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The authors show that the magnetization of a 2-phase magnetostrictive/piezoelectric multiferroic

single-domain shape-anisotropic nanomagnet can be switched with very small voltages that

generate strain in the magnetostrictive layer. This can be the basis of ultralow power computing

and signal processing. With appropriate material choice, the energy dissipated per switching event

can be reduced to �45 kT at room temperature for a switching delay of �100 ns and �70 kT for a

switching delay of �10 ns, if the energy barrier separating the two stable magnetization directions

is �32 kT. Such devices can be powered by harvesting energy exclusively from the environment

without the need for a battery. VC 2011 American Institute of Physics. [doi:10.1063/1.3624900]

The primary obstacle to continued downscaling of digi-

tal electronic devices in accordance with Moore’s law is the

excessive energy dissipation that takes place in the device

during switching of bits. Every charge-based device [e.g.,

metal-oxide-semiconductor field-effect-transistor (MOS-

FET)] has a fundamental shortcoming in this regard. They

are switched by injecting or extracting an amount of charge

DQ from the device’s active region with a potential gradient

DV, leading to an inevitable energy dissipation of DQ�DV.

Spin based devices, on the other hand, are switched by flip-

ping spins without moving any charge in space (DQ¼ 0) and

causing a current flow. Although some energy is still dissi-

pated in flipping spins, it can be considerably less than the

energy DQ�DV associated with current flow. This gives

“spin” an advantage over “charge” as a state variable.

Recently, it has been shown that the minimum energy

dissipated to switch a charge-based device like a transistor at

a temperature T is �NkTln(1/p), where N is the number of in-

formation carriers (electrons or holes) in the device and p is

the bit error probability.1 On the other hand, the minimum

energy dissipated to switch a single-domain nanomagnet

(which is a collection of M spins) can be only �kTln(1/p),

since the exchange interaction between spins makes M spins

rotate together in unison like a giant classical spin.1,2 This

gives the magnet an advantage over the transistor.

Unfortunately, the magnet’s advantage is lost if the

method adopted to switch, it is so inefficient that the energy

dissipated in the switching circuit far exceeds the energy dis-

sipated in the magnet. Regrettably, this is often the case. A

magnet is usually flipped with either a magnetic field gener-

ated by a current3 or a spin polarized current exerting either

a spin transfer torque4 or causing domain-wall motion.5 The

energy dissipated to switch a magnet with current-generated

magnetic field was reported in Ref. 3 as 1011–1012 kT for a

switching delay of �1 ls, which clearly makes it impracti-

cal. In fact, it will make the magnet inferior to the transistor

which can be switched in sub-ns while dissipating 107–108

kT of energy in a circuit.6 Domain-wall motion induced by a

spin-polarized current can switch a nanomagnet in 2 ns while

dissipating 104–105 kT of energy,7 but there is still a need to

identify more energy-efficient mechanisms for switching a

magnet.

Recently, we have shown that the magnetization of a

shape-anisotropic piezoelectric/magnetostrictive multiferroic
nanomagnet can be switched with a small voltage applied to

the piezoelectric layer.8 Such multiferroic systems have now

become commonplace9–11 and there are proposals for using

them in magnetic logic and memory.8,12 In this method, the

electrostatic potential generates uniaxial strain in the piezo-

electric layer, and that is elastically transferred to the magne-

tostrictive layer if the latter is considerably thinner. The

nanomagnet is clamped along the hard axis. This makes the

magnetization of the magnetostrictive layer rotate. Such

rotations have been demonstrated experimentally.10

Consider an ellipsoidal multiferroic magnet with uniax-

ial shape anisotropy as shown in Fig. 1. The piezoelectric

layer is 40 nm thick, and the magnetostrictive layer is 10 nm

thick, which is thin enough that strain does not relax. We

assume that the piezoelectric layer is lead-zirconate-titanate

(PZT) and the magnetostrictive layer is polycrystalline

nickel or cobalt or Terfenol-D. For Terfenol-D, the major

axis is assumed to be �102 nm and the minor axis is

�98 nm. Because of shape anisotropy, the two magnetiza-

tion orientations parallel to the easy axis (major axis of the

ellipse or the z-axis) are stable and can store the binary bits

0 and 1. We keep the potential energy barrier between these

two orientations (i.e., the shape anisotropy barrier) 0.8 eV or

�32 kT at room temperature by choosing the appropriate

parameters, which makes the static bit error probability e�32.

Let us assume that the magnetization is initially oriented

along the �z-axis. Our task is to switch the nanomagnet so

that the final orientation is along the þz-axis. We do this by

applying a voltage V across the thickness of the piezoelectric

layer that generates uniaxial stress along the easy axisa)Electronic mail: royk@vcu.edu.
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(z-axis) via d31 coupling. The energy dissipated in the

switching circuit during turn-on is (1/2)CV2 while that dissi-

pated during turn-off is (1/2)CV2, where C is the capacitance

of the piezoelectric layer plus any line capacitance. Since the

piezoelectric layer has a very large relative dielectric con-

stant (1000), its capacitance will dominate over the line ca-

pacitance which can be neglected.

There is an additional dissipation Ed in the nanomagnet

due to Gilbert damping.13 The total energy dissipated in the

switching process is, therefore, Etotal¼CV2þEd. Thus, in

order to calculate Etotal as a function of switching delay, we

have to calculate four quantities: (1) the stress needed to

switch the magnetization within a given delay, (2) the volt-

age V needed to generate this stress, (3) the capacitance C,

and (4) Ed which is calculated by following the prescription

of Ref. 13.

In order to find the stress r required to switch a magne-

tostrictive nanomagnet in a given time delay s, we solve the

Landau-Lifshitz-Gilbert (LLG) equation for a single-domain

magnetostrictive nanomagnet subjected to stress r. We then

relate r to the strain e in the nanomagnet from Hooke’s law

(e¼r/Y, where Y is the Young’s modulus of the nanomag-

net) and find the voltage V that generates that strain in the

piezoelectric layer based on its d31 coefficient and thickness.

Finally, we calculate the capacitance of the multiferroic sys-

tem by treating it as a parallel-plate capacitor. This allows us

to find the energy dissipated in the switching circuit (CV2) as

a function of the switching delay s.

In the supplementary material accompanying this let-

ter,14 we show that both stress and shape anisotropy act like

a torque on the magnetization of the nanomagnet. This tor-

que per unit volume of the nanomagnet is

TEðtÞ ¼ �nmðtÞ � rE½hðtÞ;/ðtÞ�; (1)

where E[h(t),/(t)] is the total potential energy of the nanomag-

net at an instant of time t. It is the sum of shape anisotropy

energy and stress anisotropy energy, both of which depend on

the magnetization orientation at the given instant determined by

the polar angle h(t) and azimuthal angle /(t) of the magnetiza-

tion vector which is assumed to be in the radial direction.

We can write the torque as

TEðtÞ ¼ �f2Bð/ðtÞÞsinhðtÞcoshðtÞge^/
�fB0eð/ðtÞÞsinhðtÞge^h;

(2)

where e
^
h and e

^
/ are unit vectors in the h- and /-directions,

and

B0ð/ðtÞÞ ¼
l0

2
M2

s X½Nxxcos2/ðtÞ þ Nyysin2/ðtÞ � Nzz�; (3a)

Bstress ¼ ð3=2ÞksrX; (3b)

Bð/ðtÞÞ ¼ B0ð/ðtÞÞ þ Bstress; (3c)

B0eð/ðtÞÞ ¼
l0

2
M2

s XðNxx � NyyÞsinð2/ðtÞÞ: (3d)

Here Ms is the saturation magnetization of the nanomagnet,

X is its volume, l0 is the permeability of free space, ks is the

magnetostrictive coefficient of the magnetostrictive layer,

and Nbb is the demagnetization factor in the b direction,

which can be calculated from the shape and size of the nano-

magnet (see the supplementary material14).

The magnetization dynamics of the single-domain nano-

magnet (neglecting thermal fluctuations) is described by the

LLG equation

dnmðtÞ
dt
þ a nmðtÞ �

dnmðtÞ
dt

� �
¼ c

MV
TEðtÞ; (4)

where nm(t) is the normalized magnetization, a is the dimension-

less phenomenological Gilbert damping constant, c¼ 2lBl0/� is

the gyromagnetic ratio for electrons, and MV¼l0MsX.

From this equation, we can derive two coupled equa-

tions that describe the h- and /-dynamics,

ð1þ a2Þh0ðtÞ ¼ � c
MV
½B0eð/ðtÞÞsinhðtÞ

þ 2aBð/ðtÞÞsinhðtÞcoshðtÞ�;
(5)

ð1þ a2Þ/0ðtÞ ¼ c
MV
½aB0eð/ðtÞÞ � 2Bð/ðtÞÞcoshðtÞ�

ðsinhðtÞ 6¼ 0Þ:
(6)

Clearly, the h- and /-motions are coupled and hence these

equations have to be solved numerically. We assume that the

initial orientation of the nanomagnet is close to the �z-axis

(h¼ 179�). It cannot be exactly along the �z-axis (h¼ 180�)
since then the torque acting on it will be zero [see Eq. (2)]

and the magnetization will never rotate under any stress.

Similarly, we cannot make the final state align exactly along

the þz-axis (h¼ 0�) in a reasonable time since there too the

torque vanishes. Hence, we assume that the final state is

h¼ 1�. Thus, both initial and final states are 1� off from the

easy axis. Thermal fluctuations can easily deflect the mag-

netization by 1� (see Ref. 15).

We apply the voltage generating stress abruptly at time

t¼ 0. This rotates the magnetization away from near the easy

axis (h¼ 179�) to the new energy minimum at h¼ 90�. We

maintain the stress until h reaches 90� which places the mag-

netization approximately along the in-plane hard axis

(y-axis). Then, we reduce the voltage to zero abruptly. Sub-

sequently, shape anisotropy takes over and the magnetization

vector rotates towards the easy axis since that now becomes

the minimum energy state. The question is which direction

along the easy axis will the magnetization vector relax to. Is

it the �z-axis at h¼ 179� (wrong state) or the þz-axis at

h¼ 1� (correct state)? That is determined by the sign of

B0e(/(t)) when h reaches 90�. If / at that instant is less than

FIG. 1. (Color online) An elliptical multiferroic nanomagnet stressed with

an applied voltage.
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90�, then B0e(/(t)) is positive which makes the time deriva-

tive of h negative (see Eq. (5)), so that h continues to

decrease and the magnetization reaches the correct state

close to the þz-axis. The coupled h- and /-dynamics ensures
that this is the case as long as the stress exceeds a minimum

value. Thus, successful switching requires a minimum stress.

Once we have found the switching delay s for a given

stress r by solving Eqs. (5) and (6), we can invert the rela-

tionship to find r versus s and hence the energy dissipated

versus s. This is shown in Fig. 2 where we plot the energy

dissipated in the switching circuit (CV2), as well as the total

energy dissipated (Etotal) versus delay for three different

magnetostrictive materials. For Terfenol-D, the stress

required to switch in 100 ns is 1.92 MPa and that required to

switch in 10 ns is 2.7 MPa.

Note that for a stress of 1.92 MPa, the stress anisotropy

energy Bstress is 32.7 kT while for 2.7 MPa, it is 46.2 kT. As

expected, they are larger than the shape anisotropy barrier of

�32 kT which had to be overcome by stress to switch. A

larger excess energy is needed to switch faster. The energy

dissipated and lost as heat in the switching circuit (CV2) is

only 12 kT for a delay of 100 ns and 23.7 kT for a delay of

10 ns. The total energy dissipated is 45 kT for a delay of 100

ns and 70 kT for a delay of 10 ns. Note that in order to

increase the switching speed by a factor of 10, the dissipation

needs to increase by a factor of 1.6. Therefore, dissipation

increases sub-linearly with speed, which bodes well for

energy efficiency.

With a nanomagnet density of 1010 cm�2 in a memory

or logic chip, the dissipated power density would have been

only 2 mW/cm2 to switch in 100 ns and 30 mW/cm2 to

switch in 10 ns, if 10% of the magnets switch at any given

time (10% activity level). Note that unlike transistors, mag-

nets have no leakage and no standby power dissipation,

which is an important additional benefit.

Such extremely low power and yet high density magnetic

logic and memory systems, composed of multiferroic nano-

magnets, can be powered by existing energy harvesting sys-

tems16–19 that harvest energy from the environment without

the need for an external battery. These processors are

uniquely suitable for implantable medical devices, e.g., those

implanted in a patient’s brain that monitor brain signals to

warn of impending epileptic seizures. They can run on

energy harvested from the patient’s body motion. For such

applications, 10-100 ns switching delay is adequate. These

hybrid spintronic/straintronic processors can be also incorpo-

rated in “wrist-watch” computers powered by arm move-

ment, buoy-mounted computers for tsunami monitoring (or

naval applications) that harvest energy from sea waves, or

structural health monitoring systems for bridges and build-

ings that are powered solely by mechanical vibrations due to

wind or passing traffic.
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FIG. 2. (Color online) Energy dissipated in the switching circuit (CV2) and

the total energy dissipated (Etotal) as functions of delay for three different

materials used as the magnetostrictive layer in the multiferroic nanomagnet.
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