

Virginia Commonwealth University VCU Scholars Compass

Undergraduate Research Posters

Undergraduate Research Opportunities Program

2015

Creation of an Annotated Library on FDA Approved Nanomedicines

Marley R. Hodson Virginia Commonwealth University, hodsonmr@mymail.vcu.edu

Tanin Izadi Virginia Commonwealth University, izadit2@mymail.vcu.edu

Nastassja Lewinski Ph.D Virginia Commonwealth University, nalewinski@vcu.edu

Bridget T. McInnes Ph.D Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/uresposters

Part of the <u>Biochemical and Biomolecular Engineering Commons</u>, <u>Nanomedicine Commons</u>, and the <u>Other Chemical Engineering Commons</u>

© The Author(s)

Downloaded from

Hodson, Marley R.; Izadi, Tanin; Lewinski, Nastassja Ph.D; and McInnes, Bridget T. Ph.D, "Creation of an Annotated Library on FDA Approved Nanomedicines" (2015). *Undergraduate Research Posters*. Poster 170. http://scholarscompass.vcu.edu/uresposters/170

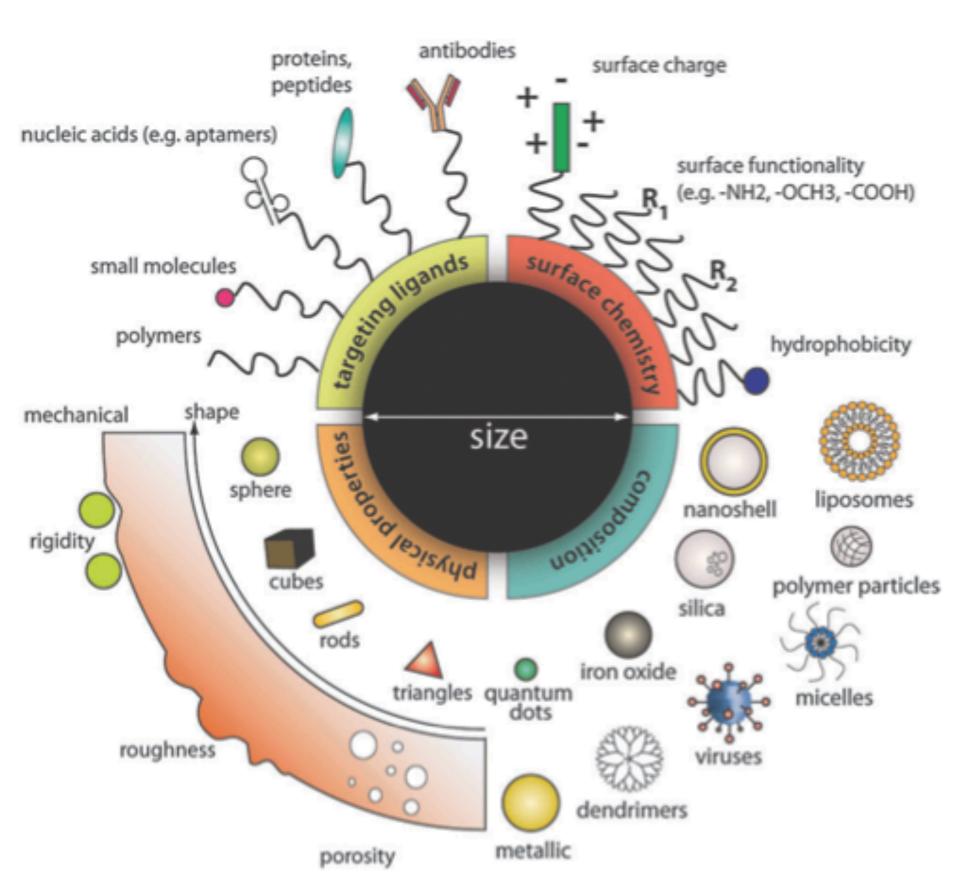
This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Abstract

Nanomedicine is a type of nanotechnology used in the medical field to limit the dosage amount and target drug delivery to specific cells. Nanomedicines that are approved and used tend to be extremely successful; however despite over a decade of research, only a limited number of nanomedicines have advanced for clinical use. A possible reason for the numerous nanomedicine failures is lack of easily accessible information and research on previous nanomedicines. In this project, we have compiled nanomedicine labeling information from the Drugs@FDA website. We have extracted phrases/sentences from labels relating to keywords on nanomaterial properties and drug profile characteristics. In the future, we plan to incorporate discontinued nanomedicines, nanomedicines on the market, and nanomedicines in different clinical trial phases. By compiling the descriptions and contents of a set of specific nanomedicines, a machine learning program could be developed to comb through literature and automatically identify similar nanomedicine related entities. Our research works to provide an easier and quicker method to obtain specific information on approved nanomedicines.

Introduction

We are used to information being readily accessible. When it comes to the subject of nanomedicine that is no longer the case. The innovative world of nanomedicine hasn't evolved to its full advancing potential. The application of nanotechnology for medical purposes has the potential to greatly improve our world.



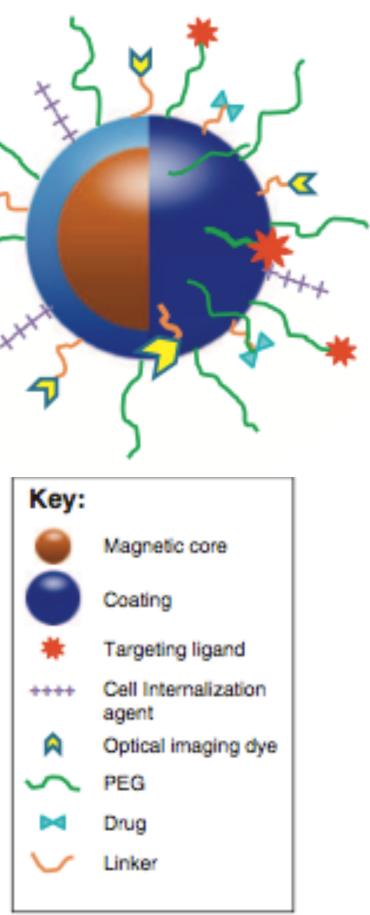

Figure 1. Different types of nanoparticles and ways they can be modified and developed [Image source: Ref. 1]

Figure 2. Illustration of a magnetic nanoparticle's "core-shell" structure. This example has a iron oxide core, which is common among magnetic nanoparticles. [Image source: Ref. 2]

COMMONWEALTH UNIVERSITY Creation of an Annotated Library on FDA Approved Nanomedicines Tanin Izadi¹, Marley Hodson¹, Bridget T. McInnes, Ph.D.², Nastassja Lewinski, Ph.D.¹ ¹Department of Chemical & Life Science Engineering ²Department of Computer Science

Our initial database was based off of the work by Schutz et al. [3]. Figure 3 shows our Excel spreadsheet and consists of data collected from this paper. The Drugs@FDA website has been our primary source for retrieving nanomedicine labeling information. We extracted relevant data from the label information, which consisted of entities in the form of a phrase/sentence relating to nanomaterial properties and drug profile characteristics. These entities specifically included the trade name, phase, platform, surface coating, nanoparticle, max concentration, time to max concentration, generic/other name, company, indication, clearance, volume of distribution, active ingredient, size, route of administration, dose, dose form, plasma half life, and elimination half life. After the data was extracted, the sentences containing this data were placed into a separate Excel spreadsheet as shown in Figure 4. Figure 3 contains the entire database that was updated and filled with information received from the labeling documents during this project. The data was then analyzed to reveal any potential trends.

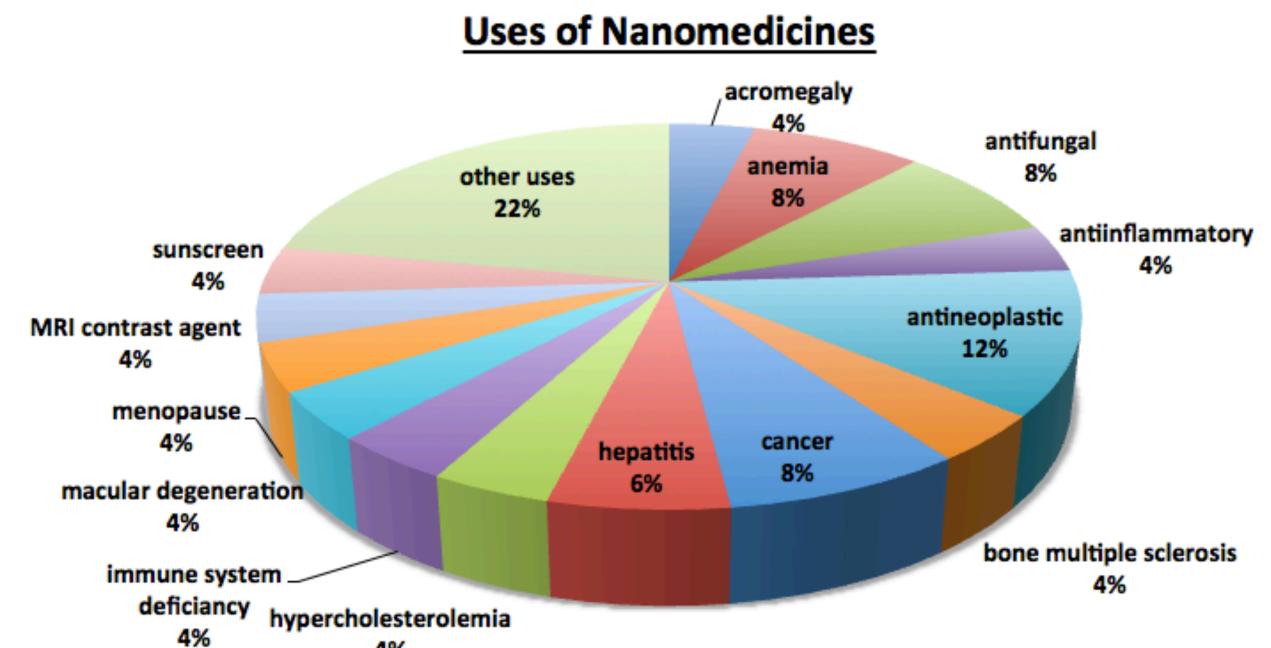

1	Phase	Platform	Nanopartic	Surface Co	Trade Nam	Generic/Oth	Company	Indication	Active Ingre	Size (nm)	Route of a	c Dose	t1/2 (plasm	t1/2 (elimina	FDA approv	EU approv
2	Approved	Nanoparticle	TIO2		Anthelios 20		Loreal USA	sunscreen	avobenzone,	ecamsule, o	Dermal				10/4/2002	
3	Approved	Nanoparticle	TiO2		Anthelios 40	Helioblock S	Loreal USA	sunscreen	avobenzone,	ecamsule, o	Dermal				3/30/2004	
4	Approved	Nanoparticle	CaP		Elestrin		Jazz Pharm	menopause	estradiol		Dermal (tra	nsdermal)	54.8-75.2 h	r	12/14/2002	
5	Approved	Micelle	soybean oil,	NR	Estrasorb	Estradiol top	Novavax, G	vasomotor s	estradiol hen	nihydrate	Dermal (tra	nsdermal)	57.6 hr		10/8/1999	
5	Approved	Virosome	spherical ve	NR	Epaxal		Berna Biote	hepatitis A v	immunopote	150	IM				not found	
7	Approved	Polymer-pro	asparaginas	PEG	Oncaspar	Oncospar, p	Enzon Phan	r Chemothera	pegasparga	NR	IM or IV	2500 IU/m2	5.8 d (IM), 7	5.8 d	1/1/1990	
8	Approved	Virosome			Inflexal V		Berna Biote	influenza va	ccine		IM or subcu	taneous inject	tion			
9	Approved	Polymer-apt	siRNA anti-\	PEG	Macugen	siRNA anti-\	Eyetech Inc,	neovascular	pegaptanib s	odium	intravitreal i	injection	10+/-4 hr		12/16/2000	1/30/2002
0	Approved	Nanoparticle	albumin	NR	Abraxane	Paclitaxel al	Abraxis Bio	metastatic b	paclitaxel (ta	130	IV		27 hr		1/6/2001	1/10/2004
1	Approved	Polymer-pro	fab fragmen	PEG	Cimzia	Certolizuma	Nektar, UCI	Crohn's dise	humanized a	nti-TNF-alph	n IV		14 d		4/21/2004	9/30/2005
2	Approved	Polymer-pro	interferon-al	PEG	PEGIntron		Enzon, Sch	hepatitis C	peginterferor	alpha-2B	IV				1/18/1997	5/24/1996
3	Approved	Liposome	lipid	NR	AmBisome	Amphoterici	Astellas Pha	antifungal	amphotericii	~45-80	IV		24 hr	15 d	8/10/1993	
4	Approved	Liposome	lipid	NR	DaunoXome	Daunorubici	Diatos, Gile	antineoplast	daunorubicin	-citrate	IV				4/7/1992	
5	Approved	Liposome	lipid	NR	Depodur	Depofoam	Pacira Phar	pain relief	morphine sul	fate	IV				5/17/2000	
6	Approved	Liposome	lipid	NR	Mepact	L-MTP-PE	IDM Pharma	osteosarcor	mifamurtide		IV				NR	3/5/2005
7	Approved	Liposome	lipid	NR	Myocet		Sopherion 7	antineoplast	doxorubicin	150	IV		2-3 d			7/12/1996
8	Approved	Liposome	lipid	NR	Visudyne	Verteporfin f	Novartis	photodynam	verteporfin		IV				4/20/1996	7/26/1996
9	Approved	Liposome	lipid	PEG	Doxil	Caelyx (EU)	Ortho Biote	antineoplast	doxorubicin	105	IV		2-3 d		11/16/1991	6/20/1992
0	Approved	Liposome	lipid		Abelcet	Amphoterici	Sigma-Tau	lantifungal	amphotericin	В	IV				11/19/1991	
1	Approved	Liposome	lipid		Amphotec	Amphoterici	Three River	antifungal	amphotericii	~115	IV				11/21/1992	
2	Approved	Liposome	lipid		Diprivan		App Pharms	anesthetic	propofol		IV				10/1/1985	
3	Approved	Polymer-pro	monometho:	PEG	Adagen	pegademas	Sigma-Tau	l enzyme repl	pegademase	e bovine	IV				3/20/1986	
4	Approved	Micelle	NR	NR	Taxol	cremophor,	Corden Pha	antineoplast	paclitaxel		IV				12/28/1988	
5	Approved	Micelle	poly(D.L-lac	PEG	Genexol-PM		Samyang C	antineoplast	paclitaxel	20-60	IV					

Figure 3. Screenshot of entire updated database.

Figure 4. Screenshot ofour sentence extraction excel spreadsheet for the drug Zevalin.

Phase Initial U.S. Approval: 2002 Platform The antibody moiety of Zevalin is ibritumomab, a murine IgG1 kappa monoclonal antibody directed against the CD20 antig Nanopar Zevalin (ibritumomab tiuxetan) is the immunoconjugate resulting from a stable thiourea covalent bond between the mono-Surface Coating Trade Na Zevalin is indicated for the treatment of relapsed or refractory, low-grade or follicular B-cell non-Hodgkin's lymphoma (NH Generic/(Zevalin (ibritumomab tiuxetan) is the immunoconjugate resulting from a stable thiourea covalent bond between the mono-Company Zevalin® is a registered trademark of Spectrum Pharmaceuticals, Inc. and its subsidiaries Indication Zevalin is indicated for the treatment of relapsed or refractory, low-grade or follicular B-cell non-Hodgkin's lymphoma (NH Active In(Zevalin (ibritumomab tiuxetan) is the immunoconjugate resulting from a stable thiourea covalent bond between the mono O Size (nm) 1 Route of Day 1: Administer rituximab 250 mg/m² 2 Dosage Each single-use vial includes 3.2 mg of i 13 Dose A clearly-labeled kit is required for prepared 14 t1/2 (plas Yttrium-90 decays by emission of beta p Clearance Volume of Distribution

- 7 Max Con Severe cytopenias which may require st 18 Time of Max Concentration 9 t1/2 (elimination)
- 20 FDA app Initial U.S. Approval: 2002
- 21 U.S. Pate Protected by U.S. Patent Nos. 5,736,137, 5,776,456, 5,843,439, 6,207,858, 6,399,061,

infunction a stable thousand to be ween the mone
intravenous. Day 7, 8, or 9: Administer rituximab 250 mg/m ² intravenous infusion
ibritumomab tiuxetan in 2 mL of 0.9% Sodium Chloride.
paration of Yttrium-90 (Y-90) Zevalin. Follow the detailed instructions for the prepa
particles, with a physical half-life of 64.1 hours (2.67 days).
em cell support have occurred at doses higher than the recommended maximum t

Results/Discussion

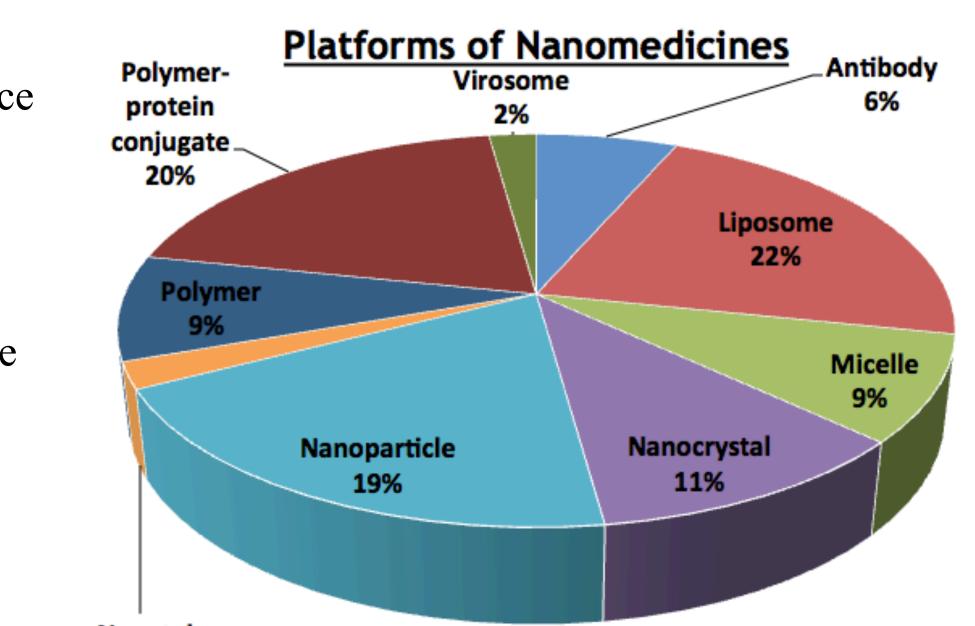

Figure 5. Prevalence of the different uses of FDA approved nanomedicines. Antineoplastics was the most common.

Figure 6. Prevalence of the different platforms each nanomedicine contained. Liposomes were the top platform used followed by Nanoparticles

After our thorough research and analysis of each nanomedicine, we were able to group and categorize the drugs based on their platforms and indications. When categorizing these characteristics we found different trends and correlations. There were seven total nanomedicines that had the indication of antineoplastic agents (medicines that target cancerous cells). Out of the seven antineoplastic nanomedicines, six had the platform of either a liposome or micelle. While liposomes and micelles share many similar qualities, the structure remains as the predominant difference. Micelles have a membrane monolayer, while liposomes have a bilayer, signifying the liposomes are generally larger in size. We conclude from this trend that encapsulating the drug in a liposomes and micelles is a more successful drug delivery method compared to attaching the drug to the surface of the particles. With many new nanomedicines in the pipeline, this trend can easily change in the future.

We would like to thank Lynn Secondo and Mahmoud Moustafa for providing us key information and guiding us throughout this project.

Nanotechnology(2011) 29(7),

Conclusion

As we continue our research, we plan to work with Dr. McInnes's research team to develop a system that automatically extracts nanomedicine information. With the sentences we have collected and categorized, the system will be able to search for entities within the label information pdfs. With this entity extraction program, we will be able to promptly gather the relevant nanomedicine information. The shortened period for research allows for a clearer and quicker alternative in viewing the relationships between the different types of nanomedicines. Once the automation program is created, the current difficulties in retrieving background research on nanomaterials will dramatically decrease. This program will be able to extract entities from pdf files that the user inputs. A separate program that automatically searches for nanomedicine pdfs is also under development.

Acknowledgements

Works Cited

[1] Chou L, Ming K., Chan* W. "Strategies for the intracellular delivery of nanoparticles" Chem. Soc. Rev., 2011, 40, 233–245. [2]Cole A., Yang V., David A., "Cancer theranostics: the rise of targeted magnetic nanoparticles" *Trends in*

[3] Schutz C, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M. "Therapeutic nanoparticles in clinics and under clinical evaluation." *Nanomedicine* (2013) **8**(3), 1–19.