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D. J. Friedman
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401

S. Doğan and D. Johnstone
Virginia Commonwealth University, Department of Electrical Engineering, 601 W. Main Street,
P. O. Box 843072, Richmond, Virginia 23284-3072

(Received 18 June 2004; accepted 20 September 2004)

Raman scattering from longitudinal optical phonon-plasmon coupled mode was observed in a series
of InGaAsN/GaAs single quantum well samples grown by metalorganic vapor phase epitaxy. The
phonon-plasmon mode spectra were fitted with the dielectric constant function based on Drude
model that contains contributions from both lattice vibrations and conduction electrons. The carrier
concentration is calculated directly from the plasmon frequency, which is obtained from the fitting
procedure. An empirical expression for the electron concentration,fng, in InGaAsN/GaAs samples
is determined asfng<h2.3531016svm−502djcm−3, wherevm is the peak of the upper frequency
branch,L+, of the phonon-plasmon mode measured in unit of cm−1. The phonon-plasmon coupled
mode was also investigated in rapid thermally annealed samples. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1823014]

Dilute nitride materials such as InGaAsN have been the
subject of intense investigation for their applications in mul-
tijunction photovoltaic1–3 and optoelectronic devices operat-
ing at 1.3 and 1.5mm.4–6 This is due, in part, to the large
band gap bowing factor resulting from nitrogen incorpora-
tion in the material. For example, the addition of 2% nitro-
gen causes the band gap to decrease by about 0.4 eV(see,
for example, Ref. 7). The ability to vary the band gap of the
alloy material in a wide range by optimizing the nitrogen
content provides means to tailor the material properties for
the desired device applications.

The determination of the conduction electrons concen-
tration in diluted nitrides is very important for device fabri-
cation. Hall effect is typically the method used for measuring
the carrier concentration in semiconductors, which requires
the fabrication of ohmic contacts. It is possible, however, to
determine the carrier concentration in polar semiconductor
materials using Raman scattering without the need of ohmic
contacts. This is because the collective oscillation(plasmon)
of free carriers can interact with the longitudinal optical(LO)
phonons through the longitudinal electric fields and form an
LO-plasmon coupled(LOPC) mode. This mode was first
demonstrated in GaAs bulk material8 and had been recently
reported inn-type GaN thin films.9–11

The Raman scattering intensity,Isvd, is related to the
dielectric constant according to the following relation(see,
for example, Ref. 12):

Isvd ~ ImF−
1

esvdG , s1d

where esvd is the dielectric function consisting of phonon
and plasmon contributions and is given by

esvd = e`S1 +
vL

2 − vT
2

vT
2 − v2 − ivG

−
vp

2

v2 − ivg
D , s2d

where e` is the high frequency dielectric constant and is
approximately taken as the square of the refractive index at
the probe laser wavelength useds1064 nmd, vL is the LO
phonon frequencys291 cm−1d, vT is the transverse optical
(TO) phonon frequencys268 cm−1d, G is the phonon damp-
ing rate,g is plasmon damping rate, andvp is the plasmon
frequency given by

vp
2 =

ne2

eoe`m* , s3d

wheren is the carrier concentration,e is the electric charge,
e0 is permittivity of space, andm* is the electron effective
mass. Notice that LO and TO phonon frequency were ob-
tained from the Raman measurements as shown in Fig. 1.
These frequencies varied slightly from sample to sample, but
they are in good agreement with the frequencies reported13

for InGaAsN. Furthermore, the measured phonon frequen-
cies are slightly smaller than those reported for bulk GaAs
materials.14 The LOPC mode splits into two modes known as
L+ and L− branches. These two branches are approximately
obtained by settingG=g=0 and solve Eq.(2) for esvd=0,
which yields

L± =
1
Î2

fsvL
2 + vp

2d ± ÎsvL
2 + vp

2d2 − 4vT
2vp

2g1/2. s4d

The GaAs/ InGaAsN/GaAs single quantum well
samples were grown by atmospheric-pressure metalorganic
vapor phase epitaxy at 570°C on semi-insulating GaAs ori-
ented 2° froms100d to s110d. A typical size of the substrate
is 1 cm32 cm. Trimethylgallium, trimethylindium, arsine,
and dimethylhydrazine(DMH) were used as precursors. The
growth rate was 5mm/h for the InGaAsN active layers. The

a)Author to whom correspondence should be addressed; electronic mail:
manasreh@engr.uark.edu

APPLIED PHYSICS LETTERS VOLUME 85, NUMBER 21 22 NOVEMBER 2004

0003-6951/2004/85(21)/4905/3/$22.00 © 2004 American Institute of Physics4905
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.172.48.59 On: Fri, 17 Apr 2015 17:48:45

http://dx.doi.org/10.1063/1.1823014


N content was changed for the various samples by varying
the DMH source flow rate and the In mole fraction was ap-
proximately 7% for all samples. The InGaAsN active layers
were 100 Å thick, and were clad on both sides byn-type
GaAs doped with silicon from disilane precursor with doping
level on the order of mid 1018 cm−3. The cladding layers
varied in thickness. Several of these samples were used in a
previous photoluminescence study15 where the indium and
the nitrogen contents were reported. The Raman scattering
spectra were recorded at room temperature using a Fourier-
transform spectrometer in conjunction with a yttrium–
aluminum–garnet laser and an optics transfer attachment.

A typical Raman scattering spectrum of LOPC mode in
InGaAs/GaAs single quantum well is shown in Fig. 1 as the
gray spectrum. This spectrum was fitted with Eq.(1) and the
result is shown as the thin black line. The fitting procedure
reveals bothL+ andL−. TheL− region along with the LO and
TO phonon modes are re-plotted in the figure inset for clar-
ity. The plasma frequency,vp, was used as one of the fitting
parameters. The fitting procedure, illustrated in Fig. 1, was
repeated for several samples, from whichL+ and vp were
obtained. The frequency maximum ofL+ branch was ob-
tained for the samples and plotted as a function of the plas-
mon frequency, as shown in Fig. 2. Equation(4) is also plot-
ted in this figure(solid lines) along with the LO and TO
phonon modes(dashed lines).

The carrier concentration,fng, is calculated from the
plasmon frequency according to Eq.(3) for several samples.
The frequency maximum,vm, of the LOPC mode upper
branch is plotted as a function of the carrier concentration, as
shown in Fig. 3. The solid line is the result of the linear fit of
the data from which the following expression is obtained:
fng=2.3531016svm−502d cm−3. This expression can be
used to obtain the carrier concentration directly from the
peak ofL+ mode, which is measured directly by Raman scat-
tering in unit of cm−1, as shown in Fig. 1.

Another test of the LOPC mode in InGaAsN/GaAs
single quantum well samples is the thermal annealing. Both
furnace annealing and rapid thermal annealing(RTA) have a
drastic effect on the carrier concentration in semiconductor
including diluted nitrides.16–18 Several InGaAsN/GaAs

single quantum well samples were annealed using an RTA
setup. A typical result of the RTA effect on the LOPC mode
is shown in Fig. 4, where the Raman scattering spectra(gray
lines) are recorded for two pieces cut from the same wafer,
of which one was annealed at 900°C for 30 s and the other
was unannealed. It is clear from this figure that a large blue-
shift is observed for the LOPC mode in the annealed sample.
This behavior is observed in all annealed samples. Both
spectra were fitted using Eq.(1) and the fitted lines are dis-
played as the thin black lines. The plasmon frequencies ob-
tained from the fitting procedure are 1053 and 2054 cm−1 for
the unannealed and annealed samples, respectively, with ac-
curacy less than 0.5% as obtained from the fitting results.
The corresponding carrier concentrations are 1.0
31019 cm−3 for the unannealed sample and 3.931019 cm−3

for the annealed sample, an increase of a factor of 3.9. A
plausible explanation of the increase of the carrier concen-
tration in the annealed sample is that many of the defects,
imperfections, and traps in the structure are annealed out
releasing the electrons to the conduction band. It is obvious
that the increase of the carrier concentration causes the blue-
shift of the LOPC mode, which is demonstrated experimen-
tally in Fig. 4.

It is noted that the full width at half maximum of the
spectrum obtained for the annealed sample in Fig. 4 is larger

FIG. 3. The frequency maximum,vm, of L+ branch as a function of the
carrier concentration obtained from the data in Fig. 2. The solid line is a first
order linear fit of the data.

FIG. 1. A Raman scattering spectrum obtained for an InGaAsN/GaAs
single quantum well sample(gray line). The spectrum shows the LO, TO
and theL+ branches of the LOPC mode. The solid black line is the result of
the fitting analysis using Eq.(1), which shows both theL+ andL− branches
of the LOPC mode. The inset is the expansion of the spectral region in the
vicinity of LO and TO phonon modes.

FIG. 2. A plot of theL+ mode as a function of the plasmon frequency for a
series of InGaAsN/GaAs single quantum well samples(solid squares). The
plasmon frequency,vp, was obtained from fitting the LOPC mode in the
samples. The solid lines are plots ofL+ andL− given by Eq.(4). The dashed
lines represent the LO and TO phonon frequencies.
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than that of the unannealed sample. This is translated into a
larger plasmon damping rate,g, which is also used in the
fitting analysis. Theg values obtained for the Raman spectra
in Fig. 4 are 634 and 1549 cm−1 before and after annealing,
respectively, with accuracy less than 0.5% as obtained from
fitting results. The plasmon damping rate is related to the
carrier drift mobility, m, through the following relation:m
=e/ sm*gd. Thus, the carrier mobility in the annealed sample
is about a factor of 2.44 smaller than that of the unannealed
sample.

One possible explanation of the reduction of the mobility
is the electron-electron scattering, which is significant for
systems with carrier concentration larger than 1018 cm−3

(see, for example, Refs. 19–21). The electron-electron scat-
tering increases as the electron concentration is increased.
Hence, the carrier drift mobility decreases as the electron-
electron scattering is increased. The drift mobility values es-
timated from the plasmon damping rate are,220 and
,90 cm2 V−1 s−1 for the unannealed and annealed samples,
respectively. While the above explanation is a plausible rea-
son, there are other scattering mechanisms that may affect
the mobility.

These mobility values are in good agreement with those
reported by Young, Geisz, and Coutts.22 The electron effec-
tive mass was chosen as 0.067m0, which is the effective mass
in the bulk GaAs material, in our estimation of the carrier
concentration [see Eq. (3)] and the drift mobility. For
InGaAsN material, the effective mass is still surrounded by
controversy. Recent reports23,24 show that the electron effec-
tive mass is ranging between,s0.1 and 0.5dm0, while other
reports22,25,26 indicate that the electron effective mass is in
the range of,s0.004–0.11dm0. Thus, our choice ofm* is in
agreement with the latter range.

In conclusion, the Raman scattering from longitudinal
optical phonon-plasmon coupled mode is investigated in a
series of InGaAsN/GaAs single quantum well samples. A
Drude based dielectric constant, which contains contribution
from lattice vibrations and plasmon, is used for the line-
shape fitting analysis of Raman spectra. The plasmon fre-
quency was extracted from the analysis and used to calculate
the electron concentrations in the samples. An empirical ex-

pression for the carrier concentration as a function of the
frequency maximum of the LOPC coupled mode upper
branch is obtained, which allows one to directly estimate the
carrier concentration from the Raman scattering spectra.
Rapid thermal annealing reveals a significant increase in the
LOPC mode frequency, which is translated to a significant
increase in the carrier concentration in the annealed samples.
The increase of the carrier concentration in the annealed
samples is accompanied by an increase in the plasmon damp-
ing rate, which leads to a decrease in the carrier drift mobil-
ity.

This work was partially supported by the Air Force Of-
fice of Scientific Research Grant No. F49550-04-1-0002.
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