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Abstract

Background—The fruit fly Drosophila melanogaster has been used extensively to investigate

genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies

from our laboratory, have manipulated gene expression using transposons carrying the genetic-

phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white

transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol

exposure in flies has not been systematically investigated.

Methods—We manipulated mini-white and white expression via (i) transposons marked with

mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed

ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in

the presence of ethanol) and an assay based on ethanol-induced sedation.

Results—In eRING assays, ethanol-induced impairment of climbing correlated inversely with

expression of the mini-white marker from a series of transposon insertions. Additionally, flies

harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were

significantly more sensitive to ethanol in eRING assays than controls expressing endogenous

white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the

ethanol sedation assay were not affected by decreased expression of mini-white or endogenous

white in flies.

7Corresponding Author: Mike Grotewiel, Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101
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Conclusions—Ethanol sensitivity measured in the eRING assay is noticeably influenced by

white and mini-white, making eRING problematic for studies on ethanol-related behavior in

Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay

described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid

tolerance in Drosophila including those that use widely available transgenes marked with mini-

white.
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alcohol; behavior; fruit flies; genetics; intoxication; sedation

Introduction

Although many studies have collectively suggested the involvement of a large number of

genes in human alcohol use disorders (AUDs) (Palmer et al., 2012), few genes have been

unambiguously associated with alcohol dependence or other aspects of alcohol abuse. The

fruit fly Drosophila melanogaster—which exhibits behavioral responses to ethanol that

mirror those observed in mammals (Devineni et al., 2011; Scholz et al., 2000)—has been

used to identify candidate genes for subsequent studies on AUDs in humans and for directly

testing the roles of genes implicated by human studies (Rodan and Rothenfluh, 2010; Scholz

and Mustard, 2011). The advent of transposon-mediated mutagenesis and transgenesis

(Rubin and Spradling, 1982) greatly facilitated the use of the fly model to investigate genes

that influence many biological processes including behavioral responses to ethanol (Bellen

et al., 2011; Bellen et al., 2004; Rodan and Rothenfluh, 2010). For example, studies using

transgenic flies have demonstrated that signaling via cyclic AMP, monoamines, insulin, and

neuropeptides impact ethanol-related behaviors (Bainton et al., 2000; Corl et al., 2005;

Moore et al., 1998; Rodan et al., 2002; Scholz, 2005; Wen et al., 2005). Additionally, the fly

model has been used to establish roles for multiple cytoskeletal regulators and cell adhesion

molecules (Bhandari et al., 2009; Peru y Colon de Portugal et al., 2012; Rothenfluh et al.,

2006; Sordella and Aelst, 2006), chloride intracellular channels (Bhandari et al., 2012) and

many other proteins (Rodan and Rothenfluh, 2010; Scholz and Mustard, 2011) in sensitivity

and tolerance to ethanol.

A common feature of the majority of the genetic studies on ethanol behavior in Drosophila

is the use of transformation vectors that contain a version of the white (w) gene as a

selectable phenotypic marker (mini-w). The w gene product is an ABC transporter subunit

thought to heterodimerize with the products of the brown and scarlet genes to form a

functional transporter (Ewart and Howells, 1998; Mackenzie et al., 1999). White protein

localizes to the endosome in pigment cells where it cooperates with Brown and Scarlet

proteins to mediate the intracellular transport of guanine and tryptophan metabolites (Anaka

et al., 2008; Mackenzie et al., 2000). Wild-type flies have red eyes, whereas null mutations

in w lead to a complete loss of eye pigmentation (i.e. white eyes).

The mini-w mini-gene in many currently used Drosophila transformation vectors originates

from the pW6 (Klemenz et al., 1987) and pCaSpeR (Pirrotta, 1988) P-element vectors. The

mini-w cassette from pCaSpeR (w+mC) consists of ~300 bp of upstream and ~600 bp of
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downstream regulatory w sequence, with most of the first intron removed. In the pW6

vector, the minimal w promoter is replaced with the Hsp70 minimal promoter (w+mW.hs).

Transformation of w null mutants with these vectors, or their many derivatives, rescues eye

pigmentation through expression of White protein (i.e. causes eyes to be red). The

convenient nature of the w eye color phenotype has made mini-w a routinely used marker of

transgenesis in Drosophila. For example, most Gal4 and UAS transgenes used in flies are

marked with mini-w (e.g. (Brand and Perrimon, 1993; Dietzl et al., 2007) and (at the time of

manuscript preparation) more than 40% of the ~30,000 P-element vector-containing strains

in the Bloomington Drosophila Stock Center (http://flystocks.bio.indiana.edu/) were marked

with a version of mini-w. Although other markers for transgenesis are used in Drosophila

(e.g. yellow and GFP (Bellen et al., 2011)), the mini-w marker has been used in many—

bordering on all—genetic studies in flies.

The w gene product is highly conserved among many insects and is structurally related to

the human protein ABCG1 that is associated with multiple mental health disorders (Kirov et

al., 2001; Nakamura et al., 1999). In addition to the Drosophila eye, the w gene is highly

expressed in the head outside of the eye (Campbell and Nash, 2001), in the prepupal fat

body (functionally analogous to the vertebrate liver), and the adult Malpighian tubules

(functionally analogous to the vertebrate kidney) (Chintapalli et al., 2007). The w locus

could therefore be important for the function of the brain and other organ systems in

addition to the eye in Drosophila. Consistent with this possibility, several studies have

shown that endogenous w or mini-w influence multiple non-visual processes. Null mutants

for w have altered levels and localization of the biogenic amines dopamine, serotonin, and

histamine in heads (Borycz et al., 2008; Sitaraman et al., 2008), are resistant to sedation by

volatile anesthetic gases (Campbell and Nash, 2001) and have poor place memory

(Diegelmann et al., 2006). Expression of w is found in fly heads from which eye pigment

cells have been genetically ablated (Campbell and Nash, 2001), supporting a role for w in

anesthetic sensitivity and possibly other behaviors that are independent of vision.

Additionally, mini-w over-expression induces male-male courtship behavior in flies (Anaka

et al., 2008; Hing and Carlson, 1996; Nilsson et al., 2000; Zhang and Odenwald, 1995) and

ethanol-induced male-male courtship behavior requires expression of w or mini-w (Lee et

al., 2008). Expression of w and mini-w can therefore have significant effects on

neurochemistry and behavior in Drosophila, possibly via a role in transport of guanine or

cGMP and synthesis of nitric oxide, dopamine, serotonin or histamine (Borycz et al., 2008;

Campbell and Nash, 2001; Evans et al., 2008; Sitaraman et al., 2008).

Given the use of the fly as a model for ethanol-related behaviors and the wide-spread use of

mini-w as a transgenic marker in flies, we explored the contribution of mini-w and

endogenous w expression to ethanol sensitivity in two different behavioral assays. We find

that ethanol sensitivity measured by loss of climbing in flies is significantly influenced by

mini-w and endogenous w, whereas ethanol sensitivity measured by sedation is not.

Materials and methods (additional details are provided as supplementary information on

line)
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Fly husbandry

Flies were grown on food medium (10% sucrose, 3.3% cornmeal, 2% yeast, 1% agar)

supplemented with active dry yeast, 0.2% Tegosept (Sigma Chemical Co., St. Louis, MO,

USA) and antibiotics (0.5 μg ampicillin, 0.1 μg tetracycline, 0.625 μg chloramphenicol per

10 ml of food) at 25°C/60% relative humidity with a 12 hour light/dark cycle. The w1118

control strain isogenic for the X, 2 and 3 chromosomes used in these studies (a.k.a. w[A])

was obtained from the Drosophila Stock Center (stock# 5905, Bloomington, IN, U.S.A.).

The elavC155-Gal4 driver (elav-Gal4), Clic (G4072 and EY04209), Akap200 (EP2254,

c01373, d01782, d03938, d07255, EY04645 and EY12242), thickveins (7, 8, d07811, f02766,

f03305, c06013 and KG05071), wishful thinking (d02492, e00566 and e01243) and baboon

(c04263, c05710, k16912) strains were obtained from the Bloomington Drosophila Stock

Center (Bloomington, IN, U.S.A.) or the Exelixis Collection at the Harvard Medical School

(Boston, MA, U.S.A.) and backcrossed for 7 generations to the w[A] control to normalize

their genetic background. An additional w1118 genetic background strain (w[VDRC]) and

UAS-RNAi transgenic strains to manipulate white (v30033 and v30034), Clic (v105975),

Cnx14D (v5597) and ph-p (v50024) were obtained from the Vienna Drosophila RNAi

Center (Vienna, Austria). An X chromosome harboring both the elav-Gal4 driver and the

v30034 RNAi transgene (elav-Gal4,v30034) was generated via meiotic recombination. A

stock homozygous for a wild-type w allele (w+) in the w[A] background was generated by

backcrossing a Canton-S X chromosome to w[A] for 7 generations. Unless otherwise

indicated, all strains contained a w1118 X chromosome and all transgenic lines contained

mini-w. The previously described scbVol2, AlkMB06458, aru8.128, hppyKG5537, NPFR1-Gal4

and NPFR1-RNAi strains (Bhandari et al., 2009; Corl et al., 2009; Eddison et al., 2011;

Lasek et al., 2011; Wen et al., 2005) and control genetic backgrounds were kindly provided

by Ron Davis, Ulrike Heberlein and Ping Shen.

For behavioral analyses, adult flies (2–5 days-old) were grown as above, immobilized under

light CO2 anesthesia, separated by sex and genotype, and placed into fresh food vials (25

flies/vial for eRING, 11 flies/vial for sedation) overnight at 25°C/60% relative humidity. All

comparisons between groups were based on flies that were grown, handled and tested side-

by-side. Each vial of flies represents n=1. All behavioral assays were performed at 23–25°C

and 50–55% relative humidity under standard laboratory lighting. The experimenter was

blind to genotype in all studies.

eRING assay for ethanol-related behavior

eRING studies (Figure S1) were performed as previously described (Bhandari et al., 2009)

using vapor from 33 or 50% ethanol. Flies have a strong, innate negative geotaxis response

(vertical climbing in response to being startled). In eRING studies (Figure S1), bang-

induced climbing distance in the continuous presence of ethanol vapor is measured at 1 min

intervals. Flies become progressively sedated and T50 values (time to ethanol-induced 50%

reductions in climbing) are determined as previously described (Bhandari et al., 2009).

Ethanol sedation assay for ethanol sensitivity and tolerance

Ethanol sedation assays (Figure S1 and S3) were initiated by transferring adult flies into

empty 2.5 × 9.5 cm food vials (VWR; Radnor, PA, U.S.A.; catalogue number 89092-722).
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Cellulose acetate Flugs (FlyStuff.com; San Diego, CA, U.S.A.; catalogue number 49-102)

were inserted 2 cm into each vial and the vials of flies were arranged into six rows of four

vials each (Figure S3). The number of dead/inactive flies (on average <1%) was recorded for

each vial at t=0 min and censored. Starting with the first row of 4 vials, ethanol (0–50%; 2

ml in our standard assay) was added at five-second intervals to the Flug in each vial and the

vial was immediately sealed with a silicone stopper. The remaining rows of vials were

treated identically at 1-minute intervals. Starting 6 minutes after adding ethanol to the Flugs

and continuing at 6-minute intervals thereafter, each vial was gently tapped 3 times on a

table and the number of sedated flies (i.e. flies that were noticeably uncoordinated or

immobile) in each vial was recorded 30 seconds after the final tap. Ethanol sedation assays

were terminated typically at 60–90 minutes or when all flies were immobile. The percentage

of non-sedated flies was calculated for each vial at each 6-minute interval, resulting in a

sedation time-course for each vial. Sedation time 50 (ST50, time to 50% sedation) values

were interpolated from third-order polynomial curve fits (the least complex curve that fit the

data well, (R2 = 0.96±0.001, n=1221) using Excel (Microsoft, Redwood, WA, U.S.A.) or

Prism 4.03 (GraphPad, San Diego, CA, U.S.A.) from the time-course data for each vial.

Rapid tolerance was determined in ethanol sedation assays as described in the preceding

paragraph except that flies were given a first exposure to ethanol (E), allowed to recover for

4 hours in food vials at 25°C/60% relative humidity, and then subjected to a second ethanol

exposure (EE) in ethanol sedation assays. The development of rapid tolerance to ethanol was

expressed as a ratio between the ST50EE and ST50E as similarly reported (e.g.(Awofala et

al., 2011; Berger et al., 2004; Scholz et al., 2005; Scholz et al., 2000)).

Results and Discussion

eRING assays and expression of mini-w and w

Our laboratory previously described eRING (ethanol rapid iterative negative geotaxis) as an

assay for measuring ethanol sensitivity in Drosophila (Figure S1) (Bhandari et al., 2009).

Flies have a strong, innate negative geotaxis response (vertical climbing in response to being

banged or rapped to the bottom of their container). eRING assays measure bang-induced

climbing at one-minute intervals in the continuous presence of ethanol vapor. Flies are

banged to the bottom of vials during each interval in eRING assays, right themselves and

then climb toward the top of the vials. As the internal ethanol concentration of flies

increases in eRING assays, flies become progressively impaired which is reflected as a time-

dependent decrease in the distance climbed. Time-course data from eRING assays are used

to derive a T50 (time of ethanol exposure causing a 50% reduction in climbing ability) as a

standard measure of fly performance and ethanol sensitivity.

While performing a reverse genetic screen with transposon insertion strains, we noticed that

genotypes with increased resistance to ethanol sedation in eRING assays also often had

strongly pigmented eyes from the mini-w eye color marker in the transposons. We therefore

investigated the potential confound of mini-w expression in eRING studies by assessing

ethanol sensitivity in three series of fly strains with graded levels of mini-w expression from

transposon insertions (Figure S2). Expression of mini-w, which varies greatly in different

transposon strains due to well-documented position effects (Hazelrigg et al., 1984; Silicheva
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et al., 2010), was ranked in our studies by eye color (w+-rank) by a single experimenter

blind to genotype. The series of flies we assessed in eRING harbored (i) transposon

insertions in three TGFβ receptor (TGFβR) genes (thickveins (tkv), wishful thinking (wit),

and baboon (babo)), (ii) transposon insertions in the Akap200 locus, and (iii) several

different Gal4 transgenes, all marked with mini-w in the same w1118 genetic background.

Expression of mini-w from these transposon insertions strongly correlated with ethanol

sensitivity in eRING assays (Figure 1A), but not with internal ethanol concentration,

expression of TGFβR or Akap200 mRNA, or negative geotaxis in the absence of ethanol

(not shown). These results suggest that expression of mini-w influences sensitivity to ethanol

in the eRING paradigm.

To formally investigate mini-w in ethanol sensitivity in eRING assays, we used nervous

system Gal4 (elav-Gal4) (Olofsson and Page, 2005) to drive expression of a UAS-white-

RNAi transgene (v30034) to knockdown mini-w (Figure S2I, K and M). In all experiments,

the elav-Gal4 and UAS-white-RNAi transposons contained the mini-w marker (Figure S2).

White-eyed flies with the w1118 null allele or with RNAi-mediated knockdown of mini-w

(elav-Gal4,v30034) were significantly more sensitive to ethanol in eRING assays than red-

eyed flies expressing mini-w from the elav-Gal4 (elav-Gal4/+) or v30034 (v30034/+)

transgenes (Figure 1B). Additionally, w1118 null flies were much more sensitive to ethanol

in eRING studies than flies with a wild-type allele of w (w+) in the same genetic background

(Figure 1C). Both mini-w and endogenous w, therefore, have substantial effects on ethanol

sensitivity in the eRING assay. Given the widespread use of flies with altered expression of

w (for example, >75% of the ~46,000 stocks in the Drosophila Bloomington Stock Center

contain an allele of w or mini-w at the time of manuscript preparation), our findings

represent a significant limitation to the utility of the eRING assay for the genetic analysis of

ethanol sensitivity in Drosophila. A more detailed analysis that addresses possible

mechanisms for the effect of mini-w and endogenous w on ethanol sensitivity in eRING

studies will be presented elsewhere.

Ethanol sensitivity and rapid tolerance in an assay based on sedation

We investigated a behavioral paradigm based on ethanol-induced sedation to potentially

circumvent the confound of mini-w and w in eRING assays. The ethanol sedation assay we

developed is based in large part on the work of others (e.g. Lasek et al., 2011; Maples and

Rothenfluh, 2011; Rothenfluh et al., 2006; Schumann et al., 2011; Wen et al., 2005). In the

ethanol sedation assays used in our studies, flies were placed in a 9.5 cm tall plastic food

vial and trapped in the vial with a cellulose acetate Flug (Figure S3A). Ethanol solution (up

to 2 ml, Figure S4A) was added to the top (exposed side) of the Flug and the vial was

immediately sealed with a rubber stopper (Figure S3A). At 6-minute intervals thereafter,

flies were gently tapped to the bottom of the vial and then visually scored for their ability to

right themselves (i.e. stand up) in the continuous presence of ethanol vapor from the Flug.

We designed our ethanol sedation assay to test multiple replicates of several genotypes in

parallel (Figure S3B). Each vial of flies corresponded to n=1 and we found that an

individual experimenter can readily test 24 vials simultaneously in a single experiment using

this design. Testing more than 24 vials simultaneously certainly seemed possible assuming

minor modifications, but we have not pursued this possibility.
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The primary data from ethanol sedation assays are the percentages of non-sedated flies

measured as a function of ethanol exposure time (e.g. Figure 2A and 2B). The time required

for 50% of flies to become sedated (Sedation Time 50, ST50) is a metric routinely extracted

from similar ethanol sedation time-course studies (e.g. (Schumann et al., 2011)). Toward

having a uniform, objective strategy for data analysis, we interpolated ST50 values from

curve fits of our ethanol sedation time-courses. Third-order polynomials fit ethanol sedation

time-course data well (R2 = 0.96±0.001, n=1221) and third-order polynomial curves fit the

ethanol sedation time-course data better than first-, second- or fourth-order curves (Figure

S4B). Additionally, we found that ST50s and the percentage of active flies integrated over

time (area under the curve) from ethanol sedation time-course data sets strongly correlated

(Figure S4C), indicating that the ST50 metric captures the overall performance of flies in

this assay. We therefore used ST50 values interpolated from third-order polynomial curves

as end measures of ethanol sensitivity in all ethanol sedation studies described here. Note

that lower and higher ST50s indicate increased and decreased ethanol sensitivity,

respectively.

To determine if flies were sensitive to ethanol dose in ethanol sedation assays, we tested

control w1118 flies in the presence of water vapor or vapor from 30–50% ethanol. Neither

females nor males became sedated in the presence of water vapor (Figure 2A, 2B, 3A, 3B

and S5A). In contrast, exposure to vapor from increasing concentrations of ethanol

progressively hastened time-dependent sedation (females, Figure 2A; males, 2B) and

therefore also decreased ST50s (females, Figure 2C; males, 2D). Exposure to vapor from

increasing concentrations of ethanol also increased the internal ethanol content of flies

(females, Figure 2E; males, 2F), demonstrating that sedation in the ethanol sedation assay is

dose-dependent. Although in some of our initial studies we noticed that ST50s in w1118

females and males appeared to be different when tested on different days in separate

experiments (e.g. Figure 2C and 2D), we found that males and females performed

indistinguishably when tested on the same day side-by-side (Figure S5A and S5B).

Therefore, comparisons were made only between groups tested on the same day. Flies in

ethanol sedation assays lost a comparable amount of body mass when exposed to vapor from

water or ethanol (Figure S5C), indicating that sedation in the presence of ethanol vapor is

not due to dehydration.

Rapid tolerance is defined as a reduction in ethanol sensitivity during a second exposure to

the drug following recovery from an earlier initial exposure (Devineni et al., 2011; Scholz,

2009). Control w1118 flies became sedated during both a first (E) and second (EE) ethanol

exposure separated by four hours of recovery in ethanol sedation assays, but they were

significantly less sensitive during the second challenge with ethanol (females, Figure 3A and

C; males, Figure 3B and D). Ethanol sensitivity following an initial exposure to water (WE

group) was not altered compared to flies with no prior ethanol experience (E group; Figure

3A–D), indicating that blunted ethanol sensitivity in EE flies is not due to a handling artifact

and instead requires multiple exposures to the drug. Internal ethanol concentrations were

indistinguishable during a first and second ethanol exposure (females, Figure 3E; males,

Figure 3F). We conclude that the decreased ethanol sensitivity during the second ethanol

exposure in ethanol sedation assays is due to altered pharmacodynamic properties of the
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drug and that this change in behavior represents the development of functional rapid

tolerance. To date, we have been unable to show that flies develop acute functional tolerance

(tolerance during a single ethanol exposure (Davies et al., 2004)) in ethanol sedation assays

(Figure S6).

Mini-w, ethanol sensitivity and rapid tolerance in ethanol sedation assays

We used the ethanol sedation assay to address the potential influence of mini-w expression

on ethanol sensitivity and rapid tolerance. We first assessed initial ethanol sensitivity in

Akap200 and TGFβR transposon insertion genotypes in addition to strains containing several

different Gal4 transgenes, all marked with mini-w in the same genetic background. There

was no correlation between ST50s from ethanol sedation assays and expression of mini-w in

these studies (Figure 4A). These results suggest that mini-w does not influence ethanol

sensitivity measured in ethanol sedation experiments, in contrast to our data from eRING

assays (Figure 1).

To further investigate the potential role of mini-w in ethanol sedation assays, we determined

if RNAi-mediated knockdown of mini-w in the nervous system via elav-Gal4 (Olofsson and

Page, 2005) altered ethanol sensitivity in this paradigm. In all experiments, the elav-Gal4

and UAS-white-RNAi transposons themselves contained the mini-w marker (Figure S2).

Nervous system expression of two w RNAi transgenes (v30033 and v30034) led to eye color

phenotypes indistinguishable from w1118 null flies (Figure S2I–M), demonstrating that

expression of v30033 and v30034 substantially inactivates mini-w. ST50s from ethanol

sedation assays were not significantly different in w1118 nulls and red-eyed control flies

expressing mini-w (elav-Gal4/+, v30033/+ and v30034/+; Figure 4B). Ethanol sensitivity in

white-eyed flies expressing w RNAi in the nervous system (elav-Gal4;v30033 and elav-

Gal4/v30034) was significantly increased compared to the elav-Gal4/+ control, but not

compared to the v30033/+ or v30034/+ controls (Figure 4B), indicating that knockdown of

mini-w has a negligible effect. Internal ethanol concentrations were comparable in all

control and w knockdown strains tested (Figure 4C). Additionally, the development of rapid

tolerance was observed in all control and w knockdown groups (Figure S7). Although rapid

tolerance was slightly lessened in elav-Gal4/v30034 w-knockdown flies compared to elav-

Gal4/+ and v30034/+ controls, this decrease in rapid tolerance was not found in elav-

Gal4;v30033 knockdown flies (Figure S7). We conclude that—in genetic backgrounds with

essentially normal ethanol sensitivity—neither expression of mini-w from stably-integrated

transposons nor knockdown of mini-w in the nervous system greatly alters ethanol sedation

sensitivity, rapid tolerance to ethanol or ethanol uptake/metabolism in flies as measured in

ethanol sedation assays.

The preceding data strongly indicate that mini-w does not impact behavioral performance in

ethanol sedation assays using flies with essentially normal ethanol sensitivity. We reasoned,

however, that mini-w could have subtle effects on performance in ethanol sedation assays

that would be revealed in flies with altered baseline ethanol sensitivity. To test this

possibility, we co-expressed w RNAi in conjunction with UAS-RNAi transgenes against

Cnx14D (v5597) or ph-p (v50024). Expression of the Cnx14D and ph-p UAS-RNAi

transgenes (identified in a reverse genetic screen that will be reported elsewhere) decrease
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and increase ethanol sensitivity, respectively (Figure 5A and 5B). To achieve coincident

expression of RNAi against w and either Cnx14D or ph-p, we generated flies containing a

recombinant X chromosome harboring an elav-Gal4 driver and the v30034 RNAi transgene

in cis. Eye pigmentation in flies with this recombinant chromosome (elav-Gal4,v30034) was

indistinguishable from w1118 null flies (Figure S2A), indicating strong knockdown of mini-

w. Ethanol sensitivity in ethanol sedation assays was statistically indistinguishable in w1118

nulls, flies expressing mini-w (elav-Gal4/+ and v5597/+ controls) and w knockdown flies

(elav-Gal4,v30034/+) (Figure 5A). Expression of Cnx14D RNAi v5597 with elav-Gal4

(elav-Gal4/v5597) led to the expected increase in ST50, but importantly this phenotype was

not significantly affected by coincident knockdown of mini-w (elav-Gal4,v30034/v5597)

(Figure 5A). Similarly, we found that ethanol sensitivity in w1118, elav-Gal4,v30034/+, and

elav-Gal4/+ controls were comparable and that the increased sensitivity of flies expressing

ph-p RNAi v50024 was not affected by concurrent knockdown of mini-w (Figure 5B).

Although additional studies will be required to determine if knock-down of Cnx14D and ph-

p alter ethanol sensitivity in flies, these data show that mini-w has no significant effect on

the phenotypes of flies with increased or decreased sensitivities to ethanol.

Endogenous w and ethanol sedation assays

We next examined the effects of endogenous w on sensitivity and rapid tolerance to ethanol

in ethanol sedation assays. We found no differences in initial ethanol sensitivity in w1118

null and w wild-type (w+) females or males tested with vapor from 50% (Figure 6A and B)

or 40% ethanol (Figure S8A). The development of rapid tolerance to ethanol was similarly

unaffected by w genotype in either sex (Figure S8B and C). Additionally, there were no

significant differences in internal ethanol concentrations (Figure 6C and 6D) in w1118 and

w+ flies. These results indicate that endogenous w, like mini-w, has no discernible effect on

ethanol sensitivity, rapid ethanol tolerance or ethanol kinetics in ethanol sedation assays.

Chloride intracellular channels and other molecules influence ethanol sedation assays

We previously reported that genes in the Chloride Intracellular Channel (CLIC) family

influence ethanol sensitivity in flies, worms and mice (Bhandari et al., 2012). In the previous

Drosophila experiments, we used eRING assays to measure ethanol sensitivity in flies

harboring two independent Clic transposon insertions marked with mini-w. Given the data in

Figure 1, it seemed possible that the decreased ethanol sensitivity exhibited by Clic mutants

—as measured in eRING assays—could be confounded by the presence of the mini-w

marker. We therefore used ethanol sedation assays to re-examine ethanol sensitivity in the

same two Clic transposon mutants. Consistent with our previous eRING studies, we found

that both Clic mutants had decreased ethanol sensitivity in ethanol sedation assays (Figure

7A and B). Similarly, a 40±4% knockdown (one-sample t test, p=0.0007, n=5) of Clic via

ubiquitous da-Gal4-driven expression of the Clic RNAi transgene v105975 also lessened

ethanol sensitivity in sedation assays without having a major effect on internal ethanol

concentrations (Figure 7C and E). Nervous system expression of Clic RNAi v105975 also

decreased ethanol sensitivity without substantively impacting internal ethanol concentrations

(Figure 7D and F). Therefore, decreased function of Clic alters ethanol sensitivity measured

in sedation experiments. Importantly, these behavioral changes are independent of mini-w
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because ethanol sensitivity is not greatly influenced by mini-w or endogenous w in sedation

assays (Figures 4–6).

To determine if the ethanol sedation assay described here was influenced by the same

genetic manipulations that alter ethanol sensitivity in other studies, we analyzed the behavior

of several previously described mutants with altered ethanol sensitivity. Ethanol sensitivity

in our sedation assay was increased in scb and aru mutants, decreased in Alk and hppy

mutants, and decreased in flies with knockdown of NPF (Figure S9), consistent with

previous reports (Bhandari et al., 2009; Corl et al., 2009; Eddison et al., 2011; Lasek et al.,

2011; Wen et al., 2005). Sensitivity to ethanol sedation in the assay described here seems to

be influenced by the same or similar mechanisms as reported for other behavioral

paradigms.

Summary

We tested the influence of w and mini-w on ethanol sedation in two behavioral assays, one

based on bang-induced climbing (eRING) and another based on ethanol sedation. Knock-

down of mini-w and a null mutation in the endogenous w locus increased sensitivity to

ethanol sedation in eRING assays, whereas the same genetic manipulations of mini-w and w

had no major effect on ethanol sensitivity measured in sedation assays. Therefore, the

eRING assay should not be used for measuring ethanol sensitivity in studies with

transposons marked with mini-w or studies that otherwise compare genotypes with unequal

expression of w or mini-w. Considering the wide-spread use of transposons marked with

mini-w and that expression of mini-w can vary considerably between independent transposon

insertion strains (Hazelrigg et al., 1984; Silicheva et al., 2010), this is a significant limitation

to the utility of the eRING assay for genetic studies on ethanol sensitivity in Drosophila. In

contrast, the ethanol sedation assay described here can be used as an experimental platform

for probing the genetic basis for ethanol sensitivity and tolerance using many existing fly

strains including those with mini-w transgenes.

Although eRING and ethanol sedation assays both measure impaired motor/postural

function in the continuous presence of ethanol vapor (Figure S1) and similar internal ethanol

concentrations are required to cause impairment in both assays (100–150 mM; Figure 2E,

2F, 3E, 3F, and 4C for ethanol sedation and (Bhandari et al., 2012; Bhandari et al., 2009) for

eRING), there are fundamental operational differences between the two behavioral

paradigms (Figure S1) that could explain the strikingly different effects of w/mini-white. In

eRING assays, flies are sharply banged to the bottom of their container, must right

themselves and then climb. In ethanol sedation assays, flies are gently tapped to the bottom

of their container, must right themselves and then walk. Thus, although behavioral

performance in both assays is dependent on the righting reflex, eRING and sedation assays

ultimately measure ethanol-induced impairment in climbing and walking, respectively.

Our studies suggest that w and mini-w specifically impact climbing in the presence of

ethanol. One possible explanation for the contrasting effects of w and mini-w on climbing

versus walking could be that these two behaviors are driven by different sets of neurons and

that w and mini-w selectively affect the function of the neurons involved in climbing. The

selective role of w and mini-w in climbing neurons could be related to cell-specific
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expression of the genes brown and scarlet (known partners for the white transporter (Ewart

et al., 1994)), neuron-specific release of or responses to nitric oxide, dopamine, serotonin or

histamine (neuromodulators known or suspected to be altered in w mutants (Borycz et al.,

2008; Campbell and Nash, 2001; Sitaraman et al., 2008)), or transport of cGMP (Evans et

al., 2008). Alternatively, it is possible that climbing is simply more physically demanding

than walking; if loss of w causes partial defects in neuronal function, those defects might be

revealed during climbing in the presence of ethanol in eRING assays. Additional studies are

needed to address these and other possible mechanisms for the effect of w and mini-w in

ethanol sensitivity measured in eRING assays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mini-w and endogenous w influence ethanol sensitivity measured in eRING assays
A. Flies harboring transposon insertions in TGFβR genes (tkv, wit and babo; blue circles),

Akap200 (green triangles) or Gal4 drivers (red squares) were ranked by eye color (w+ rank,

X axis) and tested in eRING assays for sedation to ethanol vapor from 30% ethanol (TGFβR

and Gal4 drivers) or 50% ethanol (Akap200). Compiled T50 values (fold of w1118 controls)

from all genotypes correlated with w+ rank (Pearson r=0.7503, p<0.0001). TGFβR lines

tested were tkv alleles 7, 8, d07811, f02766, f03305, c06013 and KG05071, wit alleles

d02492, e00566 and e01243 and babo alleles c04263, c05710, k16912. Akap200 lines tested

were EP2254, c01373, d01782, d03938, d07255, EY04645 and EY12242. Gal4 lines tested
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were da-Gal4/+, mef2-Gal4/+, Appl-Gal4/+, Actin5cGal4/+, GMR-Gal4/+, 24B-Gal4/+,

and elav-Gal4/+. See Figure S3 for representative eye color images. B. There was an overall

effect of genotype on T50s from eRING studies using vapor from 30% ethanol (one-way

ANOVA, p=0.0003, n=10 per genotype). mini-w-expressing elav-Gal4/+ and v30034/+ flies

had elevated T50 values compared to white-eyed w1118 controls and elav-Gal4,v30034 white

knockdown flies (*Bonferroni’s, p<0.05). T50s in w1118 controls and elav-Gal4,v30034 flies

were not distinguishable (Bonferroni’s, n.s.). C. T50s in w1118 flies tested in eRING studies

with vapor from 30% ethanol were significantly lower than in w+ flies (Kolmogorov-

Smirnov test for Gaussian distribution; w1118, p>0.01, n.s.; w+, p=0.0017, significantly non-

Gaussian; *Mann-Whitney test, p=0.0147, n=10).
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Figure 2. Exposure to ethanol vapor in ethanol sedation assays causes dose-dependent sedation
and internal ethanol concentrations
Data are from w1118 control female (A, C and E) and male (B, D and F) flies exposed to

vapor from the indicated concentrations of ethanol (0, 30, 40 and 50%). A and B. Ethanol

sedation time-course. Time and ethanol concentration had significant effects on percent

active flies and there was a significant interaction between time and ethanol concentration

for both females and males (individual two-way ANOVAs; time, p<0.0001; ethanol

concentration, p<0.0001; interaction, p<0.0001; n=5 for females, n=10 for males). C and D.

Ethanol sedation ST50 values. ST50 values derived from the data in panels A and B were

significantly affected by ethanol concentration in both males and females (individual one-

way ANOVAs, p<0.0001, n=5 for females, n=10 for males). ST50 values in response to all

ethanol concentrations were significantly different (Bonferroni’s multiple comparison,

p<0.001 in all cases). ST50 values cannot be calculated for flies exposed to 0% ethanol

(water) because flies do not become sedated in the absence of the drug. E and F. Internal

ethanol concentrations. A 60-minute exposure to vapor from increasing concentrations of

ethanol progressively increased whole body internal ethanol concentrations in flies

(individual one-way ANOVAs, p≤0.0002, n=6 for females, n=5 for males). Internal ethanol
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after any given exposure was significantly different from internal ethanol in the next lower

and higher groups (Bonferroni’s, p<0.05).
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Figure 3. Rapid tolerance to ethanol in ethanol sedation assays
Data are from w1118 control female (A, C and E) and male (B, D and F) flies. A and B.

Sedation time-courses from flies exposed once to vapor from water (W), exposed once to

vapor from 50% ethanol (E), exposed to water vapor, allowed to recover for 4 hours, then

exposed to vapor from 50% ethanol (WE), and exposed to vapor from 50% ethanol, allowed

to recover for 4 hours, then exposed again to ethanol vapor (EE). Time and ethanol

treatment had significant effects on the percentage of active flies and there was an

interaction between time and ethanol treatment (individual two-way ANOVAs; time,

p<0.0001; ethanol treatment, p<0.0001; interaction, p<0.0001, n=5–32 per treatment group).

C and D. ST50 values derived from the data in panels A and B were significantly affected

by ethanol treatment (one-way ANOVA, p<0.0001). ST50 values in EE flies were

significantly different from those in E and WE flies (*Bonferroni’s, p<0.001), whereas ST50

values in E and WE flies were not statistically distinguishable (Bonferroni’s multiple

comparison, n.s.). E and F. Internal ethanol concentrations increased with time of ethanol

exposure, but were not significantly different in E and EE flies (individual two-way

ANOVAs; time, p≤0.0002; E vs. EE, n.s.).
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Figure 4. Expression of mini-w has a negligible impact on ethanol sedation sensitivity and
internal ethanol concentrations in ethanol sedation assays
A. Compiled ST50 values from ethanol sedation assays with vapor from 50% ethanol did

not correlate with w+ rank in TGFβR (blue circles), Akap200 (green triangles) and Gal4 (red

squares) strains (Pearson r=−0.1754, p=0.4125, n.s.). ST50 values are represented as fold of

w1118 controls. B. Knockdown of mini-w in the nervous system and initial sensitivity to

ethanol. Expression of w RNAi transgenes (v30033 and v30034) was driven in the nervous

system by elav-Gal4. Genotype had a significant overall effect on ST50 values from ethanol

sedation assays with vapor from 50% ethanol (one-way ANOVA, p=0.0008, n=8–16 per

genotype). ST50 values in w1118, elav-Ga4/+, v30033/+ and v30034/+ genotypes were not

statistically different (Bonferroni’s, n.s.). ST50 values in elav-Gal4;v30033 and elav-Gal4/
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v30034 knockdown animals were greater than in elav-Ga4/+ (Bonferroni’s, *p<0.05), but

were not significantly different from v30033/+ or v30034/+ controls (Bonferroni’s, n.s.). C.

Internal ethanol concentrations in nervous system mini-w knockdown flies after 30 minutes

of exposure to vapor from 50% ethanol in ethanol sedation assays. Genotype had a

significant overall effect on internal ethanol (one-way ANOVA; p=0.0388; n=4), but no

differences between relevant genotype pairs were found (Bonferroni’s, n.s.).
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Figure 5. Nervous system knockdown of mini-w in flies with altered sensitivity to ethanol
Expression of v30034 along with either Cnx14D RNAi v5597 (A) or ph-p RNAi v50024 (B)

RNAi was driven in the nervous system by elav-Gal4. All flies tested were females. A.

Knockdown of mini-w in the nervous system of in flies with decreased sedation in response

to vapor from 50% ethanol. There was a significant overall effect of genotype on ST50s

(one-way ANOVA, p<0.0001, n=8). ST50 values were not significantly different in w1118,

v5597/+, elav-Gal4/+ or elav-Gal4,v30034/+ flies (Bonferroni’s, n.s.). elav-Gal4/v5597 and

elav-Gal4,v30034/v5597 exhibited significantly higher ST50 values compared to relevant

controls (*Bonferroni’s, p<0.05 compared to v5597/+ and elav-Gal4/+; **Bonferroni’s,

p<0.05 compared to v5597/+ and elav-Gal4,v30034). elav-Gal4/v5597 and elav-

Gal4,v30034/v5597 were not statistically distinguishable (Bonferroni’s, n.s.). B.

Knockdown of mini-w in the nervous system in flies with increased sensitivity to sedation

from vapor from 50% ethanol. Overall, genotype had a significant effect on ST50s (one-way

ANOVA, p<0.0001, n=8). ST50 values were indistinguishable in w1118, elav-Gal4/+ and
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elav-Gal4,v30034/+, whereas the ph- v50024/+ control was significantly different from

w1118 (#Bonferroni’s, p<0.05). elav-Gal4;v50024 and elav-Gal4/v30034;v50024 were not

different from each other, but they were significantly different from their relevant controls

(*Bonferroni’s, p<0.05 compared to elav-Gal4/+ and v50024/+; **Bonferroni’s, p<0.05

compared to elav-Gal4/+ and elav-Gal4,v30034).
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Figure 6. Ethanol sedation sensitivity and internal ethanol concentrations in w null and w wild-
type flies
ST50 values in response to vapor from 50% ethanol were indistinguishable in w null (w1118)

and w wild-type (w+) females (panel A, unpaired t-test, n.s., n=6 for w1118, n=21 for w+) or

males (panel B, (unpaired t-test, n.s., n=10 per genotype). C and D. Internal ethanol

concentrations in response to vapor from 50% ethanol were not distinguishable in w1118 and

w+ females (C) and males (D), but were affected by duration of ethanol exposure (individual

two-way ANOVAs; effect of w genotype, n.s.; effect of ethanol exposure time, p<0.0001;

n=5 per genotype, sex and exposure time).
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Figure 7. Mutations in and RNAi-mediated knockdown of Clic reduce ethanol sensitivity in
ethanol sedation assays
ST50s were greater in homozygous ClicG0472 (A) and ClicEY04209 (B) transposon mutants

(closed bars) than in w1118 controls (open bars) (*individual t tests, p≤0.027, n=10 per

genotype) in ethanol sedation assays with vapor from 50% ethanol. Control and Clic mutant

flies were reared at 20°C to circumvent homozygous lethality of the Clic alleles at 25°C.

Ubiquitous (via da-Gal4, panel C, filled bar) or nervous system (via elav-Gal4, panel D,

filled bar) expression of RNAi targeting Clic (v105975) lowered ethanol sensitivity

compared to Gal4/+ and v105975/+ controls (open bars) (individual one-way ANOVAs,

p<0.0001; *Bonferroni, p<0.05 compared to controls; n=8–10 per group). Internal ethanol

concentrations were not consistently different in ubiquitous (E) and nervous system (F) Clic

knockdown flies compared to Gal4 and v105975 controls (individual one-way ANOVAs;

panel E, p=0.0288; panel F, p=0.0003; n=5; *Bonferroni’s multiple comparisons test,

p<0.05 compared to Gal4 controls). Controls are (A) w1118 in a Canton-S background, (B)

2202U, (C) WTB, and (D) the progeny from NPFR1-Gal4 or NPFR1-RNAi crossed to our

standard w1118 strain.
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