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Paclitaxel-Induced Apoptosis Is BAK-Dependent, but BAX
and BIM-Independent in Breast Tumor
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Abstract

Paclitaxel (Taxol)-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise
mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell
death) plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel
treatment using bim2/2 MEFs (mouse embryonic fibroblasts), the bim2/2 mouse breast tumor model, and shRNA-mediated
down-regulation of BIM in human breast cancer cells. In contrast, both bak2/2 MEFs and human breast cancer cells in which
BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in
bax2/2 MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced
apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1
degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-
induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1
degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated
in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of
paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.
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Introduction

Breast cancer is a leading cause of death among women.

Understanding breast cancer at the molecular level is imperative

for finding more effective approaches to successfully treat these

patients. Microtubule inhibitors are among the most frequently

used agents for breast cancer treatment, with proven efficacy in

both localized and metastatic disease. Paclitaxel (Taxol) is a

member of the taxane class of anti-neoplastic microtubule

damaging agents and exhibits activity against a wide range of

human malignancies including breast cancer [1,2]. Paclitaxel

stabilizes microtubules, resulting in G2/M cell cycle arrest, and

continuous treatment with paclitaxel ultimately leads to cell death.

However, the precise mechanisms of how this mitotic arrest

triggers cell death are still unclear.

When cells undergo paclitaxel-induced cell death, the BCL-2

family-dependent mitochondrial apoptotic pathway is activated

[3,4]. The BCL-2 family is subdivided into three main groups

based on regions of BCL-2 homology (BH) and function: multi-

domain anti-apoptotic (BCL-2, MCL-1, BCL-XL), multidomain

pro-apoptotic (BAX, BAK), and BH3-only pro-apoptotic (for

example, BIM, BID, BAD, PUMA). The BH3-only proteins

clearly act upstream of BAX and BAK because they cannot induce

apoptosis in cells lacking both BAX and BAK. BH3-only proteins

cause cytochrome c release by activating BAX and/or BAK, and

the anti-apoptotic BCL-2 family of proteins prevents this process

[3,4]. Among the BCL-2 family cell death regulators, a BH3-only

protein BIM (Bcl-2 Interacting Mediator of cell death) has been

shown to play a role in paclitaxel-induced cell death. Down

regulation of BIM by siRNA delays paclitaxel-mediated apoptosis

in cell based models [5,6,7,8]. In addition, E1A and dominant-

negative p53 transformed BMK (baby mouse kidney) cell lines of

bim2/2 mice showed the importance of BIM expression for

paclitaxel cytotoxicity [9]. On the contrary, shRNA-mediated

BIM depletion studies demonstrate that BIM is not required for

paclitaxel cytotoxicity in breast cancer cell lines [10].

It is imperative to define the contribution of BIM in paclitaxel-

induced apoptosis in order to rationally develop enhanced

treatment strategies. Although cell culture model systems are

well-suited for biochemical questions, they are relatively contrived

with regard to factors such as substrate attachment and growth

factor availability, both of which have profound effects on cellular

susceptibility to apoptosis. For this reason, it is important to extend

the knowledge gained from cell culture settings to in vivo models

that more closely mimic the cell type, cellular environment, and

tumor evolution processes encountered in human tumors. Thus,
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we obtained the MMTV-ErbB2 line of mice, a well-established

breast cancer mouse model, and generated a breeding colony of

MMTV-ErbB2/bim2/2 mice. In addition to this mouse tumor

model, all of our in vitro and in vivo models support that BIM is

dispensable in paclitaxel-induced apoptosis. Furthermore, both

bak2/2 mouse embryonic fibroblasts (MEFs) and human breast

cancer cells in which BAK is down-regulated by shRNA are more

resistant to low doses of paclitaxel treatment. Our data suggest that

BAK is a critical mediator of paclitaxel-induced apoptosis through

its release from the complex with MCL-1.

Materials and Methods

Cell Lines and Culture
Simian virus 40 (SV40)-immortalized MEFs were kindly

provided by Dr. Stanley Korsmeyer (Dana-Farber Cancer

Institute, Boston, MA) [11,12]. All human breast cancer cells

were purchased from the American Tissue Culture Collection

(Manassas, VA). Cells were cultured in DMEM supplemented

with 10% heat-inactivated fetal bovine serum (FBS) and penicillin

G/streptomycin at 37uC in a humidified, 5% CO2 incubator.

Mice
The mice study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Virginia Commonwealth University [Protocol

Number: AD20132 (PI: Hisashi Harada)]. MMTV-ErbB2 mice

[13] were purchased from The Jackson Laboratory (Bar Harbor,

ME). Bim2/2 mice [12] were obtained from Dr. Stanley

Korsmeyer (Dana-Farber Cancer Institute, Boston, MA). The

mice were interbred to generate cohorts of MMTV-ErbB2/bim+/+

and MMTV-ErbB2/bim2/2 female mice. The bim2/2 mice were

originally obtained in a C57BL/6 background, while the MMTV-

ErbB2 mice were obtained in an FVB background. However, they

were subsequently maintained in our laboratory in a mixed genetic

background including C57BL/6 and FVB. The presence or

absence of ErbB2 and bim alleles in offspring of the interbreedings

was determined by PCR. Genomic DNA was extracted from a

small piece of tail cut from each animal at the time of weaning.

PCR reactions were carried out as described previously [12]. In

MMTV-ErbB2 transgenic mice, mammary tumors arise primarily

in females, and the kinetics of tumor onset is significantly

accelerated by pregnancy and lactation. To avoid the complicating

effects of pregnancy on tumorigenesis, we maintained all

experimental females as virgins. Tumor volume in mm3 was

estimated using the formula: vol = (L x W2)/2, where L is the

larger dimension and W is the smaller dimension in millimeter

with caliper measurement. Tumor growth was monitored from the

time of initial tumor detection until the tumor reached a size of

,500 mm3. The mice then began receiving paclitaxel treatment

(15 mg/kg) by intra-peritoneal injection daily for 9 days [14].

Tumor size was measured every other day to determine tumor

growth response to paclitaxel. The measurement used in the

analysis was based on the area under the tumor growth curve

(AUC). The AUC is determined by numerical methods for each

mouse, and is then normalized over time to give an AUC/day,

which is referred to as the mean growth rate (MGR). The MGR

values for all mice in a treatment group were averaged to provide

the mean MGR for that group, along with the standard error of

the mean. Tumor growth was also measured in vehicle-treated

mice per genotype for 9 days after their tumor reached a size of

,500 mm3.

Culture of Primary Mouse Mammary Epithelial Cells
The protocol was approved by the Institutional Animal Care

and Use Committee of Virginia Commonwealth University

[Protocol Number: AD20132 (PI: Hisashi Harada)]. A size of

,500 mm3 tumors was mechanically processed, dissociated in

collagenase/dispase (Roche, Indianapolis, IN) for 2 hours at 37uC,

washed with PBS +1 mM EDTA and cultured in DMEM

supplemented with 2% FBS and Mammary Epithelial Growth

Supplement (MEGS) (Invitrogen, Carlsbad, CA) at 37uC in a

humidified, 5% CO2 incubator.

Chemicals and Antibodies
Paclitaxel was purchased from Sigma (St. Louis, MO) for cell

culture studies and from SAGENT Pharmaceuticals (Schaumburg,

IL) for the animal study. Roscovitine and MG132 were purchased

from Sigma and Millipore (Billerica, MA), respectively. Antibodies

were purchased as follows: BIM, BCL-XL, Cleaved PARP,

Cleaved Caspase-3, and ErbB2 from Cell Signaling Technology

(Beverly, MA); mouse MCL-1 from Rockland Immunochemicals

(Gilbertsville, PA); human MCL-1 from Enzo Life Sciences

(Farmingdale, NY); BAX, Cyclin B1, Histone H1, a-Tubulin,

and normal rabbit IgG from Santa Cruz Biotechnology (Santa

Cruz, CA); BAK (06–536), BAK (Ab-1), and phospho-Histone H1

from Millipore.

Plasmid Transfection and Lentivirus Infection
The lentiviral short-hairpin RNA (shRNA)-expressing con-

structs were purchased from Open Biosystems (Huntsville, AL).

The constructs were transfected into 293T packaging cells along

with the packaging plasmids, and the lentivirus-containing

supernatants were used to transduce human breast cancer cells.

Cell Death Assay
Cell death was quantified by the amount of DNA fragmentation

using the Cell Death Detection ELISAplus kit (Roche) according to

the manufacturer’s protocol, or the cell numbers determined by

trypan-blue exclusion.

Immunoprecipitation and Western Blot Analyses
Whole cell lysates were prepared with CHAPS lysis buffer

[20 mM Tris (pH 7.4), 137 mM NaCl, 1 mM dithiothreitol

(DTT), 1% CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-

1-propanesulfonate), a protease inhibitor cocktail, and phospha-

tase inhibitor cocktails (Sigma)]. For immunoprecipitation, equal

amounts of protein were precleared with protein A/G beads

(Pierce, Rockford, IL), and incubated with the appropriate

antibodies on ice for 2 hours. Then the antibody complexes were

captured with protein A/G beads at 4uC for 1 hour. After washing

three times with the same lysis buffer, the beads were re-suspended

in the sample buffer and separated by SDS-PAGE. For Western

blot analyses, equal amounts of proteins were loaded on a SDS-

acrylamide gel, transferred to a nitrocellulose membrane and

analyzed by immunoblotting. Phosphorylated MCL-1 was detect-

ed on 10% SDS-PAGE with 25 mM Phos-tag acrylamide (Wako,

Richmond, VA) according to the manufacturer’s protocol [15].

Statistical Analysis
Values represent the means 6 SD for three separate exper-

iments. The significance of differences between experimental

variables was determined using the Student’s t test. Values were

considered statistically significant at P,0.05.

Paclitaxel Induces BAK-Dependent Apoptosis
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Results

BIM is Dispensable for Paclitaxel-induced Apoptosis in
both in vitro and in vivo

In order to examine the role of BIM in paclitaxel-induced cell

death, we prepared mouse embryonic fibroblasts (MEFs) from

wild-type and bim2/2 mice and treated with 20 nM of paclitaxel

for 48 hrs. Free nucleosomal DNA, indicative of DNA cleavage

followed by apoptotic cell death, was observed in both wild-type

and bim2/2 MEFs (Figure 1A). Cleaved-PARP was also detected

at 24 hours after the treatment and increased at 48 hours in both

wild-type and bim2/2 MEFs (Figure 1B). In contrast, both DNA

cleavage and cleaved PARP was undetectable in bax2/2bak2/2

(dKO) MEFs, consistent with the previous observations. BIM was

induced over the time period in both wild-type and dKO MEFs,

suggesting that BIM may receive a signal(s) of mitotic checkpoint.

These results suggest that paclitaxel-induced cell death depends on

BAX and/or BAK mediated mitochondrial apoptotic pathway,

but is independent of BIM.

To further investigate whether paclitaxel could induce BIM-

independent celldeath,we establishedan in vivo bim2/2 mousebreast

tumor model. ErbB2 (HER2, neu) is a proto-oncogene that belongs to

the epidermal growth factor receptor (EGFR) family [16,17]. ErbB2

is frequently (,30%) overexpressed in breast tumors [18]. MMTV-

ErbB2 transgenic mice produce spontaneous breast tumors within 6–

8 months of average tumor onset [13]. To generate MMTV-ErbB2/

bim2/2 mice, bim2/2 mice were interbred to MMTV-ErbB2

transgenic mice. The MMTV-ErbB2 female mice with bim+/+,

bim+/2, and bim2/2 were born with the numbers of 86:76:28,

suggesting that BIM contributes to the development of mice.

However, tumor onset was 6–8 months in average regardless of the

bim status. As we previously established the treatment protocol [14],

tumor-bearing mice were treated with 15 mg/kg of paclitaxel for 9

consecutive days. Without the treatment, tumors in both bim+/+ and

bim2/2 mice grew with MGR = 23.5%/day for bim+/+ and

MGR = 12.0%/day for bim2/2, respectively, suggesting that BIM

plays a role in ErbB2-mediated tumor growth. With paclitaxel

treatment, tumors in both genotypes shrink in similar ratio

(MGR = 25.2%/day) (Figure 2). We further confirmed BIM-

independent cell death induced by paclitaxel in breast tumors ex vivo.

Treatment with paclitaxel in mouse mammary epithelial cells from

both bim+/+ and bim2/2 induced apoptosis to a similar extent

(Figure 3A). BIM was clearly induced in bim+/+ cells as similarly

observed in MEFs, suggesting that a signal(s) of mitotic checkpoint

was transduced (Figure 3B). Taken together, all experiments in

in vitro, in vivoand ex vivo indicate that BIMisdispensable inpaclitaxel-

induced apoptosis.

Paclitaxel-induced Apoptosis is BAK-dependent
Since bax2/2bak2/2 MEFs were resistant to paclitaxel-induced

cell death (Figure 1), we next examined whether BAX and/or

BAK were required for the cell death. We took advantage of using

bax2/2 and bak2/2 MEFs with paclitaxel treatment. Bax2/2

MEFs showed similar amounts of apoptosis with wild-type MEFs,

judged by DNA fragmentation and PARP cleavage (Figure 4A and

4B). In contrast, bak2/2 MEFs were resistant to apoptosis induced

by paclitaxel treatment to a similar extent as dKO MEFs. These

results suggest that BAK plays a crucial role in paclitaxel-induced

apoptosis and BAX is redundant.

In order to examine the role of BAK in paclitaxel-sensitivity in

human breast cancer cell lines, we determined the levels of BAK in

five human breast cancer cell lines. Among the cell lines we

examined, SK-BR-3 showed the highest and T47-D showed the

lowest BAK expression (Figure S1A). In accordance with BAK

expression, SK-BR-3 was more sensitive to paclitaxel than T47D,

implicating that the level of BAK could determine the paclitaxel

sensitivity (Figure S1B). We then examined whether BAK played a

role in paclitaxel-induced apoptosis. Down-regulation of BAK by

shRNA in both SK-BR-3 and T47-D inhibited PARP cleavage,

indicative of apoptosis (Figure 5). The levels of MCL-1 were

gradually decreased with paclitaxel treatment in both control cells

Figure 1. BIM is dispensable for paclitaxel-induced apoptosis in MEFs. (A) MEFs were treated with 50 nM of paclitaxel for 48 hrs. Cell death
was determined by DNA fragmentation using the Cell Death Detection ELISAplus kit (Roche). Average values from triplicate samples are shown as
representative of two independent experiments. (B) MEFs were treated with 50 nM of paclitaxel for the indicated times. Total cell extracts were
subjected to Western blotting with the indicated antibodies.
doi:10.1371/journal.pone.0060685.g001

Paclitaxel Induces BAK-Dependent Apoptosis
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and the cells in which BAK was down-regulated by shRNA. We

further established SK-BR-3 cells in which BAX or BIM was

down-regulated by shRNAs (Figure 6). In contrast with BAK

down-regulation, BAX or BIM down-regulation did not change

paclitaxel sensitivity. Similar results were also observed in MDA-

MB-468 cells in which BAK or BIM was down-regulated by

shRNA (Figure S2). Treatment with paclitaxel induced Cyclin B1,

indicative of G2/M arrest, and the decrease of MCL-1 in control

and all shRNA-transfected SK-BR-3 cells (Figure 6), suggesting

that the decrease of MCL-1 is not the consequence of cell death

[19]. Taken together, BAK plays a critical role in paclitaxel-

induced apoptosis in human breast tumor cells.

BAK is Activated with Paclitaxel Treatment by the Release
from the BAK/MCL-1 Complex

BAK is known to bind MCL-1 and BCL-XL, the anti-apoptotic

BCL-2 family proteins, before cell death signals are transduced.

Upon death stimuli, BAK is released and is activated to induce

downstream cell death pathways [20]. Immunoprecipitation

experiments with SK-BR-3 confirmed that BAK interacted with

MCL-1 and BCL-XL before paclitaxel treatment (Figure 7A).

After the treatment, the level of BAK was unchanged and the level

of MCL-1 was decreased. Accordingly, BAK/MCL-1 interaction

was decreased (Figure 7A, upper panel). In contrast, the level of

BCL-XL and BAK/BCL-XL interaction were not altered

(Figure 7A, upper panel). A reciprocal immunoprecipitation

experiment with the BCL-XL antibody confirmed BAK/BCL-

XL interaction was not altered (Figure 7A, lower panel). Decrease

of BAK/MCL-1 interaction led to the activation of BAK, judged

by the increase of BAK conformational change (Figure 7B). These

results indicate that BAK is released from the BAK/MCL-1

complex with paclitaxel treatment by the decrease of MCL-1

protein level, followed by the activation of BAK and apoptosis.

It has been shown that the degradation of MCL-1 with

microtubule damaging agents such as paclitaxel and vinblastine is

mediated through its phosphorylation by Cdk1 followed by

proteasome-dependent degradation [21,22]. When SK-BR-3 cells

were co-treated with paclitaxel and a proteosome inhibitor

MG132, MCL-1 expression was increased (Figure 7C). MCL-1

expression was also increased in cells treated with MG132 alone,

consistent with reports showing that it is normally subject to rapid

turnover via proteosome-mediated degradation in untreated cells

[23]. With the condition we used, treatment of MG132 for 24 hrs

by itself induced apoptosis, and combination with paclitaxel and

MG132 increased apoptosis presumably through the MCL-1-

independent mechanisms. It has also been reported that the

combination with paclitaxel and MG132 synergistically induces

apoptosis in breast cancer cells [24,25]. Our result suggests that

loss of MCL-1 is due to proteosome-mediated degradation. The

Cdk inhibitor roscovitine blocked paclitaxel-induced histone H1

phosphorylation (a substrate for Cdk1), MCL-1 phosphorylation,

and the decrease of intact MCL-1 protein (Figure 7D). This result

Figure 2. Mammary tumor growth response to paclitaxel in MMTV-ErbB2/Bim+/+ and MMTV-ErbB2/Bim2/2 mice. Tumor growth curves
for untreated and treated mammary tumors arising MMTV-ErbB2/Bim+/+ and MMTV-ErbB2/Bim2/2 mice are shown. Tumor-bearing mice were treated
nine consecutive days with paclitaxel (15 mg/kg) and tumor growth was monitored by caliper measurements. Each line represents the growth of an
individual tumor.
doi:10.1371/journal.pone.0060685.g002

Paclitaxel Induces BAK-Dependent Apoptosis
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suggests that Cdk1 mediated phosphorylation of MCL-1 triggers

the degradation. As a consequence of inhibition of MCL-1

degradation, more BAK/MCL-1 complex was detected by co-

immunoprecipitation with anti-BAK, and cells showed less

apoptosis induced with paclitaxel treatment judged by the amount

of cleaved PARP (Figure 7D and 7E). The inhibition of MCL-1

degradation by MG132 or roscovitine was also observed in MDA-

MB468 or T47-D cells (Figure S3). Taken together, the results

Figure 3. BIM is dispensable for paclitaxel-induced apoptosis in ex vivo mouse mammary tumors. (A) Mouse mammary epithelial cells
were treated with 1 mM of paclitaxel for 48 hrs. Cell death was determined by DNA fragmentation using the Cell Death Detection ELISAplus kit
(Roche). Average values from triplicate samples are shown as representative of two independent experiments. (B) Mouse mammary epithelial cells
were treated with 1 mM of paclitaxel for the indicated time. Total cell extracts were subjected to Western blotting with the indicated antibodies.
doi:10.1371/journal.pone.0060685.g003

Figure 4. BAK plays a role in paclitaxel-induced apoptosis in MEFs. (A) MEFs were treated with 50 nM of paclitaxel for 48 hrs. Cell death was
determined by DNA fragmentation using the Cell Death Detection ELISAplus kit. Average values from triplicate samples are shown as representative of
two independent experiments. (B) MEFs were treated with 50 nM of paclitaxel for the indicated times. Total cell extracts were subjected to Western
blotting with the indicated antibodies.
doi:10.1371/journal.pone.0060685.g004

Paclitaxel Induces BAK-Dependent Apoptosis
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Figure 5. BAK plays a role in paclitaxel-induced apoptosis in human breast cancer cells. SK-BR-3 and T47D cells were infected with
lentiviruses expressing shRNAs for non-targeting control or BAK. Puromycin-resistant cells were pooled after each infection. Cells were treated with
20 nM paclitaxel for SK-BR-3 or 50 nM for T47-D for the indicated times and equal amounts of total cell extracts were subjected to Western blotting
with the indicated antibodies.
doi:10.1371/journal.pone.0060685.g005

Figure 6. BAK, but neither BAX nor BIM, plays a role in paclitaxel-induced apoptosis in human breast cancer cells. SK-BR-3 cells were
infected with lentiviruses expressing shRNAs for non-targeting control, BAK, BAX, or BIM. Puromycin-resistant cells were pooled after each infection.
Cells were treated with 20 nM paclitaxel for 24 hours and equal amounts of total cell extracts were subjected to Western blotting with the indicated
antibodies.
doi:10.1371/journal.pone.0060685.g006

Paclitaxel Induces BAK-Dependent Apoptosis
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indicate that BAK is activated with paclitaxel treatment by the

release from the BAK/MCL-1 complex via Cdk1-mediated

phosphorylation of MCL-1 followed by proteasome-dependent

MCL-1 degradation.

Discussion

Paclitaxel, the prototypic member of taxanes, is used in the

treatment of breast, ovarian, and lung cancers [1,2]. This

chemotherapeutic drug causes mitotic arrest, however precisely

how this mitotic arrest triggers subsequent cell death (apoptosis) is

still unclear. Several reports have demonstrated a paclitaxel-

mediated dependence on BIM, a BH3-only pro-apoptotic BCL-2

family protein [5,6,7,8,9]. On the other hand, it has been recently

reported that depletion of BIM does not impart paclitaxel

resistance to HeLa cells or breast carcinoma cell lines MCF-7,

SK-BR-3, and MDA-MB-468 [10]. Thus, more studies need to be

undertaken in order to reconcile the previously characterized role

of BIM in paclitaxel-induced cell death in mouse models and in

clinically relevant cells such as human breast cancer cells.

We therefore examined the role of BIM in paclitaxel-induced

cell death in a variety of experimental systems in in vitro and in vivo;

bim2/2 MEFs (Figure 1), the bim2/2 mouse breast tumor model

(Figure 2 and 3), and shRNA-mediated down-regulation of BIM in

human breast cancer cells (Figure 6). In the systems we have

examined, we conclude that BIM is dispensable in apoptosis with

paclitaxel treatment. At this moment, the reasons of the

discrepancy are unclear between our results and previous

observations from others. Of note, the concentrations of paclitaxel

used in Czernick et al. [10] and Zhou et al. [26] are relatively low

(20–50 nM). We carefully determined the concentrations used to

examine minimal toxicity for each cell type (20 nM for SK-BR-3

and MDA-MB-468; 50 nM for MEFs and T47D). It is well known

that paclitaxel exerts its mitotic effects by alternate mechanisms,

depending on the concentration of the drug utilized [1]. Thus, it is

possible that the mechanisms of paclitaxel-induced cell death are

also concentration-dependent.

Bim-deficient tumors grew slower than the wild-type tumors

(Figure 2), suggesting that BIM plays a role in ErbB2-mediated

tumor growth. It has been reported that BIM deficiency promotes

the development of B cell lymphomas in Em-myc transgenic mice

and tumorigenesis of E1A and dominant-negative p53 trans-

formed BMK (baby mouse kidney) cells in nude mice [9,27].

Therefore, the role of BIM in tumorigenesis may be context-

dependent. One different point between our study and others

could be p53-dependency in tumor development. Whereas the

p19Arf/p53 pathway is frequently mutated in tumors arising in

Figure 7. BAK is activated with paclitaxel treatment by the release from the BAK/MCL-1 complex. (A) SK-BR-3 cells were treated with
20 nM paclitaxel for 24 hours. Immunoprecipitations with the total cell extracts were carried out with an anti-BAK, rabbit IgG (Control) (Upper panel)
or an anti-BCL-XL antibody (Lower panel). Western blotting was carried out on precipitated samples with the indicated antibodies. (B) The SK-BR-3
total cell extracts in (A) were subjected to immunoprecipitations with a BAK (Ab-1) conformational change-specific antibody. Western blotting was
carried out on precipitated samples with an anti-BAK antibody. (C) SK-BR-3 cells were pre-treated with 5 mM MG132 for 30 minutes, and were then
treated with 20 nM paclitaxel for 24 hours. Total cell extracts were subjected to Western blotting with the indicated antibodies. (D) SK-BR-3 cells were
pre-treated with 10 mM roscovitine for 30 minutes, and were then treated with 20 nM paclitaxel for 24 hours. Total cell extracts were subjected to
Western blotting with the indicated antibodies. (E) Immunoprecipitations with the total cell extracts from (D) were carried out with an anti-BAK
antibody. Western blotting was carried out on precipitated samples with the indicated antibodies.
doi:10.1371/journal.pone.0060685.g007
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Bim+/+ Em-myc mice, it is unaffected in most Bim-deficient tumors,

indicating that BIM reduction is an effective alternative to loss of

p53 function [27]. Since the BMK cells are transformed with

genes that disrupt the RB and p53 pathways, BIM controls a

checkpoint independent of those major routes to tumorigenesis

[9]. In contrast, ErbB2-mediated tumorigenesis is controlled by

cell cycle regulators including p53 [28]. Obviously, further studies

are required to clarify these issues.

Since bax2/2/bak2/2 MEFs are insensitive to paclitaxel

treatment, we examined the possible independent role of BAX

or BAK. Not only bak2/2 MEFs, but also down-regulation of

BAK in several human breast cancer cells showed paclitaxel

resistance (Figure 4, 5, 6, and S2). Consistent with our observation,

it has been shown that down-regulation of BAK in MDA-MB-435

and MDA-MB-231 human breast cancer cell lines suppress

paclitaxel-induced apoptosis [26]. In contrast, bax2/2 MEFs or

down-regulation of BAX in breast cancer cells showed similar

paclitaxel sensitivity as wild-type MEF or control cells, respectively

(Figure 4 and 6). The roles of BAX and BAK can be redundant or

non-redundant, depending on the apoptotic stimuli. BAK plays an

essential role for apoptosis induced by Semliki Forest virus,

gliotoxin, BCL-XS, inhibitors of protein synthesis (Pseudomonas

exotoxin A, cycloheximide, ricin), and vinblastine

[22,29,30,31,32]. Among them, vinblastine belongs to mictotubule

damaging agents as paclitaxel, thus these agents could induce a

common mechanism(s) to execute apoptosis. We examined BAX

conformational change by a conformation specific antibody (6A7).

We found that BAX conformation was also changed by paclitaxel

treatment (data not shown). However, our data clearly demon-

strate that paclitaxel-induced apoptosis is BAX-independent.

There are several controversial reports about the role of BAX in

paclitaxel or vinblastine treatment [33,34,35]. Thus, more study

will be required to determine the significance of BAX conforma-

tional change with paclitaxel treatment.

Our work defines a rational mechanism whereby loss of MCL-1

leads to apoptosis in human cells. We showed that in untreated

cells BAK was bound to MCL-1. BAK/MCL-1 interaction was

decreased and BAK was released with paclitaxel treatment in

concert with loss of MCL-1 expression. BAK underwent

conformational changes recognized by an active BAK antibody

in response to paclitaxel treatment. Co-treatment with paclitaxel

and MG132 inhibited the decrease of MCL-1 expression. Thus,

proteasome-dependent MCL-1 degradation during mitotic arrest

leads to loss of sequestration of BAK permitting BAK activation

and apoptosis. We performed knockdown of MCL-1 expression in

SK-BR3 and MDA-MB468 cells. Both cell lines started to die

within 24 hours without any treatment. The induction of apoptosis

by knockdown of MCL-1 expression in SK-BR-3 cells has been

previously reported [36]. These observations are consistent with

our idea that MCL-1 degradation during mitotic arrest leads to

loss of sequestration of BAK permitting BAK activation and

apoptosis. In contrast, the level of BCL-XL was not changed and

BAK/BCL-XL interaction was not altered. Our study indicates

that MCL-1 degradation may elicit apoptosis after paclitaxel

treatment via BAK released from suppressed complexes, whereas

BCL-XL is unaffected. In contrast to the observation in human

breast tumor cells, we could not detect MCL-1 degradation upon

paclitaxel treatment in MEFs and mouse mammary epithelial

cells. Human and mouse MCL-1 are highly conserved although

several stretches of amino acids are diverged (Figure S4).

Treatment with roscovitine prevented paclitaxel-induced MCL-1

degradation, suggesting the contribution of Cdk1. Putative Cdk1

phosphorylation sites in human MCL-1, Ser64 and Thr92 [37,38]

do not exist in mouse MCL-1. Thus, the mechanisms of BAK

activation with paclitaxel treatment might be different in between

human and mouse cells.

We show that BAK plays an important role in paclitaxel

sensitivity of breast cancer cells. BAK can be a prognostic marker

to determine paclitaxel sensitivity of breast cancer patients. BAK

may potentially serve as a therapeutic target for overcoming

paclitaxel resistance in human breast cancer. These novel findings

have important implications in the development of targeted

therapeutics for overcoming paclitaxel resistance in human breast

cancer.

Supporting Information

Figure S1 The level of BAK expression and paclitaxel
sensitivity in human breast cancer cells. (A) Total cell

extracts of the indicated human breast cancer cells were subjected

to Western blotting with BAK or tubulin antibodies. (B) SK-BR-3

cells and T47-D cells were treated with the indicated concentra-

tions of paclitaxel for 48 hours. Cell death was determined by

trypan-blue exclusion. Average values from triplicate samples are

shown.

(TIF)

Figure S2 BAK, but not BIM, plays a role in paclitaxel-
induced apoptosis in human breast cancer cells. MDA-

MB-468 cells were infected with lentiviruses expressing shRNAs

for non-targeting control, BAK or BIM. Puromycin-resistant cells

were pooled after each infection. Cells were treated with 20 nM

paclitaxel for 24 hours and equal amounts of total cell extracts

were subjected to Western blotting with the indicated antibodies.

(TIF)

Figure S3 Paclitaxel-induced MCL-1 degradation was
blocked by a proteasome inhibitor MG132 or a Cdk
inhibitor roscovitine in MDA-MB468 and T47-D cells. (A)

MDA-MB468 cells were pre-treated with 5 mM MG132 for 30

minutes, and were then treated with 20 nM paclitaxel for 24

hours. Total cell extracts were subjected to Western blotting with

the indicated antibodies. (B) MDA-MB468 and T47-D cells were

pre-treated with 10 mM roscovitine for 30 minutes. MDA-MB468

cells were then treated with 20 nM paclitaxel for 24 hours and

T47-D cells were treated with 50 nM paclitaxel for 48 hours.

Total cell extracts were subjected to Western blotting with the

indicated antibodies.

(TIF)

Figure S4 Comparison of amino acid sequences be-
tween human and mouse MCL-1. Alignment of the primary

amino acids sequence of human and mouse MCL-1 is shown. The

middle line indicates the same amino acids between the

species.+indicates an amino acid similarity. Ser64 and Thr92 in

human MCL-1 are indicated with bold-italic.

(TIFF)
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