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In this letter, a mathematical force-balance formulation is developed that can be used to predict the

critical pressure, the hydrostatic pressure above which the surface starts to depart from the

non-wetting state, for superhydrophobic surfaces comprised of highly aligned fibers (e.g., biased

AC-electrospun coatings) with arbitrary cross-sectional shapes. We have also developed a

methodology for optimizing the fiber cross-sections to maximize the critical pressure of the surface,

using the Euler–Lagrange equation. A case study is presented to better demonstrate the application

of our method. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711800]

Superhydrophobicity is brought about by combining

micro- and nano-scale surface roughness with the hydropho-

bicity of the bulk material, resulting in static contact angles

greater than 150�.1,2 This is due to the formation of

entrapped air pockets in the micro- and/or nano-pores of the

surface, leading to a reduced solid surface area in contact

with water—an effect that can lead to reduced skin-friction

drag on submerged moving objects.3 Superhydrophobic

surfaces, however, are reported to transition from the Cassie

(non-wetting)4 state to the Wenzel (fully wetted)5 state if

exposed to excessive hydrostatic pressures.6–9 There have

been recent studies dedicated to developing mathematical

formulations to predict the so-called “critical pressure,” the

pressure above which a superhydrophobic surface starts

departing from the Cassie state.10–15

Producing superhydrophobic surfaces made up of elec-

trospun fibers has been reported in variety of studies con-

ducted in the past decade (see Ref. 16 for a review). In a

conventional electrospinning process, the fibers are ejected

from a nozzle and are drawn into thinner strands by aerody-

namic and electrostatic forces as they travel toward the col-

lector. The fibers eventually deposit onto a substrate

attaining random in-plane orientations (see Ref. 17 for a

review). The first attempt to predict critical pressure for elec-

trospun surfaces was made by Tuteja et al.18 These authors

considered a simplified geometry of equally spaced parallel

fibers with circular cross-sections placed on a flat surface,

and developed two criteria for the evaluating the stability of

the air–water interface in the grooves formed by the fibers

under elevated pressures. Although it was not discussed by

Tuteja et al.,18 the formulations given by these authors were

actually more appropriate for fibrous surfaces comprised of

aligned fibers, as opposed to those having random in-plane

orientations. Such anisotropic fibrous structures can be pro-

duced by modifying the traditional electrospinning process.

Among different techniques, the biased AC-electrospinning

of Tepper and his co-workers19,20 has shown promising con-

trol over fiber orientation, as can be seen in Figure 1. In a

recent study, we simulated the influence of the fibers’ in-

plane orientation on the critical pressure and discussed the

role of microstructural parameters of a fibrous surface on its

resistance against elevated hydrostatic pressures using the

so-called full morphology method.21 The focus of the current

paper, on the other hand, is on the effects of fibers’ cross-

sectional shape on the critical pressure. In particular, we

have developed a rigorous mathematical method to predict

the critical pressure of electrospun superhydrophobic coat-

ings. As the 3-D morphology of fibrous coatings with ran-

dom fiber orientation is prohibitively complicated from a

mathematical point of view, our formulations are developed

in two dimensions and so are more accurate for coatings

made up of aligned fibers, e.g., biased AC-spun fibrous coat-

ings. The mathematical framework developed in this study,

however, allows the fibers to have any arbitrary cross-

section, and more importantly, is capable of optimizing the

fibers’ cross-sectional shape to maximize the critical pres-

sure of the coatings. Such information is particularly impor-

tant for designing fibrous superhydrophobic coatings for

underwater applications where resistance against elevated

hydrostatic pressures is crucially important.21–27

FIG. 1. An example of a fibrous coating consisting of highly aligned poly-

styrene fibers produced via biased AC-electrospinning.
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Let us consider a groove formed between two identical

fibers with arbitrary cross-sectional shapes as shown in Fig-

ure 2. Consider the groove to have a width of 2w, a depth of

h, and an arbitrary wall shape y ¼ gðxÞ. We assume that the

fiber surface is smooth, and so the air–water interface forms

an equilibrium contact angle h with the groove walls. At any

given hydrostatic pressure, the interface intersects with the

walls at a point q, corresponding to a coordinate (xq; gðxqÞ),
as shown in Figure 2. Applying balance of forces across the

air–water interface in the y-direction, we obtain

Pðw� gðxqÞÞ ¼ �rsinðaþ hÞ; (1)

where r is the air–water surface tension, a is the local angle

between the wall and the y-axis, and so the derivative of g
with respect to x, g0, equals cota. Let~n be the unit vector nor-

mal to the groove wall. It can be observed from Figure 2 that

~n:~i ¼ �cosa and ~n:~j ¼ sina, where ~i and ~j are the unit vec-

tors in x and y directions, respectively. On the other

hand, it can be shown that the elements of the unit vector

normal to a smooth curve y ¼ gðxÞ in x and y directions are,

respectively, �g0ð1þ g
02Þ�1=2

and ð1þ g
02Þ�1=2

. Thus, cosa

¼ g0ð1þg
02Þ�1=2

and sina¼ð1þg
02Þ�1=2

. Equation (1) then

becomes

P ¼ rðgðxqÞ � wÞ�1½1þ g
02ðxqÞ��1=2ðg0ðxqÞsinhþ coshÞ:

(2)

Note that in the above equation, P and g correspond to the

point q with coordinates (xq; gðxqÞ), where the interface

intersects with the wall. As the hydrostatic pressure

increases, the interface moves downward and hence xq

increases. Equation (2) yields the hydrostatic pressure corre-

sponding to a given intersection point q. The critical pressure

is the maximum hydrostatic pressure that the groove can sus-

tain, and it occurs at a point (xq;cr; gðxq;crÞ) where the deriva-

tive of P with respect to xq goes to zero (i.e., dP
dxq
jxq;cr
¼ 0).

This yields

g
0 ðxqÞ½1þ g

02ðxqÞ�½sinhg
0 ðxqÞ þ cosh�

þ
�

gðxqÞ � w
�

g
00 ðxqÞ½coshg

0 ðxqÞ � sinh� ¼ 0: (3)

The solution of the above nonlinear equation is the x-coordi-

nate xq;cr of the interface–wall intersection point that corre-

sponds to the critical pressure. The critical pressure Pcr can

then be calculated by inserting xq;cr into Eq. (2),

Pcr ¼ Pðxq;crÞ. Here, we assume that the air–water interface

does not reach the groove bottom before the critical pressure

is reached. This assumption is justified by considering the

fact that surfaces made of parallel fibers (as opposed to those

comprised of randomly oriented fibers, such as DC-

electrospun surfaces) tend to have relatively high solid vol-

ume fractions (i.e., fibers tend to pack closely near one

another as can be seen in Figure 1). For fibrous surfaces with

high solid volume fraction, it is less probable for the inter-

face to reach the bottom of the groove before a critical pres-

sure is reached. This has been fully discussed in our previous

publication by Bucher et al.21 (see Figure 5(a) in Ref. 21

where the robustness height method of Ref. 18 is compared

to our force balance method).

To better demonstrate the application of our force bal-

ance method in critical pressure prediction, we have consid-

ered the case of a superhydrophobic surface comprised of

aligned fibers with circular cross sections. When the walls of

the groove are circular, then gðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

4
� x� h

2

� �2
q

. Here,

we assume that w¼ h¼ 1 lm, and that h ¼ 110
�
. Figure 3

shows the hydrostatic pressure P versus the x-coordinate of

the interface–wall intersection point calculated from Eq. (2).

Our formulations for this surface result in a critical pressure

FIG. 2. Schematic of a groove with an arbitrary wall shape y¼ g(x). Only

half of the groove is shown due to symmetry.

FIG. 3. Hydrostatic pressure versus the corresponding xq normalized by the

groove depth h for a groove with semi-spherical walls; w¼ h¼ 1 lm.
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Pcr of 102 kPa, and predict the intersection point to stabilize

at xq;cr ¼ 0.83h, as calculated from Eq. (3). As mentioned

earlier, the 2-D analysis of aligned fibers with circular cross

sections was originally studied in Ref. 18. The authors in

Ref. 18 defined two criteria namely “robustness height” PH

and “robustness angle” Ph formulas, for determining the crit-

ical pressure of a superhydrophobic surface, and recom-

mended the minimum value between the two be taken as the

critical pressure the surface. For the dimensions considered

here, PH and Ph are found to be 390 and 136 kPa, respec-

tively, indicating a critical pressure of 136 kPa for the sur-

face (see Ref. 18 for the equations), in good agreement with

the predictions obtained from Eq. (2). In fact, the special

case of superhydrophobic surfaces with aligned fibers having

circular cross sections has been fully discussed in our previ-

ous work by Bucher et al.,21 and a series of comparisons

have been made between our force balance equations and

those given in Ref. 18.

In this paper, we also proposed a method for optimizing

the fiber cross-sectional shape to maximize the critical pres-

sure for a given groove of dimensions (width w and depth h)

and material (contact angle h). As was shown earlier, critical

pressure depends on the y-component of the capillary force

Fr, and on the y-component of the force exerted by hydro-

static pressure. It can be shown that the x-component of the

capillary force vanishes at any point on the groove wall

where g
0 ¼ tanh. Because the value of the capillary force is

constant, Fr ¼ r, this means that the y-component of the

capillary force is maximal where g
0 ¼ tanh. On the other

hand, the y-component of the hydrostatic force exerted on

the interface is minimal when the area w-g is minimal (see

Figure 2). Therefore, an optimal grove shape which yields

the maximum possible critical pressure should correspond to

a minimum jg0 � tanhj and jw� gj. Such an optimized

groove profile gðxÞ is then the minimal path of the functional

I[g], defined as

I½g� �
ðh

0

Lðg; g0 Þdx; (4)

where Lðg; g0 Þ � ðgðxÞ � wÞ2ðg0 ðxÞ � tanhÞ2. This is because

the minimal of the above integral corresponds to a minimum

jg0 � tanhj and jw� gj. Here, we limit the groove wall

shapes to smooth curves with the fixed endpoints

g(x¼ 0)¼ g(x¼ h)¼ 0 (see Figure 2). To find the path g�ðxÞ
at which the above functional is minimum, we used varia-

tional analysis.28 If the groove shape g changes infinitesi-

mally to gþ dg, the functional I changes to I þ dI.
Substituting gþ dg into Eq. (4), using Taylor series and

neglecting the second or higher order terms, one obtains

dI ¼
ðh

0

@L

@g
dgþ @L

@g0
dg0

� �
dx; (5)

and using integration by parts,

dI ¼ @L

@g0
dg

� �x¼h

x¼0

þ
ðh

0

@L

@g
� d

dx

@L

@g0

� �	 

dgdx: (6)

At the optimal wall shape, g ¼ g�, the variation in the func-

tional dI vanishes. Because g is fixed at both x¼ 0 and x¼ h,

the first term on the right hand side of Eq. (6) also vanishes.

Therefore,

@L

@g�
¼ d

dx

@L

@g�0

� �
: (7)

This is in fact the Euler–Lagrange equation,25 the solution

of which is the minimal path g�ðxÞ. Substituting Lðg�; g�0 Þ
¼ ðg�ðxÞ � wÞ2ðg�0 ðxÞ � tanhÞ2 into Eq. (7), one obtains

ðg� � wÞg�00 þ g�
02 � tan2h ¼ 0; (8)

which is subject to the boundary conditions g� (x¼ 0)¼ g�

(x¼ h)¼ 0. Because the above differential equation does not

have a unique solution, we further impose a constraint

ðh

0

g�ðxÞdx ¼ A0; (9)

which means that the area below the curve y ¼ gðxÞ is fixed

to a constant value A0. This means that the cross-sectional

area of the fibers is held constant during the fiber profile opti-

mization process. In other words, our optimization methodol-

ogy is developed for coatings with identical mass of

FIG. 4. (a) Optimized wall shape profile for w¼ h¼ 1 lm. (b) Hydrostatic

pressure versus the corresponding xq normalized by the groove depth h for

the groove with optimized wall shapes.
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deposited fibers (i.e., optimizing the cross-sectional shape of

the fibers while keeping the coatings’ porosity constant).

For demonstration purposes, we have calculated the

optimal cross-section of superhydrophobic aligned fibers

with specifications similar to those of the circular fibers dis-

cussed earlier, namely, w¼ h¼ 1 lm, h ¼ 110
�
, and

A0¼ ph2=8 (half the cross-sectional area of a circular fiber).

We used the FlexPDE finite element code from PDESolu-

tions, Inc., to solve Eq. (6) along with the above boundary

conditions and the integral constraint. The numerical solu-

tion was run on a workstation with a dual-core 2.4 GHz CPU

and 4 GB of RAM; the numerical solution took less than a

minute to converge. Careful attention was paid to ensure that

the results of our calculation are not dependent on the choice

of the mesh size. Figure 4(a) shows the calculated profile of

the optimal fiber cross-section. Equation (2) is used again to

calculate the hydrostatic pressure P versus the x-coordinate

of the interface-wall intersection point xq (see Figure 4(b)).

As can be seen, the superhydrophobic surface comprised of

aligned fibers with optimized cross-sectional profile has a

critical pressure of 150 kPa, which is much higher than that

of the surface made up of circular fibers.

In summary, a rigorous mathematical framework is

developed in this work to predict the critical pressure of a

superhydrophobic surface comprised of aligned fibers with

arbitrary cross-sections. In addition, we have established an

optimization methodology that can potentially be used to

design superhydrophobic surfaces with better resistance

against elevated hydrostatic pressures.
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