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Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish’s 21 

width and complicate ingestion by gape-limited predators. The spine mates with the pectoral 22 

girdle, a robust structure that anchors the spine. This study demonstrates that both spine and 23 

girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in 24 

domesticated than in wild Channel Catfish. This finding could be explained by changes in 25 

selection pressure for spine growth during domestication or by an epigenetic effect in which 26 

exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic 27 

hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass 28 

Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the 29 

fingerlings, and regression analysis indicates no difference in proportional pectoral growth 30 

between control and predator-exposed fish. Therefore a change in selection pressure likely 31 

accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth 32 

in older fish suggests anti-predator functions are most important in smaller fish. Additionally, 33 

growth of the appendicular and axial skeleton is controlled differentially, and mechanical 34 

properties of the spine and not just its length are an important component of this defensive 35 

adaptation. 36 

 37 

 38 

 39 

 40 

 41 

 42 
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Spines have been examined extensively as anti-predator adaptations in a number of aquatic 43 

species including Daphnia (Tollrian and Dodson 1999) and the Three-Spined Stickleback 44 

Gasterosteus aculeatus (Huntingford and Coyle 2007). A major adaptation of catfishes, one of 45 

the most successful teleost groups, is a hypertrophied first pectoral spine that can be bound and 46 

locked (Fine et al. 1997). Binding involves active muscular force that engages friction-locking 47 

surfaces between the spine base and the pectoral girdle. Locking requires full abduction of the 48 

spine, which traps a spine process within a recess in the coracoid preventing further movement 49 

(abduction or adduction). In addition the spine can be rubbed against the cleithrum to produce 50 

stridulatory sounds that can serve in distress, agonistic and courtship capacities (Fine and Ladich 51 

2003; Kaatz et al. 2010; Parmentier et al. 2010). These specialized functions are mediated by 52 

rearranged pectoral muscles (Diogo et al.  2001; Miano et al. 2013) and derived processes 53 

(dorsal, anterior and ventral) on the spine base (Hubbs and Hibbard 1951) that mate with 54 

complimentary structures on the pectoral girdle (Diogo et al. 2001; Fine et al. 1997). The 55 

pectoral girdle (a fused cleithrum, coracoid and scapula) is a robust structure (Fine et al. 1997), 56 

providing rigid support for the spine (Schaefer 1984). When locked in a fully-abducted position, 57 

the stout pectoral spines of Channel Catfish, Ictalurus punctatus Rafinesque more than double 58 

the fish’s width (Sismour et al. 2013) and impede ingestion by gape-limited predators. Intact 59 

Channel Catfish fingerlings are three times less likely to be eaten by Largemouth bass, 60 

Micropterus salmoides Lacepede than comparably-sized individuals with clipped spines (Bosher 61 

et al. 2006), and Largemouth bass consume fewer Channel Catfish than Goldfish, Carassius 62 

auratus L. and Bluegills, Lepomis macrochirus Rafinesque in choice experiments, supporting 63 

Forbes’ dangerous prey hypothesis (Sismour et al. 2013).  64 
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 Channel Catfish spines collected beneath eagle nests (Duvall 2007) exhibited subtle 65 

morphological differences from those of domesticated stocks (Fine et al. 1997) calling into 66 

question the effects of domestication on spine development. Domestication in Channel Catfishes 67 

has selected for more rapid growth rate than in natural populations and a reduction of genetic 68 

diversity although introduction of new fish has likely minimized inbreeding (Hallerman et al. 69 

1986; Smitherman and Dunham 2003). 70 

We compared pectoral spines of Channel Catfish from the James River, Virginia with 71 

domesticated fish purchased from an Arkansas stock. Smaller spines found in domesticated fish 72 

could result from changes in selection pressure over multiple generations. Alternately, exposure 73 

to predators in wild fish could induce an epigenetic effect that turns on genes that induce spine 74 

growth (phenotypic plasticity). We tested the epigenetic hypothesis by exposing domesticated 75 

Channel Catfish fingerlings to Largemouth Bass behind a mesh barrier for several months. 76 

Previous work with these individuals demonstrated that fingerlings exposed to Largemouth Bass 77 

move and eat less than controls and grow more slowly (Fine et al. 2011). The current study 78 

demonstrates that although control fingerlings were longer and heavier than experimental fish, 79 

the proportional pectoral spine and girdle weight are similar in control fish and experimental fish 80 

exposed to Largemouth Bass, indicating that predators did not induce increased growth of the 81 

pectoral skeleton. 82 

 83 

Methods 84 

Wild Channel Catfish I. punctatus were caught by electroshocking (Virginia Department of 85 

Game and Inland Fisheries and Virginia Commonwealth University VADGIF permit number 86 

0444631 and IACUC AD20216) in the James River, Virginia. Domesticated fish were obtained 87 
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from the aquaculture facility of Virginia State University from stocks purchased from Arkansas. 88 

Fish were weighed in grams and measured for total length in mm (TL). Frozen fish were thawed 89 

and boiled briefly to clear the skeletons. After drying, pectoral spines were measured for length 90 

with digital calipers, and spines and girdles were weighed in milligrams. Since spine tips often 91 

break, the longer and heavier spine was used for analysis. Measurements were linearized by log-92 

log transformation, regressed against TL or weight, and regressions of domesticated and wild 93 

fish were compared by analysis of covariance. Adjusted means for domesticated and wild fish 94 

were calculated from regressions for 400 mm TL and 1,000 g Channel Catfish. Data were plotted 95 

on a linear scale to illustrate growth rate. 96 

          Experimental protocols for non-consumptive effects of Largemouth Bass Micropterus 97 

salmoides predators are provided in Fine et al. (2011) and will be summarized briefly. Juvenile 98 

Channel Catfish were measured for total length TL in mm and weighed to 0.1 g. Largemouth 99 

Bass (29 to 43 cm TL) were obtained by hook and line from a small impoundment at the Rice 100 

Center of Virginia Commonwealth University (Charles City County, Virginia). Fish were 101 

maintained in eight 300 L fiberglass tanks at 23 C under a 14:10 LD cycle. A black polyethylene 102 

plastic mesh barrier (6.5 mm square openings) was erected across the center of each tank 103 

separating them into halves, and a clay flowerpot was added to the catfish side for shelter. Ten 104 

Channel Catfish were acclimated in the right half of each tank for one week, after which a 105 

Largemouth Bass was added to four of the tanks. Largemouth bass are a generalized fish 106 

predator that commonly consumes Channel Catfish in rivers and ponds (Sismour et al. 2013). 107 

The other four tanks with no bass served as controls. There was no difference in mean size of 108 

control and experimental Channel Catfish at the beginning of the experiment (Fine et al. 2011). 109 

Largemouth bass were fed at least twice a week with a dead Channel Catfish from the same 110 
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stock as the experimental catfish. Catfish were fed to satiation multiple days per week using a 111 

standard 32% protein floating-pellet catfish ration. The experiment was conducted for 13 weeks. 112 

          Based on data from wild and domesticated fish and our hypothesis that predators would 113 

increase spine growth, we compared means from control and experimental tanks with a one-114 

tailed T-test.  TL, fish weight, pectoral spine length and weight and girdle weight from the four 115 

control and four experimental tanks were averaged so that each tank was treated as a unit (N = 4 116 

per treatment), and p < 0.05 was considered significant. Because of differences in size of control 117 

and experimental fish at the termination of the experiment (see results), tank means were not 118 

sufficient to determine if relative spine and girdle growth are affected by predators. Growth was 119 

therefore evaluated by linear regressions of spine length against fish TL and spine and girdle 120 

weight against fish weight. Regressions were compared by analysis of covariance.  Because of 121 

possible tank effects, we first compared regressions across tanks within control and within 122 

experimental treatments. Slopes and intercepts were not significant for spine length, spine weight 123 

or girdle weight within either treatment. Since there were no tank effects, data from individual 124 

tanks were combined, and relative growth for spines and girdles was evaluated and regressions 125 

were compared between control and experimental tanks using individual fish. 126 

  127 

Results 128 

PECTORAL COMPARISONS BETWEEN WILD AND DOMESTICATED CHANNEL 129 

CATFISH  130 

Spine length, spine weight and girdle weight increased continuously with fish size although at a 131 

decelerating rate in catfish that ranged from 87 to 562 mm TL (Fig. 1). Adjusted means for 132 

domesticated and wild fish respectively were 40.4 and 49.9 mm for spine length, 0.60 and 1.04 g 133 
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for spine weight and 5.42 and 7.50 g for girdle weight. Wild catfish had longer and heavier 134 

spines and heavier girdles than domesticated individuals. Slopes for spine lengths did not differ 135 

between domesticated and wild fish (F1,91=1.23, p =0.2669), but elevations were greater in wild 136 

fish (F1,92=219.6, p<0.0001). Slope for spine weight against fish weight were so much greater in 137 

wild fish (F1,91=10.7, p=0.0015) that intercepts could not be tested. Slopes for girdle weight were 138 

similarly greater in wild fish (F1,86=8.10, p=0.0055). 139 

 140 

PREDATOR EXPOSURE EXPERIMENT 141 

Mean TL ranged from 16.40 to 17.59 mm for control and 14.38 to 16.06 for experimental tanks 142 

and weights from 37.24 to 45.35 and 21.20 to 31.65 respectively. Control Channel Catfish were 143 

longer (T6=3.229, p=0.0179) and heavier (T6=4.384, p=0.0046) than experimental fish at the 144 

termination of the experiment (Fig. 2a, b) indicating that a predator across the barrier retarded 145 

growth (Fine et al. 2011). The control fish had longer (T6=2.420, p =0.0259) and heavier 146 

(T6=2.078, p=0.0415) pectoral spines (Fig. 2c, d) as would be expected of larger individuals, but 147 

the difference in girdle weight did not reach significance (T6=1.808, p=0.1206).  In this size 148 

range spines and girdles of both control and experimental catfish grew linearly (Table 1; Fig 3). 149 

The r2 values for linear regressions of control fish ranged from 0.75 to 0.93 for spine length 150 

against TL, spine weight against weight and girdle weight against weight except for control spine 151 

length against TL with an r2 of 0.46 (Table 1). Data points for control and experimental fish co-152 

scattered, and analysis of covariance indicated no significant difference between proportional 153 

pectoral spine length, weight or girdle weight of control fish and fish exposed to Largemouth 154 

Bass (Table 1, Fig 3). The largest individuals were all in control tanks, and these individuals 155 

were likely responsible for slight though not significant differences in intercepts of spine and 156 
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girdle weight regressions. Similar experimental and control regressions indicate that exposure to 157 

predators did not increase pectoral growth. 158 

Discussion 159 

The most parsimonious hypothesis to account for the decreased pectoral spine and girdle weight 160 

we observed in domesticated fish is changes in selection pressure for this defensive adaptation 161 

rather than an epigenetic effect caused by exposure to predators.  Domestication of Channel 162 

Catfish has involved selection for fast growth in ponds without fish predation, and the pectoral 163 

apparatus was not considered when choosing breeding stock (Dunham and Smitherman 1982; 164 

Hallerman et al. 1986; Smitherman and Dunham 1993).  However, breeding for fast growth 165 

could have inadvertently selected for fish with smaller pectoral spines and girdles. We note that 166 

spines are not a concern in large commercial ventures since fish are rarely handled individually 167 

until processing when they are stunned with a weak electric current before decapitation 168 

(Marshall 2004). Additionally smaller spines in aquaculture fish are still an effective adaptation 169 

and deter predation by Largemouth Bass (Bosher et al. 2006 Sismour et al. 2013). 170 

  Relaxation of selection pressure during domestication and inadvertent selection for 171 

smaller spines are complimentary hypotheses to explain spine reduction although inadvertent 172 

selection might be unlikely in the presence of fish predators. Unraveling the course of selection 173 

on spine size will be complex since contemporary aquaculture stocks do not have a single 174 

population of origin (Smitherman and Dunham 1983). Therefore, comparisons between cultured 175 

stocks with a single wild population of origin would not be possible. Experimentation to confirm 176 

either hypothesis could involve developing a cultivated stock from a wild population and 177 

following spine development over several generations.  Such an endeavor would require at least 178 

a decade given that Channel Catfish in Virginia require 4-6 years to mature (Hubert 2000). It 179 
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should also be possible to compare spine size in populations of domesticated fish with different 180 

growth rates. 181 

       Selection pressure on spine length has been demonstrated in populations of Gasterosteus 182 

aculeatus under different predation regimes: populations dominated by fish predators have long 183 

spines whereas populations with invertebrate predators have shorter ones (Huntingford and 184 

Coyle 2007). Similarly, in Nine-Spined Sticklebacks, a common garden experiment 185 

demonstrated that predator density and food availability did not affect body shape or armor, 186 

indicating that anti-predator traits are constituitive rather than inducible (Välimäki et al. 2012). 187 

The classic example of a predator-induced defense in fishes is an increase in body depth in 188 

Crucian carp, Carassius carassius (Brönmark and Miner 1992). Similarly, the presence of 189 

predators caused morphological changes in perch and roach (Eklöv and Jönssön 2007) and in 190 

pumpkinseed sunfish (Januszkiewicz and Robinson 2007).  191 

         The 13-week experiment reported here resulted in significant growth differences but not in 192 

changes in pectoral development when normalized to fish size. Our results do not rule out the 193 

possibility of an epigenetic effect on smaller or wild individuals. The negative allometry of 194 

pectoral girdle growth suggests that the axial and appendicular skeletons are controlled by 195 

different genetic mechanisms. One would expect axial and appendicular skeletons to grow 196 

proportionately in most fishes in order to provide normal control of fine movement. Our finding 197 

therefore supports the importance of the fused pectoral girdle (Schaefer 1984) as a major 198 

component of the anti-predator adaptation provided by the pectoral spines. Furthermore, linear 199 

pectoral spine growth in young but not older fish emphasizes the importance of the adaptation in 200 

small fish that face increased predation risk. We caution that growth rate in domesticated and 201 

wild fish differ. 202 
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      The pectoral spine of Channel Catfish is an enlarged flattened fin ray that tapers toward the 203 

tip (Fine et al. 1997). The enlarged horizontal profile will increase resistance in the horizontal 204 

plane, which opposes forces caused by passage through a predator’s mouth or underwater 205 

obstructions. Spine and girdle growth is isometric in small juveniles used in this study, and the 206 

negative allometry in spine length and weight is due to decreasing growth in larger individuals 207 

who would be less vulnerable to predation. Additionally breakage of spine tips occurs commonly 208 

in both domestic and wild individuals. Decreasing girdle weight supports a growth effect and not 209 

just breakage. The increase in spine weight would be determined by linear dimensions, 210 

particularly near the wider spine base, and spine weight per millimeter of spine length increases 211 

exponentially with TL (Duvall 2007). Wild Channel Catfish have wider spines (Duvall 2007), 212 

which increases the moment of inertia (a greater cross sectional area further from the midline) 213 

and therefore breakage resistance of the structure. The larger mass of the pectoral girdle in wild 214 

fish is striking since it is a major component of the fish’s girth. Finally, the increased spine mass 215 

suggests that in addition to spine length (Tollrian and Dodson 1999; Huntingford and Coyle 216 

2007) other dimensions that contribute to the material properties of a defensive spine are 217 

important to its function. 218 
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Figure Legends 

Figure 1. Relationship of spine length to total length (a), spine weight to fish weight (b) and 

pectoral girdle weight to fish weight (c) for wild and domesticated catfish. Equations for James 

River fish: Log Spine L = 0.001654 + 0.6518 Log TL, r2 = 0.92; Log Spine Wt = -1.928 + 

0.6480 Log Wt, r2 = 0.89; Log Girdle Wt = -1.284 + 0.7197 Log Wt, r2 = 0.87. Equations for 

domesticated fish: Log Spine L = -0.0561 + 0.639, Log TL, r2 = 0.96; Log Spine Wt = - 1.984 + 

0.5885, r2 =0.96 Log Wt; Log Girdle Wt = - 1.833 + 0.8558 Wt, r2 = 0.96.  

Figure 2. Mean ± SE total length, fish weight, spine length, spine weight, spine length for 

control and experimental Channel Catfish. * p < 0.05, **p < 0.01. 

Figure  3. Relationship of spine length to total length (a), spine weight to total weight (b) and 

girdle weight to total weight (c) in control and experimental Channel Catfish.  
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Relationship of spine length to total length (A), spine weight to fish weight (B) and pectoral girdle weight to 
fish weight (C) for wild and domesticated catfish. Equations for James River fish: Log Spine L = 0.001654 + 
0.6518 Log TL, r2 = 0.92; Log Spine Wt = -1.928 + 0.6480 Log Wt, r2 = 0.89; Log Girdle Wt = -1.284 + 

0.7197 Log Wt, r2 = 0.87. Equations for domesticated fish: Log Spine L = -0.0561 + 0.639, Log TL, r2 = 
0.96; Log Spine Wt = - 1.984 + 0.5885, r2 =0.96 Log Wt; Log Girdle Wt = - 1.833 + 0.8558 Wt, r2 = 0.96. 
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Figure 2. Mean ± SE total length, fish weight, spine length, spine weight, spine length for control and 
experimental Channel catfish. * p < 0.05, **p < 0.01.  

72x216mm (300 x 300 DPI)  
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Figure  3. Relationship of spine length to total length (a), spine weight to total weight (b) and girdle weight 
to total weight (c) in control and experimental Channel catfish.  

113x201mm (300 x 300 DPI)  
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Table 1  Regression equation and coefficient of determination for spine length against total 

length, spine weight against fish weight and girdle weight against fish weight, analysis of 

covariance for slopes and intercepts and adjusted means calculated for 160 mm TL and 50 g 

weight  Channel catfish         

        

 

Regression Equations 

 

Slope 

 

Intercept 

 

Adjusted Mean 

    

     r
2
    F p F p       

Ctrl Spine L=0.0601 TL+11.18 

Exp Spine L=0.0752 TL+9.168 

0.46 

0.79 

F1,67=0.97 

 

0.32 F1,68=0.68  

 

0.41 20.80 mm 

21.20 mm 

Ctrl Spine Wt=0.0010 Wt+0.022 

Exp Spine Wt=0.0011 Wt+0.023          

0.92 

0.83 

F1,67=0.48 0.4 F1,68=2.37  

 

0.13 0.072 g 

0.078 g 

Ctrl Girdle Wt= 0.0056 Wt+0.058                                    

Exp Girdle Wt=0.0054 Wt+0.086 

0.93 

0.75 

F1,65=0.14 0.7 F1,66=3.57  

 

0.06 0.338 g 

0.356 g 
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