

Virginia Commonwealth University VCU Scholars Compass

Physics Publications

Dept. of Physics

2014

Potential of ZrO clusters as replacement Pd catalyst

Swayamprabha Behera Virginia Commonwealth University, beheras@vcu.edu

Nicholas King Virginia Commonwealth University

Devleena Samanta Virginia Commonwealth University, Stanford University

Puru Jena Virginia Commonwealth University, pjena@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/phys_pubs Part of the <u>Physics Commons</u>

Behera, S., King, N., Samanta, D., et al. Potential of ZrO clusters as replacement Pd catalyst. The Journal of Chemical Physics, 141, 034301 (2014). Copyright © 2014 AIP Publishing LLC.

Downloaded from

http://scholarscompass.vcu.edu/phys pubs/104

This Article is brought to you for free and open access by the Dept. of Physics at VCU Scholars Compass. It has been accepted for inclusion in Physics Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Potential of ZrO clusters as replacement Pd catalyst

Swayamprabha Behera,¹ Nicholas King,¹ Devleena Samanta,² and Puru Jena^{1,a)} ¹Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA ²Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA and Department of Chemistry, Stanford University, Stanford, California 94305, USA

(Received 26 March 2014; accepted 24 June 2014; published online 15 July 2014)

Atomic clusters with specific size and composition and mimicking the chemistry of elements in the periodic table are commonly known as superatoms. It has been suggested that superatoms could be used to replace elements that are either scarce or expensive. Based on a photoelectron spectroscopy experiment of negatively charged ions, Castleman and co-workers [Proc. Natl. Acad. Sci. U.S.A. **107**, 975 (2010)] have recently shown that atoms of Ni, Pd, and Pt which are well known for their catalytic properties, have the same electronic structure as their counterpart isovalent diatomic species, TiO, ZrO, and WC, respectively. Based on this similarity they have suggested that ZrO, for example, could be a replacement catalyst for Pd. Since catalysts are seldom single isolated atoms, one has to demonstrate that clusters of ZrO also have the same electronic structure as same sized Pd clusters. To examine if this is indeed the case, we have calculated the geometries, electronic structure, electron affinity, ionization potential, and hardness of Pd_n and (ZrO)_n clusters (n = 1-5). We further studied the reaction of these clusters in neutral and charged forms with H₂, O₂, and CO and found it to be qualitatively different in most cases. These results obtained using density functional theory with hybrid B3LYP functional do not support the view that ZrO clusters can replace Pd as a catalyst. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887086]

I. INTRODUCTION

Of the 90 elements in the periodic table that occur in nature, some are highly abundant like Si while some others are scarce or expensive. Among the latter category are elements such as Ga, As, Se, Cd, In, and Te that are 4-8 orders of magnitude less abundant than Si. Similarly, elements such as Pd and Pt that serve as catalysts, and rare earth elements that form the essential components of magnets, are expensive. Since these elements are critical to technology and society, it will be ideal to find ways in which they can be replaced by earthabundant elements. This is where atomic clusters may be useful, if they can be designed and synthesized, with suitable size and composition, to mimic the chemistry of scarce or expensive elements. This idea was put forth more than 20 years ago by Khanna and Jena¹ who termed such clusters as "superatoms." They suggested that superatoms can be regarded as "man-made" elements belonging to the third-dimension of a new three-dimensional periodic table. Just as conventional crystals are formed with atoms as the building blocks, one can imagine that a novel class of cluster assembled materials can be formed with stable superatoms as the building blocks. This possibility was demonstrated first by focusing on Al₁₃ cluster. With 39 electrons, Al₁₃ has an electronic configuration of $1S^2$ $1P^6$ $1D^{10}$ $2S^2$ $1F^{14}$ $2P^5$ in the jellium model² and requires only one electron to satisfy the electronic shell closure rule, just as Cl with an electronic configuration of ns^2 np^5 requires only one electron to fulfill the octet-rule. Intense peak of Al₁₃ anion in the mass spectrum and its inertness towards oxygen observed by Castleman and co-workers³ provided evidence for its unusual stability. Thus, it was hypothesized that Al_{13} can mimic the chemistry of a Cl atom. Li *et al.*⁴ later measured the electron affinity (EA) of Al_{13} to be 3.62 eV which is nearly identical with the electron affinity of Cl, namely, 3.61 eV. With a metal cation like K⁺, Khanna and Jena⁵ then predicted that Al_{13}^- can form the anionic component of a cluster-salt, namely KAl₁₃. This prediction⁵ was later confirmed by Zheng *et al.*⁶ who showed through photoelectron spectroscopy experiment that Al_{13} can indeed form a salt-like ionic molecule when interacting with an alkali metal, namely, KAl₁₃, just as Cl does, namely, KCl.

In the past decade, considerable research has been carried out to design and synthesize superatoms using a variety of electron counting rules such as the octet rule,⁷ the 18-electron rule,⁸ and the Wade-Mingos rule,⁹ in addition to the jellium rule discussed in the above. A few cluster assembled materials have also been synthesized.¹⁰ Much of these works, however, have concentrated on superatoms mimicking the properties of elements that are neither scarce nor expensive.

Recently, Castleman and co-workers¹¹ have expanded this concept to more technologically relevant transition metal elements. Carrying out photoelectron spectroscopy experiment of negatively charged ions of group 10 elements, namely, Ni⁻, Pd⁻, and Pt⁻ which are well known for their catalytic properties, the above authors showed that the electronic properties of these atoms are very similar to diatomic species, TiO⁻, ZrO⁻, and WC⁻, respectively. To illustrate this result, we note that the electronic configurations of Pd, Zr, and O are [Kr] 4d¹⁰, [Kr] 5s² 4d², and [He] 2s² 2p⁴, respectively. Thus, Pd is isoelectronic with ZrO. In a similar vein, Ni and Pt are isoelectronic with TiO and WC, respectively. Note that in an earlier work, Boudart and Levy¹² had reported that the

^{a)}Author to whom correspondence should be addressed. Electronic mail: pjena@vcu.edu

surface of WC exhibited similar catalytic behavior as that of Pt. Thus, ZrO could be considered as a superatom mimicking the chemistry of Pd.

This is an important result if this analogy could persist in clusters since reduction of extremely active NO by CO is known to take place¹³ in the presence of highly dispersed Pd clusters supported on alumina. In a later perspective article, Castleman¹⁴ has reiterated this point. A recent study¹⁵ of the interaction of hydrocarbons such as ethane and propane with Pd⁺ cation shows some encouraging results – the reactivity pattern between positively charged Pd atom and ZrO diatomic species is found to be similar.

We note that the properties of bulk ZrO are very different from that of Pd; while the former is a semiconductor, the latter is a metal. However, one knows that at the nano-scale matter does behave differently than from its bulk. Is this the case with ZrO and Pd nano-clusters? Since catalysts are rarely single atoms and are usually supported on a substrate, the fundamental questions that now need to be answered are whether Pd_n clusters react the same way as $(ZrO)_n$ clusters do with simple gas molecules such as H₂, O₂, and CO? How do the reactions with gas molecules differ when these clusters are supported on different substrates?

In the present paper, we have attempted to answer these questions. First, we have calculated the atomic structures of Pd_n and $(ZrO)_n$ clusters for n = 1-5 in neutral, cationic, and anionic forms. The electronic structures of these clusters were analyzed by computing their ionization potentials (IPs), electron affinities, binding energies, and hardness. Reactions of H₂, O₂, and CO with these clusters both in neutral and charged forms were carried out to determine their binding energies, atomic, and electronic structures. We realize that when clusters are supported on a substrate charge exchange may occur, leaving the supported clusters in positively or negatively charged state. Thus, studies of the reaction of charged clusters may illustrate qualitatively the role of the support. For a quantitative understanding of the catalytic properties of supported clusters, however, explicit interaction of the substrate needs to be taken into account. This is the goal of our future project. The choice of the above gas molecules for exploring the catalytic properties of Pd_n and isoelectronic $(ZrO)_n$ clusters is dictated by the importance of chemical reactions such as hydrogenation and dehydrogenation^{16,17} and CO-oxidation.¹⁸ For example, an anode material formed by combining Pd with Pt has been found to be resistant to CO poisoning^{19,20} in fuel cell applications.

The paper is organized as follows: The computational details used in this study are described in Sec. II. Results are presented in Sec. III which is divided into two parts. First, the structural and electronic properties of Pd_n and $(ZrO)_n$ (for n = 1-5) are presented. Second, the interactions of the gas molecules (H₂, O₂, and CO) with small neutral and charged clusters of Pd_n and $(ZrO)_n$ (n = 1-3) are discussed. Section IV provides a summary of our conclusions.

II. COMPUTATIONAL DETAILS

Calculations are performed using density functional theory (DFT) and Becke three parameter Lee-Yang-Parr

(B3LYP) hybrid functional for exchange and correlation (XC) potential.^{21,22} Stuttgart pseudo potential (SDD)²³ basis sets for Pd and Zr atoms and triple- ζ valence plus polarization (TZVP) basis sets for O, C, and H atoms embedded in the Gaussian 03 program²⁴ are used for all the calculations. This level of theory has been found to accurately predict the ground state, spin multiplicity, and reaction energies of clusters composed of these elements.²⁵⁻²⁷ First, the calculated EAs, vertical IPs, hardness (η) , and binding energies $(E_{\rm h})$ of these clusters are compared to see if Pd, clusters mimic the properties of $(ZrO)_n$ clusters. The interaction of gas molecules with these clusters is studied next by calculating their adsorption energies (E_{ads}). Different initial geometries are considered where the gas molecules binding to Pd_n and $(ZrO)_n$ (where n = 1-3) are taken in both molecular and dissociated form. For each of these clusters, different possible spin multiplicities are considered. Extensive search over isomers and spin multiplicities allowed us to identify the ground state structure and spin of all the neutral, anionic, and cationic clusters. EA is calculated as the energy difference between the ground states of the anion and its corresponding neutral. Vertical IP is calculated as the energy difference between the neutral and positively charged cluster, both at the ground state geometry of the neutral. Hardness (η) is given by (IP – EA). The binding energies, $E_{\rm b}$ of clusters are calculated as

$$\mathbf{E}_{\mathbf{b}}(\mathbf{X}_n) = [n\mathbf{E}(\mathbf{X}) - \mathbf{E}(\mathbf{X}_n)],\tag{1}$$

where E(X) and $E(X_n)$ (X = Pd, ZrO) represent the total energies of X and X_n species.

The adsorption energy $\mathrm{E}_{\mathrm{ads}}$ of a gas molecule is calculated as

$$\mathbf{E}_{\mathrm{ads}} = -\left\{ \mathbf{E}[\mathbf{X}_n \mathbf{Y}]^q - \left[\mathbf{E} \left(\mathbf{X}_n^q \right) + \mathbf{E}(\mathbf{Y}) \right] \right\},\tag{2}$$

where $Y = H_2$, O_2 , CO. q = 0, -1, +1 represent the neutral, anionic, and cationic clusters of X_n , respectively. Note that the energies in Eq. (2) correspond to the preferred spin multiplicities of the parent and the products. We used the default optimization algorithm included in Gaussian (i.e., Berny algorithm) to obtain the lowest energy geometry.²⁸ The SCF convergence threshold for all runs was set at a total energy change of 1×10^{-6} a.u., while geometry optimization convergence criteria were 0.45×10^{-3} , 0.3×10^{-3} , 1.8×10^{-3} , and 1.2×10^{-3} a.u. for maximum force, RMS force, maximum displacement, and RMS displacement, respectively. Nature of bonding is determined from natural bond orbitals (NBO) analysis. Optimizations are carried out without any symmetry constraint. These are followed by frequency calculations to confirm that the structures represent genuine minima in the potential energy surface. Results are compared with prior theoretical and experimental results, where available.

III. RESULTS AND DISCUSSION

A. Comparison between Pd_n and $(ZrO)_n$ clusters (n = 1-5)

We begin with a discussion of the geometries and electronic structure of bare Pd_n and $(ZrO)_n$ (n = 2-5) clusters to see whether they both exhibit similar chemistry. To gain this

FIG. 1. Ground state geometries with electronic state of neutral $(ZrO)_n$ and Pd_n (n = 2-5) clusters.

insight, we have calculated EA, vertical IP, hardness (η), and binding energy (E_b) of these clusters. In Figure 1, we compare their ground state geometries. Corresponding values of EA, IP, η , and E_b values are given in Table I and compared with available experimental data. The geometries of Pd_n clusters become three-dimensional at n = 4 and agree with earlier work.^{29–31} (ZrO)_n clusters, on the other hand, become threedimensional from n = 2. In addition, geometries of (ZrO)_n clusters are marked by both Zr–O and Zr–Zr bonds. We note that the ground state spin multiplicities of all Pd_n clusters studied are triplet while this is not case with corresponding (ZrO)_n clusters.

The EAs of Pd_n clusters, with the exception of Pd₃, agree with experiment within 0.3 eV. This sets the limit on the accuracy of the DFT/B3LYP level of theory. The ionization potentials of Pd_n clusters decrease steadily with cluster size reaching a value of 6.81 eV for Pd₅. The hardness also decreases with cluster size reaching a value of 5.09 eV for Pd₅. The results for (ZrO)_n clusters are rather different, both in magnitude as well as in trend. The geometries of (ZrO)_n clusters show no O–O bonds and each O atom is bound to two Zr atoms. This is because the binding energy of ZrO is 7.4 eV

TABLE II. Adsorption energies (E_{ads}) in eV and electronic states in parentheses of neutral Pd_n and $(ZrO)_n$ (n = 1-3) clusters interacting with H₂, O₂, and CO.

Cluster	E _{ads} (eV)		
	H ₂	0 ₂	СО
ZrO	1.28 (¹ A)	3.76 (¹ A)	0.50 (¹ A)
Pd	0.75 (¹ A')	$0.64 ({}^{3}A'')$	1.79 (¹ A)
$(ZrO)_{2}$	2.09 (¹ A)	9.20 (¹ A)	$1.27(^{3}A)$
$(Pd)_2$	1.64 (¹ A')	1.07 (³ A)	2.53 (¹ A)
(ZrO) ₃	1.78 (³ A)	8.77 (¹ A)	$2.00(^{3}A)$
(Pd) ₃	1.47 (¹ A)	1.57 (³ A ₂)	2.51 (¹ A')

while that of O_2 is 5.21 eV. Unlike Pd_n clusters, the spin multiplicities of $(ZrO)_n$ clusters are singlet for n = 4, 5 and triplet for n = 2, 3. The electron affinities of $(ZrO)_n$ clusters quantitatively differ from those of Pd_n clusters, although the variation with size does not differ significantly. Similar to the Pd_n clusters, the hardness of $(ZrO)_n$ clusters decrease with cluster size, but their magnitudes are significantly smaller. Since electron affinity, ionization potential, and hardness all influence the interaction of clusters with gas molecules, it would appear that these two sets of clusters will not exhibit similar chemical properties as their size grows. This is indeed the case as we will see in subsection B where we discuss the actual reactions with gas molecules.

B. Interaction of gas molecules (H_2 , O_2 and CO) with neutral Pd_n and (ZrO)_n clusters (n = 1-3)

In this section, we study the reactivity of simple gas molecules such as H₂, O₂, and CO with neutral Pd_n and $(ZrO)_n$ (n = 1-3) clusters in order to compare the chemical behavior of these systems. The corresponding adsorption energies are given in Table II. The reactivity of these gas molecules with the anionic and cationic Pd_n and $(ZrO)_n$

TABLE I. Electron Affinity (EA), Vertical Ionization Potential (IP), Hardness (η), and Binding Energy (E_b) of (ZrO)_n and Pd_n clusters for n = 1-5. Available experimental results are given in parentheses.

Cluster	EA (eV)	IP (eV)	η (eV)	E _b (eV)
ZrO	$1.29 \text{ (expt: } 1.3 \pm 0.3)^{\text{a}}$	7.49	6.20	
$(ZrO)_2 C_{2v}$	1.18	5.70	4.52	3.17
$(ZrO)_3 C_1$	1.20	5.52	4.32	7.38
$(ZrO)_4 C_1$	1.33	5.64	4.31	12.31
$(ZrO)_5 C_1$	1.76	4.96	3.20	15.91
Pd	$0.78 \text{ (expt: } 0.562 \pm 0.005, 0.557 \pm 0.008)^{b}$	$8.70 \text{ (exp: } 8.3365 \pm 0.0001, 8.3369 \pm 0.0001)^{c,d}$	7.92	
$\operatorname{Pd}_2 D_{infv}$	1.53 (expt: $1.685 \pm 0.008, 1.30 \pm 0.15$) ^{e, f}	7.63 (exp: 7.7 ± 0.3) ^{c,d}	6.10	$0.90 (\text{expt.}0.74 \pm 0.26)^{\text{g}}$
$Pd_3 C_{2n}$	2.13 (expt: 1.35 ± 0.10 , 1.50 ± 0.10) ^{d,h}	7.67	5.54	2.45
$Pd_4 C_1$	$1.51 \text{ (expt: } 1.35 \pm 0.10)^{d}$	6.91	5.40	4.83
$Pd_5 C_1$	$1.72 \text{ (expt: } 1.45 \pm 0.10)^{d}$	6.81	5.09	6.34

^aO. C. Thomas, S. J. Xu, T. P. Lippa, and K. H. Bowen, J. Clust. Sci. 10, 525 (1999).

^bH. Hotop and W. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

^cD. R. Lide, Handbook of Chemistry and Physics, 74th ed. (CRC, Boca Raton, FL, 1994).

^dK. A. Gingeric, Naturwissenschaften **54**, 43 (1967).

^eJ. Ho, K. Ervin, M. Polak, M. Gilles, and W. Lineberger, J. Chem. Phys. 95, 4845 (1991).

^fG. Gantefor, M. Gausa, K. Meiwesbroer, and H. Lutz, J. Chem. Soc.-Faraday Trans. 86, 2483 (1990).

^gD. R. Lide, *Handbook of Chemistry and Physics*, 76th ed. (CRC Press, Boca Raton, FL, 1995).

^hK. Ervin, J. Ho, and W. Lineberger, J. Chem. Phys. 89, 4514 (1988).

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IF

clusters will be discussed in subsequent sections. To assess the accuracy of our computational approach, we have calculated the binding energies (bond lengths) of H₂, O₂, and CO which are, respectively, 4.77 eV (0.74 Å), 5.21 eV (1.21 Å), and 12.73 eV (1.13 Å). These agree well with corresponding experimental values, namely, 4.48 eV³² (0.73 Å),³² 5.12 eV³³(1.21 Å),³⁴ and 11.10 eV³⁵ (1.128 Å).³⁶

1. Interaction with H₂

The calculated ground state geometries of H₂ interacting with neutral Pd_n and $(ZrO)_n$ clusters are given in Figure 2. We note that hydrogen binds to Pd in quasi-molecular form with a H–H bond length of 0.86 Å which is slightly larger than the corresponding bond length of 0.74 Å in isolated H_2 molecule. H atoms remain almost neutral with a charge of -0.02e on each. The binding energy of H₂ to Pd atom is 0.75 eV (see Table II). Our computed structure of PdH_2 and adsorption energy of H₂ agrees well with previous theoretical calculations.^{32,37} Other higher energy isomers of PdH₂ are given in Figure SI-1 in the supplementary material.⁴⁶ We note that the above adsorption energy is significantly larger than the physisorption energy of H_2 , namely, 0.21 eV/ H_2 on Pd(111).³⁸ The interaction of H₂ with ZrO is qualitatively different. Here, the H-H bond breaks and both the H atoms bind to Zr with each carrying a charge of -0.43e. The corresponding adsorption energy is 1.28 eV. This result at first may seem surprising since the binding energies of PdH and ZrH are 2.51 eV and 2.37 eV, respectively. The difference originates from the electronic structure of Pd and Zr atom. Pd atom has an outer electronic configuration of $d^{10}s^0$ while that of Zr is d^2s^2 . Since both H₂ and Pd atom have closed electronic shells, the interaction between them is weak and

FIG. 2. Ground state geometries of H_2 interacting with neutral Pd_n and (ZrO)_n clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

H₂ binds quasi-molecularly. This kind of bonding of H₂ with transition metal atoms has been demonstrated by Kubas.^{39,40} The structure of ZrOH₂ where H₂ binds molecularly to the Zrsite is 1.14 eV higher in energy (see Figure SI-2 in the supplementary material⁴⁶). In Pd_2H_2 cluster, the H–H bond breaks and the adsorption energy more than doubles to 1.64 eV. This result agrees well with that of Zeng and Ni³² and Efremenko et al.³⁷ However, Cui et al.²⁵ reported a ground state structure with a H-Pd-Pd-H dihedral angle of 168.5°. We found this structure to have an imaginary frequency and automatically led to the structure given in Figure 2. The structure of the anioinic Pd₂H₂ shown later in Figure 8 is, however, similar to the one reported by Cui et al.25 for neutral Pd₂H₂. In (ZrO)₂H₂ cluster, the H-H bond also breaks, but both the H-atoms remain bound to only one of the Zr atoms. The geometry of $(ZrO)_2H_2$ where the H-atoms bound to two different Zr atoms is 0.19 eV higher in energy (as shown in Figure SI-4 in the supplementary material⁴⁶) than the ground state (as shown in Figure 2). The corresponding adsorption energy increases from 1.28 eV in (ZrO)H₂ to 2.09 eV in (ZrO)₂H₂. In Pd₃H₂, the H₂ molecule dissociates with one H atom being bridge bonded to two Pd atoms while the other binds on the hollow site formed by three Pd atoms. Zeng and Ni³² and Cui et al.⁴¹ had found that in the ground state of Pd₃H₂ each H-atom prefers to bind to the bridge sites. We find this isomer to be nearly degenerate ($\sim 0.02 \text{ eV}$) in energy (see Figure SI-5 in the supplementary material⁴⁶) with the one shown in Figure 2.

In $(ZrO)_3H_2$, the H atoms bind to separate Zr atoms. The H-atoms binding to single Zr atom is found to be nearly degenerate (~0.06 eV) in energy, which is shown in Figure SI-6 in the supplementary material.⁴⁶ The difference between binding energies of H₂ to Pd₃ and (ZrO)₃ narrows to 0.31 eV, with binding to (ZrO)₃ being stronger than that to Pd₃. We note that in (ZrO)_n clusters, the H atom always prefers to bind to Zr and not to O atoms, even though the O–H binding energy is 4.59 eV while that of Zr–H is 2.37 eV. This is because the Zr–O binding energy, as mentioned before, is substantially large, namely, 7.4 eV. Thus, ZrO binding will be disturbed if H atoms were to bind to O.

2. Interaction with O₂

The interaction of O_2 with Pd_n is very different from that with $(ZrO)_n$ clusters. In Figure 3, we plot these geometries for n = 1-3. The corresponding adsorption energies of O_2 as well as spin multiplicities are given in Table II. Oxygen binds quasi-molecularly to Pd in *superoxo* form. The O–O bond in PdO₂ is 1.26 Å which is slightly elongated compared to that in isolated O_2 molecule, namely, 1.21 Å. The charge on each of the O atom is -0.21e. Our computed structure and binding energy of PdO₂ agree well with previous theoretical calculations.⁴² The structure of PdO₂ where the O–O bond breaks is found to be 1.33 eV higher in energy (see Figure SI-1 in the supplementary material⁴⁶). The reason O–O bond remains nearly molecular can be seen by comparing the binding energy of PdO and O₂ dimers which are 2.35 eV and 5.21 eV, respectively. However, in (ZrO)O₂,

FIG. 3. Ground state geometries of O_2 interacting with neutral Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

oxygen binds in the *peroxo* form with the O–O bond stretched to 1.49 Å with each O atom carrying a charge of -0.55e. This result is due to the large binding energy of ZrO dimer, as pointed out before. The adsorption energies of O₂ to Pd and ZrO are, respectively, 0.64 eV and 3.76 eV. In addition, while PdO₂ is a spin triplet, (ZrO)O₂ is a spin singlet. The difference in the interaction with O₂ persists in larger Pd_n and (ZrO)_n clusters. In Pd₂O₂ cluster, oxygen continues to bind in quasi-molecular form where the two O atoms are 1.31 Å apart and the charge on each of the O atom is -0.27e. The ground state reported by Huber *et al.*⁴² has the O-atoms sitting on the Pd–Pd bridge-sites. We find this structure to be 0.57 eV higher in energy (see Figure SI-3 in the supplementary material⁴⁶) than the geometry given in Figure 3.

In the $(ZrO)_2O_2$ cluster, on the other hand, the O_2 molecule dissociates and the O atoms, with each carrying a charge of -0.96e, bind to the two Zr atoms. This result is also reflected in their adsorption energies. While O_2 is bound to Pd₂ with 1.07 eV, it is substantially larger in $(ZrO)_2$, namely, 9.20 eV. In both Pd₃O₂ and $(ZrO)_3O_2$ clusters, the O_2 molecule breaks. However, the difference in adsorption energy persists. The binding energy of O_2 to Pd₃ is 1.57 eV while that to $(ZrO)_3$ is 8.77 eV. The reason why O_2 is bound much more strongly on $(ZrO)_n$ than Pd_n is because the binding energy of ZrO, namely, 7.4 eV is much larger than that of PdO, namely, 2.35 eV.

3. Interaction with CO

The equilibrium geometries of Pd_n and $(ZrO)_n$ clusters interacting with CO are given in Figure 4. The corresponding

FIG. 4. Ground state geometries of CO interacting with neutral Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

adsorption energies are given in Table II. In the case of Pd and ZrO, the CO binds molecularly with the C atom attached to the metal atom. Unlike the case with H₂ or O₂, the adsorption energy of CO to Pd is higher than that to ZrO. In Pd₂CO, the CO binds molecularly with C atom attached to both the Pd atoms. The geometry where the C-O bond breaks is energetically unfavorable (see the supplementary material⁴⁶). Our computed structures and binding energies of PdCO and Pd₂CO agree well with previous theoretical calculations.^{43,44} In (ZrO)₂CO, however, the CO binds to one of the Zr atoms. The adsorption energies of CO to Pd and Pd₂ are about 1.29 eV and 1.26 eV larger than that to ZrO and (ZrO)₂, respectively. In Pd₃CO, only C atom of CO binds to all the Pd atoms, while both the C and O atoms of CO bind to two different Zr atoms in (ZrO)₃ cluster. This makes the C-O bond to stretch significantly, thereby increasing the adsorption energy of CO to $(ZrO)_3$. The structure where CO binds molecularly to single Zr-site is found to be 0.68 eV higher in energy (see Figure SI-6 in the supplementary material⁴⁶). The adsorption energy of CO to Pd₃ is also 0.51 eV higher than that to $(ZrO)_3$. The reason why CO remains molecular in all the Pd_n and (ZrO), clusters is because of the very large binding energy of CO mentioned earlier, namely, 12.73 eV. The binding energies of CO to Pd_n clusters are larger than those to $(ZrO)_n$ clusters because C binds to more Pd atoms than Zr atoms. In a similar vein, the reason for C in CO preferring to bind to Zr instead of O is not to disrupt the very significant ZrO bonding.

FIG. 5. Ground state geometries of H_2 interacting with cationic Pd_n and (ZrO), clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

C. Interaction of gas molecules (H₂, O₂, and CO) with cationic Pd_n and $(ZrO)_n$ clusters (n = 1-3)

We now present the results of Pd_n^+ and $(ZrO)_n^+$ clusters interacting with H_2 , O_2 , and CO.

1. Interaction with H₂

The equilibrium geometries of Pd_n^+ and $(ZrO)_n^+$ clusters interacting with H_2 are plotted in Figure 5. The corresponding adsorption energies are given in Table III. Hydrogen atoms bind quasi-molecularly with both Pd⁺ and ZrO⁺ clusters with adsorption energies that are rather similar. Note that these results are consistent with the polarization model described by Niu et al.⁴⁵ where the electric field produced by the metal cations polarizes the H₂ molecule and no charge transfer takes places between H and the parent atoms. The bonding patterns of H_2 to the both the cationic clusters of Pd_n

TABLE III. Adsorption energies (E_{ads}) in eV and electronic states in parentheses of Pd_n⁺ and (ZrO)_n⁺ (n = 1-3) clusters interacting with H₂, O₂, and CO.

Cluster	E _{ads} (eV)		
	H ₂	0 ₂	СО
ZrO ⁺	$1.02(^{2}A)$	2.93 (² A)	1.75 (² A")
Pd ⁺	$0.85(^{2}A')$	$0.72 (^{2}A'')$	$1.76(^{2}\Sigma)$
$(ZrO)_{2}^{+}$	1.53 (² A)	5.98 (² A)	$1.32(^{2}A)$
$(Pd)_2^{+}$	$0.94(^{2}A_{1})$	$0.99(^{2}A_{2})$	$1.81(^{2}A)$
$(ZrO)_3^+$	$1.60(^{2}A)$	8.19 (² A)	$2.31(^{2}A)$
$(Pd)_3^{+}$	1.84 (² A)	1.19 (² A)	2.70 (² A)

2.08 1.17e

FIG. 6. Ground state geometries of O₂ interacting with cationic Pd_n and (ZrO), clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

and $(ZrO)_n$ for n = 2, 3 are very similar. Except for $(ZrO)_3^+$, the adsorption energies of H₂ to $(ZrO)_n^+$ are higher than that to Pd_n^+ .

2. Interaction with O₂

In Figure 6, we plot the equilibrium geometries of Pd_n^+ and $(ZrO)_n^+$ clusters interacting with O₂. In both Pd⁺ and ZrO⁺ clusters, O₂ binds molecularly, although the O–O bond in $(ZrO)^+O_2$ is stretched more than that in Pd⁺O₂. In addition, O_2 binds in *superoxo* form to Pd⁺ while it binds in *peroxo* form to ZrO⁺, as seen in the case of corresponding neutral counterparts.

The adsorption energies of O_2 to $(ZrO)^+$ and Pd^+ are significantly different; ZrO⁺ binding being about four times larger than that of Pd⁺. The bonding pattern of O_2 to Pd₂⁺ and $(ZrO)_2^+$ are also different. In $Pd_2^+O_2$, there is significant interaction between the two O atoms, whereas in $(ZrO)_2^+O_2$ both the O-atoms binding to each Zr-site are in the trans form. The binding energies between O_2 and $(ZrO)_2^+$ is six times larger than that between O₂ and Pd₂⁺. The O atoms in Pd₃⁺O₂ and $(ZrO)_3^+O_2$ are bound dissociatively. However, they are bridge bonded in $Pd_3^+O_2$ and radially bonded in $(ZrO)_3^+O_2$. The binding energy of O_2 to $(ZrO)_3^+$ is about eight times larger than that to Pd_3^+ .

3. Interaction with CO

In Figure 7, we plot the equilibrium geometries of Pd_n^+ and $(ZrO)_n^+$ clusters interacting with CO. The adsorption

FIG. 7. Ground state geometries of CO interacting with cationic Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

energies of the gas molecules are given in Table III. In all clusters, CO binds molecularly with the C-atom attached to the metal atom, except for $(ZrO)_3^+$ where both C and O of CO bind to two different Zr atoms (similar to its neutral counterpart). Here, the C–O bond is stretched by ~0.3 Å. The adsorption energies of CO to Pd_n⁺ and $(ZrO)_n^+$ are similar for n = 1, but are different for n = 2, 3. The spin multiplicities of all these clusters, however, are the same.

D. Interaction of gas molecules (H_2 , O_2 , and CO) with anionic Pd_n and (ZrO)_n clusters (n = 1-3)

In this section, we present the results of Pd_n^- and $(ZrO)_n^-$ clusters interacting with H_2 , O_2 , and CO.

1. Interaction with H₂

The equilibrium geometries of Pd_n^- interacting with H_2 are given in Figure 8. Hydrogen molecule binds dissociatively to both Pd⁻ and ZrO⁻. We recall that H_2 binds in quasimolecular form to neutral Pd as well as to Pd⁺ cation. In the case of Pd⁻, the extra electron can be donated to the antibonding orbital of the H_2 molecule, breaking the H–H bond. The adsorption energies of the gas molecules are given in Table IV. In Pd₂⁻ and (ZrO)₂⁻, H-atoms again bind dissociatively, but they are radially bonded to both the Pd atoms while they bind to a single Zr atom. In Pd₃⁻ and (ZrO)₃⁻, hydrogen atoms also bind dissociatively. In (ZrO)₃⁻, both hydrogen atoms bind radially to the two Zr atoms. However, in Pd₃⁻ one H atom is bridge bonded while the other is radially

FIG. 8. Ground state geometries of H_2 interacting with anionic Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

bonded. In all these clusters, the adsorption energies of H_2 to $(ZrO)_n^-$ are larger than that to Pd_n^- clusters. Note that the adsorption of H_2 to Pd_3^- is the lowest as compared to its neutral and cationic counterparts.

2. Interaction with O₂

The equilibrium geometries and binding energies of O_2 to Pd_n^- and $(ZrO)_n^-$ clusters are given in Figure 9 and Table IV, respectively.

While O_2 binds in *superoxo* form to Pd⁻, it binds dissociatively to ZrO⁻. The NBO charge on the O atoms in the *superoxo* form is -0.32e while it is -1.13e in the dissociated form.

The binding energy of O_2 to Pd^- is a factor of four smaller than that to ZrO^- . In Pd_2^- and $(ZrO)_2^-$, the O atoms bind dissociatively, but they are bridge bonded to Pd and radially bonded to Zr. The binding energy of O_2 to $(ZrO)_2^-$

TABLE IV. Adsorption energies (E_{ads}) in eV and electronic states in parentheses of Pd_n⁻ and (ZrO)_n⁻ (n = 1-3) clusters interacting with H₂, O₂, and CO.

Cluster	E _{ads} (eV)		
	H ₂	0 ₂	СО
ZrO ⁻	1.46 (² A)	5.82 (² A)	0.84 (⁴ A''')
Pd ⁻	0.57 (² A')	1.28 (² A')	1.61 (² A')
$(ZrO)_2^{-}$	2.08 (² A)	9.71 (² A)	1.29 (² A)
$(Pd)_2^{\tilde{-}}$	1.19 (² A)	$1.54 ({}^{4}A_{g})$	$2.40(^{2}A')$
$(ZrO)_3^{-}$	2.22 (⁴ A)	$9.59(^{2}A^{5})$	$2.18(^{2}A)$
$(Pd)_3^{-}$	0.69 (² A)	2.01 (⁴ A)	1.70 (² A)

FIG. 9. Ground state geometries of O_2 interacting with anionic Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

is more than six times as large as it is to Pd_2^{-} . In Pd_3^{-} and $(ZrO)_3^{-}$, O atoms again bind dissociatively, but they are bridge bonded in Pd_3^{-} while they are radially bonded in $(ZrO)_3^{-}$, just as seen in the previous case.

3. Interaction with CO

Geometries and binding energies of CO interacting with Pd_n^{-} and $(ZrO)_n^{-}$ clusters are given in Figure 10 and

FIG. 10. Ground state geometries of CO interacting with anionic Pd_n and $(ZrO)_n$ clusters. The bond lengths are given in Å and the NBO charges are given in units of electron charge, e.

Table IV, respectively. In all cases, CO binds molecularly. With the exception of $(ZrO)_3^-$ the C atom is attached to a single metal atom in all clusters. In $(ZrO)_3^-$ the C atom binds to two Zr atoms. The binding energies of CO to Pd_n^- are about a factor of two larger than that to $(ZrO)_n^-$ for n = 1, 2. However, its binding energy to Pd_3^- is smaller than that to $(ZrO)_3^-$.

IV. CONCLUSION

Using density functional theory, we have calculated the equilibrium geometries, electronic structure, and binding affinity of neutral, cationic, and anionic Pd_n and $(ZrO)_n$ (n = 1-5) clusters interacting with H₂, O₂, and CO molecules. Our objective was to examine to what extent the chemistry of Pd clusters mimics that of their isoelectronic ZrO clusters. The electronic structure was probed by calculating the ionization potential as well as electron affinity while the reaction of the gas molecules was studied by examining the nature of their adsorption and corresponding adsorption energies. In general, neither the electronic structure nor the interaction of gas molecules were found to be similar with few exceptions dealing with the interaction of hydrogen. In particular, we found the interaction of Pd_n with O_2 to be qualitatively different from that between $(ZrO)_n$ and O_2 . Thus, our calculations do not support the ansatz put forward by Castleman^{11,14,15} and co-workers that ZrO can replace Pd in its function as a catalyst.

ACKNOWLEDGMENTS

Research was supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award # DE-FG02-96ER45579. We also acknowledge resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231.

- ¹S. Khanna and P. Jena, Phys. Rev. B **51**, 13705 (1995).
- ²W. Knight, K. Clemenger, W. De Heer, W. Saunders, M. Chou, and M. Cohen, Phys. Rev. Lett. **52**, 2141 (1984).
- ³R. Leuchtner, A. Harms, and A. Castleman, J. Chem. Phys. **94**, 1093 (1991).
- ⁴X. Li, H. B. Wu, X. B. Wang, and L. S. Wang, Phys. Rev. Lett. **81**, 1909 (1998).
- ⁵S. Khanna and P. Jena, Chem. Phys. Lett. **219**, 479 (1994).
- ⁶W. J. Zheng, O. C. Thomas, T. P. Lippa, S. J. Xu, and K. H. Bowen, J. Chem. Phys. **124**, 144304 (2006).
- ⁷G. L. Gutsev and A. I. Boldyrev, Chem. Phys. 56, 277 (1981).
- ⁸P. Pyykko and N. Runeberg, Angew. Chem.-Int. Ed. **41**, 2174 (2002).
- ⁹X. Li, A. Grubisic, S. T. Stokes, J. Cordes, G. F. Gantefoer, K. H. Bowen, B. Kiran, M. Willis, P. Jena, R. Burgert, and H. Schnoeckel, Science **315**, 356 (2007).
- ¹⁰D. A. Knight, R. Zidan, R. Lascola, R. Mohtadi, C. Ling, P. Sivasubramanian, J. A. Kaduk, S.-J. Hwang, D. Samanta, and P. Jena, J. Phys. Chem. C 117, 19905 (2013).
- ¹¹S. J. Peppernick, K. D. D. Gunaratne, and A. W. Castleman, Proc. Natl. Acad. Sci. U.S.A. **107**, 975 (2010).
- ¹²R. Levy and M. Boudart, Science 181, 547 (1973).
- ¹³M. Valden, J. Aaltonen, E. Kuusisto, M. Pessa, and C. Barnes, Surf. Sci. **307**, 193 (1994).
- ¹⁴A. W. Castleman, J. Phys. Chem. Lett. 2, 1062 (2011).

- ¹⁵E. C. Tyo, A. W. Castleman, A. C. Reber, and S. N. Khanna, J. Phys. Chem. C 115, 16797 (2011).
- ¹⁶M. Che and C. Bennett, Adv. Catal. 36, 55 (1989).
- ¹⁷S. Rather, R. Zacharia, S. W. Hwang, M. Naik, and K. S. Nahm, Chem. Phys. Lett. **438**, 78 (2007).
- ¹⁸G. Ertl, Adv. Catal. **213**, 37 (1990).
- ¹⁹L. Carrette, K. A. Friedrich, and U. Stimming, ChemPhysChem 1, 162 (2000).
- ²⁰W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, and P. Tsiakaras, J. Power Sources **131**, 217 (2004).
- ²¹A. Becke, J. Chem. Phys. 98, 5648 (1993).
- ²²C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).
- ²³ M. Dolg, H. Stoll, H. Preuss, and R. Pitzer, J. Phys. Chem. 97, 5852 (1993).
 ²⁴ M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- ²⁵Q. Cui, D. G. Musaev, and K. Morokuma, J. Chem. Phys. **108**, 8418 (1998).
- ²⁶J. Moc, D. G. Musaev, and K. Morokuma, J. Phys. Chem. A **104**, 11606 (2000).
- ²⁷G. E. Johnson, R. Mitric, E. C. Tyo, V. Bonacic-Koutecky, and A. W. Castleman, J. Am. Chem. Soc. 130, 13912 (2008).
- ²⁸M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh, PA, 2003.
- ²⁹B. Kalita and R. C. Deka, J. Chem. Phys. **127**, 244306 (2007).
- ³⁰J. Rogan, G. Garcia, J. A. Valdivia, W. Orellana, A. H. Romero, R. Ramirez, and M. Kiwi, Phys. Rev. B 72, 115421 (2005).
- ³¹I. Efremenko and M. Sheintuch, J. Mol. Catal. A 160, 445 (2000).

- ³²M. Ni and Z. Zeng, J. Mol. Struct.: THEOCHEM **910**, 14 (2009).
- ³³M. W. Chase, NIST-JANAF Thermochemical Tables (American Chemical Society, New York, 1998).
- ³⁴C. Chieh, Bond Lengths and Energies (University of Waterloo, 2007).
- ³⁵B. deB Darwent, Bond Dissociation Energies in Simple Molecules (NSRDS-NBS) (U.S. National Bureau of Standards, Washington, DC, 1970).
- ³⁶K. P. Huber, and G. Herzberg, *Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules* (Van Nostrand, New York, 1979), Vol. IV, p. 154.
- ³⁷I. Efremenko, E. D. German, and M. Sheintuch, J. Phys. Chem. A 104, 8089 (2000).
- ³⁸W. Dong and J. Hafner, Phys. Rev. B 56, 15396 (1997).
- ³⁹G. J. Kubas, J. Organomet. Chem. **635**, 37 (2001).
- ⁴⁰G. J. Kubas, J. Organomet. Chem. **694**, 2648 (2009).
- ⁴¹Q. Cui, D. G. Musaev, and K. Morokuma, J. Phys. Chem. A **102**, 6373 (1998).
- ⁴²B. Huber, H. Hakkinen, U. Landman, and M. Moseler, Comput. Mater. Sci. 35, 371 (2006).
- ⁴³G. Zanti and D. Peeters, Eur. J. Inorg. Chem. **2009**, 3904 (2009).
- ⁴⁴N. E. Schultz, B. F. Gherman, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B **110**, 24030 (2006).
- ⁴⁵J. Niu, B. Rao, and P. Jena, Phys. Rev. Lett. 68, 2277 (1992).
- ⁴⁶See supplementary material at http://dx.doi.org/10.1063/1.4887086 for the isomers of H₂, O₂, and CO adsorbed on neutral Pd_n and (ZrO)_n (n = 1-3). The energy difference ΔE (in eV) of the isomers with respect to its ground state is given.