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Optical transitions in a quantum wire with spin-orbit interaction and its applications
in terahertz electronics: Beyond zeroth-order theory
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We calculate the terahertz absorption spectra associated with intersubband transitions in a semiconductor
quantum wire in the presence of spin-orbit interaction and a transverse magnetic field. The frequencies and
intensities of the absorption peaks are found to depend strongly on the spin-orbit coupling strength, which can
be varied with an external electric field. This feature can be exploited to realize reconfigurable multispectral
terahertz detectors and amplitude and/or frequency modulators. We also show that electric dipole transitions
between spin-split levels in the same subband �which are normally deemed forbidden� become allowed because
of spin texturing effects. The absorption associated with these transitions experience a redshift �blueshift� with
increasing spin-orbit coupling strength for materials with negative �positive� g factor. The normally allowed
transitions, on the other hand, experience the opposite shift, i.e., blue for materials with negative g factor and
red for materials with positive g factor. The theory described here is universal and applies to all
semiconductors.

DOI: 10.1103/PhysRevB.77.155439 PACS number�s�: 72.25.Rb, 72.25.Mk, 72.25.Hg, 72.25.Dc

I. INTRODUCTION

There is a great demand for terahertz modulators and mul-
tispectral detectors for communication, sensing, and signal
processing applications. In this paper, we show that electro-
statically modulated spin-orbit interaction in a quantum wire
can be gainfully employed for this purpose. By varying the
spin-orbit interaction strength in a quantum wire with an
electric field, one can vary both the energy spacings between
different subbands and the matrix element for radiative tran-
sitions between them. This allows one to modulate the fre-
quency and amplitude of terahertz absorption and emission,
thereby realizing “reconfigurable” multispectral terahertz de-
tectors and amplitude and/or frequency modulators.

This paper is organized as follows. In Sec. II, we describe
the theory used to calculate subband energy dispersion rela-
tions and the two-component spinor wave functions in a
quantum wire subjected to a transverse magnetic field. Both
Rashba1 and Dresselhaus2 spin-orbit interactions are as-
sumed to be present in the wire and the former can be modu-
lated with an externally applied electric field. This theory is
then used in Sec. III to calculate the spatial modulation of the
spin density across the width of the wire �in different sub-
bands�, the energy spacing between different subbands, and
the matrix elements for photon induced transitions between
them. We show that all of these quantities can be varied by
varying the Rashba spin-orbit interaction strength with an
external potential. Finally, in Sec. IV, we present the sum-
mary and conclusions.

II. THEORY

Consider a semiconductor quantum wire with rectangular
cross section as shown in Fig. 1. We assume that the wire

material is InAs so that the effective mass of electrons is 0.03
times the free electron mass and the Landé g factor=−15.
The axis of the wire is along x̂, which coincides with the
�100� crystallographic direction. A symmetry breaking trans-
verse electric field Eyŷ induces Rashba spin-orbit coupling,
whose strength can be varied by changing Eyŷ using a top
gate terminal. InAs has a bulk inversion asymmetry in the
microscopic crystal potential which induces the Dresselhaus
spin-orbit coupling effect.2 We also assume that there is an
external magnetic field of flux density B along ŷ.

It has been pointed out3,4 that if the nuclear spins in the
quantum wire are polarized by some external means, such as
optical pumping, then there will be an additional effective

Bexternal
Ey

X

Y

FIG. 1. A quantum wire of rectangular cross section with Wy

�Wz=100 nm. The wire axis �x̂� is aligned along the �100� crys-
tallographic direction. A top gate �not shown� applies a symmetry
breaking electric field Ey along the y direction to induce the Rashba
spin-orbit interaction in the wire. An external magnetic field B also
acts along ŷ. For calculating intersubband transitions, we assume
that the wire is irradiated by an electromagnetic wave �of frequency
f �Hz��, which is linearly polarized along ẑ.

PHYSICAL REVIEW B 77, 155439 �2008�

1098-0121/2008/77�15�/155439�12� ©2008 The American Physical Society155439-1

http://dx.doi.org/10.1103/PhysRevB.77.155439


magnetic field arising from the nuclear spins, which can be
quite strong. This field could result in time-dependent energy
dispersion relations since the nuclear spins will precess about
the external magnetic field. Under normal equilibrium con-
ditions, the nuclear spins are depolarized and the effective
magnetic field arising from them is negligible. Therefore, we
can neglect such effects here since we do not consider a
polarized background of nuclear spins.

In the Landau gauge �Bz ,0 ,0�, the single particle effec-
tive mass Hamiltonian describing this system is

H =
�p� + eBzx̂�2

2m�
+ V�y� + V�z� −

g�BB� · ��

2
+

�R

�
��z�px + eBz�

− �xpz� +
�D

�
py

2��x�px + eBz� − �zpz� , �1�

where g is the Landé g factor of the quantum wire material,
�R is the strength of the Rashba interaction �which depends
on the top gate potential�, and �D is the strength of the
Dresselhaus interaction. In writing the Dresselhaus term, we
assumed that the thickness of the wire �along the ŷ direction�
is much smaller than the width �along the ẑ direction�. We
also assume that �R and �D are spatially invariant within the
wire.

Owing to the electric field Ey, the potential along ŷ is
given by V�y�=−eEy. We assume that outside �0,Wy�, V�y�
→�. Similarly, in the ẑ direction, we have V�z�=0 for 0
�z�Wz and � everywhere else.

We intend to calculate the energy eigenvalues �E� and the
corresponding two-component spinor eigenfunctions ��� of
the Pauli equation H�=E�, where H is given by Eq. �1�.
Since the entire Hamiltonian H is translationally invariant
along x and the coefficients of the Pauli matrices in H do not
involve x and y coordinates, we can write ��x ,y ,z�
=exp�iqxx�	�y��
��z�
��z��T, where the superscript T stands
for transpose. Spatially averaging both sides of the Pauli
equation over x and y coordinates yields,

E
�z� = �H0I + Hs�
�z� , �2a�

where I is the 2
2 identity matrix and


�z� = �
��z�
��z��T, �2b�

H0 =
�2qx

2

2m�
−

�2

2m�

d2

dz2 +
eBz�qx

m�
+

e2B2z2

2m�
+ �n + V�z� ,

�2c�

�−
�2

2m�

d2

dy2 + V�y��	n�y� = �n	n�y� , �2d�

Hs = −
g�BB�y

2
+ �R��qx +

eBz

�
��z + i�x

d

dz
�

+ �D��qx +
eBz

�
��x + i�z

d

dz
� , �2e�

and

�D = �D	py
2
n � �D�

−�

�

	n
��y��− �2 d2

dy2�	n�y�dy . �2f�

The quantity �D may be viewed as the effective Dresselhaus
constant. Here, n indicates the subband index along the y
direction and m along the z direction. We assume that Wy is
sufficiently small so that only the lowest subband �in the y
direction� is occupied by electrons, i.e., n=1, always. In the
numerical results that will be presented later, the width along
ẑ �i.e., Wz� is assumed to have a fixed value of 100 nm. In
order to calculate the energy dispersion �E−qx� relation of
the magnetoelectric subbands in the wire and the two-
component spinor wave function 
�z�, we solve the Pauli
equation �2a� subject to the boundary conditions,


��z = 0� = 
��z = Wz� = 0,


��z = 0� = 
��z = Wz� = 0, �3�

using a numerical recipe described elsewhere.5

III. RESULTS AND DISCUSSION

Figure 2�a� shows the typical energy dispersion relation-
ship for B=1 T in the presence of both Rashba and Dressel-
haus spin-orbit interactions ��R=3
10−11 eV m and �D=1

10−11 eV m�. The horizontal axis represents the quantity
qx+eBWz /2�, which we refer to as the renormalized wave
vector kx in the rest of this paper. The symbols mL and mU
�m=1,2 ,3 , . . .�, respectively, indicate the lower and upper
spin-split levels of the mth subband. Note that for B=1 T
and Wz=100 nm, the electronic states can be broadly classi-
fied as either edge states or bulk states �also known as two-
dimensional states or Landau orbit states�. The bulk states
have small kx and execute cyclotron motion in closed Landau
orbits at or near the center of the wire, while the edge states
have larger kx, are localized near the edges of the wire, and
correspond to skipping orbits.6,7 Figure 2�b� shows the real
and imaginary parts of the bulk state two-component wave
function �
��z�
��z��T �at kx=0� of 1L subband. As expected,
these wave functions are localized �peaked� near the center
of the wire.

It should be emphasized that in the presence of spin-
orbit interaction, it is not possible to separate the spatial
and spin part of the spinor wave function. In other
words, one cannot write �
��z ,kx ,m�� 
��z ,kx ,m���T

=��z ,kx ,m���0�kx ,���0�kx ,���T, where �0 and �0 are z in-
dependent and � stands for the L �upper sign� and U �lower
sign� spin-split levels in any subband m. It is customary to
separate the spatial and spin parts in the above fashion in
zeroth-order theory, which, as a consequence, misses many
important features that we discussed in 8 and will discuss
more in this paper. In fact, zeroth-order theory will miss all
of spin texturing effects8,9 and incorrectly conclude that elec-
tric dipole transitions between spin-split levels of the same
subband are forbidden, when they are not. We will explicitly
show that later.

UPADHYAYA, PRAMANIK, AND BANDYOPADHYAY PHYSICAL REVIEW B 77, 155439 �2008�

155439-2



We define spin components Sj as
� j�z,kx,m�� = �
�

��z,kx,m��
�
��z,kx,m���� j�
��z,kx,m��



��z,kx,m���T, j = x,y,z ,

Sj�z,kx,m�� =
� j�z,kx,m��


�x
2�z,kx,m�� + �y

2�z,kx,m�� + �z
2�z,kx,m��

.

�4�

These quantities not only depend on kx and the level index
�mL /U=m�� but depend on z as well. Therefore, an electron,
with fixed kx and belonging to a particular energy level
�mL /U�, has different spin orientations depending on its
physical location along the width of the quantum wire chan-
nel. As a result, the spin density varies along z. This effect is
known as “spin texturing.”8,9

In order to study the effect of spin-orbit interactions
on wave functions 
�z ,kx ,m�� and spin components
Sj�z ,kx ,m��, we focus on the quantities �
��z ,kx ,m���2 and
�
��z ,kx ,m���2, which represent the probability density of
measuring a +z-polarized and a −z-polarized spin, respec-
tively, at a location z, for an electron in level m� having a
wave vector kx. Figure 3 shows these density distributions
corresponding to 1L level computed with kx=0 and various
combinations of �R, �D, and B. Examining Fig. 3, we ob-
serve the following.

�1� Increasing �R �with �D=0 and B=0.1 T� results
in increasing the spatial separation between the distribu-
tions �
��z ,kx=0,1L��2 and �
��z ,kx=0,1L��2 along ẑ
�Fig. 3�a��. For �R=0, these distributions are superimposed
on each other. This implies that the probability of measuring
a net ẑ-polarized spin ��z�z ,kx=0,1L�= �
��z ,kx=0,1L��2
− �
��z ,kx=0,1L��2� is zero everywhere along the width of
the channel if spin-orbit interaction is absent. This is consis-
tent with the fact that when �R=�D=0 and B�0, all spins
will be polarized in the direction of the external magnetic
field, which is in the y direction. In that case, Sy =1 and Sx
=Sz=0 everywhere. This is of course strictly true at 0 K
temperature, which is what has been assumed here. With
increasing �R, we observe from Fig. 3�a� that the center of
�
��z ,kx ,m���2 moves toward one edge of the wire �i.e., z
=Wz�, whereas the center of �
��z ,kx ,m���2 moves toward
the other edge �z=0�. Thus, the Rashba effect creates a net
−z polarization �along ẑ� in the region �0,Wz /2� �left half of
the quantum wire� and a net +z polarization in �Wz /2,Wz�
�right half of the quantum wire�, so that Sz is negative in the
region �0,Wz /2� and positive in the region �Wz /2,Wz� �see
Fig. 4 later�. This results in spin density modulation along
the width of the wire, leading to spin texturing. We will show
later that if the g factor of the material were positive instead
of negative, then Sz would have been positive in the region
�0,Wz /2� and negative in the region �Wz /2,Wz�.

Since spins of opposite polarization accumulate at oppo-
site edges of the wire in the presence of Rashba coupling,
this is reminiscent of the intrinsic spin Hall effect �ISHE�10,11

where similar spin accumulation takes place due to the
Rashba effect. However, there are two differences. �1� In
ISHE, the accumulated spins have polarizations along the y
direction, whereas our accumulated spins have polarization
along the z direction, and �2�, the ISHE requires an electric
field driving current along the axis of the wire, but here there
is no such electric field. What we have instead is a magnetic
field perpendicular to the wire axis �in the y direction�. This
magnetic field exerts a Lorentz force on the electrons so that
electrons with negative velocity −vx are deflected to one
edge and electrons with positive velocity +vx are deflected to
the other edge of the wire �thus causing “edge states”�. The
Rashba interaction acts like an effective magnetic field BR
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FIG. 2. �a� E−kx plot for B=1 T, �R �Rashba coupling strength�
=3
10−11 eV m, and �D �Dresselhaus coupling strength� =1

10−11 eV m. The material parameters of InAs have been used
�m�=0.03 m0 and g=−15�. The label mL�mU� indicates lower �up-
per� spin-split level of subband m=1,2 ,3 , . . .. The vertical arrows
denote the photon induced transitions between 1L and other energy
levels that were considered in this paper. �b� The two-component
spinor wave function 
�z ,kx ,m��= �
��z ,kx ,m��
��z ,kx ,m���T as
a function of the position z along the width of the wire. These
wave functions are for the 1L level at kx=0. The external magnetic
field strength and the spin-orbit interaction strengths are the same as
in �a�.
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whose magnitude is proportional to the magnitude of the
electron velocity12 and whose direction is along vx
Ey, i.e.,
along the +z or −z direction in this case. Since electrons with
opposite velocities are localized at opposite edges of the
wire, opposite edges experience oppositely directed BR. Be-
cause spins will tend to align parallel to BR �when the exter-
nal field B is sufficiently weak�, they assume antiparallel
polarizations at the two edges �i.e., +z polarized at one edge
and −z polarized at the other�. This is the origin of the spin
accumulation. We think of this effect as a magnetostatic ana-
log of the intrinsic spin Hall effect. Note that the external
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FIG. 3. Spatial distribution of �
��z ,kx=0,1L��2 and �
��z ,kx

=0,1L��2 for various combinations of �R, �D, and B. �a� This
plot shows that with increasing �R �for fixed �D and B�,
�
��z ,kx=0,1L��2 is monotonically skewed toward z=Wz and
�
��z ,kx=0,1L��2 toward z=0. The value of �0 is 10−11 eV m. �b�
The effect of B �for fixed �R and �D� on �
��z��2 and �
��z��2. With
increasing B, these distributions come closer to each other. B is
expressed in units of T. �c� The Dresselhaus constant �D has no
effect on the shape of �
��z��2 and �
��z��2. The value of �0 is
10−11 eV m. The material parameters of InAs have been used.
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with kx=0, �D=0, B=0.1 T, and �R=10−11 eV m. The spin densi-
ties are plotted for �a� the lower spin-split levels and �b� the upper
spin-split levels in different subbands. Note that Sz exhibits discrete
jumps wherever there is a node in the wave function. Also note that
Sz is negative for z�Wz /2 and positive for z�Wz /2 for the 1L
level, while the signs are reversed for the 1U level. The material
parameters of InAs have been used. For a material with positive g
factor, the behavior would be opposite �signs would be reversed�.
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field B is needed for this effect to be manifested, since with-
out it, the edge states will not form.

To understand the spin accumulation from a different per-
spective, consider the fact that the Rashba Hamiltonian in-
volves a �z term �Eq. �2e�� which, for kx=qx+eBWz /2�=0,
has the form HR= ��ReB /���z−Wz /2��z. Equating HR to

−g�BB� R ·�, which is the equivalent Zeeman interaction due
to BR, we immediately find that BR�z� is equal to
−��ReB��z−Wz /2� / ��g�B�. This field is zero at z=Wz /2,
negative for z�Wz /2, and positive for z�Wz /2, if the g
factor is negative �as in InAs�. For materials with positive g
factor, the signs will be opposite. For the 1L level, 	HR
 must
be minimum if we ignore the external field B, and this is
achieved if spins are parallel to BR�z� at every z coordinate.
Thus, we have −ẑ spin polarization for z�Wz /2 and +ẑ po-
larization for z�Wz /2 in a material with negative g factor.
This, in turn, explains why �
��z ,kx=0,1L��2 shifts toward
z=Wz and �
��z ,kx=0,1L��2 shifts toward z=0 when �R�0.

In a material with positive g factor, the sign of BR will be
opposite. Hence, the sign of the spin polarization at any lo-
cation z and the shifts will be opposite compared to a mate-
rial with negative g factor.

From the above discussion, it also follows that for 1U
level, ẑ component of spin will be antiparallel to BR�z�, im-
plying that �
��z ,kx=0,1U��2 and �
��z ,kx=0,1U��2 will shift
toward z=0 and z=Wz, respectively, in a material with nega-
tive g factor. This is exactly what we observe �data not
shown�. Obviously, the shifts will be opposite for a material
with positive g factor since BR will have the opposite sign.
The amount of shift for both 1L and 1U will increase with �R
since the Rashba interaction is responsible for the shift.

We have found that even for higher subbands mU and mL
�m�1�, the effect of �R is to spatially separate the peaks of
�
��z ,kx ,m���2 and �
��z ,kx ,m���2. For mL subbands, with
increasing �R, �
��z ,kx ,mL��2 is skewed toward z=Wz and
�
��z ,kx ,mL��2 is skewed toward z=0. For mU subbands, the
effect is opposite, i.e., �
��z ,kx ,mU��2 is increasingly skewed
toward z=0 and �
��z ,kx ,mU��2 toward z=Wz with increas-
ing �R. This is true for a material with negative g factor and
the opposite behavior is observed when the g factor is posi-
tive, since the direction of BR is reversed if the sign of the g
factor is reversed. The spatial variation of Sz�z ,kx ,m�� �i.e.,
the spin texturing effect� is, however, more complicated in
higher subbands. The wave functions in the higher subbands
have multiple nodes in the region �0,Wz�. Accordingly,
Sz�z ,kx ,m�� has multiple nodes along the z direction in the
higher subbands. We show this in Fig. 4 for the case of kx
=0 and B=0.1 T.

The above description becomes more involved when �D
�0. Figure 5 shows the wave functions and spin components
with finite �D. In this case, we have an additional z depen-
dence of the effective spin-orbit magnetic field as should be
evident from �Eq. �2e��.

�2� As we increase B �for fixed �R and �D�, the distribu-
tions �
��z ,kx ,m���2 and �
��z ,kx ,m���2 are drawn closer
to each other �Fig. 3�b��. We can resolve the two distribu-
tions up to a flux density of �1 T, after which they become
indistinguishable from each other. This is consistent with
the fact that the magnetic fields BR and BD, due to the two

types of spin-orbit interactions, become increasingly negli-
gible compared to the external magnetic field B as the latter
increases in strength. At very large B, we will have
Sy�z ,kx ,m��� �1 and Sx�z ,kx ,m���Sz�z ,kx ,m���0.
Since Sz�z ,kx ,m��� ��
��z ,kx ,m���2− �
��z ,kx ,m���2�,
it is obvious that �
��z ,kx ,m���2��
��z ,kx ,m���2
��
0�z ,kx ,m���2, when B becomes very large. In this limit-
ing case, one can write the total wave function as the product
of a spatial part 
0�z� and eigenspinors of �y, i.e.,

0�z��1, � i�T. The widths of the distributions also decrease
with a corresponding increase in their heights as B increases
in strength. At high B, electrons with small kx form Landau
orbits that will localize near the center of the wire with a
narrow probability distribution. The radius of a Landau orbit
is 
h /eB, which decreases with increasing B, causing the
distribution to become increasingly narrow with increasing
B.

�3� Variation of Dresselhaus spin-orbit constant �D �for
nonzero �R and B� does not significantly affect the peak
positions of �
��z ,kx ,m���2 and �
��z ,kx ,m���2 �Fig. 3�c��.
Interestingly, if �R=0, �D by itself cannot shift the distribu-
tions. Only for finite �R, the peaks of �
��z ,kx ,m���2 and
�
��z ,kx ,m���2 are shifted from each other along ẑ. This is
easily understood. The Dresselhaus interaction acts like an
effective magnetic field in the x direction, while the Rashba
interaction acts like an effective magnetic field in the z di-
rection. Thus, absent the Rashba interaction, the Dresselhaus
interaction cannot affect Sz�z ,kx ,m��, since it does not pro-
duce an effective magnetic field component in the z direc-
tion. Hence, it cannot, by itself, cause a nonzero
�z�z ,kx ,m��= �
��z ,kx ,m���2− �
��z ,kx ,m���2, which would
result in a net z polarization of spin and spatially separate
�
��z ,kx ,m���2 and �
��z ,kx ,m���2 for a fixed kx and m�.

An interesting point to observe is that in the presence of
spin-orbit interaction, the velocity of an electron is not pro-
portional to momentum even if there were no external mag-
netic field. The relation between the two is spin-dependent.
Note that the expectation value of vx

op=�H /�px �which is the
operator representing the x̂ component of velocity� takes the
following form in the presence of spin-orbit interaction:

	vx
op
 = � px + eBz

m� � +
�R

�
	Sz
 + ��D/��	Sx
 , �5�

where

	Sj
 = �
0

Wz

�
�
��z�
�

��z��� j�
��z�
��z��Tdz, j = x,y,z .

Similarly, the expected value of vz
op=�H /�pz is given by

	vz
op
 = � pz

m�� −
�R

�
	Sx
 − ��D/��	Sz
 . �6�

Figure 6 shows the dependence of each of the three terms on
the right hand side of Eqs. �5� and �6� on the wave vector kx
for various values of the spin-orbit interaction strengths �R
and �D. Clearly, the quantities ��R /��	Sz
 and ��D /��	Sx
 are
not simply proportional to �R and �D, respectively. The
quantity ��R /��	Sz
 is affected by �D via the term �zpz in the
Dresselhaus Hamiltonian and ��D /��	Sx
 is affected by �R
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FIG. 5. Spatial variation of wave functions and spin components for 1L, 2L, 1U, and 2U levels with kx=0, �R=3
10−11 eV m, �D

=10−11 eV m, and B=0.5 T. The material parameters of InAs have been used: �a� g=−15 and �b� g= +15.
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via the term �xpz in the Rashba Hamiltonian. Note from Fig.
6 that at kx=0, all these components are individually equal to
zero.

In Fig. 7, we plot �z, which is the spatial separation be-
tween the peaks of the probability distributions �
��z ,kx
=0,m���2 and �
��z ,kx=0,m���2 along the z direction �width
of the quantum wire�, as a function of subband index m for
both mL and mU levels. This quantity sublinearly increases
with the subband index.

As mentioned earlier, in zeroth-order theory, the two-
component spinor is written as the product of a spatial part
and a spatially invariant spin part, i.e., �
��z ,kx ,m��


��z ,kx ,m���T=��kx ,m ,z���0�kx ,���0�kx ,���T, where
�0�kx ,�� and �0�kx ,�� are z independent. Accordingly, an
electronic state with a fixed kx would appear to have

z-independent and m-independent spin orientation in every
energy level. Moreover, these spin orientations should be an-
tiparallel in the two spin-split levels of the same subband. In
that case, we will expect that for an electron with a fixed kx,
the spin in 1L and mL �m�1� levels will be nearly parallel,
whereas the spins in 1L and mU �m�1� levels will be nearly
antiparallel �they are not exactly parallel or antiparallel since
the Dresselhaus interaction depends on the subband index
m�. In the absence of Dresselhaus interaction, electric dipole
transitions would have been allowed only between 1L and
mL levels, while being forbidden between 1L and mU levels.

In Fig. 8, we show that this expectation is belied if we go
beyond the zeroth-order theory. The spatial distribution of
the angle between the spin orientations in two spin-split lev-
els of a subband, for kx=0, is shown for various subbands as
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FIG. 6. Dependence of 	vx
 and its components for the 1L state on wave vector kx with various values of �R, �D, and g. Magnetic field
B is fixed at 0.1 T.
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a function of z. It is clear from Fig. 8 that the spins belonging
to two different spin-split levels with the same m and kx are
not antiparallel at every z coordinate. They are antiparallel
only at the center of the wire �i.e., when z=Wz /2�. Thus, the
electric field component of an incident photon can couple the
two spin-split levels in the same subband and induce electric
dipole transitions between them, leading to strong absorp-
tion. This is in stark contrast to the observation made in Ref.
13 which states that such transitions can be mediated only by
the magnetic field component of the incident photon �i.e.,
only the much weaker magnetic dipole transitions are al-
lowed�. This is understandable since Ref. 13 made the
zeroth-order approximation, writing the wave function as a
product of space-dependent and spin-dependent parts, which
would immediately mask the possibility of electric dipole
transitions between spin-split levels in the same subband.
Thus, the zeroth-order approximation can lead to nontrivial
errors in some cases.

In an earlier work,5 we have shown that the z dependent
spin orientation makes the zone center �kx=0� spin-splitting
energy ��kx=0

m � in any subband a function of the Rashba cou-
pling strength ��R� and the subband index m. This is now
evident in Fig. 9, where we show the subband energies at
kx=0 in different subbands. The effects seen here �strong
dependence of the spin-splitting energy in any subband on m
and �R� are not captured by the zeroth-order analytical solu-
tion of Eq. �2a� which yields �i� z independent Sj �no spin
density modulation or spin texturing�, �ii� antiparallel spin
orientations of spin-split states with same m and kx �thus no
electric dipole transitions between them�, and �iii� �kx=0

m

=g�BB, independent of �R and m.
The zone center �kx=0� energies shown in Fig. 9 mono-

tonically decrease with increasing Rashba spin-orbit cou-

1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
z

(n
m

)

subband index (m)

U

L
B = 0.1 T, g = −15

η
R

= 10−11 eV.m

γ
D

= 0

∆

(a)

1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15

∆ z
(n

m
)

U

L

B = 0.1 T, g = +15

η
R

= 10−11 eV.m

γ
D

= 0

subband index (m)
(b)

FIG. 7. The quantity �z, which is the spatial separation �along
the z axis� between the peaks of �
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pling strength �R. The rate of decrease is always slower for
the level whose spins tend to align antiparallel to the external
magnetic field B compared to the level whose spins tend to
align parallel. Thus, the mL level has a slower rate than the
mU level when the g factor is negative, while the opposite is
true when the g factor is positive. As a result, for a negative
g-factor material, the energy splitting between mL and mU
levels at first decreases with increasing �R. Then there is a
zero crossing where the levels become degenerate, and there-
after they switch so that the original mU level has lower
energy than the mL level. This is a very interesting phenom-
enon since it suggests that the sign of spin polarization �i.e.,
the role of majority and minority spin� in any subband can be
reversed by applying a sufficiently strong electric field Ey to

induce a sufficiently strong Rashba coupling. For a positive
g-factor material, this feature is absent. The energy splitting
between mL and mU levels continues to diverge with in-
creasing �R. There is no zero crossing and no switching of
roles between majority and minority spins in any subband.

A. Photon induced transitions between subbands:
Terahertz absorption

We now calculate the matrix elements for photon induced
transitions between various energy levels and the intensity of
absorption associated with such transitions. To do this, we
replace p� in the first term of Eq. �1� by p� +eAp�r , t�ẑ, where
Ap�r , t�ẑ is the vector potential describing the electromag-
netic field associated with the ẑ-polarized photon �in this
work, we ignore any effect of the electromagnetic radiation
on the spin state of the electrons�. By using dipole approxi-
mation �small and r-independent Ap�, we obtain the standard
electron-photon interaction Hamiltonian14–16

He-p =
eApẑ

2
· � 1

m�
p� + p�

1

m�� �
eApẑ · p�

m
, �7�

assuming that the effective mass �m�� is z independent. The
intersubband transitions can be viewed as being caused by
the perturbation term �e /m��Apẑ · p� . Using Fermi’s golden
rule, the absorption intensity is given by

I = ��	
i�z,kx = 0,����
d

dz
�
 f�z,kx = 0,���
�2

, �8�

where 
i�z ,kx=0,��� and 
 f�z ,kx=0,��� are the two-
component wave functions of the initial and final states that
have energies Ei�kx=0,��� and Ef�kx=0,���, such that
Ef�kx=0,���−Ei�kx=0,���=��. Here, the subscripts i and
f indicate the initial and final states, respectively, �� and ��

are the initial and final levels, � is the frequency of the
absorbed photon, and � is a proportionality constant. In this
study, we fix the initial state to be 1L. Intersubband transi-
tions can be classified into two categories: �i� type I transi-
tions which have the form 1L→mL �m=2,3 , . . .� and �ii�
type II transitions of the form 1L→mU �m=1,2 ,3 , . . .�.
Type I transitions are the normally allowed ones and type II
transitions would have been forbidden by the zeroth-order
theory. We call them the “normally forbidden” transitions.

Figure 10 shows absorption intensity �I� for transitions
between various spin-split levels in an external magnetic flux
density of 0.1 T for InAs �g =−15� and a hypothetical ma-
terial that has identical parameters as InAs, except that g=
+15. These transitions are caused by the electric field com-
ponent of the incident photon. The magnetic field component
is, in general, several orders of magnitude weaker than the
electric field component and hence has been ignored in the
present study. Note that the maximum intensity occurs for
the 1L→2L transition. This can be understood from Fig. 8,
which shows that the average misalignment angle �propor-
tional to the area under the curves in Fig. 8� is lowest be-
tween 1L and 2L, so that this transition has the largest matrix
element and the strongest intensity.
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FIG. 9. Dependence of the energies of the spin-split levels in
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FIG. 10. Absorption intensity versus absorbed photon energy, as a function of Rashba coupling strength �R. �a� Type I transitions for
InAs �intensity slowly decreases with increasing Rashba coupling, which is accompanied by a blueshift�, �b� type I transitions for a
hypothetical material with the same material parameters as InAs, except that the g factor= +15 �intensity either slowly increases or decreases
with increasing Rashba coupling, which is accompanied by a redshift�, �c� type II transitions for InAs �intensity rapidly increases at first and
then levels off, with an accompanying redshift�, and �d� type II transitions for a hypothetical material that has the same parameters as InAs,
except that the g factor= +15 �intensity rapidly increases at first and then levels off, with an accompanying blueshift�.
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For type I transitions in a material with negative g factor,
the absorption intensity slowly decreases with increasing
Rashba coupling �R with an accompanying blueshift in the
position of the absorption peak. The amount of blueshift
slowly increases with subband index m. This can be under-
stood from Fig. 9�a� which shows that the photon energy
absorbed for a given type I transition slowly increases with
increasing �R and the amount of increase becomes slightly
more pronounced if the final state is in a higher subband. In
a material with positive g factor, the behavior is more com-
plicated. The absorption intensity of type I transitions slowly
increases with increasing Rashba coupling strength for the
1L to 2L transition, but slowly decreases for the 1L to the 3L
transition. There is always a redshift in the position of the
absorption peak. The amount of redshift slowly increases
with subband index m. The redshift can be understood from
the energy diagrams in Fig. 9�b�.

In the case of type II transitions in a material with nega-
tive g factor, the absorption intensity at first increases much
more rapidly with Rashba coupling strength compared to
type I transitions �in fact, it increases by 24 orders of mag-
nitude as the Rashba coupling increases from 0 to 5

10−12 eV m�, but then begins to level off. The position of
the peak is, however, redshifted with increasing �R. Again,
this can be understood from Fig. 9�a� which shows the de-
pendence of the energy of the absorbed photon on �R. In a
material with positive g factor, the absorption intensity again
rapidly increases with increasing �R and then begins to level
off. However, the position of the peak is blueshifted. Also
note that for small values of �R, I�1L→mL�� I�1L→mU�,
where I is the absorption intensity. This merely implies lower
transition probability between approximately opposite spin
states �with large spin misalignment angle� and larger prob-
ability of transition between similarly oriented spin states.
With increasing �R, the overall misalignment between the
spins is somewhat reduced, making them less antiparallel.
This explains the rapid increase in intensity of type II ab-
sorption with increasing �R.

Figure 10 clearly shows that we can modulate the absorp-
tion intensity with an electric field which controls the Rashba
spin-orbit coupling strength. The absorption intensity will
decrease for type I transitions and increase for type II tran-
sitions, with increasing electric field, regardless of whether
the g factor is positive or negative. This leads to amplitude
modulation. We can also shift the position of the peak fre-
quency with the electric field. A blueshift is obtained for type
I transitions in a material with negative g factor or type II
transitions in a material with positive g factor, whereas a
redshift is obtained for type II transitions in a material with
negative g factor or type I transitions in a material with posi-
tive g factor. This leads to frequency modulation. In Fig. 11,
we show the absorption peaks associated with both type I
and type II transitions, as a function of the Rashba spin-orbit
coupling strength, in a hypothetical material that has the
same parameters as InAs, except that the g factor is +4.
Figure 11 makes it obvious that both amplitude and fre-
quency modulation are achievable.

Note that the photon energies in Fig. 10 correspond to
meV energies that imply terahertz radiation. The ability to
modulate both the frequency and strength of terahertz ab-

sorption with an external electric field allows one to fabricate
different detectors, detecting slightly different terahertz fre-
quencies, on the same wafer. Each detector is a quantum wire
with a gate and different gate potentials are applied to differ-
ent wires to make them detect slightly different frequencies.
This results in a multispectral terahertz detector. The system
is reconfigurable since we can change the detection frequen-
cies at will by changing the gate potentials.

A photoexcited electron relaxes to the ground state by
emitting photons �photoluminescence�. The frequency of the
emitted photon depends on the level separation in energy
between initial and final states and the intensity of emission
depends on the matrix element coupling these states. Based
on the preceding discussion, it is clear that both the fre-
quency and intensity can be changed with a gate voltage,
resulting in an amplitude or frequency modulator. In modu-
lator applications, the carrier signal will be the emitted light
and the modulating signal will be the one applied to the gate
of the quantum wire. Thus, we can implement terahertz fre-
quency and/or amplitude modulators by modulating the spin-
orbit interaction strength in a quantum wire with a gate volt-
age.

IV. CONCLUSION

In this paper, we have presented an exact calculation of
the magnetoelectric subbands and the two-component spinor
wave functions in a quantum wire in the presence of Rashba
and Dresselhaus spin-orbit interactions. We have shown that
these quantities can be varied by varying the strength of the
Rashba interaction with a gate potential. Physical models
have been presented to explain these results. We have also
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FIG. 11. �Color online� Absorption intensity as a function of
photon frequency for various Rashba coupling strengths. We have
assumed a hypothetical material with effective mass=0.067m0 and
g factor= +4. This figure clearly illustrates the nature of amplitude
and frequency modulation achievable with a gate potential that var-
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calculated the photon induced intersubband transition prob-
abilities and showed that electric dipole transitions deemed
forbidden according to zeroth-order theory are actually al-
lowed since spin vectors in spin-split levels of the same sub-

band are not antiparallel everywhere. We have shown that it
is possible to control the absorption intensity and frequency
by electrostatic means. This could lead to reconfigurable
multispectral terahertz detectors and modulators.
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