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Long carrier lifetimes in GaN epitaxial layers grown using TiN porous
network templates
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Department of Electrical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284

H. O. Everittb!

Department of Physics, Duke University, Durham, North Carolina 27708

S. S. Park and K. Y. Lee
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea 440-600
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Improved structural quality and radiative efficiency were observed in GaN thin films grown by
metalorganic chemical vapor deposition on TiN porous network templates formed byin situ thermal
annealing of Ti in ammonia. The room-temperature decay times obtained from biexponential fits to
time-resolved photoluminescence data are longer than ever reported for GaN. The carrier lifetime of
1.86 ns measured for a TiN network sample is slightly longer than that for a 200µm thick

high-quality freestanding GaN. The linewidth of the asymmetric x-ray diffractionsXRDd s101̄2d
peak decreases considerably with the use of TiN layer and with increasingin situ annealing time,
indicating the reduction in threading dislocation density. However, no direct correlation is yet found
between the decay times and the XRD linewidths, suggesting that point defect and impurity related
nonradiative centers are the main parameters affecting the lifetime. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1944903g

Technological advances in group-III nitride-based opto-
electronic and electrical devices have been made possible
owing to extensive materials research, resulting in the com-
mercialization of short-wavelength emitters and detectors.1

Meanwhile, the motivation for improved devices as well as
bringing high performance electronic devices to the market
place is continually driving the GaN technology for im-
proved material quality with better optical and electrical per-
formance. Conventional heteroepitaxial growth of GaN on
low-temperature GaN or AlN buffer layers deposited on sap-
phire sAl2O3d and SiC substrates results in films containing
high density of threading dislocationssTDsd s109–1010 cm−2d
and associated point defects due to lattice mismatch between
the film and the substrate. These imperfections affect both
the optical and electrical properties, hindering the advances
in device performance since they scatter charge carriers and
hamper the efficiency of radiative recombination.2

The best quality GaN epilayers are obtained by using
homoepitaxial growth over freestanding GaN templates or
bulk GaN; however, at present, the size and growth rate of
high quality bulk crystals are limited. Thick hydride vapor
phase epitaxysHVPEd -grown GaN templates exhibit very
low TD densitiess53106 cm−2d.3,4 For the reduction of TDs
and to obtain device quality GaN epilayers, different meth-
ods such as epitaxial lateral overgrowthsELOd sRef. 5d and
micro-ELO on in situ grown discontinuous SiNx layer
mask6–8 are introduced. The ELO process requiresex situ
photolithographic preparation that is cumbersome and in-
creases the cost. In this letter, we report on the optical char-
acterization of thin GaN epitaxial layers grown by metalor-
ganic chemical vapor depositionsMOCVDd on TiN micro-

porous networks. The photogenerated carrier decay times
measured by time-resolved photoluminescencesTRPLd are
longer than ever reported and are shown to be larger than
that for a thick HVPE-grown template and thin films without
the TiN network: an indication of the superior quality of the
overgrown GaN layers.

Ti films of 10 nm were electron-beam evaporated on 0.7
µm thick MOCVD-grown GaN templates, and then subjected
to in situ thermal annealing at 1050 °C in a fixed ratio of
NH3 to H2 s1:3d gases inside the MOCVD chamber at 200
Torr. Critical parameters for TiN annealing conditions such
as the gas ratiosH2:NH3, with a constant total flow rated,
annealing temperature, and annealing time had been ex-
plored previously.9 Annealing times of 15, 30, 45, and 60
min were used for nitridation of four different samples. GaN
was then overgrown at 1030 °C with constant TMGa and
NH3 flow rates of 156µmol/min and 7, /min, respectively,
maintaining a V/III ratio of 2000. The overall thickness was
,7.5 mm. For comparison, a control GaN layer was grown
on the same GaN template using identical growth conditions
but without the TiN network.

As suggested by the transmission electron microscope
sTEMd analysis, thin and extended surface voids are formed
above the discontinuous TiN layer, resulting in the lateral
overgrowth of GaN.9 The TDs in the GaN template are
blocked by the TiN layer, and many of the TDs penetrating
through the TiN windows to the upper layer change their
propagation direction and extend laterally. As a result, the
density of TDs significantly decreases at and above the TiN/
GaN interface. From the x-ray diffractionsXRDd results in
Table I, it is also seen that the full width at half maximum

sFWHMd of the s101̄2d peak decreases with increasing nitri-
dation time. This generally suggests that the density of edge
and mixed TDs is reduced with further nitridation. Addition-
ally, the FWHM values ofs0002d peaks are larger than those
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of s101̄2d peaks most probably due to the dispersion in thec
plane or vertical tilt introduced by the growth on porous TiN.
To ascertain whether the reduction of TDs actually reduces
the nonradiative pathways, low-temperature photolumines-
cencesPLd and room-temperature TRPL measurements were
performed on all the samples.

Continuous-wavescwd PL was measured at 10 K using a
25 mW HeCd laser operating at 325 nms3.82 eVd. TRPL
spectroscopy was employed at room temperature using a
,45 ps resolution Hamamatsu streak camera. 3.82 eV
pulsed excitation was from a 1 kHz optical parametric am-
plifier with ,100 fs wide pulses. The excitation density
s,200 mJ/cm2d was kept well below the stimulated emis-
sion threshold to measure the decay times.

Figure 1 shows the 10 K PL spectra for the GaN epilayer
samples with TiN subjected to 15 and 60 min nitridation and
the control sample with no TiN. All of the sampless30 and
45 min nitridation samples not shownd exhibit strong exci-
tonic features around the band edge. The blue and yellow
luminescence bands are also visible but are as much as two
orders of magnitude weaker than the bandedge emission in
all the samples. An enlarged view of the band edge spectral
region is shown in the inset of Fig. 1, where the free exciton
peaks at 3.491, 3.499, and 3.511 eV indicate theFXA, the
FXB, and theFXA excited state transitions, respectively. The
main donor bound excitonsD0Xd emission is observed at
3.485 eV. The FWHM of theFXA and theD0X peaks ob-
tained from Gaussian fits are given in Table I. Another
donor-bound exciton peak at 3.471 eV, which is not observed
for the control sample, is visible for the samples with TiN

network. The intensity of this peak is an order of magnitude
larger for the 15 min nitridation sample than for other
samples. We suspect that the number of Ti impurities in over-
grown GaN is reduced with increasing nitridation and that
the 3.471 eV PL line may be related to these impurities.

To verify the excitonic peak assignments, temperature
dependent PL measurements were performed on the 60 min
nitridation sample. In the 300 K PL of Fig. 2, the blue band
dissappears, the bandedge emission redshifts to 3.422 eV,
and the ratio of the band edge luminescence to the yellow
luminescence decreases. The inset of Fig. 2 shows the evo-
lution of the FXA peak with increasing temperature. Bound
exciton peaks are visible up to 50 K, and only theFXA and
FXB peaks remain above 100 K. The strong thermal quench-
ing of the bound excitons comes from the increasing rate of
excitation to the free exciton continuum.

The excitonic fine structure and the narrow linewidths at
low temperatures are measures of the quality of samples;
however, it is not possible to come to a conclusion about the
radiative efficiency from cw-PL. TRPL is a nondestructive
and powerful technique commonly used for characterization
of excess carrier dynamics in semiconductors. There is a
limited number of reports related to the TRPL lifetimes of
excess carriers in GaN at 300 K. Kwonet al.10 reported a
biexponential decay with 150 and 740 ps time constants for
high quality Si-doped MOCVD-grown GaN/sapphire. Decay
times between 205–530 ps were measured for thick
s.63 mmd HVPE-grown templates,11–13 and values ranging
from 445 sRef. 14d to 506 pssRef. 13d were reported for
homoepitaxially grown GaN layerss,1 mmd. In addition,
Chichibu et al.15 and Izumi et al.16 reported biexponential
decays with lifetimesst1,t2d of s130, 400d ps ands80, 459d
ps, respectively, for GaN/sapphire filmss,9 mmd grown us-
ing ELO. However, the same groups obtained longer biexpo-
nential lifetimes ofs130, 860d ps sRef. 15d and s98, 722d ps
sRef. 16d for bulk GaN s.80 mmd.

Figure 3 shows the TRPL data for the 15 min nitridation
sample, the control sample, and a HVPE-grown 200µm
thick freestanding GaN. The decays for all the samples were
well characterized by a biexponential decay function:
A1 exps−t /t1d+A2 exps−t /t2d. Table I summarizes the decay
constants and the amplitude ratiossA2/A1d obtained from
the fits using the Levenberg-Marquardt algorithm.17 The 15
min nitridation sample exhibits decay times that are the long-
est ever reported for GaN at room temperature.

TABLE I. XRD and 10 K PL linewidths, and TRPL decay constants and
amplitude ratiossat 200mJ/cm2 excitation densityd for GaN thin layer
samples grown on TiN templates. Data for the control sample with no TiN
layer and a freestanding GaN sample are also included.

Sample

FWHM
FXA, D0X

smeVd

XRD

s0002d, s101̄2d
sarcmind

t1, t2

snsd A2/A1

15 min 3.22, 3.90 6.43, 6.11 0.47, 1.86 0.59
30 min 3.88, 4.52 5.83, 4.86 0.39, 1.32 0.58
45 min 4.00, 5.27 5.09, 4.61 0.45, 1.68 0.54
60 min 3.40, 3.24 4.97, 4.57 0.41, 1.54 0.52
Control 3.09, 3.15 5.60, 7.11 0.13, 0.30 0.36

Freestanding
0.34, 1.73 0.33GaN

FIG. 1. 10 K PL spectra for the 15 min and 60 min nitridation samples and
the control sample. The inset shows the free exciton region of the spectra.

FIG. 2. Room-temperature PL spectrum for the 60 min nitridation sample.
The inset shows the temperature dependence of the free exciton region. The
peaks marked with filled circles show the evolution of the A-free exciton
sFXAd peak.
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Biexponential decays are characteristic of capture and
recombination processes in a multilevel system. Here, they
may be interpreted as related to the capture into deepersnon-
radiatived centers, either in the bulk or at the surface/
interface of the layer, followed by recombination. Although
the biexponential decay timest1 andt2 most probably do not
represent the pure nonradiative and radiative lifetimes, re-
spectively, the ratio A2/A1 is suggestive of the relative im-
portance of radiative decay. Thus, the particularly large
sA2/A1.0.5d magnitude for the slow decaying components
suggests increased radiative efficiency. Since the defect and
the dislocation density may not be uniform, the photoexcited
area may contain two regions having different recombination
times. Therefore, the measured lifetimest1 and t2 are both
limited by the nonradiative recombination.

With decreasing excitation energy density, the decay
times slightly decreasedfe.g. st1,t2d=s0.34 ns,1.60 nsd for
20 mJ/cm2 excitation of the 15 min nitridation sampleg for
all of the samples. The longer carrier lifetimes observed at
higher photogenerated carrier densities may be attributed to
the saturation of trap states.13 This will result in more carriers
recombining through relatively slower band-to-band radia-
tive recombination. Moreover, since both decay constants in-
crease but A2/A1 remains constantse.g., A2/A1=0.55 for
20 mJ/cm2 excitation for the 15 min nitridation sampled with
increasing excitation, we can also rule out the partial contri-
bution from bimolecular recombination,16 which has an esti-
mated characteristic decay time of around 1.6 ns for
1019 cm−3 carrier density.12

The improvement in decay times for the samples with
TiN templates compared to the control GaN sample reflects
the fact that TDs act as nonradiative recombination channels.
However, no direct correlation is observed between the XRD
linewidths and the decay times within the TiN network
samples. For samples with a low density of TDs, it has been
suggested that the very short diffusion length of carriers in
GaN s,1 mmd sRef. 18d prevents most of the carriers from
being trapped into TDs.15 Therefore, the observed sample-to-
sample variation in the decay times may be ascribed to point
defect-like nonradiative centers that cannot be detected by
the TEM. Similar TRPL decay times measured from the
wing and the window regions of ELO-GaN samples, which

mainly have different TD densities, support this
argument.15,16These results indicate that TDs do not limit the
emission efficiency at room temperature as much as other
types of nonradiative recombination centers, such as point
defects and impurities.

In summary, the growth of GaN thin films on TiN micro-
porous network templates significantly improves the struc-
tural quality and the radiative efficiency of the overgrown
layer. We believe that the time constants measured here for
the GaN thin films with TiN templates are the longest ever
reported for GaN at room temperature. The slow decaying
component for the 15 min nitridation sample has at2
=1.86 ns time constant that is comparable with the result of
t2=1.73 ns from a 200µm thick freestanding GaN, but has a
relative magnitudesA2/A1d almost twice as large.
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