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and PbZr0.57Ti0.43O3 grown on SrTiO3 substrate
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Department of Physics, Kyung Hee University, Yong-In 446-701, Republic of Korea

G. Xing, N. Izumskaya, V. Avrutin, B. Xiao, and H. Morkoç
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Virginia 23284
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Single crystalline PbTiO3, PbZrO3, and PbZr0.57Ti0.43O3 thin films on SrTiO3 �001� substrates were
grown by a combination of molecular beam epitaxy and rf sputtering methods. The authors
measured the dielectric functions of the thin films using spectroscopic ellipsometry and determined
the interband critical point energies using standard critical point model. They compared the critical
point energies to the band structure calculations in the literature. The data suggest that anticrossing
behavior occurs between Ea and Eb near Zr=0.17. This phenomenon is attributed to a coupling
between X1c and X3c bands caused by intrinsic alloy disorder. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2756168�

Perovskite oxides have very peculiar characteristics of
ferroelectricity and piezoelectricity. They can be used in the
applications for sensors, nonvolatile random access memo-
ries, electro-optic modulators, infrared detectors, and micro-
electromechanical systems, to cite a few. However, the
growth of high quality single crystalline perovskite oxide
thin films is very difficult to achieve. Recently, successful
growth of PbTiO3,1 PbZrO3, and Pb�ZrxTi1−x�O3 films2 on
SrTiO3 substrates by using peroxide molecular beam epitaxy
�MBE� was reported.

Unlike conventional semiconductors, the dielectric func-
tions and band structures of perovskite oxides have not been
studied sufficiently. PbZrxTi1−xO3 �PZT� is one of the well-
known ferroelectric materials and is no exception. The band
structure of PZT has been calculated by several groups.3,4

The dielectric functions and the interband critical points of
PbZrxTi1−xO3 �0.2�x�0.8� grown on platinized Si sub-
strates by radio frequency sputtering deposition have been
reported by Lee et al.4 The interband critical points of PZT
�0�x�1� have been reported by using spectroscopic ellip-
sometry, reflectivity, and optical transmission by several
groups.4,5 However, definite assignment of the interband
critical points has not been carried out yet.

In this work, we measured the dielectric functions of the
end-point ternaries PbTiO3 and PbZrO3 and the quaternary
PbZr0.57Ti0.43O3 by using spectroscopic ellipsometry. We es-
timated the interband critical point energies by using stan-
dard critical point model,6 and compared them with the band
structure calculations. We assigned the critical point energies
in terms of band structure calculations and proposed anti-
crossing behavior of Ea and Eb critical points near x=0.17.

PbTiO3 �PTO� and PbZrO3 �PZO� layers were grown on
�001� SrTiO3 �STO� substrates in a Riber 3200 MBE system.
A 50% aqueous solution of hydrogen peroxide �H2O2� was
employed as a source of reactive oxygen,1 and 99.999% pure
Pb and 99.995% pure Ti were supplied from double-zone
and high-temperature effusion cells, respectively. The layers

were grown at an H2O2/H2O pressure of about 5
�10−5 Torr and Pb-to-Ti and Pb-to-Zr flux ratios �1. Sub-
strate temperatures employed were 600 and 625 °C for PTO
and 600 °C for PZO. X-ray diffraction and reflection high
energy electron diffraction data indicate that the PbTiO3 and
PbZrO3 films are single crystal with the epitaxial relationship
of �001�PbTiO3 �PbZrO3� � �001�SrTiO3 and PbTiO3

�PbZrO3��100� �SrTiO3�100�. No evidence of a domains was
found. For more details of the growth of PTO and PZO, we
refer to Refs. 1 and 2. We used radio frequency �rf� sputter-
ing to deposit PbZr0.57Ti0.43O3 �PZT57� on STO. The growth
temperature was measured to be 750 °C, and rf power was
120 W. The argon and oxygen gas flow rates were 60 and
10 SCCM �SCCM denotes cubic centimeter per minute at
STP�, respectively.4,5 The x-ray data showed that the PZT
film is single crystal with �001� reflection.7 The composi-
tions were determined by using energy-dispersive x-ray
spectrometry.

We measured the pseudodielectric function of PTO,
PZO, and PZT57 grown on SrTiO3 substrate using variable
angle spectroscopic ellipsometry at room temperature. We
used autoretarder to measure the dielectric function accu-
rately in the transparent region. The angle of incidence was
varied as 65°, 70°, and 75°.

Assuming a three phase model of surface roughness,
main layer, and STO substrate, we estimated the layer dielec-
tric functions of PTO, PZT57, and PZO using parametric
optical constant �POC� model.8 The POC model provides
accurate dielectric function.

Figure 1 depicts the fitted dielectric functions of �a�
PTO, �b� PZT57, and �c� PZO layers. The thicknesses of the
layers were fitted to be 4.0±0.3 nm for surface roughness
layer, and 35.5±0.9 nm for the PTO layer. This is the same
for the PZO main layer with 2.1±1.0 nm and 19.8±1.0 nm,
respectively, and the same for the PZT57 layer with
2.60±0.05 nm and 587.2±0.5 nm, respectively. The error
bar designates 95% reliabilities. Note that the dielectric func-
tion is the square of the complex refractive index, that is, �
= �n+ ik�2. The refractive indices are 2.56, 2.55, and 2.40 at
633 nm �1.96 eV� for PTO, PZT57, and PZO, respectively.

a�Author to whom correspondence should be addressed; electronic mail:
hlee@khu.ac.kr
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These values are consistent with those reported in the
literature.9 The literature values are between 2.60 and 2.70
for PTO, between 2.44 and 2.54 for PZT50, and between
2.30 and 2.46 for PZO.9

Figure 2 exhibits the raw and fitted spectra of the second
derivative of the �a� PTO, �b� PZT57, and �c� PZO dielectric
functions. We used the standard critical point �SCP� line
shape analysis for fitting. The fitted critical point energies are
Ea=4.11±0.01 eV, Eb=3.81±0.01 eV, and Ec=5.2±0.1 eV
for PTO. The same for PZO are Ea�Ea�=3.86±0.01 eV and
Eb=5.54±0.05 eV.4,7 In the case of PZT57, Ea=3.87
±0.01 eV and Eb=4.42±0.01 eV. The notation of Ea, Eb, Ec
follows Ref. 4. We note that Ec is not observed for PZT
except for PTO, and that Ea and Ec may be overlapped for
PZO. The increased broadening of the critical point peaks of
PZT57 is attributed to alloy disorder.

Our ellipsometric study of PTO, PZT57, and PZO shows
the dielectric functions and the electronic band structures of
PTO, PZT57, and PZO unambiguously. Several ellipsometric
studies of PTO, PZT, and PZO have been reported. Moret et
al. measured the dielectric functions of PTO, PZT, and PZO
grown by metal organic chemical vapor deposition on STO
in the spectral range between 1.55 and 3.72 eV by ellipsom-
etry and reflectivity.9 They estimated the band edge energy as
3.6±0.1 eV for all PZTs, independent of Zr composition,
which is near the absorption edge. Therefore, our value Eb
=3.81 eV for PTO determined by SCP model is slightly
larger than the band edge energy of Moret et al. of 3.6 eV.
Our value Ea=3.86 eV for PZO determined by SCP model is
slightly larger than the band edge energy of Moret et al. of
3.6 eV.9 Lee et al. calculated the band structures of PTO and
PZO, and PZT by using local density approximation

FIG. 2. Raw �discrete symbols� and
fitted spectra �sold line� of the second
derivatives of the dielectric functions
for �a� PTO, �b� PZT57, and �c� PZO
using SCP model.

FIG. 1. Fitted dielectric functions ��
=�1+ i�2� of �a� PTO, �b� PZT57, and
�c� PZO layer using POC model.
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method.4 According to their calculation, there are four inter-
band transitions in the visible-ultraviolet spectral range. They
estimated the transition amplitudes and concluded that only
three transitions are substantial. As shown in the Table I, the
ellipsometrically estimated critical point values agree well
with calculated values.

In Fig. 3, we plotted the critical point energies �open
symbols� estimated from this work and compared them with
the experimental data �closed symbols� and local density ap-
proximation �LDA� calculations �dot-dashed lines� of Ref. 3.
The experimentally determined critical point peaks are as-
signed according to the band structure calculations of Lee et
al., as shown in Table I.4 The lowest critical point energy for
PbTiO3 �Eb=3.78 eV� is attributed to X5�v−X3c transition.
The same for PbZrO3 �Ea=3.86 eV� is attributed to X4�v
−X1c transition. We assigned the critical point peaks of
PZT57 at 3.87 and 4.42 eV to Ea and Eb, respectively.

Lee et al.4 calculated the band structures of PTO and
PZO and estimated the band structure of PZTs by using lin-
ear interpolation. Therefore, any possible critical point bow-
ing effect is neglected. The solid lines represent polynomial
fitting to the experimental data. The Ea and Eb critical point
energies cross near x=0.13 according to LDA band structure
calculations. However, Fig. 3 suggests that anticrossing is
occurring instead of crossing. The anticrossing may be due to
the coupling between X1c and X3c bands which may arise
from intrinsic alloy disorder. The band energy values for X1c
and X3c are 4.10 and 3.84 eV for PbTrO3 and 3.68 and
4.95 eV for PbZrO3, respectively. The potential fluctuation
caused by alloy disorder may induce a coupling between the
degenerate bands. Although the X1c and X3c conduction band
levels cross �i.e., degenerate� near x=0.17 in the linear inter-
polation scheme and even a small perturbation may cause a
mixing between the degenerate conduction band states. Simi-
lar anticrossing behavior has been reported for semiconduc-
tor alloys such as GaInP, GaInNAs, and ZnOSe alloys.10–12

In summary, we grew single crystalline PbTiO3, PbZrO3,
and PbZr0.57Ti0.43O3 thin films on SrTiO3 �001� substrates by
using peroxide molecular beam epitaxy and radio frequency
sputtering deposition. We measured the pseudodielectric
functions of the thin films using spectroscopic ellipsometry
at room temperature and estimated the dielectric functions of

the perovskites using parametric semiconductor model. Tak-
ing the second order derivative of the fitted dielectric func-
tions, we determined the critical point energies using the
standard critical point model. An anticrossing behavior of Ea
and Eb critical point energies occurred near Zr=0.17, which
may be caused by the coupling between X1c and X3c bands
arising from intrinsic alloy disorder.
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Kyung Hee University Research Fund 2007 Grant No. KHU-
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FIG. 3. Critical point energies of PZT as function of Zr composition. The
open symbols are our data and the closed symbols are quoted from Ref. 5.
The dot-dashed lines are from local density calculations of Ref. 4. The solid
lines are from polynomial fitting of experimental data.

TABLE I. Comparison between the measured and the calculated critical
point energies of PZT. Note that the calculated critical point energies of PZT
are quoted from Ref. 4.

Critical
point

Interband
transitions

Theor.
�eV�
PTO

Expt.
�eV�
PTO

Expt.
�eV�

PZT57

Expt.
�eV�
PZO

Theor.
�eV�
PZO

Ea X4�v→X1c 4.00 4.11�1� 3.87�1� 3.86�1� 3.73
Eb X5�v→X3c 3.78 3.81�1� 4.42�1� 5.54�5� 5.42
Ec X5�v→X1c 4.93 5.2�1� 3.86�1� 4.07

022918-3 Kang et al. Appl. Phys. Lett. 91, 022918 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.172.48.59 On: Wed, 08 Apr 2015 18:15:26


	Virginia Commonwealth University
	VCU Scholars Compass
	2007

	Dielectric functions and critical points of PbTiO3, PbZrO3, and PbZr0.57Ti0.43O3 grown on SrTiO3 substrate
	T. D. Kang
	Hosun Lee
	G. Xing
	See next page for additional authors
	Downloaded from
	Authors


	tmp.1428516989.pdf.E549D

