the elec-
tronic shell structure of the silver is still discernible.

The molecular orbital diagrams of Ag6S2, Ag6S3, and
Ag6S4 are shown in the middle and bottom panels of Figure 9.
We can see that both Ag6S2 and Ag6S3 have three molecular
orbitals that can be assigned as 1P, resulting in the filling of
the 1P6 shell. The fragment containing Ag6 in the geometry of
Ag6S2 has a near degeneracy at the HOMO, with a HOMO-
LUMO gap of only 0.1 eV, and that the addition of S results
in 3 lone pair orbitals for a total of 6 orbitals above the 4d
band. Ag6S3 has a disulfide bond resulting in only 4 lone pair
orbitals above the 4d band, as the disulfide bonding orbital is
lower in energy.

The electronic structure of Ag6S4 has two unpaired elec-
trons which result from having 11 orbitals above the 4d band,
3 of which correspond to the filling of the 1P6 shell, and 8
corresponding to the lone pair on sulfur. There are only 20
electrons available to fill these orbitals, and because the sul-
fur prefers to bind to a 3-coordinated site the cluster is un-
able to Jahn-Teller distort to quench its magnetic moment.
The Ag6 fragment in the geometry of Ag6S4 also has two un-
paired electrons. This demonstrates that the metallic shell is

FIG. 9. The one electron energy levels and associated molecular orbital iso-
surfaces of Ag6 & Ag6S; 3Ag6 Core, Ag6S2 & Ag6S3; 3Ag6 Core & Ag6S4,
arrows for spin-up and spin-down, respectively.

still discernible is Ag6S4 even though the sulfur has bonded
with the cluster.

Next we examine the Ag7Sm
− clusters, where their pure

cluster analogues already have a closed electronic shell. The
top panel of Figure 10 shows the one electron levels of the
Ag7

− core belonging to the Ag7S− cluster. Surprisingly, the
ground state structure results in an open metallic core in
which the electronic shell structure is 1P4, with the 1Pz orbital
antibonding in character with sulfur serving as the LUMO.
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FIG. 10. The one electron energy levels and associated molecular orbital
isosurfaces of Ag7

− & Ag7S−; Ag7
− Core, Ag7S2

− & Ag7S3
−; Ag7

− Core
& Ag7S4

−.

The cluster still has 5 orbitals above the 4d band, so this may
be due to one of the 1P orbitals hybridizing with the lone
pair. For the Ag7S2

− cluster and Ag7S3
− cluster, as shown in

Figure 10 (middle panel), the 1P6 shell is full in both the Ag7
−

cluster fragment and the Ag7S2
− and Ag7S3

− clusters. This
shows that if the metallic core has a closed electronic shell,
then the addition of sulfur maintains that closed shell charac-
ter. The filled |1P6| orbital is also found in Ag7S4

−, with the
electronic structure of the cluster above the 4d band consist-
ing of 8 lone pair orbitals and 3 orbitals filling the 1P6 shell.

FIG. 11. The one electron energy levels and associated molecular orbital
isosurfaces of Ag5S4

−.

This demonstrates that the bonding between sulfur and a sil-
ver cluster results in a deep bonding orbital per sulfur atom,
and two weakly bonding/nonbonding orbitals per sulfur atom.
Furthermore, the electronic shell structure of the Ag cluster is
still discernible after the addition of the sulfur.

Lastly we examine the electronic structure of Ag5S4
− be-

cause of its large 2.24 eV HOMO-LUMO gap, to understand
the origin of its stability. The metallic core has a pyramidal
structure, with two sulfurs decorating the faces of the pyra-
mid, and two more forming a disulfide bond on the square
face of the metallic core. The electronic structure reveals three
deep bonding orbitals between the silver core and sulfur, a
disulfide bond orbital, a filled 1P6 shell, and 6 lone pair or-
bitals. Figure 11 shows that the formation of the disulfide
bond is due to two 3p sulfur orbitals perpendicular to the
metal core, which reduces the number of lone pair orbitals.
This offers another mechanism which affects the electronic
structure. In some ways, this is more similar to the bonding
of a sulfur based ligand, which will have one fewer lone pair
orbitals per ligand than the atomic sulfur. The combination of
a closed 1P6 shell, and a disulfide bond results in the Ag5S4

−

having a much larger HOMO-LUMO gap than any other of
the Ag5Sm

− clusters.

IV. CONCLUSION

In summary, the geometric and electronic structures of
neutral and anionic AgnSm clusters have been investigated
to understand the bonding and effect on the electronic shell
structure of the silver core. It has been shown that the elec-
tronic shell structure of silver is maintained through subse-
quent additions of sulfur. This is demonstrated by the triplet
multiplicity of the Ag6S4 cluster, in which the preferred 3-
coordinate bonding site of sulfur results in the metallic core
taking an octahedral structure. Because the bonding prevents
a Jahn-Teller distortion from occurring, the cluster has the
same triplet multiplicity of the Ag6 cluster in an octahedral
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structure. Secondly, the closed shell of Ag7
− is retained af-

ter the addition of sulfur. Furthermore, one electron levels of
the AgnSm clusters have occupied orbitals that correspond to
the filling of the 1P6 shells. A simple molecular orbital picture
for the bonding of sulfur to the metallic core is found in which
one bonding orbital and two lone-pair orbitals are formed for
each sulfur added. The exception to this rule is the case of
the disulfide bond, which results in the reduction of one in the
number of lone pair orbitals. These results verify that electron
counting rules with the addition of sulfur are still valid and in-
dicate the metallic shell structure of silver clusters bound by
sulfur is surprisingly robust.
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