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Electron transient transport in an In,Ga,_,As-based (x=0.53) p-i-n nanostructure under the
application of an electric field has been studied by time-resolved Raman spectroscopy on a
subpicosecond time scale and at 7=300 K. The experimental results reveal the time evolution of the
electron distribution function and electron drift velocity with subpicosecond time resolution. These
experimental results are compared with those of both InP-based and GaAs-based p-i-n
nanostructures and provide a consistent understanding and better insight of electron transient

transport phenomena in semiconductors. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2420782]

Recently, electronic devices with sizes of the order of
0.1 wm or smaller have become achievable. This capability,
when coupled with a typical device operation voltage (which
is of the order of 1 V), suggests that carrier transient effects
may be the dominant transport properties for electrons or
holes in semiconductor nanostructures.

Many theoretical (mainly, Monte Carlo simulations) and
experimental efforts' ™" have been made to investigate these
interesting yet challenging transient carrier transPort phe-
nomena in semiconductors. Recently, Grann et al. 620 have
investigated nonequilibrium electron distributions, electron
drift velocities, and nonequilibrium longitudinal optical pho-
non populations in a GaAs-based p-i-n nanostructure by us-
ing picosecond/subpicosecond transient/time-resolved Ra-
man spectroscopy. These authors have directly confirmed the
existence of electron velocity overshoot phenomenon in
semiconductors. In spite of tremendous efforts on the study
of carrier transient transport phenomena, lack of a better in-
sight for these transient electron transport phenomena still
prevails. In this letter, subpicosecond time-resolved Raman
spectroscopy has been used for probing electron transient
phenomena in an Injs3Gaj4;7As-based p-i-n nanostructure.
Our experimental results reveal the time evolution of the
electron distribution as well as the electron drift velocity
with subpicosecond time resolution.The detailed structure of
the Ing 53Gag 47As-based nanostructure used in this work has
been shown elsewhere.”' The Zn-doped p-type layer and Si-
doped n-type layer together serve as a capacitor and provide
a uniform electric field across the active region of the
sample. We estimate the capacitance in our sample configu-
ration to be C=2.6X 107" F. Since the resistance of the
sample is R= 100 k{), with such a long RC time constant the
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capacitance of the sample structure will not affect our subpi-
cosecond measurements in any way.

The sample is excited and probed by the outputs of two
optical parametric amplifiers (OPA1 and OPA2) (Ref. 22)
pumped by a common pulse from a Ti-sapphire amplifier
system which is composed of the ultrastable Millennia/
Tsunami short pulse oscillator and the Spitfire regenerative
amplifier with the Merlin Nd:YLF pump laser. The output
from OPA1 has a pulse width of about 100 fs (full width at
half maximum) and is chosen to operate at photon energy of
fiwpump=1.05 eV. We estimate the absorption depth of the
sample at such excitation laser photon energy to be about
6500 A. This is used to excite electron-hole pairs in the
Ing 53Gag 47As-based p-i-n semiconductor nanostructure. The
output from OPA2 has the same pulse width and is used to
probe the electron distributions with photon energy of
fiwprone =0.85 €V. This experimental arrangement ensures
that negligible electrons escape from the probe region during
the time-resolved Raman measurements. The photoexcited
electron-hole pair density was estimated from the average
laser power, focused spot size on the sample surface, and the
absorption depth at the excitation laser wavelength. The
backscattered Raman signals were collected and analyzed by
a standard computer-controlled Raman system, which in-
cludes a double spectrometer, a photomultiplier tube, and
associated photon counting electronics. All the data were
taken at 7=300 K. The single-particle scattering experi-
ments, which were used to measure directly the electron dis-
tributions, were conducted in the Z(X,Y)Z scattering geom-
etry, where X=(100), Y=(010), and Z=(001). This scattering
configuration ensures the detection of a scattered light signal
from only spin-density fluctuations.”>* The effective electric
field intensity was determined by using the Franz-Keldysh
effect, as demonstrated in Ref. 25. The nonequilibrium elec-

© 2006 American Institute of Physics
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FIG. 1. Nonequilibrium electron distribution for an Ing 53Gag 4;As-based p-i-n nanostructure measured at an electric field intensity £=20 kV/cm, a photo-
excited electron-hole pair density n=5X 10'® cm™>, and for time delays of (a) 120 fs, (b) 400 fs, and (c) 3 ps. The time evolution of electron distributions
provides a better insight of electron transient transport phenomena in semiconductors.

tron distributions are directly measured in a way similar to
Ref. 20.

A typical nonequilibrium electron distribution for an
Ing 53Gag 47As-based nanostructure, taken at an electric field
intensity £=20 kV/cm, with electron-hole pair density n
=5X10' cm™ and at a time delay Ar=400 fs between the
pump and probe pulses, is shown in Fig. 1(b). We have found
that the electron distribution shifts toward the —E direction,
as expected. The electron distribution function cannot be fit-
ted with either a shifted Fermi-Dirac or a Maxwell-
Boltzmann distribution, suggesting that electron distribution
during the transient is in an extremely nonequilibrium state.
A sharp cutoff in the electron velocity near 1.5 X 10® cm/s is
observed, indicative of both the onset of electron intervalley
scattering processes and the velocity saturation due to the
nonparabolic effective mass. We note that impact ionization
has a minimal effect on the cutoff velocity because it hap-
pens at a time scale of 100 ps—1 ns. The electron drift ve-
locity in Fig. 1(b) has been found to be V,;,=6.9+0.7
X107 cm/s.

Figure 2 shows the electron drift velocity as a function
of the time delay for an Inj 53Gay 4;As-based p-i-n nanostruc-
ture, taken at an electric field intensity £=20 kV/cm. This is
contrasted with equivalent curves taken in the other two ma-
terial systems—GaAs and InP. We observe that the electron
drift velocity increases linearly with the time delay during
the first 200 fs, which provides an unambiguous evidence of
electron ballistic transport under our experimental condi-
tions. After 200 fs, the drift velocity increases sublinearly
indicating the onset of various electron scattering processes.
It peaks at around 6.9 X 107 cm/s at Ar=400 fs, and then
decreases gradually toward its steady-state value ot about

3.0X 107 cm/s. This latter value is also inferred from en-
semble Monte Carlo studies of bulk In,Ga;_,As at this
composition.

We have also performed similar experiments on a GaAs-
based p-i-n and an InP-based p-i-n nanostructure, in which
we kept the electron excess energy the same, i.e., AE
=0.30 eV. These results are also shown in Fig. 2. There are
three interesting features that are worthwhile pointing out.
(1) The peak value of electron drift velocity is significantly
larger for Ing53Gag 47As than for either GaAs or InP, and it
occurs at a later time (400 fs for Ings;Gag47As compared
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FIG. 2. Electron drift velocity as a function of time delay for an
In) 53Ga, 47As-based p-i-n nanostructure (open circles), an InP-based p-i-n
nanostructure (solid circles), and a GaAs-based p-i-n nanostructure (open
squares). The straight line drawn between Ar=0 and 200 fs on the data of an
Ing -3Gag 47As-based p-i-n nanostructure indicates the time interval during
which electrons travel ballistically.
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with 300 fs for InP and 250 fs for GaAs). This is partly be-
cause of the smaller electron effective mass and partly be-
cause of larger energy separation between I' and X valleys
for Inj 53Gay 47As. (2) The slope from the ballistic portion of
the data is steeper for Injs3Gaj4;As than for GaAs or InP,
which reflects the fact that, even for an energy of about
0.30 eV above the conduction band, Injs3Gaj4;As has a
smaller effective mass than either GaAs or InP. (3) The ob-
served maximum electron drift velocity is substantially
higher in InP than in GaAs. This is primarily due to the fact
that the energy separation between the I' and X valleys is
significantly larger in InP than in GaAs. All of these results
are consistent with our previous understanding of electron
transient transport in these semiconductors.

To gain a better insight of the electron transient phenom-
ena, we have plotted in Fig. 1 the electron distribution for the
Ing 53Gag 47As nanostructure, taken at E=20 kV/cm and at a
variety of time delays: Ar=120 fs, 400 fs, and 3 ps, as indi-
cated. For Ar=120 fs, the electron distribution resembles a
symmetric, shifted distribution, suggesting that electrons
have been accelerated and moved rigidly for the same
amount in velocity space, which is consistent with our ob-
servation in Fig. 2 that electrons travel ballistically during
the first 200 fs. As a matter of fact, for time delay between 0
and 200 fs, the electron drift velocity is linearly proportional
to the elapsed time and to the magnitude of applied electric
field. This is usually referred to as “electron ballistic trans-
port.” As the time delay progressively increases to At
=400 fs, the electron distribution exhibits an extremely non-
equilibrium, nonsymmetric nature. At this time delay, some
elastic as well as inelastic electron scattering processes be-
come effective. The electron drift velocity can keep increas-
ing with the time delay but it can no longer increase linearly
because these electron scattering processes efficiently ran-
domize electron momentum and reduce the electron drift ve-
locity. Nevertheless, if the electric field intensity is suffi-
ciently large, the acquired electron drift velocity during this
time interval can be substantially larger than its steady-state
value. This is manifested in the time delay between 200 and
400 fs in Fig. 2. This is commonly called “electron velocity
overshoot.” When the time delay increases even further to
Ar=3 ps, the electron distribution has been found to be ap-
proximately symmetric but significantly broader than that at
Ar=120 fs. This is because at this long time delay all of the
elastic and inelastic electron scattering processes become op-
erative. The electron distribution spreads out and the electron
drift velocity gradually approaches its steady-state value.

We note that the temperature will have only a small ef-
fect on our results, while the electric field strength is the
important quantity, transient transport does not occur in a
small field, and the overshoot is much more pronounced in a
large field.

In conclusion, we have used subpicosecond time-
resolved Raman spectroscopy to interrogate electron tran-
sient transport in an Ing 53Gag 47As-based p-i-n semiconduc-
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tor nanostructure under the application of an electric field.
Our experimental results reveal the time evolution of the
electron distribution function and the electron drift velocity
with subpicosecond time resolution. These experimental re-
sults are compared with those of InP-based p-i-n and GaAs-
based p-i-n nanostructures and provide a consistent under-
standing and better insight of electron transient transport
phenomena in semiconductors.

This work is supported by the National Science Founda-
tion under Grant No. DMR-0305147.
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