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The Phantom Burster Model for Pancreatic �-Cells*

Richard Bertram,* Joseph Previte,† Arthur Sherman,‡ Tracie A. Kinard,§ and Leslie S. Satin§

*Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306; †School of Science, Pennsylvania State University,
Erie, Pennsylvania 16563; ‡Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National
Institutes of Health, Bethesda, Maryland 20892; and §Departments of Pharmacology and Toxicology and Physiology, Medical College of
Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0524 USA

ABSTRACT Pancreatic �-cells exhibit bursting oscillations with a wide range of periods. Whereas periods in isolated cells
are generally either a few seconds or a few minutes, in intact islets of Langerhans they are intermediate (10–60 s). We develop
a mathematical model for �-cell electrical activity capable of generating this wide range of bursting oscillations. Unlike
previous models, bursting is driven by the interaction of two slow processes, one with a relatively small time constant (1–5
s) and the other with a much larger time constant (1–2 min). Bursting on the intermediate time scale is generated without need
for a slow process having an intermediate time constant, hence phantom bursting. The model suggests that isolated cells
exhibiting a fast pattern may nonetheless possess slower processes that can be brought out by injecting suitable exogenous
currents. Guided by this, we devise an experimental protocol using the dynamic clamp technique that reliably elicits islet-like,
medium period oscillations from isolated cells. Finally, we show that strong electrical coupling between a fast burster and a
slow burster can produce synchronized medium bursting, suggesting that islets may be composed of cells that are
intrinsically either fast or slow, with few or none that are intrinsically medium.

INTRODUCTION

Pancreatic �-cells have been a subject of both experimental
and theoretical interest for several decades. One reason for
this interest has been the central importance of �-cells for
glucose homeostasis. They are the only source of the insulin
that most cells require in order to take up and metabolize
glucose, and impairment of �-cell function contributes to
diabetes. A major focus of theoretical work has been �-cell
dynamics, particularly in the form of bursting electrical
activity. The bursts consist of active phases of Ca2�-carry-
ing action potentials alternating with silent phases of repo-
larization and are accompanied by oscillations in cytosolic
Ca2�, which drive pulses of insulin secretion (Gilon and
Henquin, 1992; Bergsten, 1995; Barbosa et al., 1998).

Electrical activity in �-cells is studied primarily in two
distinct preparations: islets of Langerhans, which are micro-
organs containing thousands of endocrine cells, and isolated
cells. Most work on oscillations has been carried out in the
mouse. Bursting has also been recorded in vivo, where it can
be directly observed to exert negative feedback on plasma
glucose levels (Sánchez-Andrés et al., 1995). The only
stimulus required for oscillations in vitro is elevation of
glucose to levels between 5 and 20 mM, which results in
bursts ranging from 10 to 60 s. Faster oscillations, of 10 s or
less, are induced by acetylcholine, a physiological potenti-
ator of glucose-dependent insulin secretion (Bertram et al.,
1995). Slower oscillations, with periods of several minutes,
are induced by epinephrine, a physiological inhibitor of

insulin secretion (Cook and Perara, 1982). Slower oscilla-
tions in membrane potential and/or Ca2� have also been
reported in the presence of leucine or ketoisocaproate (Mar-
tin et al., 1995; Martin and Soria, 1995) and high external
Ca2� (Gilon and Henquin, 1992), and there is evidence that
culturing islets for several days favors the appearance of
slow oscillations (Gilon et al., 1994; Bergsten, 1995; Liu et
al., 1998; but see Roe et al., 1995).

Single-cell electrophysiological studies (Kinard et al.,
1999; Falke et al., 1989) have established that single cells
can burst as well as spike repetitively, but this bursting is
typically much faster than that in islets (period 2–5 s; see
Fig. 1 A). Sometimes bursts much slower than those in islets
(period 1–6 min) are seen (Larsson et al., 1996; Smith et al.,
1990; Fig. 1 C this paper). Slow oscillations, presumably
reflecting slow bursting electrical activity, predominate in
Ca2� imaging studies of isolated cells and small cell clus-
ters (Larsson et al., 1996; Leech et al., 1994; Liu et al.,
1994, 1995; Miura et al., 1997). Bursting with a period
comparable to that in islets is seen (Fig. 1 B), but only
rarely.

It is not clear whether the fast and slow bursting modes
seen in islets operate by the same mechanisms as the cor-
responding oscillatory modes in dispersed cells. However,
this diversity of behavior does not seem to be artifactual, but
rather to reflect a diversity of mechanisms present in both
single cells and islets to varying degrees in various circum-
stances. Our goals, then, are twofold: To develop a model
for �-cell bursting that can account in a natural way for
oscillations on time scales covering two orders of magni-
tude, and to explain why islets predominantly exhibit the
medium mode and single cells predominantly exhibit the
fast and slow modes.

All models to date have essentially relied on negative
feedback from a single slow process, retaining the basic
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structure of the first model (Chay and Keizer, 1983). Fol-
lowing a proposal of Atwater et al. (1980), Chay and Keizer
incorporated negative feedback by a slow accumulation of
cytosolic Ca2�, acting on a Ca2�-activated K� (K(Ca))
channel. Successor models have differed primarily in the
candidate negative-feedback processes considered. These
have included inactivation of a Ca2� current (Chay and
Cook, 1988; Keizer and Smolen, 1991), cytosolic ATP/
ADP acting on a K(ATP) channel (Keizer and Magnus,
1989; Smolen and Keizer, 1992; Magnus and Keizer, 1998),
or the Ca2� concentration in the endoplasmic reticulum
(ER) (Caer). The latter has been proposed both to act on
calcium release-activated channels (CRAC; Roe et al.,
1998; Chay, 1996) and to modulate the effect of Ca2� on
Ca2� or K� channels (Chay, 1997; Gall and Susa, 1999).

These models have mostly addressed islet bursting on the
medium time scale, the scale for which there is the least
evidence for a candidate slow process. Indeed, 20 years of
searching have characterized several processes that vary on
time scales of less than 10 s (K(Ca), Ca2� channel inacti-
vation) and suggested several candidates that may vary on
time scales of more than 1 min (K(ATP), Caer), but nothing

has been shown convincingly to vary on a time scale of tens
of seconds.

This leads us to propose a model in which medium
bursting results from the synergistic interaction between
two variables, one with a time constant of 1 to 5 s, the other
with a time constant of 1 to 2 min. Thus, both are slow in
comparison to the fast spiking variables, which vary on a
time scale of tens of milliseconds, but one is much slower
than the other. In one parameter regime, the faster of the two
slow processes dominates and drives fast bursting. In an-
other regime, the slower process dominates, and slow burst-
ing is produced. In yet a third regime, the two slow pro-
cesses interact to produce medium bursting, although
neither process alone has a time constant appropriate for this
mode of bursting. Thus, there need not be a distinct entity
operating on the time scale of medium bursting, but rather
a composite of faster and slower processes, which we call
“phantom bursting.” We further suggest that in islets, elec-
trical coupling of fast and slow cells leads to a collective
medium rhythm, which cannot easily be obtained in isolation.

A further implication of the phantom model is that iso-
lated cells exhibiting fast oscillations also possess a slow
pacemaker process, which is not manifest because it is
masked by a faster process. Simulations with the model
suggest that slower oscillations could be induced by inject-
ing a current with suitable kinetics to partially nullify the
faster process, allowing the slower process to emerge. Using
the dynamic clamp technique (Kinard et al., 1999), we are
indeed able to elicit medium period bursts from isolated
cells that previously exhibited only fast bursting or spiking
(see Fig. 9).

For concreteness, we describe below a particular bio-
physical realization of the phantom model, showing its
capability to produce multiple modes of bursting. However,
we stress that the phantom idea is quite general and can
work with a wide range of possible identities for the two
slow inhibitory variables. To emphasize this, we also
present the phantom phenomenon using a geometrical
phase-plane analysis, illustrating how other channel mech-
anisms could work equally well within the phantom frame-
work, and generalizing the classical analysis of the Chay-
Keizer family of models (Rinzel and Ermentrout, 1998).
Finally, with the assistance of the model, we design and
carry out experiments in which dynamic-clamp is used to
convert fast oscillations to medium bursts. In addition to
confirming a key element of the model, we thus demonstrate
for the first time a reliable experimental protocol for elic-
iting islet-like bursts from isolated �-cells.

METHODS

Cell culture

Pancreases were isolated from Swiss-Webster mice by collagenase diges-
tion to yield single islets (Hopkins et al., 1991; Kinard and Satin, 1996).

FIGURE 1 Burst patterns on fast (A), medium (B), and slow (C) time
scales. Of 50 cells observed, 24 were fast, 3 were medium, and 1 was slow.
The remainder were non-bursters, 19 spikers and 3 plateau cells. Traces
were recorded using current clamp and the perforated patch technique from
single cells (A, B) and a small cluster (C). The time bar represents 20 s for
all traces.

Phantom Burster Model for �-Cells 2881
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Islets were then dispersed into single cells by gently shaking them in a low
calcium medium. Cells were cultured in RPMI-1640 with fetal bovine
serum, L-glutamine, and penicillin/streptomycin. Cells were seeded onto
glass cover slips placed in 35-mm petri plates and kept at 37°C in an
air/CO2 incubator. Except where noted, studies focused on isolated single
cells, which were selected by appearance.

Electrophysiology and solutions

Mouse �-cells were placed in a recording chamber on the stage of an
inverted microscope (Olympus IX50, Tokyo, Japan). The chamber was
continuously superfused with an external solution that contained, in mM,
115 NaCl, 3 CaCl2, 5 KCl, 2 MgCl2, 10 HEPES, and 11.1 glucose, pH 7.2.
Experiments were performed using perforated patch clamp. Pipette tips
were filled with a solution containing, in mM, 28.4 K2SO4, 63.7 KCl, 11.8
NaCl, 1 MgCl2, 20.8 HEPES, and 0.5 EGTA, pH 7.2. Pipettes were pulled
on a two-stage horizontal puller (Sutter Instruments, Novato, CA) and had
resistances ranging from 4 to 10 M�. The pipettes were then back-filled
with the same internal solution containing 0.1 mg/ml amphotericin-B (Rae
et al., 1991). Each electrode was then placed on a cell and a gigaohmic seal
was obtained. It usually took 5 to 15 min to obtain adequate steady-state
patch perforation, and experiments did not commence until a steady zero
current potential was obtained. Experiments were performed at 35°C. The
recording chamber was heated using a TC-1 temperature controller and
H-1 heater (Cell Micro Controls, Virginia Beach, VA). Bath temperature
was measured at the bottom surface of the recording chamber with a TH-1
thermocouple probe. An Axopatch 200B patch clamp amplifier (Axon
Instruments, Foster City, CA) was used in the standard tight-seal perforated
patch-clamp mode to analyze membrane potential under current-clamp
conditions (Hamill et al., 1981). Seal resistances obtained were �5 G�.

Dynamic clamping

Dynamic clamp (Sharp et al., 1993; Ma and Koester, 1996; Turrigiano et
al., 1996; Kinard et al., 1999) differs from standard current clamp in that
the current injected is based on the calculated response of a hypothetical
voltage-dependent conductance to cell membrane potential at each instant
in time. To implement dynamic clamp, membrane potential was rapidly
sampled via a 12-bit A/D-D/A board (Digidata 1200, Axon Instruments) in
current clamp and scaled appropriately. Artificial currents based on the
measured membrane potential were calculated in software (Dclamp, Dyna-
Quest Technologies, Sudbury, MA) running on a PC (Micron Electronics,
Nampa, ID) and scaled appropriately. Driving voltages were sent out from
the D/A converter and filtered at 10 kHz while cell membrane potentials
were acquired at 20 kHz, using a VCR recorder (DR 8900, Neurodata
Corp., New York, NY) for off-line analysis. For playback, taped voltage
data was digitized at 200 Hz after low pass filtering at 100 Hz. Because the
computer running D-clamp cannot simultaneously be used for data acqui-
sition, this was done with a Power Macintosh G3 computer (Apple Com-
puter, Cupertino, CA), a 16-bit, 200 kHz hardware interface (IPC16,
Instrutech, Elmont, NY 11003), IgorPro 3.0 software (Wavemetrics, Lake
Oswego, OR) and Pulse Control software (Herrington and Bookman,
1994).

Dynamic clamp was used here as a way to nullify, at least partially, a
current whose identity and pharmacology were unknown, but which was
hypothesized on the basis of the model described below to be either a
slowly activating outward current or a slowly inactivating inward current.
Thus, an artificial inward current (reversal potential, 100 mV) with slow
activation (rate �0.2–20.0 s�1) was calculated according to Eqs. 12–14
and injected. See “Experimental test of the model” section of Results,
below, for details.

Some aspects of these investigations have appeared in abstract form
(Bertram et al., 2000).

Modeling

Like previous �-cell models, the phantom model consists of a subset of fast
variables (fast subsystem) that govern spiking during the active phase of a
burst, and slow negative feedback to switch the spiking on and off. The fast
subsystem consists of two equations, the minimum number, for membrane
potential, V, and the fast K� current activation variable n. The new element
of the model is the essential participation of two distinct slow negative
feedback variables, which we will denote simply as s1 and s2. One previous
�-cell model included two slow negative feedback variables (Keizer and
Smolen, 1991), and could produce a variety of bursting patterns (Smolen et
al., 1993b). However, �-cell-like bursting was due to the slow oscillation
of a single variable in this model. In comparison with previous models, s1,
with a time constant of 1 s, is only marginally slower than the fast
variables, which operate on a time scale of tens of milliseconds. In contrast,
s2 is very slow, having a time constant of 120 s. In the simulations that
follow, s1 drives the fast oscillations, with period �10 seconds; s2 drives
the slow oscillations, with period �60 s; and the interaction of s1 and s2

drives the medium oscillations with period between 10 and 60 s. We have
chosen for illustration an extreme discrepancy between the time constants
of s1 and s2; the time constant of s1 could be made as large as 10 s, and that
of s2 as small as 1 min. The equations are:

dV

dt
� ��ICa � IK � Is1 � Is2 � IL	/Cm (1)

dn

dt
� �n
�V	 � n	/�n (2)

ds1

dt
� �s1
�V	 � s1	/�s1 (3)

ds2

dt
� �s2
�V	 � s2	/�s2 (4)

The ionic currents are:

ICa � gCam
�V	�V � VCa	, IK � gKn�V � VK	 (5)

IS1 � gs1s1�V � VK	, IS2 � gs2s2�V � VK	 (6)

IL � gL�V � VL	. (7)

ICa is a Ca2� current that activates instantaneously, IK is a rapidly activat-
ing K� current, and IL is a leak current.

Although the slow currents, Is1 and Is2, are formulated here as K�

currents for concreteness, their biophysical identities remain obscure.
However, as an illustrative example, one may think of Is1 as a K(Ca)
current, activated by cytosolic Ca2�, and of Is2 as a K(ATP) current,
activated by an increase in [ADP] relative to [ATP]. Neither of these
currents is voltage-dependent, but K(Ca) responds to the rise in cytosolic
[Ca2�]i that follows depolarization, and it has been suggested that K(ATP)
current might also increase with [Ca2�]i as a result of either hindered ATP
production (Keizer and Magnus, 1989; Magnus and Keizer, 1998) or
enhanced ATP consumption (Detimary et al., 1998). For our purposes it is
sufficient that Is1 and Is2 are repolarizing, negative feedback currents that
turn on when the cell is depolarized. Indeed, the model works equally well
if either or both are depolarizing inward currents that turn off or inactivate
when the cell is depolarized. There are a number of parameters that could
be varied to produce a wide range of burst periods; below, we will vary the
maximal conductance, gs1, of Is1.

2882 Bertram et al.
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The activation curves for m, n, s1, and s2 are sigmoidal Boltzmann
functions, increasing with membrane potential:

m
�V	 �
1

1 � exp���22 � V	/7.5�
,

(8)

n
�V	 �
1

1 � exp���9 � V	/10�

s1
�V	 �
1

1 � exp���40 � V	/0.5�
,

(9)

s2
�V	 �
1

1 � exp���42 � V	/0.4�

The only voltage-dependent time constant is that for the K� conduc-
tance activation variable, n:

�n�V	 �
8.3

1 � exp��V � 9	/10�
. (10)

The other time constants and parameter values are listed in Table 1 and the
figure legends. Expressions and parameters for the fast ionic currents,
equilibrium and time constant functions, and parameter values are adapted
from an earlier �-cell model (Chay and Cook, 1988). The inhibitory role of
the slow, voltage-dependent inactivation of ICa was replaced by the effects
of s1, and the fast Ca2�-dependent inactivation was omitted for the sake of
simplicity. Consequently, the Ca2� current is about an order of magnitude
smaller than experimentally measured values (see, e.g., Göpel et al.,
1999a). As a result, the slow currents, Is1 and Is2, may be expected to
understate to a similar degree those in real cells. Other obvious omissions
from the model are cytosolic and ER Ca2�. The possible contributions of
these two key calcium pools to s1 and s2 are treated in passing below and
in detail in the Discussion.

RESULTS

Fast bursting

Fast bursting is obtained by setting gs1 to a relatively large
value of 20 pS. Numerical integration of Eqs. 1–4 then
yields the results shown in Fig. 2. The bursts are driven by
a slow activity-dependent oscillation in s1 (Fig. 2 B). When
s1 is small, the hyperpolarizing current Is1 is too weak to
hold the membrane potential below the spike threshold, so
action potentials are produced. This spiking activity in turn

causes s1 to slowly increase, activating Is1. When s1 is
sufficiently large, Is1 suppresses the action potentials, and
the cell returns to a hyperpolarized silent state. In other
words, the bursts are driven by the negative feedback of s1

as in Chay-Keizer and all subsequent �-cell models, but the
period is limited to 3 s by the small (1 s) time constant of s1.

Note that s2 remains essentially constant. This is because
the dynamics of s2 are too slow (i.e., 2 min) to allow for
significant variation during a burst, so s2 simply oscillates
with a small amplitude about its mean value of about 0.43
(Fig. 2 C). However, if the mean value were increased by a
leftward shift in the s2
 function, the mean hyperpolarizing
Is2 current would increase and shorten the active phase of
bursting. Thus, in the case of fast bursting, oscillations in s2

are unimportant, but the mean value of s2 does regulate
bursting by setting the mean activation of the hyperpolar-
izing current Is2. Fig. 2 D shows the total slow current, Is1 �
Is2. It is this net current that determines the cycling between
active and silent phases, not the individual components.

TABLE 1 Default parameter values

Symbol Description Value

Cm membrane capacitance 4524 fF
gCa fast Ca2� current conductance 280 pS
gK fast K� current conductance 1300 pS
gL leakage current conductance 25 pS
gs1 slow K� conductance 3–20 pS
gs2 very slow K� conductance 32 pS
VCa Ca2� reversal potential 100 mV
VK K� reversal potential �80 mV
VL leakage reversal potential �40 mV
�s1 s1 time constant 1 s
�s2 s2 time constant 2 min

FIGURE 2 Fast bursting generated with gs1  20 pS. The bursting, with
a period of 3 s, is driven by activity-dependent oscillations in the K�

activation variable s1. Although oscillations in the slow variable s2 are
unimportant, the mean value of s2 affects the bursting by determining the
average level of the hyperpolarizing Is2 current.

Phantom Burster Model for �-Cells 2883
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Another feature of the fast bursting is the relatively
depolarized silent phase (compare Figs. 2 and 3). This is a
consequence of s1 being only marginally slow compared to
the fast variables, which does not allow V time to repolarize
completely during the silent phase before the next active
phase begins. This depolarized silent phase is a typical
feature of the fast bursting recorded in single �-cells (Fig.
1 A and Kinard et al., 1999; Falke et al., 1989). It is also
seen in the fast bursting of islets exposed to acetylcholine or
other muscarinic agonists (Bertram et al., 1995). This does
not mean that the mechanisms of fast bursting in single cells
and islets are necessarily the same, but it suggests that the
slow variables driving bursting in both cases may similarly
be marginally slow.

Medium bursting

If the maximal s1 conductance, gs1, is reduced, the burst
period will increase. This is because s1 will have to increase
further to produce the same level of inhibition during the
active phase, and will have to decrease further during the

silent phase recovery. Thus the period depends not only on
the time constant of s1, but also on the extent to which s1

must change in order to exert its effect. In principle, one
could in this manner make the period arbitrarily long, but in
practice one finds that if gs1 is reduced too much, even
maximal activation of s1 is unable to terminate an active
phase. Then, s1 stalls at its maximum value of 1, and the cell
spikes continuously. In the phantom model, however, there
is a second slow variable, s2, which has an opportunity to
increase when s1 hangs up. When s2 has increased suffi-
ciently, the burst is able to terminate. This is illustrated in
Fig. 3 where gs1 has been reduced from 20 to 7 pS. For this
value of gs1, only a small increase in s2 is required to
supplement the negative feedback from s1, and the active
phase duration is intermediate between that observed with
s1 or s2 alone. In the ensuing silent phase, the decrease of s1

to 0 is insufficient to reinitiate spiking, because the accu-
mulated s2 from the active phase also needs time to recover.
Therefore the duration of the silent phase is also interme-
diate between that when s1 or s2 alone mediates the repo-
larization. The oscillations in s2 are now significantly larger
than in the fast bursting case, when s1 was solely responsi-
ble for initiating and terminating the bursts. Though still
modest, they are nonetheless mandatory, for without them
the cell would spike continuously. The oscillations in s1 are
also necessary; without them, the burst period would be
governed by the time scale of s2 alone, and would last
minutes rather than tens of seconds. Note that the active and
silent phases end at the same levels of total slow current as
in Fig. 2 D.

Slow bursting

Further reduction in gs1 leads to a further increase in burst
period because the less gs1 available, the more s2 has to vary
to compensate (we assume that gs2 is fixed). Furthermore, as
these changes in s2 are very slow, the burst period increases
rather steeply as gs1 is reduced below 7 pS. Fig. 4 illustrates
full-blown slow bursting with a period of more than 1.5 min
for gs1  3 pS. Now s1 spends almost all the time stalled at
its maximum or minimum values, and s2 must change
substantially because it carries nearly the full burden of
burst pacing. In Fig. 5 we show the dependence of burst
period on gs1. Note that only a relatively small range of gs1

values gives medium bursting, which may shed light on why
this behavior is not often seen in isolated cells.

If we pursue the interpretation of gs2 as a K(ATP) con-
ductance, then Figs. 2, 3, and 4 suggest that oscillations in
K(ATP) conductance are small and possibly undetectable
during fast and medium bursting, but large and potentially
detectable during slow bursting. We note that variations in
K(ATP) conductance between silent and active phases have
been observed only in slow bursting (Larsson et al., 1996),
though not universally even in that case (Smith et al., 1990).

FIGURE 3 Medium phantom bursting produced with gs1  7 pS. The
bursts, with a period of 15 s, are generated by activity-dependent oscilla-
tions in both s1 and s2. Note the change in time scale from Fig. 2.

2884 Bertram et al.

Biophysical Journal 79(6) 2880–2892



Phase-plane analysis

Additional insight can be gained by analyzing the model
geometrically in phase space, that is, by examining the
trajectories of the dependent variables with time omitted
(Figs. 6 and 7). This analysis also makes clear that any
model with certain geometrical features could exhibit the

phantom phenomenon, which is not limited to models hav-
ing the particular ion channels employed in the example
discussed in this paper. For a general tutorial on the appli-
cation of phase-plane methods to Hodgkin-Huxley type
models and bursting, see Rinzel and Ermentrout (1998).

The analysis can be simplified without losing any essen-
tial features for our purposes by reducing the system to two
dimensions and thus reducing the 3D phase space to a 2D
phase plane. This requires two small changes in the equa-
tions. First, we set the delayed-rectifier gating variable n to
equal its steady-state activation function, n  n
(V) in Eq.
5. This eliminates spiking, leaving only plateaus, which can
be thought of roughly as representing the average mem-
brane potential during a burst. Second, to analyze fast
bursting (Fig. 6) we can hold s2 constant because s2 is nearly
constant in that case anyway (see Fig. 2 C). For medium and
slow bursting, s2 can no longer be considered constant
(Figs. 3 C and 4 C), but it varies slowly enough that the
other variables can be considered to be in a quasi-steady
state. The graphical description of medium and slow burst-
ing then requires a series of slowly varying phase-plane
snapshots (Fig. 7).

The trajectories in the phase plane can be predicted
qualitatively by considering the regions of the plane in
which each of the variables V and s1 increases and de-
creases. The regions are separated by balance curves
(nullclines) along which the derivatives of V and s1 are zero.
The solid Z-shaped curves in Fig. 6, A–C indicate where
dV/dt  0, and are obtained by setting the right-hand side of

FIGURE 4 Slow bursting produced with gs1  3 pS. The bursts, with a
period of more than 1.5 min, are generated by slow activity-dependent
oscillations in s2 alone, whereas s1 exhibits a square-wave oscillation.

FIGURE 5 Dependence of burst period on gs1.

FIGURE 6 Phase plane analysis of fast bursting. The system is reduced
to two variables by setting n  n
(V) and fixing s2 at 1.0 (A), �1.0 (B), and
0.346 (C and D). Parameters are as in Fig. 2 except the slope factor for the
Boltzmann function s1
(V) in Eq. 9 is 1, and gs1  50 pS. In A–C, light
solid curves are V nullclines, dashed curves are s1 nullclines. Heavy solid
curve is the V-s1 trajectory in C and V time course in D. Dotted line in D
is the s1 time course. SS, steady state. See text for details.
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Eq. 1 to zero. Although Eq. 1 cannot be solved for V, it can
easily be solved for s1:

s1 � �
ICa�V	 � IK�V	 � IL�V	

gs1�V � VK	
�

gs2

gs1
s2 (11)

The vertical arrows in Fig. 6 A indicate that V increases to
the left of the Z-curve and decreases to the right. Similarly,
the dashed, sigmoidal curves in Fig. 6, A–C are defined by
ds1/dt  0 and satisfy the simple equation s1  s1
(V); see
Eq. 3. The horizontal arrows in Fig. 6 A indicate that s1

increases to the left of the sigmoid and decreases to the
right. The lengths of the arrows, though not to scale, indi-
cate that s1 changes more slowly than V. Where the Z-curve
and sigmoid intersect, the derivatives of both V and s1 are 0,
and the system is at a steady state. That is, if the trajectory
lands on this intersection, it will remain there because
neither V nor s1 can change. Further, the arrows in Fig. 6 A
tell us that this steady state is stable: If the trajectory is

perturbed away from the point of intersection, it will return.
In fact, given any initial values for V and s1, the system will
end up in this low-voltage steady state.

If s2 is decreased, the Z-curve shifts to the right; the loss
of negative feedback from s2 must be made up by an
increase in s1. This can also be seen from Eq. 11, which
shows that for each value of V, s1 becomes larger. For
sufficiently small s2, the s1 nullcline intersects the upper
branch of the V nullcline (Fig. 6 B), and the system will
always end up in a high-voltage steady state. (If n is not set
equal to n
(V), this active state will be oscillatory, i.e., the
cell will spike continuously.) The most interesting case
occurs for intermediate values of s2, for which the steady
state lies on the middle branch of the Z-curve (Fig. 6 C).
Such steady states are unstable, having the character of
threshold points, because V will increase if perturbed up-
ward and decrease if V is perturbed downward. Full expli-
cation of this case is more subtle, but it is plausible from the
regions of increase and decrease for V and s1 that the system
will oscillate, passing through an endless cycle of active and
silent states. This is rigorously true if s1 is sufficiently slow
compared to V (Rinzel and Ermentrout, 1998). The behavior
of V (solid) and s1 (dotted) in the time domain is plotted in
Fig. 6 D, with the Roman numerals I–IV indicating the
correspondence between time points and points on the tra-
jectory in the V-s1 plane.

Every �-cell model published to date can essentially be
reduced to Fig. 6. The only difference between fast bursting
in the phantom model and the (medium) bursting in prior
models is the magnitude of the time constant of s1. Here the
burst period is short (about 3 s) because the time constant of
s1 is small (1 s). Increasing �s1 does not change the config-
uration of nullclines in Fig. 6, but it slows the cycling
through the points I–IV. An alternative way to increase
burst period is to stretch the V nullcline by reducing gs1. Eq.
11 shows that reducing gs1 by, say, a factor of two stretches
every point on the V nullcline to the right by a factor of two.
Like decreasing s2, this shifts the Z-curve to the right, but it
also increases the distance between the left and right knees
proportionally.

There is a limit to how much the period can be increased
by such stretching. Bursting that depends on variation only
in s1, not s2, requires that the s1 and V nullclines intersect
exactly once on the middle branch of the V nullcline as in
Fig. 6 C, and if the Z-curve is stretched too far, this cannot
occur. There will always be a stable steady state on either
the lower branch of the Z-curve (for larger values of s2, as
in Fig. 7 A), or the upper branch (for smaller values of s2, as
in Fig. 7 C), or both. On the other hand, if s2 is not fixed, but
rather follows the dynamics of Eq. 4, medium bursting
results as described above in the section on medium burst-
ing. The sequence of phase planes in Fig. 7, A–D, illustrates
this from the geometrical perspective.

Starting with a high value of s2, the system is in the
configuration of Fig. 7 A. The membrane potential is low,

FIGURE 7 Phase plane analysis of phantom medium bursting. Parame-
ters are as in Fig. 6, except that gs1 is reduced to 19 pS, and s2 is now
allowed to vary. (A–D) V-s1 phase planes. Light solid Z-shaped curves are
V nullclines; dashed curves are s1 nullclines. Horizontal arrows in A and
C indicate slow motion of Z-curves. Oblique arrows in B and D indicate
motion of V-s1 phase point. The empty circles in B and D are equally
spaced in time so larger gaps indicate faster motion. (E–F) V, s1, and s2

time courses corresponding to phase planes. Bars labeled A–D in E indicate
time intervals corresponding to those panels. Heavy solid curve in E is V;
dotted curve is s1. See text for details.
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which causes s2 to decrease (Eqs. 4 and 9), pulling the
Z-curve to the right (Eq. 11). Thus, the intersection of the
nullclines is a quasi-steady state, with membrane potential
slowly ramping up. When the intersection reaches the left
knee of the Z-curve, the phase point is released and flows up
to the upper branch of the Z-curve (Fig. 7 B). However, a
new intersection appears on the upper branch, leading to a
quasi-steady state with elevated membrane potential (Fig.
7 C). This causes s2 to increase, pulling the Z-curve slowly
to the left. When the phase point reaches the right knee of
the Z-curve, it is released and flows down to the lower
branch (Fig. 7 D). The four phase planes correspond to
intervals A–D in the time domain (Fig. 7 E). One complete
cycle includes two intervals (B and D) in which s1 makes
rapid transitions and two intervals in which s1 stalls (A and C).

Figure 7 represents a case where gs1 is just below the
critical value at which stalling first occurs, and so the
variation in s2 is small (Fig. 7 F). However, s2 is so much
slower than s1 that its contribution to the period is greater,
and the period is already much longer than that with s1

alone. Further decreases in gs1 stretch the Z-curve further,
so that it extends further beyond the extremes of the s1

nullcline. Then more time is spent in the quasi-steady in-
tervals relative to the fast transitions, and the burst period
and the variation in s2 increase until the fully developed
slow regime is reached.

Together, Figs. 6 and 7 illustrate that the fundamental
requirements for phantom bursting are (i) two slow vari-
ables with time constants smaller and larger, respectively,
than the time scale of medium bursting, and (ii) a parameter
that deforms the s1 or s2 nullclines in such a way that
multiple stable intersections occur, so that s1 can not pre-
empt s2. In the particular instance of phantom bursting
described here, we accomplished this by reducing gs1 and
thereby stretching the Z-curve. Two other ways are to vary
the sharpness of the s1 nullcline or to shift the s1 nullcline
upward (for a graded range of periods in the latter case, the
nullcline should not be too sharp). These changes also
prevent the two nullclines from intersecting only on the
middle branch of the Z-curve, causing s1 to stall and allow-
ing s2 to go into motion. The approach outlined here is, then,
a template for constructing a family of models, which differ
in possibly important details, but which all display multiple
modes of bursting.

Experimental test of the model

A thorough test of the phantom hypothesis and its many
possible realizations would require detailed knowledge of
all the ionic currents in �-cells, which is beyond the scope
of this study. Here we present a limited set of experiments
that test an important prediction of the model, lending
support to its central hypothesis. We ask whether isolated
cells, which typically exhibit fast rhythms rather than the

medium rhythms of islets, in fact possess a slow process (or
processes) that is pre-empted by a faster one.

In our hands, isolated cells predominantly exhibit fast
bursting with a period of �5 s or large-amplitude continu-
ous spiking (Kinard et al., 1999). Occasionally, however,
we see medium (Fig. 1 B) or slow (Fig. 1 C) bursting, the
latter generally in small cell clusters. The model predicts
that fast bursters can be converted to medium or slow
bursters by reducing the maximal conductance gs1 of a
negative feedback current having a time constant of at most
a few seconds. As we do not know the explicit identity of
gs1, and for some candidate channels there are no pharma-
cological blockers available, we use dynamic clamp to
partially nullify it. This can be done by adding to single
�-cells an inward current that develops over the time scale
of a few seconds. Alternatively, one can subtract an outward
current with similar kinetics. We illustrate the former here,
but have successfully used both types of currents to modify
fast bursting.

The artificial dynamic clamp current was formulated us-
ing the simple V-rate-independent form available in the
D-clamp software. It activated slowly with a rate indepen-
dent of membrane potential, had a Boltzmann type voltage-
dependent activation curve, and lacked inactivation:

IClamp � Gmaxz�V � Vr	 (12)

where z satisfies the differential equation

dz

dt
� K�z
�V	 � z	, (13)

and

z
�V	 �
1

1 � exp���22 � V	/7.5�
. (14)

Note that this current, unlike a DC applied current, will do
nothing in an electrically silent, hyperpolarized cell; the cell
must first depolarize sufficiently for z to respond. We will
see, however, that IClamp has dramatic effects on the behav-
ior of cells that are oscillatory, and hence depolarize spon-
taneously. With Vr  100 mV, IClamp resembles the Ca2�

current in the model (see Eq. 5), but has a fixed (non-V-
dependent) time constant rather than instantaneous activa-
tion. The precise form of the current matters less than its
kinetics and polarity. Artificial outward current was sub-
tracted by making Gmax negative and setting Vr to �90 mV.

Note that we are not suggesting that a Ca2� current with
the properties of IClamp exists in �-cells; this is merely an
experimental maneuver that the model predicts would be
effective in cancelling out the faster slow process corre-
sponding to s1 that masks the presence of s2.

We first tested the protocol by simulating it with the
model. Figure 8 illustrates conversion of a model fast
burster (same parameters as in Fig. 2) to a medium burster
following addition of IClamp with Gmax  0.015 nS and K 
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2.0 s�1 (time constant 500 ms). After a transient, medium
bursting with a period of about 10 s is seen (Fig. 8 A),
accompanied by s2 oscillations having substantially larger
amplitude (Fig. 8 B). The exogenous current required for the
conversion to occur is rather small, less than 1 pA (Fig.
8 C). The current develops as an approximate mirror image
of Is1, preventing s1 from repolarizing the cell and allowing
oscillations in s2 to emerge.

Guided by the model, we applied the procedure to
�-cells. Fig. 9, A and B, shows successful conversions of
two different single cells to markedly slower rhythms. Cell
A was initially a fast burster, whereas cell B is of particular
note because it was initially a fast spiker, with no hint of
plateau behavior before the addition of IClamp. In both cases,
the cells reverted to their original fast pattern once the
exogenous current was removed. In some other cells tested,
cell firing patterns remained altered after termination of the
stimulus, but in all cases the period decreased markedly
towards the control value. Of 20 cells where the addition of
depolarizing current with dynamic clamp produced more
prolonged bursting, 16 displayed patterns resembling the
medium bursting of islets. For 11 other cells, the addition of

the exogenous current depolarized the membrane but did
not elicit slower bursting.

As in the model, the exogenous current needed was very
small, about 1 pA (Fig. 9 C). The results are robust in the
sense that precise matching of the characteristics of the
endogenous Is1 is not required (and, indeed, is not currently
possible). However, it is far from the case that any depo-
larizing current will do. As expected from calculations with
the model (not shown), if IClamp is too slow it is unable to
induce medium bursting. This is shown in Fig. 10 A, where
IClamp with K  0.02 s�1 was applied with limited effect.
The same cell was successfully converted to a slow rhythm
by addition of the same amount of IClamp with K  2.0 s�1,
the same rate constant used in the three examples in Fig. 9.
If the exogenous current is too fast, it also fails to induce
conversion; our best efforts using a dynamic clamp current
with instantaneous activation have been able to lengthen
burst duration of fast bursting cells only modestly (Fig. 12
of Kinard et al., 1999). Similarly, while nonspecific DC
current was able to depolarize or drive cells into continuous

FIGURE 8 Simulated dynamic clamp protocol. Artificial inward current
(Eqs. 12–14) with Gmax  0.015 nS and K  2.0 s�1 added to model
equations at t  10 s. In D, Is1 is the current with upward deflections and
IClamp the current with downward deflections.

FIGURE 9 Experimental conversion of fast single �-cells to medium
bursting using dynamic clamp. (A) A fast bursting cell converted to
medium bursting by injection of artificial clamp current (Eqs. 12–14) with
Gmax as indicated and K  2.0 s�1. (B) Same for fast spiking cell. (C) The
artificial clamp current used in B. Representative of 20 successful conver-
sions out of 31 cells attempted, using Gmax in the range 0.002–0.030 nS.
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spiking, it was ineffective at converting fast bursting or
spiking to medium bursting.

DISCUSSION

We have described a model of �-cell electrical activity with
two slow conductances that can generate the full range of
burst periods, from seconds to minutes, observed in pancre-
atic �-cells (Figs. 2–4). Of particular note is that the model
can generate bursting oscillations with a period of 10 to
60 s, the range typically observed in islets. This phantom
bursting is significant in light of the fact that no slow
process with a medium-scale time constant has been iden-
tified in �-cells. Medium bursting in this model is controlled
by a virtual pacemaker that emerges from the interaction of
processes that are respectively much faster or slower than
the medium time scale. There are several plausible candi-
dates, discussed below, for variables that operate on these
faster and slower scales.

The model presented here is highly idealized, employing
the minimal elements needed to achieve our first modeling
goal, explaining how fast, medium, and slow bursting might
arise. Which of the three bursting modes is expressed de-
pends on the maximal conductance, gs1, of the faster of the
two slow currents. When sufficient gs1 is present, it drives
fast bursting, and as a result the slow s2 current does not
have enough time to oscillate. If gs1 is too small to terminate
a burst even when its activation variable s1 is maximal, s2

comes into play. This is only one of a number of possible
ways to switch from fast to medium or slow bursts with the

model; the key is to prevent the fast oscillations from
pre-empting the slow ones. In the present version, reducing
gs1 stretches the Z-shaped voltage nullcline (Fig. 7) so that
it has multiple intersections with the s1 nullcline, causing
the trajectory to stall in the silent and active phases. Stretch-
ing or shifting the s1 nullcline would have a similar effect,
though with differences in detail. For concreteness, we
chose s1 and s2 to be activation variables of hyperpolarizing
K� currents, but versions of the model in which one or both
of s1 and s2 are inactivation variables of depolarizing Ca2�

currents exhibit the same essential behavior.
Other ways of generating a wide range of oscillation

periods have been considered previously. One way is to
vary the time constant of the slow negative-feedback vari-
able. For example, Atwater and Rinzel (1986) showed with
the Chay-Keizer model that enhancing Ca2� buffering in-
creases the period by slowing the accumulation and clear-
ance of cytosolic Ca2�. This mechanism was not intended,
however, to account for the full range of periods now known
to exist. A second way is to stretch the range of values that
the slow variable traverses in the course of a burst while
keeping the rate of traversal the same. In recent models of
Chay (1996, 1997), Caer is the slow variable, and its range
is extended by reducing the flux of Ca2� from the ER. It
was suggested that �-cell cAMP levels in islets are greater
than those in dispersed cells due to the paracrine secretion
of glucagon by islet �-cells, which was expected to increase
release rate and lead to faster bursting (Liu et al., 1998). The
role of the ER in slow oscillations is assessed below. More
generally, a serious comparison of models will require con-
sideration of the full range of phenomena observed in
�-cells and islets, including responses to glucose and to
agonists that affect internal Ca2� stores. The phantom
model will have to be elaborated, at minimum incorporating
equations for the cytosolic and ER Ca2� concentrations and
for ATP/ADP dynamics.

There are two leading candidate mechanisms for the
slower variable, s2, the concentration of Ca2� in the endo-
plasmic reticulum (Caer) and activation of the K(ATP)
channel conductance, and there are arguments both for and
against each of these choices. There is some evidence that
ER Ca2� in �-cells varies on a several-minute time scale
(Tengholm et al., 1998; Maechler et al., 1999), but it has not
yet been demonstrated that ER Ca2� oscillates in coinci-
dence with bursting. There is also evidence for ER involve-
ment in the minutes-long, biphasic transient seen when
glucose is stepped from basal to stimulatory levels (Bertram
et al., 1995; Mears et al., 1997). On the other hand, slow
bursting persists in the presence of thapsigargin (Liu et al.,
1995, 1998; Miura et al., 1997), an agent that irreversibly
inhibits ER Ca2� pumps and empties the ER.

K(ATP) channel conductance is known to be decreased
by ATP and increased by ADP, and imaging data has shown
that glycolytic intermediates and oxygen consumption os-
cillate accordingly, suggesting that the ATP/ADP ratio os-

FIGURE 10 The effect of the activation rate constant, K, on conversion
to slower firing. (A) The cell shows only a modest increase in period with
K  0.02 s�1. (B) The same cell shows a much greater increase in period
when K  2.0 s�1.
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cillates on a time scale appropriate for slow bursting (Longo
et al., 1991; Nilsson et al., 1996). There is one report
indicating variation in K(ATP) channel activity between
active and silent phases during slow bursting (Larsson et al.,
1996). In the models of Keizer and Magnus (1989, 1998),
the ATP/ADP ratio declines as an indirect consequence of
depolarization, which enhances Ca2� flux into the mito-
chondria. This flux was hypothesized to decrease the rate of
ATP production and, thus, ultimately to increase K(ATP)
conductance.

In the simplified model here, s2 represents the gating of a
fictitious K� channel that opens very slowly in response to
depolarization, but for the present purpose it does not make
much difference whether a very slow K� conductance re-
sponds directly to membrane potential or indirectly through
Ca2�. We have verified that the actual Keizer-Magnus
mechanism (Keizer and Magnus, 1989) can be incorporated
in a phantom-type model with essentially identical results.

Detimary et al. (1998) have proposed an alternative
mechanism for K(ATP) oscillations linked to membrane
potential. They suggested that ATP is consumed by in-
creased pumping of cytosolic Ca2� out of the cell during the
active phase of a burst, and recovers during the silent phase
when Ca2� declines. This mechanism can also be accom-
modated in a phantom-type model.

On the other hand, Smith et al. (1990) found no variation
in K(ATP) conductance during slow bursting in single cells
or small clusters. Miura et al. (1997) found that slow Ca2�

oscillations sometimes persist with K(ATP) blocked in is-
lets, and Rosario et al. (1993) reported medium bursting
with K(ATP) blocked. We note that if s2 is interpreted as
proportional to K(ATP) conductance, the model indicates
that oscillations in K(ATP) conductance may be too small to
be detected experimentally during medium bursting,
whereas the oscillations would be more pronounced during
slow bursting.

Candidates for s1, the faster of the two slow variables in
our model, include voltage-dependent inactivation of a de-
polarizing Ca2� current and activation of a hyperpolarizing
K(Ca) current. A component of Ca2� current in �-cells with
an inactivation time constant of a few seconds has been
identified (Satin and Cook, 1988; Satin et al., 1994), and has
been incorporated into several models (Chay and Cook,
1988; Keizer and Smolen, 1991). Medium bursting can be
achieved in these models only by exaggerating the time
constant of inactivation, but the measured values for the
time constant are comparable to the range needed for �s1 in
the phantom model.

Recently, Göpel et al. (1999b) used patch clamp of single
cells in situ in the periphery of islets to measure a K(Ca)
current with time constants of 2.3 and 6.4 s for activation
and deactivation, respectively, in response to simulated
voltage bursts. Kozak et al. (1998) found what appears to be
a similar current in an insulin-secreting cell line. The time

constants reported by Göpel et al. are broadly compatible
with the phantom model, with K(Ca) playing the role of s1.

Interestingly, Göpel et al. (1999b) report that their in situ
current is much larger than a similar current in isolated cells,
and suggest that this is why very slow bursting is seen in
some isolated cells. This interpretation is consistent with the
phantom model, with K(Ca) as the current gated by s1. The
phantom model further suggests that our isolated cells,
which exhibit fast, rather than slow, oscillations (Rorsman
and Trube, 1986; Falke et al., 1989; Kinard et al., 1999) may
in contrast have a surplus of K(Ca) conductance. We do not
yet know if this is the case or if fast cells differ from slow
ones in some other way.

Our second modeling goal was to explain why medium
bursting is not generally observed in isolated cells. Here we
induced medium bursting in an artificial way by injecting
exogenous current (Figs. 9 and 10). In an islet, cell-to-cell
coupling current could play that role. As a preliminary
demonstration of the feasibility of this hypothesis, Fig. 11
shows the effect of coupling a fast cell having high gs1 with
a slow cell having low gs1. When coupled, each cell behaves
like a cell with an intermediate level of gs1 and bursts with
a medium period. We conjecture that islets are composed of
cells each of which is either fast or slow in isolation,
depending on its balance of gs1 and gs2 or other parameters,
but which synchronize to medium bursting in situ. Figure 11
illustrates a case in which the individual cells possess both
fast and slow pacing processes (s1 and s2), but to different
degrees. The end result would be similar if each cell had
only s1 or s2; when coupled, it would behave as if it had
both. Further experimental and theoretical work is needed in
order to ascertain the actual distribution of cell properties in
islets.

FIGURE 11 When a fast burster (gs1  20 pS, A) is coupled to a slow
burster (gs1  3 pS, B) they synchronize in a medium bursting pattern (C
and D). An islet composed of fast and slow cells could exhibit medium
bursting even if the individual cells do not. Coupling added as in Smolen
et al. (1993a); here, gap junction conductance is 130 pS. Note the different
time scale in B.
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Two other hypotheses addressing this question have been
advanced previously, focusing on channel noise and cellular
heterogeneity, respectively. According to the noise hypoth-
esis, regular bursting is disrupted by channel fluctuations,
resulting in either short bursts or continuous spiking activity
(Atwater et al., 1983; Sherman et al., 1988; Chay and Kang,
1988). Though substantial noise is observed in single cells,
this hypothesis is incompatible with the finding that there
are slow oscillations in single cells and small cell clusters.
A recent study of slow [Ca2�]i oscillations in clusters of 1
to 50 islet cells found that the period of oscillation was
several minutes in duration, nearly independent of the ab-
solute number of cells, but was more regular in the larger
clusters (Jonkers et al., 1999). Thus, although noise may
play a more significant role in single cells and small clusters
than in islets, it does not explain the gross differences in
oscillations between single cells and islets.

According to the heterogeneity hypothesis, the variation
of parameters among cells makes it unlikely that individual
cells fall into the narrow parameter range needed for burst-
ing (Smolen et al., 1993a), so that averaging of parameter
values across the islet is needed for regular oscillations. The
phantom model goes one step further in attempting to iden-
tify particular parameters that vary among cells and are
capable of producing a wide range of burst periods.

In summary, we view this model not as the final answer
to the problem of bursting in �-cells, but as a template for
integrating a wide range of data and for posing questions. In
addition to establishing a new theoretical framework, the
model has already shown how to induce in isolated �-cells
electrical activity like that of cells in islets. This defines a
new experimental preparation that can facilitate the study of
the ionic currents and other mechanisms involved in burst-
ing under conditions in which bursting is actually seen and
without interference from coupling artefacts.
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